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Abstract. This paper contributes to a deeper understanding of the link between a now con-
ventional framework in hierarchical optimization called the optimistic bilevel problem and its initial
more difficult formulation that we call here the original optimistic bilevel optimization problem. It
follows from this research that although the process of deriving necessary optimality conditions for
the latter problem is more involved, the conditions themselves do not—to a large extent—differ from
those known for the conventional problem. It has already been well recognized in the literature that
for optimality conditions of the usual optimistic bilevel program appropriate coderivative construc-
tions for the set-valued solution map of the lower-level problem could be used, while it is shown in this
paper that for the original optimistic formulation we have to go a step further to require and justify
a certain Lipschitz-like property of this map. This is related to the local Lipschitz continuity of the
optimal value function of an optimization problem constrained by solutions to another optimization
problem; this function is labeled here as the two-level value function. More generally, we conduct
a detailed sensitivity analysis for value functions of mathematical programs with extended comple-
mentarity constraints. The results obtained in this vein are applied to the two-level value function
and then to the original optimistic formulation of the bilevel optimization problem, for which we
derive verifiable stationarity conditions of various types entirely in terms of the initial data.
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1. Introduction. This paper is mainly motivated by the study of a class of the
so-called bilevel programming problems generally formalized as

(1.1) “min
x

”{F (x, y)|x ∈ X, y ∈ S(x)},

where F : Rn × R
m → R and X ⊂ R

n stands for the upper-level/leader’s objective
function and the feasible set, respectively, while the multifunction S : Rn ⇒ R

m de-
notes the set-valued solution/argminimum map for the lower-level/follower’s problem

(1.2) min
y

{f(x, y)|y ∈ K(x)}

with the lower-level objective function f : Rn × R
m → R. For simplicity we confine

ourselves to the case where the upper- and lower-level constraints are given by

(1.3) X := {x ∈ R
n|G(x) ≤ 0} and K(x) := {y ∈ R

m| g(x, y) ≤ 0},
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1310 S. DEMPE, B. S. MORDUKHOVICH, AND A. B. ZEMKOHO

respectively, with G : Rn → R
k and g : Rn×R

m → R
p. Furthermore, all the functions

involved will be assumed to be continuously differentiable. The reader may observe
from our analysis that most of the results obtained can be extended to the case of
equality and other types of constraints as well as to the case of nonsmooth functions.

The quotation marks in (1.1) are used to express the uncertainty in the formal-
ization of the bilevel optimization problem in the case of nonuniquely determined
lower-level optimal solutions. In the latter case two major approaches have been sug-
gested in the literature in order to easily handle the problem. On one hand, we have
the optimistic formulation

(Po) min{ϕo(x)|x ∈ X} with ϕo(x) := min
y

{F (x, y)|y ∈ S(x)}.
From the economics viewpoint this corresponds to a situation where the follower
participates in the profit of the leader; i.e., some cooperation is possible between
both players on the upper and lower levels. However, it would not always be possible
for the leader to convince the follower to make choices that are favorable for him or
her. Hence it is necessary for the upper-level player to bound damages resulting from
undesirable selections on the lower level. It gives the pessimistic formulation of the
bilevel optimization problem as follows:

min{ϕp(x)|x ∈ X} with ϕp(x) := max
y

{F (x, y)|y ∈ S(x)}.
This problem belongs to a special class of minimax problems. Minimax problems
have been intensively studied in the literature; see, e.g., [54, 55, 63] and the references
therein. However, it has been well recognized that when S(x) stands for varying
sets of solutions to another optimization problem, the pessimistic formulation above
faces many challenges. Some of them are highlighted in [8]. Recent developments on
pessimistic bilevel programs can be found in [4, 7, 12, 30].

Our main concern in this paper is the original optimistic formulation (Po) in
bilevel programming that has been eventually substituted in the literature, under the
name of “optimistic bilevel program,” by the following optimization problem:

(P) min
x,y

{F (x, y)|x ∈ X, y ∈ S(x)}.
The latter problem, which we label here as the conventional/auxiliary bilevel program,
has been well investigated. In the last two decades, problem (P) has attracted a lot of
interest from both viewpoints of optimization theory and applications. The reader is
referred to [2, 8, 55] and the bibliographies therein for detailed discussions. For more
recent results on the topic we refer the reader to [6, 10, 11, 13, 16, 27, 41, 62]. In addi-
tion, a vast literature on related mathematical problems with equilibrium constraints
(MPECs) is widely available; see the books [33, 38, 39, 47] with their commentaries
and references. Note here that in investigating problem (P) and related MPECs,
researchers face the issue of passing to an equivalent single-level reformulation, espe-
cially when the so-called Karush–Kuhn–Tucker (KKT) reformulation is in question
[10]. As will be made clear in this paper, investigating the bilevel program (Po) of
our main interest in what follows does not lead to such a difficulty.

Unfortunately, very little is known about the initial bilevel program (Po) that is
the original optimistic model in the bilevel programming problem (1.1) and is labeled
as such. It has been well recognized that problems (Po) and (P) are equivalent for
global solutions while not for local ones. We show in section 6 that a local optimal
solution of problem (Po) corresponds to a local optimal solution of (P) without any
assumption. However, it is easy to find examples where a local optimal solution of (P)
does not generate a local optimal solution of (Po); cf. section 6. Thus we also show in
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TWO-LEVEL VALUE FUNCTIONS AND BILEVEL PROGRAMMING 1311

this section that a local optimal solution of (P) corresponds to that of (Po) under a
rather strong condition, namely, the inner semicontinuity of a certain multifunction.
This clearly means that there is a gap between the original optimistic bilevel program
(Po) and the auxiliary model (P), most importantly because they are both nonconvex
optimization problems, and thus finding local optimal solutions is the most likely
achievable goal in practical solution methods. It is clear that there is no distinction
between both problems in the case where optimal solutions of the lower-level problem
are uniquely determined. Ruling out this possibility, a crucial question that arises
is How are stationary points of (Po) and (P) related to each other? Among other
things, we attempt to answer this question in the present paper.

To proceed in this direction, we aim to derive comprehensive first-order necessary
optimality conditions, via various types of stationarity in bilevel programming, for the
original problem (Po) and compare them with known ones for (P). According to the
general approach to “abstract” problems of this type developed in [38, 39], sensitivity
analysis and necessary optimality conditions for such problems are closely related to
deriving appropriate subdifferential estimates for the optimal value function

(1.4) ϕo(x) := min
y

{F (x, y)|y ∈ S(x)}.

We assume with no further mentioning that the minimum in (1.4) and similar settings
below is realized. In the framework of this paper the value function (1.4) is not
just defined via an abstract mapping S but it is also associated with the two-level
optimization problem (Po), where S is the solution map of the specifically given lower-
level problem of parametric optimization. For this reason we call (1.4) the two-level
value function.

A large literature exists for value functions (known also as marginal functions)
in conventional optimization problems with inequalities and/or equalities; see, e.g.,
[3, 5, 19, 23, 50] to name just a few. Since marginal functions are intrinsically
nonsmooth, generalized derivatives of various kinds are used to study their prop-
erties. More recently, significant progress in the study and applications of various
classes of marginal/value functions has been made by using generalized differential
constructions introduced by the second author [35]; more details can be found in
[11, 16, 38, 39, 40, 41, 42, 43]. Note that in problems of nonlinear and nondifferentiable
programming the key conditions needed for subdifferential estimates and sensitivity
analysis of the corresponding marginal functions are the classical constraint quali-
fication by Mangasarian and Fromovitz [34] (MFCQ) and its nonsmooth extension
introduced in [37]. It happens that these qualification conditions are not applicable
to the two-level value function ϕo written in a marginal function form under para-
metric functional constraints; see section 5. Thus adequate rules tailored for ϕo have
to be developed.

In order to tackle this, we consider in this paper three possible approaches to
sensitivity analysis for two-level value functions of type (1.4) involving certain repre-
sentations/transformations of the solution map

(1.5) S(x) := argmin
y

{f(x, y)|y ∈ K(x)}

of the lower-level problem in the construction of ϕo. Here we label them conditionally
as the complementarity/OPCC approach, the generalized equation/OPEC approach,
and the lower-level value function/LLVF approach.
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1312 S. DEMPE, B. S. MORDUKHOVICH, AND A. B. ZEMKOHO

In the first two approaches, function (1.4) becomes the optimal value function of
an optimization problem with complementarity constraints (OPCC) and of an opti-
mization problem with a generalized equation constraint (OPEC), respectively. To the
best of our knowledge, the initial results for value functions of this type were obtained
by Lucet and Ye [32] and by Hu and Ralph [29]. Paper [29] is devoted to the study
of strict differentiability as well as first-order and second-order directional derivatives
of the value function for the corresponding OPCC under the OPCC/MPEC linear
independence constraint qualification (MPEC-LICQ). Another approach is developed
in [32], which employs the limiting subdifferential constructions by Mordukhovich to
conduct a local sensitivity analysis of value functions of the above types.

The developments of this paper within the OPCC approach to sensitivity analysis
of value functions are much closer to those by Lucet and Ye, though we also try to
bridge the gap between our work and that by Hu and Ralph; see subsection 3.3. Note
that the results of [32] for OPCC value functions focus only on the case where one of
the functional components involved in the crucial complementarity condition is given
by the simplest linear function. Some of our results obtained in section 3 can be seen
as extensions of those in [32] to the general function setting in the complementarity
condition. On the other hand, our results in section 4 within the OPEC approach cover
the generalized equation description of (1.5) via the normal cone to moving convex
sets (of the quasi-variational inequality type), which was not considered in [32]. In
this way we derive more detailed upper estimates for the limiting subdifferential of the
corresponding value function and establish their clear link with those obtained via the
OPCC approach; see subsection 5.1. Another important difference between our work
on sensitivity analysis for value functions via the OPCC and OPEC approaches and
the one by Lucet and Ye is that we do not use their growth hypothesis, which plays
a significant role in the results of [32]. We replace it by the inner semicompactness
assumption (weaker than a certain uniform boundedness condition closely related to
the aforementioned growth hypothesis) imposed on the solution map

(1.6) So(x) := {y ∈ S(x)|F (x, y) ≤ ϕo(x)}

and derive tighter upper bounds for the limiting subdifferential of ϕo under the inner
semicontinuity of So (1.6); see section 2 for more details on these notions.

In the third (LLVF) of the aforementioned approaches, originated by Outrata [45]
for a special class of bilevel programs/Stackelberg games, we represent the solution
map (1.5) of the lower-level problem as an inequality system containing the lower-level
value function of (1.2). In this way we provide verifiable conditions in terms of the
initial data to evaluate the coderivative of S and establish the Lipschitz-like property
of this mapping. This leads us in turn to new conditions ensuring the local Lipschitz
continuity of the two-level value function ϕo; see subsection 5.2 for all the details.

The rest of the paper is organized as follows. Section 2 presents basic notions
and results of variational analysis and generalized differentiation widely used in the
subsequent parts. Section 3 is mainly concerned with sensitivity analysis of OPCC
value functions. Here we derive upper estimates of the limiting subdifferential for such
functions from various perspectives, depending on the type of optimality/stationary
conditions of interest for the original bilevel model (Po). It should be mentioned that
the results in section 3 can stand on their own. Indeed, they also provide efficient
rules to obtain estimates of the coderivative and the fulfillment of the Lipschitz-like
property for mappings of special structures (inequality and equality systems with com-
plementarity constraints) that are important for other classes of optimization-related
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TWO-LEVEL VALUE FUNCTIONS AND BILEVEL PROGRAMMING 1313

problems, not just for bilevel programming. Sensitivity analysis of OPEC value func-
tions, which is of its own interest as well, is conducted in section 4.

The first part of section 5 mainly deals with the applications of the results from
sections 3 and 4 to sensitivity analysis of the two-level value function (1.4) via the
OPCC and OPEC approaches. In the second part of this section (i.e., in subsec-
tion 5.2) we develop the lower-level value function approach to analyze the two-level
value function ϕo. Here a detailed discussion is given on rules to derive subdifferen-
tial estimates and establish the local Lipschitz continuity of ϕo from a perspective
completely different from the previous ones.

In the final section 6 we employ the results obtained above to derive necessary
optimality conditions for the original optimistic formulation (Po) in the various forms
of stationarity conditions including the new types introduced in this paper. A clear
relationship between optimal solutions of (P) and (Po) is also provided in this section.

2. Background material. More details on the material briefly discussed in
this section can be found in the books [38, 39, 51, 53] and the references therein.
We start with the Painlevé–Kuratowski outer/upper limit of a set-valued mapping
Ψ : Rn ⇒ R

m as x→ x̄ defined by

(2.1) Limsup
x→x̄

Ψ(x) := {v ∈ R
m|∃xk → x̄, vk → v with vk ∈ Ψ(xk) as k → ∞}.

Given an extended-real-valued function ψ : Rn → R := (−∞,∞], the Fréchet/regular
subdifferential of ψ at x̄ ∈ domψ := {x ∈ R

n| ψ(x) <∞} is given by

∂̂ψ(x̄) :=
{
v ∈ R

n
∣∣∣ lim inf

x→x̄

ψ(x)− ψ(x̄)− 〈v, x− x̄〉
‖x− x̄‖ ≥ 0

}
,

while our basic construction in this paper known as theMordukhovich/basic or limiting
subdifferential of ψ at x̄ ∈ domψ is defined via the outer limit (2.1) by

(2.2) ∂ψ(x̄) := Limsup
x→x̄

∂̂ψ(x).

If ψ is convex, then the subdifferential ∂ψ(x̄) reduces to the classical subdifferential of
convex analysis. If ψ is locally Lipschitzian around x̄, then the set ∂ψ(x̄) is nonempty
and compact. Moreover, its convex hull agrees with the subdifferential/generalized
gradient by Clarke. If ψ is strictly differentiable at x̄, i.e.,

(2.3) lim
v→x̄, x→x̄

ψ(v)− ψ(x) − 〈∇ψ(x̄), v − x〉
‖v − x‖ = 0,

then ∂ψ(x̄) = {∇ψ(x̄)}. It should be mentioned that every function continuously
differentiable around some point is strictly differentiable at this point and that every
function locally Lipschitzian around x̄ is strictly differentiable at x̄, provided that its
subdifferential (2.2) is a singleton.

