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Abstract

The Mediterranean fruit fly (Medfly) is one of the world’s most economically damaging pests. It displays highly seasonal
population dynamics, and the environmental conditions suitable for its abundance are not constant throughout the year in
most places. An extensive literature search was performed to obtain the most comprehensive data on the historical and
contemporary spatio-temporal occurrence of the pest globally. The database constructed contained 2328 unique geo-
located entries on Medfly detection sites from 43 countries and nearly 500 unique localities, as well as information on hosts,
life stages and capture method. Of these, 125 localities had information on the month when Medfly was recorded and these
data were complemented by additional material found in comprehensive databases available online. Records from 1980
until present were used for medfly environmental niche modeling. Maximum Entropy Algorithm (MaxEnt) and a set of
seasonally varying environmental covariates were used to predict the fundamental niche of the Medfly on a global scale.
Three seasonal maps were also produced: January-April, May-August and September-December. Models performed
significantly better than random achieving high accuracy scores, indicating a good discrimination of suitable versus
unsuitable areas for the presence of the species.
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Introduction Florida and California [6,7]. It is estimated that the cost of each of
its previous incursions into the US (eradication and industry loss)
ranged from US$300,000 to US$200 m [8]. Medfly outbreaks in
California during the past 25 years have cost taxpayers nearly
$500 million, while the Medfly outbreak in Florida’s Tampa Bay
region in 1997 resulted in $25 million spent on eradication [9],
which is significantly less than the cost of potential establishment.
It has been estimated that the cost of controlling established
Medfly in the State of California alone could range between $493
million to $875 million, and imposition of trade embargo from

Many invasive alien species are directly associated with
biodiversity loss, ecosystem service changes, and negative impacts
on human health, agriculture, forestry and fisheries. In Europe
alone, these losses and impacts are estimated to cost at least EUR
12 billion per year [1]. The Mediterrancan fruit fly, Ceratitis
capitata  (Wiedemann), commonly referred to as Medfly, is
considered one of the world’s most destructive pests [2]. It is a
highly polyphagus species, able to feed on over 300 hosts and

known to be capable of adapting to a wide range of climates [2—4].
It causes significant damage to fruits and vegetables, and its
economic Impacts are substantial.

Medfly originated from sub-Saharan Africa and in carly 19™
century was identified in southern parts of Europe, from where it
subsequently spread to other parts of the globe [5]. It is currently
present in Mediterranean Europe and the Middle East, in most
parts of Africa including Indian Ocean islands, South and Central
America, western Australia and the Pacific region. It is a
quarantine pest and countries with established Medfly populations
have significant trade barriers imposed to their exports. The pest
has been established for about a century in Hawaii and despite
persistent and costly eradication efforts, is repeatedly detected into
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Asian countries would result in additional revenue losses of $564
million and cost more than 14,000 jobs [10]. The eastern
Mediterranean region also experienced substantial losses linked
to fruit fly infestations estimated at US$192 m [11].
Comprehensive global information on Medfly occurrence, both
in spatial and temporal terms, is crucial for understanding not only
the current and historical extent of its occurrence, but also the
conditions where it is able to survive and areas susceptible to
potential invasion and establishment. For similar reasons, it is also
essential to track historical spread routes and the history of
invasion. Occurrence records with temporal reference are
important for understanding the drivers of Medfly seasonal
population dynamics, which can be valuable for guiding eradica-
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tion and control strategies. Commonwealth Agricultural Bureaux
International (CABI), European Plant Protection Organization
(EPPO) and International Atomic Energy Agency (IAEA) are
examples of institutions maintaining records on where Medfly is
established [12-15]. These sources define Medfly presence status
at the country scale and less frequently, on the provincial scale.
Their quality, according to the most current spatial and temporal
information, varies and there are no widely-available expert
opinion maps defining the environmental range of known Medfly
occurrence.

