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Evaluating network science in archaeology 

ABSTRACT 
In the last decade, network science techniques have become more common in archaeology. 

But is this just a short-lived trend caused by the popularity of these techniques in other 

disciplines, the availability of big data, and the rise of the World-Wide Web and online social 

networks? Or does network science hold the potential of making a unique contribution to our 

discipline? This PhD project aims to evaluate this potential. 

It starts with the claim that the unique contribution of network science to archaeology lies in 

its ability to deal with network data. It evaluates this claim through a literature review and 

three archaeological case studies. Two of the case studies concern research themes in Roman 

archaeology, to focus the evaluation process on one archaeological subdiscipline rather than 

tackling the full diversity of research themes and data types in archaeology. This thesis takes 

a Roman archaeology perspective to evaluating network science, and further discusses the 

implications of its results for the archaeological discipline at large. This project not only aims 

to evaluate whether network science does indeed offer a unique contribution, but also 

whether archaeologists have need for such techniques. Do archaeologists commonly ask 

research questions that are best addressed through the analysis of network data? Does 

network science allow archaeologists to ask new questions? Are archaeologists commonly 

confronted with network data? 

The literature review reveals that formal network techniques have been used in archaeology 

since at least the 1960s, but have only recently become more commonly applied. Moreover, it 

concludes that the methodological range of network techniques applied in archaeology is 

limited and that its place in the archaeological research process is ill-defined. It suggests 

these issues can be tackled by taking a broad multi-disciplinary scope, by letting the 

archaeological research context dominate the adoption and development of network 

techniques, and by working explicitly through a network science research process. These 

three lessons subsequently influenced the selection of three archaeological case studies that 

have the ability to address this project’s research questions, to evaluate possible 

particularities in the use of network science for Roman archaeology, and that have the 

potential to allow the application of network techniques that have never before been applied 

in archaeology. 
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The first case study presents a citation network analysis of the adoption, use and adaptation of 

formal network techniques in archaeology. This case study can be seen as a network analysis 

of the literature review, using exploratory network techniques and visualisations. It illustrates 

how an exploratory network analysis allows one to gain insights that cannot be obtained from 

a close reading in a literature review, and how some of the conclusions of the literature 

review can be identified or reproduced through the use of exploratory network techniques. 

The second case study is an analysis of inter-settlement visibility in Iron Age and Roman 

Southern Spain. It introduces a statistical modelling approach (Exponential Random Graph 

Modelling (ERGM)) for simulating dependence assumptions surrounding visibility networks: 

theoretical assumptions formulated by archaeologists as hypotheses of why lines of sight 

between settlements matter. Finally, the third case study presents an agent-based network 

model of tableware distribution in the Roman Eastern Mediterranean. It focuses on the 

potential of network science methods for performing confirmatory analyses by evaluating 

two complex hypotheses surrounding the functioning of the Roman trade systems. 

This thesis concludes that archaeologists commonly formulate (implicitly or explicitly) 

dependence assumptions, that they are confronted with network data, and that in such cases 

network science techniques can offer methodological advantages over other methodological 

tools used by archaeologists. This conclusion firmly establishes network science in the 

archaeologist’s methodological toolbox. The main contributions of this PhD project are, 

therefore, i) to argue why network science offers archaeologists unique and necessary 

methodological advantages, ii) to provide three critical practical examples of how it can be 

applied, iii) to offer a number of suggestions which could guide the future archaeological use 

of network science, iv) to introduce innovative methods of citation analysis and statistical 

network modelling to our discipline, and v) to emphasise the importance and possibility of 

falsifying and abstracting Roman archaeology hypotheses as transparent and comparable 

conceptualisations. 
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Fig. 1. Word cloud of the full text of this PhD thesis. It’s about networks! 
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1. Introduction: why evaluate network science in archaeology? 

1.1. Aims 
This PhD project aims to make a methodological contribution to the archaeological discipline 

at large and to Roman archaeology specifically by evaluating the potential of network science 

as a method in archaeology. This will be achieved by: 

• evaluating previous archaeological applications of network science (chapters 2-3); 

• identifying methodological challenges of the application of network science in 

archaeology and their implications for Roman archaeology (chapters 2-6); 

• addressing some of these challenges through three archaeological case studies 

(chapters 3-5); 

• evaluating network science techniques that have not previously been applied in 

archaeology and are (a) developed and/or selected in light of specific archaeological 

research contexts, research questions and data, and (b) draw on a critical 

understanding of existing methods in multiple disciplines (chapters 3-5). 

This thesis therefore aims to provide an overview of the advantages and disadvantages of 

network science in archaeology (chapter 6), which might allow archaeologists to better 

evaluate the potential contribution a network science method offers within particular research 

contexts. Such research is a useful exercise for the archaeological discipline due to the utility 

network science has shown in other disciplines and the increasing popularity of network 

science in archaeology, coupled with the current uncertainty surrounding the role network 

science could play within the archaeological research process. 

It is easier to write of the necessity of a PhD project than to prove this statement. This is not a 

straightforward process and throughout the following chapters I will evaluate different 

aspects of my argumentation through literature review and case studies. However, arguably 

the most crucial starting point is the definition of network science I have adopted in this 

thesis. In the rest of this introduction I will introduce this definition and argue how it implies 

the potential of an innovative method for archaeology. This will lead to a number of more 

specific research questions that require evaluation. The introduction is concluded with a 

description of the structure of this PhD and my approach to achieving this research agenda. 
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1.2. What is network science? 
To argue that network science holds the potential to make unique methodological 

contributions to archaeology implies that one believes network science is somehow different 

from other methods already present in the archaeologist’s toolkit. However, network 

perspectives themselves are by no means a unified body of theories and methods that 

perfectly complement each other. Network perspectives range from the highly quantitative to 

very qualitative, from working on a small scale to those functioning best on a large scale, 

from scientific to philosophical, and from an explicitly present-day perspective to attempting 

to recreate past perspectives. Each one of these is a valid way of thinking about past human 

behaviour and behavioural change (or rather every configuration or combination of these 

perspectives). This diversity of perspectives runs the risk of fostering the false impression 

that network theories are somehow fundamentally different from network methods, that 

network “thinking” and network “doing” can be easily separated. As with any research 

perspective, however, there can be no “doing” without “thinking” and vice-versa. Although 

this sounds like an obvious point to make, I have observed through the literature review 

presented in chapter 2 that network theories and methods have often been applied 

individually with little discussion of the implications of doing so. I will also argue below that 

what I understand as the fundamentals of network science makes it impossible to separate 

these two parts of the process. 

Despite this diversity, network perspectives nevertheless share some common features, 

allowing one to talk about a science of networks. I will argue here that these features set 

network perspectives apart from others, and that they may be the source of the potential for a 

better understanding of the past. I will start with a descriptive definition of these features 

followed by a more formal definition. 

Both social network analysts and physicists studying large empirically observed networks 

(the two scientific communities that have been most prominent in network science at large 

and that have been particularly influential to archaeologists (see literature review chapter 2)) 

agree that a few fundamental features and assumptions set network perspectives apart from 

others. In network perspectives, entities of research interest are never studied in isolation. 

Instead it is assumed that the relationships these entities are engaged in are fundamental for 

understanding their opportunities and behaviour. These entities could be anything the 

researcher considers interesting within the context of their research aims: a technological 
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innovation, molecules, neurons in the brain, objects, individual humans, archaeological sites, 

islands, modern countries, or even entire planets. Note how the physical size of the entities 

does not really matter. Indeed, they do not even need to be physical. Anything can be usefully 

considered an entity of research interest if it allows the researcher to answer their research 

questions. This feature has led some to argue for the potential of network perspectives to 

cross different (spatial, social, conceptual) scales of analysis (e.g. Knappett 2011). The 

relationships between these entities could be equally diverse: a recorded action of 

transmission, spatial proximity, a physical connection such as a road, friendship, political 

alliance, being a member of an institution, the presence of an object on a site or the 

morphological similarity of objects. Network perspectives have the flexibility to incorporate 

multiple entities and relationships within a single research framework, as long as the 

researcher considers it useful to do so. The above definition implies that network perspectives 

not only aim to trace patterns of relationships between entities, they aim to explore the 

implications of doing so. To give an example inspired by classical antiquity: in order for a 

Roman senator called Cicero to climb the Roman political ladder and become consul, he is 

not solely dependent on his life-story, his family history, or his wealth; equally important are 

his political alliances and his popularity among the different communities of voters, since 

their actions and alliances will affect Cicero’s political opportunities and will influence his 

actions (for a network analysis of Cicero’s social network see Alexander and Danowski 1990; 

Brughmans 2012). 

This definition also implies that entities and the way in which they relate will always need to 

be definable, their conceptual and/or physical boundaries will need to be tied down (if only 

just hypothetically or temporarily). This assumption does not mean concepts with fluid 

boundaries cannot exist, that concepts cannot have multiple meanings, or that concepts 

cannot change their meaning, performance or nature through time. It is merely an assumption 

that simplifies aspects of a complex world because it is useful to do so, and because by doing 

so the network perspectives allow one to better understand this complexity (such assumptions 

that simplify a complex real-world feature are present in almost every workable theory or 

method). 

This descriptive definition already highlights some of the defining features of network 

perspectives. However, it remains to be shown why network methods cannot function without 

theories and vice versa. I find the more formal definition of network science formulated by 
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the editors of the journal ‘Network Science’ in their introduction to the first issue is a 

particularly suitable way to explain this (Brandes et al. 2013). Network science is seen as the 

“study of the collection, management, analysis, interpretation, and presentation of relational 

data” (Brandes et al. 2013, 2). This simple definition explains why so far I have refrained 

from using the term network analysis, or indeed social network analysis. Network 

perspectives allow for far more than merely the analysis of relational data, and as I have 

argued above they are not just concerned with social entities. It is, therefore, more suitable to 

refer to the collective of approaches that share these fundamental features as network science, 

or more generally as network perspectives. Brandes and colleagues further refine their 

definition of network science by stating it “is the study of network models” (Brandes et al. 

2013, 4). They see network models as consisting of different elements and processes as 

illustrated in Figure 2, which can be considered an abstract representation of the key features 

of a network science research process. As such, it is a useful formal tool for further 

explaining the key combining features of network perspectives. 

 

Fig. 2. At the top, an abstract representation of a network model (adapted from Brandes et al. 2013, Fig. 1). Every network 
perspective for the study of the past includes these elements and processes. At the bottom, an example of a network model to 

explore a particular phenomenon. 

Archaeologists as well as historians aim to understand past phenomena, whether they are past 

networks of some sort that are hypothesised to have existed (e.g. a road network or a social 

network, e.g. see case study 3 in chapter 6), or aspects of human behaviour that translate less 

straightforwardly into network concepts (e.g. communication and trade, e.g. see case studies 

2 and 3 in chapters 5-6). In figure 2, the past phenomenon we are interested in is clearly 

separated from the perspective we use to understand it. This highlights an epistemological 

issue every research perspective struggles with and that is particularly critical with network 

perspectives since it uses intuitively appealing concepts for the study of the past: the past 

networks we are interested in should not be confused with the network perspective, concepts 

and data we use to understand it (Knox et al. 2006; Riles 2001; Isaksen 2013). Instead of 
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drawing a one-to-one relationship between the past phenomena and networks, the network 

perspective requires us to go through a process of abstraction in terms of network concepts 

and a process of representation as network data. 

This model represents a common research process and is by no means unique to network 

perspectives. Yet I believe there is a need to emphasise this here, since the literature review 

presented in chapter 2 shows that sometimes these steps are not given much explicit thought, 

or in some cases there is evidence of a lack of awareness of their existence in archaeological 

network studies. Moreover, the model presented in figure 2 enforces a directionality to the 

research process that is commonly reversed in archaeology: archaeologists often start by 

describing the archaeological record and from there try to evaluate what phenomena can be 

addressed through this data. Both directions (from phenomenon to data, and from data to 

phenomenon) are valid approaches and I believe they never exist in isolation and, therefore, 

influence each other. However, I will argue throughout this thesis that following a research 

process as the one described in figure 2 reveals the untapped potential of network science for 

archaeology, more so than the reversed process of working from data to phenomenon that is 

more common in archaeology. Nevertheless, every scholar working with a network 

perspective does network modelling. The unawareness of the network modelling process is 

what leads to the false impression that network theories and methods are easily separated; as 

if a network analysis of archaeological data could be performed without reference to a 

theoretical network perspective, or as if a theoretical assumption about the structure or 

functioning of a past phenomenon could be formulated without any reference to data (or in 

the absence of empirically observed data, the formulation of specifications of what this 

expected data would look like). On the one hand, a more methodological network approach is 

aimed at testing a hypothesis, which cannot be achieved without thinking of the past 

phenomena as network concepts and formalising assumptions about how relationships affect 

the behaviour of entities and the evolution of the network. Alternativelly, it is aimed at 

representing archaeological or historical sources as network data, where the interpretation of 

the results in particular requires an inverted network modelling process to obtain useful 

insights about past phenomena. On the other hand, a more theoretical network approach 

might allow one to describe the hypothetical structure of a past phenomenon or the processes 

functioning as driving mechanisms of network evolution or node behaviour. Either way, to 

evaluate the probability of the hypothesis a representation of the network concepts employed 

will be necessary (to compare with empirical observations or with simulations of the 
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hypothesis). Only in cases where falsification of hypotheses is not considered necessary we 

can argue that there can be network theory without representation as network data (although 

then a representation of a hypothesis as abstract network data can still be considered useful 

for communication purposes). Most recent archaeological network studies seem increasingly 

aware of this (e.g. case studies in Knappett 2013a). According to this definition one practical 

consideration becomes particularly important: the need to clearly define the archaeological 

research question or hypothesis, the entities and relationships that are considered, as well as 

stating the scholar’s assumptions of how these relationships affect the behaviour of entities. 

One crucial issue remains unexplained: what is network data? How exactly do we represent 

not only entities and relationships, but also the assumptions that govern their behaviour? 

Once again I will follow the reasoning of Brandes and colleagues (2013), who argue that 

network data are different from other types of data (they consider unrelated entities in data 

tables, dyadic data, and network data), or at least it is useful to consider it differently from 

other data types. This is because of the nature of the assumptions one makes about the 

dependencies existing in different data types. These so-called dependence assumptions in 

network data will be discussed in practice in more detail in the second case study in chapter 

4. For now, it suffices to explain the difference between network data and other types of data 

through two examples: one social and the other spatial. 

In a first example we consider the social relationships between a group of individuals, both 

men and women (Fig. 3). When we consider unrelated entities in data tables we can collect 

some information about these entities which is represented as attributes (Fig. 3a): we know 

one individual is female and two are male; the female is called Mary whilst the males are 

called John and James; Mary is an archaeologist with an income of X, John is an 

archaeologist with an income of X, and James is an accountant with an income of Y. If we 

just consider these individuals on their own we can already formulate assumptions of how 

some attributes depend on each other. For example, Mary’s and John’s salaries may be 

dependent on their job as archaeologists. We could also consider dyadic data, which assumes 

some attributes are only relevant to pairs of individuals and not merely to those individuals in 

isolation. Figure 3b represents Mary and John as a dyad, both are now connected because we 

know they are a couple. Here we make a new type of dependence assumption that the 

‘couple’ attribute of both Mary and John is dependent on each other: their relationship cannot 

be understood by merely the attributes of either one of the partners. Finally, in figure 3c we 

21 



Tom Brughmans 

have network data, where every line represents a friendship relationship (i.e. Mary and John 

are friends; John and James are friends). In network data we make the additional dependence 

assumption that one relationship will affect the existence of another relationship. It is up to 

the researcher to decide what the nature of this assumption is, depending on their research 

questions. For example, one might assume that a pair of unrelated individuals who have a 

common friend are more likely to become friends themselves at some point in the future. In 

this case our assumption about the friendship relationship between John and James might 

give rise to the friendship between Mary and James in the future (as in Fig. 3d). However, 

these three people do not live in isolation, they are part of a wider community whose 

friendships are likely to also be governed by the same assumption (Fig. 3e). This example 

illustrates how the dependence assumptions formulated by scholars might be used to 

represent network evolution in network data. 

 

Fig. 3. Different data types representing individuals and social relationships: (a) individuals in isolation, characterised by 
their attributes which can be listed as a data table; (b) dyadic data, pairs of individuals are characterised by attributes that can 
only be understood with reference to both individuals (e.g. a romantic relationship); (c) network data, representing friendship 
relationships. When one formulates the dependence assumption that a pair of individuals who have a common friend might 
become friends in the future, then (d) can be seen as a future development of (c); (e) network data, showing Mary, John and 

James as part of a wider social context governed by the same dependency assumption as in (c). 

In a second example we could consider a road network between towns A, B and C. In figure 

4a we see that roads connect town A with town B and town B with town C. This means that 
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all road-bound traffic between towns A and C will need to pass through town B. We could 

imagine a scenario in which the inhabitants of town B levy a toll on traffic through their 

town, or that the direct distance between A and C is shorter than passing through B, or that 

the inhabitants of C have family ties with the inhabitants of town A. If we consider any one 

of these scenarios it will be likely that this network will change into that of figure 4b, where a 

new road is built connecting towns A and C. The researcher explores their hypotheses of the 

processes that govern these scenarios by formulating assumptions, in this case that a direct 

road between A and C will emerge in the future with higher probability if the road via B 

becomes unappealing for some reason. Such an assumption does not merely change the 

structure of the network, it also affects the opportunities of the nodes involved. The traffic 

passing through town B will presumably decrease, which might affect the commercial 

opportunities of its inhabitants. 

 

Fig. 4. A representation as network data of towns and the roads connecting them. The assumption that the road from town A 
to town C via town B becomes unappealing (for whatever reason the researcher considers meaningful) will increase the 

probability the network (a) will evolve into network (b). This change will affect the opportunities of each town in terms of 
controlling the flow of resources (goods, people, information), and might in turn trigger network change. 

In network data our assumptions about what it means for a pair of nodes to be connected are 

explicitly expressed. They might affect the existence or absence of all possible relationships 

in the network and represent our hypotheses of how the structure of the network changes over 

time. The importance of dependence assumptions formulated by researchers to address their 

research questions and how these are represented in network data are fundamental for 

understanding the potential of network science. In the study of the past, network 

representation can never take place in laboratory conditions, in an interpretative vacuum if 

you will. Scholars always make assumptions about what relationships between entities mean 

and what kind of behaviour they allow for. This is exactly what, I believe, makes network 

perspectives different from other perspectives and why it holds potential for the study of the 

past: we formulate and represent our assumptions about what it means for nodes to be 
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engaged in a relationship, and by doing so we can evaluate how these relationships lead to 

observed network patterning, how they affect nodes’ opportunities and behaviours, to better 

understand the processes driving structural changes in the network. 

Box 1. Summary: what is network science? 

Network science is (see Brandes et al. 2013): 

• based on an assumption that the relationships entities are engaged in are fundamental for understanding 

their opportunities and behaviour; 

• the study of the collection, management, analysis, interpretation, and presentation of relational data; 

• the study of network models. 

Network models constitute: 

• the research process whereby the phenomena under study is abstracted in terms of network concepts; 

• network concepts are in turn represented by network data, or specifications are formulated of what 

network data of defined concepts would look like. 

In network data dependence assumptions exist between: 

• values of attributes of individual entities (as in tabular data); 

• values of attributes of pairs of entities (as in dyadic data); 

• tie variables (i.e. the presence of one tie might influence the presence of another). 

1.3. Why does archaeology need network science? 
There are multiple answers to this question, some more convincing than others. Firstly, the 

last decade has seen a surge in the use of formal network methods in archaeology, as will 

become evident from the literature review (chapter 2). This increased popularity might be an 

indication that archaeologists are aware that their existing methodological approaches are not 

sufficient to answer some of the questions they are interested in. However, the popularity of a 

method alone is not an argument for it being innovative and useful. Secondly, this surge goes 

hand in hand with the increasing availability of big data in archaeology, more powerful 

computers, and user-friendly network science software. Archaeologists have turned to 

network science as one of the approaches that becomes more useful when applied to large 

datasets. But just the ability to do something we could not do before does not mean it makes 

for a good argument for why it should be done. I find the use of fractals in archaeology a very 

good example of this problem, where it is clear that fractals offer a new approach that has 

proven its value in other disciplines, but we are also still waiting for a convincing 

archaeological use of fractals that has led to new insights into the human past (for a review 

see Brown et al. 2005). Thirdly, the increase in the use of network science in archaeology is 

not just guided by blind optimism but has also given rise to a number of critical reviews, 
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listing a large number of challenges archaeologists face when adopting network techniques 

developed in other disciplines for different purposes (Isaksen 2013; Knappett in press; 

Sindbæk 2013). As I mentioned above, most crucial among these challenges is that the 

position of network science in the archaeological research process is not well understood. 

These challenges give me a reason to evaluate network science for archaeology, but they do 

not offer an argument as to its usefulness. Equally, there have been claims that formal 

network methods offer an approach that is metaphorically close to the way archaeologists 

commonly abstract past phenomena, and that they offer a degree of flexibility in formally 

analysing these phenomena. I believe this argument is suitably summed up by Carl Knappett 

(2011) in his recently published book ‘An archaeology of interaction: network perspectives 

on material culture and society’, where he writes of the advantages of networks: 

1. “they force us to consider relations between entities” 

2. “they are inherently spatial, with the flexibility to be both social and physical” 

3. “networks are a strong method for articulating scales” 

4. “networks can incorporate both people and objects” 

5. “more recent network analysis incorporates a temporal dimension” (Knappett 2011, 

10). 

These five arguments are part of the answer to the question of why archaeology needs 

network science. However, I claim that there is a more fundamental argument that 

incorporates all of the above and should form the starting point for identifying how network 

science offers a new and useful method for archaeology. This argument is adopted from the 

definition of network science given in the previous section, and it forms the central claim in 

this PhD project: 

Archaeologists are confronted with network data; network science offers the suite of 

techniques necessary to deal with network data. 

Network science is therefore not merely the analysis of networks or the study of social 

networks, as the popular term Social Network Analysis (SNA) implies. It is not useful just 

because it is a hot topic or because we have big data and computing power, nor does it merely 

concern the representation of archaeological data as network data. Rather, network science 
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concerns the study of the management, representation, and analysis of network data, and 

network data represent our theoretical statements about why relationships matter. The starting 

point of my PhD is, therefore, the claim that network science only allows archaeologists to do 

something other methods do not succeed in doing when one is confronted with theoretical 

assumptions of how relationships affect each other that can be represented as network data. 

This claim will be explored and tested through a literature review and three case studies. The 

claim is purposefully formulated as an extreme hypothesis to offer clarity and focus to its 

evaluation in the thesis, although I recognise that the answer will not simply be “true” or 

“false” but rather “true is some cases, false in others”. 

Before I continue it is important to stress that this PhD project aims to show the innovative 

aspects of network science in archaeology. However, I would like to emphasise three reasons 

why this focus should not necessarily drive all future archaeological network science. Firstly, 

network science should not be considered to replace an archaeological research process. 

Rather, it provides a set of techniques that might prove useful at different stages of the 

process. It should be clear that the abstraction of past phenomena into concepts is something 

all archaeologists do, and that it is archaeological theory and reasoning that should motivate 

the formulation of the assumptions why relationships matter. It is exactly this problem of 

where network science can contribute in the archaeological research process that I aim to 

address in this PhD project by a strict focus on its innovative aspects. Secondly, network 

science techniques might incorporate other techniques that are more frequently used by 

archaeologists, or they might be a minor part of commonly used methods. For example, a 

Harris matrix can be considered a network representation of the theoretical assumptions 

known as the laws of stratigraphy. Formal methods should be selected for their ability to 

perform necessary tasks no other method can do, and they can complement each other in such 

cases. Thirdly, there is no need to restrict the archaeological use of network science to merely 

its innovative factors. For example, the representation of archaeological data as network data 

and the use of exploratory network techniques can sometimes be a form of exploratory data 

analysis (EDA) as will be illustrated below in the third case study. It is true that statistical 

techniques can be used in some cases that might be better than network techniques at 

addressing a certain archaeological question with a given dataset. However, the process of 

representing archaeological data as networks, to visually explore them, and to be forced to 

think about relationships and their implications can sometimes lead to new insights and 
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questions, even though it was not the innovative aspects of network science that led the 

scholar to this. 

So far I have restricted my discussion of the potential of network science to a technical 

definition. Similar definitions could be formulated for other formal methods used in 

archaeology. For example, GIS is the study of the management, representation, and analysis 

of spatial data, where one assumes that spatial data are somehow different from other types of 

data and merits the development of a methodological toolkit dedicated to its study. However, 

identifying the contribution of network science to archaeology does not merely depend on 

arguments why it is different from, say, GIS because it deals with different data types. GIS is 

commonly used in archaeology because we frequently deal with spatial data, because we ask 

research questions that require the analysis of spatial data, and because archaeologists find 

visualisations of the spatial distribution of archaeological data useful for visual exploration 

and communication. Can similar arguments be made for network data? 

1.4. Research questions 
This PhD project will evaluate the abovementioned claim to novelty and the possible need for 

network science in archaeology by addressing this question, formulated as a series of more 

specific research questions. 

1. Do archaeologists commonly ask research questions that are best addressed through 

the analysis of network data? What kinds of archaeological research questions are 

well suited to explore from a networks perspective? Does network science allow 

archaeologists to ask new questions? 

2. Are archaeologists commonly confronted with network data? What data are typically 

well suited to submit to a network science approach? 

3. Are network techniques and visualisations useful exploration and communication 

tools in archaeology? 

4. What are the limitations of formal network methods in archaeology? 

5. Do the typical research questions and datasets in Roman archaeology pose particular 

advantages or disadvantages? 

Addressing these research questions will lead to a better understanding of the advantages and 

limitations of network science in archaeology, to a better positioning of network science 

within the archaeological research process, and will result in specifications that allow 
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archaeologists to evaluate when network science techniques are suitable for addressing their 

research questions. 

1.5. Why a Roman archaeology perspective? 
It was decided to approach the aim of this PhD project through Roman archaeology case 

studies for a number of reasons. Most importantly, evaluating the potential of network 

science for the entire archaeological discipline would require the development of a much 

larger number of case studies addressing some of the possible particular challenges posed by 

different archaeological subdiscplines. Instead, it was decided to make the contribution of this 

PhD project more tightly focused around Roman archaeology case studies, whilst the more 

general implications of this work can be extrapolated to archaeology as a whole. However, 

the case studies were carefully selected to address a number of more general challenges of 

relevance to archaeology: the use of material datasets as proxies for human behaviour, 

creating similarity networks, dealing with long time-spans and limited chronological 

accuracy, working with bad samples. A more practical consideration was the availability of 

Roman archaeology datasets from the ‘Urban connectivity’ (see case study 2) and 

‘ICRATES’ projects (see case study 3), my familiarity with these datasets through my 

education and work before the PhD, and the expert support these research contexts offered. 

A Roman archaeology perspective also offers some advantages to this project. Firstly, in 

addition to the material data types available for most of archaeological periods, Roman 

archaeologists can also draw on literary sources. Although these are not directly the focus of 

this PhD project, they do allow Roman (and later periods) archaeologists to formulate 

complex research questions, and offer the information needed to suggest detailed hypotheses 

of past phenomena. Roman archaeologists frequently discuss and incorporate the role of 

individuals, communities, institutions, as well as materials in such hypotheses. This allows 

me to evaluate how network science techniques developed to study modern social networks 

can be modified or applied to incorporate the archaeological record. An example of this is 

offered by the complexity and diversity of hypotheses surrounding the study of the Roman 

economy, discussed in case study 3. However, the ability to ask complex research questions 

thanks to the diversity of data types has also in some cases led to strong differences in the 

research traditions of Roman and prehistoric archaeologists. This has resulted in some cases 

in research themes, more common in prehistoric archaeology, to be neglected in Roman 

archaeology, and creates the impression of radical changes between the Roman and 
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prehistoric periods. Case study 2 offers an example of this, where visibility has been 

hypothesised as an explanatory variable for settlement location by Iron Age archaeologists, 

but has been almost completely ignored by Roman archaeologists. This case study will allow 

me to evaluate how network science techniques can help bridge the gap between different 

research traditions by drawing on both research themes and data from both prehistoric and 

Roman archaeology. Finally, the critical analysis of the diverse and large datasets and the 

formulation of complex hypotheses in Roman archaeology did not go hand in hand with 

methodological developments to deal with big data and to test hypotheses. Case study 3 

illustrates the need for such methods most clearly. This offers the ability to evaluate the 

potential of network science techniques as both exploratory tools for dealing with large 

datasets, as well as confirmatory tools for testing or falsifying complex hypotheses in Roman 

archaeology. 

1.6. The structure of this PhD 
In line with my aims set out at the start of this introduction I believe that the research 

questions can be addressed through a literature review and archaeological case studies. This 

thesis includes three archaeological case studies. The case studies are selected for their ability 

to address some of these research questions, to evaluate possible particularities in the use of 

network science for Roman archaeology, and for their potential to allow the application of 

network techniques that have never before been applied in archaeology. The complexity of 

the network science techniques used will increase from one case study to another, i.e. the first 

case study introduces techniques and concepts applied in the second and third case studies, 

and so on. Each case study is complemented by boxed summaries, which clearly state the 

phenomena studied, the network concepts these are abstracted into, and how these are 

represented as network data. Therefore, by explicitly working through the network modelling 

process as described in the definition of network science introduced above in three 

independent case studies, I will be able to discuss the advantages, disadvantages and the 

diversity of network science approaches in chapter 6. 

Chapter 2 provides a literature review of the archaeological use of formal network methods. 

It will trace back its roots to the first use of graph theory in archaeology in the late 1960s, as 

well as describe the more recent surge in the use of network methods stimulated by the 

popularity of SNA and complex network modelling in physics. This chapter will partly 

address the first two research questions by providing examples of archaeological research 
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questions that are best addressed through network data. It will also address the fifth research 

question by reviewing the use of formal network methods in Roman archaeology. Moreover, 

this chapter will identify a large number of challenges archaeologists have been confronted 

with. It will, therefore, provide the framework within which the importance of addressing 

particular challenges within this PhD project becomes clear. 

Chapter 3 presents the first case study: a citation network analysis of the adoption, use and 

adaptation of formal network techniques in archaeology. This case study can be seen as a 

network analysis of the literature review presented in chapter 2, using exploratory network 

techniques and visualisations. Indeed, this case study illustrates how an exploratory network 

analysis allows one to gain insights that cannot be obtained from a close reading in a 

literature review, and how some of the conclusions of the literature review can be identified 

or reproduced through the use of exploratory network techniques. I, therefore, consider it a 

particularly relevant example for addressing the third research question. It is also useful for 

introducing many of the formal network techniques in practice in this PhD. Unlike the other 

two case studies it does not involve any material culture or Roman archaeology research 

questions. Through the citation practices of archaeologists, which are in this case study 

considered as formal representations of academic influence, I will evaluate whether and how 

exploratory network analysis and visualisation can add new insights about the adoption of 

formal network methods to the close reading of a literature review. 

Chapter 4 presents the second case study: understanding inter-settlement visibility in Iron 

Age and Roman Southern Spain with exponential random graph models for visibility 

networks. This case study will put the definition of network science and network data 

introduced above to the test most explicitly, by adopting a statistical modelling approach for 

simulating dependence assumptions surrounding visibility networks: theoretical assumptions 

formulated by archaeologists as hypotheses of why lines of sight between settlements matter. 

In doing so it will also for the first time introduce and evaluate a key method in network 

science for its potential in archaeology: Exponential Random Graph Modelling (ERGM). The 

approach taken here can be considered a transition from the exploratory approach taken in 

case study 2 to the confirmatory approach taken in case study 3, since it uses a statistical 

approach that very much relies on the availability of good empirical data. This case study will 

therefore address the first two research questions, as well as contribute to answering the fifth 

research question given its focus on Roman archaeology. 
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Chapter 5 presents the third and last case study: “Bang’s Roman bazaar and/or Temin’s 

market economy? An agent-based network model of tableware distribution in the Roman 

East”. In this last case study I focus on the potential of network science methods for 

performing confirmatory analyses by evaluating two complex hypotheses surrounding the 

functioning of the Roman trade systems. The two tested hypotheses concern the actions of 

individual social agents and their roles in giving rise to an archaeologically observed 

distribution pattern of tablewares. However, unlike in the previous two case studies it is less 

straightforward to identify the phenomena of interest in the dataset used and a confirmatory 

approach that draws on agent-based computational network modelling is applied instead. This 

case study will emphasise the importance of selecting the right network science technique for 

addressing archaeological research questions. Moreover, it will address the fifth research 

question most directly of all case studies by emphasising the importance of clear formulation 

of the conceptualisation and representation as data in Roman archaeology models, and of the 

largely unaddressed need in Roman archaeology for formal hypothesis testing. 

Chapter 6 will draw on all previous chapters to systematically address all of the thesis’ 

research questions. A long list of methodological, data, spatial, and processual challenges 

identified in practice through the case studies or through the literature review will be 

discussed. This will be intertwined with a discussion of how the case studies presented here 

succeeded or not in overcoming some of these challenges, how they added new challenges to 

the list, and how this PhD suggests refocusing future efforts of overcoming the many 

remaining challenges archaeological network scientists face. The lessons learned through this 

PhD project will finally result in a list of suggestions for future archaeological network 

science: the start of a ‘guide to good practice’. 
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Box 2. Summary Chapter 1 

Aim of the thesis: 

• To make a methodological contribution to the archaeological discipline at large and to Roman

archaeology specifically by evaluating the potential of network science as a method in archaeology.

The key argument: 

• When archaeologists are confronted with network data a suite of techniques is needed that is designed

for this purpose, these techniques are offered by network science.

Research questions: 

1. Do archaeologists commonly ask research questions that are best addressed through the analysis of

network data? What kind of archaeological research questions are well suited to explore from a

networks perspective? Does network science allow archaeologists to ask new questions?

2. Are archaeologists commonly confronted with network data? What data are typically well suited to

submit to a network science approach?

3. Are network techniques and visualisations useful exploration and communication tools in archaeology?

4. What are the limitations of formal network methods in archaeology?

5. Do the typical research questions and datasets in Roman archaeology pose particular advantages or

disadvantages?
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2. Literature review: the roots and shoots of archaeological network 

science 

2.1. Introduction 
Network science in archaeology has become more common in recent years. This statement is 

best illustrated by the recent increase in the number of archaeological publications using 

network techniques (Fig. 5). However, figure 5 also shows that network techniques have been 

used in archaeology at least since the 1960’s. What were the methodological influences of 

these early adopters, and how did they in turn influence more recent archaeological network 

science? Is the use of network techniques in archaeology in the last decade fundamentally 

different from how it was used before? What were the motivations for archaeologists to adopt 

and adapt network techniques developed in other disciplines? The recent increase in the 

archaeological use of network science techniques might create the impression that most of 

these techniques have only been applied relatively recently in archaeology, or that the 

development of new techniques in the last decade made network science more useful for 

addressing archaeological research questions. In order to evaluate this impression one needs 

to go back to the roots of archaeological network science, to trace the multi-disciplinary 

developments which influenced archaeologists and stimulated the adoption and adaptation of 

network techniques. Through a close reading of published examples of the archaeological use 

of network techniques, I will illustrate that this impression is only partly true. I will reveal 

how very early archaeological applications introduced network techniques to our discipline 

that are still the most popular in more recent archaeological applications. This literature 

review will also highlight a number of challenges that many archaeological applications have 

in common, some of which I aim to overcome through the case studies in chapter 3 to 5. I 

start my review with the archaeological use of the branch of mathematics underlying much of 

network science: graph theory. 
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Fig. 5. Histogram showing the number of published examples of the archaeological use of network techniques. Network 
techniques were used sporadically since the late 1960’s but only become more commonly used in the 2000’s. The full list of 
publications included in this histogram is provided in Appendix I. 

2.2. Origins in graph theory? 
The branch of mathematics concerned with the study of graphs is called graph theory, which 

is generally considered to be one of the major mathematical foundations of SNA (Barnes and 

Harary 1983; Wasserman and Faust 1994, 15) and underlies much of the work done in 

network studies in physics. It is therefore not surprising that archaeological applications 

influenced by SNA and physics are also strongly rooted in graph theory. However, as I will 

illustrate in this section, it would be wrong to claim that formal network methods were 

introduced to the archaeological discipline through graph theory. 

The reason why graph theory and networks are such a happy couple lies in the fact that graph 

theory not only offered network analysts a way to visualize networks as vertices and lines, a 

representation that came to dominate the way we think of networks nowadays, but it also 

brought with it a descriptive and mathematical system. Harary, Norman and Cartwright 

(1965, 3) described the potential of graph theory for SNA: (1) graph theory provides a 

vocabulary of concepts that can be used to describe properties of social structure, (2) it gives 

us a set of mathematical operations to quantify and measure these properties, and (3) given 

this vocabulary and mathematical operations it allows us to prove theorems about social 
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structure represented as graphs (Wasserman and Faust 1994, 93). It is crucial to stress that in 

SNA graphs are used as models for social networks, which means that the nodes of graphs 

always represent social entities like individuals, communities or organizations and that the 

ties always represent relations with a social connotation like co-membership in organizations, 

kinship ties or proximity to social entities (Wasserman and Faust 1994). The social nature of 

graphs is an assumption in SNA that underlies the creation and interpretation of graph 

theoretic techniques developed by social network analysts. In network science in general the 

social nature of graphs is far less ubiquitous and less entangled with formal methods which, 

as I will illustrate below, is a key distinguishing feature between the two most influential 

network traditions. 

Graph theoretic techniques have been used in archaeological research since at least the 

1960’s and have given rise to a number of interesting quantitative approaches to 

archaeological data. Very few of these influenced later archaeological network analyses 

directly, however, and in most the graph was merely used to visualize relationships rather 

than analyze them. For example, in Doran and Hodson’s 1975 monograph titled 

‘Mathematics and Computers in Archaeology’ a graph was introduced as “a set together with 

a relationship which may or may not exist between each pair of its elements” (Doran and 

Hodson 1975, 13). The authors largely limit their excursion into graph theory by introducing 

a number of graph theoretic concepts rather than elaborating on the mathematics of specific 

graph theoretic techniques. It seems that Doran and Hodson were mainly interested in the 

graph as a visualization of archaeological relational data or concepts that stimulates visual 

exploration. A number of scholars have also used graph theory and matrices for seriation 

(Kendall 1969; Kendall 1971a; Shuchat 1984) and Santley (1991) used graph theory to 

explore aspects of Aztec regional economic organization. Clive Orton in his ‘Mathematics in 

Archaeology’ (1980) did not elaborate on graphs explicitly, although he did suggest the graph 

as an alternative visualization for dissimilarity matrices (Orton 1980, 44-47). His 

dissimilarity graph introduced one of the key features of “graph drawing aesthetics” (Nooy et 

al. 2005, 14), namely that “each object can be thought of as a point in a space, closer to 

objects which are more similar … and further from objects which are less similar” (Orton 

1980, 45). Unlike Doran and Hodson, however, Orton stresses one of the weaknesses of 

graph visualization by showing that relational space often cannot be represented using nodes 

and links without considerable simplification. The studies of Oxfordshire parish registers by 

David Kendall (1971b) and Robert Hiorns (1971) also make limited use of graph theory. 
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Both studies explored the degree of relatedness between parish communities in Oxfordshire 

using the same data sources. Robert Hiorns used marriage registers to investigate the effects 

on the relatedness of parishes’ populations caused by movements between these parishes due 

to marriages (Hiorns 1971). The results of iterations of two mathematical models were 

visualized as graphs representing the hypothetical relatedness between parishes. These results 

were described and compared visually with graphs created from the marriage registers. David 

Kendall on the other hand explored the spatial relatedness between the same Oxfordshire 

parishes by using a multi-dimensional scaling algorithm known as MDSCAL (Kendall 

1971b) to calculate the hypothetical location of villages whose location is no longer known 

(so-called lost villages) relative to the spatial location of known villages. John Terrell (1976; 

1977a; 1977b) also used graphs to explore spatial relationships. Influenced by the 

geographers Chorley and Haggett (1967; Haggett 1965), Terrell developed Proximal Point 

Analysis (PPA) as a graph theoretical approach to think through interactions between island 

communities. This approach was later applied by Hunt (1988) for the study of exchange 

networks between Lapita island communities. In all of these examples graphs were largely 

used to visually compare results and to explicitly address interactions between people, data or 

places. 

Mitchell Rothman’s (1987) study of regional survey data from Middle Uruk south-western 

Iran is also largely restricted to a visual comparison of graphs. Compared to Hiorns and 

Kendall, however, Rothman attributes a more central role to graph analysis in his arguments 

by presenting graph theory as an ideal method for the analysis of settlement pattern data. 

Rothman sums up a number of advantages of graph theory which include statements like 

“elements of the structure of settlement can be described objectively and analyzed using 

simpler and more appropriate assumptions than those of many currently used models”, 

“[graph theory] can deal with the magnitude and direction of the movement of goods, 

information, or people between individual sites in a settlement system” and “[graph theory 

converts] a variety of empirical detail of regional systems into mathematical matrices ideal 

for the flexible, verifiable analysis of system characteristics and for objective comparison 

with other patterns” (Rothman 1987, 74). Both the descriptive and the analytical power of 

graph theory are stressed but for neither of them are the author’s arguments very convincing. 

Although Rothman is keen to point out the objective nature of graph theoretical techniques 

and the associated vocabulary, his discussion of what he calls “simpler and more appropriate 

assumptions” does involve a straightforward and seemingly restrictive social interpretation of 
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graph theoretical concepts, which makes his use of graph theory very deterministic and 

simply prevents it from performing one of its main functions: comparing a variety of 

empirical data (the third advantage quoted above). 

The graph theoretical work by the geographer Forrest Pitts (1965; 1979) on the Medieval 

river trade network of Russia seems to have been more influential to later archaeological 

network analysts (e.g. quoted by Isaksen 2007; Isaksen 2008; Peregrine 1991). Pitts was 

interested in exploring the connectivity of Moscow based solely on its position within the 

network of medieval trade routes to test the statements by Russian historians that the 

dominance of Moscow was at least in part due to its strategic position. His 1965 article is not 

very specific about the graph theoretic terms used. He does not define connectivity for 

example, but nevertheless suggests a measure for connectivity based on the graph diameter 

(the maximum number of steps between any pair of points in a connected network; Newman 

2010, 140). In his 1979 article Pitts modified his method to calculate what are essentially the 

betweenness centrality values of towns along the river trade network. At this time he was a 

prominent member of the still very young SNA community and it is therefore more likely 

that the influence of Pitts’ early graph theoretical work on archaeological network analysts 

was the result of the influence of SNA, rather than graph theory on the archaeological 

discipline. 

One of the archaeologists influenced by the work of Pitts, Rothman and Irwin-Williams 

(discussed below) was Peter Peregrine who explored the evolution of the prehistoric centre 

Cahokia along the Mississippi, Missouri and Illinois rivers by applying “the graph theoretic 

concept of centrality” (Peregrine 1991, 68). Peregrine aimed to mathematically test the 

hypothesis proposed by other archaeologists that Cahokia evolved into a major center thanks 

to its position near the confluence of major rivers, which allowed it to exercise control over 

riverine exchange in the Mississippi Basin. For this purpose he visualized the rivers as a 

graph where nodes represented river heads and junctions, and ties represented the rivers 

themselves. Peregrine used three centrality measures, as developed and described by the 

social network analyst Linton Freeman (1979), to analyze his graph and Cahokia’s position 

on it. Peregrine therefore makes use of both graph visualization and analysis techniques, 

contrary to most of the studies described above. 

The earlier article by Pitts, along with the network models for geography described by 

Chorley and Haggett (1970), dominated the graph theoretical techniques applied to Geoffrey 
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Irwin’s (1978) study of the development of a Papuan settlement and interaction system. Irwin 

was interested in exploring the role of Mailu Island as a manufacturing and trading centre, 

which in 1890 AD had an atypical and more prominent economic development compared to 

other sites in the study area. He assumed that an effective communication network was of 

importance and decided to use graph theory, alongside other techniques, to explore 

consecutive hypothetical versions of this network for Mailu’s prehistoric period (before 1890 

AD). The centrality of nodes on these hypothetical networks was explored using the 

connection-array connectivity (the total number of alternative paths from a node) and short-

path array connectivity (the path with a minimum number of links) measures as introduced by 

Pitts (1965) and discussed by Haggett (1970, 636-637). Nodes were ranked according to the 

results of these measures, suggesting that Mailu was mildly more prominent than other sites 

but not as much as its clearly advantageous position in 1890. The connectivity results were 

compared with a measure of accessibility by weighting the same networks with the actual 

distances between nodes, which seemed to lead to similar hypothetical inferences about the 

centrality of Mailu. Rather than having any predictive value, Irwin argues that the strength of 

this graph theoretical approach lies in making explicit and exploring the structure of an 

archaeological hypothesis. This study by Irwin makes clear that decisions made during the 

creation of networks dominate the choice of graph theoretical techniques as well as the 

usefulness of the results one can expect. 

The work by anthropologist Per Hage and mathematician Frank Harary is exceptional since it 

concerns a multi-disciplinary collaboration and the adaptation of graph theoretic techniques 

to address anthropological research questions. This is rare and did not occur again to my 

knowledge until the multi-disciplinary collaboration between archaeologist Carl Knappett 

and physicists Tim Evans and Ray Rivers (discussed in more detail below). Moreover, the 

work by Hage and Harary wished to challenge the use of graph theory as merely a 

visualization technique, as in most of archaeological work described in this section: “We 

wish to emphasize right at the outset that the ultimate value of graph theory for anthropology 

will depend not just on the use of its pictorial representations, but also on the application of 

its theorems” (Hage and Harary 1991, 2). The duo was successful at putting this statement 

into practice. A good example is their discussion of the anthropological use of the 

mathematical minimum spanning tree problem and their application in a case study of the 

Lakemban matanitu or chiefdom (Hage and Harary 1996). The Lakemban matanitu is 

described as “a hierarchically structured island network based on relations of kinship, 
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alliance, and conquest” (Hage and Harary 1996, 70). The authors argue that the origin of this 

network should be seen as a process of growth that can be best represented as a graph 

theoretic algorithm. In particular, they believe that the hypothesis by Thompson (1940) of the 

origins of the Lakemban matanitu implies the minimum spanning tree algorithm of Boruvka 

(1926). Thompson (1940, 214-215) writes: “gradually the small, poor islands became 

dependent upon the larger, richer islands like Lakemba and Kambara. There arose small 

chiefdoms, within which the weaker islands stood in tributary relationship to the stronger”. 

Boruvka’s algorithm represents a step-by-step process for creating a unique minimum 

spanning tree graph between a set of points following simple rules: small trees of minimum 

value are built and then joined. 

The books and articles by Hage and Harary (1983; 1991; 1996) present a wealth of such 

examples, and I believe their work can be seen as an earlier attempt to critically explore the 

potential of network science (although they called it graph theory) for the 

anthropological/archaeological discipline: Hage and Harary acknowledged that theoretical 

dependence assumptions are commonly formulated in anthropology/archaeology and that 

these can be formalized and tested using graph theory. However, their work had very little 

following in anthropology and archaeology, and even in Pacific archaeology which was Per 

Hage’s field of expertise (Cochrane pers. comm.; Irwin pers. comm.). One could argue that 

the mathematical detail and the scientific process of hypothesis testing made their work less 

accessible or appealing to archaeologists. Indeed, their work is more commonly cited in SNA 

than in anthropology/archaeology, and I believe this is where the real reason for their limited 

exposure in our discipline lies. Some of their work was more concerned with refining existing 

graph theoretical algorithms or developing new algorithms, which are perfectly valuable 

research objectives in mathematics and SNA. Although archaeological case studies invariably 

served as a starting point and inspiration for this work, the added value of their work for the 

archaeological discipline was not always clear. For example, Hage and Harary (1996, 75-87) 

critique the Renfrew-Sterud method of close-proximity analysis (Renfrew and Sterud 1969), 

arguing that the method is too complex, that it should be performed by a computer, and that 

there is not just one but many minimum spanning trees that can be created from the data used 

by Renfrew and Sterud. However, the alternatives suggested by Hage and Harary did not lead 

to a reinterpretation of Renfrew and Sterud’s results, and the contribution of this case study to 

the archaeological discipline seems limited to a cautionary methodological note when using 

minimum spanning trees (Hage and Harary 1996, 84). I believe Hage and Harary should be 
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considered pioneers in archaeological network science (see also tribute to Hage by Jenkins 

2008) and this PhD project in particular should learn from their experiences: multi-

disciplinary collaboration enables critical and innovative applications, but the contribution to 

our understanding of past phenomena should be clear to an archaeological audience. 

All of the archaeological studies discussed in this section used graph visualization or analysis 

techniques for different purposes and with varying success. Most of these graph theoretic 

applications, however, show similarities with SNA (excluding studies on seriation) by 

stressing the importance of attaching explicit social assumptions to graph theoretic concepts. 

Rothman, for example, introduced graph theory as a subset of network analysis (Rothman 

1987, 74). It is not clear if he was referring to work by the growing SNA community, but the 

social interpretations he attributes to his graph theoretic vocabulary seem to indicate that he 

was at least thinking in terms of past social networks. Although Peregrine considers his work 

to be graph theoretical it is clearly influenced by developments in SNA through the works of 

Freeman (1979), Hage and Harary (1983) and Pitts (1965; 1979). However, none of these 

early archaeological applications seems to have had a significant impact on later 

archaeological network-based research. 

This section on graph theory raised three issues: 

1. the research potential of graph theory as an alternative approach for the visualization 

and analysis of social or geographical hypotheses in archaeology has been recognized 

at least since the 1960’s; 

2. in spite of the obvious similarities in approaches and the relevance to archaeological 

network analysts, the research potential illustrated by early graph theoretical work in 

archaeology has not been very influential to more recent network applications in the 

discipline; 

3. as a result, the introduction of graph theory and SNA into the archaeological 

discipline happened largely independently and, unlike social network analysts, 

archaeologists did not collaborate with graph theorists to develop mathematical 

techniques tailored for their needs (the work by Hage and Harary is a notable 

exception). The specific graph theoretical techniques underlying network-based work 

in archaeology were developed in SNA and physics, and adopted into the 

archaeological discipline without much reference to their graph theoretical roots. 
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2.3. Social network analysis 
Many archaeological network scientists have been strongly influenced by SNA, most of 

whom performed their SNA-related research only within the last ten years (e.g. Graham 

2006a; Hart and Engelbrecht 2011; Isaksen 2007; 2008; Jenkins 2001; Mills et al. 2013; 

Mizoguchi 2009; Munson and Macri 2009). SNA has a long history throughout which a very 

large variety of network-based methods and applications was developed. This diversity is not 

reflected in the archaeological literature and I will argue that it is worth exploring this since it 

might lead to original and valuable archaeological applications. In this section I will briefly 

introduce the development of SNA and discuss some popular or promising research themes 

and techniques. 

2.3.1. An introduction to SNA 

Social network analysis developed as a major research perspective in the social and 

behavioral sciences from its precursor, sociometry, which involves the measurement of 

interpersonal relations in small groups and was founded by Jacob Moreno after his invention 

of the sociogram in the early 1930's (Moreno 1934; 1946; 1960; Moreno and Jennings 1938). 

The sociogram is a means for depicting the interpersonal structure of groups as nodes and 

edges in two-dimensional space, like graphs. According to Linton Freeman (2004, 30), 

sociometry “was the first work that included all (…) of the defining features of social 

network analysis”. Later social network analysts built on Moreno's work as well as on the 

pioneering efforts by a group of Harvard scholars in the late 1920’s to the early 1940’s 

(Freeman 2004, 43-64). Graph theory, statistical and probability theory, and algebraic models 

in particular found a place early on in mainstream social network methods (Wasserman and 

Faust 1994, 10-17). SNA methods and applications have been further formalized by a number 

of extremely influential books throughout the last two decades (Carrington et al. 2005; Scott 

and Carrington 2011; Wasserman and Faust 1994), with contributions being largely limited to 

a dominant group of key players in the SNA community. The evolution of formal network 

methods within the SNA community is documented in the journals Social Networks 

(Elsevier) and Connections (INSNA), both first published in 1978. 

Wasserman and Faust (1994, 4) have formulated a list of principles shared by SNA 

applications that clearly specifies the extent of the social assumptions of SNA: 

• “Actors and their actions are viewed as interdependent rather than independent, 

autonomous units 
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• Relational ties (linkages) between actors are channels for transfer or ‘flow’ of 

resources (either material or nonmaterial) 

• Network models focusing on individuals view the network structural environment as 

providing opportunities for or constraints on individual action 

• Network models conceptualize structure (social, economic, political, and so forth) as 

lasting patterns of relations among actors” 

These principles illustrate the main difference between SNA and other network-based 

approaches, namely a restriction to social units as well as its implications. It is concerned 

with exploring social relationships as media for the flow of resources between active 

individuals, corporations or communities. The focus on social entities in a networks 

perspective has proven useful for addressing a wide range of research questions in the social 

and behavioral sciences. Wasserman and Faust (2004, 5-6) provide a list of topics network 

analysts are traditionally interested in, including the diffusion and adaptation of innovations 

(Rogers 1979; Rogers 1995; Valente 1995; Valente 2005), belief systems (Erickson 1988), 

markets (White 1981), exchange and power (Markovsky et al. 1988), and occupational 

mobility (Breiger 1981). 

2.3.2. An early archaeological model 

From the above it becomes clear that formal SNA methods have been around in some form or 

other since at least the 1930’s and more coherently since the 1970’s, yet it seems that 

archaeologists have only recently been interested in using SNA in their own research. This 

late adoption becomes even more striking when one considers how prominent anthropologists 

were in the SNA communities prior to 1970 and even after that (Freeman 2004; Johnson 

1994; Mitchell 1974; Wolfe 1978; 2011). These anthropological network studies addressed 

many research themes that are of great interest to archaeologists (for reviews see Johnson 

1994; Wolfe 2011) and may have stimulated archaeologists to adopt SNA, especially in the 

US. There is at least one notable exception to this trend, however, which I believe might help 

us understand the limited use of SNA techniques in archaeology before the 2000’s. 

The potential of SNA for archaeology was clearly recognized no later than 1977 in Cynthia 

Irwin-Williams’ (1977) network model for the analysis of prehistoric trade. She argued that 

in archaeology the treatment of the exchange of material goods and services has tended to be 
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simply descriptive and that a network model might provide a quantitative framework for this 

subject. Irwin-Williams limited her model to the exchange relations connecting settlements 

(described as network points), although it could easily be applied at different levels of 

archaeological analysis. The author still provided no less than six examples of measures of 

linkages within contemporaneous archaeological networks: “(1) within assemblages from a 

given settlement, the presence or absence of objects originating at another point; (2) the 

proportion of specific exchange goods from a particular origin to local goods of the same 

class; (3) the proportion of goods of the same class originating at various different points; (4) 

the directional dominance of the flow of goods, that is, the import-export ratio between 

settlement points; (5) the number of classes of objects exchanged between points; (6) the 

kinds of classes of objects exchanged between points” (Irwin-Williams 1977, 142-143). She 

goes on to suggest the seven network-based approaches that make up her model: (1) three 

“points of view” for exchange networks are given: global (the whole network), zonal (part of 

a network, defined in geographical, cultural or other terms), and anchored (a so-called ego-

network focused on one point and its direct neighbors); (2) networks can be visualized as 

node-link diagrams and matrices; (3) the network density measure is introduced (this measure 

was adopted from Haggett and Chorley (1969) as well as Mitchell (1969)); (4) a “first order 

star” network is introduced as the ego and its direct neighbors, and a “first order zone” is 

introduced as the relations between all members of the “first order star” (a description 

adopted from Barnes (1972)); (5) she introduces uniplex and multiplex links as relationships 

through which one or more classes of goods may circulate (adopted from Kapferer (1969)); 

(6) it is possible to differentiate zones with maximum internal linkage bounded by zones of 

relative low density and few multiplex relations (an idea adopted from Kapferer (1969)); (7) 

an effective network is characterized by large channels, multiplex linkages, and relatively 

great density, whilst relations within an extended network will be more attenuated and 

probably more specialized (ideas adopted from Epstein (1969)). The author went on to argue 

for the potential of this network model as it might be applied to research on ancient Puebloan 

society in northwestern New Mexico, but she sadly did not elaborate on the results of this 

case-study. 

Some of the types of relationships mentioned by Irwin-Williams have formed the basis of 

later archaeological network analysis (e.g. Brughmans 2010; Graham 2006b; Sindbæk 2007a; 

2007b) and the network analytic approaches she suggested are now part of the core set of 

network techniques used by archaeological network analysts. The network “points of view” 
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are at the very least implicit in most archaeological network analyses and graph and matrix 

formats are ubiquitous in these applications. I believe it is fair to argue that the ego-network 

approach, link multiplexity and the identification of zones with certain topological features, 

all introduced by Irwin-Williams, have only recently been given more attention (e.g. Munson 

and Macri, 2009). In light of all this it seems striking that SNA techniques have received so 

little attention from archaeologists and, even more remarkable, that the clear potential 

illustrated by Irwin-Williams’ model has influenced so few archaeological network analysts 

directly (including Peregrine 1991; Rothman 1987; Branting 2007). The reason for this might 

lie in the limited availability of cheap and potent computing power and large digital datasets 

in the late 1970’s. Although Irwin-Williams clearly illustrated the potential of a networks 

approach, she did not illustrate how this should be applied to complicated networks in a large 

dataset. Many of the network techniques she described provide rather obvious results when 

applied to smaller datasets and often only reveal their real analytical strengths when applied 

to large datasets. As a consequence the more widespread adoption of SNA by archaeologists 

was delayed until the necessary computing power was more generally available. However, 

this does not explain why the network concepts introduced by Irwin-Williams did not break 

through as more qualitative or small-scale approaches to think with. Knappett (2011, 17-18) 

suggests that one reason for the reluctance of the New Archaeology to adopt networks might 

be that connectivity was generally conceived as interactions at the borders of zones around 

sites rather than as concrete geographical connections between sites. 

The work by Irwin-Williams illustrates the core argument of this literature review: the 

potential of formal network methods for archaeology was discovered decades ago, but only a 

limited segment of this potential has been explored so far. 

The rest of this section will introduce SNA research themes and analytical techniques that 

have either been particularly influential to archaeological network scientists, or because they 

lend themselves particularly well to exploring archaeological data and addressing 

archaeological research questions. 

2.3.3. Diffusion of material and immaterial resources 

The diffusion of material resources and information might prove of particular interest to the 

archaeological discipline. According to the social networks perspective, social relations are 

channels of social contagion and persuasion, and as such instrumental to the diffusion process 

(Nooy et al. 2005, 161; Valente 2005, 98). Diffusion techniques focus on exploring the 
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relation between structural positions of actors and the moment at which they adopt an 

innovation. Most interestingly, the structure of the diffusion of innovations shows similarities 

to the spread of an infectious disease: the number of initial adopters is very limited, then large 

numbers adopt, and finally the growth rate decreases. Typical examples of this are network 

studies that explore the structure of the world-economy (Nooy et al. 2005, 29-57; Snyder and 

Kick 1979). Calculating the density of social networks, the number and relationships of 

components, the centrality of key nodes, and the adoption rate allows network scientists to 

explore the structure of diffusion (Nooy et al. 2005, 161-183; Rogers 1995; Valente 1995). 

Some of these measures have been used in a study of Roman pottery distributed from place of 

production to place of deposition where we have stressed their potential for exploring large 

archaeological datasets and geographical hypotheses (Brughmans, 2010; and see also case 

study 3 in chapter 5). This study also made it clear that there can be no straightforward and 

standardized interpretation to the results provided by SNA measures and that these results 

therefore require a re-contextualization in a wider socio-political, archaeological and 

historical framework. 

This issue is also very prominent in another archaeological example of the study of past 

diffusion processes: Shawn Graham’s (2006a) analysis of Roman itineraries. Graham created 

a network of towns connected by the routes between them as mentioned in the Antonine 

Itineraries (a collection of route descriptions within the Roman Empire). He went on to 

calculate the average shortest path length, the density (referred to as cohesion by Graham) 

and fragmentation curves1 for a number of regions on this network. He concluded his SNA 

approach by stating that the structures identified have implications for how information was 

disseminated and he explores this aspect more explicitly through an agent-based model, 

which will be discussed further on in this article. Graham seems to be very much aware of the 

fact that the results of his SNA approach inform him of the structure of a particular data 

source, rather than the actual structure of past road networks. This implies, however, that the 

SNA techniques used are not necessarily linked to the study of past processes of the diffusion 

of information. In Graham’s study the results will at most reveal hypotheses on the spread of 

information as implied by this ancient source. The potential of network techniques for 

studying the spread of an innovation is further evaluated in the archaeological citation 

network analysis presented in case study 1 (chapter 3). 

1 The fragmentation curves represent the number of nodes that can be removed before the network falls apart in 
different components (unconnected parts of a network). 
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2.3.4. Network centrality 

Centrality measures are arguably the most popular tools in the social network analyst's 

arsenal. These allow for the identification of nodes that have better access to information and 

enhanced opportunities to spread information because of their central position or role as a 

necessary go-between in a social network. In SNA, centrality is commonly applied in 

analyses of the structure of organizations (Michael and Massey 1997; Nooy et al. 2005, 123-

137). The identification of key people in the communication network of an organization, for 

example, will help tailor an optimized business-specific flow of information (Burt 2011). 

Degree centrality, closeness centrality, betweenness centrality (Freeman 1979; Fig. 6) and 

eigenvector centrality (Bonacich 1972) are by far the most widely applied measures in 

archaeology (e.g. Bernardini 2007; Isaksen 2007; 2008; Jenkins 2001; Mills et al. 2013; 

Mizoguchi 2009; Peeples 2011a; Peregrine 1991; Phillips 2011). These have been recently 

extended with measures for group centrality and centrality in two-mode networks (Everett 

and Borgatti 2005), of which there are no published archaeological examples yet to my 

knowledge. 

In their work on the socio-political interactions of the Classic Maya, Munson and Macri 

(2009) used a renormalized degree centralization calculation (Butts 2006) that incorporates 

the size and density of the network and can therefore be used to compare different networks. 

The eigenvector centrality measure also takes the overall network structure into account 

(Bonacich 1972; Hanneman and Riddle 2005, 68-70; Newman 2010, 169-172) and can 

therefore be considered a good example of how SNA techniques can contribute to the search 

for global structure in networks, something physicists are traditionally concerned with (see 

below). In a recent study of ceramic networks in the Late Hispanic U.S. Southwest, Mills and 

colleagues (2013) have argued that eigenvector centrality also provides a more accurate 

reflection of complex flow processes measured by similarities in ceramic assemblages since it 

assumes that each node affects all of its neighbors at the same time (Borgatti 2005, 62). 
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Fig. 6. An example of degree-, closeness- and betweenness centrality for three undirected network structures. Node size and 
labels indicate centrality values. Degree centrality is the number of relationships a node has, closeness centrality is “the 
number of other vertices divided by the sum of all distances between the vertex and all others” (Nooy et al. 2005, 127; 
Sabidussi 1966) and the betweenness centrality is the proportion of all shortest paths between pairs of other vertices that 
include this vertex (Nooy et al. 2005, 131). 

Centrality measures have been used by archaeologists to explore properties of ancient 

transport networks (e.g. Isaksen 2007, 2008; Jenkins 2001) in a very similar way to 

Peregrine’s (1991) earlier work discussed above. David Jenkins (2001) aimed to analyze the 

significance of locational advantage relative to the Inka road network, administrative centers, 

productive enclaves, and storage sites. A network of 54 administrative, storage or other sites 

connected by roads was created using published studies of the Inka road network as well as 

site reports and Spanish chronicles. Jenkins is very much aware that he is not studying the 

Inka road system itself directly. As I have stressed above for the work of Graham and Irwin, 

it is crucial to keep the network as a technique and as a past phenomenon clearly separated 

(Knox et al. 2006). Jenkins explored the structure of this hypothetical model using three 

centrality measures developed by Freeman (1979) and critically discussed their meaning in 

this specific archaeological context. To explore a hypothesis of wealth finance Jenkins (2001, 

671-675) created a directed network representing the potential flow of what he defines as 

prestige goods from their origins at the periphery of the network towards the capital of Cuzco 

at the core. The latter network seems to be more a visualization of his hypothesis of wealth 
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finance than anything else, given that the creation of this network was not discussed and he 

did not analyze it using centrality measures (which would require the use of modified graph 

theoretical algorithms). 

Another example of the archaeological use of centrality techniques is Koji Mizoguchi’s 

(2009) study of the emergence of a centralized hierarchy in Japan’s initial Kofun period. 

Contrary to Jenkins, Mizoguchi compared the results of no less than six centrality measures: 

degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, 

Bonacich power centrality and reach centrality. His descriptions of these techniques are taken 

from the SNA handbook by Hanneman and Riddle (2005) and he calculated them with the 

SNA software package UCINET (Borgatti et al. 2002). The author aimed to test the 

hypothesis that the relationships between social groups in the initial Kofun period were more 

significant to the emergence of interregional hierarchy than attributes of these groups, such as 

the dominance over the exploitation of raw materials. To this purpose he created two 

networks, one for the initial Kofun period and one for the earlier Yayoi V period. Sites were 

clumped together per region and represented as nodes. Mizoguchi drew edges between nodes 

according to the presence of non-locally produced prestige goods. The presence of non-local 

pottery and locally made pots according to non-local stylistic traditions in particular were 

considered evidence for interregional interactions. Although his use of centrality measures 

allows for an interesting and innovative evaluation of his archaeological hypothesis, his 

subsequent interpretation of the centrality results (see Mizoguchi 2009, 24) does reveal an 

issue related to the definition of network elements and their structural properties and the 

adoption of standard interpretations of network measures. The artifact distributions from 

which the network edges are created are assumed to be significant proxies for interregional 

interaction and socio-cultural dependencies. Using such hypothetical networks of things to 

explain the emergence of an interregional hierarchy involves a significant leap of faith, for 

which Mizoguchi relies entirely on the centrality measures. However, the authors from whom 

Mizoguchi adopted the descriptions of these centrality indices themselves stress that “the 

definitions of what it means to be at the center differ. It is more correct to describe network 

approaches this way -- measures of centrality -- than as measures of power” (Hanneman and 

Riddle 2005, 62. For a good example see Osa 2003). I would therefore argue that Mizoguchi 

successfully explored the structure of a hypothetical interpretation of a hypothetical network. 

The centrality measures allowed him to identify problems surrounding his hypothesis and 
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data (Mizoguchi pers. comm.) rather than to test his very interesting hypothesis, let alone 

refute alternative hypotheses like dominance over resources. 

2.3.5. Affiliation networks 

A significant part of the social contexts in which individuals are embedded is shaped by their 

affiliations. When social network analysts examine affiliation networks, yet another popular 

topic, they assume that membership of an organization or participation in an event is a source 

of social ties (Fig. 7; Nooy et al. 2005, 101; Wasserman and Faust 1994, 30, 291-343). 

Directors of different corporations, for example, might share information and make 

professional decisions at gatherings of the clubs they are members of. Alternatively, 

academics might be influenced by the novel ideas of other researchers at the conferences they 

attend. Affiliation networks are traditionally visualized as two-mode networks. The use of 

two-mode networks is not restricted to affiliations, however, since modes could represent two 

sets of actors (Wasserman and Faust 1994, 39-40) or indeed any data types (e.g. Brughmans 

et al. 2012). A growing set of metrics to analyze two-mode affiliation networks is being 

developed (Everett and Borgatti 2005; Faust 2005). These techniques hint at the existence of 

the layered and heterogeneous nature of social relationships and could be considered a first 

step to exploring the complex web of interlocking contexts that make up social networks. 

 

Fig. 7. Example of a two-mode network where white nodes can only connect to black nodes and vice versa. 

Published archaeological examples of affiliation networks are few. However, the approach 

holds great potential for dealing with the complexity of past social interactions by mapping 

broad generic (e.g. known social, geographic or political entities) or small specific contexts 

(e.g. typologies, stratigraphic contexts) explicitly as affiliations. This potential is clearly 
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illustrated by Carl Knappett’s (2011) recent use of affiliation networks. On a more practical 

level it can also help archaeologists deal with networks of multiple data types. Phillips (2011) 

in his work on lithic raw material consumption in the Kuril Islands linked specific obsidian 

source groups with sites in affiliation networks. Phillips further explored the degree of 

association between the two classes in his affiliation networks by using correspondence 

analysis and the Jaccard similarity coefficient. Whilst these studies were limited to exploring 

relationships between sites and a single data type, Søren Sindbæk (2007b) in his work on 

Early Medieval communication and exchange networks illustrated how sites can be seen as 

affiliated to multiple data types in their assemblages. Sindbæk points out the exploratory 

nature of his approach, stressing that there is no direct relationship between shared artefacts 

and specific past processes (Sindbæk 2007b, 66). 

2.3.6. Ego-networks 

As a final example of social network analysis themes and tools I will introduce the concept of 

ego-networks as a technique to study the social environment surrounding individuals. An 

ego-centered approach focuses “on the position of one person in the network and his or her 

opportunities to broker or mediate between other people” (Nooy et al. 2005, 144; for early 

examples of ego-network applications see Boissevain 1973 and Bott 1957). To this aim, ego-

networks are constructed consisting of one node (called the ‘ego’), its neighbors, and the ties 

among them as in figure 8 (Hanneman and Riddle 2005, 8-9; Marsden 2002; Nooy et al. 

2005, 145; Wasserman and Faust 1994, 41-43). This approach is particularly useful in 

situations where it is not possible to track down the full network (Hanneman and Riddle 

2005, 8), because the data are just not available or because the full network is not relevant to 

answering specific research questions. In fact, the ego-network is a representation of the idea 

that individuals only have local knowledge of the social networks they are part of (Kleinberg 

2000; Watts et al. 2002). By focusing on a single person, his or her direct relationships and 

the relationships among them, we can begin to explore how the direct social environment 

influences one from an individual’s point of view. However, in no way does this ego-

approach attribute an inherent simplicity to the process of influence and the evolution of 

entire social networks. Ego-networks can be seen as attributes of individuals, representing 

one of the many reflections of social contexts they are embedded in (Granovetter 1985; Knox 

et al. 2006, 118). 
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Fig. 8. Example of an undirected network (a) from which an ego-network (b), consisting of the ego, its direct neighbors and 
the edges between them, was extracted. 

Published examples of the archaeological use of ego-networks are few (see Mol et al. 2014b 

for a rare example). I would suggest, however, that an ego-network approach is particularly 

promising for interpreting specific patterns or hypothetical processes from the bottom-up. 

Like scholars in many other disciplines archaeologists explore social relationships indirectly 

through the traces people leave behind. For historians these traces might be found in textual 

data and sociologists might use modern media like email correspondence. As archaeologists, 

our data are typically the material residues of individuals' actions influenced by local 

knowledge of the social networks they were embedded in. It can only inform us of parts of 

social networks and exploring entire social networks as a patchwork of “local knowledge” 

therefore becomes problematic. This essentially boils down to sampling issues that exist both 

on the whole network and the ego-network analytical scales. Network techniques allow 

archaeologists to traverse these different scales within the same methodological framework. I 

believe that the results of an ego-network study in particular can aid an interpretation of 

patterns identified in top-down network approaches, specifically in those cases where 

sampling issues on the whole network scale are considerable. For example, the structure of 

many complex social networks has been empirically proven to have a non-random degree 

distribution (Albert and Barabási 2002), a pattern that becomes clear on the level of the whole 

network. It has been shown, however, that this has a significant impact on the structure of 

ego-networks (Newman 2003a; Roberts et al. 2009). Exploring differing structures of ego-

networks within a larger network can therefore provide an indication of whole-network 
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patterning or help explain it. The analytical potential the multi-scalar nature of network 

approaches allow for has been recognized by archaeologists (e.g. Coward 2010) and features 

prominently in Carl Knappett’s (2011) work. On his micro-networks scale of analysis 

Knappett traced hypothetical relationships between individuals and artefacts using affiliation 

networks. A similar approach could be used to focus explicitly on key ego’s (or each ego in 

turn). 

2.4. Discussion: beyond SNA 
In this section I have illustrated how SNA tools and techniques have been used by 

archaeologists. Their applications are largely restricted to network visualization and 

exploring the static structure of archaeological datasets or social hypotheses. However, one 

can observe some general trends in the use of formal SNA methods. A number of methods, 

like centrality measures, seem to have been more popular than others, including affiliation 

and ego approaches. The reason for this might lie in their prominence within SNA itself as 

well as their clear aptness for exploring issues related to transport, power and control. 

Whereas early SNA applications (e.g. Irwin-Williams 1977) were strongly influenced by 

network methods in geography (Haggett 1965; Haggett and Chorley 1969), more recent ones 

drew upon a number of key SNA reference works (Carrington et al. 2005; Hanneman and 

Riddle 2005; Nooy et al. 2005; Wasserman and Faust 1994) as well as some well-known 

SNA theories and applications (Granovetter 1973; Hage and Harary 1996). This shift is at 

least in part a result of technological factors thanks to the more general availability of potent 

computing power and large digital datasets, which makes the application of many SNA 

techniques more worthwhile, and through the use of popular SNA software that is strongly 

linked with these SNA reference works. Although a growing number of software packages 

can be used to perform SNA techniques (for an overview see Huisman and van Duijn 2005; 

2011), most archaeologists used either Pajek (Nooy et al. 2005) or UCINET (Borgatti et al. 

2002), arguably the two most popular programs in SNA that are frequently expanded with 

new SNA techniques. 

The most difficult hurdle for archaeological network analysts to overcome is not 

technological, however, nor is it related to a critical application of formal techniques. Indeed, 

SNA measures are largely adopted as they are available in software packages and are rarely 

adjusted to specific archaeological networks. It is the interpretative jump from identifying 

patterns in static network structures using SNA to explaining them in terms of past social 
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processes that proved to be difficult in many cases. This is an issue present in any 

archaeological method, yet it is worth pointing out its influence in the particular case of SNA. 

Many SNA techniques come pre-packaged with traditional social explanations and it is 

tempting to adopt these in archaeological studies. However, in many cases the units of 

analysis are not social entities which makes adopting traditional social explanations 

problematic. It should be recognized that identifying and explaining network patterns are two 

different things. Most archaeological network analysts are aware of this and stress that both 

are completely dependent on how network nodes, links and measures are defined. We 

therefore cannot adopt SNA techniques into our discipline without question, although many 

of the topics and their traditional approaches discussed might prove useful for answering 

complex social research questions in archaeology. 

The nature of archaeological data makes the archaeological application of social network 

analysis as an interpretative tool problematic for a number of reasons. Firstly, the full 

complexity of past social interactions is not reflected in the archaeological record and social 

network analysis does not succeed in representing this complexity. Secondly, the use of 

social network analysis as an explanatory tool is limited and it poses the danger that the 

network as a social phenomenon and as an analytical tool are confused (Knox et al. 2006; 

Riles 2001). Thirdly, human actions are based on local knowledge of social networks, which 

makes the task of exploring past complex social systems through particular material remains 

problematic. These issues should not be considered unique to archaeology and archaeological 

data. An approach consisting of a number of aggregated SNA techniques could be suggested 

for understanding aspects of past social relationships. However, we will never be informed 

about the full complexity of past social relationships and, even if we were, SNA would not 

succeed in understanding this complexity. 

The recently very popular research tradition of complex network simulation in physics seems 

more promising in this respect, although it is by no means perfect itself. Indeed, neither SNA 

nor complex networks techniques are designed to unravel the full complexity of social 

interactions and archaeologists should definitely not apply them as if they were. As I will 

argue below, it is a combination of SNA and complex network simulation techniques that 

seems to hold the true potential of networks for archaeology. We will now turn our attention 

to network perspectives developed to understand properties of both human and non-human 

complex systems. 
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2.5. Complex networks and physics 
Many of the ideas underlying the network science work done by physicists are rooted in 

complexity theory. Melanie Mitchell recently defined a complex system as “a system in 

which large networks of components with no central control and simple rules of operation 

give rise to complex collective behavior, sophisticated information processing, and adaptation 

via learning or evolution” (Mitchell 2009, 13). A long list of very diverse real-world systems 

fit this definition, including the World Wide Web (Adamic and Huberman 2000a; Albert et 

al. 1999; Broder et al. 2000; Huberman and Adamic 1999), co-authorship of papers (Barabási 

et al. 2002; Newman 2001), the brain (Sporns 2002; Sporns et al. 2000; White et al. 1986), 

and even the web of human sexual contacts (Liljeros et al. 2001). Although such systems are 

quite different, they have some features in common on an abstract level, as summarized by 

Mitchell: complex collective behavior, signaling and information processing, and adaptation 

(Mitchell 2009, 12-13). Notice how the first two are similar to Wasserman and Faust’s first 

two principles of social network analysis introduced above. Indeed, network thinking is a 

popular perspective in complexity science as it forces one to think explicitly about how things 

relate and how local interaction between individual entities might give rise to patterning on a 

system-wide scale. Network thinking in complexity science is in part indebted to SNA as 

they share a research perspective and some of the techniques used to analyze complex 

networks were originally developed by social network analysts. Although social network 

analysts recognize the importance of dynamically changing networks through adaptation and 

have developed some methods to confront this problem (Lusher et al. 2013; Snijders 2005), 

most SNA applications still focus on structural properties of static networks. Contrary to 

social network analysis, however, the adaptation and evolution of systems through learning or 

evolutionary processes is a key assumption in complexity science (Bentley and Maschner 

2003b; Mitchell 2009). 

Much of the work on complex systems aims to identify and explain self-organizing emergent 

properties. Such properties are called self-organizing because they are patterns visible at the 

scale of the system, but emerge without any internal or external planning or control. They are 

called emergent because they arise out of the relatively simple interactions between 

individual entities or actors, who collectively form more complex behavior (Mitchell 2009, 

13). Examples include the large and immensely variable mounds constructed by termites, or 

the way cities and even slums emerge without any top-down planning but merely through the 

needs and actions of (groups of) individuals. Identifying such properties is but a first step to 
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understanding the complexity of systems, both past and present, and network models have 

been developed to do just that. I will not elaborate more on complex systems (for an 

overview of complex systems in archaeology: Bentey and Maschner 2003a; Bentley and 

Maschner 2007; Bintliff 2004; Garnsey and McGlade 2006; Kohler 2012; Lane et al. 2009; 

McGlade 2005) and focus entirely on some of these complex network models. 

A few very popular models have been developed to identify and simulate particular processes 

that lead to the emergence of properties that turn out to be extremely common in diverse real-

world networks. Although these models are by no means the only techniques for 

understanding properties of complex systems (for a few examples of other approaches to 

complex systems see Bak et al. 1987; Buldyrev et al. 2010; Turcotte 1999; West et al. 1999), 

they have dominated research in complex networks for the past decade. Two complex 

network models have been particularly influential to archaeologists: the small-world model 

and the scale-free model. 

2.5.1. Small-world networks 

In 1998 Duncan Watts and Steven Strogatz developed a simple model capturing a feature of 

complex networks that has puzzled sociologists for decades: the small-world problem (for the 

original paper: Watts and Strogatz 1998; some very readable overviews of the model and its 

implications followed: Watts 2003; Watts 2004; for an overview of pioneering work on the 

small-world problem see: Garfield 1979; Milgram 1967; Pool and Kochen 1978). The small-

world problem was originally examined by Stanley Milgram (1967; 1992; Korte and Milgram 

1970) in his experiments of how letters are passed on between two individuals who do not 

know each other. Milgram concluded that any one individual on the planet can be reached by 

any other individual in an average of six inter-personal steps, giving rise to the concept of six 

degrees of separation. The reason for this, Watts and Strogatz discovered, lies in the fact that 

“real-world networks are neither completely ordered nor completely random, but rather 

exhibit important properties of both” (Watts 2004, 244; Watts and Strogatz 1998). They 

identified a broad region in between both states where networks are highly clustered whilst 

the average path length is as small as possible (Fig. 9). Clustering is measured by the 

clustering coefficient which calculates the average probability that two neighbors of a vertex 

are themselves neighbors, as a ratio of the number of edges between the neighbors of a given 

node and the maximum number of edges that could possibly exist between these neighbors 

(Albert and Barabási 2002, 49; Newman 2010, 262-266; Watts and Strogatz 1998, 441). They 
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adopted the name small-world networks to refer to this class of networks, a term first used by 

Eugene Garfield in 1979. The specific structure of small-world networks has direct 

consequences for the way networks evolve and how information, objects and people move 

through them. A crucial aspect of social networks this model does not address, however, is 

that human actions are limited by a strictly local knowledge of the networks they belong to 

and influenced by a general ignorance of the social system as a whole. Network analysts are 

aware of this (Kleinberg 2000; Watts et al. 2002). This issue does not undo the relevance and 

structural consequences of a small-world pattern however. Long-distance relationships 

between social clusters existed in the past and they did influence the lives of individuals, even 

if those people were not aware of their existence (e.g. Malkin 2011). A most striking example 

of the importance of long-distance relationships is reflected in the way infectious diseases 

spread through human networks. Bacteria do not care about whether people know of their 

own relatedness, because mere physical proximity suffices to jump between individuals. As 

such, long-distance relationships play a crucial role in transmitting diseases between largely 

independent communities (Newman 2003b; Watts 2003, 162-194). 

 

Fig. 9. Through a random rewiring procedure a small-world network structure emerges as a state between regular and 
random networks (after Watts and Strogatz 1998, Figure 1). 

2.5.2. Scale-free networks and power-laws 

A second popular model was published shortly after Watts and Strogatz’s work and was in 

fact developed using the same real-world network datasets to address a fundamental 

assumption of the former model. Albert-László Barabási and his student Réka Albert 

concluded in their ground-breaking paper published in Science in 1999 that in real-world 
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networks degree distribution (the fraction of nodes in a network with a certain number of 

relationships; Albert and Barabási 2002, 49; Newman 2010, 243-247) is not normal as Watts 

and Strogatz assumed, but is in fact highly skewed and follows the pattern of a power-law 

distribution, as in figure 10 (for the original paper: Barabási and Albert 1999; some very 

readable overviews of the model and its implications followed: Albert and Barabási 2002; 

Barabási 2002). The majority of vertices typically have less than the average number of 

relationships whilst a small fraction of hubs are much better connected than on average. 

Barabási and Albert made a simple mathematical model where nodes are continually added 

and attach preferentially to those nodes that are already well connected, effectively giving 

rise to a rich-get-richer effect (Barabási 2002, 79-92). Many real-world networks turn out to 

exhibit a scale-free structure. This realization had a significant impact on the way complex 

networks are approached, because not only does it imply a dramatic change in perspective 

away from random graphs (at least this is what Barabási claims), it also exhibits specific 

properties such as vulnerability to failures and attack that help us understand their functioning 

(Watts 2003, 109). 

 

Fig. 10. Example of scale-free network growth (using a modified version of the model by Wilensky (2005) using Netlogo 
(Wilensky 1999)). In the Barabási-Albert model a new node is added to the network at every time step and attaches 
preferentially to an already well connected other node. The degree distribution when plotted on a chart with two logarithmic 
axes shows an approximate power-law for growing network size. 
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2.5.3. Small-world and scale-free networks in archaeology 

The two complex network models described in the previous two sections are by far the most 

widely applied in archaeology as well as in other disciplines. Social network analysts often 

criticize the claims to novelty by physicists and others using these models, arguing that they 

ignore the advances made by the SNA communities over the years (e.g. Scott 2011). I will 

illustrate below that physicists and social network analysts are increasingly stressing the 

compatibility of their approaches and interests, a trend that I believe will allow for interesting 

archaeological applications as well. These two models and the multi-disciplinary work they 

triggered did, however, give rise to a strong increase of network studies in archaeology. I will 

briefly discuss a number of archaeological applications of these two popular models in this 

section. 

In her analysis of the complex social interactions between Ancient Near Eastern sites in the 

Epipalaeolithic and Early Neolithic, Fiona Coward (2010; 2013) combined a traditional social 

network analysis with a description of small-world network structure. Discrete 14C dated 

levels of sites formed the nodes in her networks and these were linked by the co-occurrence 

of particular forms of material culture which were considered “a material reflection of some 

form of social relationship (in its widest sense) between those sites” (Coward 2010, 464). 

These networks were explored in 1,000 year time-slices and their density, centralization, 

average degree and average path length was compared. The increases in network 

centralization, density and average degree were considered highly significant whilst the 

declining trend in average shortest path length was not. Coward interpreted these results as a 

structure of dense kin- and proximity-based groups linked by weak ties (as described by 

Granovetter 1973; 1983), which appears to develop towards a small-world phenomenon. 

Based on her description of the results, however, the identification of weak-links and a small-

world structure is problematic. Coward gives no measure of clustering but rather assumes a 

high degree of clustering from the increasing network density and average degree, and the 

decreasing average shortest path length. This was one of the issues Coward raised with the 

application of network measures to a patchy archaeological record. 

Søren Sindbæk (2007b) developed a networks approach for the study of artifact type 

distributions using small-world and scale-free networks. In his networks Early Viking Age 

sites in South Scandinavia formed the nodes and a connection between them was made when 

selected artefact types were co-present. Sindbæk stressed that “A shared artifact type does not 
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show actual communication between sites, rather it indicates the existence of a group within 

which every site was connected to at least one other site” (Sindbæk 2007b, 66). Since 

Sindbæk was interested in the organization and dynamics of communication between these 

sites he interpreted the archaeological network as an impression of the underlying complex 

network by using network models. He suggested that the existence of a small number of hubs 

with a far more than average degree indicate that the settlements might have communicated 

as a scale-free network. Sindbæk also identified a high level of geographical clustering with 

each geographical region having some sites closely associated with the dense core of the 

network, which was interpreted as a probable small-world structure. Interpreting the 

archaeological evidence through these models suggests that “Communications across long 

distances were achieved through a spindly combination of hubs and weak ties” (Sindbæk 

2007b, 70) and that this structure was also very vulnerable to targeted node removal. 

However, Sindbæk was very much aware of the issues involved in assigning the known 

behavior of dynamic models to a static structure visible in his archaeological network: “The 

fact that only a single phase is analyzed means that the dynamics involved are only hinted at” 

(Sindbæk 2007b, 70). Sindbæk shares this concern with almost all archaeological network 

analysts. Their general response to this issue involved the strict definition of network nodes, 

edges, measures, models and how to interpret the results, as well as a sense that one should 

not expect to understand more than a hint of past dynamic processes outside the static picture 

offered by the network. Complementing descriptions of static archaeological network 

structure with actual simulations of network models might help archaeological network 

analysts to move from the static to the dynamic, as I will argue below and will illustrate 

through case studies 2 and 3 (chapters 4 and 5). A number of archaeologists used 

chronologically subsequent networks of archaeological data to explore changing network 

structure (e.g. Golitko et al. 2012; Collar, 2007; 2008; Graham, 2006b), some of which will 

be discussed in more detail below. 