Given a nonempty set Ω ⊂ R
n, our basic normal cone to it at x̄ ∈ Ω corresponding

to the subdifferential construction (2.2) is defined by

(2.4) NΩ(x̄) := Limsup
x→x̄ (x∈Ω)

N̂Ω(x)

via the outer limit (2.1) of the regular counterpart

N̂Ω(x) :=
{
v ∈ R

n
∣∣∣ lim sup
u→x(u∈Ω)

〈v, u − x〉
‖u− x‖ ≤ 0

}D
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1314 S. DEMPE, B. S. MORDUKHOVICH, AND A. B. ZEMKOHO

at points x ∈ Ω near x̄. Note that for sets Ω ⊂ R
n locally closed around x̄ the given

definition (2.4) reduces to the original one,

NΩ(x̄) = Limsup
x→x̄

[cone(x− ΠΩ(x))],

introduced in [35], where “cone” stands for the conic hull of a set, and where Π denotes
the Euclidean projection on the set in question. Using the normal cone (2.4), we can
equivalently describe the basic subdifferential (2.2) by

∂ψ(x̄) = {v ∈ R
n| (v,−1) ∈ Nepiψ(x̄, ψ(x̄))}

for lower semicontinuous (l.s.c.) functions with the epigraph epiψ and define the sin-
gular subdifferential of ψ at x̄ ∈ domψ by

(2.5) ∂∞ψ(x̄) := {v ∈ R
n| (v, 0) ∈ Nepiψ(x̄, ψ(x̄))}.

It is worth mentioning that for functions ψ l.s.c. around x̄ we have ∂∞ψ(x̄) = {0} if
and only if ψ is locally Lipschitzian around this point.

Given further a set-valued mapping Ψ : Rn ⇒ R
m with the graph

gphΨ := {(x, y) ∈ R
n × R

m|y ∈ Ψ(x)},

recall the notion of coderivative for Ψ at (x̄, ȳ) ∈ gphΨ defined in [36] by

(2.6) D∗Ψ(x̄, ȳ)(v) := {u ∈ R
n|(u,−v) ∈ NgphΨ(x̄, ȳ)} for v ∈ R

m

via the normal cone (2.4) to the graph of Ψ. If Ψ is single-valued and locally Lip-
schitzian around x̄, its coderivative can be represented analytically as

D∗Ψ(x̄)(v) = ∂〈v,Ψ〉(x̄) for v ∈ R
m

via the basic subdifferential (2.2) of the Lagrange scalarization 〈v,Ψ〉(x) := 〈v,Ψ(x)〉,
where the component ȳ(= Ψ(x̄)) is omitted in the coderivative notation for single-
valued mappings. This implies the coderivative representation

D∗Ψ(x̄)(v) = {∇Ψ(x̄)�v} for v ∈ R
m

when Ψ is strictly differentiable at x̄ as in (2.3) with ∇Ψ(x̄) standing for its Jacobian
matrix at x̄ and with the symbol “�” standing for transposition.

Some continuity properties of set-valued mappings are of a particular interest in
this paper. We say that Ψ : Rn ⇒ R

m is inner semicompact at x̄ with Ψ(x̄) = ∅ if
for every sequence xk → x̄ with Ψ(xk) = ∅ there is a sequence of yk ∈ Ψ(xk) that
contains a convergent subsequence. It follows that the inner semicompactness holds
in finite dimensions whenever Ψ is uniformly bounded around x̄; i.e., there exists a
neighborhood U of x̄ and a bounded set C ⊂ R

m such that

(2.7) Ψ(x) ⊂ C ∀x ∈ U.

The mapping Ψ is inner semicontinuous at (x̄, ȳ) ∈ gphΨ if for every sequence xk → x̄
there is a sequence of yk ∈ Ψ(xk) that converges to ȳ as k → ∞. This property reduces
to the usual continuity for single-valued mappings, while in the set-valued case it is
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TWO-LEVEL VALUE FUNCTIONS AND BILEVEL PROGRAMMING 1315

implied by the Lipschitz-like/Aubin property of Ψ around (x̄, ȳ) ∈ gphΨ, which means
that there are neighborhoods U of x̄, V of ȳ, and a constant � > 0 such that

(2.8) d(y; Ψ(x)) ≤ �‖x− u‖ ∀x, u ∈ U and ∀y ∈ Ψ(u) ∩ V,
where d stands for the usual distance function. When V = R

m in (2.8), this property
reads as to the classical local Lipschitz continuity of Ψ around x̄. A complete charac-
terization of the Lipschitz-like property (2.8), and hence a sufficient condition for the
inner semicontinuity of Φ at (x̄, ȳ), is given for closed-graph mappings by the following
coderivative/Mordukhovich criterion (see [39, Theorem 5.7] and [51, Theorem 9.40]):

(2.9) D∗Ψ(x̄, ȳ)(0) = {0}.
Furthermore, the infimum of all � > 0 for which (2.8) holds is equal to the coderivative
norm ‖D∗Ψ(x̄, ȳ)‖ as a positively homogeneous mapping D∗Ψ(x̄, ȳ) : Rm ⇒ R

n.
If we fix x = x̄ in (2.8), the resulting weaker property is known as calmness of Ψ

at (x̄, ȳ) [51]; for V = R
m it reduces to the upper Lipschitz property of Robinson [49].

In order to analyze our two-level optimal value function ϕo in (1.4), we first
consider a general “abstract” framework of the marginal functions

(2.10) μ(x) := min
y

{ψ(x, y)| y ∈ Ψ(x)}

with ψ : Rn × R
m → R and Ψ: Rn ⇒ R

m. Consider the argminimum mapping

Ψo(x) := argmin{ψ(x, y)|y ∈ Ψ(x)} = {y ∈ Ψ(x)| ψ(x, y) ≤ μ(x)}
and summarize in the next theorem some known results on general marginal functions
needed in the paper; see [38, Corollary 1.109] and [39, Theorem 5.2].

Theorem 2.1 (properties of general marginal functions). Let the marginal func-
tion μ be given in (2.10), where the graph of Ψ is locally closed around (x̄, ȳ) ∈ gphΨ,
and where ψ is strictly differentiable at this point. The following assertions hold:

(i) Let Ψo be inner semicontinuous at (x̄, ȳ). Then μ is lower semicontinuous at
x̄ and we have the following upper bound for its basic subdifferential:

∂μ(x̄) ⊂ ∇xψ(x̄, ȳ) +D∗Ψ(x̄, ȳ)(∇yψ(x̄, ȳ)).

If in addition Ψ is Lipschitz-like around (x̄, ȳ), then we also have the Lipschitz conti-
nuity of μ around x̄.

(ii) Let Ψo be inner semicompact at x̄. Then μ is lower semicontinuous at x̄ and

∂μ(x̄) ⊂
⋃

ȳ∈Ψo(x̄)

{∇xψ(x̄, ȳ) +D∗Ψ(x̄, ȳ)(∇yψ(x̄, ȳ))}.

If in addition Ψ is Lipschitz-like around (x̄, ȳ) for all vectors ȳ ∈ Ψo(x̄), then μ is
Lipschitz continuous around x̄.

Depending on specific structures of the set-valued mapping Ψ, our aim in sec-
tions 3–5 is to give detailed upper bounds for D∗Ψ(x̄, ȳ) in terms of the problem data
and to provide verifiable rules for the Lipschitz-like property of Ψ, which imply explicit
upper bounds for ∂μ(x̄) and the local Lipschitz continuity of μ. More discussions on
the inner semicontinuity of argminimum mappings can be found in [11, Remark 3.2].

To conclude this section, we present a constraint qualification and necessary op-
timality conditions for a general optimization problem with geometric constraints in
terms of limiting normals and subgradients; see, e.g., [39, Proposition 5.3].
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Theorem 2.2 (optimality conditions under geometric constraints). Let x̄ be a
local optimal solution to the problem

minimize ψ(x) subject to x ∈ Ω,

where ψ : Rn → R is l.s.c. around x̄ ∈ Ω∩ domψ, and where Ω ⊂ R
n is locally closed

around this point. Then we have

(2.11) 0 ∈ ∂ψ(x̄) +NΩ(x̄),

provided the validity of the qualification condition

(2.12) ∂∞ψ(x̄) ∩ (−NΩ(x̄)) = {0},
which is the case, in particular, when ψ is locally Lipschitzian around x̄.

3. Sensitivity analysis of OPCC value functions. In this section we con-
sider the value function of a parametric optimization problem belonging to the class
of optimization programs with complementarity constraints (OPCCs):

(3.1)
μc(x) := min

y

{
F (x, y)| y ∈ Sc(x) := {y| g(x, y) ≤ 0, h(x, y) = 0,

G(x, y) ≥ 0, H(x, y) ≥ 0, G(x, y)�H(x, y) = 0}},
where F : Rn×R

m → R, g : Rn×R
m → R

a, h : Rn×R
m → R

b, andG, H : Rn×R
m →

R
d are all continuously differentiable functions. The main goal of this section is

deriving efficient subdifferential estimates for the optimal value function (3.1), as
well as verifiable conditions for its local Lipschitz continuity and for the Lipschitz-like
property of the feasible solution map Sc entirely in terms of the initial data. Adopting
the terminology originated by Scheel and Scholtes [52], the sensitivity analysis results
established below and the associated constraint qualifications are expressed via the
sets of M-, C-, and S-type multipliers used in the corresponding M(ordukhovich),
C(larke), and S(trong) stationarity conditions for OPCCs; cf. section 6.

Fix a pair (x̄, ȳ) ∈ gphSc and associate with it the following partition of the
indices for the functions involved in the complementarity system in (3.1):

(3.2)
η = η(x̄, ȳ) := {i = 1, . . . , d | Gi(x̄, ȳ) = 0, Hi(x̄, ȳ) > 0},
θ = θ(x̄, ȳ) := {i = 1, . . . , d | Gi(x̄, ȳ) = 0, Hi(x̄, ȳ) = 0},
ν = ν(x̄, ȳ) := {i = 1, . . . , d | Gi(x̄, ȳ) > 0, Hi(x̄, ȳ) = 0},

where the set θ in (3.2) is known as the biactive or degenerate index set. As shown
below, the difference between the various types of multiplier sets depends on the
structure of the components corresponding to the biactive set θ. Now consider a
vector v ∈ R

n+m and define the set of M-type multipliers associated with (3.1) by

(3.3)

Λcm(x̄, ȳ, v) := {(α, β, γ, ζ)| α ≥ 0, α�g(x̄, ȳ) = 0,
γν = 0, ζη = 0,

∀i ∈ θ, (γi < 0 ∧ ζi < 0) ∨ γiζi = 0,
v +∇g(x̄, ȳ)�α+∇h(x̄, ȳ)�β +∇G(x̄, ȳ)�γ +∇H(x̄, ȳ)�ζ = 0}.

Similarly we define the set Λcmy (x̄, ȳ, v), with v ∈ R
m, obtained by replacing the

gradients of g, h,G, and H in equation v+∇g(x̄, ȳ)�α+∇h(x̄, ȳ)�β+∇G(x̄, ȳ)�γ+
∇H(x̄, ȳ)�ζ = 0 by their partial derivatives with respect to y. In the case where
v := ∇yF (x̄, ȳ) we denote Λcmy (x̄, ȳ) := Λcmy (x̄, ȳ,∇yF (x̄, ȳ)).
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The corresponding sets of C-type multipliers denoted by Λcc(x̄, ȳ, v), Λccy (x̄, ȳ, v),
and Λccy (x̄, ȳ) are defined similarly to Λcm(x̄, ȳ, v), Λcmy (x̄, ȳ, v), and Λcmy (x̄, ȳ), respec-
tively, with the replacement of condition (γi < 0∧ ζi < 0) ∨ γiζi = 0 on θ by γiζi ≥ 0
on the same set. For the case of S-type multipliers we need to define only Λcsy (x̄, ȳ),
which is an analogue of Λcmy (x̄, ȳ) with the replacement of the aforementioned con-
dition therein by γi ≤ 0 ∧ ζi ≤ 0 for all i ∈ θ. The following links between the sets
Λcsy (x̄, ȳ), Λcmy (x̄, ȳ), and Λccy (x̄, ȳ) are obvious: Λcsy (x̄, ȳ) ⊂ Λcmy (x̄, ȳ) ⊂ Λccy (x̄, ȳ).

To further simplify the presentation of this section, we introduce the following
Lagrange-type and singular Lagrange-type functions, respectively, associated with the
parametric problem in (3.1):

L(x, y, α, β, γ, ζ) := F (x, y) + g(x, y)�α+ h(x, y)�β +G(x, y)�γ +H(x, y)�ζ,
Lo(x, y, α, β, γ, ζ) := g(x, y)�α+ h(x, y)�β +G(x, y)�γ +H(x, y)�ζ.

In what follows, the derivative of Lo with respect to (x, y) is often needed and is
denoted by

∇Lo(x, y, α, β, γ, ζ) := ∇g(x, y)�α+∇h(x, y)�β +∇G(x, y)�γ +∇H(x, y)�ζ.

The following solution map for the OPCC related to (3.1) given by

(3.4) Sco(x) := {y ∈ Sc(x)|F (x, y) ≤ μc(x)}

plays a significant role in our subsequent sensitivity analysis in this section.

3.1. Sensitivity analysis via M-type multipliers. To proceed in this sub-
section, we define the M -qualification conditions at (x̄, ȳ):

(3.5)
(A1

1) (α, β, γ, ζ) ∈ Λcm(x̄, ȳ, 0) =⇒ α = 0, β = 0, γ = 0, ζ = 0,
(A1

2) (α, β, γ, ζ) ∈ Λcmy (x̄, ȳ, 0) =⇒ ∇xLo(x̄, ȳ, α, β, γ, ζ) = 0,
(A1

3) (α, β, γ, ζ) ∈ Λcmy (x̄, ȳ, 0) =⇒ α = 0, β = 0, γ = 0, ζ = 0.

We observe the obvious links between them: (A1
2) ⇐= (A1

3) =⇒ (A1
1). The next

theorem provides a constructive upper estimate of the coderivative (2.6) of the OPCC
feasible solution map Sc and gives a verifiable condition for its robust Lipschitzian
stability, i.e., the validity of the Lipschitz-like property.

Theorem 3.1 (coderivative estimate and Lipschitz-like property of OPCC fea-
sible solutions via M-multipliers). Let (x̄, ȳ) ∈ gphSc, and let (A1

1) hold at (x̄, ȳ).
Then for all v ∈ R

m we have

(3.6) D∗Sc(x̄, ȳ)(v) ⊂ {∇xLo(x̄, ȳ, α, β, γ, ζ)| (α, β, γ, ζ) ∈ Λcmy (x̄, ȳ, v)}.

If in addition (A1
2) is satisfied at (x̄, ȳ), then Sc is Lipschitz-like around this point.

