
Lazy-CSeq 0.6c: An Improved Lazy Sequentialization
Tool for C ?

(Competition Contribution)

Omar Inverso1, Ermenegildo Tomasco1, Bernd Fischer2, Salvatore La Torre3, and
Gennaro Parlato1

1 Electronics and Computer Science, University of Southampton, UK
2 Division of Computer Science, Stellenbosch University, South Africa
3 Dipartimento di Informatica, Università degli Studi di Salerno, Italy

Abstract. We describe an improved version of the bounded lazy sequentializa-
tion schema, and its implementation within the CSeq framework for sequentially
consistent C programs using POSIX threads. The new schema uses an optimized
representation of the context switch points and eagerly guesses these, but retains
the other characteristics of the original lazy schema. Experiments show that the
optimizations lead to substantial performance gains.

1 Introduction

Sequentialization translates concurrent programs into (under certain assumptions) equiv-
alent nondeterministic sequential programs and so reduces concurrent verification to its
sequential counterpart. The first general sequentialization schema for an arbitrary but
bounded number of rounds was proposed by Lal and Reps (LR) [6]. This schema uses
one copy of the shared memory for each round; the initial values of all memory copies
are nondeterministically guessed in the beginning (eager exploration), while the transi-
tion between rounds (i.e., context switch points) are guessed lazily during the execution
of the sequential program. LR is widely used but since it induces large formulas (due to
the repeated memory copies) with a high degree of nondeterminism (due to the eager
guess of the inital values of the copies), lazy schemas [5] have found interest. In partic-
ular, we have developed a lazy sequentialization schema for bounded programs that is
carefully designed to introduce very small memory overheads and very few sources of
nondeterminism, so that it produces simple formulas, and is thus already very effective
in practice [3, 4].

In this paper, we describe an improved version of this bounded lazy sequential-
ization schema, and its implementation within the CSeq framework for sequentially
consistent C programs using POSIX threads. The new schema uses an optimized rep-
resentation of the context switch points and eagerly guesses these, but retains the other
characteristics of the original lazy schema. Experiments show that the optimizations
lead to substantial performance gains.

? Contact author: Omar Inverso, oi2c11@ecs.soton.ac.uk.



2 Verification Approach

Overview. The verification follows the same approach as before [3, 4], i.e., the con-
current program P is bounded and unrolled so that there is only a bounded number of
possible threads, that each statement is executed at most once, and that all jumps are
forward jumps, and then translated into into a sequential program P ′ that simulates all
computations that P can execute in round-robin schedules with K rounds. P ′ is finally
verified using CBMC (v4.9 revision 4648, www.cprover.org/cbmc/).

P ′ consists of a main driver function and a simulation function for each thread in-
stance (including the original main) identified during the unrolling phase. The driver
maintains, for each thread, the program location at which the previous round’s context
switch has happened and thus the computation must resume in the next round. In addi-
tion, it also maintains the schedule, in form of a variable that, for each thread and each
round, contains the number of visible statements that the thread is allowed to execute in
the corresponding round. The driver orchestrates the simulation by first guessing the run
lengths, and then repeatedly calling the simulation functions in a round-robin fashion.
The simulation functions jump (in multiple hops) back to the stored locations context
switch locations and execute the allowed number of visible statements.

