The University of Southampton
University of Southampton Institutional Repository

Learning bayesian network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search

Learning bayesian network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search
Learning bayesian network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search
Baesens, B.
f7c6496b-aa7f-4026-8616-ca61d9e216f0
Egmont-Petersen, M.
3c580589-1390-4358-9661-1b19a0d1247e
Castelo, R.
2adeaad0-0c31-4b8f-93e4-3f4ed7763bd1
Vanthienen, J.
808131f1-b77b-4dee-bdda-90a94124c999
Baesens, B.
f7c6496b-aa7f-4026-8616-ca61d9e216f0
Egmont-Petersen, M.
3c580589-1390-4358-9661-1b19a0d1247e
Castelo, R.
2adeaad0-0c31-4b8f-93e4-3f4ed7763bd1
Vanthienen, J.
808131f1-b77b-4dee-bdda-90a94124c999

Baesens, B., Egmont-Petersen, M., Castelo, R. and Vanthienen, J. (2002) Learning bayesian network Classifiers for Credit Scoring Using Markov Chain Monte Carlo Search. The Sixteenth International Conference on Pattern Recognition (ICPR'2002). 11 - 15 Aug 2002.

Record type: Conference or Workshop Item (Paper)

Full text not available from this repository.

More information

Published date: 2002
Venue - Dates: The Sixteenth International Conference on Pattern Recognition (ICPR'2002), 2002-08-11 - 2002-08-15

Identifiers

Local EPrints ID: 37169
URI: http://eprints.soton.ac.uk/id/eprint/37169
PURE UUID: b9852334-14d1-4129-a454-028ca7e0d548
ORCID for B. Baesens: ORCID iD orcid.org/0000-0002-5831-5668

Catalogue record

Date deposited: 25 May 2006
Last modified: 17 Dec 2019 01:47

Export record

Contributors

Author: B. Baesens ORCID iD
Author: M. Egmont-Petersen
Author: R. Castelo
Author: J. Vanthienen

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×