Proof. We start by recalling that the complementarity system contained in
(3.1) is equivalent to the inclusion (Gi(x, y), Hi(x, y)) ∈ {(u, v) ∈ R

2|u ≥ 0, v ≥
0, u�v = 0} := Λi for i = 1, . . . , d, and the graph of Sc can be rewritten in the form
gphSc = {(x, y)|ψ(x, y) ∈ Λ} via the vector-valued function ψ and the polyhedral set
Λ defined by

ψ(x, y) :=
[
g(x, y), h(x, y), (Gi(x, y), Hi(x, y))

d
i=1

]
and Λ := R

a
− × {0b} ×

d∏
i=1

Λi.
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It follows from the calculus rules in [38, Theorem 3.8] and [51, Theorem 6.14] that

(3.7) NgphSc(x̄, ȳ) ⊂ ∇ψ(x̄, ȳ)�NΛ(ψ(x̄, ȳ)),

provided the validity of the qualification condition

(3.8)
∇ψ(x̄, ȳ)�(α, β, (γi, ζi)di=1) = 0
(α, β, (γi, ζi)

d
i=1) ∈ NΛ(ψ(x̄, ȳ))

}
=⇒ α = 0, β = 0, γ = 0, ζ = 0.

It is easy to check that we have ∇ψ(x̄, ȳ)�(α, β, (γi, ζi)di=1) = ∇Lo(x̄, ȳ, α, β, γ, ζ) for
any quadruple (α, β, γ, ζ) and that, by the product formula for limiting normals,

NΛ(ψ(x̄, ȳ)) = NRa
−(g(x̄, ȳ))×N{0b}(h(x̄, ȳ))×

d∏
i=1

NΛi(Gi(x̄, ȳ), Hi(x̄, ȳ)).

Using the expression of the normal cone to the sets Λi, i = 1, . . . , d, from [21] (cf. also
[46, 57] for particular cases), we get

NΛi(Gi(x̄, ȳ), Hi(x̄, ȳ)) ={(γi, ζi)| γi = 0 if i ∈ ν, ζi = 0 if i ∈ η

(γi < 0, ζi < 0) ∨ (γiζi = 0) if i ∈ θ},

which implies that the qualification condition (3.8) reduces to (A1
1) in this case and

that inclusion (3.6) results from (3.7) and the coderivative definition (2.6). Finally,
the Lipschitz-like property of Sc around (x̄, ȳ) under the additional M-qualification
condition (A1

2) follows from (3.6) due to the coderivative criterion (2.9).
Now we can readily get efficient estimates of the limiting subdifferential of the

value function (3.1) and verifiable conditions for its local Lipschitz continuity.
Theorem 3.2 (M-type sensitivity analysis for OPCC value functions). The

following assertions hold for the value function μc in (3.1):
(i) Let the argminimum mapping Sco from (3.4) be inner semicontinuous at (x̄, ȳ),

and let (A1
1) hold at (x̄, ȳ). Then we have the subdifferential upper estimate

∂μc(x̄) ⊂ {∇xL(x̄, ȳ, α, β, γ, ζ)| (α, β, γ, ζ) ∈ Λcmy (x̄, ȳ)}.

If in addition (A1
2) is satisfied at (x̄, ȳ), then μc is Lipschitz continuous around x̄.

(ii) Assume that Sco is inner semicompact at x̄ and that (A1
1) holds at (x̄, ȳ) for

all ȳ ∈ Sco(x). Then we have the subdifferential upper estimate

∂μc(x̄) ⊂ {∇xL(x̄, ȳ, α, β, γ, ζ)| ȳ ∈ Sco(x̄), (α, β, γ, ζ) ∈ Λcmy (x̄, ȳ)}.

If in addition (A1
2) is satisfied at (x̄, ȳ) for all ȳ ∈ Sco(x̄), then the value function μc

is Lipschitz continuous around x̄.
Proof. The proof follows from the results of Theorems 3.1 and 2.1.
Note that a subdifferential upper estimate similar to (ii) in Theorem 3.2 was

obtained in [32] in the case of G(x, y) := y under a certain growth hypothesis, which
is similar to our uniform boundedness condition (2.7) on the mapping Sco from (3.4).

Remark 3.3 (qualification conditions). There are various sufficient conditions for
the validity of (A1

1); see, e.g., [14] for related developments. Furthermore, (A1
1) can

be replaced by the weaker calmness assumption on the mapping

(3.9) Ψ(v) := {(x, y)| ψ(x, y) + v ∈ Λ},
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where ψ and Λ are defined in the proof of Theorem 3.1. Indeed, it is shown in [24,
Theorem 4.1] that the calmness of (3.9) is sufficient for inclusion (3.7), which thus
ensures the conclusions of Theorems 3.1 and 3.2 by the proofs above. Note that
the latter calmness assumption automatically holds when the mappings g, h,G, and
H are linear. Observe finally that due to the relationships between the constraint
qualifications in (3.5) both assumptions (A1

1) and (A1
2) in the above results can be

replaced by the fulfillment of the single condition (A1
3).

Remark 3.4 (relationships to previous work on the topic). Recall here that the
technique employed in Theorem 3.1 that transforms the complementarity system in
(3.1) into an inclusion is rather common in the field of OPCCs for studying some issues
different from those considered here; see, e.g., [46, 57, 60] for related developments.
Note, however, that some differences occur in constructing the set Λ corresponding, in
the proof of Theorem 3.1, to {(u, v) ∈ R

d|u ≥ 0, v ≥ 0, u�v = 0}, while in the afore-
mentioned papers Λ = gphNRd

+
is often chosen. Note also in [28] a transformation

in this vein is employed to derive an exact penalty result and then optimality condi-
tions for the so-called mathematical programs with vanishing constraints [1]. Having
in mind this transformation, the methods developed here (cf., in particular, the proofs
of Theorems 3.1 and 3.2) can readily be applied to conduct a local sensitivity analysis
for the latter class of programs.

3.2. Sensitivity analysis via C-type multipliers. Similarly to subsection 3.1
we introduce the following C-qualification conditions at (x̄, ȳ):

(3.10)
(A2

1) (α, β, γ, ζ) ∈ Λcc(x̄, ȳ, 0) =⇒ α = 0, β = 0, γ = 0, ζ = 0,
(A2

2) (α, β, γ, ζ) ∈ Λccy (x̄, ȳ, 0) =⇒ ∇xLo(x̄, ȳ, α, β, γ, ζ) = 0,
(A2

3) (α, β, γ, ζ) ∈ Λccy (x̄, ȳ, 0) =⇒ α = 0, β = 0, γ = 0, ζ = 0,

with a similar relationships between them: (A2
2) ⇐= (A2

3) =⇒ (A2
1). To proceed,

we use the well-known nonsmooth transformation of the feasible set to the OPCC
introduced by Scheel and Scholtes [52]:

(3.11)
Sc(x) := {y ∈ R

m| g(x, y) ≤ 0, h(x, y) = 0,
min{Gi(x, y), Hi(x, y)} = 0, i = 1, . . . , d}.

Employing (3.11), a C-counterpart of Theorem 3.2 can be derived with a different
proof and a larger estimate for the coderivative of Sc under (A2

1) and (A2
2).

Theorem 3.5 (coderivative estimate and Lipschitz-like property of OPCC feasi-
ble solutions via C-multipliers). Let (A2

1) hold at (x̄, ȳ) ∈ gphSc. Then

D∗Sc(x̄, ȳ)(v) ⊂ {∇xLo(x̄, ȳ, α, β, γ, ζ)| (α, β, γ, ζ) ∈ Λccy (x̄, ȳ, v)}, v ∈ R
m.

If in addition (A2
2) is satisfied at (x̄, ȳ), then Sc is Lipschitz-like around this point.

Proof. From the expression of Sc in (3.11) we get gphSc = {(x, y)|ψ(x, y) ∈ Λ},
where ψ and Λ are defined by

(3.12) ψ(x, y) := [g(x, y), h(x, y), V (x, y)] and Λ := R
a
− × {0b} × {0d}

with Vi(x, y) := min{Gi(x, y), Hi(x, y)} = 0 for i = 1, . . . , d. Since ψ is locally Lip-
schitzian around (x̄, ȳ), it follows from [38, Theorem 3.8] that

(3.13) NgphSc(x̄, ȳ) ⊂ {∂〈u, ψ〉(x̄, ȳ)|u ∈ NΛ(ψ(x̄, ȳ))},
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provided that the qualification condition

(3.14)
[
0 ∈ ∂〈u, ψ〉(x̄, ȳ), u ∈ NΛ(ψ(x̄, ȳ))

]
=⇒ u = 0

is satisfied. Furthermore, we have the normal cone representation

(3.15) NΛ(ψ(x̄, ȳ)) = NRa
−(g(x̄, ȳ))×N{0b}(h(x̄, ȳ))×N{0d}(V (x̄, ȳ))

and calculate the subdifferential of the scalarization in (3.13) by

(3.16) ∂〈(α, β, χ), ψ〉(x̄, ȳ) = ∇g(x̄, ȳ)�α+∇h(x̄, ȳ)�β + ∂〈χ, V 〉(x̄, ȳ)
for (α, β, χ) ∈ NΛ(ψ(x̄, ȳ)). Since the function V is nondifferentiable and χ may
contain negative components by (3.15), we apply the convex hull “co” to our basic
subdifferential (2.2) in (3.16) in order to instate the plus/minus symmetry

∂〈χ, V 〉(x̄, ȳ) ⊂ co ∂〈χ, V 〉(x̄, ȳ) ⊂
d∑
i=1

χi∂̄Vi(x̄, ȳ)

via Clarke’s generalized gradient ∂̄Vi. Considering the partition of the index set
{1, . . . , d} in (3.2), we arrive by [5] at the following calculations:

∂̄Vi(x̄, ȳ) =

⎧⎨⎩
∇Gi(x̄, ȳ) if i ∈ η,
∇Hi(x̄, ȳ) if i ∈ ν,
co {∇Gi(x̄, ȳ),∇Hi(x̄, ȳ)} if i ∈ θ.

Invoking the classical Carathéodory theorem gives us

co {∇Gi(x̄, ȳ),∇Hi(x̄, ȳ)} = {ti∇Gi(x̄, ȳ) + (1− ti)∇Hi(x̄, ȳ)| ti ∈ [0, 1]},
and hence we obtain from (3.16) the inclusions
(3.17)
∂〈(α, β, χ), ψ〉(x̄, ȳ) ⊂ {∇Lo(x̄, ȳ, α, β, γ, ζ)| γη = 0, ζν = 0,

∀i ∈ θ, ∃ti ∈ [0, 1], ri ∈ R s.t. γi = riti, ζi = ri(1− ti)
}

⊂ {∇Lo(x̄, ȳ, α, β, γ, ζ)| γη = 0, ζν = 0,
∀i ∈ θ, γiζi ≥ 0

}
.

Since the qualification condition (3.14) is equivalent to

{(α, β, χ)| 0 ∈ ∂〈(α, β, χ), ψ〉(x̄, ȳ), (α, β, χ) ∈ NΛ(ψ(x̄, ȳ))} = {(0, 0, 0)},
the second inclusion in (3.17) shows that (A2

1) is sufficient for this to hold. Further-
more, by (3.13) the second inclusion of (3.17) leads to an upper estimate of NgphSc ,
which allows us via the coderivative definition (2.6) to recover the upper bound of
D∗Sc in the theorem. This implies, similarly to the proof of Theorem 3.1, that Sc is
Lipschitz-like around (x̄, ȳ) under (A2

2).
As in the previous subsection, we arrive at the following sensitivity results for the

OPCC value function (3.1) via C-multipliers.
Theorem 3.6 (C-type sensitivity analysis for OPCC value functions). The fol-

lowing assertions hold for the value function μc in (3.1):
(i) Let the optimal solution map Sco be inner semicontinuous at (x̄, ȳ), and let

(A2
1) hold at (x̄, ȳ). Then we have the subdifferential upper estimate

∂μc(x̄) ⊂ {∇xL(x̄, ȳ, α, β, γ, ζ)| (α, β, γ, ζ) ∈ Λccy (x̄, ȳ)}.
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If in addition (A2
2) holds at (x̄, ȳ), then μc is Lipschitz continuous around x̄.

(ii) Assume that Sco is inner semicompact at x̄ and that (A2
1) holds at (x̄, ȳ) for

all ȳ ∈ Sco(x). Then we have the subdifferential upper estimate

∂μc(x̄) ⊂ {∇xL(x̄, ȳ, α, β, γ, ζ)| ȳ ∈ Sco(x̄), (α, β, γ, ζ) ∈ Λccy (x̄, ȳ)}.

If in addition (A2
2) holds at (x̄, ȳ) for ȳ ∈ Sco(x̄), then μ

c is Lipschitzian around x̄.
Proof. The proof follows from the results of Theorems 3.5 and 2.1.
Note that assertion (ii) of Theorem 3.6 can be found in [32] for G(x, y) = y

under a similar framework, but with a qualification condition corresponding to the
replacement of Λcc(x̄, ȳ, 0) in (A2

1) by

{(α, β, γ, ζ)| α ≥ 0, α�g(x̄, ȳ) = 0,
γη = 0, ζν = 0,
∀i ∈ θ, ∃ti ∈ [0, 1], ri ∈ R s.t. γi = riti, ζi = ri(1− ti),
∇g(x̄, ȳ)�α+∇h(x̄, ȳ)�β +∇G(x̄, ȳ)�γ +∇H(x̄, ȳ)�ζ = 0}.

The latter assumption is weaker than (A2
1), but in our device we simply need to check

that the components of γ and ζ are of the same sign on θ rather than constructing them
as in the above set. Let us also mention that all the points made in Remark 3.3 can
be restated here accordingly. In particular, (A2

1) can be substituted by the calmness
of the set-valued mapping Ψ from (3.9) with ψ and Λ given in (3.12). This is the case
if the functions g, h,G, and H are linear since Vi(x, y) = min{Gi(x, y), Hi(x, y)} is
piecewise linear, provided Gi and Hi linear.

3.3. Sensitivity analysis via S-type multipliers. The S-type stationarity
conditions in the context of OPCCs are the best one would want to have since these
conditions are equivalent to the KKT-type optimality conditions whenever the OPCC
is treated as an ordinary nonlinear optimization problem.