The translation also converts thread-local variables into static variables, so that
the simulation functions do not need to re-compute their values from saved copies of
previous global memory states before they resume the computation.
Data Structures. P ′ stores and maintains, for each thread, a flag denoting whether the
thread is active, the thread’s original arguments, and the program location at which the
previous context switch has happened. In addition, the new version also maintains, for
each thread, the length of each round. One important optimization is that all variables in
P ′ that refer to program locations (i.e., the context switch locations, the round lengths,
and the current program counters) can now be kept separate for each thread, which
allows us to use CBMC’s bitvectors with different sizes as data types, and so to reduce
the memory overhead induced by the translation.
Main Driver. The sequentialized program’s main function consists of two phases. The
first phase simply guesses the round lengths, and ensures that the guesses are smaller
than the corresponding thread sizes. Note that this is the only additional nondetermin-
ism introduced by the sequentialization. The second phase consists of a sequence of
small code snippets, one for each thread and each round, that check the thread’s active
flag and, if this is set, set the next context switch point, call the sequentialized thread
function with the original arguments, and store the context switch point for the next
round.
Thread Translation. Within the simulation function for each thread instance, each
statement is guarded by a check whether its location is before the stored location or
after the guessed next context switch. In the former case, the statement has already
been executed in a previous round, and the simulation jumps ahead one hop; in the lat-
ter case, the statement will be executed in a future round, and the simulation jumps to
the thread’s exit. Each jump target (corresponding either directly to a goto label or
indirectly to a branch of an if statement) is also guarded by an additional check to
ensure that the jump does not jump over the context switch.



3 Architecture, Implementation, and Availability

Architecture. Lazy-CSeq 0.6c is implemented as a source-to-source transformation
tool in Python (v2.7.5) within the CSeq framework. This uses the pycparser (v2.10,
github.com/eliben/pycparser) to parse a C program into an abstract syntax
tree (AST). However, in order to produce the right jump targets Lazy-CSeq unrolls
all loops and replicates the thread functions. The sequentialized program can then (in
principle) be processed independently by any sequential verification tool for C, but
Lazy-CSeq 0.6c has been more tightly integrated with CBMC (v4.9, revision 4648),
and uses the non-standard bitvector data type provided by this version.

A small wrapper script bundles up translation and verification. It also invokes Lazy-
CSeq repeatedly, with the parameters -f1 -F50 -w1 -r2 -d800, -f2 -w2 -r2 -d200,
-f4 -w4 -r1 -d150, -f16 -w1 -r1 -d350, and -f1 -F11 -w1 -r11 -d300.
Here f and F are soft and hard unwind bounds for for (i.e. bounded) loops, w the un-
wind bound for while (i.e. potentially unbounded) loops, respectively, r is the number
of rounds, and d is the depth option for the backend. We set a timeout of 200s for the
first four calls and 800s for the last one. The script starts by invoking Lazy-CSeq with
the first set of parameters. As soon as the tool detects a reachable error condition within
the given bounds, the script reports FALSE and terminates; the analysis restarts with
the next set of parameters otherwise. If the last invocation reports no reachable error
conditions, the script returns TRUE.
Availability and Installation. Lazy-CSeq can be downloaded from http://users.
ecs.soton.ac.uk/gp4/cseq/newseq-0.6c.tar.gz; it also requires instal-
lation of the pycparser. It can be installed as global Python script. In the competition
we only used CBMC as a sequential verification backend; this must be installed in the
same directory as Lazy-CSeq.
Call. Lazy-CSeq should be called in the installation directory as follows:
lazy-cseq.py -i<file> --spec<specfile> --witness<logfile>

References

1. B. Fischer, O. Inverso, and G. Parlato. CSeq: A Sequentialization Tool for C (Competition
Contribution). TACAS. LNCS 7795, pp. 616-618, 2013.

2. B. Fischer, O. Inverso, and G. Parlato. CSeq: A Concurrency Pre-Processor for Sequential C
Verification Tools. ASE, pp. 710-713, 2013.

3. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, G. Parlato. Lazy-CSeq: A Lazy Sequential-
ization tool for C (Competition Contribution). TACAS, LNCS 8413, pp. 398-401, 2014.

4. O. Inverso, E. Tomasco, B. Fischer, S. La Torre, G. Parlato. Bounded Model Checking of
Multi-Threaded C Programs via Sequentialization CAV, LNCS 8559, pp. 585-602, 2014.

5. S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded concurrent reachabil-
ity to sequential reachability. CAV, LNCS 5643, pp. 477–492, 2009.

6. A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound to sequential
analysis. Formal Methods in System Design, 35(1):73–97, 2009.