A far more quantitative use of complex network models dominated Bentley and Maschner’s 

(2003a) edited volume entitled ‘Complex Systems and Archaeology’ (reviewed by Janssen 

2005), a collection of papers with a particular focus on scale-free networks, punctuated 

change and agency that grew from presentations at the Theoretical Archaeology Group 

meeting in 2000. In the first part of the volume the editors provided an introduction to 

complex systems, discussing the potential use of the small-world and scale-free network 

models for archaeology (Bentley 2003a). They further illustrated how the emergence of 
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social inequality in prehistoric societies can be explored through scale-free network growth 

(Bentley 2003b) in their analysis of house sizes on the North Pacific (Maschner and Bentley 

2003). The authors argued that house size variability is indicative of the size of groups and 

the status of their headmen and can therefore be used to explore the emergence of social 

inequality. They argued that given “the nature of status striving among North Pacific hunter-

gatherers” competition and growth should feature prominently in their approach, which is 

why the scale-free network model was considered particularly well suited for their aims 

(Maschner and Bentley 2003, 52-53). Trends in the frequency distributions of house sizes 

were interpreted in light of the rich-get-richer effect of scale-free networks: “a few 

households grow huge, with the remainder staying at levels similar to, or only slightly larger 

than, those in egalitarian societies” (Maschner and Bentley 2003, 57). In this example (and 

similar to the work of Coward and Sindbæk discussed above) Maschner and Bentley consider 

static patterns in the archaeological record as an indication for the structure of complex 

network models, allowing them to attribute the dynamic behavior of these models to past 

processes. Contrary to all the studies discussed above, however, the authors also explored 

dynamic simulation approaches in this edited volume. 

2.5.4. Discussion: complex networks beyond popular models 

Although they have received a disproportionate amount of attention, the models introduced 

above and the tsunami of papers they triggered in a wide range of disciplines are subject to 

some fundamental critiques, which should be acknowledged by archaeologists (for a brief 

overview see Mitchell 2009, 253-255). The mere identification of emergent self-organizing 

properties does not explain how this behavior came about and what it meant for the 

individuals creating it. Indeed, Kohler stressed that “characterizing a property as emergent is 

at best a general description and never an explanation” (Kohler 2012). Although these models 

imply that changes arise through interactions at every scale (individuals, communities, 

system-wide), the properties they allow us to identify do not tell us anything about specific 

human actions on a local scale. This shortcoming is particularly crucial in archaeology, in 

that we are typically confronted with the material reflections of isolated actions by 

individuals or small groups of individuals. This makes summing up our evidence to reveal 

system-wide patterns problematic and forces archaeologists to explore local actions. 

Similarly, Bentley (2003a, 15) raised the crucial point that merely identifying a power-law 

distribution in archaeological data is close to meaningless (at least in part because these 

patterns are common in nature (Frank 2009)). One has to understand what mechanisms 
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created the power-law and what it means. To be specific, preferential attachment should not 

be seen as the only cause for power-law degree distribution in nature (Bentley and Shennan 

2005; Mitchell 2009, 254; Shalizi 2011). 

Archaeologists should also not forget that these models are minimizing abstractions of real-

world networks, “they are overly simplified and based on unrealistic assumptions” (Mitchell 

2009, 254). George Box captured the unrealistic nature of models perfectly by stressing that 

“all models are wrong, but some are useful” (Box and Draper 1987, 424). Mitchell mentioned 

that complex network models will never be able to represent the full complexity of real social 

systems as all nodes are often assumed to be identical except for their degree, and all links are 

the same type and have the same strength (Mitchell 2009, 255; although many models no 

longer share this assumption, e.g. Evans et al. 2009). Physicists are indeed aware of these 

shortcomings (Watts 2003; Watts 2004) and the “unimaginative” deterministic assumptions 

that follow from this form the favorite stick of social network analysts to beat them with 

(Carrington et al. 2005, 2; Scott 2011). For example, one key aspect of real-world systems 

that is not taken into account in these models is geographical space. Archaeologists seem 

more aware of this shortcoming than physicists, given the high number of archaeological 

network analyses that aim to explore spatial networks (e.g. Allen 1990; Branting 2007; 

Coward 2013; Earl and Keay 2007; Knappett et al. 2008; Pouncett and Lock 2007; Terrell 

2010b; Zubrow 1990), although it must be said that recently the spatial nature of real-world 

complex systems has come to the attention of physicists (e.g. Barthélemy 2010; Gastner and 

Newman 2006) as well as the SNA community (Adams et al. 2012; see the special issue of 

Social Networks (34:1) dedicated to spatial networks). The graph theoretical techniques 

developed in space syntax (Hillier and Hanson 1984) also often incorporate distance as an 

edge attribute. Verhagen and colleagues (2013) have argued that these techniques are 

preferable to their non-spatial equivalents when applied to least-cost-path networks. Space 

syntax techniques are commonly used in archaeology to study the structure of well-preserved 

architectural features. Good reviews of archaeological applications of space syntax are 

published by Marion Cutting (2003; 2006) and will not be discussed in more detail in this 

thesis. 

Archaeologists should not expect complex network models to capture the full complexity of 

systems, nor should they attribute the most popular explanations to descriptions of emergent 

properties. In light of these issues I would argue that archaeologists’ focus on a few popular 
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complex network models severely limits the potential descriptive power of network modeling 

and holds the danger of introducing a routinized explanatory process. The examples from the 

previous section clearly illustrate the potential for complex network models to describe and 

explore archaeological hypotheses. A wealth of alternative network models exists, however, 

simulating a range of different behaviors that might be used in different archaeological 

research contexts (for overviews see: Costa et al. 2007; Newman 2010). The inability of 

many of these models to address more than one property of a complex network makes 

approaches that critically compare different models’ behaviors with the archaeological record 

particularly promising (as in Bentley and Shennan’s (2003) work described below). In fact, it 

is striking that random graph models (Erdős and Rényi 1959; 1960; 1961), that underlie much 

of the scale-free and small-world research, have hardly been used in archaeology as 

comparative models (for an exception see Graham 2006b), nor have spatial network models 

(Barthélemy 2010; Gastner and Newman 2006; for an exception see Bevan and Wilson 2013; 

Rihll and Wilson 1987; 1991). Archaeological problems might even drive the development of 

original complex network models (e.g. Knappett et al. 2008; 2011; Evans et al. 2009 

described below), as I will illustrate in case studies 2 and 3 (chapters 4 and 5). Alternative 

network models allow for a wide range of applications, which again illustrates the need for 

archaeologists to clearly define network elements, contextualize results and, where possible, 

validate these with empirical data (Graham 2006a). Some pioneering archaeological 

applications of alternative complex network models, discussed in the next section, illustrate 

that this is a research direction worth pursuing. The simulations used in these applications all 

require some advanced mathematical and computational knowledge, which might explain the 

relative lack of uptake in archaeology, but also give them the great advantage of being able to 

explore the processes driving network change. 

2.5.5. Dynamic network models in archaeology 

Bentley and Shennan’s (2003) study of different processes of cultural transmission is a 

particularly good example of how the distinct behavior of slightly different network models 

can be compared in an archaeological context. The authors suggested three quantifiable types 

of cultural transmission with a testable difference: independent decisions in a highly 

simplified model show an exponential decay in variant frequencies (an artifact variant was 

assumed to have a discrete nature, existed for some finite time and can be copied (Bentley 

and Shennan 2003, 461)); unbiased cultural transmission is characterized by a power-law or 

log-normal distribution; biased cultural transmission deviates significantly from a null-model 
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of unbiased cultural transmission. Bentley and Shennan argued that Adamic and Huberman’s 

(2000b) model of stochastic network growth is particularly applicable to unbiased cultural 

transmission. This model generates scale-free networks through a slightly different process 

than the Barabási and Albert (1999) model and was preferred since the process of preferential 

attachment can also occur in a network that is not growing. This model was adapted to 

represent biased cultural transmission by making preferential attachment proportional to an 

exponent of the number of connections of a node. Bentley and Shennan subsequently used 

three variations of this model with different values for the exponent in their case-study to 

model change in Linear Bandkeramik pottery motif frequencies from the Merzbach valley 

(Germany). In these networks individual motifs (variants) formed the nodes and each copy of 

a motif was connected with an arc to the source motif. The authors concluded that they found 

a good fit between the stochastic network model for unbiased cultural transmission and the 

later-phase Merzbach pottery data. The earlier phase motifs, however, were suspected to have 

known a pro-novelty biased cultural transmission. As far as their use of networks is 

concerned, Bentley and Shennan have pioneered how complex network models can be 

adopted, critically modified to represent archaeological hypotheses and how their resulting 

behavior can be compared with an archaeological dataset. 

Together with Mark Lake, Bentley and Shennan also studied evolving networks using agent-

based modeling (Bentley et al. 2005) to explore how an exchange network coevolves with the 

changing specializations of the agents within it. This model is of particular interest for this 

PhD project since it inspired the model of Roman tableware distribution presented in case 

study 3 (chapter 5). The authors argued that power law wealth distributions “are ubiquitous 

for a wide range of economic scales” and that this behavior might be linked to the benefits of 

specialization in exchange networks (Bentley et al. 2005, 1346-1347). Their model therefore 

aimed “to test whether specialization and wealth inequalities are natural, self-organizing 

qualities of a small-scale economy” (Bentley et al. 2005, 1347). They modified a simple 

model to simulate exchange developed by Jin, Girvan and Newman (2001) by adding 

variables for agents’ possession of two different products (A and B) and a strategy variable, 

which determines the relative amount of A vs. B an agent produces per time step. A 

significant difference in the wealth distributions was identified for two scenarios where, on 

the one hand, two agents either trade when both possess sufficiently different amounts of a 

certain commodity (resulting in normal wealth distributions), and on the other, where agents 

only trade if they both like the price of a commodity (resulting in highly skewed wealth 
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distributions). The authors argued this suggests “a basic analogy to the profound ideological 

differences that likely existed between certain indigenous populations and incoming 

agricultural colonists” (Bentley et al. 2005, 1353). Although the authors do not apply this 

model to an archaeological case study, it has clear potential for testing archaeological 

hypotheses concerning wealth distribution and exchange networks. In this agent-based 

approach as well as in Bentley and Shennan’s (2003) work described above the adopted 

network models are therefore not modified to represent attested static patterns in the 

archaeological record, rather their value lies in thinking through a range of hypothetical 

dynamic networks as possible processes underlying the creation of the archaeological record. 

Another combination of agent-based modeling and networks is Shawn Graham’s (2006a) 

study of Roman itineraries discussed above. Graham aimed at exploring the diffusion of 

information on the Antonine Itineraries by populating a map of the itineraries’ static network 

structure with digital agents who could interact and share a piece of knowledge. Contrary to 

Bentley and colleagues’ (2005) model, the network used in Graham’s model was a pixelated 

map of the spatial representation of places connected by routes. Nodes represented places 

rather than the agents and played a far smaller role than the network edges in this model since 

agents were allowed to interact at any point on the network map. The model therefore did not 

allow Graham to make statements about the role of nodes. Rather, the author was interested 

in how the different structures of provinces as a whole affected the diffusion of information. 

The model simulates agents moving along the paths of the itinerary and passing on a message 

to agents who have not heard it. Graham concluded that there are distinctive regional 

differences in the fashion and speed of information diffusion. It is these simulated processes 

of diffusion that form the dynamic aspect of Graham’s work. Rather than network evolution 

through time, Graham explored the static structure of a conception of Roman space as 

presented in the Antonine Itineraries through hypothetical dynamic processes (for alternative 

network models of diffusion see e.g. Cowan and Jonard 2004; Guardiola et al. 2002; Valente 

2005; Zhuang et al. 2011). 

A unique example of a complex network model developed for a specific archaeological 

research context is Knappett, Evans and Rivers’ (2008; 2011; Evans et al. 2009) Ariadne2 

model for maritime interaction in the Aegean Bronze Age, which emerged as a fruitful 

2 The Ariadne model can be downloaded here: http://figshare.com/articles/ariadne/97746 (accessed 27-05-
2014). 
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collaboration between one archaeologist (Carl Knappett) and two theoretical physicists (Tim 

Evans and Ray Rivers). The model was formulated as a reaction to more geographically 

deterministic network methods (Rihll and Wilson 1987; 1991) and the work of Cyprian 

Broodbank (2000) in particular. In his study of the Early Bronze Age Cyclades Broodbank 

examined networks consisting of archaeologically attested sites as well as hypothetical sites 

added to islands based on population estimates derived from site surveys. He used the PPA 

method (introduced above) to link each site to its three geographically closest neighbors. In 

this case links were considered to be equal which Knappett and colleagues argued was not the 

case for interactions in the Middle Bronze Age Aegean. The authors set about developing a 

complex network model that specifically addressed their assumptions about maritime 

interactions in the Middle Bronze Age Aegean. 39 archaeologically attested sites that formed 

the centre of mass for their immediate areas (for technical details see Evans et al. 2009). 

These were represented as vertices that were assigned a fixed carrying capacity reflecting 

their local resources, and a variable indicating each site’s relative importance. The links 

between two sites were given a measure of the physical distance between them and a variable 

representing the effort one site puts into the interaction with the other (for technical details 

and the cost/benefit optimization function in this model see Evans et al. 2009). Attributing 

such values to links is a key difference with the other archaeological applications of complex 

network models described above. The authors used this model to explore the effect on Late 

Minoan civilization of the catastrophic destruction of Akrotiri on Thera (Santorini) by 

volcanic eruption (Knappett et al. 2011). For the pre-eruption period the model revealed a 

high level of clustering with a number of weak and stronger links connecting clusters. The 

immediate post-eruption period was modeled by the removal of Akrotiri. The results 

indicated that the removal of a key node in this network had little immediate effect on overall 

activity. The authors suggested that the removal of a key node might not lead to big changes 

initially, but will inevitably increase exchange costs. To test this hypothesis they increased 

exchange costs. At first, total activity was not reduced substantially, but eventually this 

hypothetical change led to fewer strong links, causing major sites to focus on maintaining 

fewer links. This was considered an unsustainable situation that might lead to collapse, 

represented by regional clusters in the network becoming disconnected. One could argue that 

the authors did not succeed in testing their hypothesis since it is the increase in exchange cost 

imposed by the authors that caused the network to disintegrate and not the removal of 

Akrotiri. It could be argued that this scenario should have been compared with one where the 
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exchange costs are increased without removing Akrotiri. The work by Knappett, Evans and 

Rivers also raises the issue of the role of archaeological data in complex network modeling. 

The model inputs are only based on the archaeological record to a very limited extent and the 

results of their case study were not validated against empirical data. It should be clear, 

however, that the value of this model lies largely in its ability to make an archaeological 

hypothesis of interaction explicit by modeling it as a process on a network. The results should 

therefore not be interpreted as predictions of past processes, but rather as stressing the 

potential evolution of hypothetical structures that require subsequent validation. Knappett, 

Evans and Rivers have illustrated that complex network models developed specifically to 

explore archaeological hypotheses can lead to innovative and useful ways of thinking about 

past processes that help guide future research efforts. 

2.6. Network science in Roman Archaeology 
The use of network science in Roman archaeology is limited. Despite a relatively recent and 

limited adoption, some Roman archaeologists have nevertheless developed some highly 

original network science studies. This is at least in part thanks to the availability of more 

diverse data types that are not available in prehistoric archaeology, such as brick stamps, 

epigraphy, and other written sources. The combination of archaeological and historical data 

types in Roman archaeology means that more complex questions can be asked and sometimes 

answered, such as the structure and functioning of the Roman economy (e.g. Scheidel et al. 

2007), of maritime transport (e.g. Arnaud 2005), or of Roman social systems (e.g. Bang 

2008). Roman archaeologists using network science have focused on these particular 

questions, no doubt because, as I have shown above through examples and definitions, 

network science is particularly suited for addressing questions involving the flow of goods, 

information, and the structure of social networks. Indeed, some of the studies I will discuss in 

this section include the most explicit examples in archaeology of the use of network science 

techniques for the analysis of past social networks (for example, the individuals named on 

brick stamps (Graham 2006b; 2009), on inscriptions (Broekaert 2013a), or in Cicero’s 

writings (Alexander and Danowski 1990)). 

A number of studies have used network science techniques for the analysis of Roman road 

networks, including that by Graham (2006a) mentioned above. Another example is the use of 

closeness and betweenness centrality measures by Leif Isaksen (2007; 2008) in his study of 

the transport system in Roman Southern Spain. He combined data from the Antonine 
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Itineraries with the river network based on the Vicarello Goblets, and with the Ravenna 

Cosmography. Isaksen proceeds with a critical description of the centrality results for each 

data source and the significant issues involved in interpreting them, before he draws them all 

together in an attempt to explore aspects of the Roman transport framework of the region. 

In her study of religious innovation in the Roman Empire, Anna Collar (2007; 2008; 2013) 

made a more descriptive use of complex network models as concepts to think with than some 

of the studies mentioned above. Collar’s work aimed to explore why some religious 

movements succeed and spread, while others ultimately fail. Rather than seeing this process 

as a direct consequence of the religions’ inherent properties, she adopted a bottom-up 

approach by exploring the social networks that linked the individuals who drove religious 

change. Through three case-studies, Collar examined the power to communicate religious 

ideas of three types of social networks: the military networks that she argues were 

instrumental to the diffusion of the cult of Jupiter Dolichenus, the ethnic network of the 

Jewish Diaspora, and the religious network of the cult of Theos Hypsistos. Collar explored 

these social networks through a combination of a close reading of an exhaustive epigraphic 

dataset and archaeological networks generated from the spatial distribution of inscriptions. 

The PPA technique previously used by Broodbank (2000; discussed above) and developed by 

Terrell (1976; 1977a; 2010a), was used to create these networks. For all three case studies 

Collar created a simple PPA network where sites with evidence of inscriptions were 

connected to their three geographically closest neighbors. The discussions of the resulting 

networks focus on the description of clusters, isolated communities and centers. Collar 

repeatedly stressed that these networks are not a reflection of the actual connections that 

existed between sites. Rather, through PPA she visualized and explored the assumption that 

communities interact most intensely with their closest geographical neighbors. Only in her 

final attempt to interpret the processes of diffusion that the discussed social networks hint at 

did Collar refer to concepts derived from small-world, scale-free, and complex systems 

research. She referred to the hypothesized roles of hubs, weak- and strong-links, information 

cascade, self-organized criticality and stochastic network growth in the spread of religious 

innovation. In short, Collar illustrated how networks can be used to explore the distribution of 

archaeological data and think explicitly in terms of social networks without driving their 

interpretation. In addition, she used the vocabulary of complex networks to describe 

hypothetical processes. 
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Few archaeologists have combined both SNA techniques and complex network modeling in a 

single approach. To some extent Fiona Coward’s (2010) work discussed above is an example 

of this. However, a particularly successful example is provided by Roman archaeologist 

Shawn Graham (2006b; 2009) in his study of the individuals active in the Roman brick 

industry in the Tiber valley. Graham created two types of networks. First he looked at 

patronage networks in the brick industry, evidenced in the names of individuals appearing on 

brick stamps. Then he examined brick manufacturing networks, where brick makers were 

connected if they shared the same clay sources (as derived from an archaeometrical analysis). 

These networks were considered to represent social relationships (of the kind petrified in 

bricks) between individuals and were analyzed in four chronologically subsequent periods 

(Julio-Claudian, Flavian, Nerva-Antonines, Severans). Graham combined SNA and complex 

network models in a method that switches between the local and the global scales. On a local 

level, Graham used the degree and Bonacich centrality measures to identify social hubs and 

bridges (Graham 2006b, 103). To explore patterns on a global level he calculated the 

networks’ average path lengths, degree distributions and clustering coefficients. The results 

led Graham to conclude that the patronage and manufacturing networks exhibited what he 

called egalitarian (characterized by nodes roughly having the same degree) and hierarchic 

(characterized by the presence of a power-law degree distribution, i.e. a scale-free network) 

small-world structures at different periods. He went on to argue that the known behavior of 

small-world and scale-free networks can be attributed to the structure of different social 

networks in the Tiber valley brick industry at different times. Graham stressed that although 

his networks are at best static snapshots of an evolving industry, a comparison with the 

structure of complex network models still allows one “to explore how (and why) the industry 

assumed these different shapes at different times; it allows us to move from the static to the 

dynamic” (Graham 2006b, 97). By drawing together network techniques developed in 

different disciplines, Shawn Graham provided a real multi-scalar network perspective that 

allows one to explore social structure both from the bottom-up and top-down. 

I would like to argue, however, that Graham’s interpretations of network structure are 

sensitive to the sampling issues typically surrounding archaeological data. Although network 

measures might indicate that archaeological data networks have a small-world and/or scale-

free structure, interpreting this structure is quite another thing. The work by Stumpf and 

colleagues (2005) on sampling properties of networks revealed the extent of this issue: 
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“Only if the degree distributions of the network and randomly sampled subnets belong to the same 

family of probability distributions is it possible to extrapolate from subnet data to properties of the 

global network. We show that this condition is indeed satisfied for some important classes of networks, 

notably classical random graphs and exponential random graphs. For scale-free degree distributions, 

however, this is not the case. Thus, inferences about the scale-free nature of a network may have to be 

treated with some caution” (Stumpf et al. 2005, 4221). 

Graham’s networks are relatively small, making their structure very likely to change 

dramatically through the addition of nodes and edges. In fact, they might turn out not to have 

a small-world or scale-free structure at all. Graham did argue and illustrate that his 

hypotheses of preferential attachment, wealth condensation (Bouchaud and Mézard 2000) 

and cascading failures (Albert et al. 2000) are supported by historical events. As I argued 

above for SNA, however, it should be clear that the known behavior of complex networks 

cannot be extrapolated to the structure of archaeological data without question. Indeed, one 

could argue that this issue is present in all exploratory archaeological network analyses and 

that it favors network simulation approaches for testing hypothetical whole networks. As I 

will repeat quite often throughout this thesis: identifying network structure and explaining it 

are two different things and requires one to move beyond a direct application of these popular 

models. 

Graham’s work illustrates the advantage Roman archaeology offers of combining 

archaeological and historical sources in a single approach. He enhances the use of SNA for 

the study of social networks of named individuals, such as in Alexander and Danowski’s 

(1990) SNA study of the Romans named in Cicero’s letters, by adding archaeometrical 

information. Similarly, the study of prosopographies or lists of ancient individuals named on 

a variety of sources (including inscriptions and ceramics) can be enhanced by incorporating 

both written and material evidence in a network science approach (the prosopographical SNA 

work by Broekaert (2013a) illustrates this potential). 

2.7. Conclusion: the need to evaluate network science in archaeology 
In the recently published SAGE handbook of social network analysis John Scott (2011) 

severely criticized the claims to novelty made by social physicists (and Albert-Lázló Barabási 

in particular. See also Bentley and Shennan 2005) given their “almost total ignorance shown 

concerning the vast amount of prior work in social network analysis” (Scott 2011, 55). Scott 

illustrated that there is a long history of social physics in sociology of which the new social 

physicists seem to “know little or nothing” (Scott 2011, 55). Indeed, citations to previous 
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work in SNA by social physicists are largely limited to popular textbooks (Degenne and 

Forsé, 1994; Scott, 1991; Wasserman and Faust, 1994). Scott seems particularly unhappy 

with Barabási’s claim that the work in social physics triggered by Watts and Strogatz (1998) 

posed “the first serious challenge to the view that real networks are fundamentally random” 

(Barabási 2002, 15). Scott replied “that no sociologists, to the best of my knowledge, have 

ever thought that complex social networks are purely random phenomena” (Scott 2011, 58). 

It should be said in Barabási’s defense that Scott only cites Barabási’s popular science book 

Linked (2002). In fact, Scott himself seems quite unaware of the scope of recent work in 

physics by Barabási and his followers. Scott concludes on a hopeful note, stressing that the 

work by some social physicists like Duncan Watts shows potentially valuable contributions to 

the social sciences. Scott considered much of the work by social network analysts and 

physicists to be complementary (complexity theory perspectives and agent-based dynamical 

modeling used by physicists in particular hold great potential for SNA) and argues strongly 

for collaborations between the two. 

In this literature review I have argued (although worded less strongly than John Scott) that a 

similar process is emerging in the archaeological use of formal network methods. A number 

of general trends can be identified that attest of a general unawareness of the historicity and 

potential diversity of existing network-based approaches or of suitable archaeological 

applications of known models and techniques and of the issues related to them (a similar 

development was recognized by Claire Lemercier (2012) for the discipline of history); which 

lead me to believe that, as far as formal network methods are concerned, there is a clear need 

for multi-disciplinary collaboration. 

Firstly, archaeological applications of graph theory, which have been around since the 

1960’s, were not influential at all on more recent archaeological network studies. This is 

peculiar since many of the SNA techniques that only in the past decade have become more 

popular with archaeologists are rooted in graph theory. In fact, the archaeological 

applications of graph theory clearly illustrated the potential of the graph as a technique for 

visualization and analysis in research contexts that showed strong similarities with studies in 

social network analysis. The introduction of graph theory and social network analysis into 

archaeology therefore happened largely independently. 

Secondly, the potential of social network analysis techniques was explored (largely 

theoretically) through Cynthia Irwin-Williams’ (1977) network model. Many of the 
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techniques she described were not applied in archaeological research until the last ten years, 

which might at least in part be due to technological factors. Like so many other quantitative 

methods in archaeology the earliest network analyses in archaeology were also strongly 

influenced by the New Geography and the work of Chorley and Haggett (1970; Haggett and 

Chorley 1969) in particular. 

Thirdly, social network analysis and physics have been the most influential research 

traditions, yet only a very limited range of models and techniques have been explored by 

archaeologists so far. Centrality measures in SNA and the small-world and scale-free 

complex network models are among the most popular approaches, whilst a wealth of 

alternative complex network models (like the ones described in the previous section) and 

SNA techniques (including affiliation- and ego-networks) that I have argued show great 

potential for being applied to address archaeological research questions remain largely 

unexplored. 

Lastly and most crucially, there is a danger of falling towards a standardized explanation of 

attested network structure. It is as if every network method comes with a social interpretation 

that needs only be moulded to fit the specific archaeological research context in question. 

This is definitely not the case as different processes can explain the emergence of the same 

structure. This issue might at least in part be caused by an unawareness or a limited 

discussion of the network science research process (Brandes et al. 2013), i.e. the abstraction 

of past phenomena into network concepts, the representation of network concepts as network 

data, and the formulation of clear motivations for making each of these steps. 

These general trends are the result of two critical issues that will need to be addressed in 

future archaeological network analysis and that further emphasise the need for the evaluation 

of network science in archaeology as I have claimed in the introduction to this PhD: (1) a 

general unawareness of the historicity and diversity of formal network methods both within 

and outside the archaeological discipline or of suitable archaeological applications of known 

models and techniques has resulted in a very limited methodological scope; (2) the adoption 

or development of network methods has very rarely been driven by specific archaeological 

research questions and is dominated by a few popular models and techniques, which has in 

some cases resulted in a routinized explanatory process. 

These issues should not necessarily be seen as a critique towards existing archaeological 

applications of network science. If anything, they stress that network science has far greater 
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potential than has already been explored by archaeologists. Moreover, the increasing number 

of archaeological applications in the last decade, largely triggered by the popularity of 

complex networks research in the early 2000’s, seems to indicate that there is a genuine 

interest in formal network methods for archaeology. In order to channel this interest towards 

more diverse and more explicitly archaeological future applications, however, the above two 

issues will need to be confronted. To do this I would argue that three things are crucial: 

taking a broad multi-disciplinary scope, letting the specific archaeological research context 

dominate the application, and explicitly work through each step in the network science 

research process. The first two conclusions might sound contradictory at first but in light of 

this review of archaeological applications their relevance and complementary nature becomes 

clear. Carl Knappett recently argued that “for new network approaches to be successful in 

archaeology they have to be as profoundly transdisciplinary as we can possibly make them” 

(Knappett 2011, 37). Indeed, we have seen that studies addressing a specific archaeological 

problem through a multi-disciplinary collaboration (e.g. Knappett et al. 2008; 2011) or 

through a combination of different network techniques (e.g. Bentley and Shennan 2003; 

Graham 2006b) have often been the most fruitful ones. The combination of SNA techniques 

and complex network modeling (e.g. Coward 2010; Graham 2006b; 2006a), which is 

considered to have great potential according to John Scott (as well as other social network 

analysts, e.g. Borgatti et al. 2009), is particularly promising for archaeology as it allows for a 

top-down as well as a bottom-up perspective to explore the multi-scalar nature of network 

thinking (Knappett 2011). The adoption or development of network methods should, 

however, always be motivated by specific archaeological research questions. The building 

blocks of every network (nodes, edges, and their parameters) as well as the techniques used 

should always be clearly defined from the outset, as they will dominate the interpretation of 

the results. These results in turn require a re-contextualization within their wider 

archaeological framework before one can make the jump from the identification of network 

structure to its explanation in terms of past dynamic social processes. 

2.8. Implications for developing case studies 
The main conclusions of this literature review for enabling an evaluation of the potential of 

network science in archaeology are: 

• take a broad multi-disciplinary scope; 

• let the specific archaeological research context dominate the application; 
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• explicitly work through each step in the network science research process. 

These three conclusions drawn from the literature review will guide my use and evaluation of 

network science techniques through the three archaeological case studies in the next three 

chapters. All three case studies include an exploratory network analysis, whilst case studies 2 

and 3 evaluate how this can be combined with different types of confirmatory network 

modelling approaches. The first case study concerns a multi-scalar exploratory network 

analysis, in the sense that different sample sizes drawn from a large citation dataset are 

considered to illustrate processes of academic influence taking place on different scales. Case 

study 3 on the other hand, explores a different kind of multi-scalar network approach, where 

the actions of individual software agents (for which there is little evidence in the 

archaeological record) give rise to large scale patterns that can be compared to general trends 

in the archaeological record. Every case study will be developed in light of an archaeological 

research question and the network science method most suitable to address this question will 

be selected, rather than adopting innovative methods with limited potential in archaeology 

just for innovation’s sake. In each case study I will explicitly work through the network 

science research process to evaluate how this influences the selection of network methods, 

how this fascilitates the definition of network data and dependence assumptions, and 

eventually how this approach allows archaeologists to better evaluate the potential 

contribution network science can make in their research. Finally, the implications and 

relevance of the quantitative results obtained from the network science techniques for 

evaluating the archaeological research question will always be discussed by re-

contextualising them within a wider archaeological framework. 

A final conclusion should be drawn from the use of network science in Roman archaeology. 

Although section 2.6 illustrated some original applications and the potential to address 

complex research questions thanks to a wealth and diversity of data, these kinds of studies are 

rare in Roman archaeology. Indeed, Roman archaeology has neglected the adoption and 

development of computational techniques to leverage this wealth of data and allow for testing 

the many existing conflicting hypotheses of Roman complex systems (Morris et al. 2007). 

Moreover, due to the availability of different data types and the focus of academic 

discussions in Roman archaeology on complex phenomena like urbanization, transport, 

economy, and social structure, the research themes discussed and methods more commonly 

used in prehistoric archaeology are neglected in Roman archaeology. Case study 2 (chapter 4) 
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offers an example of this, where it is argued that the potential role played by lines of sight 

between Roman urban settlements in Southern Spain in structuring human behavior is 

neglected, even though it is a common research theme in the study of the immediately 

preceding Late Iron Age period. Both case studies 2 and 3 are developed in order to address 

the lack of formal methods for testing complex network-related research questions in Roman 

archaeology, by adopting and adapting network techniques which have proven useful in other 

archaeological subdisciplines or outside of archaeology. 

Box 3. Summary chapter 2 
Issues: 

• A general unawareness of the historicity and diversity of formal network methods both within and 

outside the archaeological discipline or of suitable archaeological applications of known models and 

techniques has resulted in a very limited methodological scope. 

• The adoption or development of network methods has very rarely been driven by specific 

archaeological research questions and is dominated by a few popular models and techniques, which has 

in some cases resulted in a routinized explanatory process. 

• The use of network science in Roman archaeology is limited but highly creative, thanks to the diversity 

of the available data and the complexity of research questions. 

Future archaeological network science approaches need to: 

• take a broad multi-disciplinary scope; 

• let the specific archaeological research context dominate the application; 

• explicitly work through each step in the network science research process. 
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CASE STUDY 1: 

A CITATION NETWORK ANALYSIS OF THE ADOPTION, 
USE, AND ADAPTATION OF FORMAL NETWORK 

TECHNIQUES IN ARCHAEOLOGY  
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3. Case study 1: a citation network analysis of the adoption, use, and 

adaptation of formal network techniques in archaeology 

3.1. Introduction3 
This first case study aims to illustrate how the publications discussed in the literature review4 

could be explored in a different way, by focusing on their citations. 

Formal methods, like network science, seem to constantly fade in and out of scientific 

practice. Some are lucky enough to find a large audience, such as the archaeological use of 

GIS, whilst others are quickly forgotten, such as the archaeological use of fractals. But how 

does a new technique emerge in a discipline, where did it originate and how does it evolve in 

a new research context? A well-established set of bibliometric methods has been developed 

to quantitatively address these sorts of questions using scientific literature and this case study 

is concerned with citation network analysis in particular (Börner et al. 2004; Garfield et al. 

2003; Hummon and Doreian 1989). Recently, a wider availability of powerful computational 

resources, bibliometric software (e.g. HISTCITE5; PAJEK6; PUBLISH OR PERISH7) and 

large bibliographic datasets in the sciences as well as the humanities resulted in 

unprecedented progress in the analysis of citation networks (Börner et al. 2004). This case 

study will build on these recent advances. 

The archaeological application of formal network methods forms a particularly suitable case 

to explore academic processes of adoption and adaptation through the related citation 

behaviour. Through a close reading of archaeological applications of formal network methods 

the literature review presented in chapter 2 provides an intuitive understanding of the general 

academic traditions, techniques, models and individuals influential to these applications. But 

3 Please see the electronic supplementary material for this case study, which includes the citation network files. 

4 I choose to explore the use of citation network techniques in relation to the literature review rather than for the 
published examples of the use of network science in Roman archaeology. This because the literature review 
revealed the use of network science in Roman archaeology is very limited and it would not allow me to explore 
the potential of exploratory citation network techniques. However, these techniques could also be usefully 
applied to study the citation behaviour of Roman archaeologists and to map out how their citation practices 
differ from those of other archaeologists and of historians. 

5 http://thomsonreuters.com/products_services/science/science_products/a-z/histcite/ (accessed 26.06.2014). 

6 http://pajek.imfm.si/doku.php (accessed 28.04.2013); and WoS2Pajek in particular http://vlado.fmf.uni-
lj.si/pub/networks/pajek/WoS2Pajek/default.htm (accessed 26.06.2014). 

7 http://www.harzing.com/pop.htm (accessed 26.06.2014). 
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do the combined bibliographies of these applications tell a similar story? It is the aim of this 

case study to explore how an exploratory citation network analysis can usefully contribute to 

an archaeological literature review. The phenomenon studied in this case study through a 

network science research process is therefore an academic one: the adoption and adaptation 

of network science techniques by archaeologists. The abstraction into network concepts and 

the subsequent representation as and analysis of network data will be guided by an evaluation 

of the following research questions: 

• Can the intuitive results drawn from a close reading be quantitatively expressed and 

validated using citation network analysis? 

• Can an exploratory network analysis provide new insights into the citation behaviour 

within the limited bibliographic corpus of the close reading? 

• Does a citation network analysis allow one to usefully contextualise a close reading 

within a larger and multi-disciplinary corpus of literature? And does it provide new 

insights into the adoption and adaptation of network science in archaeology? 

• Do archaeologists publish and cite differently from scholars in other disciplines? If so, 

does this require the development of specific citation network analysis techniques or 

strategies? 

Many of the answers to these research questions will sound familiar, since they aim to 

reproduce the conclusions drawn from the literature review. However, this case study will 

advance the general aim of this PhD by evaluating in practice the potential of network 

science techniques as exploration and communication tools (third research question of this 

PhD). Much of this potential must lie in the ability of this approach to ask and answer 

different questions than those of the literature review, and I will therefore focus the 

discussion at the end of this case study on the added value of exploratory network analysis as 

compared to a close reading of the same body of literature. Moreover, throughout this first 

case study I will introduce in practice some of the basic network science techniques that will 

also be used in the other two case studies. 

3.2. Citation network analysis and archaeology 
The foundations of citation network analysis were laid by Garfield and colleagues (1964) and 

the application of graph theory for citation network analysis was explored by Garner (1967). 

Despite this long tradition, and although citation analysis is more commonly used in the field 

of anthropology (e.g. Choi 1988; Clark and Clark 1982; Robinson and Posten 2005), its use 
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in an archaeological context has not been thoroughly explored yet. A number of studies use 

simple counts of citations or other bibliometric data to track trends in the archaeological 

sciences and compare the impact and evolution of archaeological journals (e.g. Butzer 2009; 

Marriner 2009; Rehren et al. 2008; Rosenswig 2005; Sterud 1978), or to evaluate the impact 

of gender differentiation in archaeology (e.g. Beaudry and White 1994; Hutson 2002; 2006; 

Victor and Beaudry 1992). Of particular interest is the work by Schich and colleagues 

(Schich et al. 2009; Schich and Coscia 2011) who analysed the co-occurrence of 

classifications in the Archäologische Bibliographie (a library database consisting of over 

450,000 titles, 45,000 classifications, and 670,000 classification links). Their approach of 

working on three analytical levels is followed in this case study. Schich and Coscia (2011) 

also point out that in classical archaeology and in the arts and humanities in general “citation 

indices are of limited use and literature is still not available in digital form”. The available 

citation indices for the Arts and Humanities (and the Institute for Scientific Information’s 

Arts and Humanities Citation Index in particular) have significant limitations (Nederhof 

2006) and for this reason citation network analyses in the Arts and Humanities are rare 

(Leydesdorff et al. 2011). Indeed, a study by Knievel and Kellsey (2005) has shown that 

disciplines within the Humanities have different citation patterns and should be considered 

separately, and that monographs (rather than peer-reviewed journal articles) are often the 

dominant format of cited sources (which is a problem since monographs are traditionally not 

included in citation indices). 

It is often claimed that the citation and publication behaviour of archaeologists is in fact 

different from other disciplines. Xia emphasised the nature of archaeological data as one of 

the reasons for this and described the traditional practice of archaeological publishing as of 

‘broad scope, slow speed, limited priority, and selected distribution’ (Xia 2011, 234). Work 

of relevance to archaeologists is published in science, humanities and history journals. To 

capture the multi-disciplinary nature of archaeological publishing and citation, the strategy of 

this case study will consist of exploring how a select number of archaeological publications is 

embedded within a wider multi-disciplinary web of publications. As such, this strategy does 

not allow to evaluate the citation and publishing behaviour of the entire archaeological 

community. Instead, it is interested in the degree of multi-disciplinary engagement formally 

expressed through citation. 
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Citation analyses in the arts and humanities should not be discarded out of hand, however, 

since they can still provide an alternative look at scientific practice through large aggregated 

datasets, as long as the nature of the datasets and their limitations are thoroughly understood. 

This case study can be considered a step towards evaluating the issues involved in using 

citation network analysis for the archaeological discipline by aiming to reveal archaeological 

citation patterns and how these interlink with citation practices in other disciplines. 

3.3. Data collection, citation network creation and sample size issues8 
In a citation network (e.g. Fig. 11) vertices represent publications and a directed edge (or arc) 

between two vertices indicates a citation (Eom and Fortunato 2011). The seeds of the citation 

network analysed in this case study are 69 published examples of the archaeological use of 

formal network techniques (these will be referred to as egos, for a full list see Appendix II), 

all of which were mentioned in the literature review in chapter 2. The decision was made to 

include rather than exclude publications where formal network techniques were only 

mentioned and not applied or where merely the vocabulary of formal network techniques was 

used, in the hope that this will reveal a wider variety of influences and archaeological uses. 

The selection was strongly influenced by my own knowledge of the topic, a bias that will be 

evaluated in the analysis. 

Bibliographic data for these 69 egos were extracted from Thomson Reuters Web of 

Knowledge (WOK)9, which provides access to the most comprehensive citation databases 

and is the most commonly used resource for citation network analysis (Newman 2010, 68). 

Many publications are missing from WOK, however, which introduces the second bias in this 

dataset (see Table 1). Although it includes over 12,000 international and regional journals 

from a wide range of disciplines, a high number of journals are not indexed and their citation 

data are therefore not available10. The citation data in books is also not included in this study 

since until recently it was not covered by WOK (the launch of the Book Citation Index for 

WOK was announced a few months after data collection for the current case study was 

8 The network data used in this analysis is included as an electronic supplement to the PhD. 

9 http://wokinfo.com/about/whatitis/ (accessed 26.06.2014). 

10 These missing journals include journals that might still have a wide readership like Journal of Roman 
Archaeology or Archaeological Review from Cambridge. 
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completed)11. Most crucially, WOK assumes that English is the language of science and its 

coverage of journals that accept publications in languages other than English is therefore 

limited. These are significant issues for the discipline of archaeology where publications in 

books (in particular for site excavation reports) and in languages other than English are 

extremely common. Nevertheless, WOK is still the largest available body of citations with a 

clear focus on high-impact journals. The journal selection criteria are clearly described and 

are subject specific12, which allows for the influence of this selection bias on the dataset to be 

evaluated. 

Table 1. Count of egos and neighbouring publications that could be found in WOK and those whose bibliographies had to be 
extracted manually. The last row “missing publications” refers to the number of publications that were cited by the egos but 
that could not be found on WOK. 

  Egos Cited by egos 

Total publications 69 1859 
Extracted from WOK 28 449 
Extracted manually 41 0 
Missing bibliographies 0 1410 

 

Only 28 of the 69 egos could be found on WOK, which meant the bibliographies of the 

remaining 41 had to be extracted manually (Table 1). To better represent the citation context 

of the 69 egos a so-called ego-network was created, consisting of the egos, their direct 

neighbours and all citations between them (Marsden 2002; Wasserman and Faust 1994, 41–

43). Collectively, these 69 core publications cite 1,859 other publications whose 

bibliographic data were in turn extracted from WOK to allow for the creation of an ego-

network. Only 449 of these could be found, leaving 1,410 publications for which the 

bibliographic data are not available. It was decided not to extract this data manually given 

time constraints and the potential of introducing significant inconsistencies into the dataset. 

By combining these 518 bibliographies a citation network could be created consisting of 

33,556 publications, up to two steps away from the 69 egos, and linked by 42,993 citations. 

The aims of this case study and the large number of missing bibliographies were the main 

11 About the Book Citation Index: http://thomsonreuters.com/content/press_room/science/book-citation-index-

launches (accessed 26.06.2014). 

12 http://thomsonreuters.com/products_services/science/free/essays/journal_selection_process/ (accessed 

26.06.2014). 
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motivation for my decision to perform a citation network analysis on three analytical scales 

(Fig. 11). The local scale concerns the 69 archaeological applications and the citations 

between them (Table 2; discussed in section 3.5.1). The meso scale consists of the 69 egos, 

their direct neighbours and the citations between them, thus forming the ego-network of the 

69 archaeological applications (discussed in section 3.5.2). Two different networks will be 

analysed on this scale to evaluate the influence of missing data: on the one hand the ego-

network of 518 publications for which we have the complete dataset (referred to in the text as 

WOK data network), and on the other hand this ego-network with the 1,410 publications 

added for which the bibliography was not available on WOK (referred to in the text as all 

data network). The global scale includes the entire bibliographic dataset in its raw form, 

consisting of the archaeological ego-network and the publications cited by the direct 

neighbours of the egos (where this data are available; discussed in section 3.5.3). 

 

Fig. 11. The three scales of analysis used in this case study. (a) the local scale consisting of the egos and the citations 
between them (white nodes); (b) the meso scale consisting of the egos, their direct neighbours (grey nodes) and the citations 
between them; (c) the global scale consisting of the egos, their direct neighbours, the neighbours’ neighbours (black nodes) 

and all available citations between them. 

Table 2. Simple network measures (described in section 3.4) for all networks in the case study. 

  Local scale Meso scale Global scale 

 

Archaeological 
applications Ego-network 

Combined 
dataset 

    WOK data network All data network   
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Number of nodes 69 518 1928 33556 
Number of arcs 128 1489 3987 42993 

Missing bibliographies 0 0 1342 33032 
Connected components 9 6 1 2 

Isolated nodes 6 3 0 0 
Network diameter 6 7 7 8 

Network density 0.055 0.011 0.002 <0.001 
Average shortest path 

length 1.689 2.377 2.355 3.191 
Clustering coefficient 0.185 0.197 0.175 0.083 

Average degree 3.71 5.75 4.14 2.562 
 

3.4. Methods 
As a result of their chronological evolution citation networks are acyclic, which means that 

there can be no closed loops of directed edges (Newman 2010, 69) (e.g. Fig. 12). The acyclic 

nature was enforced for the networks in this case study before any analysis took place. This 

allows for a number of techniques that can only be applied to acyclic networks and 

dramatically impacts the use and interpretation of many other techniques. The analyses and 

visualisations were executed with the software packages PAJEK (Nooy et al. 2005) and 

CYTOSCAPE (Smoot et al. 2011). 

 

Fig. 12. Citation networks are acyclic like in (b), which shows that a paper published in 2005 can cite a paper published in 
2000, which in turn can cite a paper published in 1995. The latter, however, cannot have a paper published in 2005 in its 
bibliography, thus preventing the creation of closed loops of arcs. This is not the case for many other networks like, for 

example, the World Wide Web (a). 

A large number of exploratory network analysis measures are used in this paper, some are 

commonly applied to citation networks and others are not. In this section I will first describe 

general network measures that are often used to compare all sorts of networks (and which 

will also feature in the exploratory network analyses of case studies 2 and 3) and are therefore 

not specifically designed for analysing citation networks. Secondly I will introduce network 

measures describing aspects of the structural position of nodes, with reference to how these 
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are interpreted within the context of citation networks. Lastly, I will introduce network 

projections and measures that can be used to analyse acyclic networks in particular. 

A number of general network measures are used in Table 2 to compare networks. The degree 

of a node is the number of edges connected to it and the average degree is therefore the 

average of all degree scores in a single network (Newman 2010, 133-136; Nooy et al. 2005, 

63-64). A shortest path (or geodesic path) in network terms is the shortest route over the 

network that runs from one vertex to another along the edges of the network and the average 

shortest path length is the average of all shortest path scores between all possible pairs of 

vertices in the network (Newman 2010, 136-140; Nooy et al. 2005, 127). The Watts-Strogatz 

clustering coefficient measures the average probability that two neighbours of a vertex are 

themselves neighbours as a ratio of the number of edges between the neighbours of a given 

node and the maximum number of edges that could possibly exist between these neighbours 

(Newman 2010, 262-266; Watts and Strogatz 1998, 441). The degree distribution represents 

the fraction of nodes in a network with a certain degree (Albert and Barabási 2002, 49; 

Newman 2010, 243-247). The network diameter is the length of the longest geodesic path 

between any pair of nodes in the network (Newman 2010, 140; Wasserman and Faust 1994, 

111-112) and the number of components is the number of unconnected subgroups in 

networks (Newman 2010, 142; Nooy et al. 2005, 68). Network density is the fraction of all 

possible edges that are actually present (Newman 2010, 134-135). 

The network analysis measures used in Tables 3-6 list node specific results for a number of 

simple network measures. I consider the input domain (which represents the number of all 

other vertices that are connected to a given vertex by a path (Nooy et al. 2005, 193)) of 

particular interest for analysing citation networks since older publications generally receive a 

higher score. It can therefore be used to evaluate the citation behaviour between the old and 

more recent archaeological applications of network methods. The outdegree is the number of 

arcs a given node sends and in a citation network represents the number of items in a 

publication’s bibliography. The indegree is the number of arcs a given node receives, which 

in a citation network equals the number of citations a publication receives. The indegree 

scores representing only citations within these relatively small networks are compared to the 

number of citations these publications received in total according to Google Scholar (which 

includes books but is less controlled and includes duplicates) and Web of Knowledge (which 

is manually edited, is more consistent but suffers from the selection criteria discussed above). 
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Hubs are publications that cite many other publications and many good authorities in 

particular. Authorities are publications that are cited by many other publications and by good 

hubs in particular (Kleinberg 1999). Hubs can be regarded organisational leaders whilst 

authorities are intellectual leaders (White 2011, 276). The citation weights measure is used to 

identify the path traversed by the largest number of other paths (Hummon and Doreian 1989). 

This path can therefore be considered the most important path of influence (as represented 

through citation) (Hummon et al. 1990, 464). The Simple Path Count (SPC) approach to 

citation weights was chosen since all three methods discussed by Hummon and Doreian 

(1989) provided the same results and SPC should be considered a first choice (Batagelj 2003, 

24). For the citation weights the networks were transposed to represent the flow of influence, 

changing the X cites Y citation networks into Y is cited by X (Bataglej 2003). 

Acyclic networks can also be transformed into undirected networks and analysed through the 

cocitation and bibliographic coupling network projections (Fig. 13) (Newman 2010, 115-

118). In a cocitation network edges are drawn between a pair of vertices if they are both cited 

by the same paper(s). In a bibliographic coupling network, on the other hand, edges are 

drawn between a pair of vertices if they both cite the same paper(s). Bibliographic coupling 

networks do not change over time since they are derived from published bibliographies whilst 

cocitation networks evolve as citations to papers emerge (often only months or years after 

publication). Both networks are considered a good indicator for clusters of papers that deal 

with related topics (Newman 2010, 116-117). A number of techniques are used in this case 

study to analyse these two network types. M-slices include vertices linked by lines with a 

value equal to or greater than m (Nooy et al. 2005, 109), which will be used to explore nested 

subnetworks with a minimum cocitation or bibliographic coupling edge weight. Betweenness 

centrality is the proportion of all shortest paths between pairs of other vertices that include 

this vertex (Nooy et al. 2005, 131), used in Figures 17 and 18 to identify nodes that bridge 

clusters of different topics. Hierarchical clustering through Ward’s clustering method was 

used to identify ‘communities’ with similar citation behaviour. The ‘corrected Euclidean 

distance’ algorithm used in PAJEK was applied to compute dissimilarity between vertices 

since it takes the value of lines into account (Batagelj et al. 1992; Nooy et al. 2005, 265–73). 
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Fig. 13. Network (b) is the cocitation projection of network (a), e.g. network (c) is the cocitation projection of network (c) in 
Fig. 1. Network (e) is the bibliographic coupling projection of network (d), e.g. network (f) is the bibliographic coupling 
projection of network (c) in Fig. 11. 

3.5. Results 
In this case study a citation is taken to represent influence and relatedness of subject matter 

(Newman 2010, 67-70). The citation networks used do not reveal the nature of the citation 

(e.g. positive or negative; for an experimental approach to include this see Alen Sula and 

Miller 2014). The absence of citations is considered equally important as their presence, 

although purposefully not citing is not directly identifiable. Box 4 provides an overview of 

how the discussion of aims, research questions, data collection, and methods above reveal my 

thinking through a network science research process. In this section I will describe the results 

that this research process have led me to, the significance of which will be discussed in the 

next section. 

Box 4. Network science research process case study 1 
Phenomenon studied: 

• The adoption and adaptation of network science techniques by archaeologists. 

Abstraction as network concepts: 

• Only one formal representation of adoption and adaptation is studied here: citation behaviour. 

• Publications are individual entities of research interest. 

• One publication can affect another, this process of influence is formalised as citations. 

• Citations always describe a directed relationship: the flow of influence runs from an older to a younger 

publication. However, a citation represents a reference to the source of influence and therefore runs 

from the younger to the older publication. 

Representation as network data: 

• Publications are represented as nodes. 
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• Citations are represented as arcs going from the younger to the older publication. 

• Citation networks are acyclic. 

Dependence assumptions: 

• Frequently cited publications tend to attract more citations over time (authorities). 

• Publications with similar subject matter tend to cite each other more than other publications 

(community formation). 

Network science techniques used: 

• Network-based exploratory network measures: average degree, average shortest path length, clustering 

coefficient, degree distribution, diameter, connected components, density. 

• Node-based exploratory network measures: input domain, outdegree, indegree, m-slices, betweenness 

centrality, hierarchical clustering. 

• Techniques for acyclic networks: hubs, authorities, citation weights, cocitation, bibliographic coupling. 

3.5.1. Local scale: network of archaeological applications 

A visual exploration and the simple network measures in Table 2 reveal that the bulk of 

publications are part of a single large connected component, whilst only ten publications are 

either isolated or tied to only one other vertex. These isolated nodes include studies of 

network analysis in GIS (e.g. Lock and Pouncett 2007; Pouncett and Lock 2007; Zubrow 

1990), and the bibliometric studies by Schich and colleagues (Schich et al. 2009; Schich and 

Coscia 2011). The network diameter and average shortest path length are both low, which 

seems to be the result of a few nodes being far better connected than other nodes in the 

network, given the low average degree and clustering coefficient. 

One of the patterns observed in the literature review is immediately apparent from the 

chronological visualisation (Fig. 14): archaeological applications of formal network methods 

are rare before the late 1990s, and especially in the last decade there seems to have been a 

dramatic increase in the number of published archaeological applications (see also Fig. 5). 

Something that was less clear in the literature review but obvious from this citation network 

visualisation is the sheer density of citations between publications in the last decade, in 

contrast to the relative scarcity of citations between the older publications themselves and 

between the older and more recent ones. The citation behaviour seems to indicate a divide 

between an early group of adopters and a more recent one. Some network measures can help 

explore this pattern (see Table 3). 
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Fig. 14. Chronological visualisation of the local scale network of the 69 archaeological applications of network methods 
before 2012. Nodes represent publications and arcs represent citations. The size of nodes represents the relative input domain 
scores. Nodes are positioned along the Y-axis according to their date of publication. The positioning of nodes along the X-
axis does not reflect any logic other than avoiding the overlap of nodes and arcs to make the patterns more visually 
‘readable’. 

Table 3. Node specific measures for the local scale network. See Appendix II section 10.1 for full references. 

Publication 
Input 

domain Indegree Outdegree 
Citations 

WOK 

Citations 
Google 
Scholar 

Bentley and Maschner, 2000 25 5 0 7 17 
Bentley and Maschner, 2001 24 8 1 10 17 

Bentley and Maschner, 2003a 3 2 2 
  Bentley and Maschner, 2003b 0 0 0 
  Bentley and Shennan, 2003 15 6 2 42 97 

Bentley and Shennan, 2005 5 1 1 11 30 
Bentley et al., 2005 0 0 1 2 5 

Bentley, 2003a 3 2 2 
 

10 
Bentley, 2003b 0 0 2 

 
8 

Bintliff, 2003 0 0 0 
 

4 
Branting, 2007 0 0 1 

  Brughmans, 2010 3 3 9 0 4 
Brughmans, 2012b 0 0 15 

 
0 

Cochrane and Lipo, 2010 2 1 1 1 4 
Collar, 2007 1 1 0 1 6 

Coward and Gamble, 2008 3 1 1 8 10 
Coward, 2010 2 2 5 

 
1 
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Earl and Keay, 2007 0 0 6 
 

0 
Earl et al., 2011 1 1 6 

 
0 

Evans et al., 2009 7 5 2 
 

15 
Gamble, 1998 7 4 0 38 69 
Gamble, 1999 5 4 0 

 
718 

Graham, 2006a 4 3 1 
 

5 
Graham, 2006b 5 5 1 

 
13 

Graham, 2009 6 3 0 
 

4 
Hage et al., 1986 4 1 0 4 7 

Hamilton et al., 2007 1 1 2 30 46 
Hart and Engelbrecht, 2011 1 1 4 

 
1 

Hart, 2012 0 0 1 0 0 
Hill, 2009 1 1 1 

 
1 

Hunt, 1988 6 3 1 
 

17 
Irwin-Williams, 1977 7 4 0 

 
23 

Irwin, 1978 5 3 0 17 30 
Isaksen, 2007 1 1 0 

 
2 

Isaksen, 2008 4 4 2 
 

4 
Jenkins, 2001 2 2 4 7 7 

Jiménez and Chapman, 2002 5 2 0 
 

5 
Keay and Earl, 2006 1 1 1 

 
2 

Knappett and Nikolakopoulou, 
2005 11 5 0 

 
6 

Knappett et al., 2008 5 5 2 9 17 
Knappett, 2011a 1 1 1 

  Knappett, 2011b 0 0 21 
 

2 
Knappett, 2012 0 0 1 

  Kohler, 2012 0 0 4 
 

1 
Lock and Pouncett, 2007 0 0 1 

  Mackie, 2001 3 3 1 
 

7 
Maschner and Bentley, 2003 2 1 2 

 
11 

McGlade, 2003 0 0 1 
 

9 
Milicic, 1993 3 1 4 5 8 

Mizoguchi, 2009 7 6 0 4 9 
Munson and Macri, 2009 4 3 2 3 4 

Peregrine, 1991 4 4 3 8 18 
Pouncett and Lock, 2007 0 0 0 

  Rothman, 1987 5 1 1 
 

7 
Santley, 1991 3 1 0 

  Schich and Coscia, 2011 0 0 1 
  Schich et al., 2009 1 1 0 
 

3 
Shuchat, 1984 0 0 0 6 13 

Sindbæk, 2007a 7 4 0 7 18 
Sindbæk, 2007b 1 1 2 3 5 
Swanson, 2003 0 0 0 6 11 

Terrell, 1976 12 2 1 11 28 
Terrell, 1977a 8 2 1 8 22 
Terrell, 1977b 7 1 1 

 
31 

Terrell, 2010a 2 2 2 
 

6 
Terrell, 2010b 3 2 2 4 8 

Welinder and Griffin, 1984 0 0 0 1 1 
Wells, 2005 2 1 0 2 7 

Zubrow, 1990 1 1 0   16 
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Three publications (Brughmans 2010; Brughmans 2012b; Knappett 2011a) have a far higher 

outdegree score than others and are to a large extent responsible for the higher density of 

citations in the group of more recent applications. These are all reviews of network science in 

archaeology and two of them are my own, emphasizing the impact of my own knowledge of 

existing applications on the creation of this dataset. This bias will be evaluated below by 

removing these three publications from the network. With the exception of these three all 

archaeologists cite six or less other archaeological applications, whilst the vast majority cites 

only one or none at all. More than half of all nodes have an indegree score of either zero or 

one. A few publications are cited more frequently than others, although in some cases this 

seems to be at least in part due to multiple papers by the same authors citing their earlier 

work on the same topic. The publications cited five or more times within this network were 

all published after 1999. The external citation counts generally show a similar pattern to the 

indegree scores in this network, although there are some interesting discrepancies at the lower 

and upper ends of the indegree scores. A number of publications with only one citation within 

this network have a significantly higher score outside of the network. Most of the 

publications that received many citations within the network, however, do not rank among 

the highest external citation scores. This can only in part be explained by their relatively 

recent publishing date and seems more related to the influence of these authors to other 

archaeological network analysts as well as citation of one’s own work in some cases. 

Although the results in Table 3 indicate that many publications published before 1998 do 

have higher than average input domain scores (e.g. Terrell 1976; Terrell 1977b; Irwin-

Williams 1977) it is striking that the top three highest scores are publications from the early 

2000s that pioneered the application of complex network models in archaeology (Bentley and 

Maschner 2000; 2001; Bentley and Shennan 2003). The influence of early archaeological 

adopters is also visible in the citation weights SPC measure, which again distinguishes 

between an older and a more recent group of applications by indicating that ties between 

recent publications are traversed more frequently by all possible paths over this network (Fig. 

15). The absence of older publications within the list of hubs and authorities can be seen as a 

reflection of the higher internal density of citations within the group of recent applications. 
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Fig. 15. SPC citation weight path of the local scale network. Nodes represent publications, arcs represent an inversed citation 
(i.e. X is cited by Y) and arc weights represent the number of paths passing through it. 

Many of the more recently published works are isolated nodes in the cocitation network (Fig. 

16a) since they had less time to accumulate citations. Most interestingly, however, the older 

applications are also isolated in the cocitation network because they are rarely cited together. 

The only connected component in this network represents recent publications being cited 

together. It would be wrong to argue that all recent publications cite many other recent 

applications. By removing my own review publications (Brughmans 2010; 2012b) and the 

review by Knappett (2011a), which were considered hubs in the network and have the highest 

outdegree, it becomes clear how limited cocitation of archaeological applications really is 

(Fig. 16b). The network fragments into two smaller components with no more than one 

cocitation per pair of publications. The bibliographic coupling network shows a similar 

pattern (Fig. 17). The older publications are again isolated, this time largely because there are 

hardly any older publications in this network that could create a tie between a pair. The 

connected component of this network therefore represents recent publications that have 

similar bibliographies. The core of this component consists of the three review publications 

that have a similar bibliography. When these three are extracted from the bibliographic 

coupling network it falls apart into smaller components (Fig. 17b). The bibliographies of the 
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remaining publications are quite different and the majority of clusters in this network can be 

attributed to authors citing their own previously published work, or to topical, national and 

institutional contacts between authors. 

 

Fig. 16. Cocitation network of the local scale network with (a) and without (b) three recent review publications (Brughmans 
2010; 2012b; Knappett 2011). Size of nodes in network (a) represent betweenness centrality: the proportion of all shortest 
paths between pairs of other nodes that include this node (Nooy et al. 2005, 131). 

 

Fig. 17. Bibliographical coupling network of the local scale network with (a) and without (b) three review publications 
(Brughmans 2010; 2012b; Knappett 2011a). Size of nodes in network (a) represent betweenness centrality: the proportion of 
all shortest paths between pairs of other nodes that include this node (Nooy et al. 2005, 131). 

3.5.2. Meso scale: ego-network of archaeological applications 

WOK data network 

This network includes the 518 publications for which the full bibliographies are available. 

The few smaller components and isolated nodes are all archaeological applications of 
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network techniques that have strongly different citation behaviour from all other 

archaeological applications. Although this network is denser and nodes have a higher average 

degree than the local scale network, the diameter and average shortest path length remain 

low. 

A chronological visualisation of this network (Fig. 18) reveals that publications dating back 

to 1964 are included, although the citation pattern is most dense from the late 90s onwards. 

Influential SNA publications are included among the older ones whilst influential studies in 

physics are only present since the late 90s. The network measures in Table 4 indicate, 

however, that these physics papers seem to be most prominent in this network. The highest 

number of citations both within this network and according to external citation indices are for 

the extremely influential models by Watts and Strogatz (1998) and Barabási and Albert 

(1999), as well as other influential publications in social physics. Most of these are even 

considered authorities within the network, whilst the hubs include a number of archaeological 

publications that cite many of these influential papers in physics. Granovetter’s (1973) work 

‘The strength of weak ties’ is arguably the only SNA publication in this indegree top ten list, 

since many of the most prominent SNA publications are books and therefore not included in 

the current network. Most interestingly, the input domain measure picks out those physics 

papers from the late 1990s that were responsible for the emergence of what is sometimes 

referred to as ‘The new science of networks’, which I have argued in the literature review in 

chapter 2 was key to the renewed interest in network techniques by archaeologists. Only a 

few older important publications are drawn out, notably Korte and Milgram’s (1970) review 

of the ‘Small World’ experiments and Bak, Tang and Wiesenfeld’s (1987) original paper on 

Self-organized Criticality. The citation weight SPC measure again emphasizes the 

prominence of many of these physics papers (Fig. 19). 

95 



Tom Brughmans 

 

Fig. 18. Chronological visualisation of the meso scale WOK data network discussed in Section 3.5.2. Nodes represent 
publications and arcs represent citations. 

 

Fig. 19. SPC citation weight path of the meso scale WOK data network discussed in Section 3.5.2. Nodes represent 
publications, arcs represent an inversed citation (i.e. X is cited by Y) and arc weights represent the number of paths passing 

through it. 
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At the core of the cocitation network lie the publications with the highest indegree (Table 4) 

that are also most frequently cited together (m-slices 9-20). A hierarchical clustering of the 

dissimilarity matrix of this network further reveals groups of publications that are considered 

similar because they are often cited together. The frequently cited physics papers are most 

dissimilar to all other publications in the network. The bulk of the egos are grouped in one 

cluster that also includes influential SNA publications. Other clear clusters include works in 

archaeology/anthropology, biology and less frequently cited physics papers. Publications 

from the social and behavioural sciences are surprisingly peripheral or indeed absent from 

this network. Results of the bibliographic coupling network indicate that bibliographies of 

many egos are most similar (in many cases this can be attributed to multiple publications on a 

similar topic by the same authors), along with those of influential and review papers in 

physics (m-sclices 6-34). A hierarchical clustering of the dissimilarity matrix of this network 

also picks out these egos and physics publications as being dissimilar to the rest of the 

network, whilst other topical clusters are less immediately obvious than for the cocitation 

network. In fact, clusters seem to be comprised of a few egos and their direct influences from 

SNA, physics and archaeology/anthropology. Extracting the three archaeological review 

papers (Brughmans 2010; 2012b; Knappett 2011a) does not have a significant impact on 

these networks as it had on the local scale of analysis. 
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Table 4. Node specific measures for the top ten scoring nodes in the meso scale WOK data network discussed in Section 3.5.2. See Appendix II section 10.2 for full references. 

Input domain   Outdegree   Indegree   
WOK 

citations 

Google 
Scholar 
citations Hubs Authorities 

Watts and Strogatz, 1998 115 Coward and Gamble, 2008 50 Barabási and Albert, 1999 45 7192 13619 Evans, 2004 Barabási and Albert, 1999 

Albert et al., 1999 112 Knappett, 2011b 47 Watts and Strogatz, 1998 44 6997 15811 Bentley and Shennan, 2003 Watts and Strogatz, 1998 

Huberman et al., 1998 112 Bentley and Maschner, 2001 41 Albert et al., 1999 34 1542 3104 Newman, 2003 Albert et al., 1999 

Huberman and Adamic, 1999 111 Terrell, 2010b 40 Albert and Barabási, 2002 28 5687 10223 Newman, 2001 Amaral et al., 2000 

West et al., 1997 106 Bentley and Shennan, 2003 39 Granovetter, 1973 24 4965 20156 Watts, 2004 Newman, 2001 

Banavar et al., 1999 103 Brughmans, 2010 36 Amaral et al., 2000 20 1032 1856 Ravasz and Barabási, 2003 Pastor-Satorras and Vespignani, 2001 

Arthur, 1999 100 Brughmans, 2012b 36 Newman, 2001 19 489 1082 Bentley, 2003a Albert et al., 2000 

Barabási and Albert, 1999 99 Cochrane and Lipo, 2010 35 Pastor-Satorras and Vespignani, 2001 19 1230 2090 Fortunato, 2010 Faloutsos et al., 1999 

Bak et al., 1987 97 Bentley, 2003a 34 Newman, 2003 19 4005 7829 Bentley, 2003b Liljeros et al., 2001 

Korte and Milgram, 1970 92 Newman, 2003 33 Albert et al., 2000 19 1963 3453 Albert and Barabási, 2002 Albert and Barabási, 2002 
Table 5. Node specific measures for the top ten scoring nodes in the meso scale All data network discussed in Section 3.5.2. See Appendix II section 10.2 for full references. 

Input domain   Outdegree   Indegree   
WOK 

citations 

Google 
Scholar 
citations Hubs Authorities 

Wasserman and Faust, 1994 121 Wells, 2005 345 Barabási and Albert, 1999 45 7192 13619 Bentley and Shennan, 2003 Barabási and Albert, 1999 

Kochen, 1989 117 Coward and Gamble, 2008 135 Watts and Strogatz, 1998 44 6997 15811 Newman, 2003 Barabási, 2002 

Zipf, 1949 116 Gamble, 1998 122 Wasserman and Faust, 1994 39 na 12335 Watts, 2004 Watts and Strogatz, 1998 

Watts and Strogatz, 1998 114 Brughmans, 2010 112 Albert et al., 1999 34 1542 3104 Bentley, 2003a Albert et al., 1999 

Erdós and Rényi, 1960 114 Jenkins, 2001 107 Boyd and Richerson, 1985 34 na 4140 Fortunato, 2010 Amaral et al., 2000 

Mitchell, 1969 112 Harary and Norman, 1953 100 Albert and Barabási, 2002 28 5687 10223 Bentley, 2003b Newman, 2001 

Albert et al., 1999 111 Munson and Macri, 2009 92 Granovetter, 1973 24 4965 20156 Brughmans, 2010 Pastor-Satorras and Vespignani, 2001 

Huberman et al., 1998 111 Bentley and Shennan, 2003 80 Amaral et al., 2000 20 1032 1856 Brughmans, 2012b Albert et al., 2000 

Crow and Shimizu, 1988 111 Cochrane and Lipo, 2010 79 Newman, 2001 19 489 1082 Albert and Barabási, 2002 Albert and Barabási, 2002 

Huberman and Adamic, 1999 110 Bentley and Maschner, 2001 79 Pastor-Satorras and Vespignani, 2001 19 1230 2090 Knappett, 2011a Wasserman and Faust, 1994 
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Table 6. Node specific measures for the top ten scoring nodes in the global scale network discussed in section 3.5.3. See Appendix II section 10.2 for full references. 

Input domain   Outdegree   Indegree   
WOK 

citations 

Google 
Scholar 
citations Hubs Authorities 

Milgram, 1967 184 Cross and Hohenberg, 1993 1237 Barabási and Albert, 1999 45 7192 13619 Evans, 2004 Barabási and Albert, 1999 

Mitchell, 1969 153 McBrearty and Brooks, 2000 946 Watts and Strogatz, 1998 44 6997 15811 Newman and Park, 2003 Watts and Strogatz, 1998 

Rogers, 1962 143 Fonagy et al., 2007 459 Wasserman and Faust, 1994 39 na 12335 Albert and Barabási, 2002 Albert and Barabási, 2002 

Wasserman and Faust, 1994 142 Turcotte, 1999 457 Albert et al., 1999 34 1542 3104 Newman, 2003 Albert et al., 1999 

Zipf, 1949 141 Newman, 2003 428 Boyd and Richerson, 1985 34 na 4140 Newman, 2000 Amaral et al., 2000 

Harvey and Pagel, 1991 138 Flinn, 1997 427 Albert and Barabási, 2002 28 5687 10223 Newman, 2001 Newman, 2001 

Travers and Milgram, 1969 138 Fortunato, 2010 401 Granovetter, 1973 24 4965 20156 Watts, 2004 Pastor-Satorras and Vespignani, 2001 

Homans, 1950 137 Dietler, 1997 375 Amaral et al., 2000 20 1032 1856 Ravasz and Barabási, 2003 Amaral et al., 2000 

Peters, 1986 137 Gronenborn, 1999 372 Newman, 2001 19 489 1082 Fortunato, 2010 Faloutsos et al., 1999 

Kochen, 1989 136 Terrell et al., 1997 355 Pastor-Satorras and Vespignani, 2001 19 1230 2090 Jin et al., 2001 Wasserman and Faust, 1994 
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All data network 

This network consists of the 69 egos and all of their first neighbours. The network consists of 

one large connected component and a preliminary visual exploration reveals that this 

component shows a topical or disciplinary clustering with a far larger number of 

archaeological publications than the previous network. The chronological visualisation of this 

network shows that the period between 1970 and 2012 is particularly dense, whilst the oldest 

publication dates back to 1854 (Fig. 20). Although this pattern is of course caused by the 

sampling strategy of selecting the first neighbours of the egos and the scientific tendency to 

cite recent papers, I believe this is at least in part a reflection of the existence of communities 

of academics using network methods in an increasingly formalised way since the late 1960s 

(Freeman 2004). Although this network is much larger, the diameter and average shortest 

path length of both meso scale networks are almost the same. Degree scores are very 

different, however, due to the fact that the vast majority (1,533) of publications in this 

network have no outgoing citations and the network is less dense as a result of this. 

 

Fig. 20. Chronological visualisation of the meso scale All data network discussed in Section 3.5.2. Nodes represent 
publications and arcs represent citations. 

The difference between both meso scale networks is most striking in light of the network 

analysis results shown in Table 5. Most crucially, influential SNA books now occupy 
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prominent positions even though their bibliographies are not included in the network. The 

input domain measure this time emphasises older publications that are frequently cited by 

physicists (e.g. Erdós and Rényi 1960; Zipf 1949) as well as publications at the end of the 

1990s that stimulated the renewed interest in complex networks. The SNA textbook by 

Wasserman and Faust (1994) has the highest input domain score, however, and is also cited 

very frequently within and outside of this network. Another newcomer is Culture and the 

evolutionary process by Boyd and Richerson (1985), which is frequently cited by 

archaeologists/anthropologists. With the exception of these two, the top ten list of indegree 

scores is still dominated by the same influential physics papers. The full bibliographies of the 

egos are included in this network and the outdegree score (345) of Wells (2005) in particular 

stands out. This publication is in fact peripheral in the network, since his use of network 

techniques is limited to mentioning the ubiquity of relationships within complex systems and 

referring to Barabási’s (2002) popular science book Linked, but the sheer size of its 

bibliography caused it to dominate the hubs and authorities measures. I decided to remove 

Wells (2005) from the network and recalculate the hubs and authorities (Table 5). The 

authorities hardly changed compared to the WOK data network, although Wasserman and 

Faust (1994) is now included. The citation weight SPC measure (Fig. 21) reveals that the 

prominent position of Wasserman and Faust (1994) within this network might be due to its 

influence on Watts and Strogatz (1998). Indeed, the cocitation network shows Wasserman 

and Faust (1994) along with a few other SNA publications (e.g. Scott 2000; White et al. 

1976) at its core (m-slices 11-34), whilst most other SNA works are clustered together in the 

periphery. The list of hubs is also similar to the previous network although it now includes 

three reviews of archaeological network analysis (Brughmans 2010; 2012b; Knappett 2011a) 

because these cite many of the authorities in this network. The bibliographic coupling 

network is the same as for the previous network because no new bibliographies are added. 
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Fig. 21. SPC citation weight path of the meso scale All data network discussed in Section 3.5.2. Nodes represent 
publications, arcs represent an inversed citation (i.e. X is cited by Y) and arc weights represent the number of paths passing 

through it. 

3.5.3. Global scale: combined dataset 

Although this network is less dense than any of the preceding ones and has far more nodes, 

the average shortest path length and diameter are still low. The input domain (Table 6) picks 

up old publications on popular topics like small-worlds (Milgram 1967; Travers and Milgram 

1969; Kochen 1989), the diffusion of innovations (Rogers 1962), Zipf’s law (Zipf 1949) as 

well as a few sociological books (Homans 1950; Wasserman and Faust 1994). This seems to 

indicate that compared to the previous networks books are more prominent at this global 

scale of analysis. The outdegree results show the exceptionally large bibliographies of Cross 

and Hohenberg (1993) and McBrearty and Brooks (2000). These two publications 

significantly affected the hubs and authorities (the first emphasizing publications on self-
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organised criticality and fractals, the second on evolutionary anthropology) and have been 

removed before the hubs and authorities listed in Table 6 were calculated. These are very 

similar to the results of the networks described in Section 3.5.2 (Tables 4-5) without the 

archaeological publications. The citation weight SPC measure (Fig. 22) still focuses on 

popular physics publications, although there are now two branches influencing recent 

archaeological applications. 

 

Fig. 22. SPC citation weight path of the global scale network. Nodes represent publications, arcs represent an inversed 
citation (i.e. X is cited by Y) and arc weights represent the number of paths passing through it. 

Listing the top ten high scores as in Table 6 is almost senseless for such a large network. 

Moreover, the top ranking publications are very similar to those of the previous smaller 

networks, whilst the sheer size of the current network holds the potential of revealing 
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publications not listed in the top ten with possibly interesting and novel archaeological 

applications. Some of these might be revealed through a close scrutiny of the ‘communities’ 

of similar citation practice illustrated by the cocitation and bibliographic coupling networks. 

This is sadly not within the scope of the current case study. It suffices to mention that the 

latter two network projections show a similar disciplinary clustering as was observed on the 

meso scale of analysis. The core of the cocitation network (m-slices 8-33) is similar to the All 

data network described in Section 3.5.2. 

3.6. Discussion 
A very large number of network science techniques was used in this case study, and the 

implications of their results for this PhD project should be made clear. In this section I will 

discuss how this long technical description of the exploratory citation network analysis 

results allows me to answer the research questions set out at the start of this case study. 

Question 1: can the intuitive results drawn from a close reading be quantitatively 

expressed and validated using citation network analysis? 

Question 2: can an exploratory network analysis provide new insights into the citation 

behaviour within the limited bibliographic corpus of the close reading? 

On the local scale of analysis the citation networks confirmed some of the intuitive results of 

the literature review: archaeological applications of formal network methods before the 1990s 

are rare, the last decade has seen a strong increase of applications and these recent 

applications are rarely influenced by the older ones. Two research traditions have been most 

influential to archaeological network analysts: social network analysis (SNA) and complex 

network studies in physics. The citation networks clearly showed that some methods and 

models in both SNA and physics are significantly more often applied (or at least cited) than 

others, and archaeologists have initially focused on these few popular approaches that have 

proven their worth in other disciplines (e.g. small-worlds, centrality measures). The results 

also provided a new perspective, however, by identifying the strong differences in citation 

densities between the groups of old and more recent archaeological applications. The input 

domain results are the best example of this. The input domain on the meso and global scale 

picked out the first publications of particular methods and theories that have been extremely 

influential (especially in physics), whilst on the local scale more recent archaeological 

applications receive the highest scores. The higher citation density caused the recent 
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applications to be most prominent according to most of the network measures used. It is 

tempting to interpret this in light of the observation that many of these recent applications use 

a limited set of similar network techniques. This methodological similarity does not explain 

the higher citation density, however, since popular methods were mainly adopted from a few 

non-archaeological publications. In fact, the high citation density was largely the result of a 

few recent review publications, which were also almost exclusively responsible for the few 

citation links bridging the recent and the older applications. Recent archaeological 

applications, therefore, seem largely uninfluenced by other archaeological applications (or 

did not make possible influence explicit through citation). 

Question 3: does a citation network analysis allow one to usefully contextualise a close 

reading within a larger and multi-disciplinary corpus of literature? And does it provide 

new insights into the adoption and adaptation of network science in archaeology? 

The meso and global scales of analysis did indeed reveal that key methodological influences 

came from outside the archaeological discipline. A few network models and methodological 

textbooks by physicists and social network analysts were cited by most of the archaeological 

network scientists. In fact, the literature review revealed that only in a few cases formal 

network techniques were adopted from publications other than these highly influential ones. 

The citation network analysis revealed that these publications were not only influential to 

archaeologists but were in fact key authorities in a wide range of disciplines. Using citation 

weights, a number of other influential publications (mainly in physics) were identified that 

elaborated on these authorities but have been largely ignored by archaeologists. Moreover, 

the bibliographical coupling and cocitation networks revealed disciplinary and topical 

clusters of publications that include research areas tangential to the egos and not revealed 

through a close reading that might well have innovative and useful archaeological 

applications. In short, this large citation network re-contextualises the archaeological use of 

formal network methods within wider research communities and holds the potential to guide 

future discovery and adoption of published formal methods that have proven useful in 

different fields of research. 

Compared to the close reading the citation network reveals a more explicitly fragmented 

picture of archaeological network scientists seemingly working in isolation (as far as the 

archaeological use of their network methods is concerned) despite clear methodological 

similarities, whilst frequently engaging with developments in other disciplines. This idea of 
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isolation sheds an interesting new light on the processes of adoption and (published) use of 

network science by archaeologists. The early adopters knew of each other’s network-related 

work but their methodology was peripheral to the key topics being discussed in their sub-

disciplines (Irwin pers. comm; Terrell pers. comm.). Therefore, in addition to an obvious 

technological barrier, these sub-disciplinary silos and in some cases purposeful non-citation 

might have led to a limited exposure of network-related work (Cochrane, pers. comm.; 

Terrell, pers. comm.). The newer generation of archaeological network analysts on the other 

hand did manage to achieve a wider exposure, at least in part because now the technologies 

(software, big data, hardware) were readily available, but there was also a strong academic 

influence. Indeed, the more recent applications often use techniques published by physicists, 

and the adoption of new techniques follows the trends in physics (but also SNA) with a short 

delay. 

This fragmentary picture and over-emphasis on popular techniques is changing rapidly, 

however. It must be said that the citation network only reveals the situation up to 2011 when 

the data collection for this case study was finished (only two publications from 2012 are 

included). Since then a good number of innovative and critical archaeological network 

studies have been published, as mentioned in the literature review, which might considerably 

shake up citation patterns as suggested by Carl Knappett (2014, 182) in his response to these 

results: “Were Brughmans to repeat his citation analysis in just another year or two, I believe 

it would look very different”. 

The citation network approach also has some clear limitations, however. Although the 

networks analysed are quite large, they still exclude a vast body of literature with potential 

for archaeological applications. When the aim of a citation network analysis is to discover 

new literature, the sampling strategy of the egos needs to be given more critical thought. 

Secondly, techniques used to identify the most influential publications often provide obvious 

results that were also clear from the literature review. By focusing on these key publications 

there is a danger of over-emphasizing the similarities between the archaeological 

applications. The literature review, on the other hand, showed that the most promising 

archaeological applications were those that used network techniques or models that were not 

used by others (e.g. the model by Jin et al. 2001 used by Bentley et al. 2005). Although 

citation network techniques can be used to focus on these meaningful differences, these are 

not as easy to derive given the high number of peripheral nodes in citation networks. It seems 
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that citation network analysis is most useful for tracing the main ‘paths of influence’ whilst 

the close reading is invaluable for evaluating how and why certain publications were 

influential. This issue is most critical for the large cocitation and bibliographic coupling 

networks. Their clear potential for revealing the differences as well as the interface between 

disciplinary and thematic clusters requires closer scrutiny for which network community 

detection methods can be applied (Fortunato 2010; Rosvall and Bergstrom 2008). 

Question 4: do archaeologists publish and cite differently from scholars in other 

disciplines? If so, does this require the development of specific citation network analysis 

techniques or strategies? 

This case study showed that the limited availability of citation data for the humanities and 

social sciences is the most significant limitation to using citation network analysis in 

archaeology (Alen Sula and Miller 2014; Linmans 2010). By tracing the adoption of 

techniques developed in a variety of disciplines the relative prominence of each discipline 

within the citation network could be compared. This revealed that the meso and global scales 

of analysis were dominated by publications in physics whilst publications from other 

disciplines (including archaeology) were grouped together in peripheral clusters. The absence 

of influential SNA publications is particularly striking, with the exception of textbooks (e.g. 

Wasserman and Faust 1994) and popular theories (e.g. Granovetter 1973) often cited by 

physicists. It is interesting to note that this pattern was more clearly present in the meso scale 

network with only complete bibliographies (first half of section 3.5.2) than in the meso scale 

network with all available data. This suggests that the incompleteness of the available citation 

datasets does not make them useless. Citation network analysis arguably provides the most 

consistent results for its most complete segments, yet it reveals incomplete clusters grouped 

per discipline or research topic that can still provide new insights by exploring them 

independently (as suggested by Batagelj (2003) for the citation weights method). 

This case study focused on the inter-disciplinary nature of archaeological publishing and 

citing, but it revealed very little about these practices within the archaeological discipline 

itself. In fact, the disciplinary clusters identified in the cocitation and bibliographic coupling 

networks suggest that the bulk of the archaeological publications included on the meso and 

global scales of analysis were not as multi-disciplinary as is often claimed. Archaeology 

formed a distinct cluster and only a few archaeological publications (the more 

methodologically focused egos in particular) acted as a bridge to other disciplines. An 
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alternative bibliographic resource, the cocitation network of the Scopus database (accessible 

through the SCImago Netviewer13), also does not attribute a particularly multi-disciplinary 

role to archaeology. It suggests that archaeology documents are most often cited together 

with history publications, which in some years are cited most often with the social sciences 

and in other years with biological sciences. The inter-disciplinary nature is not the only 

feature that is often claimed to make archaeological practices stand out. Of particular interest 

is the so-called ‘grey literature’, the reports of archaeological activities that are not easily 

searchable and rarely cited (although see Richards et al. 2011; May et al. 2012). Indeed, the 

nature of archaeological data, which vary in type and format, are collected in large quantities 

and require significant investments in both time and money to process (Xia 2011, 234), often 

put limits on the frequency and format of publication as well as influence the nature of 

citations to analysis- and data-based resources (Boast and Biehl 2011, 120). I believe that the 

nature of publishing and citing in archaeology is rather similar to some of the findings of 

Robinson and Posten (2005) for anthropology as a whole: books are frequently cited; 

government documents, museum publications and grey literature or site reports are rarely 

cited; working papers are not common; and older materials are commonly cited. Moreover, 

the importance of the context of the citation (its frequency, its location in the document, and 

its positive/negative nature) which has been argued to be particularly crucial in bibliometrics 

in the humanities as a whole (Alen Sula and Miller 2014) is clearly also key in archaeological 

bibliometrics. However, one should not over-emphasize these differences: archaeology is not 

special; each discipline has its idiosyncrasies. What is crucial, however, is an awareness of 

these differences and a modification of the strategies for data collection and citation analysis. 

Future work should therefore build on this case study, necessarily through an alternative 

strategy where the structural position of the egos is embedded within the entire 

archaeological citation network, including grey literature where possible. Cocitation and 

bibliographic clustering projections that tend to over-emphasize differences between 

disciplines should be complemented with techniques that focus on the cross-fertilization 

between disciplines. The discrepancies between the indegree and external citation counts of 

papers (Table 3) indicate differences between the role of papers within the archaeological 

citation network, a pattern that can be explored through this alternative strategy. 

13 The SCImago map generator interface was used to explore cocitation networks of subject categories (as 

recorded in the Scopus database) for publications published in the United States and the United Kingdom for the 

years between 2005-2011. http://www.scimagojr.com/mapgen.php (accessed 28.04.2013). 
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It has been argued that in the humanities the same bibliometric methods can be used as for 

the sciences if a broader range of publications is included in citation databases (Nederhof 

2006). The current case study (and the complete local scale network in particular) seems to 

confirm this conclusion. It emphasised that a critical awareness of the nature and limitations 

of one’s dataset and the development of a purpose-built strategy of analysis (e.g. multi-scalar) 

are crucial. This issue should be further explored in future work, by extracting disciplinary 

citation networks and confronting these with networks of book/journal titles, subject 

categories and co-authorship which is, sadly, outside of the scope of the current case study. 

