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Abstract

A characteristic interface condition serves as the basis for a novel sliding grid
method, with a view to solving the compressible Navier-Stokes equations on
block-structured grids that are delimited by boundary conditions in motion
relative to each other. This requires that the convective and source terms of
the equations in characteristic form be transformed to the reference frame of
the neighbouring block, and interpolated. The method facilitates accurate
interpolation at the interface, because the characteristic interface condition
requires only a single layer of halo nodes. When a homogeneous direction is
present, only 1-D interpolation is required, and schemes that might other-
wise be too costly become affordable. The treatment also enjoys the same
advantages as fixed characteristic interfaces do in relation to tolerance of grid
discontinuities at block interfaces. The implementation and parallelisation of
this method in a simulation code is described, and accuracy and performance
demonstrated on a selection of test cases.

Keywords: Compressible Navier-Stokes equations, Characteristic interface
conditions, Sliding grids, Parallel computing

1. Introduction

Sliding grids are a natural solution to some of the problems of simulat-
ing unsteady turbomachinery flows [7, 21], as well as simulations of rotor-
craft [25], moving control surfaces [6], and stirred-tank reactors [38]. This
approach makes it possible to discretise the flow around each body in the
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reference frame in which the body is stationary. Then it becomes possi-
ble to make straightforward use of block-structured grids, and wavenumber-
optimised finite-difference schemes (eg. [29, 13]) that are most naturally
implemented on such grids, the advantages of which are particularly com-
pelling in the direct numerical simulation of turbulence [14].

It is a fundamental property of turbulent flow that a wide range of length
scales is represented, and this is what makes its direct numerical simulation
(DNS) computationally demanding. Computational economy therefore dic-
tates the use of methods suitable for marginal resolutions, i.e. high-order
methods. It may be worthwhile, however, to sacrifice some formal accuracy
at low wavenumbers (which are in any case well discretised) in order to im-
prove that for the marginally-resolved high wavenumbers. In particular, the
latter will suffer from dispersion error [29]; that is, the group velocity of the
short waves as represented by the finite difference equations differs from that
associated with the continuous equations they discretise. This issue is not
important in the context of time-independent aerodynamic calculations, but
becomes so when time accuracy is required [27], as is the case in DNS.

The dispersion error of a central finite difference scheme is (see [1]) the
difference of the effective wavenumber k∗:

k∗ =
2

∆x

N
∑

j=1

aj sin (jk∆x) (1)

and the exact wavenumber k, for a 2N + 1-point scheme with coefficients aj .
The relationship between k and k∗ is shown in figure 1. It is apparent that
it improves rather slowly with the formal order of the scheme. Moreover, op-
timising a central scheme for dispersion error degrades it’s order [1]. These
factors exert upward pressure on the size of the computational stencil. For
this reason, compact schemes are preferred, even though their implementa-
tion in parallel codes is much less straightforward [13].

It is quite rare, however, for such finite difference schemes to find applica-
tion in the context of a sliding mesh simulation. Steger and Benek [24] argue
that a single point of overlap between two adjoining grids makes for a method
that is as much an overset grid approach as a patched or sliding grid. Indeed,
overlapping (or halo) nodes hinder grid generation even for fixed multiblock
grids with conforming grid lines, as derivatives of spatial coordinates with re-
spect to computational coordinates must still be continuous in the halo [12].
If this problem is addressed by implementing an overset method, interpola-
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Figure 1: Effective wavenumber (k∗) vs. exact (k) for standard central difference schemes.

tion will be required at every halo node, and this becomes progressively less
attractive as the size of the differentiation stencil (and with it the number
of halo nodes) increases. The interpolation stencil may also need to be ex-
panded to match the order of the method; ideally, if wavenumber-optimised
finite difference schemes are used, it should be in combination with similarly
constructed interpolation schemes (e.g. [28]), and these are computation-
ally expensive (interpolation coefficients are obtained by solving a system of
equations).

Perhaps partly for this reason, direct numerical simulations of turbulent
flow have not made use of sliding grids, with the exception of the DNS
of Rai [21], who simulated rotor-stator interaction using high-order upwind
differencing. A sliding interface [20] was implemented using an iterative
implicit scheme that imposes Dirichlet boundary conditions at the interface
to decouple the calculations in the blocks on either side; the boundary values
were corrected iteratively using cubic spline interpolation. Halo nodes also
require interpolation. The need for iteration would appear to make this
approach best suited to implicit time integration, which is typically used only
for diffusive transport in direct numerical simulation of turbulence. Using this
approach, it was possible to reproduce, for the most part, measured pressure
coefficient and Stanton number distributions on the downstream blade. Rai
noted that Karman vortices in the wake as it met the leading edge were
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clearly visible; in this case, the turbulent wake contained significant coherent
energy.

Rotor-stator interaction is a problem that lends itself to DNS, owing to
the low Reynolds number, the need to simulate transition, and the presence
of coherent structures; the use of sliding grids to discretise the flow is also
very attractive. This is the application area that will be considered in the
current paper. In earlier direct simulations of similar flows, Wu and Durbin
[35] performed DNS of flow over a turbine blade subject to disturbance by
turbulent wakes translating in the pitchwise direction. These wakes were
introduced at the inflow boundary, rather than by simulating the hypothet-
ical cylinders generating them. The wake turbulence was produced using a
precursor simulation of a temporally decaying plane wake [36], believed to be
a sufficiently good approximation to a cylinder wake sufficiently far down-
stream for the latter to have lost its shedding characteristics. The wakes
were found to give rise to long, streamwise-aligned structures (in spite of the
apparent similarity, not Görtler vortices) on the pressure side of the blade,
although the boundary layer remained laminar.

Michelassi et al. [16] examined essentially the same flow using LES and
DNS, finding that the incoming turbulent wakes intermittently suppressed a
laminar separation on the suction side of the blade, near the trailing edge.
The wakes did not appear to have any effect on the strongly accelerated flow
over the upstream half of the suction side.