Having this in mind, we derive here a tighter upper bound for the basic subdif-
ferential of the OPCC value function μc. In order to obtain an upper bound for ∂μc

containing Λcsy (x̄, ȳ) rather than Λcmy (x̄, ȳ) or Λccy (x̄, ȳ), consider the index set

I := I(x̄, ȳ) :=
{
i = 1, . . . , a

∣∣ gi(x̄, ȳ) < 0
}

and impose the following S-qualification condition

(3.18) (A3
1)

∇Lo(x̄, ȳ, α, β, γ, ζ) = 0
αI = 0, γν = 0, ζη = 0

}
=⇒ γθ = 0, ζθ = 0

introduced by Ye [57] and later named in [59] as partial MPEC-LICQ (linear inde-
pendence constraint qualification). This condition and another similar yet weaker one
have also been used by Flegel, Kanzow, and Outrata [22] to recover the S-stationarity
conditions for OPCCs from the M-ones. In the next theorem we obtain a new S-type
upper bound for ∂μc by a similar methodology, i.e., going from the M-type bound
provided above. Recall that assumption (A1

1) needed here is given in (3.5).
Theorem 3.7 (S-type sensitivity analysis for OPCC value functions). The fol-

lowing assertions hold for the value function μc from (3.1):
(i) Let the optimal solution map Sco be inner semicontinuous at (x̄, ȳ), and let

assumptions (A1
1) and (A3

1) be satisfied at (x̄, ȳ). Then we have

∂μc(x̄) ⊂ {∇xL(x̄, ȳ, α, β, γ, ζ)| (α, β, γ, ζ) ∈ Λcsy (x̄, ȳ)}.
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(ii) Let Sco be inner semicompact at x̄ with (A1
1) and (A3

1) being satisfied at (x̄, ȳ)
for all ȳ ∈ Sco(x̄). Then we have

∂μc(x̄) ⊂ {∇xL(x̄, ȳ, α, β, γ, ζ)| ȳ ∈ Sco(x̄), (α, β, γ, ζ) ∈ Λcsy (x̄, ȳ)}.
Proof. We provide the proof only for assertion (i); the other case can be proved

similarly. Assuming (A1
1) and the inner semicontinuity of Sco, we have the upper

estimate of ∂μc from Theorem 3.2(i). Further, denote by A(x̄, ȳ) (resp., B(x̄, ȳ)) the
right-hand side of the inclusion in Theorem 3.2(i) (resp., Theorem 3.7(i)). It remains
to show that A(x̄, ȳ) = B(x̄, ȳ) under the S-qualification condition (A3

1).
We obviously have A(x̄, ȳ) ⊃ B(x̄, ȳ). To justify the opposite inclusion, pick any

a(α, β, γ, ζ) ∈ A(x̄, ȳ) and search for b(αo, βo, γo, ζo) ∈ B(x̄, ȳ) such that a(α, β, γ, ζ) =
b(αo, βo, γo, ζo). If the latter equality were to hold, we would get{ ∇Lo(x̄, ȳ, α− αo, β − βo, γ − γo, ζ − ζo) = 0,

αoI − αoI = 0, γν − γoν = 0, ζη − ζoη = 0.

Thus it follows from (A3
1) that γoθ = γθ and ζoθ = ζθ. To conclude the proof, choose

αo := α, βo := β, γoθc := γθc , and ζ
o
θc := ζθc with θc := {i = 1, . . . , d} \ θ.

Observe from the proof above that it can be repeated by using the C-type upper
bound in subsection 3.2 instead of the M-one. This shows that under the assumption
(A3

1) all the S-type, M-type, and C-type upper bounds for ∂μc are the same.
Either replacing (A1

1) by (A1
3) or adding (A1

2) to the assumptions of Theorem 3.7,
we get the local Lipschitz continuity of μc. On the other hand, replacing (A3

1) by the
stronger well-known MPEC-LICQ formulated as

(3.19) (A3
2)

∇yLo(x̄, ȳ, α, β, γ, ζ) = 0
αI = 0, γν = 0, ζη = 0

}
=⇒ α = 0, β = 0, γ = 0, ζ = 0

ensures even more than the Lipschitz continuity of μc; namely, its strict differentia-
bility as stated in the next corollary.

Corollary 3.8 (strict differentiability of OPCC value functions). Assume that
Sco is inner semicontinuous at the point (x̄, ȳ), where (A3

2) is also satisfied. Then the
value function μc is strictly differentiable at x̄ with

∇μc(x̄) = ∇xL(x̄, ȳ, α, β, γ, ζ),

where (α, β, γ, ζ) is the unique multiplier of the set Λcsy (x̄, ȳ).
Proof. We can see that the set on the right-hand side of the inclusion in Theo-

rem 3.7(i) is a singleton; hence ∂μc(x̄) is a singleton as well. Since the value function
μc is surely locally Lipschitzian around x̄ under the MPEC-LICQ (3.19), the latter
uniqueness ensures its strict differentiability at this point; see section 2.

In case of (ii) we additionally need Sco(x̄) to be a singleton to ensure the strict
differentiability of μc at x̄. The latter corresponds to the framework provided by Hu
and Ralph [29], and hence it shows that the assumptions imposed in [29] imply the
inner semicontinuity of the set-valued mapping Sco at the solution point. Note also
that assertion (ii) of Theorem 3.7 closely relates to the corresponding result of [32]
obtained in a particular case from a different perspective.

4. Sensitivity analysis of OPEC value functions. This section is devoted
to the study of the following value function of a parametric optimization problem with
generalized equation constraints (OPEC):

(4.1) μe(x) := min
y

{
F (x, y)

∣∣ y ∈ Se(x) := {y| 0 ∈ h(x, y) +NK(x)(y)}
}
,
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where F : Rn × R
m → R, h : Rn × R

m → R
p are continuously differentiable func-

tions, and K denotes a set-valued mapping (moving set) defined by (1.3) with g also
continuously differentiable and g(x, ·) convex for all x ∈ R

n. If we assume that the
lower-level regularity condition

(4.2)
[∇ygi(x̄, ȳ)

�β = 0, β ≥ 0, β�g(x̄, ȳ) = 0
]
=⇒ β = 0

holds at (x, y) ∈ gphK, then the normal cone to K(x) at y reduces to

(4.3) NK(x)(y) = {∇yg(x, y)
�u|u ≥ 0, u�g(x, y) = 0}.

Inserting this expression in (4.1) gives a particular case of (3.1). However, it appears
to be of independent interest to study sensitivity properties of μe (4.1) in its actual
form, since this way we obtain different estimates for the limiting subdifferential of
the two-level value function ϕo from (1.4), which is of our main focus in this paper.
This issue will be comprehensively discussed in the next section.

A detailed study of the robust Lipschitzian stability of Se based on coderivative
analysis has been carried out by Mordukhovich and Outrata [44]. Note that the
work in [44] heavily relies on an estimate of the coderivative of the normal cone
mapping (x, y) ⇒ NK(x)(y) given therein. Before introducing the rules to be used here
(which emerged from [44]), some notation is necessary to simplify the presentation.
Define L(x, y, u) := h(x, y)+∇yg(x, y)

�u and consider the set of lower-level Lagrange
multipliers Λ(x̄, ȳ) := {u| L(x̄, ȳ, u) = 0, u ≥ 0, u�g(x̄, ȳ) = 0}.

Similarly to the previous section, we partition the indices of the functions involved
in the complementarity system in (4.3) as follows:

(4.4)
η = η(x̄, ȳ, ū) := {i = 1, . . . , p | ūi = 0, gi(x̄, ȳ) < 0},
θ = θ(x̄, ȳ, ū) := {i = 1, . . . , p | ūi = 0, gi(x̄, ȳ) = 0},
ν = ν(x̄, ȳ, ū) := {i = 1, . . . , p | ūi > 0, gi(x̄, ȳ) = 0}.

Consider also the system of relationships that play an important role in what follows:

v +∇g(x̄, ȳ)�β +∇x,yL(x̄, ȳ, ū)�γ = 0,(4.5)

∇ygν(x̄, ȳ)γ = 0, βη = 0,(4.6)

∀i ∈ θ, (βi > 0 ∧ ∇ygi(x̄, ȳ)γ > 0) ∨ βi(∇ygi(x̄, ȳ)γ) = 0.(4.7)

The corresponding set of multipliers, which are of a special M-type, are defined by

Λem(x̄, ȳ, ū, v) := {(β, γ)| (4.5)–(4.7) hold}.
Similarly to section 3, we further define Λemy (x̄, ȳ, ū, v) as v ∈ R

m by replacing

(4.5) with v + ∇yg(x̄, ȳ)
�β + ∇yL(x̄, ȳ, ū)�γ = 0 and then setting Λemy (x̄, ȳ, ū) :=

Λemy (x̄, ȳ, ū,∇yF (x̄, ȳ)). The following EM -qualification conditions deduced from [44]
can be formulated as

(A4
1) [ū ∈ Λ(x̄, ȳ), ∇g(x̄, ȳ)�β = 0, βη = 0] =⇒ β = 0,

(A4
2) [ū ∈ Λ(x̄, ȳ), (β, γ) ∈ Λem(x̄, ȳ, ū, 0)] =⇒ β = 0, γ = 0,

(A4
3) [ū ∈ Λ(x̄, ȳ), (β, γ) ∈ Λemy (x̄, ȳ, ū, 0)] =⇒ ∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ = 0,
(A4

4) [ū ∈ Λ(x̄, ȳ), (β, γ) ∈ Λemy (x̄, ȳ, ū, 0)] =⇒ β = 0, γ = 0.

Note that in (A4
1) the index set η depends on ū by means of its definition in (4.4). It

is easy to observe the relationships (A4
3) ⇐= (A4

4) =⇒ (A4
2), (A

4
1).
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We are now ready to establish the main result of this section, where Seo denotes
the solution map to the parametric optimization problem related to (4.1) given by

Seo(x) := {y ∈ Se(x)|F (x, y) − μe(x) ≤ 0}.
Theorem 4.1 (M-type sensitivity analysis for OPEC value functions). The

following assertions hold for the value function μe from (4.1):
(i) Let the optimal solution map Seo be inner semicontinuous at the point (x̄, ȳ),

where the lower-level regularity (4.2) and the conditions (A4
1)–(A

4
2) are satisfied. Then

we have the subdifferential estimate

∂μe(x̄) ⊂
⋃

ū∈Λ(x̄,ȳ)

⋃
(β,γ)∈Λem

y (x̄,ȳ,ū)

{∇xF (x̄, ȳ) +∇xg(x̄, ȳ)
�β +∇xL(x̄, ȳ, ū)�γ

}
.

If in addition (A4
3) holds at (x̄, ȳ), then μe is Lipschitz continuous around x̄.

(ii) Let Seo be inner semicompact at x̄, and let (A4
1)–(A

4
2) and lower-level regularity

(4.2) be satisfied at (x̄, ȳ) for all ȳ ∈ Seo(x̄). Then we have the subdifferential estimate

∂μe(x̄) ⊂
⋃

ȳ∈So(x̄)

⋃
ū∈Λ(x̄,ȳ)

⋃
(β,γ)∈Λem

y (x̄,ȳ,ū)

{∇xF (x̄, ȳ) +∇xg(x̄, ȳ)
�β

+∇xL(x̄, ȳ, ū)�γ
}
.

If (A4
3) also holds at (x̄, ȳ) as ȳ ∈ Seo(x̄), then μ

e is Lipschitz continuous around x̄.
Proof. We justify only assertion (i); the one in (ii) can be proved similarly.

Since F is continuously differentiable and Seo is inner semicontinuous, it follows from
Theorem 2.1(i) that

(4.8) ∂μe(x̄) ⊂ ∇xF (x̄, ȳ) +D∗Se(x̄, ȳ)(∇yF (x̄, ȳ)).

Further applying [44, Theorem 4.3] to the solution map Se and taking into account
that the EM -qualification conditions (A4

1)–(A
4
2) together with the lower-level regu-

larity (4.2) are satisfied, we get the coderivative estimate

D∗Se(x̄, ȳ)(∇yF (x̄, ȳ)) ⊂
⋃

ū∈Λ(x̄,ȳ)

⋃
(β,γ)∈Λem

y (x̄,ȳ,ū)

{∇xg(x̄, ȳ)
�β +∇xL(x̄, ȳ, ū)�γ

}
.

Then the upper estimate of the basic subdifferential of μe in (i) follows by inserting
the latter inclusion in (4.8). The local Lipschitz continuity of μe around x̄ also follows
from Theorem 2.1(i) by recalling (see [44, Theorem 5.1]) that Se is Lipschitz-like
around (x̄, ȳ) if we add (A4

3) to the previous assumptions.
To the best of our knowledge, the first result in the direction of Theorem 4.1(ii)

goes back to Lucet and Ye [32], where a similar subdifferential estimate was obtained
under a growth hypothesis (similar to the uniform boundedness of Seo ; see (2.7)) for a
particular case of the problem under consideration. Note, however, that their result
deals only with the case where K is independent of x. Assertion (i) of Theorem 4.1
clearly provides a tighter subdifferential upper bound under the inner semicontinuity
assumption. We also mention the work by Mordukhovich, Nam, and Yen [43] in the
framework where the regular and limiting subdifferentials of μe are estimated in the
case of Se(x) := {y| 0 ∈ h(x, y) +Q(x, y)} in (4.1) with a general set-valued mapping
Q(x, y) not specified to our setting Q(x, y) := NK(x)(y).

Remark 4.2 (sensitivity analysis for OPEC value functions under the calmness
condition). Following Mordukhovich and Outrata [44], the qualification condition
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(A4
1) in Theorem 4.1 can be replaced by the weaker calmness property of the following

set-valued mapping at (0, x̄, ȳ, ū) for all ū ∈ Λ(x̄, ȳ):

M(v) := {(x, y, u)| [g(x, y), u] + v ∈ gphNR
p
−}.

Similarly, condition (A4
2) can be replaced by the calmness property of the mapping

P (z, v) := {(x, y, u) | L(x, y, u) + z = 0} ∩M(v)

at (0, 0, x̄, ȳ, ū) for all ū ∈ Λ(x̄, ȳ). Both calmness assumptions are automatic when
the mappings g and (x, y) �→ ∇yf(x, y) are linear. It is pointed out to us by René
Henrion that it follows from the combination of Proposition 4.1 in the paper by
Henrion, Outrata, and Surowiec [26] with a recent calmness result by Lu [31] that the
calmness property of M holds if the parametric inequality system g(x, y) ≤ p satisfies
the constant rank constraint qualification at the point of interest when p = 0.

5. Sensitivity analysis of two-level value functions. The main goal of this
section is to conduct a local sensitivity analysis of the two-level optimal value function

(5.1) ϕo(x) := min
y

{F (x, y)|y ∈ S(x)},

where the lower-level optimal solution map S is defined in (1.5). In the next subsection
we explore all three approaches (M, C, and S) to this issue discussed in sections 3
and 4. The lower-level value function representation of the mapping S from (1.5) is
considered in subsection 5.2.

5.1. OPCC and OPEC approaches. From now on in this subsection we as-
sume that the lower-level problem (1.2) with K(x) given by (1.3) is convex; i.e., the
functions f(x, .) and g(x, .) are convex for all x ∈ X . Most of the notation below is
either taken from section 4 or closely related to it. To be more precise, from now on
the lower-level Lagrangian-type function and multipliers set are defined by

(5.2)
L(x, y, u) := ∇yf(x, y) +∇yg(x, y)

�u and
Λ(x̄, ȳ) := {u| L(x̄, ȳ, u) = 0, u ≥ 0, g(x̄, ȳ) ≤ 0, u�g(x̄, ȳ) = 0},

respectively, while the index sets η, θ, and ν are given in (4.4). The next lemma
involving L is useful in what follows.

