The University of Southampton
University of Southampton Institutional Repository

On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem

On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem
On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem
This paper is mainly concerned with the classical KKT reformulation and the primal KKT reformulation (also known as an optimization problem with generalized equation constraint (OPEC)) of the optimistic bilevel optimization problem. A generalization of the MFCQ to an optimization problem with operator constraint is applied to each of these reformulations, hence leading to new constraint qualifications (CQs) for the bilevel optimization problem. M- and S-type stationarity conditions tailored for the problem are derived as well. Considering the close link between the aforementioned reformulations, similarities and relationships between the corresponding CQs and optimality conditions are highlighted. In this paper, a concept of partial calmness known for the optimal value reformulation is also introduced for the primal KKT reformulation and used to recover the M-stationarity conditions.
0362-546X
1202-1218
Dempe, Stephan
a8716b3e-ae75-4998-a6b6-48a9171b925a
Zemkoho, Alain B.
30c79e30-9879-48bd-8d0b-e2fbbc01269e
Dempe, Stephan
a8716b3e-ae75-4998-a6b6-48a9171b925a
Zemkoho, Alain B.
30c79e30-9879-48bd-8d0b-e2fbbc01269e

Dempe, Stephan and Zemkoho, Alain B. (2012) On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem. Nonlinear Analysis Theory Methods & Applications, 75 (3), 1202-1218. (doi:10.1016/j.na.2011.05.097).

Record type: Article

Abstract

This paper is mainly concerned with the classical KKT reformulation and the primal KKT reformulation (also known as an optimization problem with generalized equation constraint (OPEC)) of the optimistic bilevel optimization problem. A generalization of the MFCQ to an optimization problem with operator constraint is applied to each of these reformulations, hence leading to new constraint qualifications (CQs) for the bilevel optimization problem. M- and S-type stationarity conditions tailored for the problem are derived as well. Considering the close link between the aforementioned reformulations, similarities and relationships between the corresponding CQs and optimality conditions are highlighted. In this paper, a concept of partial calmness known for the optimal value reformulation is also introduced for the primal KKT reformulation and used to recover the M-stationarity conditions.

This record has no associated files available for download.

More information

Published date: February 2012
Organisations: Operational Research

Identifiers

Local EPrints ID: 370842
URI: http://eprints.soton.ac.uk/id/eprint/370842
ISSN: 0362-546X
PURE UUID: 81c45311-71b7-4178-ada0-54838da97a01
ORCID for Alain B. Zemkoho: ORCID iD orcid.org/0000-0003-1265-4178

Catalogue record

Date deposited: 10 Nov 2014 13:30
Last modified: 15 Mar 2024 03:51

Export record

Altmetrics

Contributors

Author: Stephan Dempe

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×