Cui et al. [3] also investigated this geometry, again using the wake pre-
cursor simulation of Wu et al. [36], and considering high levels of free stream
turbulence (FST) in addition to that of the wake. It was found that the
effect of the FST was to reduce the disturbance of the boundary layer by the
wake, but that it did not replicate the effect of the wakes in respect of the
long vortical structures observed by Wu and Durbin.

Tyagi and Acharya [31] used large eddy simulation to simulate rotor-
stator interaction; the solid surfaces were represented using moving immersed
boundaries. This study was intended, however, as a demonstration of the ca-
pabilities of their method, and the authors warn that it may not be represen-
tative of the true physical problem (for instance, that the spanwise domain
width was relatively small at 0.1 chord lengths). They do argue, however,
that this approach is a viable alternative to a sliding mesh.

Rotor-stator interaction has been studied much more extensively using
RANS methods [4], notwithstanding the difficulty of adequately modelling
intermittent bypass transition (caused by pitchwise-translating wakes) in this

4



way. For instance, Gagnon et al. [7] investigated rotor-stator interaction
in an axial hydraulic turbine using unsteady RANS, and carried out spatial
discretisation using second-order upwind differencing. The temporal discreti-
sation was also second-order. A sliding mesh was used, and tested by sim-
ulation of vortex-shedding flow generated by a square cylinder. The sliding
mesh was found to cause additional numerical diffusion, and grid refinement
was required. This was in spite of the use of a turbulence model (k-ǫ) that,
as noted by the authors, was excessively diffusive for this flow even in the ab-
sence of a sliding mesh. It was, however, possible to obtain good agreement
with experimental results of flow through an axial turbine.

We consider that possible obstacles to the use of high-order methods with
sliding grids in the context of DNS include

1) Sliding grids are often dissipative (see [6], [7]); accurate interpolation
would be required for DNS.

2) The use of large differentiation stencils would usually require deep
haloes at sliding interfaces, which make the implementation of accu-
rate interpolation methods difficult and computationally costly.

3) In the event that the grid is curvilinear, it may be difficult to maintain
continuity of spatial coordinates with respect to computational coordi-
nates [12] across a block or sliding interface, and this difficulty increases
with the size of the halo.

4) DNS of turbulent flow is computationally demanding. Sliding interfaces
complicate parallelisation, as efficient communication patterns must
vary dynamically; excessively large haloes would also impede parallel
performance.

In the current paper, we propose a new sliding grid technique, based on
characteristic interface conditions, which addresses some of these drawbacks.

2. Method

The approach described here is based on the characteristic interface con-
dition of Kim and Lee [12], which permits grid lines to change direction
abruptly at interfaces, such that derivatives of spatial coordinates with re-
spect to computational ones may be discontinuous. This greatly simplifies
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grid generation for high-order differentiation, but requires the specification
of boundary conditions on all faces of each block. Communication between
adjacent blocks then takes place through these boundary conditions, but not
through the differentiation stencil, which is one-sided at the interfaces. The
boundary conditions at the interfaces are expressed in terms of the Navier-
Stokes equations in characteristic form. In their conservative formulation
these may be written:

∂Q̂

∂t
+

∂(Êi − Êv)

∂ξ
+

∂(F̂i − F̂v)

∂η
+

∂(Ĝi − Ĝv)

∂ζ
= 0. (2)

The caret denotes transformation to computational (ξ, η, ζ) space, Ei,
Fi, Gi are inviscid fluxes, Ev, Fv, and Gv viscous.

Q = (ρ, ρu, ρv, ρw, ρet)
T

Ei = (ρu, ρu2 + p, ρvu, ρwu, (ρet + p)u)T

Fi = (ρv, ρuv, ρv2 + p, ρwv, (ρet + p)v)T

Gi = (ρw, ρuw, ρvw, ρwv, (ρet + p)w)T

where et is the specific total energy, ρet = p/(γ− 1)+ ρ(u2 + v2 +w2)/2, and

Q̂ = Q/J

Êi = (ξxEi + ξyFi + ξzGi)/J

F̂i = (ηxEi + ηyFi + ηzGi)/J

Ĝi = (ζxEi + ζyFi + ζzGi)/J,

where

J = 1/ (xξ(yηzζ − yζzη) + xη(yζzξ − yξzζ) + xζ(yξzη − yηzξ)) . (3)

If we let ξ be the direction normal to an interface, we can transform
equation (2) to characteristic form, as follows:

∂R

∂t
+ λ

∂R

∂ξ
= SC , (4)
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where

δR =

(

δρ−
δp

a2
, δW̃ , δṼ ,

δp

ρa
+ δŨ,

δp

ρa
− δŨ

)T

,

λ =
(

U, U, U, U + a
√

ξ2
x + ξ2

y + ξ2
z , U − a

√

ξ2
x + ξ2

y + ξ2
z

)T

.

U is the contravariant velocity,

U = ξxu + ηyv + ζzw, (5)

a the speed of sound, the tilde denotes normalisation by |∇ξ|, and SC is
the source term of the governing equations in characteristic form:

SC = J P−1

{

∂Êv

∂ξ
+

∂F̂v

∂η
+

∂Ĝv

∂ζ
(6)

−

[

Ei
∂

∂ξ

(

ξx

J

)

+ Fi
∂

∂ξ

(

ξy

J

)

+ Gi
∂

∂ξ

(

ξz

J

)

+
∂ F̂i

∂η
+

∂ Ĝi

∂ζ

]}

.