Lemma 5.1 (representation of the two-level value function). Let x ∈ X and
assume that f(x, .) and g(x, .) are convex. Furthermore, we suppose that the lower-
level regularity (4.2) is satisfied at (x, y) for all y ∈ S(x). Then we have

(5.3) ϕo(x) = min
y,u

{F (x, y)| L(x, y, u) = 0, u ≥ 0, g(x, y) ≤ 0, u�g(x, y) = 0}.

Proof. Fix x̄ ∈ X and let the point ȳ be a global optimal solution to the problem
miny{F (x̄, y)| y ∈ S(x̄)}. Then we have the relationships

ϕo(x̄) = F (x̄, ȳ),

≤ F (x̄, y) ∀y ∈ S(x̄),

≤ F (x̄, y) ∀y with 0 ∈ ∇yf(x̄, y) +NK(x̄)(y)

(by convexity of f(x̄, .) and g(x̄, .)),

≤ F (x̄, y) ∀(y, u) with L(x̄, y, u) = 0, u ≥ 0, g(x̄, y) ≤ 0, u�g(x̄, y) = 0,
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where the last inequality is due to the normal cone representation (4.3) by taking into
account that the lower-level regularity (4.2) holds at all (x̄, y) with y ∈ S(x̄).

Having this transformation of the two-level value function ϕo, at least two ob-
servations can be made. First, we note that for each x ∈ X the value of ϕo(x) is
obtained from a global solution to the parametric problem

(5.4) min
y,u

{F (x, y)| L(x, y, u) = 0, u ≥ 0, g(x, y) ≤ 0, u�g(x, y) = 0}.

Thus the major difficulty arising when establishing the link between local solutions
of the auxiliary problem (P) and its KKT reformulation (see [10] for details) does not
appear here. Second, the presence of the complementarity constraints u ≥ 0, g(x, y) ≤
0, u�g(x, y) = 0 in (5.4) leads to the violation of the MFCQ, while the results of
section 3 can be applied. To proceed, consider the optimal solution map of problem
(5.4) given by

(5.5) Sho (x) := {(y, u)| u ∈ Λ(x, y), F (x, y) ≤ ϕo(x)}.
Now we establish M-type sensitivity results for the two-level value function ϕo, which
are crucial in the paper. In the vein of the rules in (3.5), the following modified
M-qualification conditions are used in the next theorem:

(5.6)
(Am1 ) (β, γ) ∈ Λem(x̄, ȳ, ū, 0) =⇒ β = 0, γ = 0,
(Am2 ) (β, γ) ∈ Λemy (x̄, ȳ, ū, 0) =⇒ ∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ = 0,
(Am3 ) (β, γ) ∈ Λemy (x̄, ȳ, ū, 0) =⇒ β = 0, γ = 0,

where the multiplier sets Λem(x̄, ȳ, ū, 0), Λemy (x̄, ȳ, ū, 0), and Λemy (x̄, ȳ, ū) are exactly
the ones defined in section 4 while setting h(x, y) := ∇yf(x, y).

Theorem 5.2 (M-type sensitivity analysis for the two-level value function). Let
the lower-level problem (1.2) be convex, and assume that the lower-level regularity
(4.2) holds at all (x̄, y) with y ∈ S(x̄). Then the following assertions are satisfied:

(i) If the optimal solution map Sho in (5.5) is inner semicontinuous at (x̄, ȳ, ū)
and if (Am1 ) holds at this point, then the limiting subdifferential of ϕo is estimated by

∂ϕo(x̄) ⊂
⋃

(β,γ)∈Λem
y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ
}
.

Furthermore, ϕo is Lipschitz continuous around x̄ if (Am2 ) is also satisfied at (x̄, ȳ, ū).
(ii) Let the set-valued mapping Sho in (5.5) be inner semicompact at x̄, and let

condition (Am1 ) hold at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sho (x̄). Then

∂ϕo(x̄) ⊂
⋃

(ȳ,ū)∈Sh
o (x̄)

⋃
(β,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ
}
.

If in addition condition (Am2 ) is satisfied at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sho (x̄), then ϕo is
Lipschitz continuous around x̄.

Proof. We give the proof only for (i) since (ii) can be obtained similarly. By
setting y := (y, u) in the framework of Theorem 3.2, we just need to specify the
multiplier sets therein to our setting. It follows from Lemma 5.1 that

ϕo(x) = min
y,u

{F (x, y)| h(x, y, u) = 0,(5.7)

G(x, y, u) ≥ 0, H(x, y, u) ≥ 0, G(x, y, u)�H(x, y, u) = 0},
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where h(x, y, u) := L(x, y, u), G(x, y, u) := u, and H(x, y, u) := −g(x, y). Thus we
have from section 3, while using the notational conventions of section 4 in the frame-
work of (5.7), that

Λcm(x̄, ȳ, ū, v1, v2, v3) = {(β, γ, ζ)| ζν = 0, βη = 0,(5.8)

(ζi < 0, βi < 0) ∨ (βiζi = 0) ∀i ∈ θ,

v1 +∇xL(x̄, ȳ, ū)�γ −∇xg(x̄, ȳ)
�β = 0,

v2 +∇yL(x̄, ȳ, ū)�γ −∇yg(x̄, ȳ)
�β = 0,

v3 +∇yg(x̄, ȳ)γ + ζ = 0}.

Now note that from (5.8), we get equality ζ = −∇yg(x̄, ȳ)γ by setting v3 := 0 in
v3 +∇yg(x̄, ȳ)γ + ζ = 0. Thus

Λcm(x̄, ȳ, ū, 0) =

{
(β, γ,−∇yg(x̄, ȳ)γ)| ∇ygν(x̄, ȳ)γ = 0, βη = 0,

(∇ygi(x̄, ȳ)γ > 0, βi < 0) ∨ βi(∇ygi(x̄, ȳ)γ) = 0 ∀i ∈ θ,
m∑
l=1

γl∇x,yLl(x̄, ȳ, ū)−
p∑
i=1

βi∇gi(x̄, ȳ) = 0

}
= {(β, γ,−∇yg(x̄, ȳ)γ)| (−β, γ) ∈ Λem(x̄, ȳ, ū, 0)}.

It is easy to observe from the latter equality that condition (Am1 ) is sufficient for the
following implication to hold:

(5.9) (β, γ, ζ) ∈ Λcm(x̄, ȳ, ū, 0) =⇒ β = 0, γ = 0, ζ = 0.

Employing (5.9), we have from Theorem 3.2(i) that the limiting subdifferential of the
two-level value function ϕo (5.1) can be estimated by

(5.10) ∂ϕo(x̄) ⊂
⋃

(β,γ,ζ)∈Λcm
y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ)−

p∑
i=1

∇xg(x̄, ȳ)
�β +∇xL(x̄, ȳ, ū)�γ

}
,

where, similarly to the above, the multiplier set Λcmy (x̄, ȳ, ū) can be written as

Λcmy (x̄, ȳ, ū) := Λcmy (x̄, ȳ, ū,∇yF (x̄, ȳ), 0)
= {(β, γ,−∇yg(x̄, ȳ)γ)| (−β, γ) ∈ Λemy (x̄, ȳ, ū)}.

Thus (β, γ, ζ) ∈ Λcmy (x̄, ȳ, ū) if and only if we have the relationships ζ = −∇yg(x̄, ȳ)γ
and (−β, γ) ∈ Λemy (x̄, ȳ, ū). This implies the inclusion in (i) of the theorem by noting

that the term ∇xF (x̄, ȳ) − ∇xg(x̄, ȳ)
�β + ∇xL(x̄, ȳ, ū)�γ does not depend on the

multiplier ζ. Proceeding further as above, we get that (Am2 ) yields

(β, γ, ζ) ∈ Λcm(x̄, ȳ, ū, 0) =⇒ −
p∑
i=1

βi∇xgi(x̄, ȳ) +

m∑
l=1

γl∇xLl(x̄, ȳ, ū) = 0,

which implies in turn that the two-level value function ϕo is Lipschitz continuous
around x̄ by applying Theorem 3.2(i) via the reformulation of ϕo in (5.7). In the same
way condition (Am3 ) ensures the validity of the counterpart of (A1

3) in (3.5).
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We can similarly consider the C-type multiplier sets Λec(x̄, ȳ, ū, 0), Λecy (x̄, ȳ, ū, 0),
and Λecy (x̄, ȳ, ū) by replacing condition (4.7) in Λem(x̄, ȳ, ū, 0), Λem(x̄, ȳ, ū, 0), and
Λemy (x̄, ȳ, ū) with

∀i ∈ θ, βi

m∑
l=1

γl∇ylgi(x̄, ȳ) ≥ 0.(5.11)

Then the upper bounds of the limiting subdifferential via C-type multipliers and the
local Lipschitz continuity of the two-level value function ϕo under the C-type qual-
ifications can be derived as in Theorem 5.2 with Λem(x̄, ȳ, ū, 0), Λemy (x̄, ȳ, ū, 0), and
Λemy (x̄, ȳ, ū) replaced by Λec(x̄, ȳ, ū, 0), Λecy (x̄, ȳ, ū, 0), and Λecy (x̄, ȳ, ū), respectively.
In this way we use, similarly to (5.6), the modified C-qualification conditions

(5.12)
(Ac1) (β, γ) ∈ Λec(x̄, ȳ, ū, 0) =⇒ β = 0, γ = 0,
(Ac2) (β, γ) ∈ Λecy (x̄, ȳ, ū, 0) =⇒ ∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)� = 0,
(Ac3) (β, γ) ∈ Λecy (x̄, ȳ, ū, 0) =⇒ β = 0, γ = 0.

Theorem 5.3 (C-type sensitivity analysis of the two-level value function). Let
the lower-level problem (1.2) be convex, and let the lower-level regularity (4.2) hold at
(x̄, y) for all y ∈ S(x̄). Then the following assertions are satisfied:

(i) Assume that the optimal solution map Sho in (5.5) is inner semicontinuous at
(x̄, ȳ, ū), where condition (Ac1) holds. Then we have

∂ϕo(x̄) ⊂
⋃

(β,γ)∈Λec
y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ
}
.

Furthermore, ϕo is Lipschitz continuous around x̄ if (Ac2) is also satisfied at (x̄, ȳ, ū).
(ii) Let Sho be inner semicompact at x̄, and let condition (Ac1) hold at (x̄, ȳ, ū) for

all (ȳ, ū) ∈ Sho (x̄). Then we have

∂ϕo(x̄) ⊂
⋃

(ȳ,ū)∈Sh
o (x̄)

⋃
(β,γ)∈Λec

y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ
}
.

If condition (Ac2) is also satisfied at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sho (x̄), then ϕo is Lipschitz
continuous around x̄.

Proof. The proof follows along the lines of the proof of Theorem 5.2 while applying
Theorem 3.6 to the representation of the two-level value function in Lemma 5.1.

To consider S-type upper bounds for the limiting subdifferential of ϕo, define the
set Λesy (x̄, ȳ, ū) similarly to Λemy (x̄, ȳ, ū) by replacing (4.7) by

∀i ∈ θ, βi ≥ 0 ∧
m∑
l=1

γl∇ylgi(x̄, ȳ) ≥ 0(5.13)

and arriving at the next sensitivity result under the modified S-qualification conditions

(As1)
∇g(x̄, ȳ)�β +∇x,yL(x̄, ȳ, ū)�γ = 0

∇ygν(x̄, ȳ)γ = 0, βη = 0

}
=⇒

{
βθ = 0,
∇ygθ(x̄, ȳ)γ = 0,

(As2)
∇yg(x̄, ȳ)

�β +∇yL(x̄, ȳ, ū)�γ = 0
∇ygν(x̄, ȳ)γ = 0, βη = 0

}
=⇒ β = 0, γ = 0.

D
ow

nl
oa

de
d 

11
/1

0/
14

 to
 1

52
.7

8.
13

0.
22

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TWO-LEVEL VALUE FUNCTIONS AND BILEVEL PROGRAMMING 1329

Theorem 5.4 (S-type sensitivity analysis for the two-level value function). Let
the lower-level problem (1.2) be convex, and let the lower-level regularity (4.2) be
satisfied at (x̄, y) for all y ∈ S(x̄). The following assertions hold:

(i) Assume that the optimal solution map Sho (5.5) is inner semicontinuous at
(x̄, ȳ, ū), where conditions (Am1 ) and (As1) are satisfied. Then we have

∂ϕo(x̄) ⊂
⋃

(β,γ)∈Λes
y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ
}
.

Furthermore, if conditions (Am1 ) and (As1) are replaced with (As2), then ϕo is strictly
differentiable at x̄, and its gradient is calculated by

∇ϕo(x̄) = ∇xF (x̄, ȳ) +∇xg(x̄, ȳ)
�β +∇xL(x̄, ȳ, ū)�γ,

where {(β, γ)} = Λesy (x̄, ȳ, ū) is the unique multiplier.

(ii) Let Sho (5.5) be inner semicompact at x̄, and let conditions (Am1 ) and (As1)
hold at (x̄, ȳ, ū) for all (ȳ, ū) ∈ Sho (x̄). Then we have

∂ϕo(x̄) ⊂
⋃

(ȳ,ū)∈Sh
o (x̄)

⋃
(β,γ)∈Λes

y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ
}
.

Proof. Considering the representation of the two-level value function ϕo in (5.3)
(cf. also (5.7)), it is obvious that (As1) corresponds to the qualification condition (A3

1)
in (3.18). Thus the inclusion in (i) of this theorem follows from that of Theorem 3.7(i)
by taking into account the estimate of ∂ϕo in Theorem 5.2(i). Furthermore, the strict
differentiability of ϕo and the expression of its gradient follow from Corollary 3.8 by
noting that assumption (As2) is the counterpart of (A3

2) from (3.19) for the OPCC
reformulation of ϕo in (5.3). The estimate of the limiting subdifferential of ϕo in
Theorem 5.4(ii) is derived similarly by using Theorem 3.7(ii).

Denoting by BA(x̄, ȳ, ū) for A := M,C, S, the upper bound of ∂ϕo(x̄) in Theo-
rems 5.2(i), 5.3(i), and 5.4(i), respectively, we observe that

BS(x̄, ȳ, ū) ⊂ BM (x̄, ȳ, ū) ⊂ BC(x̄, ȳ, ū).

Indeed, it follows from Λesy (x̄, ȳ, ū) ⊂ Λemy (x̄, ȳ, ū) ⊂ Λecy (x̄, ȳ, ū). A similar observa-
tion can be made for the upper bounds obtained under inner semicompactness.

Now in the M -case we provide different types of upper bounds of the two-level
value function via the OPEC approach from section 4. Although the M-type sensitiv-
ity analysis of ϕo would be self-evident by means of Theorem 4.1 while considering the
OPEC representation of ϕo, we nevertheless state it here in order to have a clear pic-
ture of the differences with the sensitivity result of Theorem 5.2. To proceed, denote
h(x, y) := ∇yf(x, y) in the setting of section 4 and also (Ae1) := (A4

1), (A
e
2) := (A4

2),
(Ae3) := (A4

3), and (Ae4) := (A4
4). Define further the two-level solution map by

(5.14) So(x) := {y| 0 ∈ ∇yf(x, y) +NK(x)(y), F (x, y) ≤ ϕo(x)}.
Then we get the following sensitivity results via the OPEC approach.