Recent years have seen a handful of studies aiming to define the
potential distribution of Medfly. In a study by De Meyer et al.
[16], a genetic algorithm for rule-set prediction (GARP) and
principal component analysis (PCA) were used to estimate the
potential geographical range of Medfly using native range
distributional data derived from a database maintained by the
Royal Museum for Central Africa. This data was complemented
by non-native range information gathered from the literature and
electronic resources. Outputs showed areas of high and low
suitability for Medfly presence globally without providing infor-
mation on what constituted the threshold for such categories, or
any seasonal changes. CLIMEX (http://www.csiro.au/solutions/
ps1h3) was used in a different study to assess the seasonal and year-
to-year variation in climatic suitability for Medfly worldwide with
emphasis on Argentina and Australia [17]. No occurrence data
were used for the modeling, but rather parameters of its
population dynamics were used, specifically a CLIMEX growth
index derived from a study of Medfly populations in Thessaloniki
[18]. Gutierrez and Ponti [19] also assessed the invasive potential
of Medfly in California and Arizona using GRASS-GIS, based on
age-structured dynamics of Medfly life stages and temperature
variability in the region. MaxEnt outperformed GARP in a study
[20] which aimed to assess the potential distribution of three fruit
fly species including Medfly in China. A set of environmental
variables describing temperature and precipitation, as well as
worldwide occurrence records were used in the modelling.

It is well documented in regional studies from several areas of
the world that Medfly has a highly seasonal pattern to its
population dynamics [3,21-29]. However, spatiotemporal datasets
to quantify these patterns on a global scale have yet to be
assembled, while previous global mapping of the suitability for
Medfly presence has not accounted for seasonal shifts. Here we
present the results of a study that has focused on constructing the
most comprehensive database on confirmed Medfly occurrence
records, the timing of these records and their locations. Moreover,
information on hosts, life stages and capture method were also
recorded. Finally, seasonally-varying gridded environmental var-
iables including temperature, precipitation, elevation and normal-
ized vegetation index (NDVI) were linked to these records in a
niche modeling framework to produce predictions of the annual
and seasonal distributions of suitability for Medfly presence on a
global scale, with an aim of identifying regions that can be
potential risk areas for Medfly invasions depending on the season.

Materials and Methods

Occurrence data

Confirmed detection location data for C. capitata were searched
for in online open-access museum collections data, published
articles, reports and conference proceedings. The literature search
resulted in 158 publications and reports containing potential data
to be reviewed [2-5,7,8,11,16,17,19,21-28,30-161]. Of these
publications, 101 contained information about Medfly detection
that could be geolocated, and 64 contained information about the
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month when Medfly was observed. A database was constructed to
store historical data pertaining to Medfly detection locations. For
each entry, information about the author, year and type of
publication, country, two administrative levels and locality,
georeferenced location and source of coordinates, the quality of
information about the location, year and month of the occurrence
record, sampling technique, developmental stage of Medfly and
host plant were recorded. This data record protocol was built
upon that pioncered for recent studies of malaria vectors
worldwide [162-165]. Locations of Medfly observations were
georeferenced, either based on coordinates included in the source
material or dependent on the name of the location found in the
source, and the geolocation source, method and accurracy is
identified in the database. Additional supporting sources of
information on the Medfly occurrence locations were obtained
from the Global Biodiversity Information Facility (GBIF http://
data.gbif.org), Belgian Biodiversity Platform (BeBIF www.
biodiversity.be) and the Royal Museum of Central Africa
(http://projects.bebif.be/enbi/fruitfly) [16].

Covariates used in modeling

A suite of environmental variables was constructed in prepara-
tion for use in niche modeling in consideration of the pest’s
environmental limiting factors (Table 1 and 2). Medfly has four
stages of development: (1) female adults deposit eggs under the skin
of susceptible fruits or vegetables, where (2) eggs hatch to produce
larvae. (3) Larvae feed on the pulp of the host before complete the
larval development and abandon the fruit to the soil, where (4)
larvae pupate and after methamorphosis adults emerge from the
soil. The length of time required to complete the Medfly lifecycle
in tropical summer weather conditions is in the range of 21 to 30
days [166]. In cool climates it can take well over 200 days
[18,134]. Its presence is also influenced by the availability of hosts.
In tropical areas, due to overlapping host phenology, Medfly
populations are able to persist year-round or during the majority
of the year, whereas in temperate regions, the host-present period
is considerably shorter. Medfly, as with other insects, is known to
be sensitive to climate, and apart of host availability, one of the
main limitations to its development is low temperature that may
hinder its ability to overwinter [18,29], plus high precipitation
which may have an adverse impact on the pupae development in
the soil [3,24]. Thermal requirements of insect species are often
derived in laboratory conditions and vary with developmental
stage, environmental conditions and their geographic origin
[167,168]. The optimum temperature threshold for Medfly
development is estimated to be between 21°C and 26.7°C, and
below 10°C  and above 35°C the development stops
[140,169,170]. The ability to overwinter at high altitudes on the
fringes of suitable areas is very limited and dependent on the
availability of hosts favoring slow growth, inside which pest could
survive [21,82]. Given these factors, we obtained land surface
temperature (LST) and normalized difference vegetation index
(NDVI) images from the Advanced Very High Resolution
Radiometer (AVHRR) satellite sensor. The products are available
at 8x8 km spatial resolution for over a 20-year time series and
downloadable via the Goddard Flight Center’s Web Site (http://
daac.gsfc.nasa.gov/). Digital elevation modelDEM) data were
obtained from the Shuttle Radar Topography Mission (SRTM)
[http://www?2 jpl.nasa.gov/srtm/]. Finally, annual and quarterly
average, minimum and maximum precipitation data were derived
from the Worldclim database (http://www.worldclim.org/). The
data represent interpolated rainfall measures derived from the
world-wide network of weather stations for the time period of
19502000 [171].
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Table 1. Data sets used in the development of ecological niche models, including source and spatial resolution.