It can be concluded that citation network data can enhance an archaeological literature review 

in cases where high quality datasets are available and where dependence assumptions 

inherent in citation network data are of research interst, and that network science offers 

techniques that are useful for the exploration of large network datasets. However, I believe 

the approach taken in this case study should be considered one of a few interesting ways of 

exploring such a rich dataset, one that does not conclusively illustrate or prove the potential 

of network science for archaeology. Working through the network science research process 

was enlightening, but in addition I believe an evaluation and example of how archaeologists 

formulate dependence assumptions is needed. The second case study provides such an 

example. Some of the exploratory network techniques introduced in this first case study will 

be combined in the second case study with confirmatory network techniques aimed at 

representing and testing archaeological dependence assumption. 
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Box 5. Summary chapter 3 
Research questions: 

• Can the intuitive results drawn from a close reading be quantitatively expressed and validated using 

citation network analysis? 

• Can an exploratory network analysis provide new insights into the citation behaviour within the limited 

bibliographic corpus of the close reading? 

• Does a citation network analysis allow one to usefully contextualise a close reading within a larger and 

multi-disciplinary corpus of literature? And does it provide new insights into the adoption and 

adaptation of network science in archaeology? 

• Do archaeologists publish and cite differently from scholars in other disciplines? If so, does this require 

the development of specific citation network analysis techniques or strategies? 

Conclusions: 

• Citation network techniques succeed in identifying results obtained through a literature review, but 

some were time-consuming and led to ‘obvious’ results. 

• The most enlightening citation network techniques were those where dependence assumptions about 

the ‘flow of influence’ were formulated. These led to new insights about the archaeological use of 

network techniques, but also about their multi-disciplinary influences. 

• Publication and citation behaviour of archaeologists is similar to that in anthropology and to a large 

extent to that in the humanities as a whole. The same bibliometric techniques as used in the sciences 

can be applied in the humanities. A more detailed evaluation of the idiosyncracies of archaeological 

citation behaviour requires an alternative data sampling strategy than the one adopted here. 

Implications for this PhD project: 

• Citation data are an example of network data archaeologists are commonly confronted with and where 

exploratory network analysis and visualisation techniques offer an alternative to other types of 

exploratory data analysis. 

• Formulating dependence assumption about network data aids archaeologists when interpreting the data 

in light of the processes they are interested in. 

• The completeness and composition of a network dataset determine the selection of network techniques 

and how they should be interpreted. The available citation datasets in the Humanities are still 

particularly incomplete. 
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CHAPTER 4 

CASE STUDY 2: 

UNDERSTANDING INTER-SETTLEMENT VISIBILITY IN 

IRON AGE AND ROMAN SOUTHERN SPAIN WITH 
EXPONENTIAL RANDOM GRAPH MODELS FOR 

VISIBILITY NETWORKS 
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4. Case Study 2: understanding inter-settlement visibility in Iron Age and 

Roman Southern Spain with exponential random graph models for 

visibility networks 

4.1. Introduction14 
The citation network analysis presented in the first case study offered a practical example of 

how exploratory network techniques could aid a study of processes of academic influence. 

However, it did not analyse such processes directly. It merely suggested certain network 

structures as being indicative of certain processes. In the second case study I will make the 

jump from exploratory network science techniques to confirmatory techniques, by suggesting 

a method that formalises our assumption of the kinds of network structures that are the 

outcomes of certain processes and allows one to test these processes. This second case study 

therefore wishes to advance the research aims of this PhD project by illustrating how 

archaeological research questions can lead to the formulation of dependence assumptions, 

and the selection of exploratory and confirmatory network science techniques as the best 

method for understanding the implications of these assumptions. In doing this it will 

introduce a new network method into the archaeological discipline: Exponential Random 

Graph Models (ERGMs). 

Traditional approaches to the archaeology of Roman Southern Spain have neglected the study 

of inter-site connections (Keay 1998a; Keay and Earl 2006). The transition from the Iron Age 

II (ca. 5th c. BC to 3rd c. BC, here referred to as Iberian) to the Roman period (ca. 3rd c. BC to 

5th c. AD) is a most striking example of this. Iron Age II and Roman settlements and towns 

are often investigated independently, which is necessary for a critical understanding of the 

excavated materials, but it also sidelines the study of ways in which past communities might 

have interacted and of long-term continuity or discontinuity of occupation. This case study 

illustrates how a long-term and large-scale multi-site analysis allows for traditional research 

themes concerning inter-site connections in Iberian and Roman archaeology to be confronted. 

It focuses in particular on long-term changes in visibility patterns between urban settlements, 

a factor considered important for understanding Iberian settlement locations but largely 

ignored in Roman studies. It further compares these visibility patterns with the location of 

14 Please see the electronic supplementary material for this case study, which includes the visibility network and 
the location of all sites. 
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towns along transport routes, and the Early Imperial urban status of settlements, which are 

considered key factors for explaining locations of Roman settlements. An exploratory 

network analysis will reveal similarities and differences in the patterns of visibility networks. 

Hypotheses of the emergence and long-term change of visibility networks will then be tested 

using ERGM. In this case study I argue that visibility might still have structured interactions 

between communities in Roman times and should not be dismissed out of hand. However, the 

way in which it affected human behaviour might have been different in Roman times as 

compared to the Iron Age. I argue that simulating archaeologists’ hypotheses of the 

emergence of inter-site visibility is a promising way of understanding such differences. 

4.2. Visibility networks 

4.2.1. The study area 

The study area can be more or less equated with the Guadalquivir basin, primarily lying 

within the modern province of Seville, but also the edges of the adjacent provinces of 

Córdoba, Huelva and Cádiz, corresponding to the central and western portions of the Roman 

province of Baetica (Fig. 23). The Guadalquivir river (known as the Baetis in antiquity) cuts 

through the heart of this area, leaving a landscape of rolling hills behind in Córdoba to 

meander its way to the Atlantic through an increasingly wide and flat plain (Mayoral Herrera 

2004). In antiquity, however, the river mouth was not situated in its current location at the 

Atlantic coast. Instead it fed into a large inland sea known as the lacus ligustinus south of 

Seville (Roos et al. 1995), and today referred to as the Marismas. The climate in this part of 

Southern Spain is hot and dry and can be described as semi-arid. The broadest stretch of the 

valley on the left bank of the river between Seville and Córdoba, known as the vega and 

campiña, is a particularly fertile part of the area and was suitable for growing a diversity of 

crops including grain and olives. The Guadalquivir is flanked by two mountain ranges: the 

Sierra Morena in the north and the Sistema Sub-bético in the south. The study area and the 

Sierra Morena in particular are rich in metals such as iron, copper, silver, and lead 

(Domergue 1990). The direction of the river and the alignment of the mountains give the 

basin its orientation towards the Atlantic, indicating a greater ease of access to the Atlantic 

than to the Mediterranean (Cunliffe 1995). This basin with its wide valley flanked by 

mountains has a funnelling effect on visibility in the landscape: vantage points on the plateau 

flanks and foothills offer great views throughout much of the lower lying areas. 
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It has been argued that the study of Roman Hispania Ulterior Baetica is dominated on the 

one hand by a largely ancient historical framework and on the other by highly detailed studies 

of individual sites or assemblages (Keay 1998a, 22). The many historical and epigraphic 

sources related to key Roman towns like Italica, Hispalis, Gades, and Corduba have 

dominated scholarship of Roman Baetica. This research tradition has resulted in a picture 

where most Roman towns are considered similar, while the transition from the Iron Age II 

period seems to have been an unproblematic break. This is reflected in key publications on 

the subject: although the province is included in a number of syntheses of Roman Spain (e.g. 

Le Roux 1995; Richardson 1996), in-depth studies and archaeological syntheses of the 

province itself are rare (e.g. Keay 1998c). One regional study of particular relevance for this 

project is the work by Michel Ponsich, who performed large-scale surveys of rural 

settlements in the Guadalquivir valley, the results of which were published in a number of 

detailed reports (Ponsich 1974; 1979; 1987; 1991).  
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Fig. 23. Sites in the study area and geographical context. A full list of all site names mentioned on this map is included 
in Appendix III, section 11.1. 
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The Iberian period 

The urbanization of Southern Spain has its roots in the Late Bronze Age, when the Campiña 

knew settlements of considerable size that grew into cities in the Iron Age (Ruiz Rodríguez 

1997). During the Late Bronze Age the Campiña and the adjoining areas rich in metals were 

home to communities known to us as the Tartessos. Literary sources suggest the Tartessos 

were tied into wider Mediterranean exchange systems and traded with the Phoenician 

colonies that dotted the Atlantic and Mediterranean coasts of Southern Spain, although this 

picture should be nuanced as suggested by archaeological evidence (Chamorro 1987). The 

settlements of the Tartessos had in fact emerged before the rise of Phoenician colonies and 

continued to develop into the fifth and fourth centuries BC when the area formed part of a 

wider system of Iberian states (Cunliffe 1995). 

Immediately before the establishment of Roman provinces in Southern Spain an Iberian 

people known as the Turdetani inhabited the Guadalquivir valley. Ancient authors write of 

the fertility and richness of Turdetania and of the civility and urbanization of its people 

(Pliny the Elder, Naturalis Historia 3.7; Strabo, 3.2.1-3.2.8). The archaeology of the region 

seems to support these authors’ statements that this was by no means a barren land. Large and 

often fortified towns showing the architectural, social and economic features of urbanization 

were recorded all along the Guadalquivir river (Downs 1998; Keay 1998b). The settlement 

pattern in the Campiña was focused on these large settlements, located on elevated land near 

water sources. These settlements (sometimes called oppida although this is a very loaded 

term) were regularly spaced, housed substantial populations dependent on agriculture and 

formed the nuclei for surrounding settlements (Escacena and Belén 1998; García Fernández 

2003; Ruiz Rodríguez 1997). The role of rural settlements is less well understood. However, 

the identification of the Turdetani as a distinct and homogeneous cultural entity (and even as 

an ‘Iberian’ people) inhabiting these lands between the end of the Bronze Age (6th c. BC) and 

the beginning of the Roman period is problematic (Escacena and Belén 1998). Rather, the 

Iron Age and Early Roman period of this area was marked by a degree of continuity (Downs 

1998), most notably in settlement occupation. 

Roman Baetica 

The study area became the Roman province of Hispania Ulterior in 197 BC (Richardson 

1986), only a few years after it formed the stage for the final chapter of the second Punic war 

and the victory of the Romans. This made it one of the earliest provinces established by the 
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Roman Empire, and its past settlement pattern made it one of the most densely urbanized 

places in the empire. The urban landscape changed little during the Roman Republican period 

(Keay 1998b). Of note are the establishment of Roman settlements at Italica (modern 

Santiponce) in 206 BC and Corduba (modern Córdoba, 169 or 152 BC). Italica is a good 

example of the degree of continuity in Republican times. Although Roman veterans of the 

second Punic war were present at the site, it has been argued that Turdetanian cultural 

traditions nevertheless prevailed here (Keay 1997). Corduba shows a similar degree of 

continuity, where a pre-Roman fortified settlement existed alongside the newly founded 

Roman settlement, which acted as a river port (Ventura et al. 1998). 

More significant changes came during the middle of the first century BC and the first century 

AD. Under Caesar and Augustus a number of coloniae and municipia were founded or, more 

frequently, existing settlements were awarded this status. The foundation of such urban 

settlements that formed part of the Roman Imperial administrative system was a key Roman 

strategy to impose and maintain control over provincial populations. An urban status can be 

considered an indication of political integration in the Roman Empire and is sometimes 

considered an expression of political urban hierarchies (Keay 1998b). The study of the 

diversity of interactions between Roman urban settlements and in particular their 

relationships with pre-Roman towns is therefore of great interest (Keay 1998a). In some 

towns (in particular the coloniae and municipia) during the Augustan and Julio-Claudian 

period public Roman buildings were constructed, which have been interpreted as the need of 

the provincial élite to publicly express their loyalty to the emperor (Keay 1998b; Trillmich 

and Zanker 1990). However, it should be stressed that many settlements remained essentially 

native in character, indicating that this was very much a period of gradual transformation 

(Keay 1998b). Indeed, it was not until the second half of the first century AD that rural 

Roman towns became a significant part of the landscape (Keay 2003, 190-191). 

Under Augustus the province as a whole also became a more defined territorial entity as the 

new province of Hispania Ulterior Baetica, with the colonia of Corduba as its capital. After 

extensive administrative re-organization between 12 and 2 BC part of the province was 

absorbed by Hispania Tarraconensis. The remaining area of Baetica consisted of a number of 

districts: the conventus hispalensis with its capital in the colonia Hispalis (modern Seville), 

the conventus cordubensis with Corduba as a capital, the conventus astigitanus with its 

capital in the colonia Astigi (modern Écija), and the conventus gaditanus with the municipium 
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Gades (modern Cádiz) as its capital (Cortijo Cerezo 1993). The area of this case study 

roughly corresponds to the conventus hispalensis, and neighbouring sectors of the conventus 

astigitanus and cordubensis. Even more towns were given the status of municipium during 

the Flavian period, with the extension of Latin rights to a number of Baetican communities by 

Vespasian. Many of these Flavian municipia were previously native towns and knew a radical 

transformation of urban space and monumentalisation during the Flavian period (Keay 

1998b). It has been argued that this transformation was made possible thanks to financial 

benefits enjoyed in this period and that it was politically motivated (Mayer 1977, 5-6). 

Finally, of particular note is the monumental enlargement of Italica in the second century AD 

during the reign of Emperor Hadrian (117-138 AD) who, like his predecessor Trajan, had 

close links with Italica. 

Ancient authors (Pliny the Elder, Naturalis Historia 3.1, 3.3; Strabo 3.2.1-8) and 

archaeological evidence also stress the economic importance of Baetica to Rome. The best 

archaeological example of this is probably the large-scale production of Dressel 20 amphorae 

in kiln sites along the Guadalquivir and Genil rivers. These were filled with Baetican olive oil 

and transported in particularly large quantities to Rome as well as in more modest volumes 

all over the empire (Remesal Rodríguez 1998). A transport network existed that physically 

connected urban settlements and allowed for this produce to be efficiently transported out of 

the province. The most important components of this network were the Via Augusta (running 

through the Campiña from Córdoba to Seville through Écija and Carmona, and finally 

terminating in Cádiz (Corzo and Toscano 1992)), the Genil river and the Guadalquivir river 

itself, which in antiquity was navigable up to Córdoba (Strabo 3.2.3; Ponsich 1991, Fig. 6). 

One should also not forget the role of the many transhumance routes with origins in antiquity, 

connecting towns throughout the entire study area (Ponsich 1991, Fig. 10). Previous studies 

have explored the structural position of urban settlements on this transport network (Isaksen 

2008). Sites that form part of this transport network can be considered to be integrated within 

established Roman economic networks (Ponsich 1991). In this case study the location of 

settlements with Iberian origins on this transport network will receive particular attention. 

It has been argued that at the end of the second century AD a number of events (possibly 

including the invasion of Baetica by the Mauri who crossed the straits of Gibraltar from 

Mauretania) marked the start of a period of change in Baetica under the Severan dynasty 

(193-235 AD). The sites in this period seem to suggest a degeneration of the urban 
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phenomenon, evidenced by the infrequent restoration of public buildings, and personal 

benefactions, and the exercising of public magistracies by citizens became more rare. 

However, the state’s involvement in building projects as well as an increase in private 

buildings can be considered evidence for a degree of continuity. This has been interpreted as 

an adaptation to new needs and realities rather than decay (Rodà 1997). 

At the end of the third century AD the study area saw some significant changes, in particular 

the replacement of the organizational system established under Augustus for a new 

administrative framework as part of Diocletian’s (284-305 AD) reforms. Towns in the area 

continued to be occupied in the fourth century AD, and the first Christian religious buildings 

started to appear. The invasion of the Germanic peoples in 409 AD signalled the 

fragmentation of Roman provinces in the Iberian Peninsula. The Visigoths first entered the 

Peninsula in 415 AD and at the end of the century they would finally incorporate the area into 

their kingdom of Tolosa, which was previously limited to southwestern Gaul (Rodà 1997). 

Bridging periods 

The larger Roman sites have invariably received more attention from archaeologists than 

smaller ones, in particular those settlements that played a key role in the Roman 

administrative system as provincial capitals or by carrying the status of colonia or 

municipium. Although the province knew a fair number of these large sites like Urso, 

Corduba, Italica and Carmo, the vast majority of sites nevertheless had more modest 

proportions. Most crucially, a number of large Iberian settlements continued to play an 

important role in the Roman province in the Early Imperial period (Keay 1998b). The degree 

of continuity between the Late Iron Age and the Early Imperial period suggests that the 

Roman settlement patterns cannot be understood without exploring the preceding Iberian 

settlement patterns. This study will explore these long-term urban transformations through 

one particular aspect: their inter-visibility. 

4.2.2. Why study visibility networks in Iron Age II and Roman Southern Spain? 

Inter-visibility between settlements, both now and in the past, is high in Southern Spain 

(Keay 1998b; Keay and Earl 2011). This is a direct result of the landscape and the locations 

of settlements, positioned mainly along the large rivers or on the many hills surrounding the 

river valleys. In the Iron Age II period, the settlement pattern is generally understood to have 

consisted of large and often fortified nuclear settlements. These are sometimes referred to by 

archaeologists as oppida and are frequently surrounded by smaller settlements (Ruiz 
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Rodríguez 1997). While there is considerable debate as to the extent to which these 

settlements may have acted as political centres and, thus, a town in the Graeco-Roman sense, 

they are considered as such for the purposes of this research. Many Iron Age settlements of 

all kinds across Southern Spain as a whole are located on hilltops, terraces or at the edges of 

plateaus. At some of these there is evidence of defensive features and architecture, indicating 

that these locations were purposefully selected for their defendable nature and the ability to 

visually control the surrounding landscape, and maybe even for the ability to observe other 

settlements (Grau Mira 2004; Ruiz Rodríguez and Molinos 1993). It is possible that the 

patterns of inter-visibility between urban settlements were partly intentionally created and 

that these patterns had a role to play in structuring the interactions between Iron Age II 

communities: in other words through the visual control of urban settlements over surrounding 

rural settlements or the inter-visibility between urban settlements required to spread 

information in a signalling network as has been suggested for the south-east of Spain (Grau 

Mira 2003; 2005). 

There seems to be no reason to believe that inter-visibility was a significant feature between 

towns in the Roman period (Keay and Earl 2011). Major Roman administrative centres were 

often located in low-lying areas along the main rivers and roads, to ensure economic and 

political integration within the wider Roman Empire (Keay 1998b). Due to the continuity in 

occupation of Iberian settlements, however, the percentage of them to be found on hills and 

plateau sides is only slightly lower in Roman times than in the Iron Age II period (Fig. 24, 

Table 7; Keay 1998b), which suggests that visually prominent site locations were not 

exclusively an Iron Age II phenomenon. This raises a number of questions: 

• The trend in Figure 24 suggests that the slight decrease in settlements on hills and 

plateau sides reflects the degree to which Iron Age II sites continue to be occupied in 

the Roman period. Does the degree of inter-visibility between sites follow the same 

gentle downward trend through time as a result of this? 

• To what extent were visually prominent settlements with Iron Age II origins 

integrated as towns into the political and economic structure of the Roman Empire? 

Was this truer than with less visually prominent settlements with Iron Age II origins? 

• Is there evidence suggesting that inter-visibility of urban settlements was considered 

less important under the Roman empire? To what degree does the establishment 
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(whether intentionally or not) of inter-visibility patterns differ between the Iron Age II 

and Roman periods? 

The past phenomenon being studied in this case study is therefore the ways in which lines of 

sight between Iron Age II and Roman settlements structured human behaviour, and the 

processes through which they emerged. In order to address these research questions, a 

method is needed to analyze both the changing patterns of observed inter-visibility as well as 

address hypotheses about how these patterns emerged. Very few contemporary accounts exist 

that could be informative. In De Bello Hispaniensi we read that “Most of the towns in this 

province are pretty well protected by the mountains, and are situated on natural eminences, so 

that one has to climb up to reach them, and the approach is thereby made difficult” (10.3) and 

“Pompeius pitched his camp on the hills, within sight of both towns, but did not venture to 

come to the help of his own side” (6.2). A quantitative visibility analysis might offer a way 

forward to shedding light on the significance of these comments. 

Archaeologists have often used GIS-based visibility analysis methods for this purpose 

(Conolly and Lake 2006, 225-233; Wheatley and Gillings 2002, 201-216). They explore the 

visibility (or not) of landscapes, sites, features and objects to evaluate its possible impact on 

human behaviour and the probability that visibility patterns were intentionally created. 

Existing formal approaches, however, rarely analyze hypothetical processes that might have 

given rise to the observed visibility patterns. A reason for this is no doubt the complex mix of 

socio-cultural and environmental factors that influenced the establishment of settlement 

locations: new settlements emerge within an existing cultural landscape; the factors 

considered important at the emergence of the settlement can rarely be optimised; and the role 

of settlements and the important factors that accompany them change through time. To claim 

that inter-visibility of urban settlements was the only factor that determined site location 

would clearly be risible, but so would the opposite statement that inter-visibility played no 

role at all. In order to test the degree to which the emergence of inter-visibility patterns 

differed through time and make interpretations about the intentional creation of these 

patterns, an analysis of the structure of observed patterns should be combined with 

hypothetical models of how these patterns emerged. 

In this case study I will apply a novel approach based on exploratory network analysis 

combined with ERGMs. This method allows one to explore the structure of patterns of inter-

visibility between sites, the commonalities and differences in the inter-visibility patterns of 
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individual sites, as well as to evaluate hypotheses of how patterns of high or low inter-

visibility could have emerged on their own or in relation to a few external attributes. Such a 

combined approach will allow to suggest which types of inter-visibility pattern were most or 

least prominent in each period, whether processes that simulate the emergence (or not) of 

these particularly common or less common patterns are likely to have led to the observed 

pattern of each period, and to evaluate the possible importance of inter-visibility for different 

periods. 

 
Fig. 24. Proportion of sites per period with a prominent location and with Iberian origins. 

Table 7. Number of sites per period and location type. 

  

Total 
number 
of sites 

Iberian 
sites still 
occupied 

Sites on hill, 
low hill, 

plateau, or 
plateau side 

Sites on 
hill 

% of sites on 
hill, low hill, 

plateau or 
plateau side 

% of 
sites on 

hill 

Newly 
founded 

sites 

Sites no 
longer 

occupied 

Iberian 159 159 110 74 69.18 46.54    
Republican 146 139 99 69 67.81 47.26 7 20 

Early Imperial 150 124 97 66 64.67 44.00 20 16 

Middle Imperial 125 102 83 57 66.40 45.60 2 27 

Late Imperial 115 93 76 51 66.09 44.35 1 11 
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4.2.3. Why processes of emerging inter-visibility? 

Many formal studies of visibility have similar assumptions: they focus on analysing the 

structure of visibility patterns to understand their roles and evaluate whether these patterns 

were intentionally created. In such approaches, the types of inter-visibility patterns that are 

particularly suitable for a certain purpose such as visual control over a landscape or 

communication through visible signals, are considered most likely to have been purposefully 

established. These approaches imply a sequence of events based on the emergence of these 

particular types of patterns that resulted in the observed structure, a process of changing inter-

visibility patterns. In other words, previous studies have assumed that the observed patterns 

could not have emerged through a random process. A good example of this is Tilley’s (1994) 

study of a network of inter-visibility between barrows on Cranborne Chase, in which an 

observed network pattern is interpreted as the intentionally established outcome of an 

untested process: “One explanation for this pattern might be that sites that were particularly 

important in the prehistoric landscape and highly visible ‘attracted’ other barrows through 

time, and sites built later elsewhere were deliberately sited so as to be intervisible with one or 

more other barrows. In this manner the construction of barrows on Cranborne Chase 

gradually created a series of visual pathways and nodal points in the landscape” (Tilley 1994, 

159). 

Very few visibility studies have explored hypotheses about such processes explicitly (see 

Swanson 2003 for a notable exception). In this study, however, the decisions to establish 

certain patterns of visibility among urban settlements are the focus of attention. Most 

crucially, I will try to evaluate to what degree this changed through time, and how this was 

affected by factors like location along major transport routes or the Early Imperial urban 

status gained by settlements. The approach taken here is experimental. It will initially focus 

exclusively on the patterns of inter-visibility between settlements, exploring their observed 

structure as a static snapshot, and then addressing the following hypothetical question: if the 

visibility patterning that we have observed was the only reason for selecting the locations of 

sites, what then would be the process that is most likely to have led to the observed 

patterning? This question will be evaluated through an ERGM approach that models the 

creation of visibility patterns in abstract space (i.e. by simulating the creation of points and 

lines without taking the landscape’s topography into account as a constraint). These processes 

will be simulated a second time, incorporating a number of non-visibility factors, such as the 

urban status of settlements or their location on Roman transport networks, to evaluate 
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whether these factors are important for understanding visibility network creation processes. 

Finally, the results of this exploratory network analysis and ERGM approach will be re-

contextualised within a wider archaeological discussion to shed light on aspects of the 

changing interactions between urban settlements in the study area through time, as reflected 

through visibility patterns. 

Not including topography as a constraint in my ERGMs is a limitation of this study, because 

the approach presented here does not allow to evaluate how common or rare the observed 

patterns are in this particular landscape. This is only partly overcome in this case study by 

including the elevation of sites as an attribute in the ERGMs. Instead, the ERGM results 

show how likely it is that the observed patterns are the outcome of processes that are abstract 

expressions of archaeologists’ hypotheses of visibility network creation (e.g. a tendency to 

visually control surrounding settlements, or a tendency for inter-visibility). However, within 

the context of the current case study I argue that this abstraction is justified and useful for the 

following reasons. Firstly, it allows one to express a very wide range of hypothetical 

processes of network creation in a (relatively) non-computationally-intensive way. It also 

gives one an idea of which hypothetical processes are less likely to lead to the observed 

networks, and I believe that it follows that if a process is unlikely to give rise to the observed 

network in abstract space with no geographical constraints, it will be even less likely to give 

rise to it in geographical space (although this should be proven in future research). The results 

will allow to focus more computationally-intensive modelling efforts with geographical 

constraints in the future on a more narrow range of processes. Moreover, a method for 

ERGMs with geographical constraints does not exist yet and will need to be developed in 

close collaboration with statisticians. Some progress is being made in this direction on which 

future work could be based, for example by including the distance between pairs of nodes 

(e.g. Daraganova et al. 2012), or by considering pairs of sites which are not inter-visible in 

the observed network as ‘structural zeros’ (pairs of nodes that cannot be connected). The 

approach advocated here is of course a highly simplistic abstraction of complex phenomena. 

But it has proven an insightful thinking process to evaluate the importance of particular 

patterns of visibility, and to discard possible but highly unlikely hypotheses. 

4.2.4. Hypotheses of visibility network creation processes 

The formal method I use requires for the past phenomena I am interested in to be abstracted 

and represented as network data. In this study the entities of research interest are individual 
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settlements, where observer locations are used as an abstraction of the ability of members of 

the settlement communities to see other settlements. Relationships between settlements are 

used as an abstraction of lines of sight which could structure past human behaviour. Iberian 

settlements and Roman towns are represented as nodes, whilst arcs (directed edges) represent 

lines of sight from an observer on one site to an observed point at another site (Fig. 27). I can 

subsequently use these nodes and arcs to construct network data representations as the 

outcomes of the hypotheses I am interested in testing. In what follows I will formulate three 

groups of hypotheses tested in this case study, and the network data representations used to 

identify their expected outcomes (referred to as configurations from now on. The 

configurations used in the models presented here are shown in figures 25 and 26). 

Firstly, the simplest hypothesis, which is the assumption that lines of sight appear and 

disappear independently of each other. This reflects a null-hypothesis where no specific 

configurations of lines of sight have a higher probability of emerging. Such a random process 

can be simulated with Bernoulli random graph models (Erdős and Rényi 1959). Although 

such an assumption is unrealistic for visibility networks, it is nevertheless commonly used as 

a baseline for comparison with the other two groups of models (Koskinen and Daraganova 

2013, 56). 

Secondly, one can formulate a number of hypotheses in which settlements are established 

where the visibility of other settlements was considered important, but where no other factors 

are taken into account: 

1. If communication or signalling between settlements needed to occur then these need to 

be inter-visible. This is represented by reciprocal arcs. 

2. In order to perform some sort of visual control over surrounding settlements, these need 

to be visible from a given settlement. This is represented by many incoming arcs. 

3. If a settlement is purposefully visually prominent, it needs to be visible from 

surrounding settlements. This is represented by many outgoing arcs. 

4. If visual isolation is considered important then settlements will be expected to be 

invisible from surrounding settlements. This is represented by isolated nodes. 

Thirdly, a set of hypotheses can be formulated where we take into account the possible 

importance of other factors (here referred to as site attributes) in the establishment of 

visibility patterns. These hypotheses also imply certain assumptions about network patterns, 

this time not just about the configurations of nodes and arcs but also about nodes with certain 
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attributes in interaction. Figure 26 represents different configurations of sites with the four 

attributes considered here: 

1. Iron Age II settlements that continue to be occupied in Roman times could be inter-

visible, visually prominent or visually active (i.e. having many outgoing lines of 

sight). 

2. Roman towns with urban status could be inter-visible, visually prominent, or visually 

active. 

3. Roman towns on Roman roads and navigable rivers could be inter-visible, visually 

prominent, or visually active. 

4. Sites on hilltops could be inter-visible, visually prominent, or visually active. 
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Fig. 25. Configurations (network building blocks) used in the models in this study. 
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Fig. 26. Configurations with attribute effects for binary attributes. In black nodes the attribute is present, and in grey nodes 

the attribute is either present or not present. 

4.2.5. Previous archaeological applications of visibility networks 

Although visibility is generally considered an important feature in the study area, little work 

has been done to formally analyze visibility in Southern Spain (e.g. Garrido González 2011; 

Mayoral Herrera 2004). Visibility network analyses in archaeology in general are even rarer 

(early examples include Davidson 1979; Fraser 1983; Tilley 1994) and most of these concern 

communication networks (e.g. De Montis and Caschili 2012; Shemming and Briggs 2013). 

Of particular interest for this paper is the work on inter-visibility of Iron Age hillforts in 

Catalunya by Ruestes Bitrià (2008), who derives an inter-visibility network based on a 

probable viewshed analysis. Only mutual visibility between hillforts is included and network 

lines are either present or absent (no reference is made to how the probability of the viewshed 

results could be included in the network). The inter-visibility network was subsequently 

analyzed visually. The work of Grau Mira (2003; 2004; 2005) on the continuity and change 

between Iberian and Roman settlement patterns of Eastern Iberia is also of particular interest. 

He identified a strong degree of inter-visibility of oppida and argues for the emergence from 

the sixth century BC onwards of a hierarchical settlement system where oppida visually 

control surrounding rural settlements and access routes. Grau Mira also identified a more 

dispersed settlement pattern in the late Iron Age as compared to the Classical Iron Age, 
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resulting in a decrease of the number of sites being located in areas that are highly visible 

from other sites. 

The performance of a hypothetical communication network is examined more explicitly by 

Swanson (2003) in his study of hilltop features around the site of Paquimé (Mexico) that have 

been interpreted as forming a fire-signalling network. An undirected network of inter-

visibility is created by considering only mutually visible sites derived from binary viewsheds. 

The resulting network is subsequently compared with randomly generated networks by 

calculating inter-visibility from randomly selected hilltops. The results show a clear 

difference between the observed network and the random network. The former has no 

isolated nodes, which is to be expected in an efficient communication network, while the 

latter networks regularly include isolates. By using such a method Swanson therefore aims to 

test the likelihood that the observed degree of inter-visibility between features could have 

arisen by chance. 

The current case study aims to advocate an alternative approach, one that follows the 

different steps of the network science research process introduced in chapter 1 explicitly and 

allows researchers to test the dependence assumptions underlying network data. The case 

study will illustrate how directed networks can be derived from probable viewsheds, which 

allows for a new range of node-based network techniques to be applied. Swanson’s (2003) 

use of randomly generated networks as a benchmark will be adopted here and pushed further 

by applying ERGMs specifically for the study of small-scale patterns. 

4.2.6. What does inter-visibility mean? 

An incredibly useful formal approach to analysing inter-visibility between settelements 

would be merely to consider it a direct result of site locations and the elevations of their 

surrounding landscapes. This straightforward combination of location and topography is 

often implied by simple binary viewsheds. But when we aim to understand what it means to 

be visually prominent this sum can be easily criticised through a range of arguments (for a 

more in-depth discussion see Wheatley and Gillings 2000; Llobera 2007): 

• Spatial experience in a landscape is a complex mix of multi-sensorial information 

gathering and movement (Tilley 1994). 
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• A visibility study implies dominance of vision over the other senses in acquiring 

knowledge about one’s surroundings. This is sometimes considered an imposition of 

Western biases on the past (Thomas 1993; 2004). 

• Geomorphological processes and human actions might cause significant differences 

between past topographies and the topographical models used. These models 

themselves are inaccurate abstractions of the modern topography generated through 

interpolation algorithms selected by the researcher (Fisher 1994; Wheatley and 

Gillings 2000; Wood 1996). 

• Atmospheric conditions and past vegetation affect visibility. Although these often 

follow cycles they remain very hard to model. 

• The ability to identify visible features is dependent on the closeness of the observer to 

the feature, the object-background clarity, and the observer. 

Although these are all valid arguments, by no means should they cause archaeologists to 

abandon their pursuit of understanding past visibility patterns through formal methods 

altogether. Wheatley and Gillings (2000) argue that these critiques need to be confronted and 

embraced into formal archaeological visibility studies. The most common answer to these 

critiques has been to include some form of variability into formal visibility analyses, for 

example through Higuchi viewsheds (Wheatley and Gillings 2000), fuzzy viewsheds (Fisher 

1992), probable viewsheds (Fisher 1994; used here and discussed in more detail in section 

4.4.1 below), the selection of multiple viewing points on a single site (e.g. Mitcham 2002), or 

cumulative viewsheds (Wheatley 1995). Archaeologists have combined many of these 

different methods to achieve more accurate viewsheds (e.g. Llobera 2007). A particularly 

relevant example of such a combined approach is the study of visual control through inter-

visibility of Iron Age hillforts in Catalunya discussed above (Ruestes Bitrià 2008). 

Llobera (2007) rightly states, however, that introducing any type of variability imposes 

limitations on our interpretations and that it becomes crucial to define clearly what we can 

actually say with our particular combination of data and method. It is therefore necessary first 

to define how visibility will be approached and interpreted in this study, after which a method 

will be discussed that fits within this approach. Wheatley and Gillings (2000, 3) defined the 

term visibility as “past cognitive/perceptual acts that served to not only inform, structure and 

organise the location and form of cultural features, but also to choreograph practice within 

and around them.” Llobera (2003; 2007) similarly emphasises the role of visibility patterns in 
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structuring space through the intentional positioning of physical features in the landscape. It 

is up to the archaeologist to decipher how this structuring was achieved in order to identify 

exactly which patterns were intentionally created, and most importantly to try to understand 

the role these visual patterns played in the past. 

In this case study I assume that the presence as well as the absence of a line of sight from one 

settlement to another reflects the possibility that (i) this was intentional, (ii) it structured the 

surrounding space, and (iii) that the way in which it structured space might reveal aspects of 

the roles ascribed to the line of sight in the past. 

4.3. Data: topography, sites, chronology, and attributes 

4.3.1. Digital Elevation Model 

The digital elevation model (DEM) was created from two sources: points and contour lines 

(source: ICA, Junta de Andalucía; contour interval 10m). The point heights are unevenly 

distributed over the landscape, with a higher density of observation in the mountainous Sierra 

Morena and the foothills of the Sistema Sub-Bético, as well as the more densely urbanised 

area around modern Seville, and a lower density in the low-lying Guadalquivir valley. The 

DEM was interpolated with the ‘Topo to Raster’ tool in ArcGIS 9.3, which was selected 

because it recreates a more correct representation of ridges from input point and contour data, 

features that have a significant impact on the results of visibility analyses (Wheatley and 

Gillings 2000, 10). This interpolation technique is specifically designed for creating 

hydrologically correct DEMs, drawing on both the points and contour datasets (the point 

heights were selected as the dominant source in the tool). A resolution of 35m was chosen for 

the resulting DEM and it has a root mean square error (RMSE) of 3.37m (reflecting the 

degree of inexactness of the interpolation method used). The RMSE was calculated in 

Microsoft Excel by comparing the observed point heights with the heights predicted by the 

DEM at the same points. 

4.3.2. Settlement data 

A dataset of 190 sites assembled by the ‘Urban Connectivity in Iron Age and Roman 

Southern Spain’ project15 is considered in this study (see Appendix III section 11.1). The 

15 Directed by Prof. Simon Keay and Dr. Graeme Earl was funded by the UK Arts and Humanities Research 
Council (AHRC) between 2002 and 2005 with subsequent support by the University of Southampton and 
institutions in Seville, notably the Departamento de Prehistoria I Arqueología de la Universidad de Sevilla and 
the Delegación de Cultura de la Junta de Andalucía. 
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amount and reliability of information available for each site differs greatly due to a variable 

research history. All 190 sites are settlements of some kind, including major Iberian 

settlement sites and rural settlements, Roman urban settlements and semi-urban/semi-rural 

agglomerations: it excludes villas and other kinds of rural settlement. Since the reliability of 

settlement type identification varies I do not distinguish between types of settlement in the 

formal analysis, although these will be taken into account when interpreting the results. I 

believe this dataset to be representative of the Roman period towns and agglomerations as 

well as the larger Iberian settlements. Our knowledge of Iberian rural settlement is less 

complete; this will be taken into account when interpreting the results. For the majority of 

sites little is known other than their location and broad periods of occupation. For a further 

253 sites no reliable dating information was available, and for most of these identification as 

past settlements is highly uncertain; these possible sites were not included in this analysis. 

The dataset reflects our total available knowledge of Iron Age II and Roman settlements in 

the study area up to the end of the project in 2005. The project believes this represents a 

settlement pattern that allows one to draw meaningful conclusions with the approach 

presented here. Although subsequent discoveries can certainly be expected, in particular of 

Iberian rural settlements, I believe they will not substantially change the conclusions drawn 

concerning the hypothesis of the inter-visibility of Iberian urban settlements but might change 

the conclusions concerning the visual prominence of Iberian urban centres as compared to 

Iberian rural settlements. For this reason, the interpretation of the results will focus in 

particular on the most densely surveyed areas at the centre of the study area (Vega and 

Campiña). Given the sparcity of sites along the boundaries of the study area (i.e. the included 

sectors of the conventus astigitanus and cordubensis), few visibility patterns of interest could 

be indentified in the results and these will be interpreted with caution. 

The dataset was assembled primarily from the following sources: 

• Archival: sites listed in regional sites and monuments catalogues held by the 

Delegacion Provincial de Cultura de la Junta de Andalucía (specifically the 

ARQUEOS and its later replacement the SIPHA). These draw upon information 

recorded by archaeologists in the 20thc., as well as works published earlier. The work 

of Ponsich (1974; 1979; 1987; 1991) forms a fundamental part of this, particularly for 

the Roman settlements. 
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• Administrative: these are specifically surveys of Iberian and Roman sites undertaken 

for administrative reasons by the Delegación Provincial de Cultura as part of the Junta 

de Andalucía’s ongoing strategy of updating its regional sites and monuments 

registers. 

• Research: these are sites that were found, investigated or excavated in the course of 

research projects undertaken by archaeologists based at the Universidad de Sevilla or 

elsewhere. 

• Accidental: sites found or investigated as a result of rescue work (‘urgencias’) 

undertaken by archaeologists on behalf of the Junta de Andalucía, whether by 

excavation or survey. 

• Project: sites visited in the course of the ‘Urban Connectivity’ project for the purposes 

of checking location and analysis of surface materials for indications of chronology. 

4.3.3. Chronology 

The sites included in this analysis were all occupied for differing lengths of time within the 

period of the ten centuries this study is concerned with: from the early fifth century BC until 

the late fifth century AD. Dates of individual sites were derived from excavation and survey 

reports as well as from their archaeological record. The accuracy of these sites’ chronologies 

therefore varies enormously. In order to explore long-term change it was decided to use five 

time-slices according to which sites were grouped together for analysis (for the sites dated to 

each time-slice see Appendix III sections 11.1.1 and 11.1.2): 

• Iberian (Iron Age II): early 5th c. BC to late 3rd c. BC 

• Roman Republican: late 3rd c. BC to late 1st c. BC 

• Early Imperial: late 1st c. BC to early 3rd c. AD 

• Middle Imperial: early 3rd c. AD to early 4th c. AD 

• Late Imperial: early 4th c. AD to late 5th c. AD 

The transition periods used for these time-slices refer to periods of change that are defined by 

the chronology of different classes of ceramics that are commonly found in the area; the late 

3rd c. BC is marked by the first Roman settlements (viz. Italica) and the appearance of 

imported Italic Black Gloss pottery and subsequently imported Dressel 1 and other varieties 

of Italic wine amphora; the late 1st c. BC marks the disappearance of the earlier kinds of 

pottery and the appearance of Terra Sigillata Italica and a range of other kinds of well defined 

locally produced and imported pottery, such as Terra Sigillata Clara A; the early 3rd c. AD 
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coincides with the appearance of a distinctive class of imported north African pottery, Terra 

Sigillata Clara C; the early 4th c. AD onwards is represented by the appearance of yet another 

distinctive class of imported north African pottery, Terra Sigillata Clara D and other imported 

material. Sadly the coarse chronologies of the vast majority of sites (often defined with an 

accuracy of a century, especially for those sites known exclusively through survey and 

surface scatters) do not allow for a much more precise overall periodization. However, it was 

felt that this archaeologically defined periodization conformed much more closely to the 

archaeological veracity of these sites, and that was therefore more appropriate than imposing 

historically defined periods. Although this is a convenient approach for exploring long-term 

changes of patterning in a large dataset using formal methods, it is necessarily coarse and 

even enforces the traditional chronological boundaries this paper seeks to challenge. A more 

fuzzy or probabilistic approach to dealing with temporal uncertainty should be preferred (e.g. 

Crema et al. 2010) but lies outside the scope of this case study. Still, earlier in the project 

fuzzy dates were employed as a means to integrate data from various sources, and in 

particular to record perceived bias in use of terminology (Earl and Keay 2007). We believe 

the current approach will still allow for the observation of large-scale long-term change that 

is the aim of this case study, although with a low degree of chronological accuracy. 

4.3.4. Site attributes 

In this case study I will evaluate the role of three attributes in giving rise to the observed 

inter-urban connections: urban status, prominent elevated locations, and location on road or 

river networks. In addition to these three I will consider the potential Iberian origins of sites 

as an attribute to evaluate interactions between Iberian sites that continue in occupation. Lists 

of sites for each of these attributes are included in Appendix III section 11.1. 

Urban status: as mentioned above, many sites in the study area were attributed an urban status 

by Rome in the Early Imperial period. Thus, epigraphic and historical sources indicate that 

Hispalis (Seville), Astigi (Écija) and Urso (Osuna) were established as coloniae under Caesar 

and Augustus, while many others gained the status of municipium in the course of the 1st c. 

AD, particularly after the later 1st c. AD (Keay 1998b, 85). The acquisition of the legal 

privileges implicit in these statuses is a good measure of the political integration of these 

communities into the Roman Empire and, therefore, can be read as a regional expression of 

politically-based urban hierarchies. However, there are many difficulties surrounding the 

identification of an archaeological site with a town mentioned in ancient written sources, an 
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issue that is particularly acute for the many possible municipia in the region. Here I decided 

to follow the list of coloniae and municipia compiled by Simon Keay (1998b, Appendix II) as 

a prime reference. This list was itself compiled from a range of secondary sources (Fear 

1996; Knapp 1983; Sillières 1991; Stylow pers. comm.; Tovar 1974). 

Prominent elevated locations: a qualitative assessment of prominent locations is included as a 

site attribute in this analysis to evaluate the effect of the DEM (which provides a quantitative 

assessment of prominent locations). Project members visited all of the sites in the study area 

in the framework of the ‘Urban Connectivity in Iron Age and Roman Southern Spain’ 

Project. They described the physical location of sites using a range of qualitative categories. 

Sites that were described with the following attributes were considered to have a prominent 

elevated location: hill, low hill, plateau, plateau side. 

Road and river networks: this attribute represents sites located on the main transport routes in 

the study area: the Via Augusta, the Guadalquivir river, and the Genil river. Transhumance 

routes were not taken into account because their exact course and dating is often unknown. 

The course of the Via Augusta in this area is well known and has been thoroughly studied 

(Sillières 1991; Corzo and Toscano 1992). In antiquity the Guadalquivir and Genil rivers 

were navigable up to Córdoba (Corduba) and Écija (Astigi) respectively (Strabo 3.2.3; 

Ponsich 1991, Fig. 6). All sites along these rivers up to these points were considered to be 

part of the river network. It is notable that almost all towns along these transport routes were 

either coloniae or municipia and for most of them we know the ancient name (see Appendix 

III section 11.1.4 and 11.1.5 for full lists). 

4.4. Method: an approach for exploring changing visibility networks 
To address this study’s research questions I developed an approach that allows one to explore 

the structure of visibility networks as well as evaluate assumptions about the factors driving 

the emergence of these changing structures. This combined method consists of a few steps 

that will be introduced here: generating probable viewsheds, creating visibility networks, 

exploring network structure, and creating statistical models of emerging networks (with 

ERGMs). 

4.4.1. Probable viewsheds 

As mentioned above, in formal visibility studies a measure of variability is often added to 

address methodological and theoretical shortcomings of the approach. In this study I will add 
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variability in two ways: through probable viewsheds and by analysing the results in different 

bands of distance. A probable viewshed uses a Monte Carlo simulation approach to identify 

the probability that a location is visible to an observer from a specific viewing point. The 

probable viewshed was first developed by Fisher (1992; 1995) to compensate for the 

imperfections in the DEM and the variability between algorithms used to create viewsheds. 

As such the error introduced in a probable viewshed reflects the RMSE of the DEM. In this 

study I use a 5m error, which is slightly higher than the RMSE of 3.37m and enhances the 

effect of decreasing probability of visibility with distance away from the observer. Since the 

differences between the observed and simulated point heights used in the calculation of the 

RMSE are normally distributed, I decided to implement the error in the probable viewshed 

creation as follows: in each iteration, the elevation of each cell in the DEM is increased by a 

float from a normally distributed probability distribution. The probable viewshed was iterated 

100 times for each of the 190 sites. The curvature of the earth was taken into account when 

calculating lines of sight, given the large study area. The observer height was fixed at 1.7m 

since I assume visibility by a human observer. An elevated target height was considered 

uncritical since for many sites we have no knowledge of the architecture and a target height 

of 1.7m was discarded since inter-visibility between observers was not the aim of the 

analysis. It was decided to consistently use a target height of 0m (Fig. 27). Although these 

assumed observer and target heights are selected in light of the above theoretical 

considerations, they also enforce a higher degree of asymmetry in the resulting visibility 

networks than would be expected for equal values for target and observer heights (as 

illustrated below in section 4.4.3). I argue this is defendable for two reasons: (1) the probable 

viewshed approach taken here inevitably leads to higher asymmetry of visibility networks 

than would be expected for equal values for target and observer heights (since both are 

increased by different amounts when introducing a random error into the DEM at each 

iteration); (2) the hypotheses suggested by Iron Age archaeologists concern asymmetric 

visibility networks and need to be evaluated as such. 
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Fig. 27. (a) maximum random error in probable viewshed = 5m; (b) observer point site A and target point for observer site 
B; (c) line-of-sight with probability pa from observer A to target point site B; (d) observer height = 1.7m; (e) inter-visibility 
network where site A is connected to site B with probability pa and site B is connected to site A with probability pb. 

4.4.2. Observation point locations 

A single observer point was created for each of the 190 sites in the analysis. In general the 

observer point was either positioned on the site location or at the centre of the site area (if the 

area is known, which is not the case for the vast majority of sites). Observer points were 

positioned on prominent features when known (for example the Roman gate at Carmona, see 

below). These point locations are more dense in the campiña and around the Genil river, 

areas that have traditionally always been more densely occupied (Ponsich 1991), and they are 

less dense around the Guadalquivir, the Sierra Morena, and the lacus ligustinus (Fig. 23). 

This distribution has a significant impact on the results of this study, as revealed through a 

cumulative viewshed analysis (results described in Appendix III section 11.2; Figs. 73-77), 

and it will be taken into account when interpreting the results. The cumulative viewsheds also 

reveal a gradual decrease over time of overall visibility in the study area, the increase over 

time of the visual prominence of one area (northwest of Osuna), the to-be-expected consistent 

visual prominence of sites located on elevations, and the consistently low degree of visibility 

of the major roads and rivers (with few exceptions). 

However, past urban settlements were not just point locations but extended over sometimes 

considerable areas. One could argue that inter-visibility should therefore be derived from 

multiple observer points per settlement. However, for 23% of sites in this study the extent is 

unknown and for most of the others the minimum area is an estimate for which the exact 

geographical extent is unknown (Fig. 28; see also the rank-size analysis in Keay 1998b, Fig. 

4). Deciding where the multiple observer points per site should be located therefore becomes 
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impossible for most sites. I decided to remain consistent and only select a single observation 

point per site, even though this involves a significant limitation on the area visible from each 

site. At an earlier stage of the project some preliminary analyses were undertaken assigning 

ten viewer locations at random within the site polygons. However, the considerable 

uncertainty regarding the accuracy of these polygons, and in particular their sentivity to 

period of analysis, meant that this was not explored further. A detailed study of the past 

occupied area of each site was not possible for this study and should form the focus of future 

work, allowing for re-analysis of inter-visibility with multiple viewer points. 

 
Fig. 28. Frequency distribution of the number of sites per area band of 50,000 m2. All areas are minimum estimates. Of the 
109 sites in the lowest band 43 sites have an area that is unknown or lower than 1,000 m2. 

4.4.3. Visibility network creation 

From the probable viewsheds of all 190 sites a visibility network is created in which nodes 

represent sites (the observer point locations) and the arcs represent the presence of a line-of-

sight from a site to another site. These arcs have a probability attributed to them derived from 

the number of times out of 100 that the cell in site A’s probable viewshed on which the 

observer point of site B is located is visible. This results in a directed network in which lines-

of-sight from and to sites can be distinguished, and where all sites have a differing probability 

of being visible from every other site (Fig. 27). The network can subsequently be explored 

per period by only including those sites occupied during a certain period. I will also explore 

the differences between network patterns with high probability arcs and those with low 

probabilities. Finally, I decided to focus the analysis on lines of sight at a distance of up to 

20km, because at such distances large architectural features, and presumably communication 

signals, are still visible. However, in the discussion of the results I will also make reference to 

some patterns of interest over distances greater than 20km, since observations in the study 
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area confirm that long-distance inter-visibility of sites is not impossible (Keay and Earl 

2011). The inter-visibility of Carmona in the vega and Castillo de Mulva in the foothills of 

the Sierra Morena over a distance of ca. 30km is a clear example of this. 

The coarseness of the DEM and the use of a single observer point per site might shed doubt 

on the use of directed networks. However, I believe their use is justified in this study for two 

reasons. Firstly, the probabilistic viewshed method gives rise to sometimes strong differences 

in the probability of lines of sight between pairs of sites: 31.6% of node-pairs have a 

difference in the probability of the arcs between them of more than 10%; whilst 4.7% of 

node-pairs have a difference in the probability of the arcs between them of more than 50%. 

These differences have a strong impact on the number of reciprocal ties and the network 

patterns when the networks are explored using thresholds on different probability values. 

Secondly, the archaeological hypotheses I aim to test require an abstraction and 

representation as directed networks (e.g. visual control or visual prominence). 

4.4.4. Exploratory Network Analysis 

The resulting networks are static and are not suitable to explore issues of movement through 

the landscape. Instead, this study will focus on how patterns of inter-visibility between sites 

change over time, how these patterns emerged, and how these might have structured 

interactions between urban settlements. This can in part be done by exploring these static 

networks using exploratory network measures. 

The local node-based measures used include indegree, outdegree, and clustering coefficient. 

The global network-based measures include number of nodes, number of arcs, clustering 

coefficient, number of connected components, average degree, diameter, average shortest 

path length, and density (for definitions see Newman 2010; Wasserman and Faust 1994). The 

indegree of site A is the number of sites from which site A can be seen. The outdegree of site 

A is the number of sites that can be seen from site A. The diameter of a network is the longest 

path between a pair of nodes; if a network is disconnected the diameter of the largest 

connected component is given. 

4.4.5. Exponential Random Graph Models 

Exponential Random Graph Modelling is a statistical simulation approach that compares the 

structure of simulated networks which represent a researcher’s hypothesis of how a certain 

observed network emerged, with the known structure of this observed network. For a detailed 

ERGM reference work, see Lusher et al. (2013). 
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Social network analysts often use an archaeological analogy to explain the concept of an 

ERGM (e.g. Lusher and Robins 2013, 18). Past material remains are like static snapshots of 

dynamic processes in the past. Archaeologists explore the structure of these material residues 

to understand past dynamic processes. Such snapshots made up of archaeological traces are 

like static fragmentary cross-sections of a social process taken at a given moment. If one were 

to observe multiple cross-sections in sequence, changes in the structure of these fragmentary 

snapshots would become clear. This is exactly what an ERGM aims to do: to explore 

hypothetical processes that could give rise to observed network structure through the dynamic 

emergence of small network fragments or subnetworks (called configurations, e.g. Figs. 25-

26). These configurations can be considered the building blocks of networks; indeed, LEGO 

blocks offer a good analogy for explaining ERGMs. To give an example, a network’s 

topology can be compared to a LEGO castle boxed set, where a list of particular building 

blocks can be used to re-assemble a castle. But a LEGO castle boxed set does not assemble 

itself through a random process. Instead, a step by step guide needs to be followed, detailing 

how each block should be placed on top of the other in what order. By doing this we make 

certain assumptions about building blocks and their relationship to each other. We assume 

that in order to achieve structural integrity in our LEGO castle, a certain configuration of 

blocks needs to appear, and in order to make it look like a castle other configurations will 

preferentially appear creating ramparts, turrets, etc. ERGMs are similar: they are models that 

represent our assumptions of how certain network configurations affect each other, of how 

the presence of some ties will bring about the creation or the demise of others. This is where 

the real strength of ERGMs lies: the formulation and testing of assumptions about what a 

connection between a pair of nodes means and how it affects the evolution of the network, 

explicitly addressing the dynamic nature of our archaeological assumptions. The hypotheses 

introduced in section 4.2.4 above represent different assumptions archaeologists make about 

certain network patterns (for example, in order for a communication link to exist and function 

between two settlements they need to be inter-visible). These theoretical assumptions can be 

represented using network configurations (Figs. 25-26). 

I believe this method is particularly promising as an approach for evaluating the central claim 

of this PhD introduced in section 1.3, that network science reveals its true potential for 

archaeology when we address dependence assumptions inherent in network data explicitly. In 

what follows I will therefore describe this method in full technical detail, using examples to 

illustrate this complicated approach. 
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Definition 

ERGMs16 belong to a family of statistical models originally developed for social networks 

(Anderson et al. 1999; Wasserman and Pattison 1996) that aim to investigate the dependence 

assumptions underpinning hypotheses of network formation by comparing the frequency of 

particular configurations in observed networks with their frequency in stochastic models. The 

terms in this definition in italics have a specific meaning in network science and will be 

defined below. 

As mentioned in my definition of network science, dependence assumptions are theoretical 

assumptions grounded in the idea that pairs of nodes do not just become connected 

independent of what happens in the rest of the network: “The presence of some ties will 

encourage other ties to come into existence, to be maintained, or to be destroyed” (Robins 

2011, 485). These assumptions, therefore, reflect the researcher’s theories of how ties emerge 

relative to their position in the network. An example of a dependence assumption and its 

representation using configurations is shown in figure 29. 

 
Fig. 29. (a-b) Example of a visibility network where nodes are settlements and arcs lines of sight between them. If an 

observer can see one settlement from another (a), it is likely that both settlements are inter-visible (b). (c) This network 
consists of 5 nodes, 7 arcs, and 2 reciprocity configurations. 

I use the term observed network here to refer to the network created on the basis of data 

collected by archaeologists. The researcher using ERGM is interested in modelling the 

observed network (Robins et al. 2007a, 175). In visibility networks this would typically be a 

set of nodes representing the observation locations (e.g. settlements) connected by a set of 

16 These are sometimes called p* models to distinguish them from the earlier p1 (Holland and Leinhardt 1981) 
and p2 (Lazega and Van Duijn 1997) model classes. 
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arcs representing lines of sight (Fig. 27). Visibility network data can either be collected by 

observations in the field, or more formally by using visibility analysis techniques in a GIS 

(Conolly and Lake 2005; Wheatley and Gillings 2002). An ERGM aims to study the range of 

processes that could give rise to such networks, and it is therefore crucial for the observed 

visibility network to be as complete as possible if the ERGM is to suggest realistic processes. 

Moreover, the selection of the boundaries of the visibility network will need to be clearly 

argued for, and the impact these boundaries have on the results of the ERGM will need to be 

assessed when interpreting the results. In archaeology the observed visibility networks are 

often a pattern that aggregates evidence over a long timespan. This is less of a problem than 

the issue of having a complete network, in particular for relatively slow-changing processes 

such as settlement patterns, as long as the researcher is confident about the contemporaneity 

of the set of nodes that make up the observed network. 

Configurations17 are small network patterns consisting of a few nodes and the arcs between 

them (e.g. Figs. 25-26). They play a number of roles in the ERGM procedure: representing 

dependence assumptions, describing observed network structure, comparison with simulated 

networks, and as effects in the ERGM. Dependence assumptions can be formally represented 

by particular configurations. For example, inter-visibility could be represented by arcs in two 

directions (referred to as reciprocity; Fig. 29b). One can also describe an observed visibility 

network by counting the frequency of each configuration in the network. This provides a way 

of describing a visibility network’s structure, but also allows comparison with the number of 

configurations of simulated networks. For example, the network shown in figure 29c consists 

of five nodes, seven arcs, and two reciprocity configurations. This information is used to 

determine how similar the networks simulated by a certain ERGM are to the observed 

network. When creating an ERGM researchers select those configurations to be included as 

effects in the model which they believe to be representations of their dependence 

assumptions. This means that the model will not let these particular configurations that are of 

research interest emerge purely by chance, but rather it will estimate whether there is a 

positive or negative tendency for each configuration to appear throughout the simulation 

process. For example, in the results below I describe an ERGM which includes the 

17 The term configurations is used here following key publications in ERGM (e.g. Robins 2011) and first used 
by Moreno and Jennings (1938), instead of the term motifs which recently became popular through the work of 
Milo et al. (2002). 
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reciprocity configuration as an effect, and the results indicate that in this model there is a 

tendency for settlements to be inter-visible. 

These configurations are assembled through a stochastic process: at each time step two 

randomly selected nodes are considered and an arc may be created or removed between them. 

The probability that an arc is created between these two nodes is determined by the effects in 

the model, and therefore by the presence or absence of other ties. To give the example of this 

case study, when in an ERGM with a strong inter-visibility effect a pair of nodes A and B is 

considered that already have one arc from A to B, then the probability will be high that 

another arc from B to A is created in that time step. This stochastic simulation process is an 

implementation of the idea that the observed network is only one particular outcome out of a 

wide range of possible networks. We do not know what process generated the observed 

network, this is what we are trying to find out. But we do know the dependence assumptions 

we can formulate based on our theories. The goal of an ERGM is to draw on these 

assumptions to propose a plausible theoretical hypothesis for the process that led to the 

observed network (Robins et al. 2007a, 175). 

Creation process of ERGMs for visibility networks 

Now that I have defined ERGM and its most important concepts, the next thing to do is 

explain step-by-step how an ERGM is created. In their general framework for ERGM 

construction Robins et al. (2007a) describe five steps followed when creating an ERGM. By 

going through these steps archaeologists can test their theoretical decisions about how lines 

of sight are created through statistical data analysis. I will discuss these five steps and give 

examples relevant to the analysis of visibility networks. Figure 30 offers a simplified 

overview of this design process. 

1. Each arc can either be present or absent: we start with a fixed set of nodes that are 

unconnected, and assume that throughout the simulation every pair of nodes can 

either be connected or not. Although the arc is considered a random variable, some 

arcs will have a higher probability of appearing than others. For the visibility 

networks in this case study this means that the number of settlements remains the 

same throughout the simulation and that settlement A can either be seen from 

settlement B or not with a certain probability. 

2. A dependence assumption is proposed: this is the most crucial step and concerns 

the explicit formulation of dependence assumptions representing the proposed 
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processes generating the network, i.e. one decides how arcs affect each other’s 

presence or absence. The nine theoretical dependence assumptions about how lines of 

sight are established that will be tested in this case study have been introduced in 

section 4.2.4 above. 

3. The dependence hypothesis implies a particular form to the model: the 

dependence assumptions formulated above can be represented by particular 

configurations. This means the theoretical assumptions of how lines of sight between 

settlements emerge have to be represented as network data, i.e. nodes and arcs. The 

researcher should select those configurations to be included in the model that are 

considered the best representation of the dependence assumptions (Figs. 25-26). 

Multiple configurations can be included. 

4. Simplification of models: the hypotheses archaeologists formulate can often be a 

complex mix of the assumptions introduced above. Although multiple configurations 

can be included in an ERGM to represent this complexity from the start, this should 

be avoided since the more configurations included in the model, the harder it becomes 

to understand which configuration causes a good fit between the model and the 

observed visibility network. For this reason it is recommended that one starts with a 

simple model with few effects, and gradually build up the complexity of the model by 

adding more effects. The simplest assumption mentioned above is that lines of sight 

emerge independently of each other. Such an assumption could be represented by an 

ERGM with only one effect, which is the probability that an arc will be created (such 

models are called Bernoulli random graph models; Erdös and Rényi 1959). After 

evaluating and interpreting how well this model fits with the observed networks, one 

could then increase the complexity of the model by adding more effects (e.g. a 

reciprocity effect). Moreover, one should also consider whether some effects can be 

equated or related in some way, in order to limit the number of effects included in the 

model. 

5. Estimate and interpret model parameters: the previous four steps are arguably the 

most important ones, since they determine the formulation of theoretical assumptions, 

their representation as network data, and the creation of a proposed model. The goal 

of an ERGM is to find a set of parameter values (representations of how important 

particular configurations are for generating the observed patterns) that best represent a 

single observed network. The observed network can then be interpreted in light of 
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these configurations and the dependence assumptions underlying them. The 

researcher runs the model and estimates parameter values for all of the configurations 

in the model, i.e. whether certain configurations have a positive or negative tendency 

of appearing in the simulated networks. This is an iterative process where parameter 

values are gradually refined until one ends up with a model with parameter values that 

give rise to networks with frequencies of the included configurations very similar to 

the observed network. One then performs a goodness of fit test to evaluate whether 

this model also gives rise to similar counts of configurations or aspects of the 

network’s structure that were not explicitly included in the model (such as the degree 

distribution). This is done to confirm whether the model succeeds in generating non-

modelled features of the observed networks. The final parameter values of the 

included configurations are subsequently interpreted. It is important not to over-

interpret the results -a good rule of thumb is to only distinguish between positive or 

negative tendencies to creating a certain configuration, and to pay particular attention 

to statistically significant effects. For example, if in an ERGM for a visibility network 

the reciprocity effect is significant and positive, one can formulate the following 

interpretation “in the process that led to the creation of this visibility network, there 

was a tendency for settlements to become inter-visible, more so than expected by 

chance”. 

In the following three sections some of these steps are described in more technical detail (see 

also Lusher et al. 2013; Robins et al. 2007a; Robins et al. 2007b; Robins et al. 2009). 
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Fig. 30. A simplified representation of the creation process of an ERGM. (1a) an empirically observed network is 
considered; (1b) in a simulation we assume that every arc between every pair of nodes can be either present or 
absent; (2) dependence assumptions are formulated about how ties emerge relative to each other (e.g. the 
importance of inter-visibility for communication); (3) configurations or network building blocks are selected that 
best represent the dependence assumptions (e.g. reciprocity and 2-path); (4) different types of models are created 
(e.g. a model without dependence assumptions (Bernoulli random graph model) and one with the previously selected 
configurations) and the frequency of all configurations in the graphs simulated by these models is determined; (5) the 
number of configurations in the graphs simulated by the models are compared with those in the observed network 
and interpreted. 

The form of an ERGM 

The definition and creation process of an ERGM can be expressed more formally as equation 

1. All ERGMs have the same general form. To this general form different dependence 

assumptions can be added depending on the hypotheses tested. Equation 1 describes a general 

probability distribution of networks, where the probability that a particular network will exist 

in this distribution (Pr) is dependent on the configuration parameter in the model (𝜂𝜂𝐴𝐴) and the 

count of this configuration in the observed network (𝑧𝑧𝐴𝐴(𝐱𝐱)). 

On the left hand side of this equation we distinguish between the randomly generated 

network (X) and the observed network (x), both have the same number of nodes (or 

settlements in the case study presented below). Between every pair of nodes there can either 

be an arc or not (i.e. settlements can either be connected by a line of sight or not). In the 

observed visibility network we know exactly which nodes are connected by a line of sight, 
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but in randomly generated networks this line of sight will be created with a certain 

probability. This probability is determined by the effects one includes in the ERGM. 

More formally, for every pair i and j that are distinct nodes of a set N of n nodes, a random 

variable Xij exists, where Xij = 1 if there is an arc from node i to node j, and Xij = 0 if there is 

no arc. If Xij is an arc random variable that can have a value 1 or 0 with a certain probability, 

then let xij be the observed value (the arc that is part of our observed visibility network). 

Similarly, we define X as the matrix of all variables and x the matrix of observed ties. Since 

nodes are not supposed to have self-loops the diagonal of these matrices are empty cells. In 

the case of our visibility networks, X is directed which means that Xij is different from Xji 

(Robins 2011; Robins et al. 2007a). 

The general form of an ERGM is: 

Pr(𝐗𝐗 = 𝐱𝐱) = � 
1
𝜅𝜅

 �  exp ��  𝜂𝜂𝐴𝐴
𝐴𝐴

𝑧𝑧𝐴𝐴(𝐱𝐱)� 

Eq. 1: general form of ERGM. 

where the summation is over all configuration types A; ηA is a parameter corresponding to 

configuration type A, it reflects the dependence assumption of a particular configuration (i.e. 

ηA cannot be zero if the frequency of configuration type A is considered to be dependent on 

the rest of the network); zA(x) is a count of the number of configurations A observed in x; κ is 

a normalizing quantity which ensures that equation 1 is a proper probability distribution 

(Robins 2011; Robins et al. 2007a). 

Estimation 

An ERGM goes through a process of estimation before it can be fitted to the observed 

networks. The process of estimation described here and applied in this case study is called the 

Monte Carlo Markov Chain Maximum Likelihood Estimation (MCMCMLE) approach 

(Koskinen and Snijders 2013). 

The estimation process is aimed at refining the parameter values (the weight attributed to the 

configurations) by comparing the frequency of modelled configurations in the observed 

network against that in a distribution of random networks generated by a stochastic 

simulation using the approximate parameter values. These parameter values are adjusted 

through iterating the simulation so that the means of the values of the configuration in 

question can get as close as possible to the observed values. With “as close as possible” we 

148 



  Evaluating Network Science in Archaeology 

mean: a t-ratio for the estimate of every configuration derived at every simulation; the t-ratio 

is calculated as follows: 

(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

Eq. 2. Calculating the t-ratio of an estimated configuration. 

The t-ratio indicates how well the estimate has converged with the observed data; a good 

convergence is indicated by t-ratios for parameter estimates of less than 0.1 in absolute value. 

These final parameter values are called the maximum likelihood values. Statistically 

significant effects (here indicated by *) have a parameter estimate in absolute value more 

than twice the standard error. Table 8 offers an example of this for a visibility network. We 

see that the t-ratio for the reciprocity effect is less than 0.1, indicating that the estimated 

parameter value for reciprocity produces a similar frequency of this configuration as has been 

observed in the visibility network. Moreover, the estimate is positive and more than twice the 

standard error, indicating there is a significant tendency towards the creation of inter-visible 

arcs, more than expected by chance. 

Table 8. Example estimate of one effect in an ERGM for a visibility network. 

Effects Estimates 
Standard 

error T-ratio   

reciprocity 8.00 0.79 -0.07 * 
 

Goodness of fit and interpretation 

Once maximum likelihood values are obtained for the configurations included in the model 

the ERGM needs to be fitted to the observed network. This is done to evaluate whether the 

frequency of observed configurations included in the model are well reproduced by the 

model, as well as to check if all the other features of the observed network that are not 

explicitly modelled are replicated (e.g. degree distribution). The rationale behind this 

“goodness of fit” test is that the plausibility of an ERGM is higher if it can replicate all or 

most of the features of an observed network (Robins et al. 2007b, 206). The guidelines set out 

in Harrigan (2007) for determining whether the goodness of fit results suggest that the model 

is plausible are commonly used: 

1. “If the parameter was estimated and specified in your model … then the t-statistic 

needs to be below 0.1 (as it was in the estimation).” 
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2. “If the parameter was not estimated and specified in your model … then the t-statistic 

should be below 2 for the model to not be a bad fit.” 

To give an example, table 9 offers a fragment of the goodness of fit results of an ERGM for a 

visibility network, where the reciprocity effect was included in the model whilst the 2-in-star 

effect was not. It shows that the mean number of these configurations in the simulated 

networks is very close to their frequency in the observed network. Moreover, this table offers 

the information needed to calculate the t-ratio as described in equation 2 above. For the 

reciprocity effect this is (32-31.966)/2.612=0.013 and for the 2-in-star effect this is (78-

79.134)/21.836=-0.052. Since both are lower than 0.1 in absolute value they indicate a good 

fit between the model and the observed network. 

Table 9. Example of the goodness of fit results of an ERGM for a visibility network. 

Effects Observed Mean Standard 
deviation T-ratio 

reciprocity 32 31.97 2.61 0.01 
2-in-star 78 79.13 21.84 -0.05 

 

The results of the estimated configurations are subsequently interpreted. A positive parameter 

estimate indicates a tendency to form this particular configuration higher than purely by 

chance and a negative parameter estimate indicates that the configuration appears less often 

then expected purely by chance. Robins and colleagues (2009, Table 1) provide a useful key 

for technical interpretation of effects in ERGMs of directed networks, such as visibility 

networks. Although a technical interpretation of ERGM results is a necessary first step, this 

should always be followed by a discussion of the importance and implications of the results 

within the archaeological research context. 

4.4.6. Software 

The probable viewsheds were created in ArcGIS 10.1 using a python script written by David 

Wheatley (University of Southampton). Networks were created using UCINET, PAJEK and 

CYTOSCAPE. Exploratory network measures were derived with PAJEK. ERGMs were 

estimated and fitted using PNET. 

4.5. Results of the combined approach 
I decided to include this long and technical description of the functioning of the ERGM 

method because it forces a researcher to explicitly work through the network science research 

process, and because I believe this approach shows particular promise for the evaluation of 
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the potential of network science in archaeology. In the above I have discussed a particular 

archaeological research problem and I have developed an approach to this problem that draws 

on a diversity of exploratory and confirmatory network techniques. Box 6 offers a summary 

of the research process presented by this case study. In what follows I will present the results 

of this innovative method, discuss their implications for this case study’s research questions, 

and finally discuss how this case study advances the aims of this PhD project. 

Box 6. Network science research process case study 2 
Phenomenon studied: 

• The ways in which lines of sight between Iberian and Roman urban setltements structured human 

behaviour and the processes through which they were established. 

Abstraction as network concepts: 

• The entities of research interest are individual settlements, where observer locations are used as an 

abstraction of the ability of members of the settlement communities to see other settlements. 

• Relationships between settlements are used as an abstraction of lines of sight which could structure past 

human behaviour. 

Representation as network data: 

• Iberian settlements and Roman towns are represented as nodes. 

• Arcs represent lines of sight from an observer on one site to an observed point at another site. 

Dependence assumptions: 

• Lines of sight appear and disappear independently of each other (random). 

• If communication or signalling between settlements needed to occur then these need to be inter-visible 

(represented by reciprocal arcs). 

• In order to perform some sort of visual control over surrounding settlements, these need to be visible 

from a given settlement (represented by many incoming arcs). 

• If a settlement is purposefully visually prominent, it needs to be visible from surrounding settlements 

(represented by many outgoing arcs). 

• If visual isolation is considered important then settlements will be expected to be invisible from 

surrounding settlements (represented by isolated nodes). 

• Iron Age II settlements that continue to be occupied in Roman times could be inter-visible, visually 

prominent or visually active. 

• Roman towns with urban status could be inter-visible, visually prominent, or visually active. 

• Roman towns on Roman roads and navigable rivers could be inter-visible, visually prominent, or 

visually active. 

• Sites on hilltops could be inter-visible, visually prominent, or visually active. 

Network science techniques used: 

• Node-based exploratory network analysis: indegree, outdegree, node clustering coefficient. 

• Network-based exploratory network analysis: number of nodes, number of arcs, clustering coefficient, 

number of connected components, average degree, diameter, average shortest path length, density. 
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• Exponential random graph modelling: Bernoulli random graph model; social circuit model; attributed 

model. 

4.5.1. Exploratory network analysis18 

Sensitivity analysis of exploratory network metrics 

In the following exploratory network analysis and the ERGMs I will largely focus on lines of 

sight with a probability over 50%. However, the results of network measures can vary 

significantly when a network is reduced to subnetworks using certain thresholds (Peeples and 

Roberts 2013). I performed a sensitivity analysis to explore the effects of different thresholds 

on the probability of arcs on the overall results of the network measures and the site rankings. 

This analysis was performed for the Early Imperial network only, although similar results can 

be expected for networks of other periods given their general structural similarity. The 

networks used are directed, contain isolated nodes, and do not contain loops (arcs from one 

node to itself). 

The results suggest that for many measures (global density, all degree centralization, local 

clustering coefficient) the networks with probability >50% give stable results, indicating that 

a focus on these high-probability subnetworks in the exploratory analysis is representative 

(Fig. 31). However, the exploratory network analysis should also incorporate the global 

clustering coefficient, and the indegree and outdegree rankings of low probability networks, 

since these show significant sensitivity to changing thresholds. 

 
Fig. 31 Results of global network measures for ten networks with a different minimum probability of arcs (in %). 

18 Appendix III section 11.3 presents the results of the local exploratory network measures. 
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Global network measures19 

The global network measures in table 10 confirm that the number of nodes and arcs decrease 

significantly through time. To some extent this can be explained through the general decrease 

in the number of occupied settlements (see Table 7). However, in this exploratory network 

analysis I will try to address the extent to which the network patterns cannot be explained 

simply with reference to a decrease in the number of sites. The number of sites and lines of 

sight per period are nevertheless important since they determine the minimum and maximum 

values of many network measures, and they are therefore always used as a benchmark for 

interpreting the analytical results and comparing across periods. 

The networks limited to a 20km radius of all periods are very fragmented and sparse (Table 

10). The number of visibility links per site remains low throughout all periods, although there 

is a slight increase in the normalized average degree. The normalized number of connected 

components and the density show a similar slight increase, indicating an increasing 

fragmentation through time while the largest components become denser. 

It is notable that the percentage of highly probable arcs (>=50%) generally decreases through 

time, with the Iberian and Republican periods showing a significantly higher proportion of 

high-probability lines of sight than the Imperial periods (Fig. 32). A more nuanced picture 

emerges when one compares lines of sight of different lengths. The drop in the proportion of 

high probability lines of sight in the Early Imperial period shown in figure 32 is the result of a 

decrease of high-probability arcs longer than 50km. When taking arcs of all probabilities (1-

100%) into account we see that the proportion of shorter-distance arcs increases through time, 

while the proportion of arcs with lengths between 20 and 50km decreases (Fig. 33). The 

graph in figure 34 with the number of high probability arcs is quite different, however. A 

significantly higher proportion of arcs in the Iberian and Republican periods have a length 

larger than 50km, indicating that a considerable proportion of the shorter distance links in 

these periods have a low probability. Moreover, the majority of arcs with high probability in 

the Iberian period fall within the 20 to 50km range. Although this proportion does not change 

very much, the subsequent periods do show an increase in the proportion of arcs shorter than 

19 The results presented in this section only take into account pairs of nodes that are connected and do not 
include the many isolated nodes dated to these periods (see Fig. 35). This affects the normalized and averaged 
results as well as the density and clustering coefficient (note that network density including isolates is also 
included in the tables). This decision was made to enhance the differences between these measures and to focus 
this first step of the analysis explicitly on the lines of sight that are present. Isolates are included in the local 
exploratory network analsysis and the ERGMs. 
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20km at the expense of arcs longer than 50km. The low probability arcs show a similar trend 

towards an increasing proportion of short distance lines of sight. All this indicates that long-

distance lines of sight become extremely rare in the Imperial periods. This might be 

considered a result of the decrease in the number of settlements on elevations. The lines of 

sight shorter than 20km on the other hand become more prominent in the Imperial periods. 

 
Fig. 32. Percentage of arcs per period with a probability higher than or equal to 50%. 

 
Fig. 33. Percentages of arcs shorter than 20km and 50km and longer than 50km for each period. All arcs with probabilities 

between 1 and 100% were included in this graph. 
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Fig. 34. Percentages of arcs shorter than 20km and 50km and longer than 50km for each period. Only arcs with probabilities 

over 50% were included in this graph. 

 
Fig. 35. Total number of sites and number of unconnected nodes per period and network type. 

Table 10: global measures networks limited to 20km radius with probability >50%. 

  Iberian Republican Early Imperial Middle Imperial Late Imperial 

Clustering coefficient 0.107 0.108 0.056 0.000 0.000 

Connected components 13 12 11 9 8 

Con. Comp. normalised 0.241 0.245 0.282 0.321 0.364 

Diameter 5 6 4 4 4 

Node pairs 204 181 98 51 40 

Av. Shortest path length 1.917 2.044 1.694 1.608 1.500 

Av. Degree 1.815 1.837 1.641 1.429 1.364 

Av. Degree normalised 0.034 0.037 0.042 0.051 0.062 

Nodes 54 49 39 28 22 
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Density 0.028 0.030 0.033 0.038 0.054 

Density (incl. isolates) 0.0031 0.0034 0.0022 0.0019 0.0019 

Arcs 79 71 49 29 25 

Network analysis of arcs <20km 

As mentioned above, these networks of lines of sight up to 20km are very fragmentary and 

the vast majority of nodes are unconnected (Table 10, Fig. 36-37). Only a few areas have a 

higher number of sites that are inter-visible and these areas make up the main components of 

the networks: the middle- and upper-Genil valley (including the sites of La Alcuza, 

Mochales, El Mocho, and Castillo de Alhonoz), the area around Pancorvo (including the sites 

of Pancorvo, Cerro del Bollo, Las Aguzaderas, and Las Mazmorras), and the middle 

Corbones valley (including the sites of San Pedro I, La Torre II, and Porcún I). The latter 

cluster disappears in the Middle Imperial period when these sites cease to be occupied. As 

one would expect, the sites within the denser components have higher clustering coefficients 

and a higher indegree and outdegree. 

The networks including arcs of lower probability show the same core areas (Fig. 37). What 

the networks of higher probability do not show, however, are the two clusters of low 

probability inter-visibility along the lower Guadalquivir valley (the area of Santiponce and 

Seville) and the lower Genil valley. The former emerges in the Republican period and is no 

longer present in the Late Imperial period, while the latter is a fully connected cluster present 

in all periods (the connected cluster includes Doña Mencia, Cortijo Nuevo, La Saetilla, Las 

Valbuenas, Isla del Castillo, and Las Animas). 

There are more sites with exclusively incoming arcs of high probability and no outgoing arcs 

(i.e. sites from which no other sites can be seen but that are visible from other sites) than the 

other way around. An example of this in the Iberian and Republican periods is Pozo del 

Carretero, a hilltop site located in the densely urbanised middle Corbones valley. Morón de la 

Frontera serves as an example for the Early and Middle Imperial periods (although this site 

was occupied throughout the other periods as well, when it was not visible over short 

distances from other sites). Morón de la Frontera is located on a hilltop in an area with a low 

density of sites. An exception to this trend is Tejada la Vieja in the Iberian period, which 

cannot be seen but from which two sites can be seen. The latter occupies a prominent 

fortified location on a plateau in the foothills of the Sierra Morena on the western extent of 

the study area, but given the low density of sites in this part of the study area the site does not 

occupy as prominent a position on the networks as its location would suggest. The ERGMs 
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discussed below suggest that these types of configurations are indeed quite key to 

understanding these networks’ structures. 

The sites with a Roman urban status are not very prominent in these 20km networks. The 

coloniae of Seville, Écija, and Osuna are not inter-visible with any other sites with high 

probability, and low probability arcs connected to these sites are few as well. Seville can be 

seen from Piesolo I with 1% probability, Écija can be seen from La Alcuza with 29% 

probability, and Osuna can be seen from Cerro del Calvario with 10% probability. Very few 

of the municipia have high probability inter-visibility links. Las Cabezas de San Juan and 

Palmilla I are inter-visible (84% probability), Pancorvo can be seen from the municipium of 

Torre del Aguila (66%), the riverside municipia of Cantillana and Alcolea del Rio are inter-

visible (100-96%), and Mesa del Almendro can be seen from the municipium Peñaflor (56%). 

Many of the municipia do have low probability inter-visibility links, however, including El 

Casar, El Gandul, Torre del Aguila, Torres de Alocaz, Lebrija, Castillo de la Monclova, Isla 

del Castillo, Alcala del Rio, Santiponce, Gerena, and San Juan de Aznalfarache. Carmona 

does not have any lines of sight to close-by sites. 

One can conclude that these networks limited to a 20km radius around settlements represent 

local patterns of inter-visibility and are sensitive to the distribution of sites. All key clusters 

identified in these networks are areas with a high density of sites. Many visually prominent 

sites that have a key position in the networks are occupied in the Iberian and Republican 

periods but cease to be so in the Imperial periods (e.g. Pancorvo, Tejada la Vieja, Tablada, 

San Pedro II, Pozo del Carretero). 

Although I consider lines of sight longer than 20km of minor importance for enabling 

communication and control, a few striking patterns of the lines of sight with a length between 

20 and 50km should be mentioned. These lines create links between areas of dense local 

inter-visibility, and a number of sites (e.g. Morón de la Frontera) can only be considered 

visually prominent at these longer distances. As the number of occupied sites decreases 

through time, however, so does the degree of local clustering, the indegree and outdegree. 

The longer distance networks therefore confirm the trend evidenced by the shorter distance 

networks: the networks increasingly fragment and with a few exceptions (e.g. Morón de la 

Frontera) the proportion of local visibility ties becomes increasingly dominant. Few sites with 

an urban status are inter-visible with high probability over such long distances. The colonia 

Osuna is connected to Cagancha with 57% probability. Few municipia have arcs of high 
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probability. Noteworthy are the strong inter-visibility links between Carmona and Cantillana, 

and Cantillana and Alcolea del Rio. El Casar is inter-visible with Palmilla I and Dehesa de las 

Majadilas. 

 
Fig. 36. Undirected visibility network for all periods combined limited to a 20km radius around observers and ties >50% 
probability. 
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Fig. 37. Undirected visibility network for all periods combined limited to a 20km radius around observers and ties >0% 
probability. 

4.5.2. Exponential Random Graph Models 

This section will explore what kinds of processes were likely or unlikely to have led to the 

observed visibility networks. The assumptions that go into these models are introduced from 

the bottom-up, starting with random processes, followed by simple models focusing just on 

the emergence of network structural features, and finally models that include site attributes. 

Each of these assumptions represents different hypotheses, as discussed in section 4.2.4. 

Unlike for the global exploratory network analysis, isolates were included in the ERGMs 

since the tendency for sites to be visually isolated is of interest in this study. All models 

discussed here only take arcs with a probability >50% into account. Estimate and goodness of 

fit results are available in appendix III section 11.4. 

Bernoulli random graph models 

In the first instance models with only one dependence assumption, the probability of arc 

creation, were formulated for networks of each period limited to 20km arcs. For each model 

50 million networks were simulated20 from which 1000 samples were selected.21 The 

20 By using the directed density results of the observed networks it was ensured that all randomly simulated 
networks have the same directed density, and therefore the same number of nodes and arcs, as the observed 
networks (although small variations in the number of arcs were allowed due to rounding the density score to 
four decimal places). 
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frequency of each configuration was counted for the 1000 sample networks of each model 

and were compared with the configuration counts obtained from the observed networks in a 

goodness of fit test (see Appendix III section 11.4.1). 

Table 11 shows that none of the Bernoulli random graph models manages to produce 

networks which are structurally similar to the observed networks. This indicates that these 

observed networks are significantly different from randomly generated networks with the 

same directed density. These results suggest that non-random processes gave rise to the 

observed visibility networks. Although this conclusion might sound obvious, it is by no 

means trivial. The processes of site selection that give rise to these visibility patterns are 

governed by a complex mix of social decisions that can hardly be considered random. Yet our 

information about these decisions (in this case represented by the observed networks) is 

fragmentary and might therefore appear to us to have been the result of random processes. In 

such cases we cannot suggest processes other than seemingly random processes that are more 

likely to have given rise to these networks, since the information available to us does not 

allow validation of such alternative processes. It is worth pointing out, however, that the 

Middle and Late Imperial Bernoulli random graph models manage to reproduce a number of 

structural features of the observed networks for these periods. Indeed, as I shall argue below, 

the ERGM method suggests that the data for these periods might not allow us to draw many 

conclusions about the emergence of these networks. 

Having established that for all observed networks random processes do not provide a good 

solution, we can start to formulate new models suggesting alternative processes that might 

turn out to be more likely to have happened in the past. 

Table 11. Proportion of configurations of the simulated networks which show a good fit with the observed networks 
(networks limited to a 20km radius for each period, no attributes). 1000 samples were taken from 50 million randomly 
generated networks. None of the Bernoulli random graph models succeed in reproducing the structure of the observed 
networks, although those for the Middle and Late Imperial periods manage to reproduce some structural features. 