The matrix P−1 (see Appendix A) transforms the conservative variables
to characteristic form. The characteristic interface condition sets ∂R

∂t
equal

on both sides of the interface by modifying the convective term

L = λ
∂R

∂ξ
(7)

on one side of the interface. Which side (denoted below by L and R), is
determined by the sign of the relevant component of the vector of convection
speeds λ, as follows:

LL
m = LR

m − SR
Cm + SL

Cm if λL
m/|λL

m| = λR
m/|λR

m| ≤ 0

LR
m = LL

m − SL
Cm + SR

Cm if λL
m|λ

L
m| = λR

m/|λR
m| ≥ 0 (8)

so that for each component m of L, the value to be used is taken from that
block with respect to which the corresponding component of λ is outgoing,
and so the finite difference approximation to L is calculated using one-sided
differences making use only of values on that side of the interface. The
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updated characteristic convection term, denoted L∗, is used to update the
normal convective term in equation (2) as follows:

(

∂Êi/∂ξ
)∗

=
1

J
PL∗ +

[

Ei
∂

∂ξ

(

ξx

J

)

+ Fi
∂

∂ξ

(

ξy

J

)

+ Gi
∂

∂ξ

(

ξz

J

)]

, (9)

This is the fixed-grid characteristic interface condition due to Kim and
Lee [12]. To apply an interface condition of this type on a sliding plane, two
modifications are necessary; firstly, the procedure requires that the source SC

and convective L terms be known on both sides of the interface, and as node
locations in general do not conform, interpolation is required (see section 3
below). In this respect there is no difference between a sliding grid and a
patched grid (in which grids on either side of interface are nonconforming,
but not in motion relative to one another). The implementation of patched
grids using characteristic interface conditions has already been investigated
by Peers et al. [17], and Sumi et al. [26].

In addition, however, the source and convective terms need to be evalu-
ated in the reference frame appropriate to the block to which the correction
is to be applied; This reference frame is, in each case, chosen to be that
in which the grid for that block is at rest, so that time derivatives of the
transformation Jacobian and its terms are zero within each block. At the
interface however, SC and L must be calculated in both blocks and both ref-
erence frames - those values intended for use in the neighbouring block, and
transformed to its reference frame, will be denoted by a leading subscript n,
and we assume that we can obtain Qn from Q by Galilean transformation
in physical space. Given this, it will be possible to evaluate Sn C and Ln , for
which the assumption of Galilean invariance is not made. These are therefore
both evaluated on grids in motion with respect to their reference frames.

When evaluated on a moving grid, equation (2), and the inviscid fluxes,
are modified as follows:

1

J

∂Q

∂t
+

∂(Êi − Êv)

∂ξ
+

∂(F̂i − F̂v)

∂η
+

∂(Ĝi − Ĝv)

∂ζ
+ Q

∂(J−1)

∂t
= 0. (10)

Êi = (ξxEi + ξyFi + ξzGi + ξt)/J

F̂i = (ηxEi + ηyFi + ηzGi + ηt)/J

Ĝi = (ζxEi + ζyFi + ζzGi + ζt)/J,
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It is possible to demonstrate [30],[32] that numerical satisfaction of equa-
tion (10) is improved by computing J such that

∂(J−1)

∂t
= −

(

∂ξ̂t

∂ξ
+

∂η̂t

∂η
+

∂ζ̂t

∂ζ

)

. (11)

An alternative, adopted here, is to treat the grid as fixed and set every
term in (11) to zero (which certainly satisfies this identity). This is free-
stream preserving (provided the numerical methods used also possess this
property in the absence of grid motion), and, in an instantaneous sense,
legitimate, as ∂Q/∂t is Galilean invariant.

The nodal locations at which the results are obtained and later interpo-
lated are understood to be those corresponding to the present time level tn

and not tn+1, which is in any case required for explicit temporal schemes, to
which we confine our discussion below. Qn , Sn C and Ln are not integrated
in time in a moving reference frame; Q and Qn are calculated separately in
the source block and there the latter is discarded, while the recipient’s grid
is stationary relative to the reference frame corresponding to Qn . ∂(J−1)/∂t
is, therefore, never required.

Ln , in physical space and in the reference frame of the neighbouring block,
can obtained from the inviscid fluxes contributing to ∂ Qn

∂t
:

Ln = J P−1
n

(

ξx
∂ En i

∂ξ
+ ξy

∂ Fn i

∂ξ
+ ξz

∂ Gn i

∂ξ

)

. (12)

The source term Sn C is:

Sn C = J P−1
n

{

∂Êv

∂ξ
+

∂F̂v

∂η
+

∂Ĝv

∂ζ
(13)

−

[

En i

∂

∂ξ

(

ξx

J

)

+ Fn i

∂

∂ξ

(

ξy

J

)

+ Gn i

∂

∂ξ

(

ξz

J

)

+
∂ F̂n i

∂η
+

∂ Ĝn i

∂ζ

]}

.

P−1
n is given in the appendix Appendix A.
Once Ln and Sn C are obtained, and interpolated to the target grid, they

are used to update L as in equation (8) above, conditional on the sign of
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the relevant component of λ, so as to equalise ∂R/∂t on either side of the
interface. The result, L∗, is then used to update ∂Êi/∂ξ (equation 9), and it
is only through this updated term that the sliding interface modifies equation
(2); in particular, the Jacobian used to transform the LHS (∂Q̂/∂t) is always
constant.

The correction to the original term (equation 9) is

(

∂Êi/∂ξ
)∗

−
(

∂Êi/∂ξ
)

=
1

J
P ( Ln − Sn C + SC − L)

=
1

J
P ( ∂R/∂tn − ∂R/∂t) , (14)

That is, the correction is zero if ∂R/∂t is equal on either side of the
interface, as we require. It should also be zero in the case of a uniform free
stream.

To verify this, we return to equation (9), which should be zero in such a
case:

(

∂Êi/∂ξ
)∗

=
1

J
P ( Ln − Sn C + SC) (15)

+

[

Ei

(

ξx

J

)

ξ

+ Fi

(

ξy

J

)

ξ

+ Gi

(

ξz

J

)

ξ

]

,

where variables with the leading prefix n are evaluated on the other side
of the interface, in the same reference frame as those not so subscripted.
Further, the three terms in the square brackets of equation (15) cancel their
identical counterparts in equation (6), and the same is true for the equivalent
terms in equation (12) for Ln and equation (13) for Sn C , in the moving
reference frame, so

(

∂Êi/∂ξ
)∗

=
1

J
P
(

J P−1
n

[(

∂ Ên i/∂ξ + ∂ F̂n i/∂η + ∂ Ĝn i/∂ζ
)

− Ŝn v

])

− ∂F̂i/∂η − ∂Ĝi/∂ζ + Ŝv (16)

Here, we have moved the viscous fluxes into the source term Ŝv for con-
venience - note that they are not affected by Galilean transformations, and
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Ŝn v does not need to be calculated in the reference frame of the neighbouring
block.