Variables in the annual model Source Spatial resolution
Minimum Land Surface Temperatures (LST) AVHRR 5 km
Maximum LST AVHRR 5 km
Elevation SRTM 5 km
Minimum precipitation WorldClim 5 km
Maximum precipitation WorldClim 5 km
Mean Normalized Difference Vegetation Index (NDVI) AVHRR 5 km

doi:10.1371/journal.pone.0111582.t001

All of the gridded datasets underwent a number of processing
steps prior to being used in the modelling [162,165,172]. The size,
location and extent have been matched for every layer. For
datasets where the remotely sensed information was multi-
temporal, Fourier analysis was used to ordinate the data by
decomposing the temporal signal into an additive series of
harmonics of different seasonal frequencies [162-165,172]. All of
the gridded datasets were resampled to produce matching extents
and a grid cell size of 5 kmx5 km. The layers used in the
modelling here do not include locations above 59°N, as they were
not available for all datasets.

All of the data layers were tested for pairwise Pearson
correlation prior to building and running the model. Although
MaxEnt is known to be a stable model in the face of correlated
variables [173], those with the high correlation coefficients (r>
=0.85) were excluded from the analysis. These were average
precipitation and LST in the general model, and average
precipitation in the seasonal model. Average LST was removed
from the first season, average LST of the coldest month was
removed from the second season and the average LST of the
warmest month remained as a covariate only in the first season
model.

Choice of seasons

The year was divided into three Medfly-relevant seasons for
seasonal mapping to strike a balance between ensuring that the
seasonal variation in Medfly occurrence was captured, and having
sufficient datapoints to produce reliable maps for each time period.
Dividing year according to calendar seasons did not correspond
well with the activity of Medflies, especially in the northern
hemisphere, where the seasonal differences tend to be most
pronounced due to a larger proportion of land located in higher
latitudes. On the northern limits of the Medfly distribution, the

pest tends to be inactive between January and April. It is unable to
overwinter in egg or adult stage, but there is evidence of an ability
to survive low temperatures in fruit hosts as a larvae and to a
significantly lesser degree, in the pupal stage [18]. The onset of
pest activity starts anywhere between May and August, depending
on location and condition in a particular year. The peak of Medfly
activity 1s observed in the fall — usually between September and
November, and a sharp decline is observed between November
and December. This led us to divide the year into three seasons
(January—April, May-August and September-December), which is
both significant from the phenological point of view for Medfly,
and at the same time preserves some common environmental
characteristics of the seasons.

Maximum entropy modelling

The Maximum Entropy Modelling tool (MaxEnt version
3.3.3 k) was used to map the potential distribution of Medfly.
The model estimates species’ potential distributions by finding the
maximum entropy distribution, in other words, distribution closest
to uniform [174,175]. In the model, the environmental values
found at the detection localities impose certain constraints on the
output distribution. The constraints are expressed as simple
functions of the environmental variables called features, and each
feature in the model should have a mean close to the empirical
average. The model looks for a set of probability distributions that
satisfy the constraints and chooses the most unconstrained one
[175]. In the logistic output of the model, every grid square has an
assigned value between 0 and 100, which represents the relative
suitability of species occurrence.