Corollary 5.5 (M-type sensitivity analysis via the OPEC reformulation). Pro-
viding that the lower-level problem (1.2) is convex, we have the following:

(i) Assume that the optimal solution map So in (5.14) is inner semicontinuous at
(x̄, ȳ), where the lower-level regularity (4.2) and conditions (Ae1) and (Ae2) hold. Then

∂ϕo(x̄) ⊂
⋃

ū∈Λ(x̄,ȳ)

⋃
(β,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β +∇xL(x̄, ȳ, ū)�γ
}
.
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If in addition (Ae3) is satisfied at (x̄, ȳ), then ϕo is Lipschitz continuous around x̄.
(ii) Let So be inner semicompact at x̄, and let (Ae1), (Ae2) and the lower-level

regularity (4.2) be satisfied at (x̄, ȳ) for all ȳ ∈ So(x̄). Then we have

∂ϕo(x̄) ⊂
⋃

ȳ∈So(x̄)

⋃
ū∈Λ(x̄,ȳ)

⋃
(β,γ)∈Λem

y (x̄,ȳ,ū)

{
∇xF (x̄, ȳ) +∇xg(x̄, ȳ)

�β

+∇xL(x̄, ȳ, ū)�γ
}
.

If (Ae3) also holds at (x̄, ȳ) for ȳ ∈ So(x̄), then ϕo is locally Lipschitzian around x̄.
Proof. The convexity of the lower-level problem (1.2) ensures the following OPEC

representation of the two-level value function ϕo:

(5.15) ϕo(x) = min
y

{F (x, y)| 0 ∈ ∇yf(x, y) +NK(x)(y)},

derived from the generalized equation reformulation of the solution map (1.5):

S(x) = {y| 0 ∈ ∇yf(x, y) +NK(x)(y)}.
Then assertions (i) and (ii) from Theorem 4.1 applied to (5.15) give the result.

Remark 5.6 (on the differences between the M-type sensitivity analysis of the
two-level value function via the OPCC and OPEC reformulations). The difference
between the upper estimate of ∂ϕo in Theorem 5.2(i) and that in Corollary 5.5(i)
is clear: the latter contains the union over Λ(x̄, ȳ), which makes it larger than that
obtained in the former result. The estimates in Theorem 5.2(ii) and Corollary 5.5(ii)
seem to be closer in the sense that ȳ ∈ So(x̄) if and only if there exists ū such
that (ȳ, ū) ∈ Sho (x̄) := {(y, u)| u ∈ Λ(x̄, y), F (x̄, y) ≤ ϕo(x̄)}. On the qualification
conditions we observe that, although similar, they are not identical. However, the
strongest ones, (Am3 ) and (Ae4), are the same, but as already noted the results are
not the same for the subdifferential estimates of the two-level value function ϕo. This
observation is similar to that made in [14] on relationships between the stationarity
conditions obtained via the KKT and primal KKT/OPEC approaches. The principal
difference between the results of this type is that the appearance of the lower-level
multipliers ū in Corollary 5.5 is a posteriori while it is a priori in Theorem 5.2.

To conclude this subsection, some comments on the qualifications conditions used
here are in order. Following Remark 3.3, we conclude that condition (Am1 ) can be
replaced by the weaker calmness property of the set-valued mapping

(5.16) Ψ(z, ϑ) := {(x, y, u)|L(x, y, u)+z = 0, (−gi(x, y), ui)+ϑi ∈ Λi, i := 1, . . . , p},
where Λi := {(a, b) ∈ R

2| a ≥ 0, b ≥ 0, ab = 0}. The latter assumption is auto-
matic when the mappings g and (x, y) �→ ∇yf(x, y) are linear. Condition (Am3 ) can
replace the two other assumptions (Am1 ) and (Am2 ). Note, however, that in the case
of the LLVF reformulation considered in the next subsection, the latter sequence of
implication between the constraint qualifications will not be available. Also observe
that comments similar to the above can be stated for the C-qualification conditions
in (5.12).

5.2. LLVF approach. In this subsection we develop the lower-level value func-
tion (LLVF) approach to sensitivity analysis of the two-level value function ϕo from
(5.1). Let us start by recalling that the argminimum/solution map of the lower-level
problem (1.2) can be written as

(5.17) S(x) := {y| f(x, y)− ϕ(x) ≤ 0, g(x, y) ≤ 0},
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with ϕ denoting the value function associated to the lower-level problem (1.2), i.e.,

(5.18) ϕ(x) := min
y

{f(x, y) | g(x, y) ≤ 0}.

Hence we have the LLVF reformulation of the two-level value function ϕo written as

(5.19) ϕo(x) := min
y

{F (x, y)| g(x, y) ≤ 0, f(x, y)− ϕ(x) ≤ 0}.

Since our basic subdifferential ∂ϕ does not satisfy the plus/minus symmetry, an ap-
propriate estimate of ∂(−ϕ) is needed to proceed with this approach. It can be done
by invoking the well-known convex hull property

(5.20) co ∂(−ϕ)(x̄) = −co ∂ϕ(x̄)

for local Lipschitzian functions, which follows from [5] due to ∂̄ϕ(x̄) = co ∂ϕ(x̄). The
next theorem collects the results in this direction needed in what follows.

Theorem 5.7 (sensitivity analysis of the negative value function in the lower-
level problem). The following assertions hold for the value function ϕ in (5.18):

(i) If the solution map S in (1.5) is inner semicompact at x̄, and (x̄, y) is lower-
level regular (4.2) for all y ∈ S(x̄), then ϕ is Lipschitz continuous around x̄ with

∂(−ϕ)(x̄) ⊂
{
−
n+1∑
s=1

υs

(
∇xf(x̄, ys) +∇xg(x̄, ys)

�μs
)∣∣∣ n+1∑

s=1
υs = 1,

∀s = 1, . . . , n+ 1, υs ≥ 0, ys ∈ S(x̄), μs ∈ Λ(x̄, ys)

}
.

(ii) Assume that (x̄, ȳ) is lower-level regular (4.2), and that either S (1.5) is inner
semicontinuous at (x̄, ȳ) or f and gi, i = 1, . . . , p, are fully convex. Then ϕ is Lipschitz
continuous around x̄ and the basic subdifferential of −ϕ is estimated as

(5.21) ∂(−ϕ)(x̄) ⊂
⋃

μ∈Λ(x̄,ȳ)

{
−∇xf(x̄, ȳ)−

p∑
i=1

μi∇xgi(x̄, ȳ)

}
.

Proof. The local Lipschitz continuity of ϕ is justified in [40] under the fulfillment
of the lower-level regularity (4.2) in both inner semicontinuous and inner semicom-
pactness cases. If the functions f and gi as i = 1, . . . , p are fully convex, then the
value function ϕ is convex as well; in this case the Lipschitz continuity follows from
[5]. To prove the subdifferential inclusion in (i), recall by [43] that

∂ϕ(x̄) ⊂
⋃

y∈S(x̄)

⋃
μ∈Λ(x̄,y)

{
∇xf(x̄, y) +

p∑
i=1

μi∇xgi(x̄, ȳ)

}

under the assumptions made in (i). The claimed estimate of ∂(−ϕ) follows from here
by the classical Carathéodory theorem while noting that

(5.22) ∂(−ϕ)(x̄) ⊂ co ∂(−ϕ)(x̄) = −co ∂ϕ(x̄),

where the second equality follows from the convex hull property (5.20).
When S is inner semicontinuous at (x̄, ȳ), we have from [41] that

(5.23) ∂̄ϕ(x̄) ⊂
⋃

μ∈Λ(x̄,ȳ)

{
∇xf(x̄, ȳ) +

p∑
i=1

μi∇xgi(x̄, ȳ)

}
,
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which implies (5.21) similarly to the previous case. Estimate (5.21) in the convex case
follows from (5.23) and the fact that ∂̄ϕ(x̄) = ∂ϕ(x̄) in this case.

Note that in the fully convex (even nonsmooth) case the lower-level regularity
assumption in Theorem 5.7 can be replaced by a much weaker qualification condition
[16] requiring that the set

(5.24) epi f∗ + cone

(
p⋃
i=1

epi g∗i

)
is closed on R

n × R
m × R,

where epiϑ∗ denotes the conjugate function for an extended-real-valued convex func-
tion ϑ. Note also that inclusion (5.7) can similarly be deduced from the well-known
(see, e.g., [19, 23]) upper estimate of the generalized gradient of value functions.

Next we observe that calculating the coderivative of the optimal solution map S
from (5.17) is highly significant in our approach. In the current situation this reduces
to computing the limiting normal cone to the graph of S:

(5.25) gphS = {(x, y) ∈ Ω| f(x, y)− ϕ(x) ≤ 0} with Ω := {(x, y) | g(x, y) ≤ 0}
in terms of the initial data. To proceed in this way using the conventional results
of the generalized differential calculus [38, 39] requires the fulfillment of the basic
qualification condition, which reads in this case as

(5.26) ∂(f − ϕ)(x̄, ȳ) ∩ (−NΩ(x̄, ȳ)) = ∅.
However, it is shown in [13] that condition (5.26) fails in common situations, in par-
ticular, when ϕ is locally Lipschitzian around the point in question. The following
weaker assumption helps circumvent this difficulty:

(Av1) the mapping Ξ(v) := {(x, y) ∈ Ω| f(x, y)−ϕ(x) ≤ v} is calm at (0, x̄, ȳ).

Applying the concept of stability regions known in linear programming (see, e.g., [8])
to the optimal value function ϕ makes it possible to show, by means of Robinson’s
theorem [49] on the upper-Lipschitz continuity of a polyhedral set-valued mapping,
that (Av1) is automatic if f and g are linear. Furthermore, condition (Av1) is satisfied
at (x̄, ȳ) for locally Lipschitzian functions ϕ if we pass to the boundary of the normal
cone in (5.26), i.e., if the following qualification condition holds:

(5.27) ∂(f − ϕ)(x̄, ȳ) ∩ (−bdNΩ(x̄, ȳ)) = ∅
with Ω being semismooth (in particular, convex); cf. [13, 25]. Condition (5.27) seems
to be especially effective for the so-called simple convex bilevel optimization problems
[9, 13]. It is worth mentioning that for the latter class, condition (5.27) can be further
weakened [13] by passing to the boundary of the subdifferential of f .

Another sufficient condition for the validity of (Av1) is provided by the notion of
uniform weak sharp minima. Recall that problem (1.2) is said to have a uniform weak
sharp minimum around (x̄, ȳ) if there exist positive numbers λ and δ such that

(5.28) f(x, y)− ϕ(x) ≥ λd(y, S(x)) for all (x, y) ∈ B((x̄, ȳ), δ) ∩Ω.

The concept of uniform weak sharp minimum, which emerged from the notions of
sharp minimum introduced by Polyak [48] and weak sharp minimum introduced by
Ferris [18], was developed by Ye and Zhu [61], while the above localized version (5.28)
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has been recently considered by Henrion and Surowiec [27] and by Mordukhovich,
Nam, and Phan [41]. It follows from [27, Proposition 3.8] that (Av1) holds at (x̄, ȳ) if
problem (1.2) has a uniform weak sharp minimum around (x̄, ȳ). Furthermore, it is
shown in [41] that if f and g are linear in y and (x, y), respectively, then the lower-
level problem has a local uniform weak sharp minimum. A number of other efficient
conditions ensuring a uniform weak sharp minimum in bilevel programming can be
found in [11, 13, 16, 41, 56, 61]. Finally note that notion (5.28) is closely related to
the partial calmness property introduced in [61]; condition (Av1) is in fact sufficient
for the partial calmness of the bilevel program in question if we drop the upper-level
constraint or include it in the constraint set Ω.

Considering further the Lipschitz-like property of the solution map S in (5.17),
we impose the following additional qualification condition:

(Av2)
[
(λ, β) ∈ Λoy(x̄, ȳ, 0), u ∈ ∂(−ϕ)(x̄)] =⇒ λu = −λ∇xf(x̄, ȳ)−∇xg(x̄, ȳ)

�β,

where Λoy(x̄, ȳ, v) for v ∈ R
m denotes a particular set of multipliers that plays a

significant role in the rest of the section:

(5.29)
Λoy(x̄, ȳ, v) :=

{
(λ, β)| v + λ∇yf(x̄, ȳ) +

p∑
i=1

βi∇ygi(x̄, ȳ) = 0,

λ ≥ 0, βi ≥ 0, βigi(x̄, ȳ) = 0, i = 1, . . . , p
}
.

The next proposition describes an important setting where assumption (Av2) holds.
Proposition 5.8 (validity of assumption (Av2)). Let f : Rn × R

m → R and
gi : R

m → R, i = 1, . . . , p, be convex and smooth. Consider the value function
ϕ(x) := miny{f(x, y)| gi(y) ≤ 0, i = 1, . . . , p} and the corresponding solution map
S(x) = miny{f(x, y)| gi(y) ≤ 0, i = 1, . . . , p}. Take (x̄, ȳ) ∈ gphS with ϕ(x̄) < ∞
and assume that there exists ŷ with gi(ŷ) < 0 for i = 1, . . . , p. Then (Av2) holds at
(x̄, ȳ).

Proof. Under the setting of this proposition, it follows from the convex case of
Theorem 5.7(ii) that the function −ϕ is strictly differentiable at x̄ and ∂(−ϕ)(x̄) =
{−∇xf(x̄, ȳ)}, which therefore justifies our conclusion.

In the next theorem we use the above qualification conditions to derive a coderiva-
tive estimate and Lipschitz-like property for lower-level solution maps via the LLVF
reformulation in (5.17).

Theorem 5.9 (coderivative estimate and Lipschitz-like property of lower-level
solution maps). Let mapping S (5.17) be inner semicontinuous at (x̄, ȳ) ∈ gphS, and
let the condition (Av1) and the lower-level regularity (4.2) be satisfied at this point.
Then for all v ∈ R

m we have the coderivative estimate

D∗S(x̄, ȳ)(v) ⊂
⋃

(λ,β)∈Λo
y(x̄,ȳ,v)

{
λ(∇xf(x̄, ȳ) + ∂(−ϕ)(x̄)) +∇xg(x̄, ȳ)

�β
}
.