Ên i = ξ̂x En i + ξ̂y Fn i + ξ̂z Gn i, (17)

and analogously for F̂n i, Ĝn ; substituting into (16) and noting the source
terms Sv would be zero in a uniform flow:

(

∂Êi/∂ξ
)∗

=
1

J
P
(

J Pn
−1

( ∂

∂ξ

(

ξ̂x En i

)

+
∂

∂ξ

(

ξ̂y Fn i

)

+
∂

∂ξ

(

ξ̂z Gn i

)

+
∂

∂η
(η̂x En i) +

∂

∂η
(η̂y Fn i) +

∂

∂η
(η̂z Gn i)

+
∂

∂ζ

(

ζ̂x En i

)

+
∂

∂ζ

(

ζ̂y Fn i

)

+
∂

∂ζ

(

ζ̂z Gn i

)))

−
∂F̂i

∂η
−

∂Ĝi

∂ζ
(18)

from which we obtain:

(

∂Ê/∂ξ
)∗

=
1

J
P
(

J P−1
n

(

En i

∂ξ̂x

∂ξ
+ ξ̂x

∂ En i

∂ξ
+ Fn i

∂ξ̂y

∂ξ
+ ξ̂y

∂ Fn i

∂ξ
+ Gn i

∂ξ̂z

∂ξ
+ ξ̂z

∂ Gn i

∂ξ
+

En i

∂η̂x

∂η
+ η̂x

∂ En i

∂η
+ Fn i

∂η̂y

∂η
+ η̂y

∂ Fn i

∂η
+ Gn i

∂η̂z

∂η
+ η̂z

∂ Gn i

∂η
+

En i

∂ζ̂x

∂ζ
+ ζ̂x

∂ En i

∂ζ
+ Fn i

∂ζ̂y

∂ζ
+ ζ̂y

∂ Fn i

∂ζ
+ Gn i

∂ζ̂z

∂ζ
+ ζ̂z

∂ Gn i

∂ζ

))

−
∂F̂i

∂η
−

∂Ĝi

∂ζ
(19)

In a uniform flow, derivatives of Q and the fluxes vanish, and the metric
derivatives also vanish, provided ξx etc. vary smoothly [30]. We are left with

(

∂Ê/∂ξ
)∗

= 0 (20)

Recall that we use
(

∂Ê/∂ξ
)∗

to replace
(

∂Ê/∂ξ
)

in equation (2), and

further, that all viscous fluxes, and all other gradients of advective fluxes,
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will be zero. It follows that the same will be true of ∂Q̂

∂t
, and therefore that

a constant Q will remain so.
We conclude that it is not necessary to apply a geometric conservation

law for the purpose of obtaining Ln and Sn C for subsequent interpolation.
However, while the free-stream preserving property is maintained, it is pos-
sible that the method will not perform well for other flows; we show below
that this is not the case.

Note that the sliding interface condition described above has been devel-
oped and tested only for inertial reference frames. In addition, as it applies
only to motion tangential to the interface boundary, a more general treat-
ment would be required for discretisations including non-periodic boundary
conditions that intersect the sliding plane, and we therefore do not consider
such problems below.

For a sliding or patched mesh, Sn C and Ln must be interpolated. Two
options are currently implemented for interpolation - linear interpolation, and
the wavenumber-optimised method of Tam and Kurbatskii [28], following the
approach used for patched characteristic interfaces by Peers et al.[17].

The optimised method solves

N−1
∑

j=0

Sj
sin(l − j)κ

(l − j)
+

λ

2
=

sin(l −K + η)κ

l −K + η
, l = 0, 1, 2, N − 1

N−1
∑

j=0

Sj = 1, (21)

where Sj is the interpolation coefficient for the jth point of N , the size of
the interpolation stencil; K is the interval number in which the interpolant
is to be located (the grid points at K and K − 1 bracket the interpolant
- a centered interpolation scheme is chosen). κ is a free parameter, set,
following the recommendation of the authors, to 1. This value corresponds
to optimisation for accuracy at low wavenumbers; a value of 0.85, expected
to perform better at higher wavenumbers, is, however, tested (see section 4.1
below). The N + 1 equations determine the coefficients Sj and λ (not used
here).

3. Implementation

For all but one of the results reported here, the interpolation described
in [28] has been used, in all of those cases, with N = 4. Because of the
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N + 1 equations that must be solved for every interpolation point at every
Runge-Kutta substep, this has the potential to be a very costly method for
a sliding grid. In this case, it is affordable, as only a single 1-D interpolation
is needed per boundary node; an overset method would instead require 2-D
interpolation of 2 or more halo nodes - although only of half the number of
variables ( Qn instead of Sn C and Ln - but equation (21) need not be solved
again for those). Conversely, the overset approach becomes more attrac-
tive for inexpensive interpolation methods. Here, the following procedure is
carried out at each Runge-Kutta substep:

1) SC and L are evaluated.

2) Sn C and Ln , their equivalents in the reference frame of the neighbouring
block, are evaluated on the sliding interface (equations 13 and 22).

3) λ is calculated (this is independent of vs).

4) Locations on the sliding plane are updated. All falling outside the
original computational domain are wrapped around, and two sets of
bounds calculated for the processor domain in question (wrapped and
unwrapped).

5) Each processor searches (using a binary range tree) for neighbouring
processors with which its computational domain(s) overlap.

6) The updated locations of grid nodes are sent to (and received from)
the neighbouring process.

7) The nearest neighbour nodes required for interpolation are obtained
(using another binary tree).