There were many reasons that dictated the choice of this model.
Most importantly, in a review of 16 species modeling methods,
MaxEnt was among the best performing methods when evaluated
using the area under the curve (AUC) and correlation statistics

Table 2. The list of the data sets used in the development of seasonal ecological niche models including source and the spatial
resolution. Seasonal model 1: Jan-Apr, 2; May-Aug and 3: Sep-Dec.

Variables in the seasonal model Source Spatial resolution Seasonal model
Average LST in the season AVHRR 5 km 2,3
Average LST of the coldest month in the season AVHRR 5 km 1,3
Average LST of the warmest month in the season AVHRR 5 km 1
Elevation SRTM 5 km 1,23
Precipitation total of the wettest month WorldClim 5 km 1,23
Precipitation total of the driest month WorldClim 5 km 1,23
Average quarterly NDVI in the season AVHRR 5 km 1,23
doi:10.1371/journal.pone.0111582.t002
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[174]. Secondly, the method holds a strict mathematical definition
and can accommodate diverse types of predictor variables - both
categorical and continuous. Moreover, it does not require absence
data, can handle a relatively low sample size and gives a simple to
interpret continuous output. Finally, the method is well docu-
mented and available for free download (http://www.cs.princeton.
edu/~schapire/maxent).

The default MaxEnt model parameters have been calibrated on
a wide range of data (a convergence threshold of 107° a
maximum iteration value of 500 and the maximum number of
background points as 10000). These settings are recommended to
achieve good model performance for species at ecological
equilibrium [176]. Because Medfly is an invasive organism, we
modified these settings to better predict the nature of the potential
niche of an invader. The convergence threshold was left at the
default of 107 and the number of iterations was increased to 5000
to allow the model adequate time for convergence and avoid
under- or over-prediction of the relationships. We explored the
choice of features and increased model regularization. MaxEnt
allows various feature types to be used by default (if there are
enough sample points on species presence available), which results
in complex functions. Using less or only one feature is
recommended for simpler models and we chose hinge features
which allow the model to fit nonlinear functions of varying
complexity, but without the sudden steps of threshold features
[173]. Increased regularization parameters increase the degree of
level smoothing, however the AUC score of our model was
consequently declining with increased regularization. Therefore,
we left the regularization setting at the default of 1. The output
maps illustrate the mean results of the replicated runs. There are
no precise scientific guidelines that dictate the choice of settings, so
our choice was based on a visual assessment of their influence on
the partial dependence plots, AUC scores and the prediction
maps.

The logistic habitat-suitability output values were used for the
model output which is simple to interpret (probability range of
occurrence between 0 and 1). The model estimates the relative
influence of each variable used in the prediction. It is scaled so the
sum of the relative influence of each variable adds to 100, with
higher numbers indicating stronger contribution on the outcome
[177]. In the case where multiple Medfly occurrence points in our
constructed database were registered at a single location, only one
record was used in the MaxEnt modelling. Only points of
occurrence and sources from 1980 onwards were taken into
consideration to build the models.

By default, MaxEnt selects its own background samples from
the entire study region, which implies that this entire space is
available to species and surveillance [178]. Another option is to
include a mask that will allow MaxEnt to choose a background
sample only from pre-selected areas. In the case of Medfly these
could be areas that are accessible for Medfly — where the species
currently is present and no eradication efforts are currently
ongoing, and no quarantine measures against Medfly are in place.
It could also include areas that were accessible to Medfly over
decades. Finally, the mask could help represent the sampling bias
of Medfly occurrence records, however this was not feasible here
as the data comes from various sources over long temporal scales.
Since the goal of this study was to represent Medfly fundamental
and not realized niche, and also how environmental variables
favorable for its presence are changing according to the season,
plus we only have political boundaries of Medfly current presence
and not expert drawn distribution maps, we did not use a mask for
the general potential niche model, but we applied a mask for the
three seasonal models. The mask was obtained by using a
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probablility threshold of Medfly occurrence equal to or above 0.1
from the general model. It helped to avoid overprediction of the
model and filter out areas that can only be suitable for Medfly
occurrence during a few months of the year and therefore cannot
sustain populations over climatically unfavorable months.