If in addition (Av2) holds at (x̄, ȳ), then S is Lipschitz-like around this point.
Proof. It follows from Theorem 5.7(ii) that the lower-level value function ϕ is

Lipschitz continuous around x̄ under the lower-level regularity and the inner semicon-
tinuity assumption. If we add the calmness property (Av1), then

NgphS(x̄, ȳ) ⊂
⋃
λ≥0

{
λ(∇f(x̄, ȳ) + ∂(−ϕ)(x̄)× {0}) +NΩ(x̄, ȳ)

}
by [24, Theorem 4.1] while taking into account that the constraint f(x, y)−ϕ(x) ≤ 0 is
active at (x̄, ȳ). The coderivative estimate in the theorem follows now from definition
(2.6) and the well-known expression of the normal cone
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NΩ(x̄, ȳ) =
{∇g(x̄, ȳ)�β| β ≥ 0, β�g(x̄, ȳ) = 0

}
,

which holds under the the lower-level regularity at (x̄, ȳ). Further, by the inclusion
in the theorem, and the coderivative criterion (2.9) for the Lipschitz-like property, we
get that it holds if

u ∈ λ(∇xf(x̄, ȳ) + ∂(−ϕ)(x̄)) +∇xg(x̄, ȳ)
�β

(λ, β) ∈ Λoy(x̄, ȳ, 0)

}
=⇒ u = 0,

which is in fact equivalent to the assumed qualification condition (Av2).
Remark 5.10 (sensitivity result of the solution map S under full convexity and

inner semicompactness). It follows from the alternative statement in Theorem 5.7(ii)
that the inner semicontinuity of S can be dropped in the assumptions of Theorem 5.9
if the functions f and g are fully convex. As usual, the inner semicontinuity can be
replaced by inner semicompactness with a larger inclusion in Theorem 5.9.

To conduct a local sensitivity analysis of the two-level value function ϕo defined
in (5.19), we associate with it the optimal solution map So, which reads as follows:

(5.30) So(x) = {y ∈ K(x)| f(x, y) ≤ ϕ(x), F (x, y) ≤ ϕo(x)}.

Having in mind the definition of the multiplier set Λoy(x̄, ȳ, v) in (5.29), we put
Λoy(x̄, ȳ) := Λoy(x̄, ȳ,∇yF (x̄, ȳ)). Then sensitivity results for ϕo are given next.

Theorem 5.11 (LLVF approach to sensitivity analysis for the two-level value
function). Considering the LLVF reformulation (5.19) of the two-level value function,
the following assertions hold:

(i) Assume that So in (5.30) is inner semicontinuous at (x̄, ȳ) and that condition
(Av1) and the lower-level regularity (4.2) are satisfied at this point. Then we have

∂ϕo(x̄) ⊂
⋃

(λ,β)∈Λo
y(x̄,ȳ)

⋃
μ∈Λ(x̄,ȳ)

{
∇xF (x̄, ȳ) +

p∑
i=1

(βi − λμi)∇xgi(x̄, ȳ)
}
.

If in addition (Av2) holds at (x̄, ȳ), then ϕo is Lipschitz continuous around x̄.
(ii) Assume that So is inner semicompact at x̄, that the lower-level regularity (4.2)

holds at (x̄, y) for all y ∈ S(x̄), and that (Av1) holds at (x̄, y) for all y ∈ So(x̄). Then

∂ϕo(x̄) ⊂
⋃

y∈So(x̄)

⋃
(λ,β)∈Λo

y(x̄,y)

{
∇xF (x̄, y) + λ∇xf(x̄, y)

+λ∂(−ϕ)(x̄) +∇xg(x̄, y)
�β
}
,

where the subdifferential ∂(−ϕ)(x̄) is estimated in Theorem 5.7(i). If in addition (Av2)
holds at (x̄, y) for all y ∈ So(x̄), then ϕo is Lipschitz continuous around x̄.

Proof. To justify (i), observe by Theorem 2.1(i) that

∂ϕo(x̄) ⊂ ∇xF (x̄, ȳ) +D∗S(x̄, ȳ)(∇yF (x̄, ȳ))

under the inner semicontinuity assumption on So. Since we have So(x) ⊂ S(x) for all
x ∈ X , the lower-level optimal solution map S in (5.17) is also inner semicontinuous at
(x̄, ȳ) ∈ gphSo. Thus the upper estimate of ∂ϕo(x̄) in this theorem follows from those
for the coderivative of S in Theorem 5.9 and for the subdifferential of the lower-level
value function ϕ in Theorem 5.7(ii). To justify the local Lipschitz continuity of ϕo in
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(i) under (Av2), recall that the latter condition implies the Lipschitz-like property of S
around (x̄, ȳ) by Theorem 5.9. Thus we have the claimed result from Theorem 2.1(i).
Assertion (ii) is proved similarly following the discussion in Remark 5.10.

Observe that the upper bound of the subdifferential estimate in Theorem 5.11(i)
does not depend on the partial derivative of the lower-level cost function f with respect
to the upper-level variable x. In the next section this will induce in the context of nec-
essary optimality conditions for the original optimistic formulation (Po) a remarkable
phenomenon first discovered in [11] in the framework of the auxiliary problem (P).
Note that such a phenomenon is no longer true if the inner semicontinuity assumption
on So is replaced by the inner semicompactness one in assertion (ii) of Theorem 5.11.
Let us also mention that the inner semicompactness of So in Theorem 5.11(ii) can be
replaced by the easier yet some what more restrictive uniform boundedness assumption
imposed on So or even on the lower-level solution map S.

Remark 5.12 (convexity in the two-level value function). In the case of the stan-
dard value function ϕ in (5.18), its convexity plays an important role in the sensitivity
result of Theorem 5.7. Note, however, that such an idea is not applicable to the two-
level value function ϕo in (5.1) for the simple reason that the graph of the lower-level
solution map S (5.17) is usually nonconvex. Therefore, it does not make sense to
consider the convexity of ϕo as an alternative to the inner semicontinuity in Theo-
rem 5.11(i). This is in accordance with the well-known fact that inner semicontinuity
and convexity are not related; cf., e.g., [11]. Nonetheless, if instead the lower-level
value function ϕ (5.18) is convex (which is quite possible), the upper estimate of
∂(−ϕ)(x̄) in Theorem 5.7(ii) can well be inserted in the upper bound of ∂ϕo(x̄) in
Theorem 5.11(ii) in order to have a simpler expression.

Denote by BV (x̄, ȳ) the upper bound of the basic subdifferential of ϕo in The-
orem 5.11(i). Recall (cf. the discussion following Theorem 5.4) that BS(x̄, ȳ, ū) ⊂
BM (x̄, ȳ, ū) ⊂ BC(x̄, ȳ, ū) in the framework of upper bounds for ∂ϕo obtained via
the OPCC approach. Now note that there is a significant difference between the lat-
ter classes of bounds and those obtained via the LLVF approach (cf. Theorem 5.11),
namely, due to the presence of the second order term ∇x,yL(x̄, ȳ, ū)�γ in the OPCC
case. It is shown in the next result that if this term is zero, then we have the inclusion
BS(x̄, ȳ, ū) ⊂ BV (x̄, ȳ) if Λ

o
y(x̄, ȳ) from (5.29) is defined with λ free, i.e., λ ∈ R.

Proposition 5.13 (comparing subdifferential estimates of the two-level value
function). Let b(x̄, ȳ, ū, β, γ) ∈ BS(x̄, ȳ, ū) for some (β, γ) with ∇x,yL(x̄, ȳ, ū)�γ = 0.
Then we have b(x̄, ȳ, ū, β, γ) ∈ BV (x̄, ȳ), provided that λ is free in Λoy(x̄, ȳ).

Proof. If b(x̄, ȳ, ū, β, γ) ∈ BS(x̄, ȳ, ū) for some (β, γ), then conditions (4.6) and
(5.13) together with the following ones are satisfied:

−b(x̄, ȳ, ū, β, γ) +∇xF (x̄, ȳ) +∇xg(x̄, ȳ)
�β +∇xL(x̄, ȳ, ū)�γ = 0,

∇yF (x̄, ȳ) +∇yg(x̄, ȳ)
�β +∇yL(x̄, ȳ, ū)�γ = 0.

It follows from these conditions by [64, proof of Theorem 3.9] that there exist a vector
β∗ and a real number λ∗ such that we have

−b(x̄, ȳ, ū, β, γ) +∇xF (x̄, ȳ) +∇xg(x̄, ȳ)
�(β∗ − λ∗ū)

+∇xL(x̄, ȳ, ū)�γ = 0,(5.31)

∇yF (x̄, ȳ) +∇yg(x̄, ȳ)
�(β∗ − λ∗ū) +∇yL(x̄, ȳ, ū)�γ = 0(5.32)

for i = 1, . . . , p, β∗
i ≥ 0, β∗

i gi(x̄, ȳ) = 0,(5.33)

with ū ∈ Λ(x̄, ȳ). If ∇x,yL(x̄, ȳ, ū)�γ = 0, then (5.31) and (5.32) reduce to
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b(x̄, ȳ, ū, β, γ) = ∇xF (x̄, ȳ) +∇xg(x̄, ȳ)
�(β∗ − λ∗ū)(5.34)

and ∇yF (x̄, ȳ) +∇yg(x̄, ȳ)
�(β∗ − λ∗ū) = 0,(5.35)

respectively. Now observe that −∇yg(x̄, ȳ)
�ū = ∇yf(x̄, ȳ) with ū ∈ Λ(x̄, ȳ). Inserting

this into (5.35) gives us the equation

(5.36) ∇yF (x̄, ȳ) + λ∗∇yf(x̄, ȳ) +∇yg(x̄, ȳ)
�β∗ = 0.

Finally, combining (5.33) and (5.36) implies that (λ∗, β∗) ∈ Λoy(x̄, ȳ), provided that
λ∗ ≥ 0. This concludes the proof of the proposition.

6. Applications to necessary optimality conditions in the original
optimistic model. The concluding section of the paper is devoted to applications
of the above sensitivity results to deriving new necessary optimality conditions for
the original optimistic formulation (Po) in bilevel programming. In fact we establish
certain stationarity conditions of various types among which are of those types known
for more conventional auxiliary optimistic formulation (P) together with stationarity
conditions of the novel types for (Po).

For the reader’s convenience, we recall that S and So refer to the solution maps of
the lower-level (1.5) and upper-level (1.6) problems, respectively, and that the lower-
level Lagrange function L and Lagrange multipliers set Λ(x̄, ȳ) are given by (5.2).
Also the index sets η, θ, and ν of a major interest here are defined in (4.4).

We start with stationarity notions of the new “KM” and “KN” types for the origi-
nal optimistic bilevel program (Po) reflecting the difference between theKKT-type op-
timality conditions obtained via the inner semicontinuity and inner semicompactness,
respectively, of the optimal solution map So for the upper-level problem.

Definition 6.1 (KM-stationarity for original optimistic bilevel programs). A
point x̄ is Po-KM-stationary if we can find some ȳ ∈ So(x̄) such that there exist
(α, β) ∈ R

k+p, λ ∈ R+, (μs, υs) ∈ R
k+1, and ys ∈ S(x̄) as s = 1, . . . , n+ 1 satisfying

∇xF (x̄, ȳ) +∇G(x̄)�α+ λ

(
∇xf(x̄, ȳ)−

n+1∑
s=1

υs∇xf(x̄, ys)

)

+

p∑
i=1

βi∇xgi(x̄, ȳ)− λ

n+1∑
s=1

υs

p∑
i=1

μis∇xgi(x̄, ys) = 0,(6.1)

∇yF (x̄, ȳ) + λ∇yf(x̄, ȳ) +

p∑
i=1

βi∇ygi(x̄, ȳ) = 0,(6.2)

∀s = 1, . . . , n+ 1, ∇yf(x̄, ys) +

p∑
i=1

μis∇ygi(x̄, ys) = 0,(6.3)

∀s = 1, . . . , n+ 1, i = 1, . . . , p, μis ≥ 0, μisgi(x̄, ys) = 0,(6.4)

∀j = 1, . . . , k, αj ≥ 0, αjGj(x̄) = 0,(6.5)

∀i = 1, . . . , p, βi ≥ 0, βigi(x̄, ȳ) = 0,(6.6)

∀s = 1, . . . , n+ 1, υs ≥ 0,

n+1∑
s=1

υs = 1.(6.7)

Relationships (6.1)–(6.7) are called the KM-stationarity conditions.
Definition 6.2 (KN-stationarity for original optimistic bilevel programs). A

point x̄ is SPo-KN-stationary (resp., Po-KN-stationary) if for every ȳ ∈ So(x̄) (resp.,
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for some ȳ ∈ So(x̄)) there exist (α, β, μ) ∈ R
k+2p and λ ∈ R+ such that relationships

(6.2) and (6.5)–(6.6) hold along with

∇xF (x̄, ȳ) +

k∑
j=1

αj∇Gj(x̄) +
p∑
i=1

(βi − λμi)∇xgi(x̄, ȳ) = 0,(6.8)

∇yf(x̄, ȳ) +

p∑
i=1

μi∇ygi(x̄, ȳ) = 0,(6.9)

∀i = 1, . . . , p, μi ≥ 0, μigi(x̄, ȳ) = 0.(6.10)

All the relationships (6.2), (6.5)–(6.6), and (6.8)–(6.10) considered together are called
the KN-stationarity conditions.

Observe that the stationarity concepts of Definitions 6.1 and 6.2 arise from the
LLVF reformulation of the original problem (Po). Next we introduce stationarity
concepts related to the OPCC and OPEC reformulations of (Po).

Definition 6.3 (M-stationarity for original optimistic bilevel programs). A point
x̄ is SPo-M-stationary (resp., Po-M-stationary) if for every (ȳ, ū) ∈ Sho (x̄) (resp., for
some (ȳ, ū) ∈ Sho (x̄)) there exists a triple (α, β, γ) ∈ R

k+p+m such that relationships
(4.6)–(4.7) and (6.5) hold along with

∇xF (x̄, ȳ) +∇G(x̄)�α+∇xg(x̄, ȳ)
�β +∇xL(x̄, ȳ, ū)�γ = 0,(6.11)

∇yF (x̄, ȳ) +∇yg(x̄, ȳ)
�β +∇yL(x̄, ȳ, ū)�γ = 0.(6.12)

All the relationships (4.6)–(4.7), (6.5), and (6.11)–(6.12) considered together are called
the M-stationarity conditions.

Similarly to M-stationarity, we define C-stationarity (resp., S-stationarity) by re-
placing (4.7) with (5.11) and (5.13), respectively. Note that for any A := KN,M,C, S
the term “SPo-A-stationary” stands for strong Po-A-stationary. The following dia-
gram provides links between these stationarity concepts:

SPo-M-stationary ⇐= SPo-S-stationary =⇒ SPo-C-stationary
⇓ ⇓ ⇓

Po-M-stationary ⇐= Po-S-stationary =⇒ Po-C-stationary
(2) ⇓

SPo-KN-stationary =⇒ Po-KN-stationary (λ free)
(1)⇐⇒ Po-KM-stationary

where assumptions (1) and (2) are formulated as{
(1) S(x̄) = {ȳ}, Λ(x̄, ȳ) = {μ},
(2)

∑m
l=1 γl∇x,yLl(x̄, ȳ, ū) = 0.