20km networks Iberian Republican 
Early 

Imperial 
Middle 

Imperial 
Late 

Imperial 

Proportion configurations with good fit 0/52 0/52 0/52 26/52 21/52 

21 The number of simulations was taken as high as 50 million to have a higher diversity in the distribution of 
results, which led in most cases to better fits than when only 1 million simulations were performed. However, 
the number of samples taken from these simulations (and on the basis of which the significance tests were 
performed) was not increased beyond the default 1000 to avoid enforcing significant results. 

160 



  Evaluating Network Science in Archaeology 

ERGMs of arcs <20km 

ERGMs were estimated for the observed network of each period. The ERGMs presented here 

all show a good fit with the observed networks, but are by no means the only possible 

ERGMs and should be considered the outcome of a process of trial-and-error guided by our 

theoretical assumptions of what processes gave rise to these networks (for an example of this 

trial-and-error process see Brughmans et al. 2014). All estimated models and goodness of fit 

results are presented in Appendix III section 11.4.2. When interpreting these results I focus 

on the significant effects and on whether these have a positive or negative value. A positive 

value indicates a tendency towards the creation of this type of configuration, while a negative 

value indicates a tendency against this configuration. 

The ERGMs show some similarities throughout all periods (Table 12). Most striking is the 

significant and positive reciprocity effect of all periods, i.e. we see more inter-visibility than 

we might expect to emerge purely by chance given the other effects in the model. In the 

probable viewshed approach used for this case study a high degree of inter-visibility is to be 

expected, although there are sometimes strong differences in the probability of incoming and 

outgoing lines of sight (as explained in section 4.4.3 above). All periods also show a positive 

alternating-in-star effect, which suggests that the indegree distribution is spread and includes 

sites with a high number of incoming lines of sight. 

However, the similarities seem to end there. In fact, the models suggest that the role of 

indegree hubs is very different for each period. Indeed, this alternating-in-star effect is only 

significant for Iberian, Republican, and Early Imperial periods, making the indegree hubs a 

less important structural feature for the later periods. Most interesting is the significant and 

negative 2-in-star effect for the Republican and Early Imperial periods, which indicates that 

in these periods the network tends to be dominated by indegree hubs and not sites with a 

lower indegree. The distribution of outgoing lines of sight on the other hand suggests that 

only for the Iberian period can one argue for a tendency towards the emergence of outdegree 

hubs with a high degree of visual control: the alternating-out-star is only significant and 

positive for the Iberian period, while the other periods do not seem to have evidence for 

processes giving rise to sites with high visual control (for most periods it is in fact negative). 

Another difference between the Iberian and later period networks is its significant and 

negative 2-path effect. This suggests that settlements that are visually prominent tend not to 

be visually controlling. It also suggests that paths through the network necessary for passing 
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on information through signalling might not have been purposefully established. Moreover, 

this effect is combined with a positive and significant transitive triad (T9) in the Iberian, 

Republican and Early Imperial periods. This indicates that if a 2-path occurs it tends to be 

closed. I believe this process to be a better representation of one leading to clusters of inter-

visible settlements around a visually controlling settlement, than of one leading to a 

communication network. 

Finally, one needs to acknowledge the significant and negative isolates effect in the Iberian 

and Republican periods: sites will tend to have at least one line of sight connected to them. 

Moreover, the Republican period model has a significant negative source effect and so there 

are fewer peripheral sites with only one incoming line of sight than one would expect to see 

purely by chance. This can be partly explained through the higher number of sites and higher 

site density in this period. The Middle Imperial period on the other hand sees a significant 

positive isolates effect, which could be explained by the lower site density, but also the lower 

number of sites located on visually prominent elevations. 

Although all of these models have a good fit to the observed networks and succeed in 

reproducing structural features that are not explicitly modelled (like the path length- and 

degree distributions), one cannot ignore the low number of significant effects for the Middle 

and Late Imperial periods. These results seem to reflect the results of the Bernoulli random 

graph models for these periods, and suggest that the available data might not allow us to 

deduce more than the most obvious effects (like reciprocity). 

Table 12. Final ERGMs for networks limited to 20km and with arcs >50% probability. For all circuit configurations λ was 
set to 2. Asterisks indicate significant effects for which absolute value of estimates are more than twice the standard error. A 
positive value indicates a tendency towards the creation of this type of configuration, while a negative value indicates a 
tendency against this configuration. 

Configurations Iberian   Republican   
Early 

Imperial   
Middle 

Imperial   
Late 

Imperial   

reciprocity 8.00 * 6.81 * 8.69 * 6.98 * 8.59 * 
2-in-star 

  
-3.66 * -4.63 * -3.30 

   2-out-star 
  

0.15 
 

-0.05 
 

-0.25 
   path2 -0.52 * 0.12 

 
0.90 

 
0.86 

 
-0.74 

 T8 
        

0.08 
 T9 0.40 * 0.54 * 0.58 * 

    Sink -2.29 
 

-1.16 
       Source -1.28 

 
-5.87 * 

      Isolates -3.23 * -6.20 * -0.74 
 

0.87 
 

1.07 
 AinS 2.35 * 10.02 * 5.75 * 3.92 

 
1.85 

 AoutS 2.61 * 0.21 
 

-0.03 
 

-1.07 
 

0.56 
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AinAout-star         0.26       -0.33   

ERGMs of Early Imperial attributed networks 

The previous sections described models with purely structural effects, addressing the extreme 

question: “what if lines of sight were the only factor influencing site location.” Addressing 

this question was necessary to be able to explore what processes are suggested by the 

visibility networks themselves, before adding other explanations to the mix. The current 

section will add another layer of complexity to the processes suggested by the visibility 

networks, by exploring to what extent a few features or attributes of sites might have shaped 

these processes. This can only be tested for the Early Imperial period due to the nature of the 

attributes (discussed above). I should stress again that ERGMs are not designed to take the 

landscape’s topography into account as a constraint in these processes (as explained in 

section 4.2.3). This section therefore merely illustrates another way in which ERGMs can be 

used to explore factors influencing site locations, one that should be complemented in future 

research with approaches that do take topography into account. 

The results of the attributed models are presented in Table 13. They are based on the 20km 

Early Imperial ERGM shown in table 12. What is important, however, is that some of these 

models now include significant attribute related effects. Indeed, these new models show more 

significant effects than the ERGMs without attributes, indicating that these attributes are of 

importance and are likely to have influenced the structure and evolution of the visibility 

networks. These results seem to suggest that the observed network structure cannot be fully 

understood without reference to three of these attributes: sites on elevations, with Iberian 

origins, and with an urban status. The only attributed model that does not show any 

significant attribute effects is the transport network model. This indicates that the location of 

sites along the main road or river networks did not influence (neither positively nor 

negatively) the emergence of the observed visibility network. 

The urban status model has a positive and significant attribute_out-2-star effect, indicating 

that sites with an urban status have a tendency to visually control surrounding sites, but not as 

hubs (i.e. their number of outgoing lines of sight is limited). There is also a negative and 

significant 2-path attribute effect, indicating that sites with an urban status that are visually 

prominent do not tend to visually control. This suggests a discrepancy between the indegree 

and outdegree scores for sites with an urban status. Finally, it is particularly interesting to 

note the significant negative 2-path effect of the Iberian 20km model, which might be an 
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indication that the role of sites with an urban status was more similar to that of Iberian-period 

hub sites than that of contemporary sites without an urban status. These results are quite 

different to those of the exploratory network analysis, which discerned no particularly 

prominent position for sites with an urban status. 

Similar results were obtained for the model with the Iberian origins attribute: sites with 

Iberian origins that are visually prominent do not tend to have many outgoing lines of sight, 

while sites with Iberian origins do have a strong tendency to visually control surrounding 

sites, far more so than all sites in general. These sites with Iberian origins also do not tend to 

be particularly visually prominent. This is interesting because it indicates that the more 

recently founded Roman sites and the abandonment of Iberian sites changed the network 

structure significantly, suggesting different roles for lines of sight in structuring inter-urban 

interaction. A model including a qualitative assessment of sites located on elevations was also 

created. This was done largely as a control of the method, since one would expect such a 

model to deliver significant results given the dominant role attributed to sites on hills and 

plateau sides as a result of the viewshed approach. The model suggests similar processes to 

the previous two models: sites on elevations have a very stong tendency towards visual 

control, there is no real evidence of an exceptional tendency towards visual prominence, and 

sites on elevations that are visually prominent do not tend to visually control. Finally, there 

seems to be no indication that sites with any one attribute have a tendency towards 

reciprocating lines of sight, i.e. sites with an urban status, Iberian origins or located on 

elevations are not inter-visible more frequently than one would expect in random processes. 

The results of these ERGMs are highly suspicious given that the exploratory network analysis 

results were interpreted quite differently, especially for sites with an urban status. Further 

analysis of these factors is therefore needed. Indeed, our interpretation of how these attributes 

might have affected the creation of the observed visibility patterns changes dramatically 

when we create models that combine these attributes. Table 14 shows a model that combines 

the attributes that have shown significant effects: elevation, Iberian origins and the urban 

status of particular communities. What is immediately striking is the absence of any 

significant attribute effects save one: sites on elevations have a tendency of being visually 

prominent (in-2-star). This leads to the not so surprising conclusion that our qualitative 

observation of sites on elevations better succeeds in explaining the emergence of the Early 

Imperial visibility patterns than any of the other attributes. I created three additional models 
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in which two of the three attributes are included in turn: status and elevation, status and 

occupation, elevation and occupation (these models did not show a perfect fit of certain non-

modeled features [clustering and triangles], they are therefore not published here and any 

conclusions drawn from them should be expressed with extreme caution). These again 

suggest the significance of effects related to sites on elevations and no significant effects 

were found in the model without the elevation attribute. We can conclude that none of the 

attributes other than the elevation of sites should be considered of particular interest for 

explaining the observed visibility patterns. 

Table 13. Final ERGMs for the Early Imperial network limited to 20km and with arcs >50% probability. Each model 
includes one of four attribute effects: sites on elevation, Iberian origins of site, urban status, and location on river or road 
network (transport networks). For all circuit configurations λ was set to 2. Asterisks indicate significant effects for which 
absolute value of estimates are more than twice the standard error. A positive value indicates a tendency towards the creation 
of this type of configuration, while a negative value indicates a tendency against this configuration. 

  Early Imperial period 

Configurations 
Sites on 
elevation Iberian origins Urban status 

Transport 
networks 

reciprocity 11.88 * 11.42 * 10.73 * 10.06 * 
2-in-star -6.44 * -7.39 * -6.98 * -5.71 * 

2-out-star -6.49 * -9.22 * -3.18 * -2.00 
 path2 4.32 * 4.82 * 2.67 * 1.85 * 

T9(030T) 0.60 * 0.66 * 0.59 * 0.58 * 
Isolates -1.66 

 
-1.92 * -1.67 

 
-1.34 

 AinS 6.79 * 7.68 * 7.65 * 6.79 * 
AoutS 0.76 

 
1.78 

 
1.98 

 
1.28 

 AinAout-star 0.18 
 

-0.04 
 

-0.38 
 

-0.12 
 attribute_interaction 0.08 

 
-0.64 

 
-0.46 

 
-0.03 

 attribute_sender 0.83 
 

0.04 
 

0.30 
 

0.56 
 attribute_receiver 1.77 

 
1.37 

 
0.53 

 
-0.30 

 attribute_in2star 0.95 
 

1.89 
 

1.52 
 

-1.32 
 attribute_path2 -3.39 * -4.30 * -2.63 * -0.29 
 attribute_out2star 6.25 * 8.98 * 3.28 * 1.26   

 
Table 14. Final ERGM for the Early Imperial network limited to 20km and with arcs >50% probability. The model includes 
three attribute effects: sites on elevation, Iberian origins of site and urban status. For all circuit configurations λ was set to 2. 
Asterisks indicate significant effects for which absolute value of estimates are more than twice the standard error. A positive 
value indicates a tendency towards the creation of this type of configuration, while a negative value indicates a tendency 
against this configuration. 

Configurations Estimate   

reciprocity 9.99 * 
2-in-star -7.70 * 

2-out-star -1.09 
 path2 2.05 
 030T 0.59 
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isolates -1.25 
 AinS 8.24 * 

AoutS 0.55 
 AinAout-star -0.03 
 Status_interaction 0.33 
 Elevation_interaction -0.30 
 Occupation_interaction 0.29 
 Status_sender 0.38 
 Elevation_sender 0.96 
 Occupation_sender -0.62 
 Status_receiver -0.56 
 Elevation_receiver -0.07 
 Occupation_receiver 0.05 
 Status_in2star -0.13 
 Elevation_in2star 3.21 * 

Occupation_in2star -2.12 
 Status_path2 0.24 
 Elevation_path2 -1.95 
 Occupation_path2 0.90 
 Status_out2star 0.12 
 Elevation_out2star 0.99 
 Occupation_out2star -0.52   

 

4.6. Discussion: towards a better understanding of urban connectivity in 

Iberian and Roman Southern Spain 
How does this long and rather technical description of results allow me to gain new insights 

into the structure of and processes governing urban connectivity Iron Age and Roman 

Southern Spain? I will focus the discussion of these results and therefore my answer to this 

question on the research questions of this case study: 

Question 1: does the degree of inter-visibility between sites decrease slightly as a 

result of the gradual discontinuity in occupation of Iron Age sites? 

Question2: to what extent were visually prominent settlements with Iron Age II 

origins integrated as towns into the political and economic structure of the Roman 

Empire? Was this truer than with less visually prominent settlements with Iron Age II 

origins? 

Question 3: is there evidence suggesting that inter-visibility of urban settlements was 

considered less important under the Roman empire? To what degree does the 
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establishment (whether intentionally or not) of inter-visibility patterns differ between 

the Iron Age II and Roman periods? 

All of these questions concern a comparison between the Iron Age and the Roman periods. 

Therefore, a good starting point would be to evaluate how the results compare with our 

current understanding of Iberian settlement patterns, which can subsequently be compared 

with that of the Roman periods. It has been argued that this pattern consisted of fortified 

hilltop settlements or oppida around which rural settlements were positioned, where the inter-

visibility between oppida and the visual control of the oppidum over rural settlements in its 

territory can be considered to have been important (Grau Mira 2003; 2005; Ruestes Bitrià 

2008). When only considering lines of sight with high probability, the results only allow one 

to confirm such a pattern in a few cases. Pancorvo is probably the best example of a fortified 

urban settlement with strong local (<20km) and long-distance (20-50km) inter-visibility links 

with rural settlements in its direct vicinity. It is only visible (not inter-visible with high 

probability) from one other major Iberian settlement site, Torre del Aguila. Another good 

example is that of the fortified urban settlement of Castillo de Alhonoz, inter-visible with 

multiple smaller sites, but mainly over distances less than 20km. Castillo de Alhonoz is not 

inter-visible with any other major Iberian sites. Finally the major settlement of Vico 

(probably related to nearby Montemolín) is inter-visible with three smaller sites over short 

distances and with five over more than 20km distance. It is important to note that all three of 

these sites are located in parts of the study area with high densities of sites; these dense 

clusters might well give us a clue about the territories of which these settlements may have 

acted as some kind of political or aristocratic focus. However, the pattern of inter-visible 

major settlement sites is even less obvious from the results. There is just one example when 

one only considers high probability lines of sight shorter than 20km: El Nuño – Alamillo. 

There are no additional examples when considering lines of sight between 20 and 50km. 

However, it would be wrong to argue against inter-visibility as an important feature of the 

Iberian settlement pattern. When considering the position of sites other than the major 

settlement sites it is clear that overall only a limited proportion of them are not part of the 

visibility network (Fig. 35) and the ERGMs indicate a tendency for sites to be integrated 

within the network (Table 12). A rather high proportion of lines of sight has a probability of 

50% or over (Fig. 32) and most exploratory network measures, both global and local, are 

indicative of an integrated and dense visibility network with a high number of hubs (in 
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particular Porcún I, Cerro del Manzano, Morón de la Frontera and San Pedro I: very little is 

known of the Iberian period layout for most of these). I therefore argue against an exclusive 

focus on the inter-visibility patterns of the major settlement sites, a research bias that might 

obscure the potentially interesting role that is played by lines of sight connecting rural 

settlements. 

One could interpret this limited inter-visibility between the larger settlements and the rare 

occurrence of these sites exercising visual control over surrounding rural settlements in light 

of Grau Mira’s (2005) observation for Late Eastern Iberia (3rd c. BC). In comparing these to 

the Classical Iberian period (4th c. BC) he observed a more dispersed settlement pattern and 

the disintegration of inter-visibility between settlements. Sadly the dataset and coarse 

chronology used here do not allow a comparison between these different Iberian periods. The 

ERGMs, however, do suggest that the appearance of highly visible settlements exercising 

visual control over surrounding settlements, and a tendency for sites to be integrated in the 

visibility network are significant features of the possible processes leading to the Iberian 

settlement pattern. I argue that the observed Iberian visibility networks have a structure that 

facilitates mainly local visual control and communication, as well as occasional signaling and 

control over greater distance. These features are only possible thanks to the existence of hubs 

that are inter-visible with a high number of sites and hold the potential of sharing information 

or exercising control between the dense local clusters of sites. As Grau Mira argues, the role 

of oppida (akin to our major settlement sites) might have diminished although in some cases 

the typically hierarchical settlement pattern of oppida surrounded by rural settlements linked 

by inter-visibility is still clearly present. Moreover, since the settlement dataset used is more 

complete for the larger settlements than for smaller rural settlements, I believe the 

identification of additional rural settlements through future fieldwork will emphasise this 

structure of inter-visible clusters even more. 

This is the settlement pattern that confronted the Romans when they arrived in this part of 

Iberia in the late 3rd c BC. The more dispersed settlements and decrease in inter-visibility 

observed by Grau Mira for Eastern Iberia might imply a change in the structure and function 

served by lines of sight between urban settlements. This study has aimed at understanding 

this structure and its function in more detail in the rather different cultural context of south-

western Iberia, and a number of general conclusions can be drawn. Firstly, in no way does the 

changing structure of visibility patterns in Roman times indicate a clean break with the 
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preceding Iron Age. This is most clear in the structural similarity of Republican and Early 

Imperial period networks to those of the Iberian period. I also observed some very similar 

tendencies towards certain configurations in the <20km ERGMs of these periods. Secondly, 

there are also some clear differences between all periods and it would be equally wrong not to 

emphasise these. Only the Iberian and Republican ERGMs of short-distance arcs show a 

tendency against isolated settlements and a strong tendency towards hubs with a high number 

of lines of sight. Moreover, the exploratory network analysis shows a gradual disintegration 

of that visibility network through time, resulting in a highly fragmentary and low-density 

network in the Middle and Late Imperial periods. The communication function of the Roman 

inter-visibility network was strongly affected by the discontinuous occupation of the major 

settlement hubs in the Iberian network (e.g. Pancorvo and Tejada la Vieja). Thirdly, I noticed 

that through time an increasing proportion of lines of sight were shorter than 20km. This 

suggests that the importance of long-distance inter-visibility diminished in favour of short-

distance inter-visibility. Fourthly, a few factors that were no doubt crucial for understanding 

Roman inter-urban connectivity, such as the location of towns on transport networks or their 

urban status, cannot be considered fundamental in understanding the processes giving rise to 

Early Imperial visibility networks. Moreover, the ERGMs suggested that the role of towns 

with Iberian origins in shaping these Early Imperial visibility patterns (for example as visual 

focal points for new settlements) should not be over-emphasised, no doubt due to the 

discontinuity in occupation of Iberian-period hubs. 

These general statements do tend to tip the balance more in the direction of a disintegration of 

the visibility networks in Roman times. But rather than direct disintegration in post-Iberian 

periods, I believe these results should be interpreted initially as gradual changes in its role in 

structuring inter-settlement interactions, possibly followed by disintegration. Both the 

ERGMs and the exploratory network analysis identified the importance of hubs of a lower 

degree, which could have taken over the pivotal role played by Iberian settlement hubs. 

Indeed, many of these low degree Iberian hubs were probably rural settlements that continued 

in occupation throughout the Roman period, such as Cerro del Bollo; Morón de la Frontera, 

however, was a major settlement that continued as a Roman town. An example of an Iberian 

fortified settlement that retains its hub-like function until the Early Imperial period is Mesa 

del Almendro. The increased proportion of short-distance lines of sight from the Early 

Imperial period onwards (largely caused by the disappearance of Iberian settlements visible 

over long distances) creates a pattern of small pockets of local inter-visibility, mainly in the 
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areas where I identified a high level of inter-visibility in the Iberian period, allowing for the 

possibility that these lines of sight continued to function as media for local control and 

communication. While key Roman settlements along the navigable part of the Guadalquivir 

are hardly inter-visible (although in some cases I did identify chains of high probability inter-

visibility along the river: e.g. Alcolea del Rio - Cantillana), the Via Augusta does cross 

through a few areas between Écija and Carmona that are highly visible from many sites (as 

identified by cumulative viewsheds, see Appendix III section 11.2). However, the degree of 

disintegration is much more pronounced for the Middle and Late Imperial periods. 

Grau Mira (2005, 332) states that “The Iberian oppida were the spatial manifestation of an 

economic and socio-political model of control maintained by an aristocratic elite over an 

extensive peasant base living in rural sites.” The changes in the settlement pattern in the study 

area throughout the Roman period could be considered to reflect a similar phenomenon, in 

the rather different cultural context of south-western Spain, of a move away form this Iberian 

model. However, this was a gradual process and the Republican period visibility network in 

particular should be considered a reflection of a very slow transition to a different model. 

Such new socio-political models should probably be understood in terms of urban settlement 

location close to transport networks, agrarian products, and minerals, or their integration 

within the wider Roman administrative system, possibly reflected by the urban status of some 

communities. The ERGMs allowed me to confront different aspects of settlement location, 

but the results indicated these factors did not necessarily influence each other. 

This case study has not revealed alternative factors that might help explain the Roman period 

inter-visibility structure among the few tested factors, but it did identify changes in its 

structure and indications of its changing role. If anything, this case study has shown that the 

core of the Iberian inter-visibility network initially persisted but possibly played a different 

role within a different socio-political model. I believe this generalizing picture can be refined 

by focusing future work on smaller parts of the study area and by considering evidence for 

other influential factors in the Roman period, for which exploratory network analysis and 

ERGMs are not necessarily the best approaches. Future more local case studies should take 

the known area of occupation of sites into account and use multiple viewer locations (e.g. 

Garrido González 2011) preferably with a higher resolution DEM, to avoid missing key inter-

visibility patterns. A good example of this is the line of sight observed in visits to the study 

area between Castillo de Mulva and Carmona, which was not picked up by the probable 
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viewsheds as a result of my decision to select one observer location on the southwestern side 

of Carmona. This also emphasizes the need in future local studies to compare these 

computationally derived lines of sight with those that project members observed and recorded 

in the study area (which was sadly not possible within the limits of this PhD project). One 

way in which a network approach can still offer new information in such future local studies 

is through representing major Iberian settlements and key Roman urban settlements as ego-

networks (Marsden 2002), where particular local patterns of inter-urban interaction can be 

represented and compared. Comparative studies exploring the differences in visibility 

patterns observed in different study areas also offer a particularly promising way forward 

(e.g. Moreno Escobar 2014). In future work I should also move away from the abstract space 

represented by the ERGMs and aim to simulate the same hypotheses within this particular 

landscape (i.e. including topography as a constraint in the ERGMs). This will allow me to 

answer different research questions than those addressed in this case study: for example, how 

likely is it for the observed visibility network to emerge by chance in this particular 

landscape. The models presented here will allow one to focus this future work on the 

identified range of models with significant effects. However, such future work is dependent 

on methodological developments in the study of ERGMs. Finally, I could compare the 

changes in visibility patterns with changes in the distribution of material culture in order to 

better place these results in a large-scale framework for the study of urban connectivity in 

Iron Age and Roman Southern Spain. 

In this case study I have discussed in detail a critical and innovative statistical network 

approach that was developed to answer a particular archaeological research question. I 

believe this approach has allowed me to gain a critical understanding of the nature and 

limitations of the network dataset used, to be aware of the processes it might suggest as well 

as explore the implications of such processes. I concluded that data quality and theory are 

crucial for formulating statistical models of past phenomena, and that therefore ERGMs can 

only be used in research contexts where complete datasets and clearly formulated dependence 

assumptions are available. The next case study will illustrate how confirmatory network 

approaches can allow one to test Roman archaeology hypotheses through falsification, even 

in cases where the available data are considered a far less direct reflection of the past human 

behaviour of research interest and statistical modelling approaches are therefore not an 

option.  
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Box 7. Summary of chapter 4 
Research questions: 

• Does the degree of inter-visibility between sites decrease slightly as a result of the gradual 

discontinuity in occupation of Iron Age sites? 

• To what extent were visually prominent settlements with Iron Age II origins integrated as towns into 

the political and economic structure of the Roman Empire? Was this truer than with less visually 

prominent settlements with Iron Age II origins? 

• Is there evidence suggesting that inter-visibility of urban settlements was considered less important 

under the Roman empire? To what degree does the establishment (whether intentionally or not) of 

inter-visibility patterns differ between the Iron Age II and Roman periods? 

Conclusions: 

• The degree of inter-visibility between sites decreases gradually throughout the Roman periods. This is 

only partly caused by the discontinuity in occupation of Iron Age sites. A proportion of Iron Age sites 

continues to be occupied throughout the Roman periods, but occupy a different position in the visibility 

network. 

• The way in which lines of sight might have structured human behaviour was different in Roman 

periods as compared to the Iron Age. Key features include low degree hubs and an emphasis on short-

distance lines of sight. 

• There is no correlation between the position of Roman towns on the visibility networks and their urban 

status, and location on river or road networks. Visibility does not seem to have been an important factor 

for those settlements that are integrated in the administrative and economic structure of the Roman 

empire. 

Implications for this PhD project: 

• The ability of an exploratory network analysis to enable a better understanding of past phenomena is 

significantly enhanced when dependence assumptions are explicitly formulated. 

• I introduced exponential random graph modelling (ERGM) as a method for bridging static and 

dynamic approaches to interpreting visibility networks. 

• ERGMs allow archaeologists to use network data to evaluate existing hypotheses and formulate new 

hypotheses of the past processes that drove the phenomena they are interested in. New hypotheses can 

be focused on the more narrow range of processes which the ERGMs suggest can lead to the datasets 

available to us. 

• ERGMs are only as reliable as the network datasets they are based on. The observed network needs to 

be complete. 

• Common research themes from other subdisciplines can still be of interest in Roman archaeology if 

good quality datasets are available to address them. 
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CHAPTER 5 
CASE STUDY 3: 

BANG’S ROMAN BAZAAR AND/OR TEMIN’S MARKET ECONOMY? AN 
AGENT-BASED NETWORK MODEL OF TABLEWARE DISTRIBUTION IN 

THE ROMAN EAST 
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5. Case study 3: Bang’s Roman Bazaar and/or Temin’s Market Economy? 

An agent-based network model of tableware distribution in the Roman 

East 

5.1. Introduction22 
In the previous case study I assumed that the visibility network dataset was complete and that 

the observed visibility network patterns were the direct outcomes of (at least in part) network 

evolution processes. This allowed me to apply a statistical modelling approach to test 

hypotheses of the processes driving change in visibility networks. However, what if we 

cannot make such assumptions? What if our datasets are far less complete, if the hypotheses 

that aim to explain them do not concern network evolution but rather processes taking place 

on networks, and if network representations of the archaeological dataset in question cannot 

be compared with simulated networks? In this third case study I will evaluate another 

confirmatory network technique which is more promising in such cases: agent-based network 

modelling (ABM). 

Ceramic tableware is arguably the most common find on sites in the Roman Eastern 

Mediterranean and therefore lends itself particularly well to quantification. Such quantitative 

studies have contributed to a better understanding of tableware morphology, manufacture, 

distribution and consumption. However, quantifications of tableware in the Roman East have 

also raised new questions. A particularly challenging issue is posed by the significant 

differences in distribution patterns of different wares. Some wares like Eastern Sigillata A 

(ESA) were distributed on a supra-regional scale for centuries, others were more of regional 

importance, whilst yet other wares were purely produced for local consumption. Moreover, 

this pattern was not static but changed through time: from 100AD onwards the width of ESA 

distribution declined significantly, whilst Eastern Sigillata B (ESB) knew a supra-regional 

distribution in the period 30-75AD. What were the mechanisms that led to these different 

patterns? Admittedly, many contributing factors can be easily formulated (e.g. state 

involvement, redistributive centres, consumption “pulling forces”, commercial “piggy-back” 

trade, closeness to large-scale agricultural production). Many potential answers have already 

been published suggesting particular combinations of factors or shifting more weight in 

22 Please see the electronic supplementary material for this case study, which includes the ABM presented here, 
and the ceramic dataset used for the exploratory data and network analyses as a matrix per 25-year period. 
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favour of some factors (e.g. Abadie-Reynal 1989; Bes 2007; Lewit 2011; Reynolds 1995). 

However, the challenging aspect of this question does not lie in the formulation of convincing 

contributing factors but in the interplay of factors. Indeed, extreme hypotheses surrounding 

the distribution mechanisms of tableware have rarely been very popular. Instead, most 

scholars seem to agree that a complex mix of mechanisms working on multiple levels was 

responsible for the considerable differences in tableware distribution patterns (e.g. Bes 2007, 

203). Since there is evidently no lack of hypotheses and contributing factors, the key research 

question becomes “what mix of factors is best supported by the available evidence?” and the 

main research challenge of this case study then becomes the search for an approach that 

allows one to distinguish between the impact and archaeological “signatures” of different 

hypothetical scenarios. 

This case study aims to contribute to this on-going discussion by evaluating published 

hypotheses through a combination of an exploratory analysis of the collected tableware 

evidence (using the ICRATES database of tablewares) with computational modelling of 

hypothetical trade mechanisms. Tableware trade in the Roman East will be considered to 

function as a complex system, where the particular small-scale actions of agents making 

decisions to interact based on their limited knowledge of their social network, gives rise to 

large-scale patterns that can be compared to the combined archaeological record. In doing 

this it will further this PhD project’s aims by: 

(1) evaluating the impact of abstracting hypotheses as network concepts; 

(2) by illustrating how network science techniques allow one to perform confirmatory 

analyses through falsification in research environments where statistical approaches to 

the network data would not allow for this; 

(3) by addressing the need in Roman studies for a workable method for the evaluation of a 

complex mix of hypothetical processes taking place on multiple levels to better 

understand archaeologically attested large-scale distribution patterns (Davies 2005; 

Morris et al. 2007). 

A number of Roman historical and archaeological contexts could serve to explore this 

question, including for example the distribution of African Red Slip Ware during the Middle 

and Late Roman Empire. In this case study, however, I will focus on an example that poses 

particular problems: the large-scale distribution of four ceramic tablewares produced and 
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circulated in the Eastern Mediterranean between ca. 150BC and 200AD, with a particular 

focus on the period 25BC-150AD when all four tablewares circulated in the Eastern 

Mediterranean.23 A large number of wares of mainly local or regional importance must have 

existed, but only one ware maintained a supra-regional distribution for centuries: ESA. 

Moreover, it reached this wide distribution before most of the Eastern Mediterranean was 

incorporated into the Roman Empire. This fact forces one to look for a complex combination 

of contributing factors rather than accepting a political framework as the sole explanation for 

the observed distribution patterns. In this case study I will focus my efforts on exploring the 

potential role of social networks as a driving force, a concept that can take many shapes. The 

reason for placing this focus on social networks is that many of the archaeological hypotheses 

suggested to explain the distribution pattern under scrutiny in this case study concern large-

scale processes that imply the agency of individual traders but rarely address their 

functioning explicitly, let alone test this functioning with the available evidence. Social 

networks are here considered to represent the commercial opportunities of traders, acting as a 

medium for the flow of information and the trade in resources between traders. Much like one 

could consider space as the medium for physical transport, social networks can be considered 

the medium on which the distribution of tableware took place. As such, under different 

conditions they could allow for direct state-controlled trade in luxuries over vast distances as 

well as merchants transporting some “pots and pans” on pack animals for trade in a rural 

village. This definition also means that I make the assumption that in the Roman East social 

relationships between individuals are a prerequisite for the flow of goods. This assumption 

could refer to long-established contacts between traders as well as more casual one-off 

encounters between two merchants in a market. The assumption also does not merely imply a 

restriction to the direct flow of goods between pairs of individuals. Rather, thanks to acting as 

a medium for the flow of information, social networks allow for pairs of individuals to act as 

representatives of a pair of commercial partners to enable the indirect flow of goods. 

Considering such a concept as the key to my approach is convenient, yet in order to be useful 

the abstraction of tableware trade in the Roman East in terms of network concepts needs to be 

well motivated. Moreover, an approach needs to be developed that allows for hypotheses of 

trade through social networks to be quantitatively expressed and compared with the observed 

23 Rather than including the many maps showing the spatial distribution of the pattern studied in this case study, 
I thought it more useful to present them online, see: http://icrates.arts.kuleuven.be/icrates/network-
analysis/webpages/icrates_maps.html (accessed 26.06.2014). 
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archaeological distribution patterns. Many such hypotheses for explaining the key driving 

forces behind the Roman economy have been published. In this case study I will consider two 

very different hypotheses as a starting point: Peter Bang’s ‘The Roman Bazaar’ (2008) and 

Peter Temin’s ‘The Roman Market Economy’ (2013). In his model, Bang considers three 

factors key to understanding trade and markets in Roman Imperial times: bazaar-style 

markets, the tributary nature of the Roman Empire, and the agrarianate nature of ancient 

societies. The engine of the model, however, is clearly the concept of the bazaar: local 

markets distinguished by high uncertainty of information, relative unpredictability of supply 

and demand, leading to poorly integrated markets throughout the empire. Temin agrees with 

Bang that the information available to individuals was limited and that local markets are key 

structuring factors. However, contrary to Bang he believes that the Roman economy was a 

well-functioning integrated market where prices are determined by supply and demand. 

These conflicting models and the issues surrounding their implementation in this case study 

will be discussed in more detail below. For now, it suffices to mention that Bang claims that 

the differences in tableware distribution patterns can be better understood when thinking 

through this model. He argues that different circuits for the flow of goods could emerge as 

the result of different circuits for the flow of information. In other words, the observed 

distribution patterns of wares and different workshops’ products (when these can be 

identified) are a reflection of the functioning of past social networks as I have defined them 

above. Temin’s model can be considered to offer an alternative approach, where the structure 

of social networks as a channel for the flow of information must have allowed for integrated 

markets. 

The concept of social networks in trade will be pursued in more detail throughout this case 

study. A number of research questions will be addressed that will guide the implementation 

of hypothetical scenarios, the exploration of the collected tableware evidence and the 

confrontation between computational model and empirical data: 

• What differences can be observed in the distribution patterns of different tablewares 

and forms (here considered modern analytical constructs)? Are forms’ distributions 

always more similar to those of the same ware? Were similar distribution processes 

responsible for the distribution of forms of the same ware? 

• Can similarities and differences between wares’, and forms’ distribution patterns be 

better understood from the perspective of individual agents active in ancient trade, 

178 



  Evaluating Network Science in Archaeology 

assuming different roles, having limited information available to them determining 

their economic opportunities? Can Bang or Temin’s hypotheses be falsified through 

computational modelling and comparison with the observed tableware distributions? 

These research questions require a combined method that moves from the archaeological data 

to hypothetical models and back again: an approach that combines the examination of 

empirical data, the exploration of different archaeological hypotheses, and the ability to test 

these hypotheses with archaeological data. The method suggested here consists of two parts: 

an exploratory analysis of the distribution patterns of different tableware forms, and agent-

based network modelling (ABM) of selected hypotheses. By developing and evaluating this 

innovative approach this case study therefore builds on and extends the exploration of formal 

network methods for archaeology performed in the rest of this PhD project. In particular, it 

pushes my research agenda further by evaluating how exploratory data analysis can be used 

to evaluate the simulated output of a more abstract agent-based network model representing 

an archaeological/historical hypothesis. 
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Box 8. Research outline of case study 3 

Observed pattern: for centuries ESA tableware had a significantly wider distribution in the Roman East than 

any other eastern-made tableware, whilst many wares of purely local importance must have existed. 

Archaeological aim: evaluate hypotheses of social networks acting as a driving force in tableware trade in the 

Roman East, in order to better understand the differences in the tablewares’ distribution patterns. 

Hypotheses: 

• The Roman market systems consisted of weakly integrated markets due to community structure of 

social networks which served to protect commercial interests and opportunism whilst disadvantaging 

outsiders (Bang). 

• The Roman economy was a well-functioning integrated market where prices are determined by supply 

and demand (Temin). 

Methodological aim: explore how archaeological hypotheses of individuals in interaction can be expressed as 

simple ABMs, and how exploratory data analysis can help to compare the observed patterns with the simulated 

outputs of the ABMs. 

Method: 

• Exploratory analysis of the dataset in order to understand the structure of the pattern of interest and the 

limitations of the data and to identify similarities and differences in the distribution patterns of wares, 

and forms. 

• Simulation of hypotheses through ABMs and comparison of model outputs with results of exploratory 

network analysis. 

5.2. Tableware studies, distribution patterns, and processes 

5.2.1. Introduction 

What makes the study of differences in tableware distribution patterns an interesting research 

topic? The easy answer would be that a large number of archaeologists that came before 

certainly considered this to be the case, and in this section I will discuss many of the 

mechanisms and factors they argued contributed to the creation of these patterns. But a more 

meaningful answer would be based on our assumption that the vast amounts of Roman 

pottery are the archaeologist’s (almost only) way towards a better understanding of the 

ancient economy. Moreover, it has been argued that the differences in the distribution pattern 

observed in the Roman East could be explained by the model of Roman trade suggested by 

Peter Bang. So far, the development of formal approaches to evaluate such models of the 

ancient economy with archaeological data has been limited. In this section I will work 

towards a description of what such an approach should look like, by discussing the types of 

questions Roman pottery allows us to ask, the archaeological explanations of the distribution 

patterns, and models of Roman trade. 
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5.2.2. Studying Roman pottery distributions 

Any attempt at understanding Roman pottery distributions will need to address the following 

two issues: “The study of ceramic distribution involves, first, identifying the source of the 

vessel, either the workshop or the region in which it was produced, and second, examining 

mechanisms by which it may have reached its ultimate destination” (Sinopoli 1991, 103). 

Indeed, the study of distributions is concerned with places of production, places of 

deposition, and absolutely everything that happened in between. This last aspect is often the 

most elusive archaeologically, and it is exactly at this aspect that I will aim the full force of 

network science in an attempt to obtain new insights into the mechanisms underlying the 

observed patterns. This case study therefore does not aim to test hypotheses surrounding 

tableware production and consumption but will focus on distribution. 

Roman pottery must have been used in every household alongside objects in other materials 

(e.g. glas, metal, wood), but thanks to its durability and unrecyclable nature pottery is often 

the only material found on sites around the Mediterranean in astronomical quantities. This 

overwhelming amount of pots holds advantages and disadvantages for the study of roman 

antiquity (Poblome et al. 2013). The sheer number allows one to quantify pottery and make 

statistical inferences about the ancient economy. Indeed, despite the traditional (and 

necessary) focus of ceramologists on the morphological properties of vessels, roman pottery 

can be considered as an index or proxy for the flows of other (possibly more perishable) 

goods (Greene 2005; Peacock 1982; Orton et al. 1993). It can be used to make inferences 

about the frequency with which different routes were used, to indicate the main direction and 

intensity of exchange, and ultimately to make claims about the nature and size of economic 

growth in antiquity (Morris et al. 2007). Pottery is the archaeologist’s means to exploring the 

underlying principles, mechanisms and processes driving the ancient economy (Peacock 

1982, 4). 

Vast amounts of pottery also come with disadvantages, however. The larger the amount of 

pottery on a site, the less likely a full study and quantification of all available material 

becomes (Poblome et al. 2013). Indeed, the study of pottery distributions (like most 

everything else in archaeology) is the study of fragmentary samples drawn from an unknown 

whole. The issue is most critical when, as in the current study, one works on an empire-wide 

level. Usually the samples we obtain are determined by modern-day socio-political 

considerations rather than by concerns for acquiring a representative sample. It are the 
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regions and sites described most elaborately in ancient written sources, with visible evidence 

of monumental architecture, or in countries with a long-term Western European imperialist 

presence that have traditionally received more attention, whilst their hinterlands and the 

smaller settlements have largely escaped archaeologists’ interest (although this is changing to 

some extent). Moreover, many institutions, archaeologists, and ceramologists are involved 

which leads to a differential availability, quantity and quality of data. Empire-wide studies of 

pottery distributions are therefore particularly vulnerable to the issue of charting the intensity 

of archaeological work, something that was clearly born out in previous network analyses of 

the ICRATES dataset (Brughmans 2010; Brughmans and Poblome in press). 

This case study aims to take advantage of the large available datasets of roman tablewares to 

make inferences about processes of exchange in the Eastern Mediterranean. However, this 

will require a thorough understanding of the sampling bias present in the datasets and a 

critical method that acknowledges and addresses this bias. The method applied below 

includes sensitivity analyses where the impact of changing the size of the dataset on the 

results of the network measures is evaluated, which will influence the use of certain network 

techniques (see appendix IV section 12.2). But first the hypotheses and issues surrounding 

the study of tableware exchange mechanisms will need to be addressed. 

5.2.3. Distribution processes 

Many factors undoubtedly contributed to the observed tableware distribution patterns. This 

section provides a focused summary of some hypotheses most relevant to this case study. 

The life cycle of Roman tableware 
“Une question de fond reste en effet posée à quiconque s’intéresse à la navigation et au commerce 

antiques: par où les navires passaient-ils réellement lorsqu’ils acheminaient, à partir d’un point A un 

objet produit en un point B jusqu’à un port C, à partir duquel il était écoulé vers un lieu de 

consommation D, sachant que B et D sont généralement les seules certitudes?” (Arnaud 2005, 7-8). 

This question posed by Pascal Arnaud reveals the challenge we are faced with when studying 

ancient commerce and transport through pottery evidence: what happened to an object 

between place of production and place of deposition is generally unknown. Developing 

hypothetical models of the life cycle of Roman tableware is one research avenue scholars 

have walked down to address this challenge, and such studies therefore offer a good starting 

point for the discussion of distribution processes. 
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A simple model for artefact life cycles was proposed by Schiffer (1972) and included phases 

of manufacture, use, maintenance and discard. However, the particular nature of tableware 

data and our knowledge of the complex mechanisms surrounding its production and exchange 

allow one to formulate more detailed models. Theodore Peña (2007, 328-329) suggests a 

formal model for the life cycle of Roman tableware, expanding Schiffer’s basic model with 

processes of distribution and distinguishing between prime use, reuse, recycling and 

reclamation (Fig. 38). Moreover, Peña suggests hypothetical proportions of tableware 

affected by certain processes and hypothetical durations of prime use (for similar models for 

the Eastern Mediterranean, see contributions in Lawall and Lund 2011). Although this model 

is a useful guideline, it is obviously a generalising representation of a complex mix of 

processes. It does not explicitly represent particular mechanisms of manufacture, distribution 

and consumption. Nor does it reflect how individuals’ social contexts or roles/professions 

affect their involvement in such mechanisms. It is also a deterministic model, it does not 

allow for variability or particular unexpected events. It should be clear that these arguments 

are not criticisms. In order for Peña’s model to be a useful representation of a general past 

phenomenon (e.g. the “life cycle of tablewares distributed beyond locale of manufacture” 

Peña 2008, 329) it needs to be generalising. However, in this case study I aim to explore a 

particular distribution pattern, framed by particular archaeological research questions and 

contexts. For the purposes of this case study one could therefore consider it useful to expand 

Peña’s model even more, by paying more attention to the distribution mechanisms. And so 

we enter the academic battlefield of models and hypotheses that is the study of Roman trade. 
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Fig. 38. Simplified version of flow diagram representing the life cycle of tablewares distributed beyond locale of 
manufacture, based on Peña 2007, Fig. 11.5. Each arrow represents a process, the numbers represent the proportion of all 

production that undergoes this process, and the width of the arrows reflects this number. A hypothetical total of 24 vessels is 
considered. 

One archaeological pattern, many hypotheses 

Clearly an in-depth discussion of the study of the ancient economy is neither feasible nor 

desirable in this context (for a recent overview see Scheidel et al. 2007). It is more useful to 

be guided through this massive research topic by the hypotheses and mechanisms 

surrounding the phenomenon I aim to explore in this case study: the differences in the 

geographical distribution patterns of different tablewares. 

This research topic is immersed in a wide diversity of ideas and opinions about the 

functioning and performance of the larger, more visible flows (for an overview see Willet 

2012, 443-449). The discussion can be suitably opened with the treatment of the topic by 

Philip Bes in his study of tableware distributions in the Roman East (using the ICRATES 

database). He argued that “four mutually dependent factors may underpin the supra-regional 

distribution pattern of … sigillatas and red slip wares” (2007, 204-205. Bes’ italics): 

1. The symbiosis between an active urban hub and a productive countryside (see also 

Lund 2003; Poblome 2006; Poblome et al. 2007). 

2. The existence and creation of pulling forces (political-administrative, economic, 

religious, military or a combination of these), e.g. Delos, Corinth, Alexandria. 
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3. Interconnectivity of the people and places involved through lines of communication. 

4. A political or other system that ‘encapsulates’ these factors. 

By formulating these mutually dependent factors Bes clearly argues against simplistic one-

dimensional and purely exogenous explanations of tableware distribution patterns. These 

factors imply a long list of variables to be considered: physical transport, geographical and 

ecological context, agrarian productivity, urbanization, administrative and political system, 

military presence, inter-regional connectivity, social networks. Rather than a single factor 

dominating the explanation of the much wider distribution of some wares, each of these 

factors might have had a proportionally stronger influence in the complex mix of factors at 

any point in time and space. Bes therefore concludes that “more diversified socio-economic 

reconstruction is required, which will need to take the message of local and regional levels of 

production into account” (Bes 2007, 203). 

Similar contributing factors are suggested by Tamara Lewit (2011), although the absence of 

the important third point about connectivity makes Lewit’s arguments more generic than 

Bes’. Nevertheless, Lewit poses a question that is strongly related to my current aims and her 

arguments should therefore be compared to those of others. Lewit argues that archaeologists 

have used Roman tablewares as dating tools whilst “less attention has been paid to a key 

economic question they pose: what exceptional factors provided the impetus for some groups 

of producers to break the typical pattern of local/regional distribution and become large-scale, 

supra-regional exporters, sometimes over a period of centuries, when similar fine pottery was 

made and could have been obtained more locally almost anywhere in the Roman world?” 

(Lewit 2011, 318). Although Lewit considers the case of the distribution of ARSW and 

Phocaean Red Slip Ware (PRSW), her arguments raised to answer this question are of 

interest to my current focus on ESA as well. She considers four crucial factors: 

1. Plentiful availability of resources, including large amounts of fuel for firing kilns. 

Lewit argues fuel might have been got from oil production, and suggests tableware 

might have been transported together with oil amphorae. 

2. The Annona state and military supply system, implying an involvement (directly or 

indirectly) of the Roman state. 

3. Commercial exchanges, both long- and short-distance (see also Peacock 1982, 159). 

4. Closeness to other commercially valuable resources such as minerals. 
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She concludes that supra-regional tableware exports should be considered the result of 

exceptional stimuli in combination generating a not entirely predictable dynamic. These are 

all rather specific factors that Lewit argues occurred in combination and were of changing 

importance. Her focus on exceptional external stimuli largely leaves potentially influential 

endogenous circumstances out of the equation. Bes’ third point about connectivity suggests 

such endogenous circumstances, although they are admittedly rather vaguely described. 

Towards the more deterministic side of the spectrum as compared to Lewit and Bes we can 

position the argumentation by Reynolds (1995, 126-139). Tableware production and 

distribution are entirely understood in light of the flows of other goods, possible local 

variability relatively untouched by external stimuli is completely absent in the following 

arguments: 

1. It is considered unlikely that tablewares were carried as sole cargoes (see Parker 

1984). 

2. Tablewares are considered secondary cargoes, whilst foodstuffs and raw materials are 

primary cargoes (this is sometimes referred to as ‘Piggy-back’ trade, Greene 1992, 

58-59). 

3. “the development for export of secondary industries (e.g. pottery, fish-sauce) is 

directly related to the success of primary industries … and the successful exploitation 

by secondary industries of markets and shipping routes developed for primary 

industries” (see also Fulford 1987) and “the greater the frequency of contact between 

major agricultural producers and consumers, the greater the range and quantities of 

pottery exported” (Reynolds 1995, 128). The latter argument is considered 

particularly important for annona trade. 

4. “The distribution of secondary and tertiary goods must always reflect the 

distributional paths, i.e. shipping routes, of the primary cargoes, whether the latter are 

identifiable … or not” (Reynolds 1995, 129). 

5. The distance travelled by secondary goods depends on the value of the primary cargo 

as well as on the frequency of exports of primary goods. 

6. “Various, inter-related, models, it can be argued, account for the regional patterns in 

the distribution of Eastern Mediterranean products in the West: a) strong, frequent 

shipping routes; b) the distinct composition of cargoes … ; c) distinct, separate, 

shipping routes (hence, contract or economic ties) supplying specific ports (cf. b); d) 
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direct distribution in Eastern ships; e) redistribution in Western … ships” (Reynolds 

1995, 132). 

Reynolds provides us with a model emphasizing the importance of “piggy-back” trade, where 

tableware is not traded over long-distances for its own sake but rather makes up a relatively 

small proportion of cargoes (c. 10% as suggested from one shipwreck by Millett 1993). 

Shippers in both commercial and official movements of goods were often able to include 

such secondary (and tertiary) products in addition to their main cargo. Although these 

arguments are perfectly logical and extremely useful, they do tend to imply that an 

understanding of the mechanisms governing tableware distributions is 100% dependent on 

primary goods. They do not allow answering questions such as whether a wide distribution of 

tablewares could have been obtained without direct regular trade in primary cargoes between 

redistributive centres. 

Together with Bes and Lewit, however, Reynolds provides us with a wealth of factors and 

hypotheses that no doubt all played some role or other. Indeed, it is not the arguments 

themselves that I aim to challenge here, but the approach to evaluating particular 

combinations of factors that could explain tableware distributions. Whereas the 

abovementioned authors relied on exploratory data analysis and assumptions about what 

patterns are to be expected as outcomes of certain mechanisms, I aim to additionally simulate 

the expected outcomes of specific mechanisms and compare them with the archaeological 

record. Moreover, although many of these arguments imply local and particular commercial 

actions, their functioning and roles are not explicitly stated. Indeed, Willet (2012, 443-449) 

argues that a lack of detail in the data prevents us from being able to explain “the 

complexities of smaller scale trade” (the inability to trace the production and distribution of 

individual potters due to the lack of stamps or other markers on many Eastern wares is 

discussed as a specific limiting factor). I believe this statement might be usefully explored 

and challenged by considering the admittedly crude distributional data the potential outcome 

of aggregated small- and large-scale processes. It is clear that an approach is needed that 

allows for attributing differing importance to different factors, active on multiple 

geographical scales as well as allowing for some degree of variability. Below I will argue that 

computational modelling might hold some potential in this respect. First, however, I will 

briefly elaborate on two additional factors that add to the complexity of the archaeological 
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explanatory efforts introduced here, but the functioning of which is not always made specific 

in these efforts: transport mechanisms and the roles of intermediaries. 

What about transport processes? 

Distribution is a rather generic term that implies both transport and trade: in the models of the 

life cycle of pottery, distribution involves all flows between production and deposition. 

Arguably, then, the question of what processes were responsible for tableware distribution 

cannot be addressed without considering different transport processes, or can it? Many of the 

archaeological hypotheses mentioned above imply or explicitly concern transport processes 

(especially those suggested by Reynolds), and we will see below that intermediaries are also 

often concerned with transport to differing degrees. Both land-based and maritime transport 

should be considered, although the costs, transported volumes, and people involved in both 

types of transport differ greatly. For maritime transport, Pascal Arnaud (2005, 9-10) argues 

that the limitations of our data and the research questions we are typically interested in leads 

to a tendency to limit ancient navigation to two opposite but equally reductionist patterns: 

direct navigation from point of departure to destination, and cabotage (commercial coastal 

navigation and hopping between close-by ports). These two patterns are very much a product 

of the limitations of our data: our general ignorance of what happened between production 

and deposition of an object suggests direct connections between these two points, and the 

common pattern of decreasing quantity of a certain object as one moves away from its place 

of production suggests cabotage. However, here I will follow Arnaud in making the 

important distinction between the flows of objects and the routes taken by the vessels that 

transported them: 

“Une confusion certaine s’attache en fait à la notion de route maritime, que l’on distingue 

insuffisamment du flux maritime. La route maritime est l’itinéraire effectivement suivi entre A et B 

quand le flux s’attache au constat qu’un produit réputé élaboré en un point A a été transporté jusqu’à 

un point B. Les conditions naturelles de la navigation n’ont jamais interdit les flux lorsque l’économie 

ou la politique l’imposaient. Elles imposaient en revanche un nombre limité de routes déterminées et 

favorisent certains itinéraires. La plupart des cartes des échanges établissent des relations directes, 

comme tirées à la règle sur la carte, jusqu’à évoquer parfois un pont aérien, entre le lieu de production 

et le lieu de consommation d’une série cohérente d’objets. Certes, le produit concerné est bien allé d’un 

point A à un point B, et l’on peut ainsi déterminer un flux commercial. Il convient néanmoins de 

prendre garde de ne jamais confondre le flux commercial ainsi identifié avec le parcours réellement 

effectué par un navire. Si les flux commerciaux peuvent, et doivent constituer des indices pour établir 

des hypothèses de route, ils ne sauraient à eux seuls les révéler” (Arnaud 2005, 11). 

188 



  Evaluating Network Science in Archaeology 

When making this distinction it becomes clear that some of the archaeological hypotheses 

mentioned above are concerned more with trade and others with navigation. When exploring 

these hypotheses, different factors should be considered key driving forces: in navigation we 

should consider ship technology, winds, currents, seasonality, visibility and other 

environmental factors; in trade we consider the integration of markets and the available 

information, the intermediaries mediating transactions, the diversity in supplied products, the 

demand, and the price setting mechanism. It should also be clear that this case study does not 

aim at reconstructing particular sailing routes in the Mediterranean through a comprehensive 

computational model. The approach taken here is rather different: in order to be usefully 

explored and tested, specific hypotheses surrounding tableware distribution will be expressed 

as simple models that will include a limited number of key parameters representing transport 

or trade mechanisms, with a stronger focus on trade mechanisms. The resulting models are 

generalizing abstractions and do not aim at capturing the full complexity of ancient trade or 

navigation. However, they might prove useful ‘tools to think with’ when evaluating the role 

of different factors in giving rise to the tableware distribution pattern under study in this 

chapter. 

The importance of intermediaries 

There is a need to elaborate on another factor that deserves particular attention, the 

importance of which becomes clear from its absence in archaeological explanatory efforts 

that focus on the larger flows: the role of intermediaries, the agents that made trade happen. 

This is a factor that features rather generically in most models (e.g. Abadie-Reynal 1989; 

Lewit 2011; Peacock 1982; Reynolds 1995) yet its impact on tableware distribution patterns 

is hard to tie down since they are the archaeologically least visible components of Roman 

trade. However, given the emphasis on understanding tableware trade as a multi-scalar 

phenomenon I believe the different roles of individuals active in tableware trade need to be 

evaluated (as well as those in tableware production and consumption, although that is not the 

focus of this study). The exact titles of these intermediaries is therefore of less importance in 

this case study. Rather, we should have a general idea of the types of interactions that could 

have taken place between agents in trade processes. 

The titles and roles of merchants were variable, but two of the most common titles are those 

of the negotiatores and mercatores. From the Late Republic onwards, the title of negotiator 

was used to refer to individuals engaged in a diversity of activities: commerce, financial 
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business, and the exploitation of agricultural estates. However, from the Early Imperial 

period onwards the title became more associated with individuals engaged in trade only (the 

meaning of the title then became more similar to that of the mercator). Individuals engaged in 

trading a wide range of goods could be referred to as negotiatores, but they typically perform 

their activities abroad and on a private basis (Broekaert 2013b, 15-17). They could be 

involved in overland or maritime transport of goods. The title of mercator refers to “basically 

anyone whose main profession is to organize the sale or resale of merchandize, with the 

intention to make a profit” (Broekaert 2013b, 151). The mobility of mercatores is considered 

their most defining feature: “A mercator is constantly travelling around, searching for the 

most profitable trading opportunities and transporting merchandize from one place to 

another” (Broekaert 2013b, 152) and “As their entrepreneurship and, more importantly, 

desire for profit forces them to inspect unknown regions for commercial opportunities, they 

are frequently mentioned as an ideal source for information” (Broekaert 2013b, 153). 

Mercatores could be engaged in both land and sea transport and could possess their own 

vessels, although they would rely on the transport services of others (nautae or navicularii) if 

this were not the case. Both mercatores and negotiatores could be specialised in trading 

particular types of goods (such as tableware) and some focused on specific trade routes. 

The main difference between mercatores and negotiatores seems to be one of scale. Where 

the mercator would probably be mainly concerned with providing parts of a ship’s cargo, the 

negotiator would charter an entire ship, although this differed through time (Peacock 1982, 

158; Rougé 1966, 290). The negotiator’s activities were more international, capital intensive, 

and profitable than those of the mercator (Broekaert 2013b, 20). Although negotiatores were 

mobile, they nevertheless were often doing business in a shop or booth and can be considered 

to have been less mobile than mercatores. The nature of their mobility is well summarised by 

Wim Broekaert (2013b, 18-19): “Commercial activities evidently forced the majority of 

negotiatores to travel around, always searching for the most profitable combination of supply 

and demand. Literary texts abound with descriptions of negotiatores transporting their 

merchandize all over the Mediterranean and beyond. They are invariably present in the most 

isolated corners of the empire, risking their lives for profit and often being the sole 

connections between the ‘civilized’ empire and the ‘barbarians’ living on the edges. Yet, 

contrary to the semantics of mercator, mobility is not a central aspect of the negotiator’s 

nature. Various inscriptions show, especially in the city of Rome, how negotiatores were 

constantly doing business in a shop or booth, located near a famous statue, a temple etc.” 
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However, trade cannot be considered without discussing transportation, despite the focus of 

the current case study on trade processes. Some merchants might have been shipowners 

whilst some shippers might have been active in trade. The types and roles of shippers are 

equally variable as those of traders. Rougé (1966, 244) suggests the nauclerus and magister 

navis might have been agents of shipowners and in charge of the sale of the ship’s cargo. 

navicularii are considered financiers and owners in shipping operations (Peacock 1982, 158). 

Wim Broekaert (2013b, 221-222) disagrees with this distinction between these titles and 

argues navicularius and nauclerus can be more usefully considered as synonyms. Three 

meanings can be attributed to these titles: ship-owners, using ships for commercial purposes, 

or being a representative of a ship-owner. These shippers could have been engaged in 

commercial activities themselves, and therefore their role could overlap with that of 

mercatores and negotiatores, but the emphasis of their activity would always lie on transport. 

Although many shippers might also have been ship-owners, the evidence does not allow for 

assuming this was always the case (Broekaert 2013b, 217-220). The navicularius and 

nauclerus were mainly concerned with sea transport, while the different title of nautae refers 

to those concerned with “the organisation of transport on rivers, lakes and swamps” 

(Broekaert 2013b, 177). Nautae could also organise land transport themselves, rather than 

outsourcing it, and could be engaged in trade as negotiatores (Broekaert 2013b, 175-177). 

A wide range of intermediaries can be considered to have been active in trade and transport, 

both inter-regionally or locally, often combining different roles, making small or large 

profits, and collectively producing the distribution patterns of tableware we are now 

confronted with. In this case study it is less important to know exactly which titles were 

associated with which roles. Rather, the existence of different roles intermediaries could take 

up, that these could be combined and, indeed, that tableware trade in the Roman East did not 

always take place directly between producer and consumer, is what matters and should 

influence the method developed to address this case study’s research questions. Moreover, an 

additional complication is the difficulty in evaluating the contribution of arguably the largest 

group of merchants active in tableware trade: those who traded small amounts of pottery 

locally (in the place of production, redistributive centres or in markets close to the place of 

consumption). Wim Broekaert (2013b, 251-252) suggests that the title of propolae might be 

used to refer to those engaged in small-scale local distribution of merchandise. However, it is 

difficult to quantify their contribution to trade due to the limited mentioning of small-scale 

merchants in literary sources. As I will argue below, I believe the key to understanding their 
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contribution to creating the tableware distribution patterns is an approach that takes into 

account connectivity and, more specifically, social networks connecting individuals over 

short and long distances. In the next few sections I will introduce two models of the ancient 

economy where such connectivity is a major driving force. For now, it suffices to conclude 

that intermediaries with different roles, active on different scales should be an integral part of 

the approach developed in this case study. 

Bang’s hypothesis: The Roman bazaar in a tributary empire 

Bang (2008) argues that markets in Roman Imperial times functioned very differently from 

our current conception of large-scale, integrated entities where very informed specialists 

trade, facilitated by extensive and efficient communication networks. He draws on a 

comparative history approach, focusing mainly on the Indian Mughal empire, to explore the 

functioning of Roman trade in more detail. Bang suggests the concept of Bazaar-style 

markets, “distinguished by high uncertainty of information and relative unpredictability of 

supply and demand. This makes the prices of commodities in the bazaar fairly volatile. As a 

consequence, the integration of markets is often low and fragile; it is simply difficult for 

traders to obtain sufficiently reliable and stable information on which effectively to respond 

to developments in other markets. Considerable fragmentation of markets prevails” (Bang 

2008, 4). This hypothesis sees the Roman market as a fragmentary system with low 

standardization, with traders making do to the best of their knowledge of the system, which 

on average is very limited. The agents braving this irregular trade landscape were faced with 

a variety of challenges. Due to variable consumer demands, producer supplies, environmental 

uncertainties and transport challenges, the market knew huge irregularities and low 

transparency. Agents’ responses to these challenges were twofold: (1) instead of market 

integration, merchants would aim to benefit from opportunism and speculation; (2) a social 

network of personal trusted relations and communal ties was maintained that organized 

protection (both commercial and physical) and determined to a large extent the information 

available to the agent and their economic opportunities (Bang 2008, 200-201). This social 

network was not just a dense ball of random ties connecting individuals in towns either: “two 

key concepts of the social fabric of the bazaar were communal associations and the 

household” (Bang 2008, 241). More than that, the social network allowed for inter-regional 

trade to take place, through an integration of political and commercial spheres, as well as the 

specialization of intermediaries. However far away from home merchants roamed, the 

tendency to form and use communities structured around native identities is illustrative of the 
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local emergence of social networks, often with a preference for native connections, but giving 

rise to supra-regional distributions of goods (Bang 2008, 249-250). The community structure 

of social networks served to protect community interests and opportunism whilst 

disadvantaging outsiders, thus reinforcing the fragmentation of the Roman market system. 

One can see that the key concepts in this model are traders as intermediaries and the social 

networks connecting them, concepts that are responsible for the shape and functioning of the 

Roman trade system. 

Of course these are not just two factors working in isolation. Two other major components of 

Bang’s model are the tributary nature of the Roman Empire and the agrarianate nature of its 

societies. The former refers to the taxes provinces owe to the Roman imperial state. With the 

concept of an agrarianate society, on the other hand, Bang refers to the fact that “literary 

high-culture and cities co-existed with peasant agriculture in the pre-industrial world” (Bang 

2008, 11). These two concepts draw attention to the importance of redistributive measures 

and state influence through tribute extraction and peasant surplus production. The increasing 

legal uniformity must no doubt have correlated markets to some extent (despite the huge 

uncertainties that came with the local variability of its implementation and enforcement), but 

it is unlikely they ever “broke the pattern of strong local variations in custom and practice” 

(Bang 2008, 188). Rather than seeing state influence and market trade as diametrically 

opposed spheres where one always needs to dominate the other, Bang argues that the 

dichotomy between state and market redistribution is a modernist construct. Although 

imperial surplus extraction is seen as a key stimulus of inter-regional economic flows, Bang 

also argues the state simply did not have the organizational capacity to structure these flows 

on its own or within a single integrated sphere: “markets were a necessary intermediary” 

(Bang 2008, 119-121). This dichotomy has also dominated discussions of the more physical 

aspects of roman trade: cargo, ship and route sizes, and itineraries. Big ships carrying a cargo 

destined to supply major cities and following popular routes between producing and 

consuming regions no doubt existed. Yet focusing on these bigger flows means the more 

casual flows of small amounts of goods within a region and their impact escape our attention, 

even though these must have been the norm. Large cities existed in the Roman East (e.g. 

Alexandria, Antioch, Ephesos) and their markets might well have acted as major 

redistributive centres, yet the vast majority of markets were small and maintaining close 

connections with these markets to obtain accurate consumer information must have been a 

formidable challenge. Indeed, logistical transport difficulties are intertwined with the problem 
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of limited information through the importance of intermediaries. Accurate and up-to-date 

information as well as the right social contacts were a necessary requirement to make these 

large and very risky undertakings happen and worthwhile. Transport at all scales can 

therefore not be seen independent of considerations about intermediaries and their economic 

opportunities. 

Critiques of Bang’s hypothesis 

To say that some scholars disagree with Bang’s model would be an understatement. His work 

has attracted a very mixed reception, with some arguing Bang signals a return to or defence 

of the ‘primitivist’ paradigm in the study of the ancient economy (Shaw 2010). By far the 

most elaborate and extreme of commentaries on Bang’s ‘Roman Bazaar’ model is Morris 

Silver’s (2009). It is worth here to follow Silver’s lead in identifying the key issues 

surrounding Bang’s work. This will lead me to the conclusion that Bang’ model is wrong, 

just like that of every other scholar of the ancient economy, including Silver’s, but that the 

key aspects of each model are extreme hypotheses that need to be evaluated with non-

anecdotal evidence. 

Silver’s main critique is that the key elements in Bang’s model “do not necessarily 

approximate closely to the Roman facts” and that “Bang underestimates the integration of the 

Roman economy”. He further develops this critique through a number of counter-arguments: 

• “There is ample evidence of large, non-household-based enterprises in Rome. Bang 

presents no evidence indicating that larger firms were relatively less important in the 

‘Roman bazaar’ than in early modern Europe, or that the size distribution of Roman 

firms more closely resembled that in the East” (Silver 2009, 423). 

• Silver presents plentiful evidence for élite participation in the Roman economy, 

cashless transfers and the existence of deposit banks. 

• “Roman commercial law undoubtedly had difficulties in terms of both content and 

degree of proactivity. However, Bang has not demonstrated that in either respect it 

resembled the eastern bazaar more than early modern Europe” (Silver 2009, 428). 

• Bang argues that a capitalist economy is not a suitable model for the Roman 

economy, but Silver disagrees. He claims that Bang minimises the evidence that 

Rome “compared favourably with other pre-industrial regions”, and that the 

arguments Bang raises do not preclude a classification as a market economy. Silver 
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further argues that the impact of the pax romana implied a moderate to revolutionary 

reduction in transaction costs, and that the use of the concept of “peasant” economy is 

not an argument against capitalism (the concept of a “peasant” economy refers to the 

claim that the bulk of the labour force were peasants who were largely self-sufficient, 

reflecting a big chunk of produce that always stood outside the money economy 

(Bang 2007, 25)). 

Many of Silver’s critiques are arguments that Bang’s model is not perfect since it attributes a 

minor role to some evidenced phenomena (e.g. participation of élites in commerce, cashless 

transfers, the existence of large firms). Possibly most important is the claim that Bang 

purposefully downplays any evidence that does not fit well within his model. However, I 

believe Bang probably does this in the belief that these phenomena can take place within his 

model but are not its defining features or driving forces. Although the claims that Bang 

misinterprets or excludes evidence might be true in some cases, the debate between Silver 

and Bang seems an inconclusive one where each author uses (sometimes anecdotal) evidence 

to emphasise different aspects of a complex past system, assuming (without testing these 

assumptions) that their model can account for the evidence mentioned by the other author. In 

some sense, then, the debate can be considered to miss the point since both authors have 

evidence to support their claims and neither is in the position to conclusively disprove key 

aspects of the other’s model. What is really needed is an approach based on hypothesis 

testing that is able to evaluate whether Bang’s claims can be substantiated: can the patterns or 

sources Bang quotes result from the processes he mentions? However, this is easier said than 

done. This statement seemingly ignores the limitations of the available evidence, which is the 

reason why Bang and Silver necessarily adopt their style of argumentation. The required 

approaches should never ignore the complexities of the hypotheses to be tested, and it is most 

likely that they will succeed in only testing a few of the most well-defined aspects of Bang’s 

model. The approach developed for this case study, the specific questions it allows one to 

address, and how this approach might help one to evaluate some of the claims made by Silver 

and Bang will be discussed below. 

However, this elaboration on Silver’s criticisms begs the question what other models are out 

there, and in particular models based on the concept of a market economy. Before introducing 

the approach developed for this case study I will discuss an alternative to Bang’s model: 

Peter Temin’s The Roman Market Economy (2013). 
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Temin’s hypothesis: The Roman market economy 

In some ways, Silver’s critique of Bang’s work is not very helpful because no workable 

alternative model is proposed. Peter Temin’s work on the Roman economy, however, can be 

considered an admirably specific model that reflects many of Silver’s arguments. Temin 

agrees with Bang that government involvement in (wheat) trade must have been rather 

limited and that private enterprises must have dominated trade (Temin 2013, 32). The way 

both scholars present a model that is based on this assumption, however, could not be more 

different. Temin believes that Roman markets were integrated and strongly interconnected: 

“I argue that the economy of the early Roman Empire was primarily a market economy. The parts of 

this economy located far from each other were not tied together as tightly as markets often are today, 

but they still functioned as part of a comprehensive Mediterranean market. There are two reasons why 

this conclusion is important. First, it brings the description of the Roman economy as a whole into 

accord with the fragmentary evidence we have about individual market transactions. Second, this 

synthetic view provides a platform on which to investigate further questions about the origins and 

eventual demise of the Roman economy and about conditions for the formation and preservation of 

markets in general.” (Temin 2013, 4). 

Providing a workable research platform is as crucial to Temin’s efforts as the hypotheses he 

derives from it. Temin argues that simple concepts from modern economics can offer useful 

insights into the ancient economy. For example, the concepts of supply and demand are 

considered tools for understanding price-setting mechanisms and exchanges of individual 

commodities or services; the New Institutional Economics (North 1981; 1990) is considered 

an approach that helps to evaluate the operation of markets by focusing on the role of 

institutions; the concept of comparative advantage is suggested as a way to understand the 

economic interactions of regions. In addition to these, a few other concepts are of particular 

relevance to this case study. Similarly to Bang, Temin states that ancient people are 

considered to have had access to far less information than people in the modern world, and 

that institutions were crucial in mediating information. However, Temin suggests more 

specifically defined concepts than Bang to explore this limitation: expensive information 

(there were costs involved in maintaining long-distance communication, costs which were 

reduced by being part of economic and social institutions) and asymmetric information 

(“when one party to a transaction knows more than the other” Temin 2013, 13, 112-113). 

These concepts should be used in simple models that are necessarily abstractions of a 

complex reality, where a good model is distinguished from a bad model because it fits the 
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available data better (Temin 2013, 5). In providing this research platform, Temin does 

something very few other scholars of the Roman economy do: his key statement (that the 

Roman economy was a well-functioning integrated market where prices are determined by 

supply and demand) is not taken for granted but is considered a null-hypothesis that needs to 

be tested (Temin 2013, 5-6). Temin even suggests two ways in which this hypothesis can be 

tested: 

1. “we can infer from the existence of prices that market exchange more closely 

describes the interaction containing the prices than reciprocity or redistribution.” 

2. “people will behave instrumentally in market exchanges” so by looking at the 

incentives people have to continue their particular behaviour one can evaluate the 

existence of market exchange (Temin 2013, 8.) 

Temin performs the first type of test for the late Republican and Early Imperial period wheat 

trade: “I use wheat prices … to test the proposition that many wheat markets across the 

Mediterranean were interconnected and interdependent” (Temin 2013, 29). A series of logical 

statements is proposed to identify what experiment is necessary in order to evaluate his 

proposition: 

• Private enterprises are assumed to have dominated wheat trade 

• “If there had been a unified wheat market, the main market would have been in 

Rome”. This is where the largest supplies and demands came together and where the 

price for wheat would have been set (Temin 2013, 36). 

• “Under these circumstances, wheat outside of Rome would be valued by what it was 

worth in Rome” (Temin 2013, 36). 

• Therefore the price outside Rome equals the price in Rome minus the costs involved 

in transporting it to Rome 

• One would therefore expect a correlation between the price of wheat at a certain 

market and the distance to Rome. Alternatively, in the absence of an integrated 

market there would be only local prices determined by local conditions. If markets 

were not integrated then we would not expect a relationship between location and 

price. 

Temin collects six prices (which are argued to be all the known prices that can be used in this 

experiment) from different markets around the Mediterranean and with different dates. He 
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performs a regression analysis which shows a strong correlation between as-the-crow-flies 

distance from Rome and price, seemingly confirming his hypothesis that the Roman wheat 

markets in the late Republic and early Empire were integrated (Temin 2013, 29-52). “the 

regressions confirm with very high probability that there was a unified wheat market that 

extended from one end to the other of the Mediterranean Sea. Transport costs were roughly 

proportional to distance, and the effects of distance were larger than the idiosyncratic 

influences of particular markets and places” (Temin 2013, 46). 

Critiques of Temin’s hypothesis 

There can be no doubt that the economic concepts used by Temin and his approach based on 

hypothesis testing are useful and extremely promising for the study of the ancient economy. 

However, as Temin himself acknowledges (2013, 48-52), there are some issues with his 

conclusions. The experiment itself is misleading because its results offer less proof to 

Temin’s hypothesis than he is willing to admit. From a descriptive statistics point of view it 

seems that there is a correlation between price and location. However, with only six data 

points there is no way that one can statistically prove or reject Temin's null-hypothesis. 

Temin acknowledges this point (2013, 49), and the absence of relevant data to support his 

hypothesis leads him to turn his attention to the larger dataset available for Hellenistic 

Babylon, even though this is not relevant temporally and spatially (Temin 2013, 53-69). 

Nevertheless, the correlation between price and distance from Rome is a key argument in 

Temin's defense of the hypothesis that the Roman wheat market was integrated. The limited 

data leaves this hypothesis unproven for the late Republic and early Empire, despite Temin's 

claims to the contrary. 

Temin’s hypothesis disagrees with the findings of Paul Erdkamp (2005), who has argued 

against a strong integration of the wheat market and attributes a bigger role to government 

involvement in wheat trade. It was Erdkamp’s hypothesis Temin set out to disprove with his 

experiment. It is therefore no surprise that Erdkamp produced an extensive review of the 

strengths and shortcomings of Temin’s approach. Most crucially, Erdkamp argues that it is 

unnecessary to downplay state involvement in an argument for the existence of a market 

economy, since both state and private enterprises can function side-by-side. Temin interprets 

evidence for distribution and transportation as trade, which Erdkamp disagrees with. 

Moreover, it is argued that the annona is not the only non-market supply channel, Erdkamp 

mentions in particular the large-landowners who bring part of their produce to Rome to 
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support their urban households and clientele: “the private market’s contribution to 

provisioning the empire’s capital was much smaller than Temin implies” (Erdkamp 2013, 2). 

Both Erdkamp (2013, 7) and Temin agree that Temin’s models are abstract simplifications of 

a complex past phenomenon, and that the nature, quantity and critique of the available data 

largely determines their success. The available historical data are clearly insufficient to 

evaluate the integrated nature of the Roman market economy. The modelling approach is 

nevertheless promising, although not exclusively in the way Temin used it. His approach can 

be considered rather macroeconomic and deterministic in nature, where prices are considered 

to be in equilibrium and the particular interactions of individuals each with their own motives 

does not have a place. Temin constructed the model like this on purpose and it is clear that 

interesting insights can be gained from it. However, such a model will never succeed in 

capturing the interesting variation and distinctive traits of Roman society that fascinates 

scholars of the ancient economy. Erdkamp argues that what is needed to solve the debate 

surrounding the Roman economy is “a more balanced and nuanced approach, allowing for the 

shades of grey that characterize all historic reality” (Erdkamp 2013, 7). Maybe computational 

network modelling and drawing on the vast amounts of pottery data offer a way forward? 

5.2.4. Being wrong can be useful: questions, methods, and issues for a new 

approach 

I can now come back to my statement in the introduction to this case study: there is no lack of 

hypotheses explaining tableware distributions in the Roman East; most scholars agree the 

Roman trade system was a complex thing involving multiple factors; what is needed is an 

approach that allows one to evaluate the relative importance of these factors and how they are 

reflected in our datasets. This case study suggests such an approach. I believe that the very 

diverse arguments made by the archaeologists and historians mentioned above can be 

considered useful models of tableware distribution in the Roman East or of the Roman 

economy at large, despite many criticisms to the contrary. Each author places an emphasis on 

different key concepts, acknowledges the simplifying nature of their model, and argues for 

the complexity of the phenomenon under study. In this case study, I aim to suggest a novel 

(for Roman archaeology) approach to exploring the implications of different hypotheses 

suggested by authors and evaluate their potential contribution in giving rise to the observed 

tableware distributions. This approach therefore does not aim at being ‘right’, or at capturing 

the full complexity of such past phenomena. Instead, it tries to map out the grey-zone 
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between these hypotheses; the kind of approach that has been curiously absent in the study of 

Roman tableware distributions and the Roman economy at large (Davies 2005; Morris et al. 

2007). An outline of the research aims and process of this case study is provided in box 8. 

To address the research questions formulated in the introduction I will combine a number of 

methods and techniques. Firstly, I will perform an exploratory analysis of the distributions 

evidenced in a large tableware dataset (section 5.4). This will allow me to critically evaluate 

the nature of the data and its many limitations. Secondly, similarity matrices of forms and 

wares will be produced and analysed using exploratory network analysis to address the first 

research question: the extent to which forms and wares show similarities in their distribution 

patterns (section 5.4 and appendix IV section 12.2). This will also highlight some features of 

the known distribution patterns that could suggest types of distribution mechanisms. The 

third aspect of my methodology will (initially) take a step away from the data and its 

limitations (section 5.5). It concerns a more abstract agent-based model representing 

individuals trading tableware in the Eastern Mediterranean, a formal representation of many 

of the hypotheses mentioned above. This simple model will be simulated under various 

different settings to explore the role of different combinations of factors introduced above. 

The aim of this last method is to evaluate to what extent current hypotheses surrounding trade 

in the ancient world could have given rise to the observed distribution patterns. The latter step 

concerns a confrontation of the computational simulation output (i.e. hypothetical 

distributions of goods) with the observed tableware distributions (i.e. the ICRATES dataset). 

But what place do models of the Roman economy have in an archaeological network science 

PhD project? Their importance should be clear by now: our archaeological research questions 

reflect our interest in certain past phenomena, and models are necessary to abstract these 

phenomena in terms of network concepts and data. It could be argued that Bang’s hypothesis 

offers a suitable framework or starting point for exploring differences in Roman tableware 

distributions: specialized intermediaries, social networks, a tributary empire, and agrarianate 

societies. These concepts combined offer a model for exchange that works from the bottom-

up through individuals in interaction, yet does not disregard the importance of large-scale 

state influence and the kinds of trade systems possible in agrarianate societies. Yet this does 

not necessarily mean Bang’s hypothesis is useful for exploring the different factors 

responsible for tableware distribution introduced above. Bang himself argues quite explicitly 

for his model as a possible explanation for differences in tableware distribution patterns. 
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Tableware was found in large quantities and knew a wide distribution, yet some wares, forms 

or stamps travelled significantly farther and are much more common than others. This is 

interpreted as pointing to the existence and importance of different networks for the 

distribution of different potters’ or production centres’ produce (Bang 2008, 288; although 

see also Willet’s (2012, 443-449) argument on the limitations of Eastern wares for 

performing this kind of analysis due to the general absence of informative stamps). Rather 

than taking this hypothesis at face value, this case study aims to evaluate it. I believe it allows 

for many of the factors argued for by archaeologists to take place and have an impact on 

multiple geographical scales without being deterministic. It is not a model of a world in 

chaos, rather it is a concept that unites tableware trade in the Eastern Mediterranean with that 

of luxury goods from India and staple goods from Southern Spain or Africa, and can 

accommodate for both small-scale trade at local markets as well as large-scale long-distance 

distributions of agrarian products for state or military redistribution (Bang 2008, 304-305). 

But only a formal implementation of this hypothesis as a computational model can teach us 

what its implications are and what kinds of patterns we can expect if we believe the 

hypothesis, and only a confrontation with our collected datasets can lead to an evaluation of 

this hypothesis. 

A similar role in this case study can be attributed to Temin’s model: it suggests 

macroeconomic mechanisms that are considered to govern Roman trade and provides 

economic concepts through which these can be explored. What I will not adopt here, 

however, is Temin’s deterministic modelling approach. Instead, by adding a measure of 

stochasticity and allowing individual agents to be the driving forces behind the price-setting 

mechanism, I believe the concepts introduced by Temin can also serve as a framework for 

testing archaeological hypotheses. As should be clear from the critical discussion above, 

Temin and Bang’s work is not considered mutually exclusive: they still agree on the limited 

availability of information, the importance of markets and limited state involvement. The 

grey-zone between these two models themselves will therefore also need to be explored. 

The next section will introduce the ICRATES dataset and our current understanding of the 

tableware distribution pattern in the Roman East. The two sections that follow this describe 

the methods employed in this approach and their results. 
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5.3. Tableware distribution patterns: data and the state of the art 

5.3.1. Tableware fabric-groups in the Roman East 

This case study is concerned with the distribution of tablewares in the Eastern Mediterranean. 

A wide range of wares must have existed and three levels of production can be usefully 

considered to classify wares (Bes 2007, 202; see also Peacock 1982). Firstly, there are the 

wares produced either in households or on estates with a purely local distribution; secondly, 

wares produced in professional workshops that knew a regional distribution; and thirdly, 

wares produced in large manufactories which were of supra-regional importance. The 

underlying mechanisms of exchange leading up to the observed distributions might have been 

very different for these three levels of production, yet they must have been strongly 

intertwined. Wares of all types and distributions therefore need to be studied together if we 

wish to understand the processes driving their distribution. However, our knowledge of the 

first two levels is rather limited, since archaeologists have traditionally focused on imported 

wares which offer a number of advantages: they were better studied, are indicative of inter-

regional interactions and can act as chronological markers. Often large proportions of site 

assemblages all over the Eastern Mediterranean are made up of locally-produced wares or 

wares of regional importance (a number of wares that fall into this category are mentioned by 

Bes 2007, 202). It is believed that such wares which provided for the demand of a settlement 

and its hinterland or for a small region must have been a common phenomenon (Bes 2007, 

109). However, our knowledge of these wares is limited and our dataset is therefore not 

representative for these levels of production. These wares will not feature prominently in the 

formal analyses of this case study, since here I am mainly concerned in the different 

distributions of wares of regional and supra-regional importance. I believe future work which 

focuses more on differences in production processes would be better placed to study such 

wares. 

The exploratory data analysis will focus on wares produced in large manufactories, with a 

distribution of either regional (ESB, ESC, ESD) or of supra-regional (ESA) importance. The 

wares this case study is concerned with are four major sigillatas produced in the Eastern 

Mediterranean. The term ‘Eastern Sigillata’ was coined by Kathleen Kenyon through the 

publications of the 1931-1933 Samaria-Sebaste excavations (Crowfoot et al. 1957; Kenyon 

1957). A brief description of these wares will have to suffice for this case study, more in 
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depth discussions of each ware can be found in Bes (2007) and Hayes (1972; 1980; 1985; 

2008). 

Table 15: typo-chronological references and (possible) region of production for major eastern tablewares. 

Ware Abbreviation Typo-chronological 
reference Region of production 

Eastern Sigillata A ESA Hayes 1985 Coast between Tarsos (TUR) and 
Latakia (SYR) 

Eastern Sigillata B ESB Hayes 1985 
Maeander Valley in western Asia 

Minor (TUR). Possibly Aydin 
(ancient Tralleis) 

Eastern Sigillata C ESC Meyer-Schlichtmann 1988 
and Hayes 1972, 1985 

Pergamon and surrounding 
region 

Eastern Sigillata D ESD Hayes 1985 Cyprus (probably the western 
part) 

 

Eastern Sigillata A (ESA) 

Although no ESA kilns have been found yet, archaeometrical analyses and the distribution of 

early, late and rare forms suggest the ware must have been produced “somewhere in the 

coastal area between Latakia in Syria and Tarsus in Turkey” (Schneider 1995, 415-416). The 

core area of ESA distribution consisted of the Levant, Cilicia and (Eastern) Cyprus, although 

it was distributed all over the Central and Eastern Mediterranean (with sporadic finds further 

west, see references in Hayes 2008, 18). The earliest forms appeared in the mid-second 

century BC and had distinctly Hellenistic shapes and decorations. The morphology of ESA 

was subsequently influenced by that of Italian Sigillata (ITS) with the appearance of ITS 

around 40-30BC. ESA was distributed most widely between 125BC and AD20, and 

disappeared (or continued on a much reduced scale) at the end of the second century AD. The 

standard typology used here and in the ICRATES database is that by Hayes (1985). 

Eastern Sigillata B (ESB) 

ESB was produced in the Maeander Valley in western Asia Minor, possibly in Aydin (ancient 

Tralleis). A number of potters’ names on ESB stamps shared with Arretine produced ITS 

suggests Italian potters were involved in establishing the ESB manufactories, or are at the 

very least indicative of deliberate copying (Hayes 2008, 31). ESB also shows a strong 

morphological influence from ITS. An early version of the ware called ESBI appeared around 

25BC but was superseded by ESBII around AD40, which introduced a new range of shapes 
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influenced by metal vessels. In this case study, ESBI, ESBII and the transitional ESBI-II are 

referred to collectively as ESB. The standard typology used here and in the ICRATES 

database is that by Hayes (1985), who attributes a date of no later than AD150 for the last 

ESB forms. The core area of ESB distribution is southern Asia Minor, although it is quite 

common throughout the Aegean. 

Eastern Sigillata C (ESC) 

ESC was produced in Pergamon and its surrounding region including the kiln sites of modern 

Çandarli (ancient Pitane). One can distinguish between two wares: one produced at Pergamon 

and the early material at Çandarli, and the second only produced at Çandarli (Hayes 2008, 

49). Both wares will be referred to as ESC in this case study. The core area of ESC 

distribution is Northern Asia Minor and the Northern Aegean. The standard typology used 

here and in the ICRATES database is that by Meyer-Schlichtmann (1988) and Hayes (1972; 

1985). ESC first emerged around the late second century BC and continued to be produced 

until the end of the third century AD. 