Model testing

The accuracy of the distribution models was evaluated by
partitioning the data within MaxEnt into training (75%) and
testing (25%) subsets and performing validation statistical analyses
on each of the partitions. Each of the settings were run on 30
replicates using a subsample run type with a random seed, so that
Maxent could average the results from all of the models created.
Firstly, the area under the Receiver Operating Characteristic
(ROC) was used to measure model performance. The plot of the
ROC curve is illustrative of the ratio of correctly classified positives
to the total number of positive cases (sensitivity) versus the false
positive rate (specificity) at all thresholds of presence-absence
classification. In this case, we do not have actual absence data in
the study. Therefore, tests show whether the model classifies
presence more accurately than a random prediction. The ROC
plot for a model whose predictive ability is the equivalent of
random assignment will lie near the diagonal, where the true
positive rate equals the false positive rate for all thresholds. AUC is
therefore a good measure of the overall model performance and
has a possible range of 0-1, where 0 indicates that prediction is
equal to a random assignment while an AUC score of 1 indicates a
perfect presence-absence prediction. Secondly, a threshold-depen-
dent binomial test of omission was performed. If in a specific cell
we observe a value of 0.10 or above, that cell is classified as
suitable for Medfly. This approach transforms the prediction
output from continuous into binary. The number of Medfly
suitable cells was compared to the number of cells known to have
had Medfly presence. A one tailed binomial test was used to find
out whether the model outperformed a random model predicting
Medfly to be present in the same number of cells. MaxEnt
provides test statistics for binomial tests for 10 different threshold
values. The extrinsic omission rate represented the fraction of the
test localities that were assigned into pixels which are not predicted
as suitable for Medfly. Low omission rate is highly advisable for a
good model [179].

Results

Occurrence data

The search for data on Medfly historical occurrence resulted in
records from 43 countries and nearly 500 unique localities
(Dataset S1). The oldest records come from 1898 and the most
recent from 2011. 171 locations contained information about the
year of Medfly occurrence, and 125 about a specific month where
Medfly was observed. The majority of the records identified
Medfly occurrence at the adult stage of development, with some in
the pupae and larvae stage. Some of the most common hosts
included apricot, guava, peach, various types of citrus (mainly
varieties of orange and mandarine), apple, fig, peach, loquat and
coffee. The dominant method of recording occurrence data was
through food or Trimedlure baited traps (McPhail and Jackson,
but also Nadel, Maxitrap, Steiner and Lynfield) [180].

For the purpose of niche modelling, points with uncertain
locations, duplicate points and those collected before 1980 were
removed for the analysis. Additionally, the data were supplement-
ed with occurrence points derived from the GBIF, BeBIF and
MCA datasets, which further increased the total number of sample
points available for niche modelling. In the annual model
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(produced using all geolocated points available), 463 unique
occurrence points were used. For the seasonal models, 139 points
were used for the January through April model, 158 for May
through August and 157 for September through December.
Figure 1 shows the locations of Medfly occurrence worldwide
obtained from all of the data sources, starting from 1980 onwards.
The points where information about Medfly occurrence after 1980
were available are marked in red (463 unique locations), and those
marked with crosses are locations that had the month of record
information on file (270 unique locations).

Environmental niche modelling

The annual Medfly niche suitability model, produced using all
geolocated occurrence records since 1980, is presented in
Figure 2. The largest suitable areas for Medfly presence are
located in South America, east and south Africa and eastern Asia.
Other suitable areas appear across a variety of climate zones,
including warm temperate and semi-tropical and tropical, mostly
in coastal areas. This incudes the Mediterranean basin, Gulf of
Mexico, western coast of South America and coastal areas of India
and Australia. The model prediction performs significantly better
than random with a binomial test result of p<3.9740. The AUC
score for the training and testing datasets is 0.882 and 0.878
respectively, representing strong predictive performance, given the
fractional predicted area of 0.307 (Table 3).

The January-April model has the highest fractional predicted
area (0.376 for Jan—Apr, 0.335 for May-Aug, and 0.336 for Sept—
Dec) (Figure 3). In that season, the least amount of land area in the
Mediterranean basin is shown as suitable for Medfly. The area
surrounding the Gulf of Mexico and Caribbean Basin, as well as
the Pampa in Argentina and eastern Brazil are predicted to be
highly suitable. In Africa, the highest suitability is observed in the
Sahel belt, some parts of Abisynia and the southern part of the
continent, including Madagascar. High suitability is also apparent
in southeast Asia, where Medfly is not yet known to be established.
The May-Aug season largely corresponds with summer in the
northern hemisphere. Consequently, the largest proportions of
areas in Europe, North America and Asia appear as suitable,