The proof of this chain of implications follows along the lines of that in [64, The-
orem 3.1.9], where a similar diagram is constructed for the stationarity concepts
tailored to the conventional optimistic bilevel program (P). Note that the term “λ

free” used in the above diagram is valid only for implication “Po-S-stationary
(2)
=⇒

Po-KN-stationary (λ free),” where it refers to the fact that the multiplier λ must not
be nonnegative as in the case in Definition 6.2.

Now we are ready to establish another important result of the paper on justify-
ing the above stationarity conditions for the original optimistic bilevel program (Po).
They are based on sensitivity analysis of the two-level value function obtained in the
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previous section combined with fundamental calculus rules of generalized differenti-
ation. To proceed, recall that a point x̄ ∈ X := {x ∈ R

n|G(x) ≤ 0} is upper-level
regular if it holds that

(6.13)
[∇G(x̄)�α = 0, α ≥ 0, α�G(x̄) = 0

]
=⇒ α = 0,

which is the dual form of the classical MFCQ for the upper-level constraints.
Theorem 6.4 (justification of KM-stationarity for original optimistic bilevel pro-

grams). Let x̄ be an upper-level regular local optimal solution to (Po), let So from
(5.30) be inner semicompact at x̄, and let the lower-level regularity (4.2) be satisfied
at all (x̄, ȳ) with ȳ ∈ S(x̄). Suppose furthermore that (Av1) and (Av2) are satisfied at
all (x̄, ȳ) with ȳ ∈ So(x̄). Then the point x̄ is Po-KM-stationary.

Proof. It follows from Theorem 5.11(ii) that the two-level value function ϕo
is Lipschitz continuous around x̄. Thus ∂ϕo(x̄) = ∅ while ∂∞ϕo(x̄) = {0}, and
the qualification condition (2.12) of Theorem 2.2 holds at x̄. Employing now the
optimality condition (2.11) of the latter theorem with the well-known formula

(6.14) NX(x̄) =
{∇G(x̄)�α| α ≥ 0, α�G(x̄) = 0

}
,

valid under the assumed upper-level regularity of x̄, and then taking into account that
the set on the right-hand side of the inclusion in Theorem 5.11(ii) is nonempty, we
arrive at the Po-KM-stationarity.

Theorem 6.5 (justification of KN-stationarity for original optimistic bilevel pro-
grams). Let x̄ be an upper-level regular local optimal solution to (Po). Then we have
the following:

(i) Assume that for all ȳ ∈ So(x̄) the inner semicontinuity of the mapping So in
(5.30), the lower-level regularity (4.2), and conditions (Av1) and (Av2) are all satisfied
at (x̄, ȳ). Then x̄ is SPo-KN-stationary.

(ii) If all the assumptions in (i) are satisfied at some point (x̄, ȳ) with ȳ ∈ So(x̄),
then x̄ is Po-KN-stationary.

Proof. To justify (i), observe that the inclusion in Theorem 5.11(i) depends on
a point (x̄, ȳ) ∈ gphSo, where So is inner semicontinuous. Thus if this inclusion is
satisfied at every (x̄, ȳ) ∈ gphSo and all the other qualification conditions of Theo-
rem 5.11(i) hold at these points, then the result follows as in the proof of Theorem 6.4.
Assertion (ii) is obtained by combining Theorem 2.2 and Theorem 5.11(i).

Next we address the M -stationarity conditions for the original bilevel program.
Theorem 6.6 (justification of M-stationarity for original optimistic bilevel pro-

grams). Let x̄ be an upper-level regular local optimal solution to (Po), where the
lower-level problem (1.2) is convex. Assume that the lower-level regularity is satis-
fied at all (x̄, ȳ) with ȳ ∈ S(x̄), while (Am1 ) and (Am2 ) are satisfied at (x̄, ȳ, ū) for all
(ȳ, ū) ∈ Sho (x̄). The following hold:

(i) If the solution map Sho in (5.5) is inner semicontinuous at (x̄, ȳ, ū) for all
(ȳ, ū) ∈ Sho (x̄), then x̄ is SPo-M-stationary.

(ii) If Sho is inner semicompact at x̄, then x̄ is Po-M-stationary.
Proof. The proof follows similarly to that of the previous theorem by employing

Theorem 2.2 and Theorem 5.2(i) and (ii), respectively.
Another way to derive the Po-M-stationarity is by using the upper estimate of

∂ϕo(x̄) obtained via the OPEC reformulation of the two-level value function (5.15);
see Corollary 5.5(ii). Note also that if the inner semicontinuity and qualification
conditions (Am1 ) and (Am2 ) are satisfied only at one point (x̄, ȳ, ū) in Theorem 6.6, we
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still can get Po-M-stationarity whenever the reference couple (ȳ, ū) ∈ Sho (x̄) is known
a priori. A similar comment can be made for Po-KN-stationarity.

Proceeding as in the proof of Theorem 6.6, C-stationarity (resp., S-stationarity)
for a local optimal solution to (Po) can be derived by combining Theorem 2.2 and
Theorem 5.3 (resp., Theorem 5.4). The next example illustrates Theorem 6.6.

Example 6.7 (numerical illustration of qualification and stationarity conditions
for (Po)). Consider the original optimistic bilevel program from [14, Example 4.1]:

min
x∈R+

{min
y∈R

{x2 + y2| y ∈ S(x) := argmin{xy + y| y ≥ 0}}}.

The KKT reformulation of the corresponding two-level value function is

ϕo(x) := min
y,u

{x2 + y2|x− u+ 1 = 0, u ≥ 0, y ≥ 0, uy = 0} =

{
x2 if x ≥ −1,
∞ otherwise.

It is obvious that x̄ = 0 is the unique optimal solution to this program and that ϕo
is smooth near x̄. We have Sho (x) = {(0, x+ 1)} if x ≥ −1 and Sho (x) = ∅ otherwise,
and hence Sho is a single-valued and continuous mapping on its graph. Furthermore,
Λemy (x̄, ȳ, ū, 0) = {0} × R if (x̄, ȳ, ū) = (−1, 0, 0) and Λemy (x̄, ȳ, ū, 0) = {(0, 0)} for

all the other points of gph Sho . From the observations made in sections 3 and 4, this
implies that the corresponding constraint qualifications (Am1 ) and (Am2 ) are satisfied
at all points of the graph of Sho except (−1, 0, 0), which is not optimal.

It is worth mentioning that the upper-level regularity (6.13) in the results above
can be replaced by the weaker calmness property of the mapping v ⇒ {x ∈ R

n|G(x)+
v ≤ 0}, which is automatic if G is a linear function. Furthermore, as mentioned
previously in subsection 5.1, the qualification condition (Am1 ) can also be replaced by
the weaker calmness property of the mapping Ψ in (5.16) that holds, in particular, if
both functions g and (x, y) �→ ∇yf(x, y) are linear.

Remark 6.8 (on Lipschitz continuity of the two-level value function ϕo). We can
see from the proof of Theorem 6.6 that the local Lipschitz continuity of ϕo was used
twice: to ensure the nonemptiness of ∂ϕo(x̄) and the application of the optimality
condition (2.11) of Theorem 2.2. Observe to this end that the Lipschitz property of ϕo
is not needed for bilevel programs without upper-level constraints (i.e., if X := R

n);
in this case the qualification condition (2.12) holds automatically and also allows us
to drop assumption (Am2 ) in Theorem 6.6. However, we still have to make sure that
∂ϕo(x̄) = ∅, which happens in many non-Lipschitzian situations; see, e.g., [38, 39, 43,
51].

The rest of this section is devoted to the relationship between the original (Po)
and conventional (P) versions in optimistic bilevel programming. We begin with not-
ing that both problems are equivalent from the viewpoint of global optimal solutions.
The next proposition clarifies the relationship between them for local solutions.

Proposition 6.9 (relationship between local optimal solutions to original and
conventional optimistic programs). The following assertions hold:

(i) Let x̄ be a local optimal solution to (Po), then (x̄, ȳ) for any ȳ ∈ So(x̄) is a
local optimal solution to (P).

(ii) Let (x̄, ȳ) with some ȳ ∈ So(x̄) be a local optimal solution to (P). If So is
inner semicontinuous at (x̄, ȳ), then x̄ is a local optimal solution to (Po).

Proof. To justify (i), assume that (x̄, ȳ) for some ȳ ∈ So(x̄) is not a local optimal
solution to (P). Then we can find a sequence (xk, yk) with xk → x̄, yk → ȳ and
xk ∈ X , yk ∈ S(xk) such that we have F (xk, yk) < F (x̄, ȳ) = ϕo(x̄) for all k. By
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the definition of ϕo, it follows that ϕo(x
k) ≤ F (xk, yk), for all k. Thus we have

ϕo(x
k) < ϕo(x̄), x

k ∈ X for all k. This completes the proof of (i) given that x̄ ∈ X .
To proceed with (ii), assume that x̄ is not a local optimal solution of (Po), while all

the other hypotheses of (ii) are satisfied. We can find a sequence xk → x̄ (xk ∈ X) such
that ϕo(x

k) < ϕo(x̄) for all k. So being inner semicontinuous at (x̄, ȳ), there is a se-
quence yk ∈ So(x

k) with yk → ȳ. Considering the definition of So (1.6), we have y
k ∈

S(xk). Further observe that with yk ∈ So(x
k), we have F (xk, yk) = ϕo(x

k) for all k.
Hence, it follows that F (xk, yk) < F (x̄, ȳ), xk ∈ X, yk ∈ S(xk) for all k, given
that ϕo(x

k) < ϕo(x̄) for all k. This contradicts the fact that (x̄, ȳ) is a local optimal
solution of problem (P), given that xk → x̄, yk → ȳ.

Recall that assertion (i) of Proposition 6.9 was initially proved in [17] under the
upper semicontinuity of the lower-level solution map S from (1.5) and then in [11]
under the uniform boundedness of S. As we show now, no assumption is in fact
needed. However, the next example demonstrates that for the converse implication
(ii), the inner semicontinuity of the mapping So in (1.6) is essential.

Example 6.10 (failure of Proposition 6.9(ii) with no inner semicontinuity of So).
Consider the following bilevel program taken from [8, section 5.5]:

“min
x

”
{
x| x ∈ [−1, 1], y ∈ S(x) := argmin

y
{xy| y ∈ [0, 1]}}.

The lower-level solution map is calculated by

S(x) =

⎧⎨⎩
[0, 1] if x = 0,
{0} if x > 0,
{1} if x < 0.

It is easy to see that (x̄, ȳ) = (0, 0) is a local optimal solution to the conventional
optimistic model (P), but x̄ = 0 is not a local optimal solution to the corresponding
original optimistic formulation (Po). Note that in this case we have So(x) = S(x) for
all x ∈ X := [−1, 1]. Moreover, −1/2k → 0 while So(−1/2k) = S(−1/2k) = {1} for
all k, but 1 = 0. Thus So is not inner semicontinuous at (0, 0).

The next result establishes the link between the stationarity conditions for the
original optimistic formulation (Po) defined at the beginning of this section and those
for the conventional/auxiliary optimistic problem (P) that we introduce now.

Definition 6.11 (KM-, KN-, and M-stationarity concepts for conventional op-
timistic bilevel programs). Let (x̄, ȳ) be feasible to (P). We say that it is

(i) P-KM-stationary if there are (α, β) ∈ R
k+p, λ ∈ R+, (μs, υs) ∈ R

k+1, and
ys ∈ S(x̄), s = 1, . . . , n+1, such that the KM-stationarity conditions (6.1)–(6.7) hold;

(ii) P-KN-stationary if there are (α, β, μ) ∈ R
k+2p and λ ∈ R+ such that the

KN-stationarity conditions (6.2), (6.5)–(6.6), and (6.8)–(6.10) hold;
(iii) P-M-stationary if there are (α, β, γ) ∈ R

k+p+m such that the M-stationarity
conditions (4.6)–(4.7), (6.5), and (6.11)–(6.12) hold.

Similarly to (iii) the C- and S-stationarity concepts can be defined for problem
(P) via the corresponding notions tailored to the original optimistic problem (Po); cf.
Definition 6.3 and the related discussion. Stronger versions of the KN-, M-, C- and S-
stationarity conditions have also been derived in the literature; see [14, 64], but we do
not consider them here since relationships to their Po counterparts will be investigated
separately in our future research. As already mentioned in section 1, problem (P) has
been intensively studied in the literature. In particular, the KM- and KN-stationarity
conditions have been derived under various assumptions in [11, 13, 15, 16, 41, 61].
For the other conditions, see, e.g., [14, 20, 64] and the references therein.
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Theorem 6.12 (relationship between stationarity conditions for the conventional
and original optimistic bilevel programs). The following assertions hold:

(i) A point x̄ is Po-KM-stationary (resp., Po-KN-stationary) if and only if there
exists ȳ ∈ So(x̄) such that (x̄, ȳ) is P-KM-stationary (resp., P-KN-stationary).

(ii) A point x̄ is Po-M-stationary (resp., Po-C, Po-S-stationary) if and only if there
exists (ȳ, ū) ∈ Sho (x̄) such that (x̄, ȳ) is P-M-stationary (resp., P-C, P-S-stationary).

Proof. The proof follows directly by comparing the necessary optimality/stationarity
conditions obtained above in Theorems 6.4, 6.5, and 6.6 for the original bilevel for-
mulation (Po) and the ones for problem (P) from Definition 6.11.

A natural question arises when comparing the constraint qualifications for the
corresponding stationarity in (P) and (Po). The constraint qualifications developed
above to derive stationarity conditions for (Po) occur to be stronger than those needed
for (P) (cf. [11, 13, 14, 15, 16, 20, 41, 58, 61, 64]) when the Lipschitz continuity of ϕo
(5.1) is involved; cf. the discussion in Remark 6.8. However, putting aside the inner
semicontinuity/semicompactness, the assumptions we introduce in the context of (Po)
to get Po-KM-, Po-KN-, Po-M-, Po-C-, and Po-S-stationarity are closely related to
those used for (P) in the aforementioned references, in particular, if there are no
upper-level constraints. Also observe that the implication in Proposition 6.9(i) opens
a new perspective to derive stationarity conditions for the original optimistic bilevel
program via the auxiliary problem (P) with less restrictive assumptions.

Finally, we mention that the sensitivity results for two-level value functions ob-
tained in section 5 can readily be applied for sensitivity analysis of the auxiliary
problem (P) and also to deriving necessary optimality conditions for the pessimistic
bilevel program (Pp); see [12] for the recent developments in the latter case.

Acknowledgments. The authors are indebted to two anonymous referees and
the handling Associate Editor Jǐŕı Outrata for their constructive remarks, which al-
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