8) Sn C and Ln are interpolated and exchanged on sliding block interfaces.

9) Equation (8) is applied to correct L.

10) The corrected L is used to recalculate ∂Ei

∂ξ
(see [12]).

11) Less frequently (eg. at the end of a time step) the conserved variables
Qn are also interpolated and averaged. Transformation to the reference

frame of the neighbour is trivial except for the total energy (pressure
is interpolated instead and et redefined accordingly).
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Note that we choose not to constrain the magnitude of the time step so
that the length of the sliding interface is an integer multiple of vs∆t, and step
4 is therefore carried out using floating point arithmetic. Because floating
point arithmetic not of unlimited precision, it is usually the case that the
processor on the other side of the interface will post matching sends and
receives, but it is found in practice that this cannot be relied upon (consider
processor boundaries that are nearly in alignment). If it is simply assumed
that neighbouring processors will always post matching receives and sends,
the result is sometimes deadlock (which may happen after many tens or
hundreds of thousands of time steps).

A solution to this problem is to perform step 6 using a variant of the
nonblocking consensus algorithm described by Höfler et al. [9]. All sends
and receives are tested for completion, a nonblocking barrier posted once
the tests are passed, and incoming messages probed for with MPI Iprobe,
all in a loop which only exits if the nonblocking barrier is reached by all
participating processes. This variant differs slightly from Höfler’s - tests
for completion take place before probing. This is because the probe (and
subsequent communication) is usually unnecessary, and both MPI Iprobe
and MPI Ssend do have overhead (see [9] for some measurements pertaining
to MPI Ssend).
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done ← complete local ← barrier on ← false;
post sends and receives;
while not done do

complete local ← test whether all sends and receives complete;
if complete local then

if not barrier on then

start nonblocking barrier;
barrier on ← true;

end

done ← test whether barrier reached by all processes;

end

if not done then
msg found ← probe all possible neighbours for incoming
messages;
if msg found then

add to list, allocate buffers, post matching receive;
end

end

end

Some optimisations are possible; for instance, the term

∂ En i

∂ξ
=

(

∂ρ un

∂ξ
,
∂ρ u2

n + p

∂ξ
,
∂ρ un vn

∂ξ
,
∂ρ wn un

∂ξ
,
∂(ρ en t + p) un

∂ξ

)

. (22)

The normal gradient of the sliding velocity vs,
∂vs

∂ξ
, is zero in either ref-

erence frame (this would not be true if differentiating across the interface,
but it is so for a change of (inertial) reference frame), and ∂ un

∂ξ
= ∂u

∂ξ
. Deriva-

tives of v and w are also unchanged. It is important to minimise derivative
evaluations, particularly when compact differences are used, as the expense
of calculating these then cannot be restricted to boundary points.

If vs is parallel to, say, v, and vn = v + vs, then some simplifications are
possible:

∂ En i

∂ξ
=

(

∂ρu

∂ξ
,
∂ρu2 + p

∂ξ
,
∂ρu vn

∂ξ
,
∂ρwu

∂ξ
,
∂(ρ en t + p)u

∂ξ

)

(23)
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and, because ∂vs

∂ξ
= 0,

∂ρu vn

∂ξ
=

∂ρuv

∂ξ
+ vs

∂ρu

∂ξ
(24)

This approach has been implemented in a multi-block structured curvi-
linear compressible Navier-Stokes solver, designed for scalability on high-
performance computing systems [5]. Spatial discretisation is performed us-
ing a fourth-order central wavenumber-optimised compact finite difference
scheme [13] in two spatial directions, while the third is treated spectrally.
Skew-symmetric splitting is used for the convective terms [11], and a low-
storage 4th-order Runge-Kutta scheme for time integration [10].

4. Verification

4.1. Vortex convection

Two 2-D inviscid vortex convection test cases were used in the first in-
stance to verify the implementation of the sliding interface condition. The
following perturbation was applied:

(δu, δv) = βeln 2(x2−y2)/r2

(y, x) (25)

δet =
ρ∞

2
(δu(u∞ + δu) + δv(v∞ + δv)), (26)

with strength β = 0.075 and scaling factor r = 5, to free-stream values of
(ρ∞, u∞, v∞) = (1, 1, 0), and

et∞ =
ρ∞

γ(γ − 1)M2
+

ρ∞

2
(u2

∞
+ v2

∞
), (27)

where M = 0.4, γ = 1.4. The instantaneous application of the above per-
turbation generates an acoustic pulse in addition to the vortex, and the
propagation of both the acoustic and the hydrodynamic perturbation can
then be used to verify the method.

Characteristic boundary conditions [19] are applied on x-boundaries, and
periodicity is assumed in y; the domain is partitioned into four blocks, as
shown in figure 2. Each block is resolved by a 128 x 128 grid and is 16r wide
(x dimension), but trapezoidal, in order to also test the ability of the interface
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condition to cope with metric discontinuities. Each y−grid line within each
block is also 16r long, but at the sliding interface (at x/r = 1.6), the ξ
grid lines meet at an angle of 45 degrees. In order to verify that the sliding
characteristic interface performs as expected, a sliding velocity vs = |u∞|ly
is imposed on the interface, so that the two downstream blocks move at
−vs with respect to those upstream. Calculations in each block take place
in the reference frame of that block, so that this motion is only expressed
through the interface condition. For the downstream blocks, therefore, the
initial conditions are all modified by the addition of vs to v∞. Compact
differencing was used as described by Kim and Sandberg [13], but no filtering
was performed in this case.

Results are shown in figures 3 to 6. Figure 4 illustrates convection of
vorticity, which as figure 3 shows remains almost constant; ωzr/u∞ is plotted
against (x − tu∞)/r, at (tu∞)/r = 0 and 5, at which time the vortex has
cleared the sliding interface (see figure 4 c).