Eastern Sigillata D (ESD) 

No ESD kiln sites have been found yet, but a provenance in (Western) Cyprus is most likely. 

The core area of ESD distribution is Cyprus and the south coast of modern Turkey, and at 

times it is present on the Levantine coast in large quantities and diversity. The standard 

typology used here and in the ICRATES database is that by Hayes (1985). ESD was likely 

produced between the end of the second century BC and the second half of the second 

century AD. 

5.3.2. The ICRATES database 

The ICRATES project (‘Inventory of Crafts and Trade in the Roman East’) aims to come to a 

better understanding of mechanisms of production and exchange in the Roman East between 

the second century BC and the seventh century AD through the study of multiple material 

data types.24 Two PhD projects have been completed under the umbrella of this project (Bes 

2007; Willet 2012). The work by Bes in particular, as well as that of many other project 

members has led to the creation of a database of over 33,000 individually recorded tableware 

24 The ICRATES project was supported by the Belgian Programme on Interuniversity Poles of Attraction (IAP 
07/09), the Research Fund of the University of Leuven (BOF-GOA 13/04), Project G.0562.11 of the Research 
Council-Flanders (FWO) and the Hercules Foundation (AKUL/09/16).; 
http://icrates.arts.kuleuven.be/Icrates/Default.aspx (accessed 29-08-2013). 
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sherds, a great resource from which the dataset for the current case study is extracted. The 

ICRATES database is compiled mainly from published sources, supplemented with 

unpublished data from the Boeotia Survey in Greece and from the site of Amata in Jordan. 

Each entry in the database concerns a single tableware sherd, the site it was found on, the 

publication in which it was mentioned, the standardized fabric and form attributed by the 

authors (sometimes corrected or standardized by project members), and more information if 

this is available (see Bes 2007). 

I decided to use the same version of the ICRATES database as was used for a previous 

exploratory network analysis (Brughmans and Poblome in press).25 The last modifications to 

this version of the database were made in August 2010 and the total number of records or 

individual pieces of tableware is 28,501.26 The total number of sherds in the database of the 

major wares discussed in this case study are: ESA 7,458; ESB 2,100; ESC 2,601; ESD 772.27 

Due to some sherds of unknown forms, and forms with undefined standard chronologies or 

chronologies falling outside the chronological limits of this case study, the number of sherds 

actually used in this analysis is further reduced to: ESA 4,543; ESB 1,032; ESC 1,896; ESD 

602. An exploratory data analysis of the dataset used is presented in section 5.4. 

5.3.3. Issues with the data 

The limitations of the ICRATES dataset have already been discussed in depth by Bes (2007, 

10, 100-101) and Willet (2012, 43-58). It suffices here to list some of the key issues and how 

these will be addressed in this case study: 

• Although the ICRATES dataset is large by archaeological standards, it is still a 

sample and includes only a fraction of the total amount of tableware that circulated in 

the past (Abadie-Reynal 1989, 143). An eye-opener is Willet’s (2012, 43-49) 

hypothetical calculation of a total minimum number of 75 million tableware pieces 

ever to have circulated in the Roman East and a total maximum of 33 billion. 

25 For the results and networks of this analysis see http://icrates.arts.kuleuven.be/icrates/network-
analysis/webpages/icrates_mainframe.html (accessed 01-06-2014). 

26 Please note this is an earlier version than that used by Willet (2012) which includes 33,587 records. The 
decision to use the older version was motivated by the ability to compare the different network methods used in 
Brughmans and Poblome (in press) with the methods used here on a single dataset 

27 These counts are slightly higher in the later version of the database used by Willet (2012): ESA 7,649; ESB 
2,195; ESC 1,705; ESD 798. 
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• Some areas and sites around the Eastern Mediterranean have seen more 

archaeological activity than others, leading to an overrepresentation of these in the 

dataset. Moreover, the published evidence is skewed towards urban settlements whilst 

rural settlements are underrepresented. 

• The organisation and place of production of many wares is poorly understood. Most 

problematic for this study is our limited knowledge of the ESA production process 

and centre(s), as well as an almost complete ignorance of the many wares with a very 

limited distribution in the direct vicinity of the production centre. 

• On the other hand, for some wares a much higher number of sites around the 

production centre are included. This issue is most crucial for the suggested production 

area of ESA, for which a very large number of sites with often incredibly high 

numbers of ESA sherds are included in the database. 

• The quality and method of quantification differs per site and ceramologist. They are 

the results of the author’s or excavator’s objectives. Discarding non-diagnostic sherds 

was quite common until the first half of the 20th century. Not all publications mention 

whether the published sample is representative of the material excavated. Some forms 

or wares might be misidentified by the authors. The latter issue was corrected as much 

as possible by those entering data into the ICRATES database and estimated by Bes 

(2007, 10-11) to be no more than 1-2% of the total database. 

These issues should be acknowledged and one should find a productive way of addressing 

them in one’s method. For even with all its flaws, to use the data we have is still to be 

preferred to ignoring it completely. I will confront these issues in a variety of ways, both 

quantitative and qualitative. These approaches do not aim at completely overcoming the 

limitations of the collected data, but rather at understanding the nature of the limitations 

better and incorporating these findings in the development of a critical quantitative method. 

• This case study will only concern the largest possible patterns, not small particular 

changes. It is believed that collecting a large dataset such as the ICRATES database 

allows one to make statements of large-scale patterns: “certain basic patterns are 

undeniably present in the data” (Bes 2007, 10). Bes argues that by collecting the data 

en masse we can still overcome some of these issues (Bes 2007, 10, 100). 

206 



  Evaluating Network Science in Archaeology 

• Rather than considering the actual amounts of sherds published per site as 

representative, I will focus in the exploratory data analysis on the diversity of pottery 

forms attested (or not) at sites. 

• The proportion of types per ware in site assemblages will be the focus of analysis, 

rather than the proportion of sherds published. 

• The dataset is only considered representative for the major wares distributed on a 

regional (e.g. ESB, ESC, ESD) or supra-regional (e.g. ESA) level. It is not 

representative for the many locally-produced wares that undoubtedly make up big 

chunks of site assemblages, and these will therefore not be included in the quantitative 

analyses. 

• The exploratory network analysis includes a sensitivity analysis where the impact on 

the quantitative results of focusing the analysis on the most robust patterns will be 

explicitly evaluated. 

• The overrepresentation of urban settlements should be taken into account when 

suggesting a realistic estimate for the demand distribution in the ABM, since this is 

dependent on the population distribution. I therefore consider the dataset 

representative for the urban centres with a high population and assume an exponential 

distribution of population size in the ABM, which reflects the idea that there are a low 

number of settlements with a high population and a large number of settlements 

(largely not included in the dataset) with a low population. 

• The results from the quantitative analyses will be recontextualised within their socio-

political and archaeological frameworks in the discussion in section 5.6. 

5.3.4. Chronological overview tableware distribution in the Roman East 

Bes (2007) uses a chronological framework describing major developments in the main 

Eastern wares, more or less dictated by the collected evidence in the ICRATES dataset. The 

first four of these are particularly relevant for this study: 
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Table 16. First four phases of the chronological framework used by Bes (2007, 12). 

Phase Lower 
Date 

Upper 
Date Criteria 

1 150BC 30BC Initiation and development of ESA, ESC and ESD 

2 30BC 25/30AD The inception of ITS and ESB, typological change in the repertoire of 
mainly ESA 

3 30AD 60/70AD Contraction distribution of ESA, flourishing of ITS, development of 
ESB and ESD 

4 70/75AD 200AD Contracting distribution of ITS, disappearance of ESA, ESB and 
ESD, first ARSW 

 

Phase 1 (150-30BC, the pre-Augustan period) is marked by the inception of ESA and its 

distribution on a supra-regional scale. ESA was the first of the eastern fully red-slipped 

tablewares to have a large-scale production. The earliest ESA forms (Bes’ phase 1a, c. pre-

75BC) have a more limited geographical distribution compared to those in the later part of 

this phase. These early forms are attested as far away as Greece, although they are only 

present in larger quantities on the Levantine coast and Cyprus. Bes (2007, 103-104) mentions 

a number of possible reasons for the relatively limited distribution of these early ESA forms: 

(a) ESA circulated predominantly in the Seleucid kingdom and less so in the Ptolemaic 

kingdom; (b) possible economic interactions with the west and the Roman republic might 

have played a role, although the effect of this is difficult to evaluate; (c) ESA production may 

have been limited or aimed at a certain quantity, which was in part kept low by the 

production and local or regional consumption of other tablewares in many parts of the 

Eastern Mediterranean; (d) the early ESA forms were largely of Hellenistic style and were 

probably not considered a novelty by consumers. The first ESC and ESD forms also emerged 

in phase 1a but only in more limited quantities. The distribution of ESC was largely restricted 

to the west coast of Asia Minor, whilst ESD was mainly present on Cyprus. In the later part 

of this phase (Bes’ phase 1b, c. 125/100–30/25BC) ESA becomes more common throughout 

the whole Eastern Mediterranean. A number of factors might have contributed to this 

increased distribution (Bes 2007, 105-109): (a) the innovative character of the new ESA 

forms; (b) some ESA forms have a particularly wide distribution (forms 3, 4A and 22A) and 

it has been argued that they may have been sold as sets, which might imply that merchants 

purposefully decided to include those sets in their cargoes which they knew they could sell 

widely (Bes 2007, 108); (c) the growing influence and involvement of the Romans on the 
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Eastern Mediterranean stage and the decreasing power of the Seleucids; (d) thanks to the 

decrease in piracy, the creation of the provinces of Syria and Cyprus and the end of the 

Mithridatic wars, the Eastern Mediterranean might have become more peaceful, stimulating 

supra-regional trade. In phase 1b ESC knew a marginal growth in the Aegean, ESD on the 

other hand remained largely limited to Cyprus. Both ESC and ESD were of regional 

importance throughout this phase, whilst ESA already knew a supra-regional distribution. It 

has been suggested that the manufacturers of ESC did not use the establishment of the 

provincia of Asia to their benefit (Poblome et al. 2007, 224), and neither did the ESD 

manufacturers benefit from the creation of the provincia of Cyprus (Lund 2002, 206). 

Moreover, Cyprus was firmly in the core distribution area of ESA: the locally produced ESD 

is only the second ware in most Cypriot site assemblages. Bes emphasises the importance of 

possible redistributive centres such as Rhodes and (after 167BC) Delos. These two centres 

might have formed pivots for trade between east and west. Alexandria on the other hand 

might have served as a redistributive centre in the east and even as a commercial pulling 

force, given the important export of Egyptian grain. 

Phase 2 (c. 30BC-25/30AD, the Augustan-Tiberian period) is marked by the introduction of 

ITS and ESB. The earliest ITS forms are mainly found in larger urban centres, with harbours 

or direct access to the Mediterranean, and some of which played a role in provincial 

administration. Bes (2007, 111-112) therefore argues that early ITS might have travelled 

mainly along the major lines of communication between east and west. Corinth might have 

played an important role as a redistribution centre, from which ITS reached other eastern 

sites. Throughout this phase ITS becomes the main ware at those sites where it arrived 

earliest. Moreover, ITS had a strong morphological influence on ESA and ESB (as indicated 

by ‘italicized’ forms and the use of stamps, which is considered a western phenomenon), but 

less so on the other two eastern wares, ESC and ESD. Indeed, it is argued that Italian potters 

or owners of manufactories were involved in the inception of ESB (Bes 2007, 85, 109; 

Zabehlicky-Scheffenegger 1995, 1996), which in this phase knew a rather limited distribution 

focused on the Aegean. ESA continued its wide distribution in the Eastern Mediterranean, 

and the quantity and distribution of its production was unmatched by the other contemporary 

eastern tablewares. The distribution and quantity of ESC increased, perhaps related to the 

start of production at coastal Çandarli (Loeschke 1912), dominating the coastal area around 

Pergamon. Its presence beyond the Aegean remains small. ESD continued its expansion on 

Cyprus, as well as on a more modest scale on the Levantine coast neighbouring Cyprus and 
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on some sites in the Southern Aegean. The increased distribution led to increasingly diverse 

site assemblages of wares and forms, although each ware has a clear core area of distribution. 

All of this took place at a time when the Mediterranean and the lands beyond were for the 

first time part of a single political, administrative and military system, with a tax system 

applied throughout the area. These systems drew on resources from all over the empire, a fact 

that might well have stimulated inter-regional exchange. The capital of Rome in particular 

started to act as a pulling-force of resources. The tableware distributions do evidence of an 

increase in geographical scope and quantity in the east, an increase in exchange with the 

west, and a more uniform shape of terra sigillata during this period, which has been termed 

by some as the “tableware boom” (Poblome et al. 2001, 144; Poblome and Zelle 2002, 277). 

The role of Alexandria as a redistributive centre in the east has often been emphasised, due to 

its role in supplying the west with Egyptian grain in the framework of the annona. Yet Bes 

(2007, 115) rightly points out that this has led to a focus on official exchange only, whilst “A 

category of tableware such as ESA must also have been traded within strictly commercial 

patterns”. Other centres, such as Corinth, Knossos, Gortyn and Ephesos must also have 

played an important part as redistributive centres in the east and connecting exchanges 

between east and west. 

Phase 3 (c. 30AD-60/70AD, the Claudian-Neronian period) signals a decrease in the quantity 

as well as geographical spread of ESA distribution. Although ESA becomes less common 

throughout the Eastern Mediterranean, its decrease is most striking in the Aegean. ESB 

distribution increased substantially during this period, especially on sites in the Aegean, Asia 

Minor and in Paphos on Cyprus, making ESB a ware of supra-regional importance during 

this phase. ESC is attested at fewer (especially Middle-Eastern) sites in this phase, although 

its presence in the area around Pergamon and the west coast of Asia Minor remained strong. 

ESD continued its geographically restricted distribution although it now takes the lead from 

ESA as the most common ware in Western Cyprus. It also makes up a large proportion of site 

assemblages in Cyprus as a whole, the Southern Levantine coastal region and Cilicia. ITS 

continued its wide geographical distribution but quantities generally decrease, although ITS 

knew a sharp increase in the Southern Aegean and Cyprus compared to phase 2. When 

considering the total number of tablewares attested for this period we notice a decrease, 

which might suggest the intensity of tableware distribution shrank. Although ESD and ESB 

increased in importance, they did not completely fill the holes left by the decrease of ITS and 

ESA. Bes (2007, 116-117) suggests that locally produced wares might have gained 
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importance compared to imported wares during this phase and the next (as evidenced by the 

enormous proportions of locally produced wares in the assemblages of Corinth, Knossos and 

Tanagra, Bes 2007, 116-117). However, this hypothesis and its implications (e.g. a decrease 

of exchange between east and west, the impoverishment of regional economies, or a change 

in taste or fashion?) are difficult to test due to our poor knowledge of wares of local 

importance. The collected tableware evidence also suggests a continuation of the wider 

exchange patterns between east and west as discussed for phase 2. The large quantities of ITS 

in the Aegean, Crete and Berenice still indicate a strong link with Italy. However, the more 

mixed assemblages in Cyprus and the Southern Levant might suggest a stronger focus on 

exchange routes connecting Alexandria via the south of Cyprus, rather than the north along 

the south coast of Asia Minor (Bes 2007, 117). 

During phase 4 (c. 70/75AD-200AD) most wares maintained a wide distribution. ESA 

remained the major ware at sites in the Levant and Eastern Cyprus, although its presence in 

the Aegean and Africa decreased significantly. The presence of ESA at sites with a military 

character along the Euphrates also suggests ESA moved farther inland during this period. The 

distribution of ESA forms dated after 100AD in particular is limited to the Levantine coast, 

which was the core area of ESA production and consumption. The distribution of ESB in the 

later first century AD in the Eastern Aegean decreased whilst elsewhere it largely retained its 

distribution of phase 3. ESB therefore remained of regional importance in the Aegean, but 

was far less common beyond. The distribution of ESC expanded significantly in this phase, 

retaining its regional importance in the area around Pergamon, and being more prominently 

present at sites everywhere in the Aegean, Crete, and Asia Minor. However, only small 

amounts of ESC are attested farther east of the Aegean. Bes (2007, 97) suggests that the co-

presence of ESB and ESC on some sites in this phase might be indicative of both wares being 

distributed together. ESD maintains a similar distribution to that of phase 3, with a strong 

focus on Cyprus, Cilicia and the Southern Levant. The presence of ESA on Cyprus and of 

ESD on the Levantine coast suggests continued direct exchange between the two areas. The 

distribution of ITS decreased significantly, focusing on a few regions: the South-western 

Aegean, Crete and the Cyrenaica. As was argued for phase 3, the evidence seems to suggest 

that ESB, ESC and ESD filled the gaps left by ESA and ITS only partly (Bes 2007, 118). ITS 

stamps point to two major commercial routes: a first route linking the Cyrenaica with Italy 

(as indicated by Pisan ITS stamps), and a second route connecting Italy with Corinth, which 

continued to act as a redistributive centre supplying the rest of the Aegean (as indicated by 
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central Italian ITS stamps). Based on the quantities of ESB and ESC that reached the 

Cyrenaica, Bes (2007, 119) further suggests a possible route between the Cyrenaica and 

Knossos. It is likely that Alexandria continued its redistributive role, forming a link between 

Italy and the east in the wake of the grain supply to the west and the opening of stone quarries 

in this period (Mons Porphyrites and Mons Claudianus). However, the tableware evidence in 

Egypt (showing a limited presence of imported wares in site assemblages) does not allow to 

conclusively confirm this hypothesis, and Bes (2007, 120) argues it is likely that locally-

produced wares played an important role in supplying for Egyptian households in this period. 

The end of phase 4 saw the disappearance of the supra-regional distribution of ESA, ESB and 

ESD. These wares either stopped being produced or their scale of production was very much 

reduced. After the second century AD ESC continued being widely distributed, alongside the 

Tunisia-produced ARSW that first appears in this phase in modest quantities and at a limited 

number of sites. 

5.4. Exploratory data analysis 

5.4.1. Introduction 

Before proceeding with the network methods I first need to obtain a better understanding of 

the structure of the ICRATES dataset, its limitations and how the distribution pattern that is 

the focus of this case study is reflected in this dataset. This will be done through an 

exploratory data analysis, the results of which will inform methodological decisions when 

designing the network approach and will also prove invaluable in comparing this 

archaeological dataset with the simulated outputs of the ABM. I will first address the issue of 

classification systems and argue for the use of wares, forms and functional categories as 

useful complementary analytical constructs in this case study. This will be followed by a 

description of the method used to divide the combined pottery dataset into 25-year time-

slices. This manipulated data will then be described by focusing on the main chronological 

trends and exploring different types of frequency distribution. This will be followed by the 

results of an exploratory network analysis of the dataset, which is presented in full detail in 

appendix IV section 12.2. 

5.4.2. Typologies and functional categories 

First of all, it should be clear that in this case study I consider the tableware forms derived 

from the standard typologies (discussed per ware in the previous section) as modern 

constructs. They are conventions that were constructed by individual ceramicists or groups of 
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scholars, and reflect their decisions and assumptions, but mainly their need to reduce a mass 

of information into analytically useful categories. The patterns emerging from the 

distributions of these forms will therefore, at least in part, reflect such academic decisions and 

assumptions (as revealed in previous network analyses of the ICRATES dataset, see 

Brughmans 2010; Brughmans and Poblome in press). Tableware forms are not considered to 

represent categories that were considered as distinct by people in the past. 

This reveals an issue familiar to any archaeologist: if in our analyses we merely reveal 

patterns imposed by our classification systems, patterns of distinctions we in the present 

consider important or useful, how then will we ever reveal the differences that were 

perceived by people in the past? This issue can never be overcome. But what we can do is 

come to a better understanding of the impact of our classification systems on the creation of 

the patterns through our analyses, by analysing the same dataset using different classification 

systems representing different archaeological assumptions. In this case study I will use two 

different classification systems for grouping tableware together and exploring the resulting 

patterns. At the lowest level, or at least the most extensive system, I will group sherds 

together based on the standard typologies (i.e. tableware forms); a second grouping concerns 

all sherds of the same ware. A reassessment of the standard typologies is not a feasible task 

for this case study. A third classification was planned to be included in this case study, which 

groups forms together based on the shape (e.g. plate, bowl, cup) and possible function (e.g. 

beverage, food, serving) attributed to them by the authors of the publications in which they 

were described. However, this was not completed due to time limitations and will be included 

in future work. 

5.4.3. Gaussian distribution 

In order to explore the changing distribution patterns over time of tableware forms with 

different chronological ranges, the dataset will need to be chopped up into different time-

slices. There are different ways of doing this, discussed in detail by Willet (2012) based on 

the method first suggested by Fentress and Perkins (1988). For this case study I decided to 

assume a Gaussian (or normal) distribution for the popularity and circulation of tableware 

forms, applied as described by Willet (2012, 35-38). This assumption entails that the majority 

of sherds of a certain form are more likely to have circulated around the middle of the typo-

chronological date attributed to it, rather than around the earliest or latest dates. This is a 

theoretical assumption and a probability distribution I consider likely. However, in most 
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cases the chronological accuracy needed to identify the popularity and circulation of Eastern 

forms or wares is simply not available, making uniform or skewed probability distributions 

equally probable (exceptions are those cases where certain wares or forms are particularly 

common or rare in well-dated contexts). A similar assumption about pottery probability 

distribution was made in the exploratory network analysis by Barbara Mills and colleagues 

(Mills et al. 2013; Roberts et al. 2012). Gaussian probabilities for each 25-year time-slice 

were calculated per form and the observed number of sherds per form was multiplied by this 

probability for each time-slice (Fig. 39). This results in a ‘probable’ number of sherds per 

form per 25-year time-slice, allowing for differences in distribution patterns per form (and 

per ware) to be explored through time (Fig. 40). It is important to note that the distribution 

obtained with this method and dataset reproduces the general trends observed by other studies 

using different versions of the ICRATES dataset and different methods of generating time-

slices (Bes 2007; Brughmans and Poblome in press; Willet 2012). In previous network 

analyses of the same dataset we assumed a uniform distribution (Brughmans and Poblome in 

press), and it is therefore of methodological interest in this case study to compare the 

similarities and differences in particular patterns generated by these two approaches. 

 

Fig. 39. Schematic example of the gausian probability distribution method. 

5.4.4. Number of sherds per ware 

By chopping up the collected tableware evidence into 25-year periods it becomes possible to 

identify some general patterns. The chart displaying the number of sherds per period (Fig. 40) 

shows that the dataset includes a very low number of sherds at the chronological boundaries 

of this case study, which is to be expected since the lower boundary reflects the first 
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production of the Eastern sigillatas under study and the upper boundary marks the transition 

to the increasing popularity of other wares. One also notices that the bulk of the dataset until 

at least 75AD consists of ESA sherds. After that, ESB becomes slightly more common than 

ESA, whilst ESC sees a slight increase in the period after 125AD. However, this chart shows 

us only part of the available information. The higher quantity of ESA alone does not indicate 

a wide distribution since it could be concentrated on a limited number of sites, or many sites 

in only particular regions of the Eastern Mediterranean, or it can be the result of the typology 

used (if a ware has more forms in its typology then the process of only publishing diagnostic 

sherds will lead to an over-emphasis on this ware). Exploring the trends in the number of 

forms, the number of sites and the frequency distributions below will therefore be necessary 

to pin down the particularity of the ESA distribution. 

 

Fig. 40. Number of sherds per ware, per 25-year period, calculated using the Gaussian distribution method (n=8073). 

5.4.5. Number of forms per ware 

Figure 41 represents the number of forms in each wares’ standard typology that is dated to a 

particular 25-year period. Again, we notice the highest diversity of forms between 50BC and 

150AD, which is to be expected since these wares were most common in this period. 

However, it is interesting to note that ESA does not have the highest number of forms 

throughout all periods. The diversity of ESC is larger from 75BC onwards, even though its 

distribution pattern is much more limited than that of ESA. 
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Fig. 41. Number of forms per ware, per 25-year period (n=8073). 

5.4.6. Number of sites per ware28 

The pattern under investigation in this case study is most obvious when we plot a chart of the 

number of sites per period per ware (Fig. 42). The boxplot in figure 43 presents an alternative 

representation of this pattern, which will be used to compare the simulated distribution of 

wares of the agent-based model presented in section 5.5 with the distribution observed in the 

ICRATES database. This figure presents the same data but normalised to a scale of 100 sites, 

in order to facilitate comparison with the simulations which include only 100 sites. It also 

only includes those periods where four wares circulated in the Eastern Mediterranean, which 

is the scenario simulated in the model. 

It is immediately clear that ESA has by far the widest distribution until at least 75AD. After 

that its distribution becomes more limited like that of the other wares. Between 100 and 

150AD ESD has a wider distribution than ESA, but not on such a scale as before. It is clear 

that only ESA attained a supra-regional distribution for centuries whilst all other wares were 

mainly of regional importance (although we should not forget the significant distribution of 

ESB and ESD in the period 50-125AD). It is also worth noting that there must have been an 

28 For maps showing the spatial distribution of the dataset per period and per ware, see: 
http://icrates.arts.kuleuven.be/icrates/network-analysis/webpages/icrates_maps.html (accessed 01/06/2014). 
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even wider diversity of wares, mainly of local importance, than those represented here. In 

light of this fact, the supra-regional distribution of ESA becomes even more striking. 

 

Fig. 42. Number of sites a certain ware is attested at, per 25-year period (n=8073). 

 

Fig. 43. Boxplot of number of sites with wares per period. Triangles represent individual wares, grey boxes indicate the 
range (wideness) of distribution. Values were normalized to a scale of 100 to facilitate comparison with the simulated 
distributions. 

5.4.7. Frequency distributions 

In this section I will explore the general patterns identified in the charts above in a bit more 

detail through three frequency distributions, which compare the number and proportion of 
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sherds, forms, and sites with each other per period. This offers the advantage of exploring 

how the pattern of interest in this case study is made up of particular site assemblages with 

different configurations and volumes of wares and forms. These distributions will be 

compared to the simulation results in section 5.5 and I will therefore only describe them for 

the period from 25BC to 150AD in which four tablewares circulated on a large scale in the 

Eastern Mediterranean. 

Wares per site 

Figure 44 shows an example of a frequency distribution of the number of wares attested at 

sites (according to the Gaussian probability distribution). The frequency distributions for each 

25-year period between 25BC and 150AD show the same general trend: the vast majority of 

sites have evidence of only one ware, whilst a low number of sites have evidence of two, 

three or four wares. 

 

Fig. 44. Frequency distribution of the period 25-50AD showing the number of sites (Y-axis) on which a certain number of 
wares (X-axis) is attested. The frequency distributions of all other periods between 25BC and 150AD show the same general 
trend. 

Sherds per site 

The histograms in figure 45 show the proportion of sherds per ware that make up sites’ 

assemblages. The frequency distributions therefore reflect the number of sites per 25-year 

period where certain wares are the majority or minority according to the numbers of sherds 

recorded in the ICRATES database. One pattern is immediately obvious: ESA has a 

significantly wider distribution than the other wares and is the dominant ware at a very high 

number of sites until at least 75AD. After that, the geographical distribution of ESA is 

matched by that of other wares. One might argue that the number of sherds is sensitive to 
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sampling issues and that the proportion of types of each ware found on sites is a better 

indicator of assemblage diversity and wares’ distributions. 

Types per site 

The frequency distributions of types per site (Fig. 46) show a largely similar pattern, which is 

what we would expect given that many publications included in the ICRATES database only 

describe diagnostic sherds (i.e. not a full quantification but rather providing evidence of the 

diversity of attested types). However, these frequency distributions of types also show a 

higher diversity of assemblages (see the 26-50% categories), which was less clear from the 

frequency distributions of sherds. On a large number of sites ESA is the only ware, indicating 

a wide distribution unmatched by the other wares until at least 75AD. Until that same period, 

a high number of sites also have more diversity of ESA forms than of any other ware. It is 

interesting to note that although ESC has a much higher number of forms than ESA and the 

other wares from 75BC onwards (see Fig. 41), the number of sites these were found on is 

actually quite limited (see Fig. 42). This is the reason why ESC is the majority ware in 

relatively few sites throughout most periods, and is a minority ware in more sites than ESA. 

One could point out that many of the sites where ESA is the only ware are sites with only one 

sherd of one form in the database, which is especially the case for the sites close to the 

production area of ESA covered by the Tell Rifa’at survey and published by Kenrick (1981). 

But even if we disregard sites where one ware makes up 100% of the assemblage, we still 

notice that ESA is the majority ware on more sites than any other ware for most of the period 

under study. 
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Fig. 45: Frequency distribution per 25-year period showing the number of sites (Y-axis) for which a certain percentage of 
sherds of a certain ware (X-axis) is attested. The X-axis shows four percentage categories: 1-25; 26-50; 51-75; 76-100. For 
example, in the period 25-1BC ESA makes up 100% of all sherds on 94 sites, whilst ESC makes up 100% of all sherds on 
only 9 sites. 
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Fig. 46: Frequency distribution per 25-year period showing the number of sites (Y-axis) for which a certain proportion of 
forms per ware (X-axis) is attested. The X-axis shows four percentage categories: 1-25; 26-50; 51-75; 76-100. For example, 
in the period 25-1BC there are 91 sites where 100% of the total number of forms is ESA. 

5.4.8. Exploratory network analysis results 

An exploratory network analysis of the dataset was performed to further explore the degree to 

which forms of the same ware have a similar distribution. To this aim the analysis uses an 

inversed Brainerd-Robinson similarity index, which results in a numerical indication of how 

similar the distribution of a pair of forms is. Using these Brainerd-Robinson (BR) similarity 

values a similarity network can be created and analysed. Through a sensitivity analysis I 

evaluated the impact on the exploratory network measures’ results of focusing the 
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exploratory network analysis on subnetworks with a different minimum similarity value, i.e. 

an evaluation of the impact of the common practice of placing an arbitrary threshold on the 

edge value in order to focus analysis on the most robust patterns. I decided to include this 

exploratory network analysis and sensitivity analysis as an appendix (see appendix IV section 

12.2) since it does not introduce innovative network measures compared to the previous two 

case studies (indeed the kind of analysis presented here is by far the most common way 

archaeologists have been applying network science techniques) and since its results are not 

directly comparable to the simulation output of the ABM. The main contribution of this 

exploratory network analysis and sensitivity analysis to this case study is therefore as an 

additional exploratory data analysis which helps answer the first research question of this 

case study concerning the general trends in the similarity of forms’ and wares’ distribution 

patterns. Here I will provide the results of this analysis and their implications for the aims of 

the case study are given in section 5.4.8. 

The distributions of tableware forms are not very similar in general, although there is great 

variation in the BR values. The sensitivity analysis suggests that overall the exploratory 

network measures show the same general trends for the complete networks as for the 

networks with a threshold applied: decreasing density, high clustering coefficient, peak in 

heterogeneity, similar trend in the number of nodes. This suggests these trends are quite 

robust and should inform the discussion of the exploratory network analysis results. 

However, not surprisingly the effect of applying a threshold on the ‘mean + standard 

deviation’ BR value had the strongest impact on the results, for example concerning the 

decrease in the number of ESA forms included. The proportional change of nodes in rankings 

as a result of changing thresholds is very common but never dramatic. The change for the 

clustering coefficient is slightly higher on average, between 0 and 45%. Change for the 

degree measure is between 15 and 35%. The period 150-125BC shows strong sensitivity, 

especially for the degree measure. Overall this sensitivity analysis indicates that the 

clustering coefficient and degree rankings of all periods are sensitive to changing thresholds, 

but not dramatically, suggesting that the most persistent patterns will be reflected in all 

thresholds. This analysis also indicates that the outliers and networks with a high degree of 

change should be addressed in more detail, which was done in the exploratory network 

analysis. 
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It should be clear that the sensitivity analysis performed here is by no means conclusive about 

the robustness of the exploratory network analysis results. One could argue that the sampling 

bias in the ICRATES dataset is not directly addressed (something that could be done by 

removing randomly selected chunks of data, performing the analysis again and comparing 

results, or by comparing the observed networks with simulated random networks with the 

same number of nodes and edges). This sensitivity analysis merely served to explore the 

dataset in its network form and calibrate any possible interpretative statements about pairs or 

groups of forms that show particularly high similarity. A more in-depth evaluation of the 

sampling bias in the ICRATES dataset was not within the scope of this project which focuses 

mainly on the network side of things. 

The technical description of similarity networks provided in Appendix IV section 12.2 can be 

summarised by focusing on the general trends. From 25BC onwards ESA distribution 

becomes less internally homogeneous. Although ITS becomes widely distributed around this 

time, this is nevertheless also a local Eastern phenomenon. ESD, ESB and ESA show 

increasing similarities in their distribution patterns, especially between 25BC and 25AD. 

However, one should not forget that during this period ESA was still present on a much 

larger number of sites than any of the other wares. The higher similarity between wares in 

this period should also be seen in light of ESA being the dominant ware on many sites with a 

diverse assemblage (see section 5.4.7). After that the similarity of ESB and ESD to ESA 

forms’ distributions decreases, whilst ESA maintained an unrivalled wideness of distribution. 

There is another increase of similarity between these wares’ distributions from 75AD until 

125AD. As well as a higher similarity to ESB and ESD, it is important to note that the period 

between 75AD and 125AD also marks the decrease of the wideness of ESA distribution. ESC 

on the other hand retains its internal homogeneity until its corpus of forms decreases from 

75AD onwards. From then on it becomes increasingly similar to ESB and to some extent to 

ESA, although this trend stops around 125AD. ESC remains very dissimilar to ESD 

throughout all periods. 

5.4.9. Conclusion 

The exploratory data and network analysis results together provide an answer to the first 

research question of this case study: “What differences can be observed in the distribution 

patterns of different tablewares, forms (here considered modern analytical constructs)? Are 

forms’ distributions always more similar to those of the same ware?”. We have seen that the 
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answer to this question is a complex one: during some periods ESA, ESB and ESD knew a 

very similar distribution whilst ESA was still most widely distributed, during other periods all 

wares’ distributions were dissimilar. However, the detailed technical descriptions also 

highlighted those forms whose distribution is more similar to that of other wares. It becomes 

clear that we cannot merely assume that all forms of the same ware were similarly 

distributed. Moreover, when we bring the assumption used here to mind, that similarity in 

distribution patterns of forms might indicate similarity in the processes driving distribution, 

this suggests that tableware distribution processes were largely ware-specific but with some 

exceptions. However, we need to acknowledge that forms are a modern construct and might 

not be the best analytical category to make such statements about. Future work should focus 

on similarities in distributions of functional categories as well. Indeed, the exploratory 

network analysis also emphasised the importance of clearly stating the theoretical 

assumptions underlying the selection of a certain similarity measure, i.e. archaeologists 

should not motivate their decision to use the Brainerd-Robinson method because it is 

commonly used by archaeologists but because the assumptions underlying the way it captures 

similarity of artefact assemblages or forms’ distributions is desirable within their research 

context. 

The exploratory data and network analyses presented here made the exceptional distribution 

of ESA clear. It is observed both on the level of the aggregated data per 25-year time-slice, as 

well as when looking at differences in the distributions per time-slice in more detail. To this 

exploratory data analysis we can add the geographical wideness of ESA distribution 

identified in previous work (Bes 2007; Brughmans and Poblome in press; Willet 2012). It can 

be concluded that this selection of the ICRATES dataset mirrors the results of previous 

studies of the topics, suggesting that ESA was for centuries of supra-regional importance, 

whilst other Eastern-produced wares were more of regional importance for most of their 

production-life. It also became clear that the smaller trends identified are often created by the 

standard typo-chronological frameworks used, by the different densities and number of sites 

excavated by archaeologists in different regions around the Mediterranean, or by the common 

practice to only publish diagnostic sherds. It should therefore be emphasised that only the 

more general trends identified here should be considered as the archaeological pattern I aim 

to study as the outcome of distribution mechanisms that are the research focus of this case 

study. This has the further implication that our knowledge of this distribution pattern is not as 

accurate as we might need it to be for scientific hypothesis testing, since it is not possible to 
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describe this distribution pattern in anything other than the most general terms with a 

considerable error range. However, this condition should not be considered an argument 

against hypothesis testing, since we can still falsify hypotheses by identifying those 

distribution mechanisms that do not even succeed in producing outcomes that fit this very 

general pattern. These distribution patterns will therefore serve as a reference when exploring 

the results of the agent-based network models in particular (section 5.5), where I will evaluate 

which simulated scenarios are and are not able to reproduce the patterns identified here. 

This section has emphasised the need to only compare the observed tableware distribution 

with simulated distributions through descriptive statistics, and focus hypothesis testing on 

falsification rather than cherry picking those experiments that show a perfect fit with the data. 

However, these exploratory data and network analyses still did not bring me any closer to an 

indication of what the distribution processes that gave rise to the tableware distribution 

patterns might be. This work was nevertheless crucial in order to be able to critically compare 

the archaeologically observed distribution pattern with simulated distribution patterns. In the 

next section I will evaluate two hypotheses about the processes that could have given rise to 

the differences in tableware distribution patterns, in light of the complex picture of the data 

painted in this section. 

5.5. Agent-based model 
In section 5.2 above I argued that agent-based network modelling might form a useful part of 

an innovative method for expressing hypotheses about the workings of the Roman economy, 

and to compare their simulated outcomes with the archaeological record. However, I also 

highlighted the wide range of hypotheses argued by archaeologists and historians alike to 

account for the archaeologically observed distribution patterns, and I emphasised that these 

cannot all be evaluated through one single approach. Rather, I see more use in Roman 

archaeology for approaches that allow for evaluating the impact of individual contributing 

factors. Such a research process forces archaeologists to explicitly formulate their 

hypotheses, their assumptions about how exactly these factors functioned, and how the 

archaeological record can allow us to answer the questions we pose. I decided to focus on one 

key contributing factor which, as I have argued above, could be considered a concept holding 

together many of the hypotheses: the structure of social networks. 

In this section I will first describe the model and, most crucially, explain and motivate my 

abstraction of the phenomenon under study (tableware trade in the Roman East) in terms of 
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network concepts. This abstraction will then lead to an implementation of my ideas as a 

computational model, whose main procedures will be discussed in detail (the model is 

available as an electronic supplement to this PhD; the model code is provided in Appendix IV 

section 12.3). A summary of the network science research process applied in the creation and 

analysis of this ABM is given in Box 9. Finally, the results of the model are presented and 

compared with the archaeological record. 

5.5.1. Model description 

An agent-based model was created that represents the structure of social networks between 

traders that act as the channels for the flow of commercial information and goods. When the 

model is initialised a social network is created between traders, who are distributed among 

sites. Four of these sites are production centres of four different wares, and traders located at 

these sites obtain a number of items of this locally produced ware in each turn. At each time 

step traders will determine the local demand for tableware they want to satisfy, and will 

estimate the price they believe an item of tableware is worth based on their knowledge of the 

supply and demand of the traders they are connected to. Every item of tableware is then put 

up for sale, and pairs of traders who are connected in the network can buy or sell an item. 

When an item is successfully traded, the buyer will decide to either sell it to a local consumer 

to lower the demand (in which case the item is taken out of the trade system and is deposited 

at that site), or to store it for redistribution in the following turn in case this promises a higher 

profit. Over time, this model therefore gives rise to distributions of four tablewares. 

The following section explains how the hypotheses of Bang and Temin can be tested in this 

model by changing the network structure in two specific ways. 

Conceptualisation and representation 

The social networks described by Bang consist of a strong community structure within 

markets, limited availability of commercial information between communities, and weakly 

integrated markets. The social networks described by Temin consist of limited availability of 

commercial information, and well integrated markets where prices are determined by supply 

and demand. The terms in italics are concepts these authors use to abstract their ideas about 

the phenomenon of Roman trade, and will need to be clearly defined before implementation 

in a computational model. I argue that the hypotheses of Bang and Temin can be usefully 

conceptualised and represented as follows: 
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• Commercial actors have agency (these actors are here referred to as traders, but they 

could represent any type or number of commercial actors that enable the flow of 

goods and commercial information). In this model traders are software agents 

represented as nodes. 

• Markets are places where traders come together, where different communities of 

traders exist, and where tableware and commercial information are available. In this 

model all traders are distributed among a set number of markets. 

• Traders have the ability to share commercial information and goods with other 

traders. This ability is represented as a link between a pair of nodes. 

• The availability of information is limited when a proportion of the traders a trader is 

able to trade with does not share commercial information with the trader. This 

proportion of available commercial information is represented as the proportion of 

neighbouring nodes a node knows the supply (volume of tableware in possession) and 

demand of. This proportion is tested by varying the variable local-knowledge in 

experiments. A low value of this variable represents limited availability of accurate 

commercial information (≈Bang and Temin). 

• Communities consist of traders who are more likely to trade and share commercial 

information with each other. This is represented by a social network structure with a 

high clustering coefficient within markets, and with a lower number of links between 

clusters than within clusters. 

• The integration of markets is limited if the ability to share commercial information 

and goods between markets is limited. This is represented by the proportion of all 

possible links between nodes that connect nodes on different sites. This proportion is 

tested by varying the variable proportion-inter-site-links in experiments. A high value 

for this variable represents highly integrated markets (≈Temin), a low value represents 

weakly integrated markets (≈Bang). 

• The supply of a trader is the amount of tableware this trader owns and is willing to 

sell. The demand is here used as the demand of consumers a trader is aware of and is 

willing to supply for. In this model supply and demand of traders constitute 

commercial information. Traders obtain this information from a proportion of the 

traders they are connected to and use it to estimate the price they believe tableware is 

worth within their part of the social network. A seller will only agree to sell tableware 

for more or the exact amount he estimates it is worth. A buyer will only buy tableware 
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for less or the exact amount he estimates it is worth. (this means that there is no 

“haggling” and negotiation of prices in this model, a decision made to simplify the 

model and to be better able to evaluate the impact of differential availability of 

commercial information). 

This conceptualisation and representation is implemented in the ABM presented here, which 

allows me to explore the hypotheses by Bang and Temin in two ways: by changing the 

proportion of network links between traders located on different sites (proportion-inter-site-

links variable), and by changing the proportion of accurate commercial information a trader 

has access to (local-knowledge variable). 

The structure of the social network does not change within a single experiment, a decision 

made in order to be able to assess the impact the social network structure has on giving rise to 

the archaeological pattern of interest. This means that this model does not represent traders 

moving from one town to another and create new trade contacts over time. Instead, the model 

represents the availability of commercial information and trade partners in different towns. In 

this model, therefore, an edge between a pair of traders located on different markets 

represents the possibility of obtaining commercial information from a different market and 

the ability to trade with someone located in a different market. Whether those traders actually 

physically moved between markets is not the main interest in this study and it is therefore not 

implemented; what matters is their ability to enable the flow of goods and information. For 

this reason, I decided against a geographically more realistic modelling of the Eastern 

Mediterranean and to focus on these flows in an abstract topological space. The connectivity 

of commercial actors is a key feature of both Bang’s and Temin’s hypotheses, and I believe a 

representation as network data is preferable as an initial comparison of these hypotheses. This 

model, therefore, aims to express these two hypotheses as different network data 

representation, and it is the effect of changing the structure of the hypothesised network that 

will be studied here. 

A final important factor deserves our attention before describing the technical details of the 

model: the conceptualisation of time. The accuracy of dates is always problematic in 

archaeology, and no less so for Roman tableware as shown by Theodore Peña (2007) in his 

model of the use-life of this type of pottery, and in Rinse Willet’s (2012, 44-46) hypothetical 

calculation of tableware volumes in circulation in the Eastern Mediterranean. One could 
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adopt Peña’s estimate for the use-life of tableware of between one and three years to suggest 

a realistic setting for new demand caused by the deposition of previously owned tableware. 

However, this would depend on realistic estimates of the ancient population and its 

distribution among towns in the Eastern Mediterranean. Estimates for this are available (e.g. 

Parkin and Pomeroy 2007; Scheidel et al. 2007) but they are by no means unproblematic. 

Moreover, this model does not aim to recreate the changing distribution pattern observed in 

the archaeological record through time, and its production and consumption procedures are 

purposefully kept as simple as possible. It merely wishes to evaluate whether different 

structures of social networks can give rise to differences in the wideness of wares’ 

distribution. In this model I therefore decided to work with a relative ‘transaction time’ rather 

than an absolute timeframe: the time of each time step is the time it takes for all tableware 

available for trade to be considered in a transaction, and the demand to increase by one item 

per trader if it is not at its maximum. In future work this model should be given a more 

realistic time conceptualisation by modifying settings for tableware volumes and the increase 

in demand. 

Variables and outputs 

I have already introduced the two variables whose values I change in order to test the 

hypotheses. The ABM described in the next few sections includes a large number of 

variables, although most of them are simply used to store a certain value (e.g. the fact that a 

site is a tableware production site, or the amount of tableware deposited on a site). A number 

of other variables have a specific default value, which are motivated in the next few sections. 

Tables 17-18 list all variables included in this ABM, with a short description, and a default 

value for some. Before I describe the model in more detail it is important to distinguish here 

between independent and dependent variables, and my definition of these. Independent 

variables can be defined as the inputs, causes, or the variables tested to evaluate whether they 

cause variation in the dependent variables. Dependent variables are the outputs or effects, or 

are tested to see if they are the effects. The independent variables listed in table 17 are 

therefore hypothesised to cause the differences in the amount of products deposited at sites 

(dependent variables), and they will not change during a simulation. The dependent variables 

listed below will change throughout the simulation as a result of the trade procedures. The 

outputs of the model are the values of the dependent variables at the end of an experiment, 

i.e. the simulated volume of tableware at sites, diversity of site assemblages, and wideness of 

wares’ distributions. What I aim to do in this model is to evaluate the effects of two specific 
229 



Tom Brughmans 

independent variables (proportion-inter-site-links and local-knowledge) on the variation 

observed in the dependent variables, because these two variables are my abstractions of the 

hypotheses I wish to express and test. 
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Table 17. Independent variables: the inputs, causes, or the variables tested to evaluate whether they cause variation in the 
dependent variables. 

Independent variables   
Variable Description Default value 
Global variables   
Num-traders The total number of traders to be distributed among all sites 2000 
Num-sites The total number of sites 100 

Traders-distribution Determines how the traders are distributed among the sites, this can be either 
“uniform”, “normal”, or “exponential” frequency distributions exponential 

Network-structure 

When set to “hypothesis” this connects traders to create a small-world 
structure that represents the hypothesised social network structure; when set to 
“random” this connects traders to create a random structure with the same 
number of nodes and edges as would be expected in a “hypothesis” network 
with the same global variable settings. (not tested here) 

hypothesis 

Maximum-degree The maximum number of connections any single trader can have 5 

Proportion-inter-site-
links 

The proportion of all pairs of traders that are connected in step two of the 
network creation procedure by inter-site links 

tested (0, 
0.00005, 

0.0001, 0.0003, 
0.0006, 0.001) 

Proportion-intra-site-
links 

The proportion of all pairs of traders that are considered for becoming 
connected in step three of the network creation procedure by intra-site links 0.0005 

Proportion-mutual-
neighbors 

The proportion of all pairs of traders with a mutual-neighbor that are 
considered for becoming connected in step four of the network creation 
procedure by intra-site-links 

2 

Site-specific variables   
Producer-A Set to "true" if the site is the production centre of product-A  
Producer-B Set to "true" if the site is the production centre of product-B  
Producer-C Set to "true" if the site is the production centre of product-C  
Producer-D Set to "true" if the site is the production centre of product-D  
Trader-specific 
variables   

Demand The proportion of the demand at the market the trader is located at that he 
aims to satisfy by obtaining products through trade 

Constant 
increase of 1 

per turn; 
maximum = 

the number of 
traders at the 

site 

Local-knowledge The proportion of all traders a trader is connected to that he receives 
commercial information (supply and demand) of in each turn 

tested (0.1, 0.2, 
0.5,  1) 

Transport-cost The fee which is subtracted from the profit a trader expects to make from a 
transaction with a trader located at a different market (not tested here) 0 
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Table 18. Dependent variables: the outputs or effects, or are tested to see if they are the effects. 

Dependent variables  
Variable Description 
Site-specific variables  
Volume-A The number of items of product A deposited on this site as a result of a successful transaction 
Volume-B The number of items of product B deposited on this site as a result of a successful transaction 
Volume-C The number of items of product C deposited on this site as a result of a successful transaction 
Volume-D The number of items of product D deposited on this site as a result of a successful transaction 
Trader-specific variables  
Product-A The number of items of product A a trader owns and can trade or store in this turn 
Product-B The number of items of product B a trader owns and can trade or store in this turn 
Product-C The number of items of product C a trader owns and can trade or store in this turn 
Product-D The number of items of product D a trader owns and can trade or store in this turn 

Stock-A The number of items of product A a trader puts in his stock in this turn as a result of an 
unsuccessful transaction or for redistribution in the next turn 

Stock-B The number of items of product B a trader puts in his stock in this turn as a result of an 
unsuccessful transaction or for redistribution in the next turn 

Stock-C The number of items of product C a trader puts in his stock in this turn as a result of an 
unsuccessful transaction or for redistribution in the next turn 

Stock-D The number of items of product D a trader puts in his stock in this turn as a result of an 
unsuccessful transaction or for redistribution in the next turn 

Maximum-stock-size The number of items a trader is willing to obtain through trade this turn in addition to his own 
demand if the average demand is higher than his demand 

Price The price a trader believes an item is worth based on his knowledge of supply and demand on 
the market 

 

Setup procedures 

The model is initialised by creating 100 sites and 2000 traders, distributing the traders among 

the sites, and connecting traders to construct a social network. Sites are positioned along a 

circle, which is convenient for setting up the social network and for visualisation, but it does 

not represent sites that are geographically close. Traders are then distributed on these sites 

following an exponential frequency distribution with the mean equal to the mean number of 

traders per site. This exponential frequency distribution will result in strong differences 

between the number of traders per site, where a few sites have a very high number of traders 

(between 58 and 135 traders in the experiments) and most sites have a much lower number of 

traders. Since the demand of a site in this model is determined by the number of traders 

present at a site, this exponential distribution is considered to reflect the differing demands of 

markets throughout the Mediterranean: markets with an extremely high demand are relatively 

rare (e.g. Antioch) whilst most markets will have a much more modest demand. 

Traders are subsequently connected to each other to form a social network with a structure 

that represents the hypotheses tested by setting the variable network-structure to the value 
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“hypothesis”. This structure is considered to have a high clustering coefficient within markets 

relatively few links between clusters, and a modifiable proportion of links between markets. 

It was decided to use the ‘small-world’ network structure as a baseline for creating this 

hypothesised network. The procedure to create a network with a ‘small-world’ structure is 

inspired by the simplified model29 for the growth of social networks by Jin, Girvan and 

Newman (2001), which has previously been applied in an archaeological model of exchange 

by Bentley, Lake and Shennan (2005). The simplified version of the model was selected 

because it gives rise to the network structure of interest (maximum degree, low average 

shortest-path length, high clustering coefficient) with relatively few parameters. In particular, 

the procedure to initialise this model is used here, it repeats two steps until “all or most 

vertices have degree z*” (z* is the maximum degree, 5 by default): (step1) a proportion of all 

node pairs is randomly selected and connected if they are not connected yet and if neither 

node has the maximum degree; (step2) a proportion of all pairs of nodes with a mutual 

neighbour is connected if they are not connected yet and if neither node has the maximum 

degree. This procedure was modified to represent the hypothesis being tested here. The 

model’s network creation procedure therefore consists of five steps: 

• Firstly, one pair of randomly selected traders located on neighbouring sites in the 

circular layout is connected between each pair of neighbouring sites. This ensures 

commercial information can flow from each site to its two neighbouring sites whilst 

offering a minimum of connectivity between sites that allows for goods to still be 

distributed to all sites. In scenarios where no other inter-site links are added, 

information and goods will therefore need to travel from site to site along the circular 

layout. 

• Secondly, a variable number of inter-site links is created. A proportion s0 (determined 

by the variable proportion-inter-site-links) of all trader pairs np is connected if a pair 

is not located on the same site and is not connected yet. The total number of trader 

pairs np is calculated as: 

𝟏𝟏
𝟐𝟐

 𝑵𝑵 (𝑵𝑵− 𝟏𝟏)  

Eq. 3. Calculation of total number of trader pairs. 

29 Referred to in Jin et al. 2001 as Model II. 
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where N is the total number of traders. The variable s0, which determines the 

proportion of all node pairs to be connected in this way, is used in the experiments to 

represent the availability of commercial information (together with the local-

knowledge variable) and the ability to trade with traders in different sites. s0 is a float, 

in the experiments I use a value of between 0 and 0.001 (representing a proportion of 

0% to 40.5% of all links being inter-site links). 

• Thirdly, a proportion r0 (determined by the variable proportion-intra-site-links) of all 

trader pairs np is connected if they meet the following requirements: the pair is not 

connected yet, neither of the traders has the maximum number of connections z*, and 

they are located at the same site. The maximum degree z* (determined by the variable 

maximum-degree) is an integer and is 5 in the default setup, whilst the proportion r0 of 

trader pairs selected in this way is a float and is 0.0005 in the default setup. 

• Fourthly, nmr1 traders are selected at random (determined by the variable proportion-

mutual-neighbors). If these traders are connected to a pair of traders on the same site 

that are not connected yet and do not have the maximum number of connections z*, 

then this pair of traders of whom the randomly selected trader is a mutual neighbour 

will be connected. r1 is a proportion of all trader pairs with a mutual neighbour nm, the 

latter is calculated as: 

𝟏𝟏
𝟐𝟐
�𝒛𝒛𝒊𝒊(𝒛𝒛𝒊𝒊 − 𝟏𝟏)
𝒊𝒊

 

Eq. 4. Calculation of all trader pairs with a mutual neighbour. 
where zi is the degree of the ith trader. This step is responsible for the high level of 

clustering and is a process common in social networks called transitivity, which 

stands for the idea that a pair of individuals who have a mutual friend have a high 

probability of becoming friends themselves in the future. 

Steps three and four of this network creation procedure are subsequently repeated 

until the average degree of the network approximates the maximum degree of each 

trader, i.e. many traders will have a degree close to the maximum, those who do not 

have a maximum degree cannot create any further links without violating the rules of 

steps three and four. The default values for the variables in steps three and four were 
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adopted from Jin et al. (2001) and result in a ‘small-world’ network structure of 

traders on each site. 

• Fifthly, at this stage the network can still have a few isolated traders and consist of 

multiple components. Therefore, a minimum number of edges are added between 

pairs of traders on the same site which are not in the same connected component, to 

ensure all traders become part of a single component. This last step was enforced to 

make it theoretically possible for each trader to receive each of the products. It 

generally results in very few (between 0 and 3) extra links being created and does not 

affect the ‘small-world’ structure much. 

• For every experiment the number of edges created in each of these five steps is 

recorded. 

The result is a network structure where neighbouring sites are connected by at least one link 

between a pair of traders, where traders within the same site are connected in clusters with 

few connections crossing clusters, and a variable number of inter-site links depending on the 

hypothesis being tested (Fig. 47). Traders on each site are therefore connected following a 

‘small-world’ network structure (Watts and Strogatz 1998), with a high clustering coefficient 

and a low average shortest path length. However, the overall network structure of all traders 

on all sites combined will not always show the characteristics of a ‘small-world’ network, 

since the number of inter-site links added in addition to the links connecting traders on 

neighbouring sites is determined by the variable proportion-inter-site-links used to represent 

different degrees of integration of markets (Table 19). 

Table 19. Examples of the number of links added in each step of the setup procedure for different settings of the proportion-
inter-site-links variable. Values were derived from experiments with the same randomization seed, due to the stochasticity in 
the model minor differences in the numbers for steps 3 to 5 appear for different randomization seeds. 

Variable: proportion-inter-site-links 0 0.00005 0.0001 0.0003 0.0006 0.001 

Step1: links to neighboring sites 100 100 100 100 100 100 

Step2: proportion inter-site links 0 100 200 600 1200 1999 

Step3: randomly created intra-site links 2942 2895 2889 2779 2541 2251 
Step4: intra-site links created between pairs 

with mutual neighbors 1787 1738 1642 1390 1029 580 

Step5: links created between components 3 2 1 0 0 1 

Total number of links 4832 4835 4832 4869 4870 4931 
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Fig. 47. Example of the network structure generated in the setup procedure of the ABM for different values of the proportion-inter-site-links variable. At the top sites are layed out along a circle 
and traders are positioned at sites. At the botton sites are no longer included and the traders’ social network is layed out using a force-directed layout algorithm (yFiles Organic layout in 
Cytoscape) to display its structure. Note the existence of clusters of traders on sites connected to few other clusters, a pattern which gradually disappears as traders receive more inter-site links 
and the sites become more integrated.
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Trade procedures 

In every time step of the model traders determine their demand, they discard part of their 

stock (due to broken or unfashionable items), traders on tableware production sites obtain 

new items, traders obtain commercial information, they determine what they believe to be the 

current price of an item, and then all items owned by all traders in that turn are considered for 

trade. 

Determining demand: demand in this model is a variable of the traders and represents the 

demand of consumers they are aware of and they believe they can supply for. Demand can 

only be satisfied by obtaining an item of any product through a successful transaction 

between a pair of traders. The demand of each trader is 0 at the start of the simulation. To 

represent the unequal demand for products of sites the maximum demand of a single trader 

equals the total number of traders at the site he is located at, and the maximum demand of 

traders at that site is therefore the number of traders located there squared (i.e. the maximum 

demand at a site increases by the number of traders squared, following a quadratic function 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2, see Fig. 48). Each time step, a traders’ demand is 

increased by 1 if his demand is lower than the maximum. Demand of consumers therefore has 

a maximum (i.e. at some point the inhabitants of a site do not require any more tableware), it 

is satisfied for a while (i.e. the demand is not topped up to the maximum every turn: when a 

consumer obtains an item they do not immediately require a new one), and gradually 

increases to the maximum (i.e. new demand is created by the breaking, or becoming 

unfashionable of old items, or by renewed need for the item). 
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Fig. 48. The maximum demand at a site equals the number of traders squared. 

Stock: in a previous turn items can be put in stock as a result of either a failed transaction or a 

deliberate storing of the item for redistribution in the next turn. At the start of a turn traders 

who have stock will need to discard a fixed proportion of it, this penalty reflects the risks 

involved in not immediately selling an item on to a consumer but storing it for redistribution 

and represents broken and unfashionable items. The proportion of discarded items is set to 

14% in this model, as suggested by Peña’s model (2007, Fig. 11.5) to have been either 

recycled or discarded. 

Production: traders on the production site obtain newly produced items each time step, only if 

their total current possession of all products is less than their demand. If this is the case then 

they obtain items of the product being produced at that site equal to their demand minus the 

sum of their possessed products, i.e. they obtain the number of items needed to satisfy their 

demand. 

Obtaining commercial information and price-setting: every time step each trader will only 

have commercial information available from a proportion of its link neighbours. This 

proportion is determined by the variable local-knowledge and is used in the experiments to 

test scenarios with differing availability of information (together with the proportion-inter-

site-links variable). Commercial information is gathered once in each time step before trade 
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happens, i.e. the traders whose stock and supply becomes known to the trader in question 

remain the same during a time step, but could be different in subsequent time steps. The 

trader then calculates the average demand and average supply of this proportion of 

neighbours, including his own supply and demand. Using this commercial information 

available to him he then determines what he believes is the price of one item of any product 

as follows: 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 =  𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂−𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔+𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒈𝒈𝒈𝒈−𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

. 

Eq. 5. Price estimate by agent 

This results in a normalised float value between 0 and 1 following the logic of supply and 

demand: if the average demand is equal to the average supply then the price will be 0.5; if the 

average demand is higher than the average supply then the price will be between 0.5 and 1; if 

the average demand is lower than the average supply then the price will be between 0 and 

0.5. 

Determine maximum stock: the traders will subsequently determine how many items they are 

happy to store for redistribution in the next turn. The maximum stock is only higher than 0 

when the average demand the trader is aware of is higher than his own demand and his total 

stock, i.e. when the trader believes there is a high demand which promises higher profits 

(because his own demand is lower) he will be willing to store the number of items necessary 

to supply for the average demand. 

Each item is considered for trade once per time step. An item is put in a trader’s stock if he 

cannot make a profit or if none of his neighbours in the network require an item (i.e. their 

demand equals 0). Items in stock can be redistributed in the next time step. An item is sold to 

a buyer if the buyer’s price promises a profit or break-even for the seller. The buyer either 

places the obtained item in stock for redistribution if the average-demand is higher than his 

demand (i.e. redistribution holds the promise of a higher profit), or he sells it to a consumer. 

This is the scenario when deposition of tableware takes place. A buyer decides not to 

redistribute an item and therefore sells it to a consumer: the buyer’s demand is decreased by 1 

because some of the local demand is satisfied; the item is taken out of the trade system 

because the consumer does not redistribute it; and it is deposited on the buyer’s site. The 

volume and diversity of tableware deposited on sites can subsequently be used to compare 

simulated tableware distributions with observed ones. 

239 



Tom Brughmans 

Experiments and variable settings 

A total of 24 experiments were performed in order to test my implementation of the 

hypotheses by Bang and Temin. Each experiment has a different combination of the values 

for the two tested variables: proportion-inter-site-link and local-knowledge. I selected a larger 

number of low variable values in order to see the impact of a limited variable effect on the 

results. The values chosen for local-knowledge are 0.1, 0.2, 0.5, and 1. The values chosen for 

proportion-inter-site-links are 0, 0.00005, 0.0001, 0.0003, 0.0006, and 0.001. 

Because these experiments were only designed to test two variables, all other variables were 

given the default value in all experiments, as shown in tables 17-18. I used 100 sites because 

this is close to the maximum distribution of ESA in the database (146 sites), the number is 

convenient to scale the results, and it was close to the maximum of what was computationally 

possible within the framework of this project. A total number of 2000 traders was used and 

were exponentially distributed among the sites to reflect the unequal sizes and demands of 

ancient towns. In the experiment this results in sites having a minimum of 1 trader and a 

maximum of 135 traders: the vast majority of sites have between 1 and 20 traders (in most 

cases enough to give rise to local clusters at sites given the maximum degree of 5) whilst just 

a few sites have a much higher number of traders (50-135). The default variable settings for 

the three network creation variables (maximum-degree, proportion-intra-site-links, 

proportion-mutual-neighbors) were adopted from the Jin et al. (2001) model from which 

these variables were derived, because these default values give rise to networks on sites with 

a high clustering coefficient and a low average shortest path length (features of a social 

network which we believe to reflect well the hypotheses tested). 

The model was implemented in the Netlogo language, which is easy to learn and read, offers 

a user-friendly interface for visualising the workings of an agent-based model and run 

experiments with different variable settings. Moreover, it has a large community of users and 

many example network models are freely available which can be drawn on for inspiration. 

The most significant drawback of Netlogo is that it can be extremely slow for complicated 

models with many agents, as the one presented here. Indeed, due to time limitations each 

experiment was run only ten times (ten iterations). This is insufficient to expect robust results 

given the stochasticity in the model, and the number of iterations should be higher in future 

work. However, the results still allow for a descriptive statistics approach to the results and 

will help understand the behaviour of a model constructed within the available time limits. 
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These results will be crucial in shaping future versions of this model, and maybe even future 

attempts at testing Bang’s and Temin’s hypotheses. Each iteration uses a different 

randomisation seed, but the same ten seeds were used across all experiments. This means that 

results between experiments are comparable, because the random factors involved in setting 

up the social network and running the distribution processes are the same, the only difference 

are the values for the two tested variables. 

Each experiment was run for 10,000 time steps (or ticks in Netlogo jargon). This is arguably 

an arbitrary end to the simulation, but was considered acceptable since preliminary 

simulations of the model showed that the maximum width of a ware’s distributions rarely 

changes after time step 5,000. The final results confirm this observation. 

The output obtained from these experiments is rich and will be studied in two different ways. 

Firstly, we obtain the values for all dependent variables (Table 18) at the end of the 

experiment (i.e. at time step 10,000). Most crucial of these for testing the hypotheses and 

comparing simulations with the observed distributions of tablewares is the volume of each 

ware deposited at each site. These simulated results allow me to identify how many sites each 

ware was deposited on and what proportion each ware takes up in a site’s assemblage, which 

will be compared with the combined archaeological data. Although one could also study 

differences in the price of goods between different sites, a key aspect of Temin’s hypothesis, 

this is not done here due to time limitations. Secondly, in each simulation the social network 

will have a different structure and we can use network measures to describe these differences. 

In particular, I will compare the closeness centrality, betweennes centrality, number of inter-

site links, and number of traders at a site with the output of the dependent variables: the total 

volume deposited at a site at the end of the simulation. The correlation between the social 

network structure and these results from the simulation will provide a better insight into the 

workings of this complex model, and will guide the modification of the model in future work. 

5.5.2. Results 

The previous section discussed how the archaeological research question of this case study, 

the hypotheses being tested, and the dataset used can inform a network science research 

process of conceptualisation and representation as network data (see Box 9). An ABM was 

created by following this research process, and this section provides a technical description of 
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the results. This will be followed by a detailed discussion of the relevance of these results for 

advancing our understanding of the Roman trade system. 

Box 9. Network science research process ABM case study 3 
Phenomenon studied: 

• The functioning of social networks of traders, and their ability to drive the distribution of tableware in 

the Roman East. 

Abstraction as network concepts: 

• Commercial actors (traders) with agency are the entities of research interest. 

• Traders can trade on markets. 

• Through a social network traders can share commercial information and goods with others. 

• The social network consists of communities of traders which trade more frequently with each other. 

• The social network allows a limited number of trader-pairs to trade between markets. 

Representation as network data: 

• Commercial actors are represented as nodes. 

• The ability to share information and goods is represented as an edge. 

• Community structure is represented by a high clustering coefficient. 

• The limited contacts between communities is represented by edges between a low proportion of 

randomly selected pairs of traders. 

• The tested degree of market integration is represented by edges between a variable proportion of 

randomly selected traders on different sites. 

• The tested degree of the availability of reliable commercial information is represented by the ability of 

a node to obtain information and goods from a variable proportion of its neighbours. 

Dependence assumptions: 

• Trader pairs with a mutual contact will be more likely to become commercial partners themselves. 

• Traders with contacts on different markets will have a better knowledge of prices and will have the 

opportunity to distribute tableware to different markets. 

Network science techniques used: 

• Exploratory network analysis: nodes, connected components, average degree, clustering coefficient, 

density, heterogeneity, node clustering coefficient, code degree. 

• Confirmatory network analysis: ABM; Jin et al.’s (2001) social network model. 

Range of distribution per ware: simulations 

The boxplots in figures 49-58 present the simulated ranges of wares’ distributions of all 

experiments and compare these with the observed ranges per period. A boxplot summarises a 

lot of information and it is worth explaining here what they represent: stars represent outliers 

(i.e. exceptionally low or high values); the vertical line represents the total range of the 

distribution excluding outliers (i.e. the area between the minimum and maximum number of 

sites wares are found on); the grey box shows the interquartile range (i.e. the middle 50% of 
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values); the horizontal line in this box represents the mean value. Each boxplot in these 

figures shows the combined results of 10 iterations of each experiment. This means I 

identified on how many sites each of the four wares was deposited on for each iteration, and 

then combined all fourty values per experiment to produce this boxplot. Each group of 

experiments with a different value for the proportion-inter-site-links variable is separated by 

a vertical dashed line. 

Figure 49 presents only the simulated results of all experiments, not the observed 

distributions. We notice a clear trend in the wideness of wares’ distributions between 

experiments. Low values for the proportion-inter-site-links variable (0; 0.00005; 0.0001) will 

give rise to an extremely limited distribution of wares, whilst high values (0.0003; 0.0006; 

0.001) result in very widely distributed wares. This suggests that this variable strongly affects 

the wideness of wares’ distributions. In contrast, the local-knowledge variable affects the 

wideness of wares’ distributions very little. We notice only slight increases in the range of 

distributions as this variable is increased. However, we also notice very peculiar results for 

each experiment with this variable set to 1: the range is always lower than that of other 

experiments with the same value for proportion-inter-site-links. To ensure this is a robust 

trend and not merely a result of using the round number 1, I performed an additional 

experiment with local-knowledge set to 0.99. The results of this experiment shown in figure 

50 demonstrate that a high local-knowledge does indeed result in a more limited distribution 

(only shown for proportion-inter-site-links = 0.0006, although similar results are to be 

expected for other settings of this variable). 

These combined results of all experiments suggest that the proportion-inter-site-links variable 

has a stronger effect on the wideness of wares’ distributions (as suggested by Temin’s 

hypothesis), and that the local-knowledge variable is unlikely to give rise to strong 

differences in the distribution of wares (contra Bang’s hypothesis). 
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Fig. 49. Boxplots show the range of the number of sites simulated wares in different experiments were deposited at (each 
boxplot shows the combined results of 10 iterations of the experiment). The vertical lines divide the results into experiments 
with different values for proportion-inter-site-links. 

 

Fig. 50. Boxplot of the experiments with proportion-inter-site-links set to 0.0006. The additional experiment with local-
knowledge = 0.99 indicates that the downward trend with high values for this variable is real and not merely a product of the 
value 1. Boxplots show the range of the number of sites simulated wares in different experiments were deposited at (each 
boxplot shows the combined results of 10 iterations of the experiment). 

However, when interpreting these results it is crucial to keep one important limitation in 

mind: these are combined results of only ten iterations. Indeed, we notice an extremely high 

variance between different iterations of the same experiment, in particular for experiments 

with a value for proportion inter-site links higher than 0.0001. Figure 51 illustrates this for 
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one experiment: we see that iteration 8 has a range of only 15, whilst iteration 5 has a range 

of 83. Moreover, the ranges of some iterations do not even overlap (e.g. iterations 6 and 7). 

This suggests that the wideness of wares distributions’ varies greatly depending on the setup 

of the social network, which in this model is different for every iteration. Since the same ten 

randomization seeds were used for the ten iterations of each experiment, the results of the 

experiments are nevertheless comparable. It can be concluded that the trend described in the 

previous paragraph seems robust but the variability between iterations needs to be better 

understood. Future work should therefore perform a much higher number of iterations to 

check whether the results are normally distributed, and it should evaluate what factors give 

rise to such strong differences between iterations. The latter is done at the end of this section. 

 

Fig. 51. Boxplot showing the results of ten iterations of a single experiment with local-knowledge = 1 and proportion-inter-
site-links = 0.001. Grey boxes represent the range of simulated distributions, whilst each ware (data point) is also shown as a 
black triangle. Please note the strong differences in ranges within this one experiment, suggesting that a higher number of 
iterations is necessary. 

Range of distribution per ware: simulations VS observations 

In this section I will compare the simulated distribution of wares discussed above with the 

distribution observed in the ICRATES database per 25-year period. I will only do this for the 

seven periods between 25BC and 150AD during which four Eastern produced wares 

circulated in the Eastern Mediterranean, since these are comparable with the four simulated 

wares. These periods show very different trends: from very strong differences due to the 

ubiquity of ESA, to smaller differences due to the demise of ESA and the increased 

circulation of other wares. These trends will be compared with the simulation results in a 

descriptive way, because the small number of iterations per experiment, the strong variance 
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of the results, and the fact that the observed range consists of only four data points (one for 

each ware) suggest a statistical goodness of fit test would be inappropriate. 

The difference between the number of sites wares are present on is greatest in the periods 

25BC-25AD (Figs. 52-53). The interquartile ranges of experiments with proportion-inter-

site-links values of 0.0003, 0.0006, and 0.001 lie completely within this range (for 0.0003 

only in the period 25-1BC). In the period 25-50AD the difference in the wideness of wares’ 

distribution is still large, but much more limited than for the previous two periods, and now 

the experiments with proportion-inter-site-links = 0.0006 seem to fit best within this range. In 

the subsequent four periods the difference in the wideness of distribution becomes 

increasingly limited. The periods 50-100AD still show a good fit with the experiments with 

proportion-inter-site-links = 0.0006. None of the experiments provide comparable results 

with those of the periods 100-150AD. It is important to note that experiments with a low 

value for the proportion-inter-site-links variable show results very dissimilar to the observed 

distribution of tablewares. Even for periods where the range of distribution is very limited 

(100-150AD), the number of sites tablewares are found on is much higher and therefore not 

comparable with the simulations. 

It can be concluded that a high proportion of inter-site links is needed to give rise to the 

differences in the wideness of wares’ distributions as observed in the ICRATES database, 

that the model results shows a favourable fit of some experiments with the observations for 

the period 25BC-100AD, and that the model does not succeed in reproducing the 

distributions observed for the period 100-150AD. 
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Fig. 52. Observed distribution of wares for the period 25-1BC (grey box in background) compared to the simulated 
distributions (boxplots). Boxplots show the range of the number of sites simulated wares in different experiments were 
deposited at (each boxplot shows the combined results of 10 iterations of the experiment). The grey box represents the 
observed minimum, maximum and average distribution of four wares for the period 25-1BC. 

 

Fig. 53. Observed distribution of wares for the period 1-25AD (grey box in background) compared to the simulated 
distributions (boxplots). Boxplots show the range of the number of sites simulated wares in different experiments were 
deposited at (each boxplot shows the combined results of 10 iterations of the experiment). The grey box represents the 
observed minimum, maximum and average distribution of four wares for the period 1-25AD. 
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Fig. 54. Observed distribution of wares for the period 25-50AD (grey box in background) compared to the simulated 
distributions (boxplots). Boxplots show the range of the number of sites simulated wares in different experiments were 
deposited at (each boxplot shows the combined results of 10 iterations of the experiment). The grey box represents the 
observed minimum, maximum and average distribution of four wares for the period 25-50AD. 

 

Fig. 55. Observed distribution of wares for the period 50-75AD (grey box in background) compared to the simulated 
distributions (boxplots). Boxplots show the range of the number of sites simulated wares in different experiments were 
deposited at (each boxplot shows the combined results of 10 iterations of the experiment). The grey box represents the 
observed minimum, maximum and average distribution of four wares for the period 50-75AD. 
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Fig. 56. Observed distribution of wares for the period 75-100AD (grey box in background) compared to the simulated 
distributions (boxplots). Boxplots show the range of the number of sites simulated wares in different experiments were 
deposited at (each boxplot shows the combined results of 10 iterations of the experiment). The grey box represents the 
observed minimum, maximum and average distribution of four wares for the period 75-100AD. 

 

Fig. 57. Observed distribution of wares for the period 100-125AD (grey box in background) compared to the simulated 
distributions (boxplots). Boxplots show the range of the number of sites simulated wares in different experiments were 
deposited at (each boxplot shows the combined results of 10 iterations of the experiment). The grey box represents the 
observed minimum, maximum and average distribution of four wares for the period 100-125AD. 
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Fig. 58. Observed distribution of wares for the period 125-150AD (grey box in background) compared to the simulated 
distributions (boxplots). Boxplots show the range of the number of sites simulated wares in different experiments were 
deposited at (each boxplot shows the combined results of 10 iterations of the experiment). The grey box represents the 
observed minimum, maximum and average distribution of four wares for the period 125-150AD. 

Frequency distributions: simulated assemblages VS observed assemblages 

In section 5.4.7 above I described three frequency distributions of the observed tableware 

data: the number of wares per site, the proportion of sherds per ware in site assemblages, and 

the proportion of types per ware in site assemblages. These will now be compared with 

simulated frequency distributions of the experiments which showed some similarity with the 

observed distributions, i.e. experiments with proportion-inter-site-links of 0.0003 or higher. 

The results of experiments with a lower value for this variable are very dissimilar to the 

observed frequency distributions and are therefore not presented here. Given the strong 

variation between individual iterations this comparison is done descriptively. 

The results suggest that both the frequency distributions of the number of wares (e.g. Fig. 59) 

and the frequency distribution of the percentage of wares in assemblages are very different 

from the observations of all periods. In most experiments the number of sites with only one 

ware is greater than those with more wares, but the differences are not as striking as with the 

observed distributions (see Fig. 44 in section 5.4.7). The simulated percentages of wares on 

sites differ greatly between individual iterations. There is no identifiable tendency for one 

ware to be the dominant ware in the majority of sites, as was seen in the observed 

distributions (see Figs. 45-46 in section 5.4.7), and in future work a higher number of 

iterations should be performed to allow for comparison with the percentages of wares in site 
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assemblages. It can be concluded that although the model might approximate the strong 

discrepancy in the wideness of wares’ distributions in certain experiments, it does not 

succeed in reproducing the observer trends in the number of wares per site and the 

percentages of wares in site assemblages. 

 

Fig. 59. Example frequency distributions showing the number of sites (Y-axis) on which a certain number of wares (X-axis) 
is attested, for the combined results of three experiments (local-knowledge = 1) with a proportion-inter-site-links value of 

0.0003, 0.0006, 0.001. 

Simulated volume of wares at sites VS social networks 

In this final results section I will compare the simulated total volume of wares deposited on 

sites with some feature of the simulated social networks, for two reasons. Firstly, the 

approach to testing Bang’s and Temin’s hypotheses taken here strongly depends on my 

abstraction and representation of their hypotheses as social networks. The model includes a 
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series of procedures to create social networks with a structure that I believe to be a suitable 

representation of these hypotheses. However, these procedures are complicated and the 

structural features of the resulting social networks should be studied to understand exactly 

what features give rise to the outcomes of research interest. Secondly, the previously 

discussed results indicate a high degree of variation that cannot merely be explained by the 

two tested variables. Due to the high number of procedures in the model, many of which 

include a measure of stochasticity, it is hard to identify exactly what causes this variation. 

However, in order to improve this model in future work its functioning will need to be better 

understood. In this section I will explore to what extent variation in one output, the total 

volume of tableware at a site, can be explained by features of the simulated social networks. 

Due to the time limitations of this project I was not able to perform similar tests for other 

outputs. 

I decided to perform a multiple regression analysis since I wanted to evaluate the influence of 

a number of features of the social network on generating the variation in the total volume of 

tablewares per site. A multiple regression analysis produces a model that describes the 

statistical relationship between multiple independent variables (in this case the features of the 

social networks) and one dependent variable (in this case the simulated volume of tablewares 

on sites). The expected outcome of this model is a description of how the volume of 

tablewares changes as a result of a change in any one of the independent variables, and an 

indication of how much of the variation in the volume of tablewares on sites is explained by 

this model. 

The following features of the simulated social networks were used as independent variables: 

average closeness, maximum closeness, average betweenness, maximum betweenness,30 

number of inter-site links, and number of traders at a site. The centrality measures were used 

because I believe it might be the case that if traders are closer to all other traders in the 

network or are important intermediaries, then they will obtain more tableware. Moreover, the 

number of traders at a site might correlate with the accumulated volume, as well as the total 

number of inter-site links of all traders per site. 

30 Please note that I decided to use the average and maximum of these centrality values rather than individual 
values because the centralities are not a feature of the sites themselves (which are the entities of analysis here), 
but rather of the traders located at sites. 
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A multiple regression analysis was performed for each experiment, using the combined 

results of ten iterations per experiment. In order to create a model one first needs to evaluate 

whether the independent variables themselves do not have a high correlation, because if they 

do then it will be unclear exactly which independent variable explains the variance of the 

dependent variable. To do this, a correlation matrix was created for each experiment where 

each cell shows the Paerson correlation coefficient for a pair of independent variables (e.g. 

Table 20). The correlation matrices were very similar for every experiment: they showed a 

high correlation among centralities, and a very high correlation between the number of 

traders and the number of inter-site links. I therefore decided to create multiple regression 

models with two independent variables: inter-site links and average closeness. Inter-site links 

was chosen over the number of traders, since this feature is key to understanding the 

hypotheses tested. Closeness was chosen over betweenness since I believe the distance from a 

trader to every other trader in the network might be more indicative for the volume of 

tableware accumulated at a site. 

Table 20. Example of a correlation matrix for the experiment with proportion-inter-site-links = 0.001 and local-knowledge = 
0.1. Rows and column headers show the independent variables, cells show Pearson’s correlation coefficient. Very high 
correlation values are underlined and in grey boxes. Results were very similar for all experiments. To avoid these high 
correlations between independent variables it was decided to perform the multiple regression analysis with the average 
closeness and inter-site links variables. 

  AvCloseness MaxCloseness AvBetweenness MaxBetweenness InterSiteLinks 

MaxCloseness 0.665 
    AvBetweenness 0.76 0.634 

   MaxBetweenness 0.419 0.831 0.581 
  InterSiteLinks 0.394 0.501 0.242 0.423 

 NumberTraders 0.331 0.457 0.18 0.376 0.987 

 

The multiple regression could not be performed for the experiments with values for the 

proportion-inter-site-links variable of 0 and 0.00005, since these did not satisfy the normal 

distribution and independence of residuals assumptions of the technique. In other words, 

multiple regression is not a good technique to evaluate the results for these experiments 

because they do not fulfil the necessary assumptions. The results for all the other experiments 

are presented in table 21, we notice that the inter-site links variable is significant for all 

experiments, and average closeness only in a few cases (experiments with local-knowledge = 

1). Although the same model could be created for each experiment, there is a very strong 

discrepancy in the proportion of variance explained. This discrepancy is greatest between 

experiments with different values for proportion-inter-site-links: for low values of this 
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variable very little variance is explained by the model suggesting that there must be other 

untested independent variables that give rise to this variance, and for high values up to and 

more than 50% of variance is explained suggesting that other untested independent variables 

might explain a minor part of the variance. There is also a small difference between 

experiments with a different value for local-knowledge: a higher proportion of the variance is 

explained with high values for this variable, suggesting that a better knowledge of possible 

trade contacts on other sites will give rise to higher volumes of accumulated tablewares. In all 

cases the coefficient for inter-site links is positive, which means that if the number of inter-

site links increases then the volume of tablewares at a site will increase. However, where it is 

significant the average closeness coefficient is negative, indicating that if the average 

closeness increases then the volume of tablewares at a site will decrease. 

This multiple regression analysis confirmed the importance of the number of inter-site links 

for explaining the variation in the total volume of tablewares at sites, in particular for 

experiments with a high proportion-inter-site-links. Moreover, higher values for local-

knowledge further increase the importance of the number of inter-site links. Combined with 

the analysis of the wideness of wares’ distribution, this seems to suggest that the local-

knowledge variable affects both the wideness and volume of distribution where a better 

knowledge of inter- and intra-site links will lead to a slightly more limited spread of a ware 

but higher volumes on sites. However, the variable determining the number of inter-site links, 

proportion-inter-site-links succeeds far better in explaining variation in both wideness and 

volume of distribution. All results also indicate that these tested features of the social network 

do not suffice for explaining the variation observed in the simulated output. In future work 

other features of the models should be scrutinized to better understand its workings. 
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Table 21. Results of the multiple regression per experiment, where the aim is to explain the variation in the total volume of 
tableware deposited at a site at the end of the simulation (response variable) by comparing it to features of the social network 
(predictor variables). The first two columns provide the variable settings of the experiment, the third column gives the 
independent variables included in the multiple regression model for that experiment (* indicates a significant effect), and the 
last column indicates what proportion of the variation in the total volume is explained by the social network variables (R-
Sq). 

proportion-
inter-site-

links 

local-
knowledge 

Variables included in multiple 
regression model 

Proportion of 
variance explained 

(R-Sq) 

0.0001 

0.1 inter-site-links*; av-closeness 7.5 
0.2 inter-site-links*; av-closeness 7.6 
0.5 inter-site-links*; av-closeness 10.5 
1 inter-site-links*; av-closeness 13.9 

0.0003 

0.1 inter-site-links*; av-closeness 21.8 
0.2 inter-site-links*; av-closeness 21.4 
0.5 inter-site-links*; av-closeness 24.9 
1 inter-site-links*; av-closeness* 34.6 

0.0006 

0.1 inter-site-links*; av-closeness 40.9 
0.2 inter-site-links*; av-closeness 43 
0.5 inter-site-links*; av-closeness 48 
1 inter-site-links*; av-closeness* 54.8 

0.001 

0.1 inter-site-links*; av-closeness 57 
0.2 inter-site-links*; av-closeness 57 
0.5 inter-site-links*; av-closeness 59.8 

1 inter-site-links*; av-closeness* 63.6 

 

5.5.3. Conclusions 

A number of conclusions can be drawn from these results, which will be discussed in more 

detail in the next section: 

• The local-knowledge variable has a limited effect on the wideness of tableware 

distribution. 

• The proportion-inter-site-links variable has a strong effect on the wideness of 

tableware distribution. 

• Limited commercial knowledge can still give rise to wide differences in distributions, 

but only in systems with highly integrated markets. This means that the local-

knowledge variable is not instrumental in giving rise to the pattern of interest, whilst 

the proportion-inter-site-links variable is. 

• Limited availability and high uncertainty of information, and a weak integration of 

different markets in an economy governed by supply and demand, is unlikely to give 

rise to large differences in the distribution patterns of tableware. 
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• A strong integration of different markets and the availability of commercial 

information from different markets, irrespective of the uncertainty and availability of 

information, is likely to give rise to large differences in the distribution patterns of 

tablewares. 

• The model succeeds in simulating differences in the wideness of tableware 

distributions similar to the observed ones. 

• The model does not succeed in reproducing the observed frequency distributions of 

the number of wares on sites and the proportion of wares in site assemblages. 

• This model will therefore need to be reworked, and the analysis of the behaviour of 

this model has revealed the following aspects deserve more attention in future 

versions: the number of iterations need to be much higher; the conceptualisations of 

demand and time need to be more realistic; other aspects of Bang’s and Temin’s 

hypotheses need to be compared with the model’s workings (e.g. correlation of prices 

with distance). 

5.6. Discussion 
In this case study I have illustrated that a method combining exploratory data and network 

analysis, and agent-based network modelling can aid our understanding of the processes 

giving rise to an archaeologically observed distribution pattern of tablewares. A large number 

of very diverse results were obtained, and their relevance to answering the research questions 

set out at the start of this case study now needs to be made clear. 

Question 1: what differences can be observed in the distribution patterns of different 

tablewares and forms (here considered modern analytical constructs)? 