Historical Medfly occurrence locations
+ Seasonal reference
4+ No seasonal reference
Distribution (EPPO 2009 and IAEA 2013)
[7"] Confirmed Absent or No Data
[ | Present
[:I Present locally or restricted locations
= Interceptions or short-lived populations
I Eradicated
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compared to the other seasons. The expansion in predicted
suitable range is also apparent in central Africa and northern
Australia. In the Sept-Dec season, the suitability is largely
contained in the Mediterrancan basin in Europe, Southeast
United States, but is expanded in the southern hemisphere. The
AUC scores for the training data for all the seasons consistently
exceed 0.86, while for the test data it remains above 0.84 (Figure
S1, Table 3). As in the case of annual suitability model, the
seasonal predictions return extremely low p values, indicating that
the models perform significantly better than random (Table 3).

Relative importance of predictor variables

Table 4 represents the relative influence of the variables on the
model. The most significant environmental contributor appears to
be temperature (minimum for the general model and Jan-Apr
season and average for the Sep—Dec season). In May-Aug
maximum precipitation appears as the most important predictor.
These are followed by NDVI, DEM and minimum precipitation.

Discussion

The distribution model outputs represent the first global
assessment of the seasonally changing potential distribution of
Medfly, illustrating the significant shifts in environmental suitabil-
ity that occurs throughout a typical year. Previous mapping has
rarely addressed these seasonal variations, and the output maps
provide a basis for global assessments of shifting invasion risks.
Some areas identified in this study as highly suitable do not have
Medfly populations established at present and this may be a result
of either lack of introduction, eradication efforts or presence of
another dominant species, such as in the case of eastern Australia,
where the Queensland fruit fly has displaced Medfly [66]. The
seasonal prediction maps reflect changes in the environmental
suitability for Medfly, and it should be noted that while the insect
may be able survive in the regions shown to be suitable for one or
two of the three seasons mapped, it may likely not be able to
become established, due to unsuitable conditions for the remain-
der of the year. In the locations close to the northern or southern
boundary of Medfly distribution, the insect may be able to survive

Figure 1. Occurrence data for Ceratitis capitata used in the study. Data with information about the month of occurrence is marked with red
triangles. Countries/regions where Medfly is present are coloured with yellow and where it is eradicated are marked with green [12,13].

doi:10.1371/journal.pone.0111582.g001
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Figure 2. Global environmental suitability for C. capitata occurrence as predicted by MaxEnt model. Black triangles represent presence
points used in the modeling. Blue, purple and red colors show high confidence in predicted suitability, while yellow represents low confidence and

predicted absence.
doi:10.1371/journal.pone.0111582.g002

for one or several unusually warm seasons, and not be able to
establish a stable population long-term.

The seasonal environmental niche mapping can be an
important strategic tool for tailoring control and surveillance

activities. With sufficient amounts of spatio-temporal data, the
times of year when the pest is at its lowest activity stage can be
identified and combined with information about commodity and
passenger movements. It can facilitate prioritization and optimi-

Table 3. Models were calibrated using training and test data (75% and 25% randomly selected occurrence points respectively).

Model General Jan-Apr May-Aug Sep-Dec
No. of points 463 139 158 157
Mean training AUC 0.882 0.891 0.866 0.881
Mean test AUC 0.878 0.855 0.848 0.853
Test AUC standard deviation 0.012 0.025 0.025 0.022
Mean fractional predicted area 0.307 0.376 0.335 0.336
Training omission rate 0.097 0.098 0.098 0.098
Test omission rate 0.118 0.165 0.130 0.161

p value 3.948 40 2.4957° 3.79571° 1.15478

significantly better than random (p<<0.0001).
doi:10.1371/journal.pone.0111582.t003
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Area under the curve (AUC) was calculated as an average of 30 model replicate runs using subsample run type. Mean AUC and omission rate values were calculated
both for test and training data. The mean omission rates are calculated at an arbitrarily chosen cumulative threshold of 10. All model omission results performed
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Figure 3. 3-panel seasonal maps showing the environmental suitability for C. capitata occurrence annually according to the MaxEnt
model. Dots represent the seasonal presence points used in the seasonal potential niche modelling. Blue, purple and red colors show high
confidence in predicted suitability, while yellow represents low confidence and predicted absence.

doi:10.1371/journal.pone.0111582.g003
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Table 4. Relative influence of the contribution of the variables to the model [%].