Figure 6 shows p/p∞ on y = 0 at t = 25, compared to its mirror image on
the x-axis about the vortex centre at u∞t. This shows that the propagation
of the pressure wave is symmetric and that it propagates at the sonic velocity
a on either side of the interface. 2-D symmetry is illustrated in figure 5.
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= initial position
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Figure 2: Vortex convection test case.
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Figure 3: Vorticity at t = 0 (black line), and
at tu∞/r = 5 (diamonds), plotted against
x− u∞t.

A more quantitative analysis can be carried out by simulating an isen-
tropic vortex. In this case, no acoustic pulse is generated, but the vortex
should translate downstream unchanged. We follow Yee et al. [37] in setting
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Figure 4: Vorticity contours. a) tu∞/r = 0, b) tu∞/r = 2, c) tu∞/r = 5.
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Figure 5: Pressure contours, a) tu∞/r = 2, b) tu∞/r = 5.

ρ =

(

1−
β2(γ − 1)

8π2γ
e1−(x2

−y2)/r2

)
1

γ−1

, (28)

(u, v) = (u∞, v∞) +
β

2πM
e1/2−(x2

−y2)/2r2 (y, x)

r
, (29)

et =
ργ

γ(γ − 1)M2
+

ρ

2

(

u2 + v2
)

. (30)

In this case, we choose β = 1, r = 5. Grid convergence is tested by
measuring Lρ, defined as the magnitude of the maximum error in ρ on the
vortex centreline at tu∞/r = 5. This is evaluated by substituting x−tu∞ for x
in equation (28). Figure 7 compares grid convergence using two interpolation
methods with the fixed grid case. The grid topology illustrated in figure
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Figure 6: Pressure at t = 25, plotted against (x−u∞t)/(at) (black line) and (u∞t−x)/(at)
(squares), ie. mirrored about the vortex centre (at zero on the x-axis).

2 is used in all three cases, with variable resolution. This case does not
demonstrate any effect on the rate of convergence with grid refinement, either
of the sliding grid, or of the two interpolation schemes, or of the parameter κ
in the Tam & Kurbatskii method. This test is unfortunately, therefore, not
very informative; we conclude that in this case, the sliding interface never
becomes the dominant source of error.

4.2. Cylinder wake at Re=100

The vortex convection problem is inviscid, so, in addition, a cylinder in
cross-flow at a low Reynolds number (100 based on cylinder diameter) was
considered, in order to assess the new sliding-grid approach in situations
where viscous effects are important. The Mach number was 0.3. Periodic
boundary conditions are applied in the pitchwise direction, as in all the cases
considered in this manuscript, and thus the geometry is in fact a periodic
array of cylinders, separated by 20 diameters in the y direction normal to
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Figure 7: Grid convergence for the isentropic vortex convection case.

the free stream. Use of non-periodic boundary conditions would require a
priori prescription of the flow at a distance from the body, and also imple-
mentation of a more general moving boundary condition than that described
above, so as to treat motion normal to the boundary. Anything other than
periodicity in the direction of grid motion would also require that simula-
tions of turbulent flow use ensemble rather than time averaging to attain
statistical convergence; this would increase the required computational effort
substantially.

Calculations were carried out both for a fixed grid, and one including a
sliding plane in the near wake of the cylinder (2.6 diameters downstream of
the cylinder centre). The results presented here were obtained before the Tam
& Kurbatskii scheme [28] was implemented, and thus linear interpolation was
used on the sliding place. The magnitude of the sliding velocity vs was, in
this case, 0.1U , the free stream velocity.

The cylinder itself was simulated using an immersed boundary method,
based on the continuous forcing approach of Goldstein et al. [8]; it is fully
described in [34] and [22]. Characteristic boundary conditions [19] were im-
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posed at the in and out flow boundaries.
The fixed grid calculation employed a grid of 420 x 200 points, stretched

to maximise resolution in the vicinity of the cylinder. For the sliding calcula-
tion, the stretched grid upstream of the sliding plane was retained. However,
grid stretching in y could not be used in the downstream blocks as the reso-
lution would otherwise be inadequate much of the time. A uniform grid was
necessary, and the total grid dimensions therefore increased to 300 x 200 +
120 x 800 (upstream and downstream blocks respectively). The minimum
grid spacing downstream of the interface was nonetheless still coarser than
upstream (see figure 8).

Vortex shedding was triggered by briefly imposing positive, then negative
v at the cylinder surface (ie. transpiration). In this way, vortex shedding was
initiated at precisely the same time in both calculations, so that comparison
of the flow field at a given time step would be possible.

A comparison of this kind is made in figure 9, which show contours of v for
both simulations, integrated to the same time level for both fixed and sliding
grids. The sliding mesh simulation was repeated in 3D as an additional test;
the flow remained two-dimensional, and these results were unchanged. The
divergence contours shown in figure 10 shows no spurious acoustic activity at
the sliding boundary (some artefacts, visible on processor boundaries shown
in the figure, are considered to be the consequence of postprocessing without
halo data).
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Figure 8: Re=100 Cylinder, mesh near the sliding plane at x = 2.6. Every other grid
point has been omitted in both x and y.

21



Figure 9: Re=100 Cylinder, v-contours on fixed and sliding meshes at the same time level.

Comparison may also be made with experimental results; the Strouhal
number, based on the frequency of density fluctuations on the centreline of
the cylinder wake, was found to be 0.16, in good agreement with experimental
data [33] at the Reynolds number considered.

4.3. Cylinder wake at Re=1000

This test case was used to assess the adequacy of the method for the
turbulence simulation described below in section 5. 3-D simulations were
performed, of low Re (= 1000) and M (= 0.3) flow through a periodic array
of cylinders separated by 20 diameters D. These parameters are similar to
those of the bar wakes simulated in the application test case described in
section 5 below, and the wake is expected to become turbulent, although the
Reynolds number is still relatively low.