The first research question was addressed through exploratory data and network analysis in 

section 5.4. The distribution patterns of the four tablewares studied in this case study changed 

through time, but a number of general trends can be identified. ESA knew an exceptionally 

wide distribution until at least 75AD. Moreover, ESD and ESB knew a similar but more 

limited distribution to ESA in the period 25BC-25AD. This similarity decreases after 25AD, 

although ESA remains more widely distributed until 75AD. It is only after this period that 

ESA, ESB and ESD distributions again show stronger similarities. ESC retains a specific 

regional distribution throughout this period, its distribution being dissimilar and more limited 

than that of the other wares, although its distribution shows some similarity to that of ESA 
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and ESB in the period between 75AD and 125AD. In addition to these general trends, a 

detailed description of the similarity of distribution patterns of different forms identified 

those forms whose distributions are more similar to those of other wares. This suggests that 

the processes that gave rise to these distributions should not be seen as exclusively ware-

specific. It is true that one persistent pattern is the higher volume and diversity of a ware 

close to its production area, and the hypothesis that the distribution of a wide range of a 

ware’s production in the region around its production area was distributed through similar 

processes is not unlikely. However, focusing exclusively on the core areas of a ware’s 

distribution will not allow one to understand such exceptional cases that suggest similar 

distribution processes for different wares, and to what extent different wares were considered 

different products in the past. 

Sadly but importantly, the exploratory analysis performed here also added a sobering note to 

our ability to answer such interesting questions using our current knowledge of tableware 

distributions. Since forms were considered modern analytical constructs, the differences in 

their distributions can hardly be considered a direct reflection of differences in past human 

behaviour. Moreover, the strong variability in the number of forms and sherds per form 

recorded at different sites did not allow me to use this evidence to perform a statistical 

goodness of fit test to evaluate hypotheses of distribution processes, unless the sampling bias 

is more thoroughly quantified (an exercise that was sadly not possible within the framework 

of this project). However, this was by no means considered a reason to abandon hypothesis 

testing for Roman archaeology altogether. It merely required me to focus my efforts on that 

general trend in the data that was considered a robust pattern: the strong differences in the 

wideness of tablewares’ distributions. This pattern can be compared descriptively with the 

outcomes of simulations and allows for the falsification of hypotheses that cannot possibly 

give rise to this general trend. 

Question 2: can Bang or Temin’s hypotheses be falsified through computational 

modelling and comparison with the observed tableware distributions? 

This close scrutiny of the available data influenced the creation of a computational model to 

express and possibly falsify two hypotheses surrounding the importance of the structure of 

social networks between traders in giving rise to differences in the distribution patterns of 

tablewares. I believe the results of this model allow me to reject Peter Bang’s claim that weak 
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integration of markets and limited availability of reliable information can give rise to 

differences in the distribution patterns of products (in this case tablewares). My 

conceptualisation of the availability of commercial information gave rise to only minor 

differences in the wideness of wares’ distributions. Conversely, differences in my 

conceptualisation of the integration of markets did give rise to such differences. The 

experiments with a high proportion of inter-site links in particular showed results similar to 

the observed wideness of tablewares’ distributions in the period 25BC-25AD. This leads me 

to conclude that limited availability of commercial information can still give rise to wide 

differences in distributions, but only in systems with highly integrated markets. This means 

that the integration of markets is more instrumental in generating the pattern studied here: 

strong integration of different markets and the availability of commercial information from 

different markets, irrespective of the uncertainty and availability of information, is likely to 

give rise to large differences in the distribution patterns of products. I believe these results 

add more credibility to the tested aspects of Temin’s hypothesis, and succeed in falsifying the 

tested aspects of Bang’s hypothesis. 

The results also shed some light on the specific ways in which my implementation of 

Temin’s and Bang’s hypotheses function. The results suggest that only a very strong 

integration of the markets will give rise to differences in the wideness of tableware 

distributions. Since the variable settings have so far only been discussed as abstract 

proportions, it is worth to clearly state what these proportions of market integration mean in 

real terms. The setup procedure used here creates links between 0.25% of all node pairs, with 

some variation due to the stochasticity in the model. The tested values for the proportion-

inter-site-links variable will create links between 0%, 0.005%, 0.01%, 0.03%, 0.06%, and 

0.1% of all node pairs. This means that the links added to enforce the integration of markets 

is a very high proportion of the actual number of links created in some experiments: 0%, 

2.1%, 4.1%, 12.3%, 24.6%, and 40.5% respectively for proportion-inter-site-links values of 

0, 0.00005, 0.0001, 0.0003, 0.0006, and 0.001. So in the most extreme scenario this means 

that 40.5% of all transactions could potentially be cross-market transactions. Moreover, the 

results suggest that only a very high integration of markets can give rise to strong differences 

in the wideness of wares’ distributions, and could explain the deposited volumes at sites (see 

multiple regression in section 5.5.2). The experiments with 12.3% to 40.5% of all links being 

inter-site links showed the most similarity with the observed distributions of the periods 

25BC-25AD, which suggest a very strong integration of markets and a large proportion of all 
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transactions in the Roman trade system taking place between markets. However, this does not 

mean that transactions in local markets did not matter. The beauty of this approach is that it 

allows for the existence of local trade within individual markets as well as trade between 

markets, thus avoiding one-dimensional explanations of complex phenomena and identifying 

the grey-zone between hypothesised contributing factors. 

The results also shed light on the impact of the availability of reliable commercial 

information. It would be wrong to state this factor has no role to play in a model of Roman 

trade, indeed the results of my experiments suggest that it gave rise to minor changes in the 

wideness of distribution of tablewares. However, an interesting trend is seen in the 

differences between the settings of the local-knowledge variable of 0.1 and 0.5, which result 

in more or less similarly wide distributions, and a setting of 1 which results in a drop in the 

wideness of distribution. It seems that the way in which the availability of information affects 

the wideness of distribution is as follows: the more a trader knows the commercial situation 

in his direct surroundings in the social network, the less he is inclined to take risks that could 

lead to wider distributions of products. However, this trend is minor compared to that seen 

for the increasing integration of markets. More importantly, the necessity for this strong 

degree of market integration and the limited impact of availability of information suggest to 

me that future modelling work should focus on the factors that allow for or drive market 

integration, some of which have been discussed in section 5.5.2 above: larger commercial 

entities with representatives on multiple markets, transport mechanisms and infrastructure, 

the gravitational pull of large consumption centres or institutions (such as the army), and 

regulation and stimulus provided by a political system. The results presented here reveal very 

little about these important factors, other than: the ability to share commercial information 

and goods between markets in relatively few steps is more important for explaining variance 

in tableware distributions than the proportion of available information. Again, none of these 

alternative factors should be considered as working in isolation, but should always function 

within systems where a high proportion of transactions are intra-market transactions. 

It should be clear that this model had a very tight focus and therefore is necessarily 

simplifying. This analysis has focused on, to use the distinction made by Arnaud (2005, 11) 

mentioned above, the flux of goods rather than on their transportation. The specific route the 

object travelled was not tested, rather how it got from place of production to place of 

deposition through transactions. These two factors are of course interlinked and the ability to 
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address them depends on the conceptualisation used. Minor modifications to the model might 

allow for the introduction of transport costs and making distinctions between markets that are 

geographically distant. 

The model also did not distinguish between types of traders, like those defined by Broekaert 

(2013b) introduced in section 2. That is to say, only a few "types" of traders existed in the 

model: traders were either able or not able to trade across markets (depending on their 

position in the social network), whilst transactions invariably concerned one item at a time. 

Nevertheless, the results obtained do allow a few minor statements about the roles and types 

of traders, and their proportional contributions to the pattern of interest. Firstly, a very large 

proportion of all trade must have taken place between traders within markets: in this model 

between 88 and 60%, depending on the degree of market integration which was considered 

realistic. This suggests that we cannot just focus on those big entrepreneurs active in inter-

regional exchange on a large scale, such as the negotiatores and some mercatores, but rather 

the more casual day to day transactions between the 'little fish' within a market are what 

makes up the bulk of all trade, e.g. possibly by those merchants referred to as propolae. 

Secondly, between 12 and 40% of all transactions are inter-market trade, suggesting that a 

large proportion of intermediaries needed to be able (financially and logistically) to perform 

such transactions. However, the model does not allow for realistic estimates of the number or 

proportion of such traders. It might be that similarly wide distributions would be achieved in 

systems with a much larger number of traders, a lower proportion of inter-site links and the 

same number of sites. This would indicate that it is not the proportion of all links between 

traders that matters but the proportion of sites connected through one or more inter-site links. 

Such a scenario would fit better with Bang's claim that whatever inter-regional trade and 

weak integration of markets did exist was caused by the specialisation of intermediaries. 

However, what this model does show, through the results of the multiple regression analysis, 

is that the number of inter-site links is strongly positively correlated with the volume of 

tableware on sites, i.e. the more pairs of traders are able to trade between a pair of sites, the 

higher the volume. Although this suggests that it is indeed the proportion of trader pairs that 

matters and not the proportion of site pairs which are connected, allowing traders to trade 

more than just one item in a transaction in the latter scenario might change this interpretation, 

i.e. when a trader sees the promise of a high profit due to higher demands on another market 

and high local supply, he can decide to buy a lot locally and sell it on the other market. 

Moreover, the simulated volumes were not compared with the volumes observed in the 
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ICRATES database due to sampling biases. However, the inability of the model to reproduce 

the observed frequency distributions of number of wares on sites might have been caused by 

omitting this factor: the simulated distributions showed a higher proportion of sites with a 

diverse assemblage than that observed. Could it be that experiments with a much lower 

number of trade links between a similar proportion of site pairs would show a better fit with 

frequency distributions of number of wares on sites? More experiments using a slightly 

modified conceptualisation are needed to critically address this possible alternative scenario. 

Although it is not explicitly tested, this model does illustrate a statement that both Temin and 

Bang would agree with: markets are necessary intermediaries, small-scale transactions within 

markets are important, and state involvement cannot explain everything. However, it might 

well have been state stimulus and regulation that allowed for the high proportion of market 

integration. This would nevertheless only make up for a maximum of 40% of all transactions 

as suggested by this model: local intra-market transactions are necessary and more frequent. 

But it would be wrong to argue that the results of the ABM succeed in burying one of the two 

tested hypotheses in favour of the other. The model presented here is a work in progress, and 

the main contribution of the results is their ability to guide future work on improving the 

model. It needs to be emphasised that the model only succeeds in reproducing the wideness 

of wares’ distributions, and not the frequency distributions of the number of wares per site or 

the proportions of wares in sites’ assemblages. Moreover, a number of procedures in this 

model are considered unrealistic, most crucial among them are my treatment of demand and 

time. To some extent this is a result of my attempt to keep the model simple as well as 

focused on answering a specific question. It was decided to simplify the production and 

consumption procedures, which are strongly linked to the demand. In future work these 

procedures need to be given more thought, in particular by only increasing demand after one 

to three years (as suggested by Peña’s (2007) model of the use-life of tableware). A realistic 

implementation of demand will also allow for a more realistic implementation of time in the 

model. In its current state the model is not designed to recreate the changes observed in the 

archaeological record over time. Indeed, the results can only be argued to show similarity for 

the periods between 25BC and 25AD, when the differences in the wideness of tableware 

distributions are strongest. Moreover, the motivation of an ending point for experiments, 

which is currently rather arbitrarily set at 10,000 time steps, will benefit from a more realistic 

implementation of time. However, our ability to do so is plagued by our complete ignorance 
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on the increase in demand and the time tableware remained in use; every implementation, 

even one based on Peña’s estimates, will necessarily be based on an untested assumption. 

Although I argued no more than a descriptive comparison of the simulated output with the 

archaeological record could be performed, future work on quantifying the sampling bias in 

the ICRATES database will also allow for modifying the output of the model to incorporate 

this bias. Finally, the preliminary results presented here allowed me to identify the many 

ways in which the stochasticity in the model affects the outcomes, and will allow me in future 

work to limit some of this stochasticity or to further test its impact by setting random 

variables to constant values and observing difference in the output. 

Another interesting result which could not be properly tested due to the narrow focus of the 

model is the strong positive correlation observed between the number of traders at sites, the 

number of inter-site links, and the total volume of tableware deposited at sites. It was decided 

to explore the ability for the number of inter-site links to explain the variation in the 

deposited volume, since this was the aim of the model. However, the correlation with the 

deposited volume and the number of traders at a site seems to lend credibility to the 

hypothesis that larger towns exercise a ‘gravitational pull’ on resources (an archaeological 

hypothesis introduced in section 5.2.3). Although this sounds obvious, it is nevertheless 

interesting to observe that this effect is very much visible in the model. Sadly, I cannot test 

this hypothesis because, unlike for the proportion of inter-site links, I did not modify the 

variable which determines the distribution of traders on sites in my experiments. An 

additional complication is the need to formulate experiments that allow me to distinguish 

between the effects of the inter-site links and the number of traders at sites. Further 

experiments are needed in future work in order to be able to claim that the ‘gravitational pull’ 

hypothesis is likely. 

A number of suggestions can be made to slightly widen the scope of this model and to make 

its ability to falsify the tested hypotheses more robust. Firstly, a much higher number of 

iterations per experiment is needed in order to see whether the results, which currently show a 

high variance, become normally distributed or not. Secondly, currently items of different 

wares are valued similarly by agents. This can be modified to explore whether the same 

differences in distributions could arise when wares are considered as different products by 

agents. Thirdly, the trade procedures implemented in this model are very complex and it 

would be interesting to evaluate whether the same results could be obtained through a more 
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simple process of diffusion (e.g. as implemented in the SIR network model of the spread of a 

virus, Newman 2010, 627-675 ). Fourthly, the effect of the currently implemented social 

network structure on the creation of the results would be even better understood by 

comparing the results with those of the same trade procedures taking place on a random 

social network with the same number of nodes and edges. Fifthly, would the same results be 

obtained when a transport cost is charged for transactions between traders located at different 

sites? Preliminary results of experiments that implement this suggest the distribution would 

be even more limited, even with a high proportion of inter-site links. Finally, a key aspect of 

Temin’s hypothesis is the correlation between the price of goods at a market and the distance 

from its place of production. This issue is connected to the previous one, since the price of a 

good is considered to increase with distance as a result of transport costs, which could be 

tested through new experiments. Most of these suggestions have already been built into the 

model, but time limitations did not allow for the necessary experiments to be performed and 

analysed. 

A more drastic reconceptualisation could be suggested, one in which the integration of 

markets is not enforced but emerges through trade processes. This would require a more 

complex model in which traders can move between markets (without having prior knowledge 

of the commercial information at this market), to obtain new commercial contacts, and to end 

others. Such a model would be more similar to that of Bentley, Lake and Shennan (2005). 

The advantage of this would be that we would be able to test Bang's and Temin's claims that 

the integration of markets is an emergent property of the Roman trade system, rather than a 

given. However, I believe the current model was a necessary first step in order to evaluate the 

effects of the hypothetical trade procedures on social networks with a specific structure. 

Moreover, both Temin’s and Bang’s hypotheses require the social network of traders to be 

based on strong and stable connections. Due to the limited availability of reliable information 

and the sheer time it takes for messages to be sent across the empire, trusted long-term 

commercial contacts will need to have existed. I therefore consider the current 

conceptualisation a good representation of this, and suggest that future work should evaluate 

the effect of slow rates of network change on the results in an experiment. 

One could criticise the approach presented here of cherry-picking comparable aspects of 

Bang’s and Temin’s hypotheses to allow for quantitative hypothesis testing. I strongly 

believe this is a good thing to do, but only if the results of a quantitative approach 
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subsequently feed back into a richer culture-historical discussion. This case study has shown 

that the conceptualisation of a key aspect of Bang’s hypothesis presented here is unlikely to 

give rise to the phenomena he claims they give rise to. Conversely, the conceptualisation of a 

key aspect of Temin’s hypothesis presented here lends more credibility to this scholar’s 

claims. However, I have also argued that these are preliminary conclusions and that they can 

only be considered robust through a refinement of the model in future work, as well as 

through comparison with alternative models that use different conceptualisations to express 

Bang’s and Temin’s hypotheses (e.g. Graham and Weingart 2014). 

Box 10. Summary of chapter 5 
Research questions: 

• What differences can be observed in the distribution patterns of different tablewares and forms? 

• Can Bang or Temin’s hypotheses be falsified through computational modelling and comparison with 

the observed tableware distributions? 

Conclusions: 

• Exploratory data analysis revealed significant differences in the wideness of tableware distributions. 

• Exploratory network analysis allowed for the identification of differences in the distribution patterns of 

individual forms, which confirmed the results of previous studies using the ICRATES dataset. 

• Contrary to Bang’s hypothesis, limited availability of reliable commercial information from different 

markets is unlikely to give rise to the large differences in the wideness of product’s distributions 

observed in the archaeological record. 

• The ABM does not succeed in reproducing all variability in the ICRATES dataset identified through 

the exploratory data analysis. 

• The model will need to be reworked significantly by reducing stochasticity, implement more realistic 

conceptualisations of demand and time, and re-run experiments with a much higher number of runs. 

Implications for this PhD project: 
• The importance of clearly formulating how a past phenomenon of research interest was abstracted into 

network concepts became clear. This allows for formally representing one’s hypothesis, as well as 

comparing different conceptualisations of the same phenomenon. 

• In cases where dependence assumptions cannot be clearly defined, the potential for exploratory 

network techniques to lead to insights other exploratory data analysis cannot offer is more limited. 

• When the archaeological datasets necessary to prove a hypothesis are not available, Roman 

archaeology hypotheses can still be falsified if the authors offer specifications of the kinds of data they 

would expect to see if their hypothesis was right. 
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6. Discussion: addressing challenges in archaeological network science 

6.1. Lessons learned from the case studies 
The literature review and case studies have revealed a large number of challenges that 

archaeologists are confronted with when evaluating the potential contribution network 

science can make to achieving their research aims. Through three case studies I have 

explored some possible responses to these challenges, whilst being aware that many others 

remain unaddressed. In this section I will discuss this first set of challenges and the 

contributions this PhD made to overcoming some of them. In the first three parts of this 

discussion I will evaluate how the three case studies have allowed me to answer the PhDs 

methodological research questions, while the fourth section will focus on the implications for 

Roman archaeology specifically. The wider significance of the lessons learnt for the future 

use of network science in archaeology will then be discussed in the last few sections of this 

chapter. 

6.1.1. Case study 1: methodological implications 

In the first case study I have followed the network science research process explicitly to 

investigate the academic phenomenon of the adoption and adaptation of network science in 

archaeology. This led to specifications of how such phenomenon could be abstracted as 

network concepts, how these could be represented as network data, what sorts of dependence 

assumptions were driving change in this network data, and what network science techniques 

were suitable for exploring this data (Box 4). The results revealed a number of advantages 

and limitations to this approach. Many conclusions drawn from citation analysis could be 

identified through the literature review in chapter 2. However, a number of additional 

conclusions could also be obtained. These new insights are largely restricted to the limited 

influence of old archaeological applications on new ones, and the way in which 

archaeological publications cite literature outside their own discipline. The incompleteness of 

the available bibliometric data was considered a key limitation. Moreover, some results that 

were immediately obvious from the literature review were obtained through a very time-

consuming network method that requires significant technical skills and, therefore, could lead 

one to question the usefulness of this approach. However, even though not all of the applied 

techniques necessarily revealed new insights, they did offer an alternative way of exploring a 

dataset, a phenomenon of interest, and my research questions. Such an exploratory process 

which forces one to think explicitly about the effect of relationships on the process of 
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academic influence can lead one to ask new research questions, to validate the intuitive 

conclusions drawn from a close reading through a reproducible method, or to refocus analysis 

on previously neglected aspects of a dataset. 

Interestingly, this leads me to conclude that network science can still be useful as a 

perspective that forces one to see a research problem in a different light even in cases where 

network science techniques do not lead to new insights and where techniques more 

commonly used in archaeology might be preferable. However, in line with the key claim of 

this PhD project stated in section 1.3, I believe that the real potential of network science 

techniques is revealed when it allows us to do things that no other approaches can do: address 

dependence assumptions through the analysis of network data. To give a concrete example, 

the results of the four techniques employed in the first case study, input domain, citation 

weights, cocitation and bibliographic coupling, enabled the evaluation of different types of 

dependence assumptions and allowed me to focus explicitly on the main ‘flows of influence’. 

In answer to the third research question of this PhD project, I believe the usefulness of 

network visualisations for communicating research results was clear in those cases with a 

limited number of nodes, and in particular those where arcs are an intuitively understandable 

representation of flow processes such as in the citation weights results (Figs. 15, 19, 21-22). 

Figures that include too many nodes did not allow me to make more than the most obvious 

statements, such as the density of citations and higher number of publications in the second 

half of the 20th century shown in figure 20. 

6.1.2. Case study 2: methodological implications 

I have introduced exponential random graph modelling as a method that has great potential 

for enhancing the study of archaeological network data, and of visibility network data in 

particular. I have argued that archaeological network scientists have tended to focus on 

exploring the outcomes of past phenomena, rather than on the processes that give rise to 

them. I believe that the dependence assumptions archaeologists formulate when representing 

archaeological data as networks is key to overcoming this problem, and ERGM offers a 

formal method for doing so. ERGMs allow archaeologists to use network data to evaluate 

existing hypotheses and formulate new hypotheses of the past processes that drove the 

phenomena they are interested in. New hypotheses can be focused on the more narrow range 

of processes, which the ERGMs suggest can lead to the creation of archaeological datasets. 
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The case study has also taught me that data quality and theory are crucial for formulating 

models of past phenomena. It is clear that ERGMs are only as reliable as the network datasets 

they are based on, suggesting that for some datasets (e.g. long-distance visibility networks) it 

is difficult to make statistical inferences about processes with much certainty. One needs to 

be confident that the observed network is as close as possible to complete, or one needs to 

make theoretical arguments why the created network can be used for testing one’s 

hypotheses. Experiments of modelling a network with lines of sight up to 50km illustrated 

this most clearly: such network data did not allow for the evaluation of hypotheses 

concerning inter-visiblity or visual control among settlements, therefore the effects included 

in ERGMs were not suitable for explaining the network’s creation. The impact of so-called 

‘edge-effects’, i.e. determining the geographical boundary of the network of interest, and the 

impact of thresholding the network on the probability or distance of its lines of sight need to 

be evaluated more thoroughly in future work through sensitivity analyses (as suggested by 

Peeples and Roberts 2013). Another valuable experiment in future work would be to evaluate 

the use of ERGM for visibility networks by comparing the process suggested by an ERGM 

with an observed process of settlements established in a known order, within a research area 

where such detailed information is available. I also expressed caution with pushing the 

interpretations of the statistical models too far. As I have shown, different combinations of 

attributes in the models can lead to wildly different results. Moreover, every aspect of this 

combined network approach always requires a re-contextualisation within a cultural and 

historical context before the significance of its results become clear, as the discussion in 

section 4.6 illustrates. 

The results of this case study have a number of implications for the methodological research 

questions of this PhD project. Firstly, some of the datasets archaeologists are confronted with 

translate more intuitively into networks than others, visibility networks are a particularly 

good example of this although their study is less common than that of road and river 

networks. This case study’s exploratory network analysis can be considered similar to how 

previous archaeological studies have approached visibility networks, although a much wider 

range of network techniques was used here. However, I believe, this case study illustrates 

how the ability of an exploratory network analysis to enable a better understanding of past 

phenomena is significantly enhanced when dependence assumptions are explicitly 

formulated. Largely because when doing so the results of exploratory network science 

techniques cease to be mere numbers but carry the baggage of one’s theoretical assumptions: 
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the results have specific implications for the inference of social processes governing the 

studied dataset. Secondly, this case study illustrated how an exploratory network analysis 

allows one to understand the structure of a network dataset, but such an approach reveals 

little about how it emerged. A confirmatory statistical network modelling approach shows 

greater potential for understanding such processes of network creation, although its ability to 

do so is intertwined with the quality and completeness of the dataset, as well as with one’s 

arguments of the relationship between a dataset and a certain past phenomenon, i.e. how the 

observations in the dataset mirror past human behaviour. 

6.1.3. Case study 3: methodological implications 

This case study illustrated even more than the other two case studies the importance and 

impact of clearly formulating and arguing for a selected abstraction of the studied system in 

terms of network concepts. A different conceptualisation and representation of network data 

could have given rise to different results (e.g. see the network model of Bang’s hypothesis by 

Graham and Weingart 2014). Indeed, the many archaeologists and historians who have joined 

the debate surrounding the Roman trade systems and whose diverse hypotheses have been 

introduced in section 5.2.3 use a wide range of concepts to abstract past trade. Hence, I 

believe that the ABM and network techniques used should be less the focus of future 

academic scrutiny of this model than the conceptualisation adopted here. The implementation 

I adopted can be easily criticised and I offer a number of methodological critiques that should 

be addressed in future work in section 5.6. Indeed, my model would have to be discarded if 

the Roman archaeology/history community disagrees with the conceptualisation used and 

offers evidence that an alternative conceptualisation is preferable. Regardless of how much 

time and effort I invested in this model, if it triggered discussion about the conceptualisations 

used in different hypotheses it would have served its purpose very well. This case study has 

illustrated that confirmatory network approaches aimed at falsifying hypotheses rather than 

making statistical inferences from archaeological datasets stand or fall with the 

argumentation surrounding the conceptualisation used. 

A wide range of quantitative techniques were used in this case study, and it became clear that 

in some cases network techniques did not lead to new insights. This was most clear when 

performing both an exploratory data analysis and network analysis on the same dataset. The 

former is more commonly applied in archaeology. It leads to a critical understanding of the 

dataset and its limitations, and allowed me to answer in part the first research question of this 

case study concerning similarities of forms’ distributions. The latter was based on a rather 
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complicated technique that reproduced some of the results of the exploratory data analysis 

and added more detailed insights on the similarities of forms’ distributions. However, this 

added knowledge was almost exclusively the result of a close scrutiny of the Brainerd-

Robinson similarity matrices, whilst the network visualisations and the network measures 

revealed very little new information. I believe this again emphasizes the importance of 

dependence assumptions in archaeological network science. The assumption in the 

exploratory network analysis performed in this case study was that forms that have a similar 

distribution are more likely to have been distributed through similar processes. However, this 

is of little use as a dependence assumption unless the processes in question are more 

explicitly defined, which was not possible or even desirable in this case. My interpretation of 

the exploratory network results was therefore limited to an additional type of exploratory data 

analysis. Through this case study it became clear that the selection of a methodological 

approach for addressing a Roman archaeology research question needs to be well motivated, 

and that network science techniques are only worth applying if they add something unique to 

the mix of techniques, which is more likely to happen in cases where dependence 

assumptions can be clearly formulated. 

6.1.4. Implications for Roman archaeology 

The literature review indicated the use of network science in Roman archaeology was limited 

but highly creative, and it attributed this creativity largely to the availability of both material 

and textual datasets, which allowed archaeologists to address a wider range of complex 

research questions. Nevertheless, it was also argued that Roman archaeologists have 

neglected the development or adoption of methods that allow them to compare and falsify the 

complex hypotheses they formulate. Moreover, because of the availability of more data types 

as compared to the prehistoric periods, some common research themes in prehistoric 

archaeology have received limited attention, which in some cases creates the impression of a 

clean break between prehistoric and Roman periods caused by different research traditions. 

The second and third case studies confirmed these impressions and were specifically 

designed to make a few methodological contributions to help overcome them. They 

introduced network science methods that are rarely or never used in Roman archaeology, that 

are aimed at addressing complex hypotheses in Roman archaeology, and that take the nature 

of the available data into account in order to evaluate our ability to prove or falsify 

hypotheses. 
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The second case study argued that the potential role of lines of sight in structuring past 

human behaviour was an example of such a neglected research theme. It illustrated how the 

transition from the Iron Age to the Roman periods in Southern Spain could be studied 

through a long-term regional analysis of visibility networks. Moreover, hypotheses 

representing theories of how lines of sight potentially structured inter-urban interactions in 

the Iron Age were tested against the Roman settlement patterns. The results suggested that 

the structure of the visibility networks connecting urban settlements disintegrated from the 

Iron Age to the Roman period. However, this was a very gradual process of disintegration 

which only takes place from the Early Imperial period onwards. The ERGMs nevertheless 

suggested that the processes that gave rise to the Iberian and Republican period visibility 

network were very different from those that resulted in the Roman Imperial periods. 

Two key implications of this case study for Roman archaeology should be mentioned. Firstly, 

the network approach used here proved fruitful to study long-term and large-scale past 

phenomena concerning visibility that are rarely addressed in Roman archaeology. It, 

therefore, showed that common research themes from other subdisciplines can still be of 

interest in Roman archaeology if good quality datasets are available to address them, and that 

such research themes allow for bridging subdisciplinary divides, and highlight the processes 

driving change between academically defined periods. Moreover, it emphasised the gradual 

nature of change and suggested a range of abstract processes that could have driven this 

change. Secondly, network science offers a good approach for addressing some of these 

themes and it can even be used for quantitative hypothesis testing, a practice which has been 

particularly rare in Roman archaeology. Moreover, the case study has shown that hypothesis 

testing in Roman archaeology does not necessarily have to draw scholars away from a close 

scrutiny of their datasets. The statistical modelling technique introduced here stands or falls 

with the motivations of data specialists of why they believe a given dataset allows them to 

better understand a certain past phenomenon. 

The third case study offered an example of the kinds of complex hypotheses that Roman 

archaeologists and historians can formulate thanks to a wealth and diversity of data available 

to them. The different approaches, datasets used, and research traditions of archaeologists and 

historians resulted in a large number of sometimes conflicting hypotheses about the 

functioning of the Roman trade systems. But despite the wealth of data that allow for such a 

diversity of hypotheses to be voiced, few of them can be tested. In this case study I have 

illustrated how falsification of hypotheses through agent-based network modelling might 
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offer a way forward. The conflicting hypotheses of Peter Bang and Peter Temin formed the 

focus of my analysis, one aspect of their models in particular: the degree of integration of 

markets in the Roman world. Bang argues that differences in the wideness of tableware 

distributions can be caused by trade systems with weakly integrated markets, whilst Temin 

argued the Roman trade systems knew more strongly integrated markets. These hypotheses 

were abstracted as network concepts, which allowed me to formulate specifications of the 

kinds of network data I believe best represents both hypotheses. The results of this case study 

allowed me to reject Bang’s claim, thus falsifying one factor in his complex model of the 

Roman trade systems. 

The implications of this case study for Roman archaeology are twofold. Firstly, the 

importance of making the abstraction of past phenomena as network concepts a transparent 

process, as mentioned already in section 6.1.3 above. Alternative models implementing 

alternative network conceptualisations could be suggested to prove me wrong, and I believe 

such practice should become more common in Roman archaeology in order to shed highly 

unlikely hypotheses and work towards stronger hypotheses (the high number of untested 

hypotheses surrounding the Roman economy discussed in section 5.2 is but one example of a 

research context which would benefit greatly from this approach). Secondly, the case study 

showed that even though the archaeological datasets necessary to prove a hypothesis are not 

available, Roman archaeology hypotheses can still be falsified if the authors offer 

specifications of the kind of data they would expect to see if their hypothesis was right. Peter 

Temin and to a lesser extent Peter Bang are very specific at times about these specifications, 

which makes parts of their hypotheses testable. If network science is to be more usefully 

applied to Roman archaeology research questions this has to become more common, since the 

true potential of network science seems to lie in its ability to deal with dependence 

assumptions requiring clear network data specifications. Moreover, I believe that such a 

formal hypothesis falsification approach holds great potential for Roman archaeology, in 

particular because of the availability of archaeological and historical datasets that allow for 

the formulation of complex hypotheses. 

6.2. ‘We shall overcome’: challenges and suggested solutions 
The case studies offer specific practical examples of the use of network science in different 

archaeological research contexts, and their contributions to answering this PhDs research 

questions are therefore most relevant to these particular research contexts. However, the three 
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case studies were purposefully selected because they offer particularly interesting 

methodological challenges, which allowed innovative network science techniques to be 

applied to address some methodological lacunae in Roman archaeology. Although they are 

not representative for the full diversity of practice in the archaeological discipline as a whole, 

I believe it is possible to extrapolate the lessons learned through these case studies in order to 

approach the aim of my PhD: to gain a better understanding of the advantages and limitations 

of network science in archaeology, and of its position in the archaeological research process, 

as well as to suggest specifications for the future archaeological use of network science. This 

discussion of the implications of the case studies for archaeological network science will be 

structured around five topics: challenges related to method, data, space, process, and a brief 

note on past social networks. 

6.2.1. Method 

Like any other formal techniques in the archaeologist’s toolbox (e.g. GIS, radiocarbon dating, 

statistics), network science techniques are methodological tools that work according to a set 

of known rules (the algorithms underlying them). These allow one to answer certain 

questions, and have clear limitations (what the algorithms are not designed to answer). This 

means that their formal use is fundamentally limited by what they are designed to do, and that 

they can only be critically applied in an archaeological context when serving this particular 

purpose. In most cases, however, formal network science results are not the aim of one’s 

research; archaeologists do not use network methods just because they can. Instead one thinks 

through a networks research process about the past phenomena one is actually interested in. 

The literature review has shown that this is often done implicitly in archaeological network 

research, although in the case studies I have argued it is crucial to let the network science 

research process guide the development of a suitable method. When this research process is 

only implied it holds the danger of an epistemological issue that all archaeological tools 

struggle with: there is a danger that formal network techniques are equated with the past 

networks we are trying to understand (Isaksen 2013; Knox et al. 2006; Riles 2001). 

In other cases, however, formal analysis is avoided altogether and concepts adopted from 

formal network methods are used to describe hypothetical past structures or processes (e.g. 

Malkin 2011). Although this sort of network thinking can lead to innovative hypotheses, it is 

not formal network analysis (see reviews of Malkin (2011) by Ruffini (2012) and Brughmans 

(2013b)). Good examples of this are Bang’s and Temin’s hypotheses addressed in the third 

case study: neither scholar worked explicitly from a networks perspective but concepts of 
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connectivity between markets and traders were clearly key to both hypotheses. Indeed, a 

large number of hypotheses of the structure and functioning of the Roman trade systems have 

been proposed by archaeologists and historians, using a range of different conceptualisations, 

some of which translate easier into network concepts than others. This case study has shown 

that such alternative conceptualisations of the same phenomenon cannot be easily compared, 

unless specifications are formulated of how the concepts are represented in data. In cases 

where hypotheses are best abstracted in terms of network concepts (such as the tested factors 

of Bang’s and Temin’s hypotheses), formulating such specifications allows for the use of 

confirmatory network approaches to compare and falsify hypotheses. 

However, when scholars argue that concepts were adopted from formal network science (as 

in the case of Malkin (2011)), they must recognise that these concepts have a very specific 

meaning to network scientists and are associated with specified data requirements in order to 

represent them. Most crucially, when the concepts one uses to explain a hypothesis cannot be 

demonstrated through data (not even hypothetically through simulation), there is a real 

danger that these concepts become devalued since they are not more probable than any other 

hypotheses. Moreover, the interpretation of past social systems runs the risk of becoming 

mechanised when researchers adopt the typical interpretation of network concepts from the 

SNA or physics literature without validating their use with archaeological data or without 

modifying their interpretation to a particular archaeological research context. This criticism is 

addressed at the adoption of formal network concepts only. It should be clear that other 

theoretical concepts could well use a similar vocabulary whilst not sharing the same purpose 

or data requirements, in which case I would argue to refrain from using the same word to 

refer to different concepts or explicitly address the difference between these concepts in order 

to avoid confusion. The archaeological use of actor-network theory (ANT) is a good example 

of a highly confusing use of metaphors because, just as I argue is the case for archaeological 

network science, archaeologists have not yet given ANT a clear place in the archaeological 

research process. Archaeologists thinking through an ANT perspective commonly use 

network concepts, which creates the impression that ANT and network science are somehow 

similar, or that they offer a compatible method and theory for a homogeneous research 

perspective. Van Oyen (in press) provides an archaeological comparison of the two 

approaches and clearly shows how both are designed to do very different things and should 

be treated as such by archaeologists. In summary, I argue that the metaphorical use of 

network concepts in archaeology is useful only when one refers to existing specifications of 
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how these concepts are represented by data if one adopts existing concepts, or if one develops 

new network concepts then one should formulate such specifications. Without these 

specifications hypotheses cannot be falsified and archaeologists cannot discuss their 

hypotheses on equal terms. The implication of this statement for the archaeological use of 

network science is that confirmatory network science techniques can only be usefully applied 

when specifications are formulated of how the network concepts used should be represented 

as network data. 

Although it is easy to claim that the rules underlying network science techniques are known, 

it is less straightforward to assume that the traditional education of archaeologists allows 

them to decipher these algorithms. Archaeologists are not always sufficiently equipped to 

critique the mathematical underpinnings of network science techniques, let alone to develop 

novel techniques tailor-made to address an archaeological question. For many archaeologists 

this means a real barrier or at least a very steep learning curve. Sadly, it also does not suffice 

to focus one’s efforts on the most common techniques (as the literature review revealed was 

the case until recently in archaeological network science) or on learning graph theory. Like 

GIS, network science is not a single homogeneous method: it incorporates every formal 

technique that manages, visualises, or analyses the interactions between nodes (either 

hypothetical or observed), and it is only the particular nature of the network as a data type 

that holds these techniques together (Brandes et al. 2013). For this purpose it draws on graph 

theory, statistical and probability theory, algebraic models, but also agent-based modelling 

and GIS. The review of network science techniques developed in different disciplines 

performed for this PhD project revealed that archaeologists should not become specialists in 

all of these different approaches. Rather, archaeologists should be able to understand what 

kinds of questions different techniques are designed to answer and to evaluate whether it 

allows them to achieve their research aims. For this, hardly any technical skills are needed, 

merely a willingness to evaluate a scientific method. Archaeologists should be supported in 

this by ‘guides to good practice’ and critical archaeological case studies, which are appearing 

ever more frequently. The specifications formulated at the end of this chapter might be one of 

the steps to enhancing the ability of archaeologists to do this. However, the subsequent 

application of the selected technique does require a thorough knowledge of its functioning, 

and I have argued that multi-disciplinary engagement or collaboration significantly aids this 

process. 
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A thorough understanding of the technical underpinnings of particular applied network 

techniques is not an option but a prerequisite for a critical interpretation of the results. The 

case studies illustrated how even the most commonly used network science techniques, like 

degree or betweenness centrality, mean very different things depending on the research 

context in which they are applied, and that in some contexts theoretical assumptions (rather 

than methodological motivations) might prevent some techniques from being used. For 

example, because I assumed in the exploratory network analysis in case study 3 that the 

similarity of forms’ distributions does not indicate or allow for any kind of flow between 

forms, I argued path-based measures (such as betweenness and closeness centrality) should 

not be used. Moreover, many exploratory network science techniques are sensitive to the 

sample size or boundary selection of the network used, as illustrated through the sensitivity 

analyses in case studies 2 and 3. It is not sufficient to obtain the results of the most commonly 

applied exploratory network measures to a network dataset: the meaning of nodes, links, 

measures, and the network dataset boundaries need to be discussed explicitly and will 

determine the interpretation of the results. 

Another good example of this challenge is network visualisation. Many archaeologists 

consider the visualisation of networks as graphs a useful exploratory technique to understand 

the nature of their data, in particular when combined with geographical visualisations (e.g. 

Golitko et al. 2012; Mol 2014a). However, there are many different graph layout algorithms, 

and all of them are designed for a particular purpose: to communicate a certain structural 

feature most efficiently (Conway 2012; Freeman 2005). These days, user-friendly network 

analysis software is freely available and most of it includes a limited set of layouts, often not 

offering the option of modifying the impact of variables in the layout algorithms. Not 

understanding the underlying ‘graph drawing aesthetics’ or limiting one’s exploration to a 

single layout will result in routinized interpretations focusing on a limited set of the 

network’s structural features. The first case study offered some examples of this, where some 

network visualisations (the citation weights in particular) were considered highly effective at 

exploring and communicating a certain pattern, whilst others included too many nodes and 

arcs to allow for more than the most general of interpretative statements. Moreover, the use 

of network visualisations in the exploratory network analysis of case study 3 was considered 

to add very little that could not be gained through alternative approaches. The issues 

surrounding network visualisation and their implications for archaeological research were not 

addressed in more detail in this PhD project and should form the focus of future work. 
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However, the case studies made clear that network visualisations offer an interesting 

alternative approach for exploring a dataset that forces one to think through relationships and 

one’s assumptions of what these mean. For communication purposes the case studies 

revealed that only in cases with a small number of nodes and where dependence assumptions 

gave rise to specific patterns (e.g. the citation weights visualisations in case study 1) were 

network visualisations preferable over other types of data representation (e.g. the 

geographical distribution maps31 or the matrix representation of BR results in case study 3). 

6.2.2. Data 

It should be clear by now that network science is by no means a method devoid of any 

theoretical considerations. This PhD project has focused on how archaeological theoretical 

assumptions influence the network science research process and the selection of techniques. 

Most interestingly, however, in many other archaeological network studies theoretical 

critiques are often triggered by issues concerning the role of archaeological data. This is 

usually a result of the material nature of archaeological data serving as proxy evidence for 

past human behaviour, which poses a number of challenges. 

Firstly, imposing categories and sometimes hierarchical relationships on data is a prerequisite 

for any network science. This results in the assumption that categories can actually be defined 

with any certainty (Butts 2009), and from the need to establish data categories ahead of the 

analysis, rather than letting them emerge from the analysis (Isaksen 2013). Indeed, the 

definition of nodes, ties and the network as a whole are a crucial part of the network science 

research process. However straightforward such definitions seem, doing so in a critical 

manner is not as easy as it sounds as the case studies have shown. For example, in the third 

case study I chose to follow a formal ceramic typology, where each node represents a distinct 

form of tableware. When doing so I had to acknowledge that such typologies are modern 

constructs and that alternative categorisations can easily be developed. This led me to argue 

for the importance of re-doing the exploratory network analysis using alternative functional 

categories. This in turn raises the issue that the network data we analyse is not necessarily 

identical to the past networks we are trying to understand. For example, although in some 

cases it can be proven that particular ceramic types were used for particular purposes and in 

certain contexts, their meaning can nevertheless change through time, requiring a 

31 For maps showing the spatial distribution of the dataset per period and per ware, see: 
http://icrates.arts.kuleuven.be/icrates/network-analysis/webpages/icrates_maps.html (accessed 01/06/2014). 
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modification of our categorisation (van Oyen in press). The case studies have shown that 

network science techniques require the establishment of a categorisation of data before 

analysis, but they have also shown that the categorisation is not imposed by the network 

techniques themselves but rather by the archaeologist’s motivations to abstract the 

phenomenon of research interest into network concepts. Categorisation is common practice in 

archaeological research and is a requirement of many formal methods. The issues 

surrounding categorisation are therefore not specific to network science but rather stem from 

the scholar’s theoretical perspective. If a method is needed where the boundaries of entities 

are ill-defined and fluid, and where one argues these can not under any circumstances be tied 

down for analytical purposes, then network science does not offer the solution. 

Secondly, unlike network analysts in many other disciplines, archaeologists work with 

primary data sources of a material nature. Social network analysts often only consider inter-

personal interactions, whilst archaeological network analysts are forced to consider object-

person and object-object interactions. A range of interactionist theoretical perspectives exist 

to confront materiality, for example the ANT theoretical perspective mentioned above places 

a strong focus on the analysis of object-person interactions. Archaeological network scientists 

are faced with finding a workable framework that combines both network theories and 

methods. Indeed, this has been the focus of Carl Knappett’s interest in networks. In An 

Archaeology of Interaction Knappett (2011) discusses a range of interactionist theories and 

how formal network techniques such as affiliation networks could be used to operationalise 

these. I find that the diversity of network methodological and theoretical network 

perspectives illustrated in Knappett’s book and in the literature review in chapter 2 leads to 

the false impression that different network perspectives need to be able to be applied together 

within a single framework. I believe there is no need for a great unifying theory or method in 

archaeology, not even for one that just focuses on questions of connectivity. The multi-

vocality achieved by contrasting results derived from different perspectives has already 

proven vastly more fruitful for the study of the past. Rather, I consider the different network 

perspectives as tools that function according to certain rules, and once these rules are known 

the tools have a potential to make small but crucial contributions to our knowledge of the 

past. I believe that if we are to ever achieve the full potential of these exciting new 

approaches for archaeology we will need to first critically explore them in isolation. This 

thesis has aimed to do this for formal network science methods only. 
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In summary, the decisions archaeological network scientists make when defining nodes and 

edges, when selecting or modifying analytical techniques and when interpreting the 

outcomes, are fundamentally influenced by their theoretical preconceptions, as determined in 

the network science research process. There is not a single right way to incorporate and 

interpret archaeological data in network approaches. Network science is not a method that 

solves archaeological challenges related to the use of fragmentary material data used as proxy 

evidence for past human behaviour. Therefore, network science (as is the case for any other 

formal method) in our discipline can never be separated from the archaeological theoretical 

motivations of how and why certain archaeological evidence allows one to better understand 

a past phenomenon. 

6.2.3. Space 

The representation of network data is not only dependent on data type categorisation but also 

necessarily reflects the research questions being asked, revealing an issue of spatial scales. 

Do the past phenomena we are interested in concern interactions between regions, sites or 

individuals? How can this be represented in node, tie and network data definitions? The 

ability of network approaches to work on multiple scales is often mentioned as one of the 

advantages of using formal network methods (Knappett 2011). In practice, however, 

archaeological network analysts have traditionally focused on inter-regional or macro-scales 

of analysis. Knappett (2011) argues that it is on the macro-scale that network analysis comes 

into its own and a recently published edited volume reveals this regional emphasis (Knappett 

2013b). The second and third case studies of this PhD provide yet another example of 

regional network approaches. This insistence to work on large scales becomes quite unique in 

light of social network analysts’ traditional focus on individual social entities in interaction. 

SNA provides a multitude of good examples of how network methods could be usefully 

applied on a micro- or local scale of analysis (such as triad census, see Blake 2014, or ego-

networks, see Mol et al. 2014b). However, the nature of archaeological data, which rarely 

allows for individuals and their interactions to be identified with any certainty, should not be 

considered the only reason for this focus on the macro-scale. Arguably, networks lend 

themselves very well to exploring inter-regional interaction, and archaeologists have always 

had a particular interest in the movements and flows of people, resources and information 

across large areas. Moreover, many of the early applications of network methods in 

archaeology, which in some cases might have served as an example to more recent 

applications, concerned inter-regional interaction (e.g. Terrell 1976). 
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However, one should acknowledge the importance of exploring how local actions give rise to 

larger-scale patterns if we are to benefit from the multi-scalar advantage of formal network 

methods. The third case study offered an example of how this can be done, through 

simulating hypotheses of how commercial agents interacting on and between markets are the 

driving force behind the Roman trade systems. The ABM approach focused on falsifying 

these hypotheses, and was therefore not reliant on detailed archaeological evidence of 

individuals in interaction. Arguably, such data requirements will remain a strong limitation to 

the kinds of questions archaeologists can answer. But it should be clear that confirmatory 

network methods (both statistical and ABM) offer archaeologists an additional approach to 

understanding how large-scale patterns emerge through the particular interactions of 

individual agents. 

It is not surprising that many archaeological network analysts are interested in exploring the 

dynamics between relational and geographical space, given the importance of spatial factors 

in understanding archaeological data and archaeologists’ traditional interest in geographical 

methods (e.g. Hodder and Orton 1976). Despite early work by archaeologists on geographical 

networks (for an overview see chapter 2 in Knappett 2011), geographical space has been 

almost completely ignored by sociologists and physicists, resulting in a very limited 

geographical network analysis toolset for archaeologists to draw on (although see a recent 

special issue of the journal Social Networks (issue 34(1), 2012) and the review work by 

Barthelemy (2011), as well as techniques used in Space Syntax (Hillier and Hanson, 1984)). I 

believe this is one of the areas in which archaeologists can make valuable contributions to 

network science, and a number of archaeologists have already done so by suggesting or 

applying spatial network methods (e.g. Bevan and Wilson 2013; Bikoulis 2012; Knappett et 

al. 2008; Menze and Ur 2012; Wernke 2012). Indeed, a review paper of spatial and social 

network techniques applied to historical and archaeological data was recently published by 

Marc Barthelemy (2014) in Nouvelles de l’Archéologie. The second case study of this PhD 

presents a method that draws on techniques developed in SNA and GIS to make such a 

methodological and archaeological contribution to network science. 

6.2.4. Process 

Many archaeological network studies treat networks as static snapshots. This is at least in part 

a result of the nature of archaeological data and our inability to observe past processes 

directly. Graph visualisations and many network science techniques further enforce this idea 

of a static network by exploring structural features of particular networks in isolation. 
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However, the past systems we study were governed by dynamic phenomena and the network 

approach used to understand these phenomena should reflect their changeable nature. In fact, 

one could argue that no network is truly static since our assumptions underlying network data 

imply flows of resources and network change as a result of this. Sander van der Leeuw makes 

a similar point in his discussion of the collection of archaeological network science articles 

edited by Knappett (2013a): in most of the archaeological literature on networks “… the 

network itself is viewed independent of the temporal dimensions that affect different 

interactions differently” (van der Leeuw 2013, 341). He suggests that primacy, the 

advantages of nodes that are established in the network before others, should be given more 

explicit attention, and that “… we should not so much look for the origins of phenomena that 

we observe, but instead look for their emergence” (italics by van der Leeuw 2013, 337). 

Archaeological data often does not have the chronological accuracy to reconstruct an exact 

sequence of events which is required to empirically identify primacy: which ties and nodes 

appeared and disappeared in what order? The second case study presented an example of this 

problem, where very coarse chronological time-slices were used to observe changes in a 

settlement pattern. However, a number of network modelling approaches exist that can help 

one deal with this issue, including agent based modelling (e.g. Graham 2006a; case study 3), 

algebraic modelling (e.g. Menze and Ur 2012; not applied here), and statistical modelling 

(e.g. Lusher et al. 2013; case study 2). Underlying all of these modelling approaches are 

clearly formulated assumptions of what a relationship means and what types of flows it 

allows for. They therefore require one to explicitly acknowledge the dynamic nature of past 

processes and the dynamic assumptions underlying the definition of ties. Because of this, I 

believe that these confirmatory network science techniques reveal the potential contribution 

of network science for archaeology far more than the results of the exploratory network 

techniques used in this PhD. For example, although the dependence assumptions underlying 

the citation network data in case study 1 implied dynamic processes such as the flow of 

‘influence’, the exploratory network analysis applied there did not allow me to identify these 

processes. Rather, they allowed me to study the structure of the outcome of such processes. I 

nevertheless believe that exploratory network methods that represent these dependence 

assumptions most explicitly (e.g. the citation weights method in case study 1) offer an 

interesting way of considering dynamic processes in exploratory data analyses. In the second 

case study, a technique was presented that relied strongly on the available data in order to 

make statistical inferences of which kinds of dynamic processes could give rise to this data. 

281 



Tom Brughmans 

The evaluation of this technique revealed that the data requirements are high and that it can 

only be applied in research contexts where such data are available. It also showed how 

strongly theoretical assumptions weigh on the kinds of results one can expect in network 

science. For example, the ERGMs of networks with lines of sight up to 50km, which make 

little theoretical sense since few features are inter-visible over such distances, did not reveal 

any processes based on our archaeological assumptions that could give rise to such networks. 

But which model is best? Many models, representing different hypothetical processes, can be 

created that could all give rise to the same observed network. Since archaeologists cannot 

directly observe past processes, and given that our data are incomplete and are merely 

indirect proxies, how then can we ever claim that one model is more probable than any other? 

The problem of equifinality (the idea that multiple processes can have the same end result) is 

equally critical for network analysis as for any other technique in the archaeologist’s toolbox. 

There are a few ways in which formal network methods can help us address this issue. 

Firstly, archaeological data (however flawed) used in statistical models can help us to identify 

very general processes that are more probable than others, as I have illustrated in the second 

case study. This method allows one to narrow down the range of hypothetical processes that 

could give rise to an observed network. However, the suggested processes are very abstract 

and proved hard to interpret. Moreover, as stressed above, this ERGM method can only be 

used in cases where good quality datasets and clear dependence assumptions make it a 

suitable approach. Secondly, these models can help us to formally express otherwise ill-

defined hypotheses and evaluate their likeliness given certain archaeological assumptions. 

Thirdly, they might not be able to prove certain processes, but models can definitely be used 

to negatively test or falsify hypotheses, or at least identify which processes are less likely 

than others (given our current knowledge). In this way, such models serve as experimental 

laboratories (Premo 2006). This was the approach used in the third case study, where an 

ABM was developed to falsify existing archaeological/historical hypotheses. In such 

approaches a focus on falsification is preferable over one that aims to prove hypotheses, since 

the issue of equifinality is most critical here: alternative models of the Roman trade systems 

could easily be formulated and could potentially provide similar results. In such cases it 

becomes difficult to determine which model is more likely in the absence of good data, but it 

is nevertheless of interest that two alternative conceptualisations of the same hypothesis 

succeed in falsifying it. One has to acknowledge, however, that some past processes are 
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unknowable given our current techniques and datasets. All archaeological approaches suffer 

from this disadvantage and network science is no exception. 

6.2.5. Past social networks 

Finally, I would like to briefly discuss a persistent issue surrounding the use of network 

science in archaeology for studying past social networks: that combining more network data 

and network science techniques allows one to better understand past social phenomena. 

Although I have argued the use of network science in archaeology should not be restricted to 

the study of past social networks (as a conceptualisation of structure of different ways in 

which past individuals were related), it is still the research focus of many archaeological 

applications. Yet the archaeological literature reveals a false expectation that all 

archaeological network science should concern the study of past social networks, regardless 

of our ability to do so. I would like to illustrate this statement by van der Leeuw’s (2013) 

critical evaluation of archaeological network science. He takes a broader social science 

perspective in which he distinguishes between three fundamental commodities that constitue 

the metabolism of human societies (matter, energy, and information), to formulate his 

critique that: 

“… in most of the archaeological literature on networks I am aware of, we seem to be dealing with 

‘flat’ networks, or at least flat projections of networks, even though in human societies hierarchy is a 

very important structuring characteristic. In such networks, only the position of any particular node in 

the network is taken into account, and the network itself is viewed independent of the temporal 

dimension that affect different interactions differently” (van der Leeuw 2013, 341). 

“there are two kinds of networks involved in any case study – one for organization (information 

processing), and one for resources (matter and energy) – and they should not be conflated or confused. 

In real life, these two kinds of flows have a very complicated relationship, which we may not always be 

able to disentangle” (van der Leeuw 2013, 339). 

He emphasises that past social phenomena are complex and that archaeological network 

scientists should confront this complexity if they are to come to a better understanding of 

these phenomena. Van der Leeuw suggests two ways in which this can be done, drawing on 

the discussion of dynamic networks by White (2009). Firstly, he argues that hierarchical 

network sctructures represented by acyclic networks32, introduced in case study 1, offer a 

32 In his discussion Van der Leeuw creates the wrong impression that all directed asymmetric graphs have no 
directed cycles and are therefore acyclic. Given his focus on hierarchic networks I assume van der Leeuw meant 
to refer to acyclic networks only, and this is how I will interpret his suggestions. 
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useful conceptualisation. These have the advantage of not being ‘flat’ but having a pyramidal 

structure with few nodes ‘on top’, from which information, materials, or energy flows and is 

channelled to peripheral nodes. Secondly, he suggests that one should study multiple 

networks representing different aspects of complex past social phenomena (e.g. spatial, 

business, kinship relationships), the way in which these multiple networks interconnect, and 

how they emerged. 

I believe van der Leeuw’s perspective is important and that his methodological suggestions 

are promising. Moreover, this thesis shares van der Leeuws argument that a shift from static 

to dynamic network approaches is needed, and has illustrated ways of putting this into 

practice. However, in light of this PhD project’s aims I would like to emphasise that the 

promise in the approach he suggests does not derive from an ability inherent in network 

science to offer a solution for the study of complex social phenomena. A research perspective 

that considers the interlock of multiple factors of complex phenomena conceptualised as 

networks is interesting, but its ability to produce non-trivial analytical results will depend 

more on whether the network conceptualisation of each factor offers advantages over other 

conceptualisations, and whether comparable datasets are available. Moreover, the insistence 

on acyclic networks seems to disregard the assumption that all relationships between social 

entities allow for flows, and the need for network conceptualisations to be phenomenon- and 

research-context specific. In short, one cannot assume that all archaeological network science 

should strive to tackle as much as possible of the complexity of the studied past social 

phenomena in one network approach. Rather, network science offers techniques which allow 

for different aspects of past social phenomena to be studied if a network conceptualisation is 

considered best and if the data requirements are met. Aspects of social phenomena which are 

best conceptualised differently and studied using alternative tools should not be forced into a 

network science method with the assumption that the results will be comparable and non-

trivial. 

6.3. A ‘guide to good practice’: specifications for future archaeological 

network science 
This chapter introduced a large number of advantages and limitations of the archaeological 

use of network science, and discussed how I believe network science best fits in the 

archaeological research process. These lessons hold the potential to guide future 

archaeological network science in a very specific practical way: as a set of suggested 
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specifications. I agree with Isaksen (2013) that archaeologists should be provided with the 

means to evaluate how and whether network science is a tool that can lead to innovative 

insights in their own research contexts. This is a task for the more mathematically- and 

computer-literate archaeologists, who should provide critical applied case studies as 

examples and work towards a ‘guide to good practice’33 accessible to all archaeologists. This 

PhD offered three such case studies, and to conclude I would like to summarise the lessons I 

learned as a set of suggestions which could become part of a more elaborate ‘guide to good 

practice’ in the future. I purposefully write these suggestions in a very generic manner rather 

than provide particular examples, in line with the aim of this PhD to evaluate network science 

for the general use in archaeology: 

• Network science techniques are methodological tools with clear rules and limitations. 

• Archaeologists could be provided with guides to good practice and archaeological 

examples, making them able to understand what kinds of questions different network 

science techniques are designed to answer and to evaluate whether it allows them to 

achieve their research aims. To do this hardly any familiarity with mathematical and 

computational techniques is required, only a willingness to explore the potential of a 

scientific method. This thesis along with other recent publications (e.g. contributions 

in Knappett 2013a) can help archaeologists by providing specifications on whether 

network science techniques are desirable for addressing their research questions, and 

by offering examples of archaeological research questions that benefit from a network 

science treatment. 

• An evaluation of the potential contribution of network methods to addressing a 

particular research problem might be enhanced by working explicitly through the 

network science research process, which again does not require much technical skills. 

• However, once archaeologists have decided to apply a specific network science 

technique, then a thorough understanding of the technical underpinnings of this 

technique is not an option but a prerequisite for a critical interpretation of its results. 

Archaeologists could be aided in this process by multi-disciplinary engagement and 

collaboration where possible. 

33 A ‘guide to good practice for archaeological network science’ could be inspired by the guides to good practice 
provided by the Archaeology Data Service. Indeed, it would fit perfectly within this series among other data 
analysis and visualisation techniques like GIS, CAD, and VR. http://guides.archaeologydataservice.ac.uk/ 
(accessed 06-09-2014). 
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• Network concepts developed in network science are associated with specified data 

requirements, which should be acknowledged by the archaeologists adopting them. If 

the data requirements cannot be identified in empirical or simulated data then the 

network concepts loose all explanatory value. 

• When developing new network concepts, one should formulate network data 

specifications such that it becomes clear how the concept differs from exisiting 

concepts. 

• Formulating specifications of how network concepts are represented in network data 

allows for different conceptualisations of the same past phenomenon to be compared 

and possibly falsified. 

• A shift in perspective from the study of static structures to the emergence of empirical 

observations and past phenomena might be needed (van der Leeuw 2013). 

• Confirmatory network science techniques offer archaeologists an approach to 

understanding how large-scale patterns emerge through the particular interactions of 

individual agents or relationships. 

• Confirmatory network science techniques can only be usefully applied when 

specifications are formulated of how the network concepts used should be represented 

as network data. 

• Confirmatory network science techniques require one to explicitly acknowledge the 

dynamic nature of past processes and the dynamic assumptions underlying the 

definition of ties. Because of this, I believe these techniques reveal the potential 

contribution of network science for archaeology far more than the exploratory 

network techniques used in this thesis. 

• The past systems we study were governed by dynamic phenomena and the network 

approach used to understand these phenomena should reflect their changeable nature. 

• The case studies revealed that only in cases with a small number of nodes and where 

dependence assumptions gave rise to specific patterns, were network visualisations 

preferable over other types of data representation for communication purposes. 

• Even in cases where network science techniques do not offer additional functionality 

compared to other more common archaeological techniques, it could still lead to 

interesting insights by forcing one to explore a dataset or hypothesis through the lens 

of one’s assumptions about why and which relationships matter. 
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• If a method is needed where the boundaries of entities are ill-defined and fluid, and 

where one argues these can not under any circumstances be tied down for analytical 

purposes, then network science does not offer the solution. 

• Network science can never be separated from the archaeological theoretical 

motivations of how and why certain archaeological evidence allows one to better 

understand a past phenomenon. 

• Some past processes are unknowable, due to our current techniques and datasets. All 

archaeological approaches suffer from this disadvantage and network science is no 

exception. 
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7. Conclusion: the potential of network science in archaeology 

7.1. The contribution of this PhD 
This PhD project aimed to evaluate the potential of network science as a method in 

archaeology. My approach to testing this potential has been to argue that network science 

offers methodological advantages that no other method in the archaeologist’s toolbox shares 

and that enhances archaeological research. This was done by adopting the definition of 

network science by Brandes and colleagues (2013), which claims that network science is the 

study of the management, representation, and analysis of network data, and network data 

represents our theoretical statements about why relationships matter; which was reformulated 

as a central claim in this PhD: 

Archaeologists are confronted with network data; network science offers the suite of 

techniques necessary to deal with network data. 

In order for this claim to be confirmed and not to be trivial I needed to address a number of 

research questions: 

1. Do archaeologists commonly ask research questions that are best addressed through 

the analysis of network data? What kinds of archaeological research questions are 

well suited to explore from a networks perspective? Does network science allow 

archaeologists to ask new questions? 

2. Are archaeologists commonly confronted with network data? What data are typically 

well suited to submit to a network science approach? 

3. Are network techniques and visualisations useful exploration and communication 

tools in archaeology? 

4. What are the limitations of formal network methods in archaeology? 

5. Do the typical research questions and datasets in Roman archaeology pose particular 

advantages or disadvantages? 

These questions were first addressed through a review of previous archaeological 

applications of network science (chapter 2), which led me to two key conclusions 

1. A general unawareness of the historicity and diversity of formal network methods 

both within and outside the archaeological discipline or of suitable archaeological 
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applications of known models and techniques has resulted in a very limited 

methodological scope. 

2. The adoption or development of network methods has very rarely been driven by 

specific archaeological research questions and is dominated by a few popular models 

and techniques, which has in some cases resulted in a routinized explanatory process. 

These conclusions suggested that in order to evaluate the potentially innovative contribution 

of network science to archaeology, future studies should take a broad multi-disciplinary 

scope, let the specific archaeological research context dominate the application, and explicitly 

work through each step in the network science research process. I have argued that doing this 

would force one to think through the definition of network science adopted in this PhD in 

order to evaluate whether network science would allow for a useful approach to a specific 

archaeological research question, and which network technique would be best suited for this 

purpose. In order to test these suggestions they were put into practice through three case 

studies, to illustrate how this would indeed allow me to answer this project’s research 

questions (chapters 3-5). 

The three case studies offered examples of archaeological research questions that imply 

dependence assumptions about how relationships between entities matter, as well as of 

archaeological datasets, which are commonly treated as network data by archaeologists. 

However, I have argued that the ways in which archaeologists have dealt with these 

dependence assumptions did not allow them to test their hypotheses. A range of formal 

network and non-network techniques were used to address this issue in each case study. This 

led to the adoption of innovative methods (in particular the use of citation network 

techniques, the application of ERGM to visibility networks, and the use of ABM for 

falsifying hypotheses surrounding Roman tableware distributions), which allowed me to test 

past processes which were so far only hinted at, but which also allowed me to re-focus 

existing research questions or address completely new research questions. In each case study 

I have provided examples of results that could not have been obtained through non-network 

science methods. However, it also provided examples of cases where network science 

techniques did not lead to new insights. Most interesting were the disappointing results of 

some of the exploratory network measures used in case study 1 and of most of the 

exploratory network analysis of case study 3. Although the latter offered new insights and 

more detailed results in a few cases, it would be hard to argue why in this case study an 

exploratory network analysis would be preferable over a thorough exploratory data analysis 
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or a statistical treatment of the dataset. However, it is worth noting that in case study 1 the 

exploratory network techniques which offered the most interesting results were those for 

which the dependence assumptions were most clearly formulated and relevant to answering 

the case study’s research questions. 

I therefore conclude that the literature review and case studies presented here suggest that 

archaeologists commonly formulate (implicitly or explicitly) dependence assumptions, that 

they are confronted with network data, and that in such cases network science techniques can 

offer methodological advantages over other methodological tools used by archaeologists. 

This conclusion firmly establishes network science in the archaeologist’s methodological 

toolbox. The main contributions of this PhD project are, therefore, i) to argue why network 

science offers archaeologists unique and necessary methodological advantages, ii) to provide 

three critical practical examples of how it can be applied, iii) to offer a number of suggestions 

which could guide the future archaeological use of network science (section 6.3), iv) to 

introduce innovative methods of citation analysis and statistical network modelling to our 

discipline, and v) to emphasise the importance and possibility of falsifying and abstracting 

Roman archaeology hypotheses as transparent and comparable conceptualisations. 

However, these statements should be qualified. Although this thesis has a very clear aim and 

comes to the above strongly formulated conclusions, one must recognize it is the result of a 

four-year process of trial and error. It should be clear from the case studies and the discussion 

in chapter 6 that I was confronted with a lot of interesting challenges, many of which are still 

unadressed, and surfacing these issues is as much a result of this PhD project as my argument 

that network science offers methodological advantages for some archaeological research. In 

order to overcome all these challenges and uncover new and useful archaeological uses of 

network science it is important that archaeological network science should be considered 

more than just a hype: archaeological network scientists should be cautious to make grand 

claims about the novelty of their methods and instead enable a larger body of archaeologists 

to critique their approaches. 

7.2. Where to go from here? Archaeological network science beyond the 

“hype” 
A number of suggestions can be formulated to guide future archaeological research that aims 

to overcome the remaining challenges. Firstly, although I have formulated my 

methodological conclusions by addressing the archaeological discipline at large, it must be 
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stated that this is an extrapolation of results obtained through two case studies in Roman 

archaeology as well as an archaeological case study and literature review. Other 

archaeological subdisciplines where less complete datasets are available, such as palaeolithic 

archaeology, or less intensively investigated geographical areas might confront one with 

particular methodological challenges. These should be evaluated on a case-by-case basis. 

Secondly, the strong focus on network science methodology, which was necessary for this 

project, meant their relation to more theoretical network perspectives was given little 

attention. Relational theoretical perspectives are becoming increasingly popular in 

archaeology (Hodder 2012; Knappett 2011; Malafouris 2013) and some have argued they 

might be compatible with network science methods (e.g. Knappett 2011). I would like to 

reiteratre from the introduction to this PhD that there can be no network “doing” without 

network “thinking” and that the possible combination of these methodological and theoretical 

perspectives should be critically scrutinized in future work. Thirdly, archaeologists might 

make valuable methodological contributions to network science thanks to their focus on 

material and spatial data. Many of the theoretical relational perspectives concern object-

person interactions, which have received very little attention in the SNA and physics 

communities that have driven the development of network science techniques. Archaeologists 

should argue and illustrate why such interactions require the development of different 

methodological tools. Archaeologists also have a strong tradition in working with spatial data 

whilst network science has only recently started to develop spatial network techniques. The 

combination of spatial analysis techniques that have proven valuable in archaeology (such as 

visibility or least-cost path analyses) with network science techniques might offer a fruitful 

area of collaboration between archaeologists and network scientists. One particular example 

of this is the need to incorporate spatial constraints in ERGMs as argued in case study 2. 

Finally, archaeological network scientists should enable a wider archaeological audience to 

critique their methods. More published case studies with clear and transparent explanations of 

the network methods used aimed at an archaeological audience are needed. Moreover, 

archaeological network scientists should collaborate to create an accessible ‘guide to good 

practice’ in a similar format as those published by the Archaeology Data Service. 

I am optimistic that these remaining challenges will be addressed in the future thanks to the 

current speed of developments in archaeological network science. When I started my PhD 

research in 2010, the use of network science in archaeology was very different to what it was 

when finishing this project in 2014. This change is best illustrated by the trend observed 
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when counting the number of archaeological publications which apply network science 

techniques over time (Fig. 5): the published use of network techniques became slightly more 

common between 2000 and 2010, but this increase is dwarfed by the number of publications 

between 2012 and 2014.34 In addition to these publications, the last few years has known a 

strong increase in the number of conferences, sessions and workshops on archaeological 

network science, and most importantly an increase in the number of people attending these 

events35. One could argue these are indications that both the application and visibility of 

network science in our discipline has recently increased significantly. 

A useful tool to interpret this is Gartner’s “hype cycle” (Fenn and Raskino 2008), which 

offers a model for the life-cycle of emerging technologies (Fig. 60). It is a representation of 

how a technological innovation is surrounded by inflated speculations of its prospects and 

overenthusiasm soon after its emergence, followed by a period of disillusionment where it 

does not seem to live up to the expectations, until finally its place or role in a domain is 

understood allowing it to be used to its full potential. We have seen that network methods 

have been used by archaeologists at least since the 1960’s, but only in the last decade or so 

have they been more widely applied. Does this mean we are heading towards a peak of 

inflated expectations? Or have we already reached that peak and are we racing down the 

slope towards a trough of disillusionment? 

34 This very recent surge can be attributed to the publication of a number of key monographs and collected 
volumes in archaeological network science: Knappett’s (2011) ‘An archaeology of interaction’; a volume of 
case studies edited by Knappett (2013a) published as ‘Network analysis in archaeology’; a special issue of the 
Archaeological Review from Cambridge edited by Evans and Felder (2014) titled ‘Social network perspectives 
in archaeology’; a special issue of Nouvelles de l’archéologie edited by Knappett (2014) published as ‘Analyser 
les réseaux du passé en archéologie et en histoire’; and a special issue of the Journal of Archaeological Method 
and Theory edited by Brughmans, Collar, Coward and Mills (2014) titled ‘The connected past: critical and 
innovative approaches to networks in archaeology’. 

35 See for example the series of events organised by the ‘Arts, Humanities, and Complex Networks’(), ‘The 
Connected Past’ (http://connectedpast.soton.ac.uk/ accessed 2-6-2014), ‘Réseaux et Histoire’ 
(http://reshist.hypotheses.org/ accessed 2-6-2014), and ‘Historical Network Research’ communities 
(http://historicalnetworkresearch.org/ accessed 2-6-2014), and the start of yearly archaeological and historical 
network science sessions at the ‘Sunbelt SNA’ (http://www.insna.org/ accessed 2-6-2014), ‘Computer 
Applications and Quantitative Techniques in Archaeology’ (http://caa-international.org/ accessed 2-6-2014), and 
‘Digital Humanities’ conferences (http://adho.org/conference accessed 2-6-2014). 
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Fig. 60. Gartner’s hype cycle for emerging technologies: the moment of technological innovation is the starting point; 
expectations rise rapidly leading to a peak in visibility; the technology does not live up to overexpectations creating a 

negative hype; inevitably the technology will get through these ups and downs and mature, its potential is better understood. 
Note that this curve is a model, and that it does not represent the full life-cycle of technologies, which could still fail or 

increase after the initial patterns. 

An increasing number of scholars argue for the innovative contributions network science can 

make to archaeology, whilst emphasising the many challenges archaeologists are faced with 

when using formal network methods (Brughmans et al. in press; Fulminante 2014; Isaksen 

2013; Knappett 2011; in press). But can we really claim to understand the role network 

science can play in the archaeological research process when its use is surrounded by inflated 

expectations and challenges? How far along are we in understanding the potentially 

productive contribution of network science to archaeology? As a passionate advocate of 

archaeological network science I would like to think we have already reached this 

consolidation phase, but this PhD shows that most likely we are still in a phase of optimism. 

Regardless of whether we are now in a positive or negative hype, I believe that the Gartner 

hype cycle teaches us an important lesson: innovations will inevitably overcome the 

disillusionment and mature. Going through these ups and downs is a necessary process, and 

the judgement of adopters should therefore not be clouded by positive or negative jumps and 

drops. Instead, adopters should focus on whether and what the technological innovation really 

contributes to a domain. 

I believe the literature review and case studies presented in this PhD show that now it is 

possible for archaeological network scientists to work towards the “plateau of productivity”. 

This PhD project has illustrated that network science enriches the methodological toolkit of 

our domain. By recognising the particular nature of network data, by maintaining a multi-
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disciplinary perspective, and by confronting the many methodological challenges ahead in 

practice, archaeologists are well on their way to harnessing the full potential network science 

has to offer to our discipline. Moreover, archaeologists’ focus on the relationships between 

material culture and people, their ability to explore cultural change over the long-term, and 

their challenge of dealing with a diversity of fragmentary textual and material data types that 

serve as proxy evidence for past human behaviour might hold the promise of valuable and 

unique contributions from archaeology to network science in general. This might allow us to 

further discard some of the remaining expectations and challenges, in order to better position 

network science in archaeology, with the “plateau of productivity” as our goal. 
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11. Appendix III: case study 2 

11.1. Sites index: dates, urban status, location, road and river networks 

11.1.1. All 190 sites included in this case study in alphabetical order 

The project IDs mentioned here are used in Figure 2. The ‘Municipality’ column lists the 

modern municipalities in which the sites are located. The urban status and ancient names of 

sites are provided when known. This list of urban status and ancient names was derived from 

Keay 1998, Appendix II, with minor updates and changes. The last five columns show 

whether we have evidence to believe a site was occupied during a certain period (indicated by 

“1”) or not (indicated by “0”). 

Site Name Project ID Municipality 
Urban 
status 

Ancient 
name 

Iberia
n 

Republic
an 

Early 
Imperi

al 

Middle 
Imperi

al 

Late 
Imperi

al 
Alamillo 2 Osuna 

  
1 1 1 1 1 

Alcalá del Rio 4 Alcalá del Rio 
Municipiu
m 

Ilipa 
Magna 1 1 1 1 1 

Alcalá 
Morisco 5 Osuna 

  
0 1 1 1 1 

Alcaudete 6 Carmona 
  

1 1 0 0 0 

Alcolea del 
Rio 7 Alcolea del Rio 

Municipiu
m 
Flavium Canama 1 1 1 1 1 

Almadén de la 
Plata 9 

Almadén de la 
Plata 

  
0 0 1 1 0 

Almodovar 
del Rio 308 

Almodovar del 
Rio 

 
Carbula 

     Aparicio el 
Grande 11 Gilena 

 
Unknown 0 0 1 1 1 

Arcos de la 
Frontera 436 

Arcos de la 
Frontera 

 

Saudo 
(temporary
) 1 1 1 1 1 

Atalaya de la 
Moranilla 14 Écija 

  
1 1 1 1 1 

Aznalcazar 15 Aznalcazar 
 

Olontigi 1 1 1 1 1 

Bonanza 433 
Sanlúcar de 
Barrameda 

 

Lux Dubia 
(temporary
) 0 0 1 0 0 

Cagancha 286 Marchena 
  

1 1 0 0 0 

Cañada Real 
de Morón (IX) 18 

Alcala de 
Guadaira 

  
1 0 0 0 0 

Cañada Real 
de Morón 
(VII) 19 

Alcala de 
Guadaira 

  
1 0 0 0 0 

Cañada Real 
de Morón 
(VIII) 20 

Alcala de 
Guadaira 

  
1 0 0 0 0 

Cañada Real 
de Morón 
(XII) 21 

Alcala de 
Guadaira 

  
1 0 0 0 0 

Cantillana 23 Cantillana 

Municipiu
m 
Flavium Naeva 1 1 1 1 1 

Capaparda 24 Osuna 
  

1 1 1 1 1 
Carmona 25 Carmona 

 
Carmo 1 1 1 1 1 
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Casablanca 28 Utrera 
  

1 1 1 1 1 
Casilla de 
Barrera 30 Écija 

  
1 1 1 0 0 

Castillo de 
Alhonoz 34 Écija 

  
1 1 0 0 0 

Castillo de la 
Monclova 153 

Fuentes de 
Andalucia 

Municipiu
m 
Flavium Obulcula 1 1 1 1 1 

Castillo de 
Lora 171 Lora del Rio 

Municipiu
m 
Flavium Axati 1 1 1 1 1 

Castillo de 
Luna 278 Aznalcollar 

  
1 1 1 0 0 

Castillo de 
Mulva 35 

Villanueva del 
Rio y Minas 

Municipiu
m 
Flavium Munigua 1 1 1 1 0 

Casulillas 36 Arahal (el) 
  

1 1 1 1 1 

Cerro Barrero 
(I) 39 

Fuentes de 
Andalucia 

  
1 0 0 0 0 

Cerro Barrero 
(II) 40 

Fuentes de 
Andalucia 

  
1 1 0 0 0 

Cerro de 
Atalaya 41 Campana (la) 

  
1 1 1 1 1 

Cerro de la 
Cabeza 42 Santiponce 

  
1 0 0 0 0 

Cerro de la 
Higuera 43 Estepa 

  
0 0 1 1 1 

Cerro de las 
Cabezas 46 Osuna 

  
1 1 1 1 1 

Cerro de las 
Cabezas 
(Sobarbina) 233 Olivares 

 
Laelia 1 0 1 1 1 

Cerro de las 
Catorce 47 Osuna 

  
1 1 0 0 0 

Cerro de las 
Vacas 48 Lebrija 

 
Conobaria 1 1 1 1 1 

Cerro de los 
Ladrillos 50 Arahal (el) 

  
0 0 1 1 1 

Cerro de los 
Villares 51 Estepa 

  
0 0 1 1 1 

Cerro del 
Bollo 303 Utrera 

 
Unknown 1 1 1 1 1 

Cerro del 
Calvario 56 Osuna 

  
1 0 0 0 0 

Cerro del 
Castillo 
(Gerena) 58 Gerena 

  
1 1 1 0 0 

Cerro del 
Cincho 59 Carmona 

Municipiu
m 
Flavium Basilippo 1 1 1 1 0 

Cerro del 
Manzano 60 Osuna 

  
1 0 0 0 0 

Cerro del 
Orégano 293 Marchena 

  
1 1 1 1 1 

Cerro del 
Pascualejo 259 Écija 

  
1 1 1 1 1 

Cerro del 
Tesoro 61 

Luisiana (la) or 
Ecija?? 

  
1 1 1 1 1 

Cerro Duran 62 Rubio (el) 
  

1 1 1 1 1 
Cerro 
Esperilla 432 Espera 

 
Cappa 

     Cerro Gordo 63 Gilena 
  

1 0 0 0 0 
Cerro 
Macareno 64 Rinconada (la) 

  
1 1 0 0 0 

Cerro Rubio 65 
Fuentes de 
Andalucia 

  
1 1 1 1 1 
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Cerros de San 
Ignacio 287 Marchena 

  
1 1 1 0 0 

Chiclana (II) 68 Écija 
  

1 1 1 1 0 
Clarebout II 299 Marchena 

  
1 1 1 0 0 

Constantina 304 Constantina 
 

Iporca 0 0 1 0 0 
Consuegra 10 Osuna 

 
Munda 1 1 1 1 0 

Córdoba (II) 70 Carmona 
  

1 1 1 1 1 
Coria del Rio 71 Coria del Rio 

 
Caura 1 1 1 1 1 

Cortijo 
Cabeza Del 
Sordo 72 

Alcala de 
Guadaira 

  
1 1 1 0 0 

Cortijo de 
Alcofría 73 Écija 

  
0 0 1 0 0 

Cortijo de 
Carija 
(Bornos) 431 Espera 

Municipiu
m 

Caris(s)a 
Aurelia 

     
Cortijo de 
Casablanca 444 

Arcos de la 
Frontera 

 

Lacca 
(temporary
) 

     
Cortijo de los 
Cosmes 75 Écija 

Municipiu
m 
Flavium Carruca 1 1 1 1 0 

Cortijo de los 
Olivos (VII) 76 Carmona 

  
1 1 1 1 1 

Cortijo de 
Repla 78 Corrales (los) 

Municipiu
m 
Flavium 

Ilipula 
Minor 1 1 1 1 1 

Cortijo de 
Torneji Viejo 79 Carmona 

  
1 1 1 1 1 

Cortijo del 
Cerro 80 Carmona 

  
1 1 1 1 1 

Cortijo del 
Membrillo 301 Lora del Rio 

       Cortijo 
Escalera 82 

Fuentes de 
Andalucia 

  
1 1 1 1 1 

Cortijo Nuevo 83 Écija 
  

1 1 1 1 1 

Cortijos del 
Cerro (II) 84 Carmona 

  
1 1 1 0 0 

Cuevalonga 
(III) 85 Carmona 

  
1 1 1 1 1 

Dehesa de las 
Majadilas 86 

Alcala de 
Guadaira 

  
1 0 0 0 0 

Doña Mencia 261 Écija 
  

1 1 1 1 1 

Donadio (II) 89 
Fuentes de 
Andalucia 

  
1 1 1 1 1 

Écija 91 Écija Colonia 

Colonia 
Augusta 
Firma 
Astigi 1 1 1 1 1 

El Arenal (II) 94 
Fuentes de 
Andalucia 

  
1 0 0 0 0 

El Batán 262 Écija 
  

1 1 1 1 0 

El Casar 95 Utrera 

Municipiu
m 
Flavium Salpensa 1 1 1 1 1 

El Castillejo 
(Arva) 96 Alcolea del Rio 

Municipiu
m 
Flavium Arva 1 1 1 1 1 

El Castillejo 
(Écija) 263 Écija 

  
1 1 1 1 1 

El Chiste (II) 98 Carmona 
  

1 1 1 1 1 
El Chiste (V) 99 Carmona 

  
1 1 1 1 1 

El Gandul 103 
Alcala de 
Guadaira 

 
Irippo 1 1 1 1 1 

El Grullo 104 Marchena 
  

0 0 1 1 1 
El Guijo 105 Écija 

  
1 1 1 1 1 

El Hachillo 106 Lora de Estepa 
 

Olaura 0 1 1 1 1 
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El Mocho 107 Écija 
  

0 1 1 1 1 

El Molino 
Pintado 108 Montellano 

 

Callenses 
Aeneanici 1 1 1 1 1 

El Nuño 109 Écija 
  

1 1 1 1 1 
El Palomarejo 201 Écija 

  
1 1 1 1 1 

El Picate 110 Palma del Rio 
  

1 1 1 1 1 
El Santo 
Siervo 264 Écija 

  
1 1 1 1 1 

El Turruñuelo 116 Peñaflor 
  

1 0 0 0 0 
El Villar 265 Écija 

  
1 1 1 1 1 

Ermita de San 
Antón 118 

Écija or 
Carmona? 

  
1 1 1 1 1 

Estepa 120 Estepa 

Municipiu
m 
Flavium Ostippo 1 1 1 1 1 

Friíllas 266 Écija 
  

1 1 1 1 1 
Garrotal 267 Écija 

  
1 1 1 1 1 

Gerena 122 Gerena 
 

Ilse 1 1 1 1 1 

Hacienda de 
Quintos 300 Dos Hermanas 

  
0 1 1 1 1 

Haza de las 
Piedras 128 

Alcala de 
Guadaira 

  
1 1 1 1 1 

Herrera 129 Herrera 
  

0 0 0 1 1 
Huelva 395 Huelva 

 
Onuba 1 1 1 1 1 

Huerta del 
Caño 133 Écija 

  
1 1 1 1 1 

Isla del 
Castillo 136 Écija 

Municipiu
m 
Flavium Segovia 1 1 1 1 1 

La Alberquilla 268 Écija 
  

0 0 1 1 1 
La Alcuza 269 Écija 

  
1 1 1 1 1 

La Atalaya 
Chica 139 Casariche 

Municipiu
m 
Flavium Ventipo 1 1 1 1 1 

La Esclavitud 142 Coronil (el) 
  

1 0 0 0 0 
La 
Foronguilla 143 Coronil (el) 

  
1 1 1 1 1 

La Lombriz Ib 295 Marchena 
  

1 1 1 0 0 
La Molina (I) 152 Osuna 

  
0 1 1 1 1 

La Platera 154 Estepa 
  

0 1 1 1 0 

La Saetilla 217 Palma del Rio 
Municipiu
m 

 
1 1 1 1 1 

La Torre II 290 Marchena 
  

1 1 1 0 0 
La Zorrilla I 288 Marchena 

  
1 0 1 0 0 

La Zorrilla II 289 Marchena 
  

1 0 1 0 0 
Las Aguilillas 
(I) 161 Osuna 

  
0 0 1 1 1 

Las 
Aguzaderas 162 Coronil (el) 

  
1 1 1 1 1 

Las Albaidas 
(I) 163 Carmona 

  
1 1 0 0 0 

Las Animas 270 Écija 
  

1 1 1 1 1 

Las Cabezas 
de San Juan 164 

Las Cabezas de 
San Juan (las) 

Municipiu
m 
Flavium Conobaria 1 1 1 1 1 

Las 
Mazmorras 166 

Morón de la 
Frontera 

  
1 1 1 1 1 

Las Valbuenas 271 Écija 
  

1 1 1 1 1 

Lebrija 167 Lebrija 
 

Nabrissa 
Veneria 1 1 1 1 1 

Lomas del 
Castillo 168 

Puebla de 
Cazalla (la) 

       Lopera (III) 169 Utrera 
  

1 1 1 0 0 
Los Abades 272 Écija 

  
1 1 1 1 1 

Los Baldios 172 Saucejo (el) 

Municipiu
m 
Flavium Irni 1 1 1 1 1 
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Los 
Canterones 173 Estepa 

  
1 0 1 1 1 

Los 
Castrejones 441 Aznalcollar 

  
1 1 1 0 0 

Los Felipes III 298 Marchena 
  

1 1 0 0 0 
Los Galindos 
II 294 Marchena 

  
1 1 1 0 0 

Los Medianos 
III 291 Marchena 

  
1 1 1 0 0 

Los Rodeos 179 Molares (los) 
  

1 1 1 0 0 
Malaver 181 Écija 

  
1 1 1 1 1 

Marchamorón 
(I) 182 

Alcala de 
Guadaira 

  
0 0 1 1 1 

Marchenilla 
(II) 184 

Alcala de 
Guadaira 

  
1 1 1 1 1 

Mesa de Lora 185 Lora del Rio 

Municipiu
m 
Flavium Oducia 1 1 1 1 1 

Mesa de 
Setefilla 186 Lora del Rio 

  
1 1 1 1 1 

Mesa del 
Almendro 93 Lora del Rio 

  
1 1 1 0 0 

Mesas de Asta 435 
Jerez de la 
Frontera Colonia 

Hasta 
Regia 
(temporary
) 1 1 1 1 1 

Mochales 274 Écija 
  

1 1 1 1 1 

Molino de 
Pelay Correa 188 

Alcala de 
Guadaira 

  
0 0 1 1 1 

Molino 
Hundido (I) 189 

Alcala de 
Guadaira 

  
1 1 1 0 0 

Montemolín 192 Marchena 
  

1 1 1 0 0 
Moranilla 193 Écija 

  
1 1 1 1 1 

Morón de la 
Frontera 194 

Morón de la 
Frontera 

 

Lucurgentu
m Genius 
Iulii 1 1 1 1 1 

Niebla 306 Niebla 
 

Ilipula 1 1 1 1 1 

Osuna 199 Osuna Colonia 

Colonia 
Genetiva 
Iulia 
(urbanoru
m ?) Urso 1 1 1 1 1 

Palmilla (I) 200 
Cabezas de San 
Juan (las) 

  
1 1 1 1 1 

Pancorvo 203 Montellano 
  

1 1 0 0 0 

Pavia 205 
Esacena del 
Campo or Ecija? 