Variable General Jan-Apr May-Aug Sep-Dec
Land Surface Temp (LST) minimum 63.7 325 - 34

LST maximum 233 5.8 - -
Elevation (DEM) 7.4 7.9 10.2 6.1
Precipitation maximum 2.8 59 24.7 14.5
Normalized Difference Vegetation Index (NDVI) 2.0 84 18.1 8.8
Precipitation minimum 0.8 9.1 35 1.1

LST average - - 4.2 17.4
General Model suitability index >0.1 mask - 304 39.3 48.6

doi:10.1371/journal.pone.0111582.t004

zation of border surveillance efforts that are operating under
limited resources and staffing. It can also be used to target
interventions, enable or deny seasonal trade and be incorporated
into risk assessments for commodity importation. This methodol-
ogy, in principle, has the potential to be applied to any invasive
insect species, or any organism subject to seasonal population
dynamics and density. Combined with information about changes
in seasonal movement of commodities at risk or passenger luggage,
it could be adopted widely, both in the scientific and policy-
making communities.

Our global annual suitability model presented here can be
compared with previous published studies on Medfly range. One
of the most recent ones was performed using two approaches: a
genetic algorithm for rule-set prediction (GARP) and principal
component analysis (PCA) [16]. A comprehensive native and non-
native dataset on Medfly occurrence was compiled and used in
modeling, together with eight environmental covariates consisting
of temperature and precipitation parameters. In the model output
areas of “high” and “low” suitability indicated by various shades
of gray were presented, but thresholds for the division between
them were not specified. The GARP model was judged to perform
better by the authors; therefore we compare our results to the
GARP output. It is noticeable that the MaxEnt annual model
presented here tends to be more conservative and return a
narrower range of Medfly suitability. It is particularly apparent in
Africa and Australia. The models show less agreement in terms of
suitability in Americas and good agreement on the suitability in
Europe and Asia. Another previous study used CLIMEX to
predict Medfly’s suitable niche [17]. This model inferred the
climatic conditions it can tolerate, based on the CLIMEX Growth
Index. Additional modeling was then performed incorporating the
effect of irrigation on Medfly abundance. Suitability was illustrated
by 3 different suitability indices represented by various sized dots.
In this case, the MaxEnt annual model presented here shows
substantially closer agreement in terms of the most suitable areas
in both the Americas and Europe, while it shows a more
constrained suitability range in Africa, Australia and Asia. The
study by Gutierrez and Ponti [19] represents a mechanistic
approach to Medfly suitability range prediction. They developed a
fine scale temperature driven and physiologically-based demo-
graphic model for Medfly in order to predict potential distribution
in California, Arizona and Italy under the most recent climatic
conditions for several individual years and under hypothetical
climate warming. Results suggested that the climate in Arizona is
outside of the climatic envelope for Medfly, whereas most of the
Central Valley of California has marginal suitability, except in
south coastal California. They conclude that continuous inter-
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annual suitability for Medfly could occur only in south coastal
regions of the state. Our general Medfly suitability prediction
defines a larger portion of California as being suitable — including
coastal areas and the Central Valley, while the seasonal model
outlined here defines the most suitable conditions as being in the
third trimester. During the first trimester high altitude areas are
defined as unsuitable, most likely due to low temperature and the
second trimester defines most of California as moderately suitable.
Stable suitability for Medfly is predicted in the southern part of the
Italian peninsula, along the coast near Rome and on the plain of
the Po River. Our model shows good agreement with the
Gutierrez and Ponti [19] predictions here. Another MaxEnt
prediction for Medfly was carried in the past, with default software
settings with the exception of increased numbers of iterations. A
smaller number of occurrence points was used and a wide range of
climate predictors related to temperature and precipitation,
without excluding those with high pairwise correlation values,
was applied [20]. The model showed the highest suitability for
Medfly in the southern part of China, whereas our model depicted
another territory of potential invasion in the eastern part of the
country.

The database constructed here includes a new level of detail
regarding Medfly occurrence, including the sampling method, host
type and relative abundance of Medfly in different months. In
terms of data coverage, Medfly occurrence is relatively well
documented in Mediterranean Europe, but most data from the
Middle East comes from Israel, with little information available
from other countries in the region. While there do exist
comprehensive data on the native range of Medfly across most
of Africa, we found few records from the northern part of the
continent. Data collection for Central and South America resulted
in generally sparse coverage, with Argentina being an exception,
where many comprehensive studies were performed and a large
amount of occurrence data are available. Only around 25% of
records gathered included information about the month of Medfly
occurrence. We have received information on Medfly detection
locations for Hawaii and California, and no geo-referenced
locations for Florida. Given the environmental sensitivity of the
species and the resultant significant seasonality in distributions and
abundance, future studies should ideally prioritize the collection
and assembly of such valuable temporal information.