The calculations were carried out with and without a sliding interface in
the near wake, on a uniform grid with a resolution of 620 x 200 x 66 (in phys-
ical space) - spectral discretisation (32 dealiased Fourier modes) was used in
the spanwise direction. The spanwise domain size was 10D. A characteris-
tic boundary condition [19] was imposed on the downstream boundary, and
the cylinder once again modelled using an immersed boundary. The sliding
velocity was increased to 0.2U . The 6th-order filter of Bogey et al. [2] was
used in both cases, with a filtering strength σsf of 0.2. This filter is designed
to dissipate waves too short for the discretisation to represent without large
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Figure 10: Re=100 Cylinder, divergence contours, sliding mesh.

dispersion errors, and has a significant effect only for π/2 < k∆x < π (see
figure 1).

Figure 11 shows the mean streamwise velocity on the wake centreline, and
figures 13 and 14 the u and v components of the normal Reynolds stress (the
w component was not collected). Agreement is excellent up and downstream
of the interface; around the interface (at x/D = 8), the mean velocity is
very slightly lower for the sliding mesh, and there is a small discrepancy
in u′u′/u∞. This may be due in part to the use of one-sided differencing
when filtering, as it also occurs in the fixed grid results; note however that
in the sliding mesh case it was necessary to collect results downstream of the
interface plane by performing (2nd-order accurate) interpolation at runtime,
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from the reference frame of the grid on which they were calculated to that in
which the cylinder was at rest. Regardless, good agreement with fixed-grid
results is seen in the wake downstream of the interface.
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Figure 11: Re=1000 Cylinder, mean
streamwise velocity on the wake centreline.
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Figure 12: Re=1000 Cylinder, mean
streamwise velocity profile 20 diameters
downstream of the cylinder. Symbols as in
figure 11.
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Although this case was considered suitable for verifying the interface con-
dition, the downstream boundary is too close to investigate the development
of the wake; an extended grid of 63 million nodes has, however, been used to
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investigate the parallel scaling of the method as part of a larger DNS calcula-
tion. Figure 15 a) shows that performance, in absolute terms (timesteps per
second), is reduced slightly, in this case by between 5 and 10% at a given core
count. Some of this difference can be accounted for by load imbalance; the
overhead of calculating Sn C and Ln is only borne by processes responsible for
a subdomain adjacent to a sliding boundary. This has been accounted for by
allocating 20% fewer grid points per core in the blocks adjoining the sliding
boundary, although each of these blocks contains many processes that do not
adjoin the boundary. A more sophisticated load balancing strategy should
therefore improve performance at a given core count. The implied estimate
of the overhead (per grid point) of the method, on adjoining processes, was
arrived at by running this case with no attempt at such load balancing and
comparing the measured performance with a fixed grid. Note that the op-
timisation represented by equation 23 was made only with respect to the
spanwise direction, and that of equation 24 not at all.

Parallel scaling - as opposed to absolute performance - appears to be little
affected, as shown in figure 15 b). We conclude that by assuming an increased
cost of approximately 25% for processes involved in the sliding interface, and
altering load balance accordingly, is sufficient to maintain performance and
parallel scaling adequate for DNS of turbulent flow. This is the approach
taken in section 5 below.

a) b)

Figure 15: a) - Performance (time steps per second) scaling of sliding and fixed grids
of ≈ 64 million points each. b) - Parallel efficiency, measured in each case relative to
performance at 1360 cores.
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5. Application

We apply the method to simulate a single-stage low pressure turbine cas-
cade subject to inflow disturbances created by an upstream array of cylin-
ders moving in the pitchwise direction relative to the blades. The geometry
is essentially that investigated experimentally by Stadtmüller et al., [23], as
modified by Wu and Durbin [35] and Michelassi et al. [16] in their numerical
studies - that is, the bar to blade pitch ratio is set to an integer number to
permit the use of periodic boundary conditions in the pitchwise direction,
which is desirable for numerical simulation. This case, and variations of it,
are also the subject of [18] and [15], where, however, a moving immersed
boundary condition is used. Flow and computational parameters are listed
in table 1 below.

Isentropic Reynolds number CV2is/ν 60000
Isentropic Exit Mach number V2is/a 0.4
Ratio of specific heats γ = cp/cv 1.4
Pr 0.72
Pitch/Chord ratio yP/C 0.799
Inlet flow angle 46.05◦

Stagger angle 30.70◦

Axial chord length Cax 0.86 C
Blade-Bar separation 0.7 C
Bar diameter 0.02 C
Bar pitch yP/2, 19.98 D
Bar velocity 0.41 Uref

Reduced frequency fC/V2is 0.61
Inflow turbulence intensity 0.0%
Total grid points 2.1x107

Computational domain width 0.2 C
Time step (fixed grid) 2.537x10−5 C/Uref

Time step (sliding grid) 5.075x10−5 C/Uref

Table 1: Simulation parameters.

The domain is partitioned into blocks as shown in figure 16, such that
the 4 blocks nearest the blade form an O-grid, and with the sliding plane
located at a block interface at x/C = −0.34, where the leading edge of the
blade is at x/C = 0.
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Figure 17: Grid resolution in wall units (P=pressure side, S=suction side of the blade); a)
Streamwise resolution, b) height of first grid node above the blade surface, c) spanwise
resolution.

Fairly adequate resolution can be maintained over both surfaces of the
airfoil. Figure 17 shows the resolution in wall units (eg. ∆x+ = ∆xuτ/ν);
this is of course variable over the surface; excursions from acceptable norms
occur over the forward half of the suction side (where, however, the boundary
layer is laminar), and near the trailing edge on the pressure side (where
large streamwise-aligned vortices occur, but do not trigger transition). The
cylinder is less well resolved, and should be regarded as a wake generator
rather than as part of the simulation. It is again modelled using the immersed
boundary method described in [34] and [22].

A simulation using a fixed grid and moving immersed boundary was also
carried out. In this case the immersed boundary points were moved every
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time step (see [22]). Both approaches are considered viable for this simu-
lation, which does not require fine resolution of the moving cylinders - for
a rotor-stator interaction study involving direct simulation of the upstream
blade row, however, the moving immersed boundary requires that the near-
wall resolution be maintained throughout the computational domain, and
this may not be affordable for DNS or wall-resolved LES. Figure 18 illus-
trates the qualitative similarity of the two simulations - here, two instan-
taneous snapshots are chosen. The flow is turbulent, and thus quantitative
comparisons cannot be made as in figure 9 above, but only through compar-
ison of time averaged quantities.