  
1 1 1 1 1 

Pedro 
Cruzado (I) 206 Estepa 

  
1 0 0 0 0 

Pedro 
Cruzado (II) 207 Estepa 

  
1 1 1 0 0 

Peñaflor 208 Peñaflor 
 

Celti 1 1 1 1 1 

Piedra 
Salmedina 443 Rota 

 

Caepionis 
Turris 
(temporary
) 0 1 0 0 0 

Piesolo (I) 209 
Alcala de 
Guadaira 

  
1 1 1 1 1 

Porcún I 284 Marchena 
  

1 1 1 0 0 
Pozo del 
Carretero 285 Marchena 

  
1 1 0 0 0 

Qiñones 212 Écija 
  

1 1 1 1 1 

Rancho Pozo 
Blanquillo 283 Marchena 

  
0 0 1 1 1 

Reinoso 215 Écija 
  

0 0 1 1 1 
Ruiz Sánchez 216 Écija 

  
0 0 0 1 1 
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Salinas de la 
Torre 218 Écija 

  
1 1 1 1 1 

San José 220 
Morón de la 
Frontera 

  
1 0 0 0 0 

San Juan de 
Aznalfarache 222 

San Juan de 
Aznalfarache 

 

Osset 
Constantia 
Iulia 1 1 1 1 0 

San Pedro (I) 223 
Fuentes de 
Andalucia 

  
1 1 1 0 0 

San Pedro (II) 224 
Fuentes de 
Andalucia 

  
1 1 0 0 0 

San Pedro 
(VII) 227 

Fuentes de 
Andalucia 

  
1 1 0 0 0 

Sanlucar de 
Barrameda 434 

Sanlúcar de 
Barrameda 

  
1 1 1 1 1 

Santa Ana 297 Marchena 
  

1 1 0 0 0 

Santiponce 230 Santiponce 
Municipiu
m 

Colonia 
Aelia 
Augusta 
Itálica 1 1 1 1 1 

Sevilla 232 Sevilla Colonia 

Colonia 
Iulia 
Romula 
Hispalis 1 1 1 1 1 

Sotillo 
Gallego 234 Écija 

  
1 1 1 1 1 

Tablada 235 
Viso del Alcor 
(el) 

  
1 1 0 0 1 

Tarajal 296 Marchena 
  

1 1 1 1 1 

Tejada la 
Nueva 419 

Paterna del 
Campo 

 

ancient 
name? 1 1 1 1 1 

Tejada La 
Vieja 316 

Escacena del 
Campo 

  
1 0 0 0 0 

Tinajuela 236 Carmona 
  

1 1 0 0 0 

Torre Abad (I) 239 
Alcala de 
Guadaira 

  
1 1 1 1 0 

Torre de la 
Membrilla 240 

Alcala de 
Guadaira 

  
1 1 1 1 0 

Torre de los 
Herberos 241 Dos Hermanas 

Municipiu
m Orippo 1 1 1 1 1 

Torre del 
Aguila 242 Utrera 

 
Siarum 1 1 1 1 1 

Torres de 
Alocaz 244 

Cabezas de San 
Juan (las) 

Municipiu
m Ugia Marti 1 1 1 1 1 

Vado de 
Quema 249 Aznalcazar 

  
0 0 1 1 1 

Vico 445 Marchena 
  

1 1 1 0 0 

Vistalegre I 292 
Alcala de 
Guadaira 

  
1 1 1 0 0 

 

11.1.2. All 190 sites included in this case study sorted according to their project 

ID 

The project IDs mentioned here are used in Figure 2. The ‘Municipality’ column lists the 

modern municipalities in which the sites are located. The urban status and ancient names of 

sites are provided when known. This list of urban status and ancient names was derived from 

Keay 1998, Appendix II, with minor updates and changes. The last five columns show 
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whether we have evidence to believe a site was occupied during a certain period (indicated by 

“1”) or not (indicated by “0”). 

Site Name Project ID Municipality 

Urban 

status 

Ancient 

name Iberian Republican 

Early 

Imperial 

Middle 

Imperial 

Late 

Imperial 

Alamillo 2 Osuna 

  

1 1 1 1 1 

Alcalá del Rio 4 Alcalá del Rio Municipium Ilipa Magna 1 1 1 1 1 

Alcalá Morisco 5 Osuna 

  

0 1 1 1 1 

Alcaudete 6 Carmona 

  

1 1 0 0 0 

Alcolea del Rio 7 Alcolea del Rio 

Municipium 

Flavium Canama 1 1 1 1 1 

Almadén de la 

Plata 9 

Almadén de la 

Plata 

  

0 0 1 1 0 

Consuegra 10 Osuna 

 

Munda 1 1 1 1 0 

Aparicio el 

Grande 11 Gilena 

 

Unknown 0 0 1 1 1 

Atalaya de la 

Moranilla 14 Écija 

  

1 1 1 1 1 

Aznalcazar 15 Aznalcazar 

 

Olontigi 1 1 1 1 1 

Cañada Real de 

Morón (IX) 18 

Alcala de 

Guadaira 

  

1 0 0 0 0 

Cañada Real de 

Morón (VII) 19 

Alcala de 

Guadaira 

  

1 0 0 0 0 

Cañada Real de 

Morón (VIII) 20 

Alcala de 

Guadaira 

  

1 0 0 0 0 

Cañada Real de 

Morón (XII) 21 

Alcala de 

Guadaira 

  

1 0 0 0 0 

Cantillana 23 Cantillana 

Municipium 

Flavium Naeva 1 1 1 1 1 

Capaparda 24 Osuna 

  

1 1 1 1 1 

Carmona 25 Carmona 

 

Carmo 1 1 1 1 1 

Casablanca 28 Utrera 

  

1 1 1 1 1 

Casilla de 
30 Écija 

  

1 1 1 0 0 

346 



Evaluating network science in archaeology 

Barrera 

Castillo de 

Alhonoz 34 Écija 

  

1 1 0 0 0 

Castillo de 

Mulva 35 

Villanueva del 

Rio y Minas 

Municipium 

Flavium Munigua 1 1 1 1 0 

Casulillas 36 Arahal (el) 

  

1 1 1 1 1 

Cerro Barrero 

(I) 39 

Fuentes de 

Andalucia 

  

1 0 0 0 0 

Cerro Barrero 

(II) 40 

Fuentes de 

Andalucia 

  

1 1 0 0 0 

Cerro de 

Atalaya 41 Campana (la) 

  

1 1 1 1 1 

Cerro de la 

Cabeza 42 Santiponce 

  

1 0 0 0 0 

Cerro de la 

Higuera 43 Estepa 

  

0 0 1 1 1 

Cerro de las 

Cabezas 46 Osuna 

  

1 1 1 1 1 

Cerro de las 

Catorce 47 Osuna 

  

1 1 0 0 0 

Cerro de las 

Vacas 48 Lebrija 

 

Conobaria 1 1 1 1 1 

Cerro de los 

Ladrillos 50 Arahal (el) 

  

0 0 1 1 1 

Cerro de los 

Villares 51 Estepa 

  

0 0 1 1 1 

Cerro del 

Calvario 56 Osuna 

  

1 0 0 0 0 

Cerro del 

Castillo 

(Gerena) 58 Gerena 

  

1 1 1 0 0 

Cerro del 

Cincho 59 Carmona 

Municipium 

Flavium Basilippo 1 1 1 1 0 

Cerro del 

Manzano 60 Osuna 

  

1 0 0 0 0 

Cerro del 
61 

Luisiana (la) or 

  

1 1 1 1 1 
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Tesoro Ecija?? 

Cerro Duran 62 Rubio (el) 

  

1 1 1 1 1 

Cerro Gordo 63 Gilena 

  

1 0 0 0 0 

Cerro 

Macareno 64 Rinconada (la) 

  

1 1 0 0 0 

Cerro Rubio 65 

Fuentes de 

Andalucia 

  

1 1 1 1 1 

Chiclana (II) 68 Écija 

  

1 1 1 1 0 

Córdoba (II) 70 Carmona 

  

1 1 1 1 1 

Coria del Rio 71 Coria del Rio 

 

Caura 1 1 1 1 1 

Cortijo Cabeza 

Del Sordo 72 

Alcala de 

Guadaira 

  

1 1 1 0 0 

Cortijo de 

Alcofría 73 Écija 

  

0 0 1 0 0 

Cortijo de los 

Cosmes 75 Écija 

Municipium 

Flavium Carruca 1 1 1 1 0 

Cortijo de los 

Olivos (VII) 76 Carmona 

  

1 1 1 1 1 

Cortijo de 

Repla 78 Corrales (los) 

Municipium 

Flavium Ilipula Minor 1 1 1 1 1 

Cortijo de 

Torneji Viejo 79 Carmona 

  

1 1 1 1 1 

Cortijo del 

Cerro 80 Carmona 

  

1 1 1 1 1 

Cortijo 

Escalera 82 

Fuentes de 

Andalucia 

  

1 1 1 1 1 

Cortijo Nuevo 83 Écija 

  

1 1 1 1 1 

Cortijos del 

Cerro (II) 84 Carmona 

  

1 1 1 0 0 

Cuevalonga 

(III) 85 Carmona 

  

1 1 1 1 1 

Dehesa de las 

Majadilas 86 

Alcala de 

Guadaira 

  

1 0 0 0 0 

Donadio (II) 89 

Fuentes de 

Andalucia 

  

1 1 1 1 1 

348 



Evaluating network science in archaeology 

Écija 91 Écija Colonia 

Colonia 

Augusta 

Firma Astigi 1 1 1 1 1 

Mesa del 

Almendro 93 Lora del Rio 

  

1 1 1 0 0 

El Arenal (II) 94 

Fuentes de 

Andalucia 

  

1 0 0 0 0 

El Casar 95 Utrera 

Municipium 

Flavium Salpensa 1 1 1 1 1 

El Castillejo 

(Arva) 96 Alcolea del Rio 

Municipium 

Flavium Arva 1 1 1 1 1 

El Chiste (II) 98 Carmona 

  

1 1 1 1 1 

El Chiste (V) 99 Carmona 

  

1 1 1 1 1 

El Gandul 103 

Alcala de 

Guadaira 

 

Irippo 1 1 1 1 1 

El Grullo 104 Marchena 

  

0 0 1 1 1 

El Guijo 105 Écija 

  

1 1 1 1 1 

El Hachillo 106 Lora de Estepa 

 

Olaura 0 1 1 1 1 

El Mocho 107 Écija 

  

0 1 1 1 1 

El Molino 

Pintado 108 Montellano 

 

Callenses 

Aeneanici 1 1 1 1 1 

El Nuño 109 Écija 

  

1 1 1 1 1 

El Picate 110 Palma del Rio 

  

1 1 1 1 1 

El Turruñuelo 116 Peñaflor 

  

1 0 0 0 0 

Ermita de San 

Antón 118 

Écija or 

Carmona? 

  

1 1 1 1 1 

Estepa 120 Estepa 

Municipium 

Flavium Ostippo 1 1 1 1 1 

Gerena 122 Gerena 

 

Ilse 1 1 1 1 1 

Haza de las 

Piedras 128 

Alcala de 

Guadaira 

  

1 1 1 1 1 

Herrera 129 Herrera 

  

0 0 0 1 1 

Huerta del 

Caño 133 Écija 

  

1 1 1 1 1 
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Isla del Castillo 136 Écija 

Municipium 

Flavium Segovia 1 1 1 1 1 

La Atalaya 

Chica 139 Casariche 

Municipium 

Flavium Ventipo 1 1 1 1 1 

La Esclavitud 142 Coronil (el) 

  

1 0 0 0 0 

La Foronguilla 143 Coronil (el) 

  

1 1 1 1 1 

La Molina (I) 152 Osuna 

  

0 1 1 1 1 

Castillo de la 

Monclova 153 

Fuentes de 

Andalucia 

Municipium 

Flavium Obulcula 1 1 1 1 1 

La Platera 154 Estepa 

  

0 1 1 1 0 

Las Aguilillas 

(I) 161 Osuna 

  

0 0 1 1 1 

Las Aguzaderas 162 Coronil (el) 

  

1 1 1 1 1 

Las Albaidas 

(I) 163 Carmona 

  

1 1 0 0 0 

Las Cabezas de 

San Juan 164 

Las Cabezas de 

San Juan (las) 

Municipium 

Flavium Conobaria 1 1 1 1 1 

Las Mazmorras 166 

Morón de la 

Frontera 

  

1 1 1 1 1 

Lebrija 167 Lebrija 

 

Nabrissa 

Veneria 1 1 1 1 1 

Lomas del 

Castillo 168 

Puebla de Cazalla 

(la) 

       Lopera (III) 169 Utrera 

  

1 1 1 0 0 

Castillo de 

Lora 171 Lora del Rio 

Municipium 

Flavium Axati 1 1 1 1 1 

Los Baldios 172 Saucejo (el) 

Municipium 

Flavium Irni 1 1 1 1 1 

Los Canterones 173 Estepa 

  

1 0 1 1 1 

Los Rodeos 179 Molares (los) 

  

1 1 1 0 0 

Malaver 181 Écija 

  

1 1 1 1 1 

Marchamorón 

(I) 182 

Alcala de 

Guadaira 

  

0 0 1 1 1 

Marchenilla (II) 184 
Alcala de 

  

1 1 1 1 1 
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Guadaira 

Mesa de Lora 185 Lora del Rio 

Municipium 

Flavium Oducia 1 1 1 1 1 

Mesa de 

Setefilla 186 Lora del Rio 

  

1 1 1 1 1 

Molino de 

Pelay Correa 188 

Alcala de 

Guadaira 

  

0 0 1 1 1 

Molino 

Hundido (I) 189 

Alcala de 

Guadaira 

  

1 1 1 0 0 

Montemolín 192 Marchena 

  

1 1 1 0 0 

Moranilla 193 Écija 

  

1 1 1 1 1 

Morón de la 

Frontera 194 

Morón de la 

Frontera 

 

Lucurgentum 

Genius Iulii 1 1 1 1 1 

Osuna 199 Osuna Colonia 

Colonia 

Genetiva 

Iulia 

(urbanorum 

?) Urso 1 1 1 1 1 

Palmilla (I) 200 

Cabezas de San 

Juan (las) 

  

1 1 1 1 1 

El Palomarejo 201 Écija 

  

1 1 1 1 1 

Pancorvo 203 Montellano 

  

1 1 0 0 0 

Pavia 205 

Esacena del 

Campo or Ecija? 

  

1 1 1 1 1 

Pedro Cruzado 

(I) 206 Estepa 

  

1 0 0 0 0 

Pedro Cruzado 

(II) 207 Estepa 

  

1 1 1 0 0 

Peñaflor 208 Peñaflor 

 

Celti 1 1 1 1 1 

Piesolo (I) 209 

Alcala de 

Guadaira 

  

1 1 1 1 1 

Qiñones 212 Écija 

  

1 1 1 1 1 

Reinoso 215 Écija 

  

0 0 1 1 1 

Ruiz Sánchez 216 Écija 

  

0 0 0 1 1 

La Saetilla 217 Palma del Rio Municipium 

 

1 1 1 1 1 
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Salinas de la 

Torre 218 Écija 

  

1 1 1 1 1 

San José 220 

Morón de la 

Frontera 

  

1 0 0 0 0 

San Juan de 

Aznalfarache 222 

San Juan de 

Aznalfarache 

 

Osset 

Constantia 

Iulia 1 1 1 1 0 

San Pedro (I) 223 

Fuentes de 

Andalucia 

  

1 1 1 0 0 

San Pedro (II) 224 

Fuentes de 

Andalucia 

  

1 1 0 0 0 

San Pedro (VII) 227 

Fuentes de 

Andalucia 

  

1 1 0 0 0 

Santiponce 230 Santiponce Municipium 

Colonia 

Aelia 

Augusta 

Itálica 1 1 1 1 1 

Sevilla 232 Sevilla Colonia 

Colonia Iulia 

Romula 

Hispalis 1 1 1 1 1 

Cerro de las 

Cabezas 

(Sobarbina) 233 Olivares 

 

Laelia 1 0 1 1 1 

Sotillo Gallego 234 Écija 

  

1 1 1 1 1 

Tablada 235 

Viso del Alcor 

(el) 

  

1 1 0 0 1 

Tinajuela 236 Carmona 

  

1 1 0 0 0 

Torre Abad (I) 239 

Alcala de 

Guadaira 

  

1 1 1 1 0 

Torre de la 

Membrilla 240 

Alcala de 

Guadaira 

  

1 1 1 1 0 

Torre de los 

Herberos 241 Dos Hermanas Municipium Orippo 1 1 1 1 1 

Torre del 

Aguila 242 Utrera 

 

Siarum 1 1 1 1 1 

Torres de 

Alocaz 244 

Cabezas de San 

Juan (las) Municipium Ugia Marti 1 1 1 1 1 
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Vado de 

Quema 249 Aznalcazar 

  

0 0 1 1 1 

Cerro del 

Pascualejo 259 Écija 

  

1 1 1 1 1 

Doña Mencia 261 Écija 

  

1 1 1 1 1 

El Batán 262 Écija 

  

1 1 1 1 0 

El Castillejo 

(Écija) 263 Écija 

  

1 1 1 1 1 

El Santo Siervo 264 Écija 

  

1 1 1 1 1 

El Villar 265 Écija 

  

1 1 1 1 1 

Friíllas 266 Écija 

  

1 1 1 1 1 

Garrotal 267 Écija 

  

1 1 1 1 1 

La Alberquilla 268 Écija 

  

0 0 1 1 1 

La Alcuza 269 Écija 

  

1 1 1 1 1 

Las Animas 270 Écija 

  

1 1 1 1 1 

Las Valbuenas 271 Écija 

  

1 1 1 1 1 

Los Abades 272 Écija 

  

1 1 1 1 1 

Mochales 274 Écija 

  

1 1 1 1 1 

Castillo de 

Luna 278 Aznalcollar 

  

1 1 1 0 0 

Rancho Pozo 

Blanquillo 283 Marchena 

  

0 0 1 1 1 

Porcún I 284 Marchena 

  

1 1 1 0 0 

Pozo del 

Carretero 285 Marchena 

  

1 1 0 0 0 

Cagancha 286 Marchena 

  

1 1 0 0 0 

Cerros de San 

Ignacio 287 Marchena 

  

1 1 1 0 0 

La Zorrilla I 288 Marchena 

  

1 0 1 0 0 

La Zorrilla II 289 Marchena 

  

1 0 1 0 0 

La Torre II 290 Marchena 

  

1 1 1 0 0 

Los Medianos 
291 Marchena 

  

1 1 1 0 0 
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III 

Vistalegre I 292 

Alcala de 

Guadaira 

  

1 1 1 0 0 

Cerro del 

Orégano 293 Marchena 

  

1 1 1 1 1 

Los Galindos II 294 Marchena 

  

1 1 1 0 0 

La Lombriz Ib 295 Marchena 

  

1 1 1 0 0 

Tarajal 296 Marchena 

  

1 1 1 1 1 

Santa Ana 297 Marchena 

  

1 1 0 0 0 

Los Felipes III 298 Marchena 

  

1 1 0 0 0 

Clarebout II 299 Marchena 

  

1 1 1 0 0 

Hacienda de 

Quintos 300 Dos Hermanas 

  

0 1 1 1 1 

Cortijo del 

Membrillo 301 Lora del Rio 

       Cerro del Bollo 303 Utrera 

 

Unknown 1 1 1 1 1 

Constantina 304 Constantina 

 

Iporca 0 0 1 0 0 

Niebla 306 Niebla 

 

Ilipula 1 1 1 1 1 

Almodovar del 

Rio 308 

Almodovar del 

Rio 

 

Carbula 

     Tejada La 

Vieja 316 

Escacena del 

Campo 

  

1 0 0 0 0 

Huelva 395 Huelva 

 

Onuba 1 1 1 1 1 

Tejada la 

Nueva 419 

Paterna del 

Campo 

 

ancient 

name? 1 1 1 1 1 

Cortijo de 

Carija (Bornos) 431 Espera Municipium 

Caris(s)a 

Aurelia 

     Cerro Esperilla 432 Espera 

 

Cappa 

     

Bonanza 433 

Sanlúcar de 

Barrameda 

 

Lux Dubia 

(temporary) 0 0 1 0 0 

Sanlucar de 

Barrameda 434 

Sanlúcar de 

Barrameda 

  

1 1 1 1 1 

Mesas de Asta 435 
Jerez de la 

Colonia 
Hasta Regia 

1 1 1 1 1 
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Frontera (temporary) 

Arcos de la 

Frontera 436 

Arcos de la 

Frontera 

 

Saudo 

(temporary) 1 1 1 1 1 

Los Castrejones 441 Aznalcollar 

  

1 1 1 0 0 

Piedra 

Salmedina 443 Rota 

 

Caepionis 

Turris 

(temporary) 0 1 0 0 0 

Cortijo de 

Casablanca 444 

Arcos de la 

Frontera 

 

Lacca 

(temporary) 

     Vico 445 Marchena 

  

1 1 1 0 0 

 

11.1.3. All sites with an urban status 
SiteID site_name Urban status Ancient name 

4 Alcalá del Rio Municipium Ilipa Magna 

7 Alcolea del Rio Municipium Flavium Canama 

23 Cantillana Municipium Flavium Naeva 

35 Castillo de Mulva Municipium Flavium Munigua 

59 Cerro del Cincho Municipium Flavium Basilippo 

75 Cortijo de los Cosmes Municipium Flavium Carruca 

78 Cortijo de Repla Municipium Flavium Ilipula Minor 

91 Écija Colonia Colonia Augusta Firma Astigi 

95 El Casar Municipium Flavium Salpensa 

96 El Castillejo (Arva) Municipium Flavium Arva 

120 Estepa Municipium Flavium Ostippo 

136 Isla del Castillo Municipium Flavium Segovia 

139 La Atalaya Chica Municipium Flavium Ventipo 

153 

Castillo de la 

Monclova Municipium Flavium Obulcula 

164 

Las Cabezas de San 

Juan Municipium Flavium Conobaria 

171 Castillo de Lora Municipium Flavium Axati 
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172 Los Baldios Municipium Flavium Irni 

185 Mesa de Lora Municipium Flavium Oducia 

199 Osuna Colonia 

Colonia Genetiva Iulia (urbanorum ?) 

Urso 

217 La Saetilla Municipium 

 230 Santiponce Municipium Colonia Aelia Augusta Itálica 

232 Sevilla Colonia Colonia Iulia Romula Hispalis 

241 Torre de los Herberos Municipium Orippo 

244 Torres de Alocaz Municipium Ugia Marti 

431 

Cortijo de Carija 

(Bornos) Municipium Caris(s)a Aurelia 

435 Mesas de Asta Colonia Hasta Regia (temporary) 

 

11.1.4. Sites on the Via Augusta 
Site Name Project ID Municipality Urban status Ancient name 

Carmona 25 Carmona 

 

Carmo 

Écija 91 Écija Colonia 

Colonia Augusta 

Firma Astigi 

Castillo de la 

Monclova 153 

Fuentes de 

Andalucia 

Municipium 

Flavium Obulcula 

Sevilla 232 Sevilla Colonia 

Colonia Iulia 

Romula Hispalis 

Torre de los 

Herberos 241 Dos Hermanas Municipium Orippo 

Torres de 

Alocaz 244 

Cabezas de San 

Juan (las) Municipium Ugia Marti 

Mesas de Asta 435 

Jerez de la 

Frontera Colonia 

Hasta Regia 

(temporary) 

 

11.1.5. Sites on the river network 
Site Name Project ID Municipality Urban status Ancient name 
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Alcalá del Rio 4 Alcalá del Rio Municipium Ilipa Magna 

Alcolea del Rio 7 Alcolea del Rio 

Municipium 

Flavium Canama 

Cantillana 23 Cantillana 

Municipium 

Flavium Naeva 

Coria del Rio 71 Coria del Rio 

 

Caura 

Cortijo Nuevo 83 Écija 

  

Écija 91 Écija Colonia 

Colonia Augusta 

Firma Astigi 

El Castillejo 

(Arva) 96 Alcolea del Rio 

Municipium 

Flavium Arva 

Isla del Castillo 136 Écija 

Municipium 

Flavium Segovia 

Castillo de Lora 171 Lora del Rio 

Municipium 

Flavium Axati 

Peñaflor 208 Peñaflor 

 

Celti 

La Saetilla 217 Palma del Rio Municipium 

 San Juan de 

Aznalfarache 222 

San Juan de 

Aznalfarache 

 

Osset Constantia 

Iulia 

Santiponce 230 Santiponce Municipium 

Colonia Aelia 

Augusta Itálica 

Sevilla 232 Sevilla Colonia 

Colonia Iulia 

Romula Hispalis 

Torre de los 

Herberos 241 Dos Hermanas Municipium Orippo 

Doña Mencia 261 Écija 

  Las Animas 270 Écija 

  Las Valbuenas 271 Écija 
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11.2. Cumulative viewsheds 
Most of the areas that are highly visible in the cumulative viewshed results (Figs. 73-77) are 

areas with a high site density (Fig. 23). This is not so much a surprising result as it is a useful 

one, since it suggests that in the exploratory networks one can expect clusters with a higher 

density of arcs to appear. The areas of high visibility do differ somewhat depending on the 

distance bands of the lines of sight. Here I decided to focus on a single band of lines of sight 

up to 20km, although a number of features visible over longer distances should be mentioned. 

The hill and ridge on which Carmona is located as well as the area between this ridge and the 

Genil are highly visible both in the 20km and the unlimited bands. The low lying area of the 

Lacus Ligustinus and its shores are also visible from many sites in both bands. The banks of 

the Guadalquivir and Genil are not highly visible, with the exception of the area around 

Santiponce and a number of hills and plateau sides around the Genil. The Via Augusta 

generally passes through areas of low local visibility, with the exception of Carmona and 

possibly the shores of the Lacus Ligustinus, although much of its trail is visible from many 

sites over long distances. A few areas are only highly visible over longer distances, however. 

In particular the foothills of the Sierra Morena, the hills west of Santiponce and the foothills 

of the Sistema Sub-bético. Most interesting are the large areas around Osuna that are highly 

visible over long distances but less so over short distances. Both these long-distance patterns 

at borders of the study area and the high degree of visibility at the centre of the study area can 

be considered to reflect edge effects. The centre of the study area will naturally have a higher 

probability of being highly visible (in particular given the large number of sites) and the 

edges will only be highly visible over long distances. 

The cumulative viewsheds nevertheless reveal some interesting information that will be 

useful when interpreting the exploratory network analysis results, in particular when we focus 

on the changes through time in areas of high and low visibility. There is a general decrease 

over time in the size of the area that can be seen from a large number of sites. This is to be 

expected given the general decrease in the number of sites occupied (Fig. 24; Table 7). 

Especially from the Middle Imperial period there is a strong decrease in the results for the 

area around Seville and Santiponce, as well as the area around Carmona and the middle 

Corbones valley (one of the most highly visible areas in the periods before). On the other 

hand, the area northwest of Osuna becomes more visually prominent in the Early Imperial 

period. One consistent feature is the visual prominence of hilltops, ridges and plateau sides. 
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These cumulative viewshed results have shown that the impact of the site density and the 

observer locations is significant and is expected to strongly influence the structure of the 

exploratory networks. However, they also reveal a gradual decrease of overall visibility in the 

study area, the increase of the visual prominence of one area, the visual prominence of sites 

located on elevations, and the consistently low degree of visibility of the roads and rivers. 
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Fig. 61 Cumulative viewshed of sites dated to the Iberian period, lines of sight are limited to a 20km radius around observer 
locations. Colours represent the number of sites from which a particular part of the landscape is visible. The study area is 
cropped to a 20km area around Iberian sites. 

 
Fig. 62 Cumulative viewshed of sites dated to the Republican period, lines of sight are limited to a 20km radius around 
observer locations. Colours represent the number of sites from which a particular part of the landscape is visible. The study 
area is cropped to a 20km area around Republican sites. 
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Fig. 63 Cumulative viewshed of sites dated to the Early Imperial period, lines of sight are limited to a 20km radius around 
observer locations. Colours represent the number of sites from which a particular part of the landscape is visible. The study 
area is cropped to a 20km area around Early Imperial sites. 

 
Fig. 64 Cumulative viewshed of sites dated to the Middle Imperial period, lines of sight are limited to a 20km radius around 
observer locations. Colours represent the number of sites from which a particular part of the landscape is visible. The study 
area is cropped to a 20km area around Middle Imperial sites. 
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Fig. 65 Cumulative viewshed of sites dated to the Late Imperial period, lines of sight are limited to a 20km radius around 
observer locations. Colours represent the number of sites from which a particular part of the landscape is visible. The study 
area is cropped to a 20km area around Late Imperial sites. 
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11.3. Results of the node-based network measures 
This appendix presents the results of the local exploratory network measures for each 

period’s visibility network with arcs up to 20km and higher than 50% probability. 

11.3.1. Iberian period network up to 20km 

Site name Project ID 

Clustering 

Coefficient Indegree Outdegree 

Alamillo 2 0 1 1 

Alcaudete 6 0 0 1 

Alcolea del Rio 7 0 1 1 

Atalaya de la Moranilla 14 0 1 0 

Cagancha 286 0 1 1 

Cantillana 23 0 1 1 

Castillo de Alhonoz 34 0.1 5 4 

Cerro de las Cabezas 

(Sobarbina) 233 0 1 0 

Cerro del Bollo 303 0.33333333 4 3 

Cerro del Manzano 60 0 1 1 

Cerro del Orégano 293 0 0 1 

Cerro Gordo 63 0 1 1 

Cerro Rubio 65 0 1 0 

Cerros de San Ignacio 287 0 2 1 

Chiclana (II) 68 0 0 1 

Consuegra 10 0 0 1 

Cortijo de los Cosmes 75 0 1 1 

Cortijo del Cerro 80 0 1 1 

Cortijos del Cerro (II) 84 0 0 1 
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El Chiste (V) 99 0 1 0 

El Guijo 105 0 1 2 

El Nuño 109 0 2 1 

El Palomarejo 201 0 1 0 

Friíllas 266 0 1 0 

Garrotal 267 0 0 1 

Huerta del Caño 133 0 1 1 

La Alcuza 269 0.16666667 3 4 

La Esclavitud 142 0.33333333 3 3 

La Foronguilla 143 0 1 1 

La Torre II 290 0.66666667 3 3 

Las Aguzaderas 162 1 1 2 

Las Albaidas (I) 163 0 0 1 

Las Cabezas de San Juan 164 0 1 1 

Las Mazmorras 166 0.66666667 3 3 

Mesa del Almendro 93 0 1 0 

Mochales 274 1 2 2 

Montemolín 192 0 1 1 

Morón de la Frontera 194 0 2 1 

Palmilla (I) 200 0 1 1 

Pancorvo 203 0.16666667 6 5 

Pedro Cruzado (I) 206 0 1 1 

Pedro Cruzado (II) 207 0 0 1 

Peñaflor 208 0 0 1 

Porcún I 284 0.5 4 4 

364 



Evaluating network science in archaeology 

Pozo del Carretero 285 0 2 0 

San José 220 0 1 1 

San Pedro (I) 223 0.2 3 5 

San Pedro (II) 224 0.33333333 2 3 

San Pedro (VII) 227 0 1 1 

Tablada 235 0 4 2 

Tejada la Nueva 419 0 1 0 

Tejada La Vieja 316 0 0 2 

Torre del Aguila 242 0 0 1 

Vico 445 0.33333333 3 3 

 

11.3.2. Republican period network up to 20km 

Site name Project ID 

Clustering 

Coefficient Indegree Outdegree 

Alamillo 2 0 1 1 

Alcaudete 6 0 0 1 

Alcolea del Rio 7 0 1 1 

Atalaya de la 

Moranilla 14 0 2 1 

Cagancha 286 0 1 1 

Cantillana 23 0 1 1 

Castillo de Alhonoz 34 0.16666667 4 3 

Cerro de las Cabezas 46 0 0 1 

Cerro del Bollo 303 0.33333333 4 3 

Cerro del Orégano 293 0 0 1 

Cerro Rubio 65 0 1 0 
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Cerros de San Ignacio 287 0 2 1 

Chiclana (II) 68 0 0 1 

Consuegra 10 0 0 1 

Cortijo de los Cosmes 75 0 1 1 

Cortijo del Cerro 80 0 1 1 

Cortijos del Cerro (II) 84 0 0 1 

El Chiste (V) 99 0 1 0 

El Guijo 105 0 2 2 

El Mocho 107 0 2 2 

El Nuño 109 0 2 1 

El Palomarejo 201 0 1 0 

Friíllas 266 0 1 0 

Garrotal 267 0 0 1 

Huerta del Caño 133 0 1 1 

La Alcuza 269 0.16666667 3 4 

La Foronguilla 143 0 1 1 

La Platera 154 0 1 1 

La Torre II 290 0.66666667 3 3 

Las Aguzaderas 162 1 1 2 

Las Albaidas (I) 163 0 0 1 

Las Cabezas de San 

Juan 164 0 1 1 

Las Mazmorras 166 1 2 2 

Mesa del Almendro 93 0 1 0 

Mochales 274 0.33333333 3 3 
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Montemolín 192 0 1 1 

Morón de la Frontera 194 0 1 0 

Palmilla (I) 200 0 1 1 

Pancorvo 203 0.25 4 3 

Pedro Cruzado (II) 207 0 0 1 

Peñaflor 208 0 0 1 

Porcún I 284 0.5 4 4 

Pozo del Carretero 285 0 2 0 

San Pedro (I) 223 0.2 3 5 

San Pedro (II) 224 0.33333333 2 3 

San Pedro (VII) 227 0 1 1 

Tablada 235 0 4 2 

Torre del Aguila 242 0 0 1 

Vico 445 0.33333333 3 3 

 

11.3.3. Early Imperial period network up to 20km 

Site name Project ID 

Clustering 

Coefficient Indegree Outdegree 

Alamillo 2 0 1 1 

Alcolea del Rio 7 0 1 1 

Atalaya de la Moranilla 14 0 2 1 

Cantillana 23 0 1 1 

Cerro de las Cabezas 46 0 0 1 

Cerro de los Ladrillos 50 0 0 1 

Cerro del Bollo 303 0 3 2 
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Cerro del Orégano 293 0 0 1 

Cerro Rubio 65 0 1 0 

Chiclana (II) 68 0 0 1 

Consuegra 10 0 0 1 

Cortijo de Alcofría 73 0 2 3 

Cortijo de los Cosmes 75 0 1 1 

El Chiste (V) 99 0 1 0 

El Grullo 104 0 1 0 

El Guijo 105 0 1 1 

El Mocho 107 0 2 2 

El Nuño 109 0 2 1 

El Palomarejo 201 0 1 0 

Friíllas 266 0 1 0 

Garrotal 267 0 0 1 

Huerta del Caño 133 0 2 2 

La Alcuza 269 0 2 3 

La Foronguilla 143 0 1 1 

La Platera 154 0 1 1 

La Torre II 290 1 2 2 

Las Aguzaderas 162 0 0 1 

Las Cabezas de San Juan 164 0 1 1 

Las Mazmorras 166 0 1 1 

Los Abades 272 0 1 0 

Mesa del Almendro 93 0 1 0 

Mochales 274 0 3 3 
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Morón de la Frontera 194 0 2 0 

Palmilla (I) 200 0 1 1 

Peñaflor 208 0 0 1 

Porcún I 284 0.66666667 3 3 

Reinoso 215 0 1 1 

San Pedro (I) 223 0.2 3 5 

Vico 445 0.33333333 3 3 

 

11.3.4. Middle Imperial period network up to 20km 

Site name Project ID 

Clustering 

Coefficient Indegree Outdegree 

Alamillo 2 0 1 1 

Alcolea del Rio 7 0 1 1 

Atalaya de la Moranilla 14 0 2 1 

Cantillana 23 0 1 1 

Cerro de las Cabezas 46 0 0 1 

Cerro de los Ladrillos 50 0 0 1 

Cerro del Bollo 303 0 3 2 

Cerro del Orégano 293 0 0 1 

Cerro Rubio 65 0 1 0 

Chiclana (II) 68 0 0 1 

Consuegra 10 0 0 1 

Cortijo de los Cosmes 75 0 1 1 

El Guijo 105 0 1 1 

El Mocho 107 0 2 2 

369 



Tom Brughmans 

El Nuño 109 0 2 1 

El Palomarejo 201 0 1 0 

Friíllas 266 0 1 0 

Garrotal 267 0 0 1 

Huerta del Caño 133 0 1 1 

La Alcuza 269 0 2 3 

La Foronguilla 143 0 1 1 

La Platera 154 0 1 1 

Las Aguzaderas 162 0 0 1 

Las Cabezas de San Juan 164 0 1 1 

Las Mazmorras 166 0 1 1 

Mochales 274 0 2 2 

Morón de la Frontera 194 0 2 0 

Palmilla (I) 200 0 1 1 

 

11.3.5. Late Imperial period network up to 20km 

Site name Project ID 

Clustering 

Coefficient Indegree Outdegree 

Alamillo 2 0 1 1 

Alcolea del Rio 7 0 1 1 

Atalaya de la Moranilla 14 0 2 1 

Cantillana 23 0 1 1 

Cerro de los Ladrillos 50 0 0 1 

Cerro del Bollo 303 0 3 2 

Cerro del Orégano 293 0 0 1 
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Cerro Rubio 65 0 1 0 

Cortijo del Cerro 80 0 1 1 

El Mocho 107 0 2 2 

El Nuño 109 0 1 1 

Garrotal 267 0 0 1 

Huerta del Caño 133 0 1 1 

La Alcuza 269 0 2 3 

La Foronguilla 143 0 1 1 

Las Aguzaderas 162 0 0 1 

Las Cabezas de San Juan 164 0 1 1 

Las Mazmorras 166 0 1 1 

Mochales 274 0 2 2 

Morón de la Frontera 194 0 2 0 

Palmilla (I) 200 0 1 1 

Tablada 235 0 1 1 
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11.4. ERGM results 
This appendix includes the results discussed in section 5.2 of the paper: the Bernoulli random 

graph models, the ERGMs without attributes, and the ERGMs with attributes. 

11.4.1. Goodness of fit of Bernoulli random graph models 

T-ratios express how good the model succeeds in reproducing the frequency of configurations 

in the observed network In order to be a good fit the t-ratio for these configurations should be 

lower than 2. Only the Bernoulli random graph models for the Middle and Late Imperial 

observed networks show a good fit for a small number of configurations. 

Table 22. Iberian 20km network. 

Effects Observed Mean 

Standard 

deviation T-ratio 

arc 84 

   reciprocity 32 0.126 0.35 91.163 

2-in-star 78 21.658 4.54 12.411 

2-out-star 73 21.64 4.706 10.914 

3-in-star 59 3.523 2.717 20.417 

3-out-star 57 3.658 3.001 17.773 

path2 147 43.521 6.474 15.983 

T1 6 0 0 

 T2 41 0 0 

 T3 46 0 0 

 T4 23 0 0 

 T5 23 0 0 

 T6 53 0 0 

 T7 129 0.113 0.459 280.959 

T8 122 0.121 0.474 257.182 
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T9(030T) 52 0.148 0.405 127.938 

T10(030C) 17 0.027 0.162 104.665 

Sink 8 38.704 3.688 -8.325 

Source 11 38.798 3.7 -7.512 

Isolates 104 54.685 3.831 12.874 

AinS(2.00) 54.563 19.986 3.627 9.534 

AoutS(2.00) 50.563 19.918 3.765 8.14 

Ain1out-star(2.00) 86.063 38.5 5.252 9.057 

1inAout-star(2.00) 87.125 38.425 5.302 9.185 

AinAout-star(2.00) 48.875 33.966 4.336 3.439 

AT-T(2.00) 43.375 0.148 0.405 106.657 

AT-C(2.00) 42.875 0.081 0.486 87.964 

AT-D(2.00) 44 0.148 0.405 108.199 

AT-U(2.00) 42.5 0.148 0.405 104.498 

AT-TD(2.00) 43.688 0.148 0.405 107.428 

AT-TU(2.00) 42.938 0.148 0.405 105.577 

AT-DU(2.00) 43.25 0.148 0.405 106.348 

AT-TDU(2.00) 43.292 0.148 0.405 106.451 

A2P-T(2.00) 133.125 43.505 6.466 13.859 

A2P-D(2.00) 65.25 21.633 4.706 9.268 

A2P-U(2.00) 71.125 21.651 4.537 10.904 

A2P-TD(2.00) 99.188 32.569 3.97 16.781 

A2P-TU(2.00) 102.125 32.578 3.891 17.874 

A2P-DU(2.00) 68.188 21.642 3.308 14.069 

A2P-TDU(2.00) 89.833 28.929 3.034 20.076 
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Std Dev in-degree dist 1.113 0.723 0.039 9.881 

Skew in-degree dist 2.614 1.288 0.247 5.367 

Std Dev out-degree dist 1.084 0.723 0.041 8.816 

Skew out-degree dist 2.698 1.297 0.264 5.309 

CorrCoef in-out-degree dists 0.869 -0.007 0.078 11.3 

Global Clustering Cto 0.356 0.003 0.01 36.937 

Global Clustering Cti 0.333 0.003 0.009 35.94 

Global Clustering Ctm 0.354 0.003 0.009 37.049 

Global Clustering Ccm 0.347 0.002 0.011 32.655 

Global Clustering AKC-T 0.326 0.003 0.009 34.08 

Global Clustering AKC-D 0.337 0.003 0.01 34.942 

Global Clustering AKC-U 0.299 0.003 0.009 32.163 

Global Clustering AKC-C 0.322 0.002 0.011 30.302 

 

Table 23. Republican 20km network. 

Effects Observed Mean 

Standard 

deviation T-ratio 

arc 74 

   reciprocity 27 0.133 0.371 72.468 

2-in-star 61 18.469 4.39 9.687 

2-out-star 57 18.07 4.028 9.664 

3-in-star 33 3.045 2.883 10.39 

3-out-star 41 2.771 2.345 16.301 

path2 117 36.495 5.754 13.991 

T1 5 0 0 
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T2 35 0 0 

 T3 40 0 0 

 T4 20 0 0 

 T5 20 0 0 

 T6 38 0 0 

 T7 97 0.144 0.531 182.538 

T8 92 0.129 0.503 182.79 

T9(030T) 46 0.112 0.319 143.994 

T10(030C) 15 0.039 0.204 73.423 

Sink 6 35.192 3.515 -8.304 

Source 11 35.396 3.443 -7.087 

Isolates 97 52.375 3.673 12.148 

AinS(2.00) 46.625 17.038 3.475 8.514 

AoutS(2.00) 40.938 16.754 3.274 7.387 

Ain1out-star(2.00) 76.875 32.441 4.742 9.37 

1inAout-star(2.00) 76.938 32.437 4.737 9.395 

AinAout-star(2.00) 48.438 28.827 3.916 5.008 

AT-T(2.00) 38.375 0.112 0.319 120.067 

AT-C(2.00) 37.875 0.117 0.611 61.767 

AT-D(2.00) 39 0.112 0.319 122.028 

AT-U(2.00) 37.5 0.112 0.319 117.321 

AT-TD(2.00) 38.688 0.112 0.319 121.047 

AT-TU(2.00) 37.938 0.112 0.319 118.694 

AT-DU(2.00) 38.25 0.112 0.319 119.675 

AT-TDU(2.00) 38.292 0.112 0.319 119.805 
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A2P-T(2.00) 104.125 36.483 5.752 11.76 

A2P-D(2.00) 49.75 18.061 4.022 7.879 

A2P-U(2.00) 54.625 18.459 4.388 8.242 

A2P-TD(2.00) 76.938 27.272 3.486 14.246 

A2P-TU(2.00) 79.375 27.471 3.571 14.533 

A2P-DU(2.00) 52.188 18.26 2.973 11.41 

A2P-TDU(2.00) 69.5 24.334 2.718 16.617 

Std Dev in-degree dist 1.045 0.71 0.042 7.97 

Skew in-degree dist 2.266 1.328 0.279 3.363 

Std Dev out-degree dist 1.019 0.707 0.039 8.005 

Skew out-degree dist 2.683 1.304 0.256 5.375 

CorrCoef in-out-degree dists 0.858 -0.01 0.079 10.946 

Global Clustering Cto 0.404 0.003 0.009 44.911 

Global Clustering Cti 0.377 0.003 0.009 40.558 

Global Clustering Ctm 0.393 0.003 0.009 43.653 

Global Clustering Ccm 0.385 0.003 0.016 23.972 

Global Clustering AKC-T 0.369 0.003 0.009 40.873 

Global Clustering AKC-D 0.392 0.003 0.009 43.602 

Global Clustering AKC-U 0.343 0.003 0.009 36.835 

Global Clustering AKC-C 0.364 0.003 0.016 22.661 

 

Table 24 Early Imperial 20km network. 

Effects Observed Mean 

Standard 

deviation T-ratio 

arc 51 
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reciprocity 18 0.057 0.24 74.627 

2-in-star 25 8.573 2.996 5.484 

2-out-star 31 8.307 2.795 8.119 

3-in-star 6 1.002 1.535 3.256 

3-out-star 16 0.877 1.273 11.884 

path2 57 16.652 4.004 10.078 

T1 2 0 0 

 T2 12 0 0 

 T3 12 0 0 

 T4 6 0 0 

 T5 6 0 0 

 T6 20 0.001 0.032 632.424 

T7 44 0.038 0.273 160.923 

T8 50 0.041 0.271 184.412 

T9(030T) 12 0.034 0.181 65.994 

T10(030C) 4 0.009 0.094 42.238 

Sink 8 31.129 3.088 -7.491 

Source 8 31.302 2.932 -7.947 

Isolates 110 75.367 3.285 10.542 

AinS(2.00) 22 8.097 2.548 5.455 

AoutS(2.00) 24.125 7.885 2.419 6.713 

Ain1out-star(2.00) 45 15.363 3.449 8.593 

1inAout-star(2.00) 42.125 15.386 3.551 7.53 

AinAout-star(2.00) 31.875 14.194 3.063 5.772 

AT-T(2.00) 11 0.034 0.181 60.479 
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AT-C(2.00) 11 0.027 0.283 38.711 

AT-D(2.00) 11 0.034 0.181 60.479 

AT-U(2.00) 11 0.034 0.181 60.479 

AT-TD(2.00) 11 0.034 0.181 60.479 

AT-TU(2.00) 11 0.034 0.181 60.479 

AT-DU(2.00) 11 0.034 0.181 60.479 

AT-TDU(2.00) 11 0.034 0.181 60.479 

A2P-T(2.00) 52 16.648 4.003 8.832 

A2P-D(2.00) 28.5 8.306 2.795 7.224 

A2P-U(2.00) 22.5 8.572 2.995 4.651 

A2P-TD(2.00) 40.25 12.477 2.378 11.677 

A2P-TU(2.00) 37.25 12.61 2.504 9.841 

A2P-DU(2.00) 25.5 8.439 2.032 8.398 

A2P-TDU(2.00) 34.333 11.175 1.868 12.396 

Std Dev in-degree dist 0.749 0.583 0.034 4.885 

Skew in-degree dist 2.31 1.639 0.328 2.045 

Std Dev out-degree dist 0.801 0.58 0.032 6.918 

Skew out-degree dist 2.975 1.614 0.296 4.592 

CorrCoef in-out-degree dists 0.84 -0.011 0.08 10.664 

Global Clustering Cto 0.194 0.002 0.012 16.618 

Global Clustering Cti 0.24 0.002 0.011 20.988 

Global Clustering Ctm 0.211 0.002 0.013 15.439 

Global Clustering Ccm 0.211 0.002 0.017 12.526 

Global Clustering AKC-T 0.212 0.002 0.013 15.514 

Global Clustering AKC-D 0.193 0.002 0.012 16.569 
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Global Clustering AKC-U 0.244 0.002 0.011 21.379 

Global Clustering AKC-C 0.212 0.002 0.017 12.587 

 

Table 25. Middle Imperial 20km network. 

Effects Observed Mean 

Standard 

deviation T-ratio 

arc 29 

   reciprocity 9 0.027 0.162 55.333 

2-in-star 9 3.101 1.679 3.513 

2-out-star 6 3.208 1.772 1.576 

3-in-star 1 0.204 0.556 1.433 

3-out-star 1 0.22 0.518 1.507 

path2 17 6.518 2.484 4.22 

T1 0 0 0 

 T2 0 0 0 

 T3 0 0 0 

 T4 0 0 0 

 T5 0 0 0 

 T6 4 0 0 

 T7 12 0.013 0.151 79.292 

T8 10 0.015 0.157 63.405 

T9(030T) 0 0.013 0.113 -0.115 

T10(030C) 0 0.004 0.063 -0.063 

Sink 4 20.711 2.238 -7.466 

Source 7 20.625 2.22 -6.138 
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Isolates 97 78.282 2.512 7.452 

AinS(2.00) 8.5 3.002 1.527 3.601 

AoutS(2.00) 5.5 3.099 1.624 1.479 

Ain1out-star(2.00) 15.5 6.199 2.272 4.093 

1inAout-star(2.00) 15.5 6.205 2.296 4.047 

AinAout-star(2.00) 14 5.902 2.1 3.857 

AT-T(2.00) 0 0.013 0.113 -0.115 

AT-C(2.00) 0 0.012 0.189 -0.063 

AT-D(2.00) 0 0.013 0.113 -0.115 

AT-U(2.00) 0 0.013 0.113 -0.115 

AT-TD(2.00) 0 0.013 0.113 -0.115 

AT-TU(2.00) 0 0.013 0.113 -0.115 

AT-DU(2.00) 0 0.013 0.113 -0.115 

AT-TDU(2.00) 0 0.013 0.113 -0.115 

A2P-T(2.00) 16 6.518 2.484 3.817 

A2P-D(2.00) 5.5 3.208 1.772 1.293 

A2P-U(2.00) 8.5 3.101 1.679 3.215 

A2P-TD(2.00) 10.75 4.863 1.503 3.917 

A2P-TU(2.00) 12.25 4.809 1.527 4.871 

A2P-DU(2.00) 7 3.155 1.222 3.146 

A2P-TDU(2.00) 10 4.276 1.165 4.914 

Std Dev in-degree dist 0.57 0.478 0.028 3.289 

Skew in-degree dist 2.568 1.928 0.344 1.861 

Std Dev out-degree dist 0.526 0.48 0.029 1.559 

Skew out-degree dist 2.51 1.945 0.346 1.634 
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CorrCoef in-out-degree dists 0.755 -0.006 0.087 8.712 

Global Clustering Cto 0 0.002 0.019 -0.107 

Global Clustering Cti 0 0.002 0.026 -0.086 

Global Clustering Ctm 0 0.002 0.02 -0.111 

Global Clustering Ccm 0 0.001 0.017 -0.062 

Global Clustering AKC-T 0 0.002 0.02 -0.111 

Global Clustering AKC-D 0 0.002 0.019 -0.107 

Global Clustering AKC-U 0 0.002 0.026 -0.086 

Global Clustering AKC-C 0 0.001 0.017 -0.062 

 

Table 26. Late Imperial 20km network. 

Effects Observed Mean 

Standard 

deviation T-ratio 

arc 25 

   reciprocity 10 0.026 0.159 62.645 

2-in-star 8 2.49 1.585 3.476 

2-out-star 6 2.632 1.587 2.123 

3-in-star 1 0.158 0.542 1.555 

3-out-star 1 0.173 0.519 1.594 

path2 13 5.053 2.238 3.551 

T1 0 0 0 

 T2 0 0 0 

 T3 0 0 0 

 T4 0 0 0 

 T5 0 0 0 
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T6 4 0 0 

 T7 11 0.008 0.1 110.218 

T8 10 0.01 0.118 84.692 

T9(030T) 0 0.015 0.122 -0.123 

T10(030C) 0 0.004 0.063 -0.063 

Sink 2 18.474 1.946 -8.465 

Source 4 18.346 2.009 -7.141 

Isolates 93 73.994 2.185 8.7 

AinS(2.00) 7.5 2.413 1.444 3.523 

AoutS(2.00) 5.5 2.548 1.449 2.037 

AinS(2.00) 7.5 2.413 1.444 3.523 

AoutS(2.00) 5.5 2.548 1.449 2.037 

Ain1out-star(2.00) 11.5 4.822 2.05 3.257 

1inAout-star(2.00) 11.5 4.794 2.043 3.282 

AinAout-star(2.00) 10 4.576 1.878 2.888 

AT-T(2.00) 0 0.015 0.122 -0.123 

AT-C(2.00) 0 0.012 0.189 -0.063 

AT-D(2.00) 0 0.015 0.122 -0.123 

AT-U(2.00) 0 0.015 0.122 -0.123 

AT-TD(2.00) 0 0.015 0.122 -0.123 

AT-TU(2.00) 0 0.015 0.122 -0.123 

AT-DU(2.00) 0 0.015 0.122 -0.123 

AT-TDU(2.00) 0 0.015 0.122 -0.123 

A2P-T(2.00) 12 5.053 2.238 3.104 

A2P-D(2.00) 5.5 2.632 1.586 1.809 
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A2P-U(2.00) 7.5 2.49 1.585 3.161 

A2P-TD(2.00) 8.75 3.842 1.371 3.579 

A2P-TU(2.00) 9.75 3.771 1.33 4.495 

A2P-DU(2.00) 6.5 2.561 1.099 3.586 

A2P-TDU(2.00) 8.333 3.391 1.021 4.838 

Std Dev in-degree dist 0.559 0.463 0.029 3.26 

Skew in-degree dist 2.726 1.981 0.37 2.01 

Std Dev out-degree dist 0.526 0.466 0.029 2.058 

Skew out-degree dist 2.7 2.012 0.374 1.838 

CorrCoef in-out-degree dists 0.816 -0.013 0.091 9.068 

Global Clustering Cto 0 0.004 0.036 -0.104 

Global Clustering Cti 0 0.002 0.022 -0.112 

Global Clustering Ctm 0 0.003 0.027 -0.108 

Global Clustering Ccm 0 0.001 0.02 -0.063 

Global Clustering AKC-T 0 0.003 0.027 -0.108 

Global Clustering AKC-D 0 0.004 0.036 -0.104 

Global Clustering AKC-U 0 0.002 0.022 -0.112 

Global Clustering AKC-C 0 0.001 0.02 -0.063 
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11.4.2. ERGMs without attributes 

Models of 20km networks 

Significant configurations are indicated by *. Configurations are significant if the estimate is 

more than two times the standard error. 

Table 27. Iberian 20km social circuit model. 

Effects Estimates 

Standard 

error T-ratio   

reciprocity 8.00 0.79 -0.07 * 

path2 -0.52 0.17 -0.07 * 

030T 0.40 0.05 -0.06 * 

sink -2.29 1.33 0.05 

 source -1.28 1.39 0.03 

 isolates -3.23 1.53 -0.10 * 

AinS 2.35 0.92 -0.08 * 

AoutS 2.61 0.96 -0.08 * 

 

Table 28. Republican 20km circuit model. 

Effects Estimates 

Standard 

error T-ratio   

reciprocity 6.81 0.79 -0.05 * 

2-in-star -3.66 0.92 0.03 * 

2-out-star 0.15 0.52 -0.06 

 path2 0.12 0.35 -0.02 

 030T 0.54 0.08 0.02 * 

sink -1.16 1.81 0.03 

 source -5.87 1.66 0.10 * 
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isolates -6.20 1.97 -0.06 * 

AinS(2.00) 10.02 2.08 0.01 * 

AoutS(2.00) 0.21 1.88 -0.06   

 

Table 29. Early Imperial 20km circuit model. 

Effects Estimates 

Standard 

deviation T-ratio   

reciprocity 8.69 1.21 -0.01 * 

2-in-star -4.63 2.09 0.02 * 

2-out-star -0.05 0.83 0.04 

 path2 0.90 0.66 0.03 

 030T 0.58 0.16 0.09 * 

isolates -0.74 0.89 0.00 

 AinS(2.00) 5.75 2.44 0.02 * 

AoutS(2.00) -0.03 1.28 0.02 

 AinAout-star(2.00) 0.26 0.78 0.00   

 
Table 30. Middle Imperial 20km circuit model. 

Effects Estimates 

Standard 

error T-ratio   

reciprocity 6.98 1.41 -0.08 * 

2-in-star -3.30 2.01 0.02 

 2-out-star -0.25 2.19 0.09 

 path2 0.86 0.75 0.05 

 isolates 0.87 0.98 -0.07 

 AinS(2.00) 3.92 2.30 0.02 

 AoutS(2.00) -1.07 2.52 0.02   
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Table 31. Late Imperial 20km circuit model. 

Effects Estimates 

Standard 

error T-ration   

reciprocity 8.59 2.08 0.03 * 

path2 -0.74 0.82 0.03 

 111U 0.08 0.89 0.03 

 isolates 1.07 1.35 0.01 

 AinS(2.00) 1.85 1.04 -0.01 

 AoutS(2.00) 0.56 1.61 0.01 

 AinAout-star(2.00) -0.33 0.79 0.04   
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Goodness of fit 20km network models 

Configurations included in the model are in bold. T-ratios express how good the model 

succeeds in reproducing the frequency of configurations in the observed network In order to 

be a good fit the t-ratio for these configurations should be lower than 0.1, t-ratios for all other 

configurations should be between 0.1 and 2. 

Table 32. Goodness of fit Iberian 20km social circuit model. 100 million simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

arc 84 84 0 
 

reciprocity 32 31.966 2.612 0.013 

2-in-star 78 79.134 21.836 -0.052 

2-out-star 73 73.072 22.799 -0.003 

3-in-star 59 66.401 40.74 -0.182 

3-out-star 57 61.695 41.224 -0.114 

path2 147 143.565 45.57 0.075 

T1 6 7.57 8.386 -0.187 

T2 41 46.554 50.843 -0.109 

T3 46 47.717 51.418 -0.033 

T4 23 23.947 25.677 -0.037 

T5 23 23.935 25.7 -0.036 

T6 53 55.73 24.342 -0.112 

T7 129 128.75 46.8 0.005 

T8 122 124.645 47.623 -0.056 

T9(030T) 52 49.275 51.95 0.052 

T10(030C) 17 16.303 17.347 0.04 

Sink 8 7.989 2.698 0.004 

Source 11 11.108 3.324 -0.032 
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Isolates 104 103.666 5.94 0.056 

AinS(2.00) 54.563 54.011 9.253 0.06 

AoutS(2.00) 50.563 49.777 9.973 0.079 

AinS(2.00) 54.563 54.011 9.253 0.06 

AoutS(2.00) 50.563 49.777 9.973 0.079 

Ain1out-star(2.00) 86.063 80.832 12.799 0.409 

1inAout-star(2.00) 87.125 82.022 12.624 0.404 

AinAout-star(2.00) 48.875 46.65 4.647 0.479 

AT-T(2.00) 43.375 30.296 22.206 0.589 

AT-C(2.00) 42.875 29.966 22.308 0.579 

AT-D(2.00) 44 30.295 22.215 0.617 

AT-U(2.00) 42.5 30.26 22.203 0.551 

AT-TD(2.00) 43.688 30.296 22.21 0.603 

AT-TU(2.00) 42.938 30.278 22.203 0.57 

AT-DU(2.00) 43.25 30.278 22.206 0.584 

AT-TDU(2.00) 43.292 30.284 22.206 0.586 

A2P-T(2.00) 133.125 121.068 21.351 0.565 

A2P-D(2.00) 65.25 61.76 11.126 0.314 

A2P-U(2.00) 71.125 67.829 11.08 0.297 

A2P-TD(2.00) 99.188 91.414 15.75 0.494 

A2P-TU(2.00) 102.125 94.449 15.539 0.494 

A2P-DU(2.00) 68.188 64.795 10.092 0.336 

A2P-TDU(2.00) 89.833 83.553 13.594 0.462 

Std Dev in-degree dist 1.113 1.113 0.12 0 

Skew in-degree dist 2.614 2.617 0.401 -0.009 
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Std Dev out-degree dist 1.084 1.077 0.128 0.056 

Skew out-degree dist 2.698 2.64 0.419 0.14 

CorrCoef in-out-degree dists 0.869 0.836 0.079 0.414 

Global Clustering Cto 0.356 0.281 0.217 0.345 

Global Clustering Cti 0.333 0.264 0.211 0.33 

Global Clustering Ctm 0.354 0.284 0.216 0.321 

Global Clustering Ccm 0.347 0.281 0.217 0.302 

Global Clustering AKC-T 0.326 0.239 0.164 0.529 

Global Clustering AKC-D 0.337 0.236 0.165 0.613 

Global Clustering AKC-U 0.299 0.218 0.157 0.515 

Global Clustering AKC-C 0.322 0.236 0.165 0.521 

 

Table 33. Goodness of fit Republican 20km circuit model. 100milion simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

arc 74 74 0 

 reciprocity 27 26.814 2.233 0.083 

2-in-star 61 60.689 11.074 0.028 

2-out-star 57 56.406 16.189 0.037 

3-in-star 33 32.506 13.578 0.036 

3-out-star 41 40.243 25.207 0.03 

path2 117 116.214 25.799 0.03 

T1 5 6.356 5.095 -0.266 

T2 35 39.46 30.682 -0.145 

T3 40 40.861 30.868 -0.028 

T4 20 20.478 15.408 -0.031 
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T5 20 20.521 15.478 -0.034 

T6 38 39.314 13.383 -0.098 

T7 97 96.146 24.283 0.035 

T8 92 93.843 28.798 -0.064 

T9(030T) 46 42.642 31.157 0.108 

T10(030C) 15 14.116 10.377 0.085 

Sink 6 6.07 2.33 -0.03 

Source 11 11.215 3.116 -0.069 

Isolates 97 96.717 5.176 0.055 

AinS(2.00) 46.625 46.487 6.232 0.022 

AoutS(2.00) 40.938 40.561 8.204 0.046 

AinS(2.00) 46.625 46.487 6.232 0.022 

AoutS(2.00) 40.938 40.561 8.204 0.046 

Ain1out-star(2.00) 76.875 74.496 10.445 0.228 

1inAout-star(2.00) 76.938 74.506 9.182 0.265 

AinAout-star(2.00) 48.438 46.64 3.923 0.458 

AT-T(2.00) 38.375 30.125 16.575 0.498 

AT-C(2.00) 37.875 29.853 16.565 0.484 

AT-D(2.00) 39 30.233 16.619 0.528 

AT-U(2.00) 37.5 29.915 16.455 0.461 

AT-TD(2.00) 38.688 30.179 16.596 0.513 

AT-TU(2.00) 37.938 30.02 16.512 0.479 

AT-DU(2.00) 38.25 30.074 16.531 0.495 

AT-TDU(2.00) 38.292 30.091 16.545 0.496 

A2P-T(2.00) 104.125 101.605 15.021 0.168 
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A2P-D(2.00) 49.75 49.034 10.643 0.067 

A2P-U(2.00) 54.625 53.4 6.594 0.186 

A2P-TD(2.00) 76.938 75.32 12.548 0.129 

A2P-TU(2.00) 79.375 77.503 10.304 0.182 

A2P-DU(2.00) 52.188 51.217 7.606 0.128 

A2P-TDU(2.00) 69.5 68.013 10.02 0.148 

Std Dev in-degree dist 1.045 1.041 0.073 0.063 

Skew in-degree dist 2.266 2.203 0.216 0.289 

Std Dev out-degree dist 1.019 1.009 0.109 0.091 

Skew out-degree dist 2.683 2.513 0.436 0.391 

CorrCoef in-out-degree dists 0.858 0.853 0.048 0.121 

Global Clustering Cto 0.404 0.344 0.182 0.328 

Global Clustering Cti 0.377 0.326 0.191 0.269 

Global Clustering Ctm 0.393 0.335 0.187 0.311 

Global Clustering Ccm 0.385 0.332 0.187 0.278 

Global Clustering AKC-T 0.369 0.289 0.148 0.537 

Global Clustering AKC-D 0.392 0.299 0.146 0.638 

Global Clustering AKC-U 0.343 0.278 0.151 0.431 

Global Clustering AKC-C 0.364 0.286 0.148 0.522 

Table 34. Goodness of fit Early Imperial 20km circuit model. 50milion simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

arc 51 51 0 

 reciprocity 18 18.039 1.705 -0.023 

2-in-star 25 25.429 4.867 -0.088 
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2-out-star 31 31.467 9.448 -0.049 

3-in-star 6 6.595 3.65 -0.163 

3-out-star 16 17.335 14.258 -0.094 

path2 57 57.907 12.689 -0.071 

T1 2 1.868 1.506 0.088 

T2 12 11.733 9.093 0.029 

T3 12 12.295 9.213 -0.032 

T4 6 6.142 4.609 -0.031 

T5 6 6.176 4.619 -0.038 

T6 20 18.741 5.283 0.238 

T7 44 43.449 9.841 0.056 

T8 50 49.111 13.363 0.067 

T9(030T) 12 12.942 9.422 -0.1 

T10(030C) 4 4.302 3.132 -0.096 

Sink 8 8.514 2.543 -0.202 

Source 8 8.278 2.574 -0.108 

Isolates 110 110.211 4.075 -0.052 

AinS(2.00) 22 22.297 3.48 -0.085 

AoutS(2.00) 24.125 24.438 5.128 -0.061 

AinS(2.00) 22 22.297 3.48 -0.085 

AoutS(2.00) 24.125 24.438 5.128 -0.061 

Ain1out-star(2.00) 45 44.57 6.665 0.065 

1inAout-star(2.00) 42.125 41.899 5.534 0.041 

AinAout-star(2.00) 31.875 32.093 3.229 -0.067 

AT-T(2.00) 11 11.829 7.661 -0.108 
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AT-C(2.00) 11 11.795 7.637 -0.104 

AT-D(2.00) 11 11.889 7.717 -0.115 

AT-U(2.00) 11 11.748 7.589 -0.099 

AT-TD(2.00) 11 11.859 7.688 -0.112 

AT-TU(2.00) 11 11.788 7.624 -0.103 

AT-DU(2.00) 11 11.818 7.65 -0.107 

AT-TDU(2.00) 11 11.822 7.653 -0.107 

A2P-T(2.00) 52 56.175 11.169 -0.374 

A2P-D(2.00) 28.5 30.593 8.691 -0.241 

A2P-U(2.00) 22.5 24.567 4.213 -0.491 

A2P-TD(2.00) 40.25 43.384 9.783 -0.32 

A2P-TU(2.00) 37.25 40.371 7.447 -0.419 

A2P-DU(2.00) 25.5 27.58 5.952 -0.349 

A2P-TDU(2.00) 34.333 37.112 7.662 -0.363 

Std Dev in-degree dist 0.749 0.752 0.043 -0.06 

Skew in-degree dist 2.31 2.312 0.237 -0.011 

Std Dev out-degree dist 0.801 0.801 0.077 -0.003 

Skew out-degree dist 2.975 2.875 0.559 0.178 

CorrCoef in-out-degree dists 0.84 0.841 0.043 -0.029 

Global Clustering Cto 0.194 0.197 0.123 -0.032 

Global Clustering Cti 0.24 0.241 0.151 -0.008 

Global Clustering Ctm 0.211 0.211 0.131 -0.007 

Global Clustering Ccm 0.211 0.211 0.131 -0.003 

Global Clustering AKC-T 0.212 0.204 0.12 0.066 

Global Clustering AKC-D 0.193 0.191 0.113 0.021 
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Global Clustering AKC-U 0.244 0.232 0.14 0.087 

Global Clustering AKC-C 0.212 0.203 0.12 0.07 

 
Table 35. Goodness of fit Middle Imperial 20km circuit model. 50milion simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

arc 29 29 0 

 reciprocity 9 8.878 1.474 0.083 

2-in-star 9 9.028 2.406 -0.012 

2-out-star 6 5.686 2.378 0.132 

3-in-star 1 0.975 1.071 0.023 

3-out-star 1 0.701 1.144 0.261 

path2 17 16.756 4.327 0.056 

T1 0 0.012 0.109 -0.11 

T2 0 0.09 0.667 -0.135 

T3 0 0.124 0.716 -0.173 

T4 0 0.055 0.355 -0.155 

T5 0 0.057 0.358 -0.159 

T6 4 3.038 1.828 0.526 

T7 12 11.185 3.789 0.215 

T8 10 8.383 3.894 0.415 

T9(030T) 0 0.152 0.792 -0.192 

T10(030C) 0 0.065 0.295 -0.221 

Sink 4 4.211 1.88 -0.112 

Source 7 7.247 2.153 -0.115 

Isolates 97 96.83 2.712 0.063 
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AinS(2.00) 8.5 8.547 2.019 -0.023 

AoutS(2.00) 5.5 5.35 2.039 0.074 

AinS(2.00) 8.5 8.547 2.019 -0.023 

AoutS(2.00) 5.5 5.35 2.039 0.074 

Ain1out-star(2.00) 15.5 14.905 3.269 0.182 

1inAout-star(2.00) 15.5 15.161 3.349 0.101 

AinAout-star(2.00) 14 13.456 2.624 0.207 

AT-T(2.00) 0 0.152 0.792 -0.192 

AT-C(2.00) 0 0.195 0.884 -0.221 

AT-D(2.00) 0 0.152 0.792 -0.192 

AT-U(2.00) 0 0.152 0.792 -0.192 

AT-TD(2.00) 0 0.152 0.792 -0.192 

AT-TU(2.00) 0 0.152 0.792 -0.192 

AT-DU(2.00) 0 0.152 0.792 -0.192 

AT-TDU(2.00) 0 0.152 0.792 -0.192 

A2P-T(2.00) 16 16.741 4.316 -0.172 

A2P-D(2.00) 5.5 5.678 2.373 -0.075 

A2P-U(2.00) 8.5 9.02 2.401 -0.216 

A2P-TD(2.00) 10.75 11.209 3.162 -0.145 

A2P-TU(2.00) 12.25 12.88 3.182 -0.198 

A2P-DU(2.00) 7 7.348 2.05 -0.17 

A2P-TDU(2.00) 10 10.479 2.734 -0.175 

Std Dev in-degree dist 0.57 0.569 0.034 0.018 

Skew in-degree dist 2.568 2.507 0.268 0.226 

Std Dev out-degree dist 0.526 0.52 0.037 0.168 
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Skew out-degree dist 2.51 2.304 0.405 0.509 

CorrCoef in-out-degree dists 0.755 0.746 0.079 0.115 

Global Clustering Cto 0 0.011 0.059 -0.186 

Global Clustering Cti 0 0.008 0.044 -0.181 

Global Clustering Ctm 0 0.008 0.046 -0.183 

Global Clustering Ccm 0 0.011 0.05 -0.211 

Global Clustering AKC-T 0 0.008 0.046 -0.183 

Global Clustering AKC-D 0 0.011 0.059 -0.186 

Global Clustering AKC-U 0 0.008 0.044 -0.181 

Global Clustering AKC-C 0 0.011 0.05 -0.211 

 
Table 36. Goodness of fit Late Imperial 20km circuit model. 50milion simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

arc 25 25 0 

 reciprocity 10 10.038 1.145 -0.033 

2-in-star 8 8.362 3.109 -0.116 

2-out-star 6 5.902 2.294 0.043 

3-in-star 1 1.998 2.321 -0.43 

3-out-star 1 0.791 1.095 0.191 

path2 13 12.894 4.563 0.023 

T1 0 0.009 0.094 -0.095 

T2 0 0.065 0.575 -0.113 

T3 0 0.077 0.603 -0.128 

T4 0 0.042 0.307 -0.137 

T5 0 0.04 0.304 -0.132 
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T6 4 4.442 2.221 -0.199 

T7 11 11.679 4.601 -0.148 

T8 10 9.975 4.367 0.006 

T9(030T) 0 0.101 0.663 -0.152 

T10(030C) 0 0.03 0.217 -0.138 

Sink 2 2.116 1.456 -0.08 

Source 4 3.615 1.911 0.202 

Isolates 93 93.044 2.235 -0.02 

AinS(2.00) 7.5 7.441 2.325 0.026 

AoutS(2.00) 5.5 5.519 1.94 -0.01 

AinS(2.00) 7.5 7.441 2.325 0.026 

AoutS(2.00) 5.5 5.519 1.94 -0.01 

Ain1out-star(2.00) 11.5 11.177 3.372 0.096 

1inAout-star(2.00) 11.5 11.556 3.514 -0.016 

AinAout-star(2.00) 10 9.968 2.713 0.012 

AT-T(2.00) 0 0.101 0.663 -0.152 

AT-C(2.00) 0 0.09 0.651 -0.138 

AT-D(2.00) 0 0.101 0.663 -0.152 

AT-U(2.00) 0 0.101 0.663 -0.152 

AT-TD(2.00) 0 0.101 0.663 -0.152 

AT-TU(2.00) 0 0.101 0.663 -0.152 

AT-DU(2.00) 0 0.101 0.663 -0.152 

AT-TDU(2.00) 0 0.101 0.663 -0.152 

A2P-T(2.00) 12 12.878 4.547 -0.193 

A2P-D(2.00) 5.5 5.892 2.285 -0.172 
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A2P-U(2.00) 7.5 8.352 3.101 -0.275 

A2P-TD(2.00) 8.75 9.385 3.296 -0.193 

A2P-TU(2.00) 9.75 10.615 3.554 -0.243 

A2P-DU(2.00) 6.5 7.122 2.322 -0.268 

A2P-TDU(2.00) 8.333 9.041 2.982 -0.237 

Std Dev in-degree dist 0.559 0.562 0.048 -0.077 

Skew in-degree dist 2.726 2.872 0.51 -0.287 

Std Dev out-degree dist 0.526 0.523 0.038 0.079 

Skew out-degree dist 2.7 2.526 0.4 0.435 

CorrCoef in-out-degree dists 0.816 0.811 0.109 0.043 

Global Clustering Cto 0 0.008 0.052 -0.149 

Global Clustering Cti 0 0.005 0.036 -0.149 

Global Clustering Ctm 0 0.007 0.043 -0.152 

Global Clustering Ccm 0 0.006 0.042 -0.138 

Global Clustering AKC-T 0 0.007 0.043 -0.152 

Global Clustering AKC-D 0 0.008 0.052 -0.149 

Global Clustering AKC-U 0 0.005 0.036 -0.149 

Global Clustering AKC-C 0 0.006 0.042 -0.138 
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11.4.3. ERGMs of Early Imperial attributed networks 

Estimations attribute models 

Significant configurations are indicated by *. Configurations are significant if the estimate is 

more than two times the standard error. 

Table 37. Early Imperial 20km circuit model with transport network attribute. 

Effects Estimates Standard error T-ratio   

reciprocity 10.055539 1.55015 -0.04154 * 

2-in-star -5.708482 1.90495 0.01498 * 

2-out-star -1.999473 1.38887 0.05745 

 path2 1.847137 0.82768 0.04641 * 

030T 0.578545 0.16138 0.05334 * 

isolates -1.34101 0.97791 -0.01551 

 AinS(2.00) 6.79016 2.27348 -0.00888 * 

AoutS(2.00) 1.284343 1.5239 0.04105 

 AinAout-star(2.00) -0.11767 0.81402 -0.06978 

 attribute_interaction -0.028675 0.71317 -0.00496 

 attribute_sender 0.563154 0.70018 0.04241 

 attribute_receiver -0.295265 0.82344 0.06534 

 attribute_in2star -1.322136 2.06961 0.0622 

 attribute_path2 -0.294563 1.35667 0.0645 

 attribute_out2star 1.261559 1.29692 0.05888   

 
Table 38. Early Imperial 20km circuit model with ‘sites on elevation’ attribute. 

Effects Estimates Standard error T-ratio   

reciprocity 11.877478 1.5637 0.02118 * 

2-in-star -6.439163 1.98779 0.00043 * 
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2-out-star -6.486679 1.67387 0.01959 * 

path2 4.323526 0.92855 0.00294 * 

030T 0.601893 0.15858 0.00768 * 

isolates -1.658075 0.94566 0.06074 

 AinS(2.00) 6.792351 2.35062 0.01144 * 

AoutS(2.00) 0.763858 1.27458 0.02395 

 AinAout-star(2.00) 0.179412 0.80513 0.0326 

 attribute_interaction 0.079965 1.25665 -0.02934 

 attribute_sender 0.834882 1.16092 -0.0222 

 attribute_receiver 1.765496 1.27449 -0.0633 

 attribute_interaction_reciprocity -2.219687 1.31417 -0.01667 

 attribute_in2star 0.950885 1.40204 -0.0431 

 attribute_path2 -3.386105 1.05128 -0.02311 * 

attribute_out2star 6.253632 1.58822 0.00642 * 

 
Table 39. Early Imperial 20km circuit model with urban status attribute. 

Effects Estimates Standard error T-ratio   

reciprocity 10.74847 1.46607 0.05017 * 

2-in-star -7.111442 1.95956 0.06285 * 

2-out-star -3.179045 1.28336 -0.00022 * 

path2 2.668022 0.81965 0.04433 * 

030T 0.584527 0.16368 0.08331 * 

isolates -1.711183 0.92062 0.03844 

 AinS(2.00) 7.85798 2.40963 0.04644 * 

AoutS(2.00) 2.051864 1.28003 0.01099 
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AinAout-star(2.00) -0.402732 0.76709 0.03331 

 attribute_interaction -0.426453 0.69449 0.0174 

 attribute_sender 0.300056 0.67564 -0.06309 

 attribute_receiver 0.526665 0.65393 -0.03843 

 attribute_in2star 1.536405 1.44753 -0.01246 

 attribute_path2 -2.642974 1.09304 -0.02586 * 

attribute_out2star 3.267091 1.20885 -0.03691 * 

 
Table 40. Early Imperial 20km circuit model with Iron age origins attribute. 

Effects Estimates 

Standard 

error T-ratio   

reciprocity 11.41507 1.53122 0.04396 * 

2-in-star -7.392486 2.13442 -0.01468 * 

2-out-star -9.221778 1.85689 -0.00868 * 

path2 4.821053 0.93025 -0.01785 * 

030T 0.6563 0.17354 0.08788 * 

isolates -1.92352 0.9423 0.00995 * 

AinS(2.00) 7.677137 2.32622 -0.00981 * 

AoutS(2.00) 1.777674 1.35468 0.00768 

 AinAout-star(2.00) -0.044307 0.86487 0.02686 

 attribute_interaction -0.638658 1.19763 0.08372 

 attribute_sender 0.038114 1.24334 0.08916 

 attribute_receiver 1.370365 1.26671 0.08671 

 attribute_interaction_reciprocity -0.071999 1.39578 0.07913 

 attribute_in2star 1.891361 1.44902 0.04275 

 attribute_path2 -4.301578 1.08583 0.01711 * 
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attribute_out2star 8.984439 1.75245 0.00297 * 

 
Table 41. Early Imperial 20km circuit model with three attributes: sites on elevation, sites with Iron Age origins, and sites 
with an urban status. 

effects estimates stderr t-ratio   

reciprocity 9.99 1.46 -0.05 * 

2-in-star -7.70 1.84 -0.04 * 

2-out-star -1.09 1.42 -0.05 

 path2 2.05 1.14 -0.05 

 030T 0.59 0.15 -0.12 

 isolates -1.25 0.99 -0.01 

 AinS(2.00) 8.24 2.35 -0.02 * 

AoutS(2.00) 0.55 1.56 -0.03 

 AinAout-star(2.00) -0.03 0.86 0.04 

 Status_interaction 0.33 0.55 -0.01 

 Elevation_interaction -0.30 0.60 -0.06 

 Occupation_interaction 0.29 0.52 0.03 

 Status_sender 0.38 0.76 0.01 

 Elevation_sender 0.96 0.73 -0.02 

 Occupation_sender -0.62 0.77 -0.01 

 Status_receiver -0.56 0.84 -0.01 

 Elevation_receiver -0.07 0.71 -0.06 

 Occupation_receiver 0.05 0.88 -0.02 

 Status_in2star -0.13 1.72 -0.05 

 Elevation_in2star 3.21 1.46 -0.02 * 

Occupation_in2star -2.12 1.57 -0.03 

 Status_path2 0.24 1.35 -0.04 

 Elevation_path2 -1.95 1.11 -0.03 

 Occupation_path2 0.90 1.29 -0.04 
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Status_out2star 0.12 1.43 -0.04 

 Elevation_out2star 0.99 1.01 -0.01 

 Occupation_out2star -0.52 1.40 -0.04   
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Goodness of fit attribute models 

Configurations included in the model are in bold. T-ratios express how good the model 

succeeds in reproducing the frequency of configurations in the observed network. T-ratios are 

calculated as (observed - mean) / standard deviation. In order to be a good fit the t-ratio for 

these configurations should be lower than 0.1, t-ratios for all other configurations should be 

between 0.1 and 2. 