The seasonal suitability maps presented in this paper show
considerably lower suitability for Medfly activity in the northern
fringes of its distribution in the first 4 months of the year, which is
in agreement with both gathered occurrence data, and previous
studies on its seasonal dynamics in the region [3,18]. During these
months Medfly tends to overwinter as larvae in host fruits or at
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certain extension in a pupal stage in the ground. The adult activity
is not present or is very limited. Most of the Mediterranean basin
appears as unsuitable and significantly lower suitability is observed
in California, where there is discussion about the pest’s ability to
overwinter. In May—Aug period, the suitability for Medfly extends
well above its northern distribution limit in Europe, and a
significantly higher suitability is observed in the Mediterranean
basin. The highest suitability is observed in the last season, which
corresponds well to previous studies on pest seasonal dynamics in
the northern hemisphere. Lesser variability in the suitability for
Medfly development is observed on the southern fringes on its
distribution — especially in South America. More pronounced
variability is observed in Australia, mostly in northern parts of the
country, which lie outside of the current pest distribution. Few
studies on the seasonal activity of Medfly outside of Europe exist
and therefore it is hard to evaluate the results with the detection
data. More pronounced variability in suitability is observed in
near-equator or tropical locations, which might be a result of
variability in precipitation and its effect on pupal development,
and also host availability and phenology.

Significant uncertainties in the outputs presented here remain.
The models have been built on the most comprehensive dataset of
Medfly occurrence points yet assembled, but this still has a limited
amount of data in many parts of the world. Moreover, the data are
often lacking consistency in sampling methodology and possibly
subject to errors in spatial and temporal referencing that are
difficult to track. Further, while a detailed set of global seasonal
environmental covariate datasets has been assembled and utilized
in the modeling here, some additional factors could be taken into
account in future studies, including humidity. Additionally, there
are many factors that influence Medfly presence and abundance
for which global spatial data do not exist — these include, for
example, the distribution of competitor species, the distribution of
host plants, control method coverage and produce movement
patterns (natural and by fruit trade). Spatial data on these would
likely improve modeling output fidelity and tackle some of the
unexplained variance seen. Finer scale regional approaches might
shed more light on local pest dynamics. Despite these caveats, the
output maps represent the first attempt to model the global
seasonal environmental suitability of one of the World’s most
economically damaging pest species.

Due to continuous efforts towards its elimination in many
countries and trade and custom regulations that aim at reducing
the risk of its importation, the presence of Medfly is not necessarily
continuous across a region, but fragmented. To get a better picture
of the seasonal aspects of Medfly activity, the outputs presented
here need to be matched and adjusted to known Medfly suitability
areas, where the pest could overwinter and become established.
Future work will aim to tackle this and link the seasonal
distribution maps presented here with seasonally changing
commodity movement and human travel data to work towards
building predictive models of Medfly importation risk and how it
likely changes seasonally. The analyses presented here have shown
how the suitability for Medfly changes throughout a typical year,
but the riskiest movements of people and commodities for Medfly
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Conclusions

Very few studies exist on the seasonal modeling of species
distributions, and these studies are usually performed on local or
regional scales. For species that are highly sensitive to environ-
mental conditions that display strong seasonal patterns in
distributions and abundances, seasonal modeling of environmental
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when and where a pest is most likely to be at the peak of its
population activity, potentially informing targeted surveillance at
borders. Continued effort in gathering information about Medfly
detection locations, not only in terms of spatial occurrence, but
recording activity on seasonal scales, can serve as a tool to
understand the spatio-temporal population dynamics of the
species. Increasing numbers of tools are available to model species
potential distributions, and with finer resolutions of global spatial
environmental datasets as well as ever increasing computing power
to handle such large datasets more accurate prediction of species
potential distributions can likely be performed. Even the most
robust methods however, are limited in their performance where
occurrence data 1s incomplete or scarce. Continued efforts to
document Medfly and other pest species occurrence and make
such records available are therefore essential for improvement of
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