Both simulations were run for 15-20 passes of bar over blade before col-
lecting statistics (because there are two bars, this corresponds to only half
that number of full domain cycles). Reported results were averaged over
at least 20 bar passes. This was sufficient for statistical convergence of the
quantities examined.

a) b)

Figure 18: Instantaneous spanwise vorticity contours, a) moving immersed boundary
method, b) sliding grid.

With the combination of parameters given in table 1, the boundary layer
on the suction side of the blade is observed to separate in the absence of
bar wakes, but to remain attached when they are present, owing to bypass
transition triggered by bar wake turbulence [35], [16]. This behaviour is re-
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produced in both simulations (sliding mesh and moving immersed boundary),
as is illustrated by the static pressure coefficient cp on the blade shown in
figure 19, where cp is

cp =
pw − p2

pt1 − p2
. (31)

Here pw is the static pressure at a point on the surface of the blade, and pt1

and p2 are, respectively, the mass-flow weighted spatial averages of upstream
total and downstream static pressure. The ‘upstream’ point 1 corresponds
to x = −0.3C, upstream of the leading edge (but downstream of the bars),
and averaging is performed over the y coordinate; the same approach is used
for the ‘downstream’ point 2, which is at 0.344C downstream of the trailing
edge.

The wake kinetic loss coefficient cω, which is given by

cω =
pt1 − pt2

pt1 − p2
, (32)

(where pt2 is the mass-flow weighted average total pressure at on the plane
on which ω is plotted) downstream of the blade is shown in figure 20, and
this is also in reasonably good agreement. This coefficient is not defined
consistently in the literature, and sensitive to the type of averaging used (we
have used mass-flow weighted averages), so we do not present comparisons
with other published results here.

Parallel scaling is fair for this case, considering the relatively small num-
ber of grid points (approx. 20 million) for a DNS. This is shown in figure
21, where an attempt has been made to compare this method with the use
of a moving immersed boundary to achieve a similar result. The code imple-
ments hybrid MPI/OMP parallelism, so OMP scaling is shown for two MPI
decompositions, which agree fairly well where they overlap in core count.
This is also the case for the moving immersed boundary, which is therefore
represented by a single line; mixed OMP and MPI scaling is used, with simi-
lar core counts as for the sliding mesh. The measurements were taken on an
IBM Blue Gene/Q system.

6. Discussion

A method of implementing a sliding grid using a characteristic interface
condition is developed, and verified using a set of test cases relevant to direct
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Figure 19: Static pressure coefficient cp. Fixed grid results obtained using a moving
immersed boundary. The DNS results of Michelassi are described in [16]. Experimental
results are due to Stadtmüller et al., [23] (extracted from [16]).

numerical simulation of turbulent flow in moderately complex geometries.
Accuracy and performance in a high performance computing context are
demonstrated to be adequate. This method is applied to simulate cylinder
wakes impinging on the T-106A geometry at a low Reynolds number. These
wakes affect transition and separation of the suction-side boundary layer.

The sliding interface and moving immersed boundary methods described
and tested in this paper agree quite closely. The blade pressure distribution
(figure 19) is, in both cases, in reasonably good agreement with the experi-
mental results of Stadtmüller et al. [23]. In particular, the suppression of the
separation bubble near the trailing edge on the suction side (which occurs
when the incoming wakes are removed) is captured. Perhaps surprisingly, the
experimental results are, on the suction side, bracketed by the DNS results
of Michelassi et al. [16] and the current results. However, the DNS described
in [16] was incompressible, and significant uncertainty exists in relation to
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stream of the trailing edge.

the inflow angle that should be used. 37.7◦ was intended by Stadtmüller, but
the actual angle was estimated at 45.5◦ on the basis of RANS simulations
[16]. This value was used by Michelassi et al., who also performed RANS
simulations suggesting a different inflow angle would improve agreement of
DNS and experiment.

Parallel scaling (shown in figure 21) is considered acceptable for the prob-
lem considered. The need to compute Ln and Sn C introduces some overhead,
particularly evident at low core counts, but this overhead is purely compu-
tational and parallelises very well, providing it is properly load balanced.
Note that in that particular case it proved possible to use a larger time step
for the sliding grid simulation; this has been ignored for the purpose of this
comparison.

The domain decomposition for the moving immersed boundary uses sub-
domains of identical size; that used for the sliding grid reduces their size
in blocks adjacent to the sliding interface to improve load balance. This
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Figure 21: Scaling for bar wake / T106 blade interaction simulation, sliding grid and
moving immersed boundary.

seems like a plausible explanation for the difference in scaling at higher core
counts, but use of the sliding grid decomposition with the immersed bound-
ary method did not result in an improvement. The overhead due to the
immersed boundary also introduces load imbalance, but this is present in
both approaches - the overhead of moving the boundary, however, is present
only in the moving immersed boundary method. This is difficult to miti-
gate further as the overhead is not tied to particular grid nodes (unlike the
overhead due to a static immersed boundary or a sliding mesh). Presumably
dynamic load balancing would be required, but has not been considered here
as the focus is on the sliding grid approach.

Discussion of the results in the context of rotor-stator interaction in tur-
bomachinery flow is deferred to a future study to which, it is hoped, they
will contribute. The good agreement attained between the two methods - the
moving immersed boundary and the sliding grid - serves, in conjunction with
the test cases of section 4, to give confidence in the validity of the method.
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Appendix A. Inverse transformation matrix

The transformation matrix P, multiplication with which is used to con-
vert the corrected flux L from characteristic to conserved variables (given
in [12]) does not require modification when interpolation is carried out in
the reference frame of the recipient block. Its inverse - which is needed to
calculate Ln and Sn C , however, does. It is given by:
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where
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