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Abstract. We describe a new CSeq module that implements improved algo-
rithms for the verification of multi-threaded C programs with dynamic thread
creation. It is based on sequentializing the programs according to a guessed se-
quence of write operations in the shared memory (memory unwinding, MU). The
original algorithm (implemented in MU-CSeq 0.1) stores the values of all shared
variables for each write (read-explicit fine-grained MU), which requires multiple
copies of the shared variables. Our new algorithms store only the writes (read-
implicit MU) or only a subset of the writes (coarse-grained MU), which reduces
the memory footprint of the unwinding and so allows larger unwinding bounds.

1 Introduction

Sequentializations translate concurrent programs into sequential ones while preserving
a given verification property (e.g., reachability). They reuse sequential verification tools
and offer many advantages, such as the ability to focus on the concurrency aspects of
a language, to quickly experiment with different approaches, and to build robust verifi-
cation tools with less effort. We develop the CSeq tool as a modular sequentialization
framework [1, 2] for multi-threaded C programs with dynamic thread creation. It con-
tains modules for the Lal/Reps scheme [5], a lazy sequentialization scheme aimed at
bounded model checking [3, 4], and a memory unwinding scheme [6].

A memory unwinding (MU) is an explicit representation of the write operations into
the shared memory as a sequence that contains for each write the writing thread, the
variable, and the written value. We can vary which writes are represented and thus ex-
posed to the other threads, which leads to different strategies with different performance
characteristics. In a fine-grained MU every write operation is represented explicitly and
individually. In a coarse-grained MU we only represent a subset of the writes and group
together multiple writes (by exposing for each group only the last write for each vari-
able). In an intra-thread MU the writes in one group are all executed by one thread;
the writes not represented can thus be seen as having been superseded by subsequent
writes in the same context. In an inter-thread MU the writes in one group can come
from different threads, thus summarizing the effect of multiple context switches.
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2 Verification Approach

Overview. Our approach can be seen as an eager sequentialization of the original con-
current program P over the unwound memory. We first guess an n-memory unwinding
of P, i.e., a sequence ws . ..w, identifying the threads, the shared variables and the
values involved in the write operations of P. We then simulate all runs of P that are
compatible with this guess. For the simulation, each thread is translated into a simula-
tion function where write and read accesses over the shared memory are replaced by
operations over the unwound memory. The simulation functions are executed sequen-
tially, starting from the main function; each thread creation is translated into a call to
the corresponding simulation function. All context switches are implicitly simulated
through the MU. We adapt this general sequentialization scheme with different imple-
mentations, in particular for the functions to read from / write into the shared memory
and for dynamic thread creation. The details can be found in [7].

Fine-grained MU. In this approach, all the writes of a P run are considered meaningful
to the other threads and thus exposed. We store each of them individually in the memory
unwinding, with three arrays reporting respectively for each position the writing thread,
the variable name and the written value. For an efficient implementation of the MU
API functions, we also store some additional data such as the index of the last write
performed in the simulation and a table containing, for each position and thread ¢, the
position of next write of ¢ in the memory unwinding.

We distinguish between the read-explicit and the read-implicit schemes. In the first

case, all shared variables are replicated at each position of the sequence; we used this
schema in MU-CSeq 0.1 [6]. Its main feature is that the value of each shared variable
can be read directly at each step. It thus trades memory consumption for a simple logic
in the implementation of the MU API. In the second scheme, at each position in the
sequence, we copy only the shared variable that is modified by the corresponding write.
The implementation of the MU API becomes more involved, but it yields an effective
gain when the number of shared variables is large compared to the number of writes.
We have also mixed the two schemes into a third one that is read-explicit for scalar
variables and read-implicit for the arrays.
Coarse-grained MU. In this approach, we store at each position of the sequence a par-
tial mapping from the shared variables to values, with the meaning that the variables in
the domain of the mapping are modified from the previous position and the value given
by the mapping is their value at this position. A variable that is modified at position
i + 1 could also be modified between positions ¢ and ¢ + 1 by other writes that are not
exposed in the sequence. Thus, by exposing only some of the writes of a run (1) we
restrict the number of possible runs that can match a MU (in fact, the unexposed writes
cannot be read externally, and thus some possible interleavings of the threads are ruled
out) and (2) we handle larger number of writes by nondeterministically deeming only
some of them as interesting for the other threads.

In this approach we also distinguish between the cases in which either only one
(intra-thread coarse-grained MU) or multiple (inter-thread coarse-grained MU) threads
are allowed to modify the variables. Both variants can be realized as read-implicit, read-
explicit and mixed schemes.



3 Architecture, Tool setup, and Configuration

Architecture. MU-CSeq 0.3 is implemented as source-to-source transformations in
Python, within the CSeq framework. This uses the pycparser (v2.10, github.
com/eliben/pycparser) to parse a C program into an abstract syntax tree (AST),
and then traverses the AST to construct a sequentialized version, as outlined above. The
resulting program can be processed independently by any verification tool for C, but
we have only tested MU-CSeq 0.3 with CBMC (v4.9 revision 4648, www . cprover.
org/cbmc/). For the competition we use a wrapper script that bundles up the transla-
tion and calls CBMC for verification. The wrapper returns the output from CBMC.

We use a simple syntactic analysis of the program to determine which schema and
parameters we use. In particular, if the program contains arrays we use the mixed fine-
grained MU with parameters —w25 -t10 —£2 —u2 -thl10; here w (resp., t) is the
bound on the number of write operations (resp., of spawned threads), £ is the un-
wind bound for for and u is the unwind bound for the remaining loops, and thl
is the bound on the number of threads that are spawned in any while-loop. If the
program contains more than 30 assignments but no loop, or a pthread._create
inside a for-loop, we switch to the inter-thread coarse-grained MU, with parameters
-w2 -t52 —=£52 —ul -thl10. In all other cases we use again the first schema but
with parameters —w23 —t10 —-£12 —ul —th13. We use a timeout of 850 seconds,
and interpret the single case where this timeout applies as true.

Availability and Installation. MU-CSeq 0.3 is available at http://users.ecs.
soton.ac.uk/gp4/cseqgq/mu-cseqg-0.3.zip; it also requires installation of
the pycparser. CBMC must be installed in the same directory as MU-CSeq.

Call. MU-CSeq should be called in the installation directory as follows: mu-cseq.py
-1 file —--spec specfile —-witness logfile.

Strengths and Weaknesses. MU-CSeq participates only in the concurrency category.
It returns the correct answers for all problems in this category, but is slower than Lazy-
CSeq, thus winning the Silver medal.
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