Table 42. Goodness of fit for circuit model of Early Imperial 20km network with transport network attribute. 100milion 
simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

reciprocity 18 17.969 1.709 0.018 

2-in-star 25 24.946 4.413 0.012 

2-out-star 31 31.1 8.98 -0.011 

3-in-star 6 6.138 2.866 -0.048 

3-out-star 16 17.253 13.364 -0.094 

path2 57 57.036 11.327 -0.003 

T1 2 1.686 1.388 0.226 

T2 12 10.717 8.366 0.153 

T3 12 11.379 8.482 0.073 

T4 6 5.685 4.259 0.074 

T5 6 5.685 4.25 0.074 

T6 20 17.493 4.688 0.535 

T7 44 41.868 8.678 0.246 

T8 50 46.888 11.634 0.267 

T9(030T) 12 12.086 8.736 -0.01 

T10(030C) 4 4.041 2.903 -0.014 

Sink 8 8.447 2.693 -0.166 

Source 8 8.157 2.678 -0.059 

Isolates 110 110.032 4.189 -0.008 

AinS(2.00) 22 21.972 3.301 0.008 

AoutS(2.00) 24.125 24.136 5.003 -0.002 

404 



Evaluating network science in archaeology 

AinS(2.00) 22 21.972 3.301 0.008 

AoutS(2.00) 24.125 24.136 5.003 -0.002 

Ain1out-star(2.00) 45 44.271 6.571 0.111 

1inAout-star(2.00) 42.125 41.627 5.558 0.09 

AinAout-star(2.00) 31.875 31.858 3.458 0.005 

AT-T(2.00) 11 11.161 7.313 -0.022 

AT-C(2.00) 11 11.194 7.281 -0.027 

AT-D(2.00) 11 11.213 7.357 -0.029 

AT-U(2.00) 11 11.089 7.261 -0.012 

AT-TD(2.00) 11 11.187 7.334 -0.026 

AT-TU(2.00) 11 11.125 7.286 -0.017 

AT-DU(2.00) 11 11.151 7.306 -0.021 

AT-TDU(2.00) 11 11.155 7.308 -0.021 

A2P-T(2.00) 52 55.618 10.395 -0.348 

A2P-D(2.00) 28.5 30.38 8.522 -0.221 

A2P-U(2.00) 22.5 24.233 4.026 -0.431 

A2P-TD(2.00) 40.25 42.999 9.236 -0.298 

A2P-TU(2.00) 37.25 39.926 6.915 -0.387 

A2P-DU(2.00) 25.5 27.306 5.604 -0.322 

A2P-TDU(2.00) 34.333 36.744 7.159 -0.337 

Transport_interaction 2 1.941 1.985 0.03 

Transport_sender 13 13.19 4.423 -0.043 

Transport_receiver 9 9.038 3.283 -0.012 

Transport_interaction_reciprocity 1 0.754 0.91 0.27 

Transport_activity_reciprocity 8 7.011 2.572 0.384 

Transport_in2star 5 5.06 3.152 -0.019 

Transport_path2 18 18.385 11.16 -0.034 

Transport_out2star 14 14.369 9.39 -0.039 

Std Dev in-degree dist 0.749 0.748 0.04 0.039 

405 



Tom Brughmans 

Skew in-degree dist 2.31 2.291 0.196 0.098 

Std Dev out-degree dist 0.801 0.799 0.074 0.035 

Skew out-degree dist 2.975 2.898 0.552 0.138 

CorrCoef in-out-degree dists 0.84 0.84 0.042 0.014 

Global Clustering Cto 0.194 0.187 0.121 0.051 

Global Clustering Cti 0.24 0.232 0.151 0.054 

Global Clustering Ctm 0.211 0.201 0.129 0.071 

Global Clustering Ccm 0.211 0.202 0.129 0.065 

Global Clustering AKC-T 0.212 0.194 0.119 0.146 

Global Clustering AKC-D 0.193 0.181 0.112 0.106 

Global Clustering AKC-U 0.244 0.224 0.14 0.149 

Global Clustering AKC-C 0.212 0.195 0.118 0.141 

 
Table 43. Goodness of fit for circuit model of Early Imperial 20km network with ‘sites on elevation’ attribute. 100milion 
simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

reciprocity 18 17.987 1.781 0.007 

2-in-star 25 25.46 4.405 -0.104 

2-out-star 31 31.681 8.12 -0.084 

3-in-star 6 6.633 3.148 -0.201 

3-out-star 16 17.831 11.791 -0.155 

path2 57 58.045 10.672 -0.098 

T1 2 1.777 1.299 0.172 

T2 12 11.296 7.85 0.09 

T3 12 11.977 8.003 0.003 

T4 6 5.982 3.997 0.005 

T5 6 6 4.005 0 

T6 20 18.329 4.637 0.36 

T7 44 43.07 8.763 0.106 
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T8 50 48.792 11.188 0.108 

T9(030T) 12 12.721 8.251 -0.087 

T10(030C) 4 4.237 2.754 -0.086 

Sink 8 8.444 2.595 -0.171 

Source 8 8.267 2.599 -0.103 

Isolates 110 110.104 3.924 -0.027 

AinS(2.00) 22 22.281 3.223 -0.087 

AoutS(2.00) 24.125 24.41 4.548 -0.063 

AinS(2.00) 22 22.281 3.223 -0.087 

AoutS(2.00) 24.125 24.41 4.548 -0.063 

Ain1out-star(2.00) 45 44.598 5.933 0.068 

1inAout-star(2.00) 42.125 41.87 5.159 0.049 

AinAout-star(2.00) 31.875 31.827 3.332 0.014 

AT-T(2.00) 11 11.751 6.893 -0.109 

AT-C(2.00) 11 11.735 6.898 -0.107 

AT-D(2.00) 11 11.803 6.938 -0.116 

AT-U(2.00) 11 11.676 6.836 -0.099 

AT-TD(2.00) 11 11.777 6.915 -0.112 

AT-TU(2.00) 11 11.713 6.863 -0.104 

AT-DU(2.00) 11 11.739 6.883 -0.107 

AT-TDU(2.00) 11 11.743 6.886 -0.108 

A2P-T(2.00) 52 56.542 9.682 -0.469 

A2P-D(2.00) 28.5 30.921 7.652 -0.316 

A2P-U(2.00) 22.5 24.705 3.968 -0.556 

A2P-TD(2.00) 40.25 43.731 8.476 -0.411 

A2P-TU(2.00) 37.25 40.624 6.525 -0.517 

A2P-DU(2.00) 25.5 27.813 5.17 -0.447 

A2P-TDU(2.00) 34.333 37.389 6.638 -0.46 

Elevation_interaction 33 32.66 5.363 0.063 
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Elevation_sender 42 41.908 2.782 0.033 

Elevation_receiver 41 40.785 3.323 0.065 

Elevation_interaction_reciprocity 12 11.874 2.622 0.048 

Elevation_activity_reciprocity 18 17.884 1.808 0.064 

Elevation_in2star 20 20.257 4.366 -0.059 

Elevation_path2 49 49.764 11.102 -0.069 

Elevation_out2star 29 29.621 8.257 -0.075 

Std Dev in-degree dist 0.749 0.752 0.039 -0.079 

Skew in-degree dist 2.31 2.326 0.206 -0.077 

Std Dev out-degree dist 0.801 0.804 0.067 -0.044 

Skew out-degree dist 2.975 2.954 0.5 0.042 

CorrCoef in-out-degree dists 0.84 0.841 0.041 -0.01 

Global Clustering Cto 0.194 0.197 0.118 -0.029 

Global Clustering Cti 0.24 0.241 0.14 -0.005 

Global Clustering Ctm 0.211 0.211 0.122 -0.006 

Global Clustering Ccm 0.211 0.211 0.123 -0.005 

Global Clustering AKC-T 0.212 0.203 0.113 0.072 

Global Clustering AKC-D 0.193 0.19 0.109 0.026 

Global Clustering AKC-U 0.244 0.232 0.129 0.099 

Global Clustering AKC-C 0.212 0.203 0.113 0.073 

 
Table 44. Goodness of fit for circuit model of Early Imperial 20km network with urban status attribute. 50milion 
simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

reciprocity 18 18.132 1.834 -0.072 

2-in-star 25 24.819 4.399 0.041 

2-out-star 31 30.716 9.328 0.03 

3-in-star 6 6.056 2.697 -0.021 

3-out-star 16 17.354 19.845 -0.068 
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path2 57 56.654 10.533 0.033 

T1 2 1.603 1.364 0.291 

T2 12 10.16 8.175 0.225 

T3 12 10.775 8.24 0.149 

T4 6 5.381 4.122 0.15 

T5 6 5.372 4.114 0.153 

T6 20 17.628 4.77 0.497 

T7 44 41.858 8.72 0.246 

T8 50 46.305 10.863 0.34 

T9(030T) 12 11.428 8.383 0.068 

T10(030C) 4 3.826 2.805 0.062 

Sink 8 8.352 2.662 -0.132 

Source 8 7.918 2.557 0.032 

Isolates 110 110.153 4.016 -0.038 

AinS(2.00) 22 21.868 3.332 0.04 

AoutS(2.00) 24.125 23.959 4.797 0.035 

AinS(2.00) 22 21.868 3.332 0.04 

AoutS(2.00) 24.125 23.959 4.797 0.035 

Ain1out-star(2.00) 45 44.12 6.242 0.141 

1inAout-star(2.00) 42.125 41.805 5.482 0.058 

AinAout-star(2.00) 31.875 31.936 3.412 -0.018 

AT-T(2.00) 11 10.624 7.104 0.053 

AT-C(2.00) 11 10.671 7.137 0.046 

AT-D(2.00) 11 10.654 7.136 0.048 

AT-U(2.00) 11 10.597 7.077 0.057 

AT-TD(2.00) 11 10.639 7.119 0.051 

AT-TU(2.00) 11 10.61 7.09 0.055 

AT-DU(2.00) 11 10.625 7.104 0.053 

AT-TDU(2.00) 11 10.625 7.104 0.053 
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A2P-T(2.00) 52 55.415 9.702 -0.352 

A2P-D(2.00) 28.5 30.098 8.98 -0.178 

A2P-U(2.00) 22.5 24.203 4.04 -0.422 

A2P-TD(2.00) 40.25 42.756 8.946 -0.28 

A2P-TU(2.00) 37.25 39.809 6.536 -0.392 

A2P-DU(2.00) 25.5 27.151 5.58 -0.296 

A2P-TDU(2.00) 34.333 36.572 6.867 -0.326 

Status_interaction 2 1.998 1.867 0.001 

Status_sender 14 14.233 3.872 -0.06 

Status_receiver 12 12.148 3.106 -0.048 

Status_interaction_reciprocity 1 0.731 0.854 0.315 

Status_activity_reciprocity 8 9.083 2.508 -0.432 

Status_in2star 6 6.116 2.928 -0.04 

Status_path2 18 18.341 9.772 -0.035 

Status_out2star 14 14.109 9.712 -0.011 

Std Dev in-degree dist 0.749 0.747 0.039 0.068 

Skew in-degree dist 2.31 2.288 0.178 0.124 

Std Dev out-degree dist 0.801 0.795 0.076 0.079 

Skew out-degree dist 2.975 2.87 0.684 0.153 

CorrCoef in-out-degree dists 0.84 0.845 0.046 -0.115 

Global Clustering Cto 0.194 0.181 0.121 0.101 

Global Clustering Cti 0.24 0.22 0.147 0.135 

Global Clustering Ctm 0.211 0.192 0.126 0.145 

Global Clustering Ccm 0.211 0.193 0.127 0.138 

Global Clustering AKC-T 0.212 0.186 0.116 0.222 

Global Clustering AKC-D 0.193 0.176 0.112 0.155 

Global Clustering AKC-U 0.244 0.213 0.136 0.228 

Global Clustering AKC-C 0.212 0.187 0.117 0.214 

 

410 



Evaluating network science in archaeology 

Table 45. Goodness of fit for circuit model of Early Imperial 20km network with Iron Age origins attribute. 50milion 
simulations, 1000 samples. 

Effects Observed Mean Standard deviation T-ratio 

reciprocity 18 17.988 1.82 0.007 

2-in-star 25 25.048 4.582 -0.01 

2-out-star 31 31.246 8.032 -0.031 

3-in-star 6 6.25 3.056 -0.082 

3-out-star 16 16.54 10.37 -0.052 

path2 57 57.355 11.065 -0.032 

T1 2 1.694 1.268 0.241 

T2 12 10.698 7.666 0.17 

T3 12 11.259 7.803 0.095 

T4 6 5.628 3.9 0.095 

T5 6 5.688 3.937 0.079 

T6 20 19.068 4.79 0.195 

T7 44 42.881 9.195 0.122 

T8 50 49.196 11.507 0.07 

T9(030T) 12 11.974 8.093 0.003 

T10(030C) 4 3.953 2.674 0.018 

Sink 8 8.38 2.524 -0.151 

Source 8 8.162 2.652 -0.061 

Isolates 110 110.071 4.061 -0.017 

AinS(2.00) 22 22.032 3.366 -0.009 

AoutS(2.00) 24.125 24.31 4.708 -0.039 

AinS(2.00) 22 22.032 3.366 -0.009 

AoutS(2.00) 24.125 24.31 4.708 -0.039 

Ain1out-star(2.00) 45 44.486 6.236 0.082 

1inAout-star(2.00) 42.125 41.924 5.4 0.037 

AinAout-star(2.00) 31.875 31.968 3.18 -0.029 
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AT-T(2.00) 11 11.195 6.915 -0.028 

AT-C(2.00) 11 11.089 6.858 -0.013 

AT-D(2.00) 11 11.251 6.961 -0.036 

AT-U(2.00) 11 11.101 6.832 -0.015 

AT-TD(2.00) 11 11.223 6.937 -0.032 

AT-TU(2.00) 11 11.148 6.872 -0.022 

AT-DU(2.00) 11 11.176 6.893 -0.026 

AT-TDU(2.00) 11 11.182 6.9 -0.026 

A2P-T(2.00) 52 56.062 10.107 -0.402 

A2P-D(2.00) 28.5 30.585 7.567 -0.276 

A2P-U(2.00) 22.5 24.393 4.173 -0.454 

A2P-TD(2.00) 40.25 43.323 8.664 -0.355 

A2P-TU(2.00) 37.25 40.227 6.897 -0.432 

A2P-DU(2.00) 25.5 27.489 5.324 -0.374 

A2P-TDU(2.00) 34.333 37.013 6.889 -0.389 

Origins_interaction 35 35.27 4.925 -0.055 

Origins_sender 43 43.146 2.537 -0.058 

Origins_receiver 42 42.181 3.189 -0.057 

Origins_interaction_reciprocity 14 14.159 2.488 -0.064 

Origins_activity_reciprocity 18 17.928 1.831 0.039 

Origins_in2star 21 21.205 4.677 -0.044 

Origins_path2 50 50.577 11.411 -0.051 

Origins_out2star 30 30.308 8.064 -0.038 

Std Dev in-degree dist 0.749 0.749 0.041 0.017 

Skew in-degree dist 2.31 2.296 0.201 0.071 

Std Dev out-degree dist 0.801 0.801 0.066 0.01 

Skew out-degree dist 2.975 2.888 0.434 0.199 

CorrCoef in-out-degree dists 0.84 0.84 0.044 0 

Global Clustering Cto 0.194 0.184 0.11 0.086 
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Global Clustering Cti 0.24 0.228 0.136 0.086 

Global Clustering Ctm 0.211 0.198 0.117 0.105 

Global Clustering Ccm 0.211 0.197 0.116 0.12 

Global Clustering AKC-T 0.212 0.192 0.108 0.178 

Global Clustering AKC-D 0.193 0.179 0.103 0.136 

Global Clustering AKC-U 0.244 0.221 0.127 0.186 

Global Clustering AKC-C 0.212 0.191 0.108 0.194 

 

Table 46. Goodness of fit for circuit model of Early Imperial 20km network with three attributes: sites on elevation, sites 
with Iron Age origins, and sites with an urban status. 50milion simulations, 1000 samples. 

Effects Observed Mean 

Standard 

deviation T-ratio 

reciprocity 18 18.098 1.757 -0.056 

2-in-star 25 25.283 4.564 -0.062 

2-out-star 31 31.095 8.585 -0.011 

3-in-star 6 6.492 3.301 -0.149 

3-out-star 16 17.03 12.691 -0.081 

path2 57 57.379 11.44 -0.033 

T1 2 1.696 1.362 0.223 

T2 12 10.665 8.214 0.163 

T3 12 11.203 8.329 0.096 

T4 6 5.591 4.165 0.098 

T5 6 5.628 4.205 0.088 

T6 20 18.386 4.952 0.326 

T7 44 42.918 9.163 0.118 

T8 50 48.024 12.045 0.164 

T9(030T) 12 11.833 8.594 0.019 

T10(030C) 4 3.936 2.846 0.022 

Sink 8 8.361 2.505 -0.144 

Source 8 8.197 2.614 -0.075 
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Isolates 110 110.141 3.978 -0.035 

AinS(2.00) 22 22.175 3.302 -0.053 

AoutS(2.00) 24.125 24.165 4.757 -0.008 

Ain1out-star(2.00) 45 44.337 6.251 0.106 

1inAout-star(2.00) 42.125 41.656 5.331 0.088 

AinAout-star(2.00) 31.875 31.916 3.251 -0.013 

AT-T(2.00) 11 10.939 6.985 0.009 

AT-C(2.00) 11 10.911 6.951 0.013 

AT-D(2.00) 11 10.993 7.029 0.001 

AT-U(2.00) 11 10.861 6.904 0.02 

AT-TD(2.00) 11 10.966 7.006 0.005 

AT-TU(2.00) 11 10.9 6.943 0.014 

AT-DU(2.00) 11 10.927 6.962 0.01 

AT-TDU(2.00) 11 10.931 6.97 0.01 

A2P-T(2.00) 52 55.992 10.131 -0.394 

A2P-D(2.00) 28.5 30.394 7.922 -0.239 

A2P-U(2.00) 22.5 24.592 4.053 -0.516 

A2P-TD(2.00) 40.25 43.193 8.852 -0.332 

A2P-TU(2.00) 37.25 40.292 6.817 -0.446 

A2P-DU(2.00) 25.5 27.493 5.418 -0.368 

A2P-TDU(2.00) 34.333 36.993 6.952 -0.383 

Status_interaction 4 3.54 2.993 0.154 

Elevation_interaction 23 22.69 5.624 0.055 

Occupation_interaction 26 25.163 6.041 0.139 

Status_sender 14 13.254 4.985 0.15 

Elevation_sender 35 34.872 4.045 0.032 

Occupation_sender 36 35.283 4.75 0.151 

Status_receiver 11 10.389 4.134 0.148 

Elevation_receiver 35 34.913 3.533 0.025 
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Occupation_receiver 35 34.366 4.724 0.134 

Status_sender_missing 0 0 0 

 Elevation_sender_missing 0 0 0 

 Occupation_sender_missing 0 0 0 

 Status_receiver_missing 0 0 0 

 Elevation_receiver_missing 0 0 0 

 Occupation_receiver_missing 0 0 0 

 Status_interaction_reciprocity 2 1.4 1.407 0.426 

Elevation_interaction_reciprocity 9 8.683 2.652 0.12 

Occupation_interaction_reciprocity 8 8.027 2.711 -0.01 

Status_activity_reciprocity 7 7.046 2.888 -0.016 

Elevation_activity_reciprocity 17 17.089 2.049 -0.043 

Occupation_activity_reciprocity 15 15.273 2.425 -0.113 

Status_in2star 7 6.616 4.156 0.092 

Elevation_in2star 18 18.19 4.129 -0.046 

Occupation_in2star 14 13.589 4.409 0.093 

Status_path2 21 19.759 12.595 0.099 

Elevation_path2 36 36.396 9.549 -0.041 

Occupation_path2 36 34.755 12.13 0.103 

Status_out2star 14 13.203 9.333 0.085 

Elevation_out2star 18 18.186 6.299 -0.03 

Occupation_out2star 21 20.176 8.872 0.093 

Std Dev in-degree dist 0.749 0.751 0.041 -0.035 

Skew in-degree dist 2.31 2.313 0.215 -0.013 

Std Dev out-degree dist 0.801 0.799 0.071 0.033 

Skew out-degree dist 2.975 2.895 0.534 0.149 

CorrCoef in-out-degree dists 0.84 0.842 0.044 -0.045 

Global Clustering Cto 0.194 0.181 0.109 0.118 

Global Clustering Cti 0.24 0.224 0.141 0.117 
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Global Clustering Ctm 0.211 0.195 0.119 0.131 

Global Clustering Ccm 0.211 0.195 0.119 0.134 

Global Clustering AKC-T 0.212 0.188 0.109 0.212 

Global Clustering AKC-D 0.193 0.175 0.101 0.177 

Global Clustering AKC-U 0.244 0.216 0.13 0.22 

Global Clustering AKC-C 0.212 0.188 0.109 0.216 
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12. Appendix IV: case study 3 

12.1. Lists of sites and forms used 
Table 47. Sites in ICRATES database in alphabetical order. 

Sites in ICRATES database in alphabetical order 
Aazaz Ed-Dur 
Abdera Eisodei_tis_Theotokou_kai_Ayios_Petros_(26) 
Adulis-Diodoros_Island El_Aareime 
Ain_Dara Emporio 
Aizanoi Ephesos 
Aleppo Epiphaneia 
Alexandreia Eretria 
Altinum Gadara 
Amathous Gebel_Barkal 
Amorion Gerasa 
Amphipolis Gindaros 
Amygdalea Glyfada 
Anemorion Gortyn 
Antikythera_shipwreck Halikarnassos 
Antiocheia_ad_Orontem Hammath_Tiberias 
Antiocheia_ad_Pisidiam Haouar_enn_Nahr 
Apamea Hippos-Sussita 
Apollo_Smintheion Iasos 
Argos Isthmia 
Arikamedu Jalame 
Arsameia_am_Nymphaios Jebel_Khalid 
Asagi-Dikenli Jericho 
Asea_Valley Jerusalem 
Ashkelon Kallion 
Assos Kallirhoe 
Athens Kanatha 
Athis_(Neocaesareia – Qasrin – Dibsi_Faraj) Karamildan 
Axum Karanog 
Ayios_Philon Kastro_Tigani 
Azotos_(Ashdod) Kenchreai 
B29iv Kepia 
Bab Khirbet_ez_Souaine 
BERB96-Findspot_420/Tract_443 Kition 
BERB96-Findspots_500-522 Knossos 
Berenice Kommos 
Berenike Kopetra 
Berytus Kourion 
Butrint Kozluca 
Byblos Kucuk_Burnaz 
Caesarea_Maritima Kululu 
Carthage Kydonia 
Corinth Kythera 
Cyrene Labraunda 
Damaskos Lepcis_Magna 
Danakaya Leukos_Limen 
Delos Lidar_Hoyuk 
Diaseli_Otzia_(55) Limassol 
Didyma Malta 
Diokaesareia Mampsis 
Doliche Marina_el-Alamein 
Dor Maroni_Petrera 
Dura_Europos Meroe 
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Sites in ICRATES database in alphabetical order (continued) 
Methymna Pella Tell Ilbol 
MS010 Pelusium Tell_Kadrich 
MS116 Pergamon Tell_Kaffine 
MS216 Perge Tell_Kassiha 
Mutatio_Heldua Petra Tell_Khibi 
Myos_Hormos Phalasarna Tell_Noubbol 
Nessana Phaselis_shipwreck Tell_Qaramel 
Nikopolis Philadelphia Tell_Rahhal 
Oboda Porphyreon Tell_Rifaat 
Olympia Porsuk Tell_Sourane 
ORO01-90/3_Vlastos/Hydragogeio Priene Tell_Soussiane 
Oumm_el-Amed Pylos Tell_Zaitane 
Palai-79D-10 Qara_Keupru Tenos 
Palai-79D-12 Qara_Mazraa Thasos 
Palai-79D-7 Qusair_as-Saila Timna 
Palai-79D-9 Resafa Tourhleu 
Palai-79X-1 Salamis/Constantia Troia/Ilion 
Palai-80E-22 Samaria-Sebaste Umm_el-Tlel 
Palai-80E-28 Samos_(Heraion) Uruk 
Palai-80E-30 Samothrace-Hieron Veloukovo 
Palai-80E-30_6 Sardis Xanthos 
Palai-80E-4 Scythopolis Yel_Baba 
Palai-80E-41 Seleukeia_ad_Tigrim Zeugma 
Palai-80E-48 Siphnos 

 Palai-80X-8 SK7 
 Palai-83D-23 SP1B 
 Palai-83D-27 Sparta 
 Palai-83D-58 Stobi 
 Palai-83E-126 Sultantepe 
 Palai-83E-128 Sumhuram 
 Palai-83E-130 Sykea 
 Palai-83E-18 Tall She Hamad/Magdala 
 Palai-83E-20 Tanagra 
 Palai-83E-26 Tanagra-TS21 
 Palai-83E-53 Tanagra-TS4 
 Palai-83E-63 Tarsos 
 Palai-83E-67 Tel_Anafa 
 Palai-83E-68 Tel_Mevorakh 
 Palai-86D-16 Tell_Aajar 
 Palai-86D-22 Tell_Aar 
 Palai-86E-1 Tell_Aarane 
 Palai-86E-126 Tell_Akhtareine 
 Palai-86E-2 Tell_Atrib 
 Palai-86E-4 Tell_Bahouerte 
 Palai-86E-5 Tell_Banat 
 Palai-86K-10 Tell_Bararhite 
 Palai-86K-4 Tell_Berne_(West) 
 Palaipaphos_Area Tell_Botnan 
 Palaityr/Tell_Arqa Tell_el_Qoubli 
 Panayia_Ematousa Tell_Fafine 
 Paphos Tell_Hailane 
 Patras Tell_Haourane   
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Table 48. List of all forms used grouped per fabric, with their standard typo-chronological lower and upper dates. 

Standard Form Fabric 

Standard typo-
chronological lower 

date 

Standard typo-
chronological upper 

date 

EAA1 ESA -150 -100 
EAA10 ESA -50 -25 

EAA101 ESA -100 -1 
EAA102 ESA -100 -1 

EAA102/105 ESA -100 -1 
EAA104A ESA -50 50 

EAA104A-B ESA -50 50 
EAA104B ESA -50 50 
EAA105 ESA -100 -75 
EAA106 ESA 1 25 
EAA107 ESA 1 25 
EAA108 ESA 1 100 
EAA109 ESA 50 100 
EAA11 ESA -50 -1 

EAA111 ESA 25 100 
EAA114 ESA 25 75 

EAA116A ESA 70 120 
EAA116A-B ESA 70 120 

EAA117 ESA 70 120 
EAA12 ESA -40 10 

EAA12/32 ESA -40 30 
EAA13A ESA -50 25 
EAA13B ESA -50 25 
EAA14 ESA 1 25 

EAA15A ESA -100 -50 
EAA15A-B ESA -100 -50 

EAA15B ESA -100 -50 
EAA16 ESA -175 -125 

EAA17A ESA -150 -100 
EAA17A-B ESA -150 -100 

EAA17B ESA -150 -100 
EAA18 ESA -125 -75 

EAA19A ESA -100 -50 
EAA19A-B ESA -100 -50 

EAA19B ESA -100 -50 
EAA20 ESA -150 -100 

EAA21/22 ESA -27 14 
EAA22/43 ESA -125 14 
EAA22A ESA -125 10 

EAA22A-B ESA -125 10 
EAA22B ESA -125 10 
EAA23 ESA -100 -50 
EAA2-3 ESA -200 -1 
EAA24 ESA -100 100 

EAA24-25 ESA -100 100 
EAA25 ESA -100 100 

EAA26-27 ESA -10 30 
EAA26A ESA -10 30 

EAA26A-D ESA -10 30 
EAA26B ESA -10 30 
EAA26C ESA -10 30 
EAA26D ESA -10 30 
EAA27 ESA -10 30 
EAA28 ESA -10 30 

EAA28-30 ESA -30 50 
EAA29 ESA -30 25 
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EAA2A ESA -150 -100 
EAA2A-B ESA -200 -50 

EAA2B ESA -200 -50 
EAA3 ESA -125 -1 
EAA30 ESA 10 50 

EAA30/33 ESA 1 50 
EAA30/33-34 ESA 1 50 

EAA31 ESA 1 25 
EAA32 ESA 1 30 
EAA33 ESA 1 50 

EAA33/36 ESA 1 100 
EAA34 ESA 25 50 
EAA3-4 ESA -125 20 

EAA34/37 ESA 25 100 
EAA35 ESA 40 70 

EAA35/40 ESA 40 120 
EAA35-37 ESA 40 100 

EAA36 ESA 60 100 
EAA36-37 ESA 60 100 
EAA37A ESA 60 100 

EAA37A-B ESA 60 100 
EAA37B ESA 60 100 
EAA38 ESA 25 75 

EAA38-39 ESA 25 100 
EAA39 ESA 60 100 

EAA40A ESA 80 120 
EAA40A-B ESA 80 120 
EAA40A-C ESA 80 120 

EAA40C ESA 80 120 
EAA41 ESA 60 100 
EAA42 ESA -10 30 
EAA43 ESA 1 14 
EAA44 ESA 1 50 
EAA45 ESA 1 60 
EAA46 ESA 1 25 

EAA46-47 ESA 1 70 
EAA47 ESA 10 70 
EAA48 ESA 40 70 
EAA49 ESA 40 70 
EAA4A ESA -125 20 

EAA4A-B ESA -125 20 
EAA4B ESA -27 14 
EAA50 ESA 60 100 

EAA50-51 ESA 60 120 
EAA51 ESA 70 120 
EAA52 ESA 115 140 
EAA53 ESA 75 125 

EAA53-54 ESA 75 150 
EAA54 ESA 75 150 

EAA54/56 ESA 75 200 
EAA55 ESA 100 175 
EAA56 ESA 150 200 
EAA57 ESA 100 150 

EAA57/59 ESA 100 150 
EAA57/60A-B ESA 100 200 

EAA57-59 ESA 100 150 
EAA57-60B ESA 100 200 

EAA58 ESA 100 150 
EAA58/60 ESA 100 200 

EAA59 ESA 100 150 
EAA5A ESA -125 25 

420 



Evaluating network science in archaeology 

EAA5A-B ESA -125 25 
EAA5B ESA -125 25 
EAA6 ESA -125 -50 

EAA60A ESA 100 150 
EAA60A-B ESA 100 200 

EAA60B ESA 100 200 
EAA61 ESA 100 125 
EAA62 ESA 90 120 
EAA65 ESA 80 120 
EAA7 ESA -50 -1 
EAA8 ESA -50 -1 
EAA9 ESA -50 -25 

EAA9-10 ESA -50 -25 
EAA9-11 ESA -50 -1 
EAArara-a ESA -100 -75 
EAAtarda-a ESA 175 200 
EAAtarda-b ESA 175 200 
EAAtarda-c ESA 175 200 
EAAtarda-d ESA 175 200 
EAAtarda-e ESA 175 200 

EAAtarda-e/f ESA 175 200 
EAAtarda-f ESA 175 200 
EAAtarda-g ESA 175 200 
EAAtarda-h ESA 175 200 

EAA1 ESB -27 14 
EAA1-3 ESB -27 14 
EAA13A ESB 25 75 

EAA13A-B ESB 25 75 
EAA13B ESB 25 75 
EAA16 ESB -27 14 

EAA17A ESB 25 50 
EAA17A-B ESB 25 50 

EAA17B ESB 25 50 
EAA18 ESB 25 75 
EAA19 ESB 25 75 
EAA2 ESB -27 14 
EAA21 ESB -27 14 
EAA22 ESB -27 14 
EAA3 ESB -27 14 
EAA30 ESB 1 25 

EAA30-31 ESB 1 50 
EAA30-32 ESB 25 75 

EAA31 ESB 25 50 
EAA32 ESB 25 75 
EAA35 ESB 25 75 
EAA36 ESB 25 75 
EAA37 ESB 25 75 
EAA38 ESB 1 25 
EAA39 ESB 1 75 
EAA4 ESB 1 25 
EAA40 ESB 1 25 
EAA5 ESB 25 50 
EAA58 ESB 50 125 

EAA58 early ESB 50 75 
EAA58 late ESB 75 125 

EAA6 ESB 25 50 
EAA60 ESB 50 150 

EAA60 early ESB 50 90 
EAA60 late ESB 80 150 
EAA62A ESB 70 120 
EAA62B ESB 70 120 
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EAA63 ESB 70 120 
EAA64/65 ESB 50 80 

EAA65 ESB 50 80 
EAA6-7 ESB 25 50 
EAA7 ESB 25 50 
EAA70 ESB 50 125 

EAA70 early ESB 50 75 
EAA70 late ESB 75 125 

EAA71 ESB 70 120 
EAA72 ESB 50 75 

EAA74A ESB 70 120 
EAA74A-B ESB 70 120 

EAA74B ESB 70 120 
EAA76A ESB 50 100 

EAA76A-B ESB 50 150 
EAA76B ESB 100 150 
EAA77 ESB 100 150 
EAA78 ESB 100 150 
EAA79 ESB 75 125 
EAA8 ESB 25 75 
EAA80 ESB 80 150 
EAA9 ESB 25 50 

EAAL1 ESC 25 100 
EAAL15 ESC 25 100 
EAAL19 ESC 75 125 
EAAL20 ESC 25 100 

EAAL26A ESC 25 100 
EAAL26B ESC 100 150 
EAAL28 ESC 100 150 
EAAL6 ESC 25 100 
EAAL9 ESC 1 200 

EAAL9A ESC 1 100 
LRP1 ESC 125 275 

LRP1 early ESC 125 200 
LRP1 late ESC 200 275 
LRP1/2 ESC 100 275 
LRP2 ESC 100 200 
LRP3 ESC 100 300 
LRP4 ESC 175 300 
LRP5 ESC 200 250 

M-SA1c ESC -100 -1 
M-SB3 ESC -125 -25 
M-SB6 ESC -200 -25 
M-SB8 ESC -100 25 
M-SB9 ESC 1 200 
M-SK1 ESC -150 -50 
M-SK2 ESC -125 -100 
M-SK3 ESC -50 75 
M-SK5 ESC 1 50 

M-SKg1 ESC -75 75 
M-SKg2 ESC -100 75 
M-SKr10 ESC -125 -1 
M-SKr6 ESC -25 75 
M-SN1 ESC -175 25 

M-SN11a ESC -25 175 
M-SN12 ESC -100 75 

M-SN12-13 ESC -100 75 
M-SN13 ESC 1 50 
M-SN15c ESC -25 100 
M-SN2 ESC -100 75 

M-SN20/N40 ESC -50 75 
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M-SN21 ESC -75 14 
M-SN25 ESC 1 100 
M-SN3 ESC -75 100 

M-SN33a ESC -75 100 
M-SN33a-d ESC -75 150 
M-SN33b ESC -25 25 
M-SN33c ESC 25 50 
M-SN33d ESC 25 150 
M-SN34 ESC -75 125 
M-SN36 ESC -75 75 
M-SN37 ESC -50 25 
M-SN39a ESC -75 100 

M-SN39a-d ESC -75 75 
M-SN39b ESC -75 75 
M-SN39c ESC 25 50 
M-SN39d ESC 25 150 
M-SN40 ESC -25 75 
M-SN43 ESC -25 75 
M-SN4b ESC -75 75 
M-SN7 ESC -75 25 
M-SN8 ESC -25 75 
M-SS1 ESC -175 25 
M-SS2 ESC -200 25 
M-SS3 ESC -75 25 
M-SS5 ESC -25 75 
M-SS6 ESC -150 -50 
M-SS7 ESC -175 -25 
M-SS8 ESC -125 -25 

M-SSa10 ESC -125 -25 
M-SSa12 ESC -50 75 
M-SSa13a ESC -25 75 
M-SSa14a ESC -100 200 
M-SSa14b ESC 1 125 
M-SSa15 ESC -25 50 
M-SSa16 ESC 1 200 
M-SSa17a ESC 1 125 
M-SSa2 ESC -75 100 
M-SSa20 ESC 1 200 
M-SSa21 ESC 1 75 
M-SSa22 ESC 50 175 
M-SSa25 ESC -25 75 
M-SSa26 ESC -25 100 
M-SSa27a ESC 50 175 

M-SSa27a-c ESC 50 200 
M-SSa27b ESC 50 175 
M-SSa27c ESC 50 200 
M-SSa3 ESC -50 75 
M-SSa30 ESC -50 -1 
M-SSa31 ESC -25 75 
M-SSa4 ESC -25 75 

M-SSu10 ESC -50 50 
M-SSu13 ESC 1 100 
M-SSu14 ESC 1 200 
M-SSu15 ESC 1 200 
M-SSu16 ESC 1 200 
M-SSu18 ESC 25 200 
M-SSu19a ESC -75 100 

M-SSu19a-b ESC -75 75 
M-SSu21 ESC -50 175 
M-SSu22a ESC 75 300 

M-SSu23a-b ESC -125 25 
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M-SSu25 ESC -75 25 
M-SSu5 ESC -75 125 
M-SSu9 ESC -25 175 
M-ST16 ESC -75 75 
M-ST17 ESC -75 75 
M-ST2 ESC -125 25 

M-ST20 ESC -25 125 
M-ST22 ESC 1 100 
M-ST23 ESC 25 150 

M-ST24b ESC 40 200 
M-ST26 ESC 100 200 
M-ST27 ESC -125 -25 
M-ST3 ESC -75 125 

M-ST30 ESC -75 75 
M-ST31a ESC -75 75 

M-ST31a-e ESC -75 75 
M-ST31b ESC -75 75 
M-ST31c ESC -75 75 
M-ST31d ESC -75 75 
M-ST34 ESC -25 75 
M-ST35 ESC -25 75 
M-ST36 ESC -25 75 
M-ST4 ESC -75 100 
M-ST6 ESC -75 75 
M-ST8a ESC -25 175 
M-STs1b ESC -75 33 
M-STs1c ESC -75 -25 
M-STs3 ESC -75 50 
EAAP1 ESD -100 -1 

EAAP10 ESD 1 75 
EAAP10/P11 ESD 1 150 

EAAP11 ESD 50 150 
EAAP11/P12 ESD 50 150 

EAAP12 ESD 50 150 
EAAP14 ESD -100 -1 
EAAP15 ESD -100 -75 
EAAP17 ESD -100 -25 

EAAP18A ESD -100 -1 
EAAP18A-B ESD -100 -1 

EAAP18B ESD -100 -1 
EAAP19 ESD 1 100 
EAAP2 ESD -100 -1 

EAAP20 ESD -100 -75 
EAAP21 ESD -100 -25 

EAAP22A ESD -25 25 
EAAP22B ESD 75 120 
EAAP23B ESD 1 25 
EAAP24 ESD 1 25 
EAAP25 ESD 1 25 
EAAP26 ESD 25 100 
EAAP28 ESD 1 100 
EAAP29 ESD 100 150 
EAAP3 ESD -27 14 

EAAP30A-B ESD 100 150 
EAAP31A ESD 100 200 
EAAP31B ESD 100 200 
EAAP33 ESD -75 -25 

EAAP33-34 ESD -100 -1 
EAAP34 ESD -100 -1 
EAAP36 ESD -75 -25 

EAAP37A ESD -100 25 
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EAAP37A-B ESD -100 25 
EAAP37B ESD -100 25 
EAAP40 ESD 90 150 
EAAP41 ESD 100 200 
EAAP42 ESD 175 300 
EAAP44 ESD -75 -25 

EAAP44/X45 ESD -75 14 
EAAP47 ESD -75 -25 
EAAP48 ESD -75 -25 
EAAP49 ESD -75 -1 
EAAP4A ESD -27 14 
EAAP4B ESD 1 75 

EAAP4B/P6 ESD 1 75 
EAAP5 ESD 1 75 

EAAP5/P6 ESD 1 75 
EAAP50 ESD 1 25 
EAAP54 ESD 70 100 
EAAP6 ESD 1 75 

EAAP6/P4B ESD 1 75 
EAAP7 ESD 1 25 

EAAP7/P8 ESD 1 25 
EAAP8 ESD 1 25 
EAAP9 ESD 25 75 
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12.2. Exploratory network analysis case study 2 

12.2.1. Introduction 

This appendix presents an exploratory network analysis of the dataset used in case study 2. I 

decided to include this analysis as an appendix since it does not introduce innovative network 

measures compared to the previous two case studies (indeed the kind of analysis presented 

here is by far the most common way archaeologists have been applying network science 

techniques) and since its results are not directly comparable to the simulation output of the 

ABM. The results of this analysis and their implications for the aims of the case study are 

given in section 5.4.8. 

In this case study I aim to better understand the significant differences in the distributions of 

tablewares in the Roman East. This will be done in part by analysing the distribution patterns 

of forms and wares. Although there are many different ways to explore such distributions 

(one of which is the exploratory data analysis performed in section 5.4), here I will restrict 

myself to exploring similarities and differences between the lists of sites that are part of these 

different distributions. Such an approach is by no means unique in exploratory network 

analysis, indeed it is by far the most common application of network techniques in our 

discipline (e.g. Golitko et al. 2012; Mills et al. 2013). Underlying these applications is an 

assumption that similarities and differences in artefact distribution patterns reveal something 

about the human behaviour that led to them. This is the assumption underlying this case study 

as well. A further assumption can be formulated that is necessary when aiming to compare 

the observed distribution patterns with the simulated ones produced by the agent-based model 

(section 5.5): artefacts with a similar distribution pattern have a higher probability of having 

been distributed through similar types of processes. Such an assumption will be tested as a 

hypothesis with the ABM but it cannot be tested through an exploratory network analysis. 

The latter merely aims to provide a representation of the observed tableware distribution 

patterns as network data and analysing the outcome, but making this assumption explicit is 

important when deciding on a suitable method for describing artefact similarity. In this 

section I will discuss a method for creating and analysing similarity networks. I will pay 

particular attention to the issue of the robustness of network analytical results: how sensitive 

are the results derived from network analysis techniques to our decisions of what constitutes 

the core of the network (in the sense of a subnetwork with particularly high similarity 

values)? Such an exploratory network analysis is a crucial step in seeing the pattern of 
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interest in this case study through the lens of the assumption that similarities in tableware 

distribution patterns reveal similarities in their distribution mechanisms. 

12.2.2. Similarity of forms’ distributions: the Brainerd-Robinson coefficient 

There are many ways of describing the similarity of artefact distributions (see Doran and 

Hodson 1975, 135-157; Shennan 1997, 222-234; for different approaches to similarity 

networks see Östborn and Gerding 2014). Many such measures can be derived from and 

manipulated as a matrix, as in figure 66a, which represents a list of tableware forms and their 

quantities attested at different sites. From this matrix we can derive two further matrices 

depending on the focus and aim of analysis: figure 66b shows sites and the number of forms 

they have in common with other sites; figure 66c shows tableware forms and the number of 

sites a pair of forms are both present at. In the exploratory network analysis I will focus on 

the latter representation since I aim to explore similarities and differences between forms, 

rather than sites. In figure 66c the similarity between forms is represented by the absence 

(values = 0) or presence (values > 0) of forms on sites. These values represent the number of 

sites a pair of forms is co-present on. Such presence-absence matrices are interesting for 

exploring the data without requiring further manipulation. A previous exploratory network 

analysis with the same ICRATES dataset was performed using exactly this approach 

(Brughmans and Poblome in press). 

In this case study I will use another similarity measure commonly used in archaeology: the 

Brainerd-Robinson (BR) coefficient (Brainerd 1951; Robinson 1951; Cowgill 1990; Shennan 

1997, 233-234). Rather than considering absolute numbers as in the presence/absence 

technique, the BR coefficient considers proportions. Although it is commonly used to 

compare the similarity of pairs of site assemblages, I will use it to compare the similarity 

between two forms’ distributions. This measure as used in this case study therefore compares 

the proportion of all sherds of a pair of forms found in different sites. For every pair of forms, 

this measure sums up the absolute difference between proportions per site and subtracts this 

from 200 (the maximum possible difference for a pair of forms’ distributions), providing a 

numerical similarity value between 0 and 200 where 0 indicates no similarity and 200 

complete similarity, using the following equation: 

𝑺𝑺 = 𝟐𝟐𝟐𝟐𝟐𝟐 −  �� 𝑷𝑷𝒊𝒊𝒊𝒊 −  𝑷𝑷𝒋𝒋𝒋𝒋�
𝒑𝒑

𝒌𝒌=𝟏𝟏
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Eq. 6. Brainerd-Robinson coefficient 

where P is the percentage representation of site k in the distribution patterns of forms i and j. 

For example, the distributions given in figure 66a can be expressed as proportions (Fig. 67a) 

for which a BR similarity matrix representing the similarity of forms’ distributions can be 

computed (Fig. 67b). In this case study, the BR coefficient is calculated using a script written 

in R by Matt Peeples (2011b). 

Using the BR coefficient for forms’ distributions rather than sites’ distributions can only be 

justified if one understands what this equation does with the data and one interprets the 

results in light of this. Importantly, one must not forget that the BR coefficient used in this 

way does not use the proportion of a form in sites’ assemblages at all. Most crucial is the 

difference between this approach and the presence/absence technique. Notice how in figure 

66c forms A-B have a presence/absence value of 1 and B-C a value of 2, whilst in figure 67b 

forms A-B have a BR value of 106 and B-C a lower value of 94. Although one should be 

cautious not to over-interpret this small difference in the BR values, it is nevertheless clear 

that these two different approaches to comparing forms’ distributions reveal very different 

things. Forms A-B are only co-present on one site but their distributions are marginally more 

similar than those of forms B-C. My motivation for using this measure in this rather 

unconventional way is threefold: firstly, because it does not merely suggest similarity based 

on co-presence but also takes into account possible similarities between the proportions of all 

sherds of pairs of forms co-present at a site; secondly, to compare differences in the results of 

exploratory network analyses of two different similarity measures applied to the same dataset 

(i.e. a comparison with the results published in Brughmans and Poblome in press); thirdly, as 

a methodological exercise to explore the potential of this unconventional approach for the 

study of similarity networks, since the BR coefficient is often used in the conventional way in 

exploratory network analysis by archaeologists (e.g. Golitko et al. 2012; Mills et al. 2013; 

Peeples 2011a). 

One drawback of using the BR coefficient for creating similarity networks is that it does not 

calibrate the results based on the number of sherds attested for each form, rather it 

emphasizes the diversity of sites a form is attested on. This means that often forms for which 

few sherds are attested and which often have a very limited distribution are directly compared 

to forms for which a large number of sherds are included in the dataset, which leads to very 

high BR values for the former and possibly rather low values for the latter. However, the 
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impact of this is immediately evident from the results and in this case study the number of 

sites a form is present at is considered more indicative of the wideness of its geographical 

distribution than the volume of that form attested at that site. 
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(b) 

 

  
Site A Site B Site C 

 
  

Site A Site B Site C 

Form A 2 0 0 

 

Site A - 1 1 

Form B 10 3 6 

 

Site B 1 - 2 

Form C 0 8 4 

 

Site C 1 2 - 

         
    

c) 
    

  
  

Form A Form B Form C 

   

  

Form A - 1 0 

   

  

Form B 1 - 2 

   

  

Form C 0 2 - 

   Fig. 66. Three matrices representing site assemblages: (a) tableware forms and their quantities at sites; (b) sites and the 
number of forms they have in common with other sites; (c) forms and the number of sites a pair of forms is co-present at. 

  
(a) 

    
(b) 

 

  
Site A Site B Site C 

 
  

Form A Form B Form C 

Form A 100% 0% 0% 

 

Form A 200 106 0 

Form B 53% 16% 31% 

 

Form B 106 200 94 

Form C 0% 67% 33% 

 

Form C 0 94 200 

 (c) 

Fig. 67. (a) same matrix as figure 66a but showing percentages of forms’ distributions rather than absolute numbers (e.g. 
100% of all sherds of Form A are found on Site A); (b) Brainerd-Robinson coefficients of the same matrix, representing the 

similarity of forms’ distributions; (c) network representation of (b). 
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12.2.3. Creating and exploring similarity networks 

The matrix of BR values given in figure 67b can be represented as a network as in figure 67c. 

The diagonal of the matrix, representing perfect similarity of a forms’ distribution to itself, is 

disregarded in the exploratory network analysis. In these one-mode similarity networks, 

forms are connected to each other if the similarity of their distributions as expressed by the 

BR coefficient is greater than zero. The meaning of the relationships of these networks 

should be derived from our discussion of the meaning of the BR values above: a relationship 

between a pair of tableware forms indicates they are co-present on at least one site and gives 

a measure for the similarity of the proportions of their respective total distributed volume at 

sites where they are co-present. It is important to note that these networks are undirected 

(since the BR similarity matrices are symmetric), which implies that questions concerning the 

directionality of flows of goods cannot be addressed with this approach to creating similarity 

measures. This is not considered problematic for this case study, since my interest here is 

merely in the similarity of distributions. 

Tableware similarity networks are created per 25-year period. These networks will be 

explored as a whole, but also using different “thresholds” on the BR values (i.e. removing 

edges with a BR value lower than a certain threshold value; my motivation for using 

thresholds is discussed in more detail below). The networks will also be explored by 

grouping forms together according to their wares. This approach will provide insights into 

how similar or different the distribution patterns of wares are. 

A range of network analysis measures will be applied to explore these networks, the technical 

definition of which has been introduced in previous chapters. It is important to note that in 

this case study I do not assume that indirect similarity (i.e. a path of two) allows for flows 

between two nodes. Therefore, no path-based measures (like closeness and betweenness 

centrality) will be used to explore the similarity networks: I will focus on nodes and their 

direct neighbours. A number of measures are used to identify the structural features of 

networks as a whole and compare them to each other: number of nodes, number of edges, 

connected components, network clustering coefficient, heterogeneity, average degree, and 

density. The number of nodes is the number of individual forms with a standard chronology 

that falls within a certain 25-year period that have been identified by archaeologists on sites 

and included in the ICRATES dataset. Connected components are groups of forms whose 

distributions are directly or indirectly similar to each other but completely dissimilar to forms 
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in other groups. The network clustering coefficient is an indication of the tendency for forms 

to cluster together, which is suggestive of very similar distributions. The average degree is 

the average number of forms a given form has similarities in distribution patterns with. The 

density is a normalised version of average degree. Heterogeneity is an indication of the 

existence of forms with similarities to far more other forms in terms of distribution than other 

forms, i.e. hubs. Just two node-based measures will be used: node clustering coefficient and 

degree. The node clustering coefficient is here an indication of how similar all forms’ 

distributions are that are directly similar to one form. The node degree is the number of forms 

that have a similar distribution to the node in question. 

12.2.4. Network structure and sensitivity analysis 

Introduction 

This section explores the general structure of the created networks and performs a sensitivity 

analysis to see how this structure changes when one uses different thresholds of similarity 

values to create subnetworks. There are several reasons why it might be useful to cut off a 

chunk of the networks to analyse subnetworks: to identify and analyse nodes connected by 

the strongest relationships (i.e. the highest BR-values between tableware forms); to make a 

dense network more sparse for easier visual exploration; to test whether the analytical results 

one draws from a formal analysis of the whole network also hold true for subnetworks. 

Threshold values could either be selected with reference to a certain theory (as is the case for 

the thresholds used for the visibility analysis in case study 2 of this PhD project) or they 

could be determined arbitrarily using some quantitative approach. The latter approach has 

been used by many archaeological network analysts, either by selecting a minimum edge 

value (e.g. Golitko et al. 2012) or by comparing the distribution of similarity values of the 

observed network with those of simulated networks (e.g. Östborn and Gerding 2014; Peeples 

2011a). I believe the strong variations in the number of forms per site (see Fig. 42) and the 

fragmentary nature of this dataset require one to first analyse the observed networks 

completely, and only analyse subnetworks derived with arbitrary threshold values to evaluate 

the robustness of the analytical results of the complete networks, i.e. to not attach any 

interpretative value on arbitrary thresholding but merely use it as an exploratory and 

sensitivity analysis tool. For this case study I do not believe it would be useful or even 

possible to argue for theoretical claims about what specific threshold value represents a 
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strong similarity between forms’ distributions and what not, other than the extreme BR-

values of 0 and 200. 

The ‘complete networks’ are networks per 25-year period of all forms and the similarity links 

between them of whatever strength. Below I discuss the distribution of the BR-values of all 

complete networks to argue for the selection of possibly useful (but nevertheless completely 

arbitrary) threshold values. Two different thresholds are then used to create subnetworks 

from these complete networks: a threshold on the average BR-value and on the average plus 

the standard deviation. I will also explore how the ranking of each node according to certain 

network measures (degree and clustering coefficient) changes with these changing thresholds. 

Such a sensitivity analysis is crucial since it will influence the interpretation of network 

patterns. These network patterns will subsequently be described per 25-year period for the 

periods between 25BC and 150AD. 

Distribution of BR values 

Histograms representing the distribution of BR values for each 25-year period summarise a 

wealth of information and can be used as an aid in deciding what threshold values to use 

(Figs. 68-69). Each histogram in these figures draws on all BR values for a single network 

(forms dated to a 25-year period), where the sum of the number of occurrences (y-axis) of a 

certain BR value (grouped per 10 on x-axis) is displayed as a bar. Figure 68 includes all of 

the values for each network and immediately shows the very heavy skew towards low BR 

values and the long tail. Indeed, for all networks a very high number of BR values are 0 or no 

more than 10. This is due to the very high number of sites that are included in this analysis 

(between 59 in 150-125BC and 162 in 1-25AD). As a result, the mean BR value is very low 

for all networks (solid vertical line in Figs. 68-69; table 24). This very high variation has a 

strong impact on the results of the standard deviation as well, which will be pushed quite high 

due to the existence of outliers (dashed vertical line in Figs. 68-69; table 25). The inter-

quartile range could be considered more informative of typical observations in such cases 

(Shennan 1997, 44). However, due to these distributions’ great spread the inter-quartile range 

itself is very low for many of the periods (table 24). Using the third quartile as a threshold 

value would (for most networks at least) not serve my purpose of bringing more visual clarity 

to the exploration of a dense network. A high threshold would be more suitable for that 

purpose, which is why I decided to use the following two threshold values: the mean and the 

mean + standard deviation (table 25). This decision implies that pairs of forms which are 
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connected by BR values higher than the mean + standard deviation should be considered 

rather extreme outliers in the exploratory network analysis. 

In figure 69 I decided to remove all BR values lower than 10, which reveals that for the 

networks up to 75AD the trend in the long tail is not very smooth either: there is more 

difference in the proportions of the variation for these networks and outliers are more 

frequent than for later period networks. The threshold values plotted on these distributions 

show a further distinction: the mean lies between 22 and 31 for networks up to 75AD and 

between 16 and 12 for later period networks. These differences might be indicative of the 

decrease in the diversity of ESC forms after 75AD. Before this date ESC has a high diversity 

of forms but many of these forms are co-present and have a limited distribution, which would 

result in high BR-values. It will be interesting to explore further down in this section whether 

this distinction is also reflected in some of the exploratory network measures. 

These results suggest that the distributions of tableware forms are not very similar, given the 

low BR values. However, the results also suggest there is great variety among BR values 

larger than 10, and that a larger number of forms have a more similar distribution in the 

periods up to 75AD. This might be a result of the decrease in the distribution of ESA around 

this time. In the rest of this section I will explore the variance in BR values in more detail by 

using threshold values, and grouping forms according to wares. 

Table 49: summary statistics of Brainerd-Robinson coefficients for the complete networks per period. 

  

15
0-

12
5B

C
 

12
5-

10
0B

C
 

10
0-

75
B

C
 

75
-5

0B
C

 

50
-2

5B
C

 

25
-1

B
C

 

1-
25

A
D

 

25
-5

0A
D

 

50
-7

5A
D

 

75
-1

00
A

D
 

10
0-

12
5A

D
 

12
5-

15
0A

D
 

15
0-

17
5A

D
 

17
5-

20
0A

D
 

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
First Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Median 0 6 0 0 0 0 0 20 0 0 0 0 0 0 
Mean 22 30 22 31 27 26 23 28 23 16 15 14 14 12 

Third Quartile 33 59 30 40 23 22 15 20 18 13 12 10 1 1 
Maximum 167 200 200 200 200 200 200 200 200 200 200 200 200 200 

 

433 



Tom Brughmans 

Table 50: summary statistics of Brainerd-Robinson coefficients of complete networks per period. The mean and mean + 
standard deviation are suggested as thresholds for exploring the networks. 
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Fig. 68: distribution of Brainerd-Robinson values of form-form similarity matrices per period; full line: mean value; dashed 
line: mean + standard deviation. 
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Fig. 69: distribution of Brainerd-Robinson values of form-form similarity matrices per period, excluding values between 0 
and 10; full line: mean value; dashed line: mean + standard deviation.  
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Global network measures 

Complete network: the network density remains rather high throughout time, although it is 

highest in the first few periods (Table 51; Fig. 70). This is possibly due to the high similarity 

in distributions of ESC forms and of ESA forms. Heterogeneity, on the other hand, increases 

through time, suggesting that forms with a similar distribution to many other forms and 

skewed degree distributions occur more frequently in the later periods. This suggests that the 

decreasing density creates a pattern of well-connected nodes and less-well-connected nodes. 

The groups of forms with a similar distribution become smaller over time. The clustering 

coefficient remains very high throughout all periods. This suggests that forms in general have 

a distribution that shows similarities with many other forms’ distributions. 

Table 51. Global network measures for the complete networks per 25-year period. 
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Fig. 70. Global network measures per 25-year period for the complete network. 

Threshold mean: density is much lower when thresholding on the mean BR value (Table 52; 

Fig. 71). The density of networks decreases over time. The heterogeneity shows a similar 

increasing pattern as in the complete network. However, now the values are slightly higher, 

and there is a peak with many hubs in 25-50AD. This suggests that this threshold emphasizes 

differences in node degrees more. It seems that hubs are a strong pattern in these networks. 

The clustering coefficient is invariably very high. Nodes with this threshold are still very 

much clustered with other nodes with similar distributions. 

Table 52. Global network measures for the networks per 25-year period with a threshold on the mean BR value. 
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Fig. 71. Global network measures per 25-year period for the network with a threshold on the mean similarity value. 

Threshold mean plus standard deviation: the density is again lower with this threshold, which 

is to be expected (Table 53; Fig. 72). However, the general trend of decreasing density over 

time remains, suggesting this is a robust pattern. The heterogeneity measure is very 

interesting. Although it still shows a similar trend as before, this is now much exaggerated: 

this threshold reveals a much stronger difference between nodes in terms of degree as time 

moves on. In particular between 50BC and 100AD when hubs are most common. This seems 

to be caused by one or two nodes that bridge dense cliques, mainly between ESC and a 

combination of ESA/ESB/ESD. The clustering coefficient shows a similar trend as with other 

thresholds, although it is overall slightly lower. 

Table 53. Global network measures for the networks per 25-year period with a threshold on the mean + standard deviation 
BR value. 
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Fig. 72. Global network measures per 25-year period for networks with a threshold on the mean + standard deviation value. 

Total number of nodes (forms): the networks of BR similarity values described above do not 

include isolated forms, i.e. forms whose distribution similarity with other forms’ distributions 

as described by the BR coefficient is 0. However, only a marginal number of forms per 

period are not included in the networks (min 0, max 6; Table 51). The largest number of not 

included forms are in the second part of the period of study (25AD onwards) and the effect is 

stronger for the last four periods, which have fewer nodes: more forms in these periods have 

no similarity to other forms’ distributions. The period between 50BC and 100AD has the 

highest number of forms (Figs. 73-75). However, the thresholds do not affect the number of 

forms that much. A threshold on the mean BR value only decreases the number of forms for a 

few periods, whilst the mean + standard deviation threshold decreases the number of forms 

for all periods only marginally. 

The biggest difference is for the periods between 25BC and 75AD, and for ESA forms in 

particular. Up to 75AD and after 150AD the number of ESA forms is most affected by using 

a threshold on the mean + standard deviation value. This suggests that although most wares 

always have significantly similar distributions to some forms (mostly of the same ware), a 

large proportion of ESA forms have an overall extremely low similarity to all forms. This is 

not the case in the period 100-150AD when ESA forms show significant similarity with at 
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least one other form, whilst a large proportion of ESD forms shows no significant similarity 

to any other forms. 

 

Fig. 73. Number of nodes (forms) per ware for the total network. 

 

Fig. 74. Number of nodes (forms) per ware for the network with a threshold on the mean similarity value. 
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Fig. 75. Number of nodes (forms) per ware for the network with a threshold on the mean + standard deviation similarity 
value 

Local network measures: ranking clustering coefficient and degree 

The previous section discussed the sensitivity of global network measures to using 

thresholds, and this next section focuses on the impact it has on local network measures’ 

results by tracing the changes in the ranking of node clustering coefficient and degree. The 

ranking shown in figures 76 and 77 was created as follows: node clustering coefficient and 

degree measures were calculated; the results were ordered from high to low and nodes were 

given a rank (equal values were given an equal rank); the number of places each node 

changed in the ranking was counted as it was traced from the complete network to that with a 

threshold on the mean, and further to that with a threshold on the mean + standard deviation 

(please note that this was only done for nodes that are present in the mean + standard 

deviation network); in order to be able to compare the proportional change of node rankings 

across different periods the results were normalized by dividing them by the maximum 

possible number of changes in ranking a node could undergo in going from the complete 

network to the network with a threshold on the mean + standard deviation (and multiplied by 

100 to get a percentage); boxplots of these results for clustering coefficient and for degree 

were created. 

Clustering coefficient (Fig. 76): the networks of all periods show strong similarities in their 

sensitivity to changing thresholds. The interquartile range is almost in all cases limited from 
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0% to 35/45%, whilst some few nodes see up to 80% change in ranking. In the periods 125-

100BC and 1-25AD one node sees 100% change (ESC form M200ST27 and ESD form 

EAAP28 respectively). The period 25-50AD knows the highest range of change. The 

networks of period 150-125BC are very different from all others because of the limited 

number of nodes. On this network changing thresholds have extremely little effect. This 

sensitivity analysis therefore indicates that changes in the clustering coefficient ranking of 

nodes is common. However, nodes only rarely change their ranking dramatically by over 

50%. The vast majority of nodes remain within 50% of their ranking position. 

Degree (Fig. 77): the networks of all periods show strong similarities in their sensitivity to 

changing thresholds. The interquartile range is almost in all cases limited from 15% to 35%, 

whilst some nodes see change of up to 80% in the first period only. A few outliers are 

identified with only 50 or 55% change. Two periods show a different pattern. In the period 

125-100BC change in degree is slightly higher, with an interquartile range of 15-45%. The 

most dramatic difference is seen in the networks of 150-125BC, with most nodes changing 

their rank between 0 and 65%. This is no doubt the result of the small number of nodes in this 

network. This sensitivity analysis therefore indicates that changes in the degree rankings are 

common. Almost every single node is affected by changing thresholds. However, the change 

in their ranking is overall very limited, rarely do nodes change more than 35% in the 

rankings. An exception to this is the period 150-125BC, which has significant change but also 

has a very low number of nodes. 
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Fig. 76. Boxplot of the proportion of change in node ranking of the clustering coefficient. 

Fig. 77. Boxplot of the proportion of change in node ranking of the degree. 

Description similarity networks per 25-year period 

In this section the similarity networks are described in more detail for the 25-year period 

from 25BC to 150AD in which four tablewares circulated on a large scale in the Eastern 

Mediterranean. This description will be performed on the level of individual forms as well as 

for each ware, and will take the results of the sensitivity analysis of the impact of the 

suggested threshold values into account. In this description ‘very strong similarity’ refers to a 
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BR value higher than the mean + standard deviation; ‘strong similarity’ refers to a BR value 

higher than the mean; a ‘homogeneous distribution’ refers to forms of the same ware which 

are similarly distributed among sites. 

25-1BC 

ESA: has a homogeneous distribution but much less so than in previous periods. A number of forms’ 

distributions are very similar to each other (EAA11, EAA12, EAA12/32, EAA13A, EAA13B, EAA21/22, 

EAA22/43, EAA22A, EAA22A-B, EAA22B, EAA2-3, EAA24, EAA24-25, EAA25, EAA26-27, EAA26A, 

EAA26A-D, EAA26B, EAA26C, EAA26D, EAA27, EAA28, EAA28-30, EAA29, EAA3, EAA42, EAA4A, 

EAA4A-B, EAA4B, EAA5A, EAA5A-B, EAA5B, EAA7, EAA8). All other forms’ distributions are not very 

similar to each other. Some of the latter (EAA21/22, EAA22/43, EAA22A, EAA22A-B, EAA22B, EAA2-3) 

show a strong similarity with some ESB forms (EAA16, EAA21). Some other forms’ distributions are more 

similar to ESD than to ESA or ESB (EAA102, EAA22B, EAA26-27, EAA26A-D). Of these only EAA22B is 

very similar to ESA forms. EAA26-27 is similar to many ESD forms, because this form is only present at 

Paphos. ESA forms’ distributions are dissimilar to those of ESC forms. 

ESB: not very internally homogeneous. One form (EAA21) shows strong similarity to ESA forms. Two forms 

(EAA2, EAA22) are very similar to ESC forms due to their presence on Assos and Ephesos. 

ESC: overall very homogeneous. A few forms are less similar due to limited distribution, but not more similar 

to ESA or ESD. No forms show strong similarity with ESA. M-SSu25 is very similar to many ESD forms, 

because it is present on Paphos, the only sites with evidence of a number of ESD forms. 

ESD: a group of ESD forms is pretty homogeneous, mostly because some are only present on Paphos. Three 

forms are dissimilar to all others (EAAP18A-B, EAAP33-34, EEP44-X45). Two forms are more similar to ESA 

(EAAP37A-B, EAAP37B). 

1-25AD 

ESA: not very homogeneous, less so than in the previous period, but still showing slightly more similarity of 

ESA forms’ distributions than with forms of other wares. A number of forms are very similar to each other 

(EAA12, EAA42, EAA43, EAA44, EAA45, EAA46, EAA47, EAA4A, EAA4A-B, EAA4B, EAA5A, EAA5A-

B, EAA5B; these are less than in the previous period, although there is some overlap). All other forms are not 

very similar to each other. Some of the latter (EAA12/32, EAA21/22, EAA30/33-34, EAA33/36) show a strong 

similarity with some ESB forms (EAA21, EAA30-31). Some other forms are more similar to ESD than to ESA 

or ESB (EAA26-27, EAA26A-D, EAA45). Of these only EAA45 is very similar to ESA forms. EAA26-27 is 

similar to many ESD forms, because this form is only present at Paphos. ESA forms are dissimilar to ESC 

forms. ESA forms show most similarity with ESB and ESD forms, not ESC. 

ESB: rather homogeneous distributions of forms. One form (EAA30-31) shows strong similarity to ESA forms. 

Two forms (EAA2, EAA22) are very similar to ESC forms due to their presence on Assos and Ephesos. ESB is 

very dissimilar from ESD. 
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ESC: overall very homogeneous. A few forms are less similar due to limited distribution, but not more similar 

to ESA or ESD. No forms show strong similarity with ESA. M-SSu25 is very similar to many ESD forms, 

because it is present on Paphos, the only sites with evidence of a few ESD forms. Two ESB forms (EAA2, 

EAA22) are very similar to ESC forms due to their presence on Assos and Ephesos. 

ESD: less homogeneous internally than in the previous period. A group of ESD forms is pretty homogeneous, 

mostly because some are only present on Paphos. Three forms are dissimilar to everything (EAAP44-X45, 

EAAP4B/P6, EAAP5/P6). ESD forms show much stronger similarity to ESA forms than in the previous period. 

One form is more similar to ESA (EAAP23B). 

25-50AD 

ESA: not very homogeneous internally, even less than previous period, but still slightly more homogeneous 

internally than with other wares. ESA forms show most similarity with ESB and ESD forms, not ESC. But that 

similarity is also less striking than in the previous period. There are no forms very similar with ESD. One ESB 

form (EAA30-31) shows strong similarity to ESA forms, because of its presence in Jerusalem. Two ESC forms 

(EAAL6, EAAL9A) show strong similarity to some ESA, because they are virtually exclusive to Jerusalem. 

ESB: very internally homogeneous. One ESB form (EAA30-31) shows strong similarity to ESA forms, because 

of its presence in Jerusalem. One ESC form (M-ST22) is very similar to ESB, it is present on Assos and 

Ephesos. ESB is rather dissimilar from ESD. 

ESC: very internally homogeneous. One ESC form (M-ST22) is very similar to ESB, it is present on Assos and 

Ephesos. Two ESC forms (EAAL6, EAAL9A) show strong similarity to some ESA, because they are virtually 

exclusive to Jerusalem. ESC and ESD are very dissimilar, with the exception of ESC form EAAL15 which is 

most similar to ESD and not at all to ESC, because it is only present at Lepcis Magna. 

ESD: not very homogeneous, similar to previous period. ESD forms show much less similarity to ESA than in 

the previous period. ESC and ESD are very dissimilar, with the exception of ESC form EAAL15 which is most 

similar to ESD and not at all to ESC, because it is only present at Lepcis Magna. 

50-75AD 

ESA becomes slightly more internally similar. Similarities to ESD increase slightly. In particular forms EAA39, 

EAA41, EAA45 due to their presence on Pahos and Amathous. Similarities with ESB increase slightly, 

especially form EAA35/40 which is only recorded for Athens. ESA is still very dissimilar from ESC. 

ESB: only slightly less internally homogeneous than in the previous period. Shows slightly more similarity to 

ESD and ESA than in previous period. In particular forms 58 early, 60, 60 early, 64/65, 65, 70 and 70 early are 

similar to ESA form EAA35/40 (only found in Athens) because they are all found together in Athens. Almost all 

ESB forms show strong similarity with one or more ESC forms. Just one form (30-32) shows strong similarity 

with ESD because it is only found on Berenice. 

ESC: ESC becomes slightly less internally homogeneous. It is still very dissimilar from ESA and ESD. Some 

forms show similarities with ESB (EAAL20, M-SN11a, M-SN33a, M-SSa27a, M-ST22, M-ST24b), even 

though they have a wide distribution. 
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ESD becomes slightly more similar to ESB and ESA, and it is not very internally homogeneous. 

EAAP5/P6_ESD is similar to ESB because it is only found on Berenice. EAAP10 and EAAP28 are similar to 

ESA, both are co-present on Berenice, Amathous, Corinth, Panayia, Paphos, Tarsos. They have a wide 

distribution and are attested at sites with a high diversity. 

75-100AD 

ESA becomes slightly less internally homogeneous. Similarities to ESD increase slightly again, in particular for 

ESA forms 111, 36, 39, 40A-C, 40C, 41, 51, 53, 54, 62. Similarities to ESB increase again, in particular with 

ESA forms 35/40, 37A-B, 40A-C, 65. These are co-present at Athens and all but 35/40 have a wide distribution. 

Although overall ESA distribution is quite different from ESC, a few ESA forms (117, 33/36, 34/37, 38-39, 

40A-C, 40C) show significant similarities with ESC. 

ESB: almost all ESB forms are very similar to just a few ESA forms (35/40, 40A-C, 65) and to just a few ESC 

(M-SN33a, M-SN33d, M-SSa27a, M-SSa27a-c), few are very similar to ESD. 

ESC becomes even less internally homogeneous. It remains dissimilar to ESD. It becomes slightly more similar 

to ESA (through EAAL6, EAAL9A, M-SB9, M-SSa-27a-c, M-ST8a) and ESB (through M-SN11a, M-SN33a, 

M-SN33d, M-SSa27a, M-SSa27a-c, M-ST24b). 

ESD: almost all ESD forms (with the exception of p10/p11, p11/p12, p19 which are very dissimilar to ESD and 

show way more similarity to ESB) have strong similarities with ESA but less so with ESB (only p28 which has 

a wide distribution on sites with diverse assemblages like Jerusalem, Athens, Corinth) and extremely dissimilar 

to ESC. 

100-125AD 

ESA become slightly less internally homogeneous. It remains similar to ESB (through 35/40, 40A-C, 40C, 

58/60, 65 (mostly similar to previous period)) and ESD (through 40A-C, 40C, 51, 52, 53, 54, 62 (mostly similar 

to previous period)), and shows slight similarity to some ESC forms, but not much more than in the previous 

period. 

ESB: similarity of most ESB with just a few ESA (35/40, 40A-C, 58/60, 65 (similar to previous period)) and 

ESC forms. Some ESB (62b, 74a, 77) are particularly similar to ESA. Like in the previous period still quite 

dissimilar to ESD. 

ESC (LRP2, LRP3, M-SN33d, M-SSa27a, M-SSa27a-c) is very similar to ESB, but less so to ESA (only ESA 

40A-C, 40C are similar, present at Athens and Gortyn). It is very dissimilar to ESD. 

ESD is very dissimilar to ESC and rather dissimilar to ESB. Most ESD (with the exception of p10/p11, p11/p12, 

p30a-b, found on sites with extremely limited assemblages) is similar to a few ESA forms (40C, 51, 52, 62). 

125-150AD 

ESA is less internally homogeneous. It becomes less similar to ESB and ESD and is completely dissimilar to 

ESC. Only one ESB form (77, widely distributed but highest proportion in Athens) is significantly similar to 

one ESA form (58/60, only found in Athens). Many ESD forms are similar to ESA 52 and 54. 
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ESB becomes internally very homogeneous. As in the previous period, many ESB forms are similar to ESC 

forms (LRP1, M-SN33d, M-SSa27a, M-SSa27a-c). As in the previous periods, ESB is not extremely similar to 

ESD. 

ESC becomes less internally homogeneous. It is very similar to ESB, but not at all to ESD and ESA. 

ESD is dissimilar to ESB and ESC but most forms are very similar to two ESA forms (52, 54). As in the 

previous period, with the exception of p10/p11, p11/p12, p30a-b, found on sites with extremely limited 

assemblages. 
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12.3. Agent-based model code 
This appendix presents the Netlogo code of the ABM developed for case study 3. The code is 

highly annotated to explain how it works. Annotations are indicated by a semicolon, i.e. 

everything after the symbol ‘;’ should be considered an explanation of the code following it. 

The model itself is available as an electronic supplement. In order to run the ABM you will 

need to download and install Netlogo36. When opening the model in Netlogo the interface 

appears where the model can be initialised, run and where variables can be changed (Fig. 78). 

The ‘info’ tab holds concise information on how the model was constructed and how to use 

it. The ‘code’ tab contains the ABMs code written in the Netlogo language. This code is also 

included on the following pages in this section of the appendix. 

 

Fig. 78. Interface of the ABM created for case study 3. Sliders allow for changing the variable settings. The ‘setup’ button 
initialises the model, the ‘go’ button runs the model with the selected settings. 

  

36 Netlogo can be downloaded via this URL: https://ccl.northwestern.edu/netlogo/download.shtml (accessed 24-
06-2014). 
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extensions [ network nw ] 

; two network extensions are used in this model. 

; The 'network' extension comes packaged with Netlogo 5.0.5 

; the 'nw' extension needs to be downloaded from the Netlogo website and added to the 

'extensions' folder: https://github.com/NetLogo/NetLogo/wiki/Extensions 

breed [ traders trader ] 

; the agents in this model who are positioned on sites, are connected by commercial links, and 

trade products with each other over these links 

breed [ sites site ] 

; the sites, representing marketplaces on which traders are based, meet, and trade 

globals 

[ 

  av-degree 

; reporter, parameter used to calculate and report the average degree of the network during 

the setup procedure 

  clustering-coefficient 

; reporter, parameter used for calculating and reporting the clustering coefficient in the 

setup procedure 

  neighbor-site-links 

; reporter, parameter used for reporting the number of links between neighboring sites in the 

circular layout, step 1 of the connect-traders procedure 

  random-inter-site-links 

; reporter, parameter used for reporting the number of random inter site links in a setup of 

the model, step 2 of the connect-traders procedure 

  random-intra-site-links  

; reporter, parameter used for reporting the number of random intra site links in a setup of 

the model, step 3 of the connect-traders procedure 

  mutual-neighbors-intra-site-links  

; reporter, parameter used for reporting the number of mutual neighbors linked within sites in 

a setup of the model, step 4 of the connect-traders procedure 

  random-component-links  

; reporter, parameter used for reporting the number of random links added to join components, 

step 5 of the connect-traders procedure 

  counter-trade  

; reporter, parameter used in the trade procedures to keep track of how many transactions have 

already been attempted 

  counter-transaction  

; reporter, parameter used in the trade procedures to count the number of successful 

transactions 

  counter-stock-redist  

; reporter, parameter used in the trade procedures to count the number of items put in stock 

with redistribution in mind per tick 

  counter-no-transaction 

; reporter, parameter used in the trade procedures to count the number of failed transactions 

per tick 

] 

sites-own 

[ 
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  target-distribution  

; counter parameter used in the setup procedure to identify the number of traders that need to 

be present at a site under the selection distribution hypothesis 

  producer-A ; parameter used to indicate the production centre of product-A 

  producer-B ; parameter used to indicate the production centre of product-B 

  producer-C ; parameter used to indicate the production centre of product-C 

  producer-D ; parameter used to indicate the production centre of product-D 

  volume-A ; the volume of product A deposited at a site 

  volume-B ; the volume of product B deposited at a site 

  volume-C ; the volume of product C deposited at a site 

  volume-D ; the volume of product D deposited at a site 

  prop-A ; reporter, parameter used to report the proportion of product A deposited on a site 

  prop-B ; reporter, parameter used to report the proportion of product B deposited on a site 

  prop-C ; reporter, parameter used to report the proportion of product C deposited on a site 

  prop-D ; reporter, parameter used to report the proportion of product D deposited on a site 

] 

traders-own 

[ 

  comp  

; parameter used to identify which connected component a trader is part of. Used when creating 

the initial trade network in the setup procedure 

  trader-clustering-coefficient  

; parameter used for calculating the clustering coefficient of nodes 

  moved?  

; parameter used to keep track of the traders who have already moved to a site in the setup 

phase 

  product-A ; the amount of product A an agent possesses 

  product-B ; the amount of product B an agent possesses 

  product-C ; the amount of product C an agent possesses 

  product-D ; the amount of product D an agent possesses 

  stock-A  

; the amount of product A a trader saves for possible redistribution in the next tick 

  stock-B  

; the amount of product A a trader saves for possible redistribution in the next tick 

  stock-C  

; the amount of product A a trader saves for possible redistribution in the next tick 

  stock-D  

; the amount of product A a trader saves for possible redistribution in the next tick 

  price  

; the price a traders believes one item of the product is worth in his part of the network, 

float between 0 and 1 

  demand ; the demand a trader believes he can supply products for 

  average-demand ; parameter used to calculate the average demand of a trader's link neighbors 

  site-number  

; parameter used to keep track of what site this trader is located at, used to reposition 

traders after layout 

  transport-fee ; the fee a seller has to pay when a buyer is located on another market 

  known-traders  

; parameter used to store the agentset a trader receives commercial information from in each 

tick 
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  maximum-stock-size  

; in each tick the number of items a trader is willing to obtain over his own demand for 

redistribution in the next tick 

] 

;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; SETUP ;;;;;;; 

;;;;;;;;;;;;;;;;;;;;; 

to setup 

  clear-all 

  random-seed seed 

  set-default-shape traders "person" 

  set-default-shape sites "circle" 

  create-sites num-sites 

  create-traders num-traders 

  layout-circle ( sort sites ) max-pxcor - 1 ; arrange sites according to a circular layout 

  ask sites 

  [ 

    set size 0.8 

    set color red 

  ] 

  ask traders 

  [ 

    set size 0.3  

; size of traders should be smaller than size of sites, since 'traders-here' is used which is 

very sensitive to patch and node size 

    set color blue 

    set moved? false  

; ensure the model knows at the setup stage that none of the traders have moved to any of the 

sites yet 

  ] 

  distribute-traders-on-sites  

; move all traders to a site following a uniform, normal, or exponential distribution 

  ask traders 

  [ 

    set site-number [who] of one-of sites-here  

; make a note of which site a trader is located at (needed to reposition traders after layout) 

    set demand 0 ; initialise demand per trader by setting it to 0 

   ] 

  nw:set-context traders links  

; set the context the NW extension procedures will be working in 

  connect-traders  

; connect traders in five steps: 1) connect a pair of traders on neighboring sites 

; 2) connect a proportion of randomly selected node pairs; 

; 3) connect randomly selected node pairs on the same site 

; 4) connect a proportion of randomly selected pairs with a mutual neighbor (loop 3 and 4 

until the average degree is reached) 

; 5) add links within sites until the network consists of one connected component 

; OR create a random network with the same number of links 

  select-production-sites 

; select which sites are production centres of each product. When possible, these production 
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sites will be evenly spaced among the circular layout of sites 

  reset-ticks 

end 

;;;;;;;;;;;;;;;;;;;  

;;;;;;;;;; GO ;;;;;  

;;;;;;;;;;;;;;;;;;; 

to go 

  ifelse layout? 

  [  

; if layout is turned on, traders will be positioned following a spring-embedded layout 

algorithm. 

; No other procedures take place and ticks don't increase, to allow for the experiment to 

continue from the point when layout was turned on 

    layout 

  ] 

  [ 

    reposition-traders  

; if layout was turned on before, then move the traders back to their sites. 

    determine-demand  

; each trader increases its demand by one (as long as it is lower than the number of traders 

at the site).           

    discard-part-of-stock  

; a fixed proportion of a trader's stock from last tick is deposited on its site, the rest can 

be traded again this tick 

    produce  

; each trader at a production site obtains X newly produced items of the locally produced 

product if its total number of items of all products is less or equal than its demand. 

    trade-and-consume  

; a single transaction will occur for each item of each product: after a successful 

transaction the item is deposited on the buyers' site, when the seller is not connected to any 

potential buyers it puts the item in its stock, when the buyer notices the average demand in 

its personal network is higher than its own demand it puts the item in its stock. 

    tick 

  ] 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;; SETUP PROCEDURES ;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

to select-production-sites  

; select tableware production sites and space them evenly accross the circular layout 

  let spacing round ( num-sites / 4 )  

; identify the spacing between production sites 

; make each of these sites a producer of a certain product 

  ask site 0 [set producer-A true set color blue set size 1.2] 

  ask site spacing [set producer-B true set color blue set size 1.2] 

  ask site (spacing + spacing) [set producer-C true set color blue set size 1.2] 

  ask site (spacing + spacing + spacing) [set producer-D true set color blue set size 1.2] 

  if remainder num-sites 4 != 0  
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; make the user aware of the bias in the spacing of sites in cases where the number of sites 

is not divisibe by the number of production centres 

  [user-message ( word "The number of sites is not divisible by the number of wares --> 

producer-sites are not evenly spaced. Click OK to proceed" )] 

end 

to distribute-traders-on-sites 

; the trader distribution (number of traders per site) is initialized depending on the 

hypothesis 

  if traders-distribution = "uniform"  

; uniform distribution of traders on sites 

  [setup-uniform-distribution] 

  if traders-distribution = "normal"  

; normal distribution of traders on sites 

  [setup-normal-distribution] 

  if traders-distribution = "exponential" 

; exponential distribution of traders on sites 

  [setup-exponential-distribution] 

end 

to connect-traders 

  if network-structure = "random" [connect-random-network]  

; create a random network connecting traders. This option allows for comparing the results of 

the hypothesises being tested with those of the same processes working on a random network 

  if network-structure = "hypothesis"  

; The commercial network of traders is set up in five steps reflecting the hypotheses being 

tested 

  [ 

    connect-traders-adjacent-sites  

; 1) we ensure that at least one pair of traders is connected between every pair of adjacent 

sites in the circular layout 

    connect-random-traders  

; 2) a proportion of randomly selected pairs on different sites is connected 

; 3) on each site a number of randomly selected pairs of traders are connected 

; 4) on each site a number of pairs of traders with mutual contacts on the same site are 

connected 

    connect-to-av-degree  

; (steps 3 and 4 are looped until the average degree is reached) 

    single-connected-component  

; 5) we ensure that the network consists of one connected component, i.e. that there are no 

isolated traders and multiple components 

  ] 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; GO PROCEDURES ;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

to reposition-traders 

  if layout? = false [ask traders [move-to site site-number]] 

; ensure the traders are located at the correct site 

end 
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to determine-demand  

; each site has a maximum demand (=num-traders*num-traders), demand increases at a constant 

rate up to this maximum (representing new demand due to e.g. pots breaking) 

  ask traders  

; if a trader's demand is lower than the number of traders at its site, increase its demand by 

1 

  [if demand < (count traders-here) 

    [set demand demand + 1]] 

end 

to discard-part-of-stock 

; traders discard a constant proportion of their stock as a cost/risk/punishment of 

redistributing items 

; all of their remaining stock is added to their volume of the product and the stock is set to 

0 

; NOTE that increasing the amount of product at the end of the tick ensures it does not 

decrease the demand of the agent 

; Next tick the agent will have the same demand as always and will strive to satisfy this 

demand as well as being able to sell the items he obtained to other traders who have a 

positive demand. 

ask traders 

  [ 

    let discard-A round(stock-A * 0.14) 

    let discard-B round(stock-B * 0.14) 

    let discard-C round(stock-C * 0.14) 

    let discard-D round(stock-D * 0.14) 

    set product-A product-A + (stock-A - discard-A) 

    set product-B product-B + (stock-B - discard-B) 

    set product-C product-C + (stock-C - discard-C) 

    set product-D product-D + (stock-D - discard-D) 

    set stock-A 0 

    set stock-B 0 

    set stock-C 0 

    set stock-D 0 

    ask sites-here 

    [ 

      set volume-A volume-A + discard-A 

      set volume-B volume-B + discard-B 

      set volume-C volume-C + discard-C 

      set volume-D volume-D + discard-D 

    ] 

  ] 

end 

to produce 

  ask sites with [producer-A = true] 

  [ask traders-here ; all traders on the production site obtain X newly produced items... 

    [if (product-A + product-B + product-C + product-D) < demand  

; ... if its total possession of all products is less than its demand 

      [set product-A (product-A + round(demand - (product-A + product-B + product-C + product-

D)))]]]  

; increase product by however much it differs from demand 
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  ask sites with [producer-B = true] 

  [ask traders-here ; all traders on the production site obtain newly produced items... 

    [if (product-A + product-B + product-C + product-D) < demand ; ... if its total possession 

of all products is less than its demand 

      [set product-B product-B + round(demand - (product-A + product-B + product-C + product-

D))]]] ; increase product by however much it differs from demand 

  ask sites with [producer-C = true] 

  [ask traders-here ; all traders on the production site obtain newly produced items... 

    [if (product-A + product-B + product-C + product-D) < demand  

; ... if its total possession of all products is less than its demand 

      [set product-C product-C + round(demand - (product-A + product-B + product-C + product-

D))]]] ; increase product by however much it differs from demand 

  ask sites with [producer-D = true] 

  [ask traders-here ; all traders on the production site obtain newly produced items... 

    [if (product-A + product-B + product-C + product-D) < demand  

; ... if its total possession of all products is less than its demand 

      [set product-D product-D + round(demand - (product-A + product-B + product-C + product-

D))]]] ; increase product by however much it differs from demand 

end 

to trade-and-consume 

  ask traders 

  [  

; determine the neighboring traders each trader obtains commercial information from in this 

tick 

    identify-known-traders 

    price-setting ; estimate the price for one item 

  ] 

  ask traders [set-maximum-stock-size]  

; determine how many items a trader is willing to obtain over his own demand for 

redistribution in the next tick 

; each item in all traders' possessions will be considered in turn in a random order. Each 

item is either deposited as a result of a successful transaction, or it is added to a trader's 

stock 

  let product-on-market sum [ product-A + product-B + product-C + product-D] of traders  

; count the total number of items of all products 

  set counter-trade 0  

; counter used to keep track of the total  number of items considered in each tick 

  set counter-transaction 0  

; counter to report the number of successful transactions per tick 

  set counter-stock-redist 0  

; counter to report the number of items put in stock with redistribution in mind per tick 

  set counter-no-transaction 0  

; counter to report the number of failed transactions per tick 

  while [counter-trade < product-on-market]  

; repeat until all items on the market have been considered for trade 

  [  

; for each potential transaction randomly select whether an item of product A, B, C or D will 

be traded 

    let p random 4  

    if p = 0 
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    [trade-product-A] 

    if p = 1  

    [trade-product-B] 

    if p = 2 

    [trade-product-C] 

    if p = 3 

    [trade-product-D] 

  ] 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;;;;;;; TRADE PROCEDURES ;;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; the trade-product procedures are exactly the same for each product with the exception that 

only agent parameters relevant to one specific product are updated in each procedure 

to trade-product-A 

  if count traders with [product-A > 0] > 0 ; if there are traders with this product ... 

  [ask one-of traders with [product-A > 0] ; select a seller at random 

    [let potential-buyers link-neighbors with [(demand > 0) or (maximum-stock-size > 0)]  

; trade can only happen with link neighbors that have a positive demand or are willing to 

stock items for redistribution 

      ifelse count potential-buyers = 0 

      [  

; if there are no buyers for the item then put all of your items in stock 

        set stock-A stock-A + product-A 

        set maximum-stock-size maximum-stock-size - product-A 

      set counter-trade counter-trade + product-A 

        set counter-no-transaction counter-no-transaction + product-A 

        set product-A 0 

]

[ ; if there are potential buyers for the item then consider selling it 

        let seller-price price 

        let buyer-price 0 

        ask potential-buyers [add-transport-cost]  

; determine whether a transport fee applies in cases where the buyer is not located on the 

same market as the seller 

        let likely-buyer one-of potential-buyers with-max [(price - transport-fee)]  

; select the buyer that offers the highest profit (the most likely buyer of the item) 

        ask likely-buyer [set buyer-price (price - transport-fee)] 

        ifelse (buyer-price - seller-price) >= 0  

; if the seller can make a profit then complete the transaction 

        [ 

set counter-transaction counter-transaction + 1 

set product-A product-A - 1 ; process the transaction for the seller 

ask likely-buyer ; process the transaction for the buyer, two possible actions... 

[ 

ifelse demand < 1  

; ... 1) if the buyer's demand is 0 and the average demand is higher than its own demand 

(captured by a positive maximum-stock-size) then store the item for redistribution in the next 

tick (with the prospect of trading it for a higher profit) 

[ 
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              set stock-A stock-A + 1 

              set maximum-stock-size maximum-stock-size – 1 

              set counter-stock-redist counter-stock-redist + 1 

            ] 

            [  

; ... 2) if the buyer's demand is not 0 then sell it to a consumer who deposits the item at a 

site 

              set demand demand – 1 

              ask one-of sites-here [set volume-A volume-A + 1] 

            ] 

          ] 

        ] 

        [ ; if the seller cannot make a profit then move this item in stock 

          set product-A product-A – 1 

          set stock-A stock-A + 1 

          set maximum-stock-size maximum-stock-size – 1 

          set counter-no-transaction counter-no-transaction + 1 

        ]  

        set counter-trade counter-trade + 1 

      ] 

    ] 

  ] 

end 

to trade-product-B 

  if count traders with [product-B > 0] > 0 ; if there are traders with this product ... 

  [ask one-of traders with [product-B > 0] ; select a seller at random 

    [let potential-buyers link-neighbors with [(demand > 0) or (maximum-stock-size > 0)]  

; trade can only happen with link neighbors that have a positive demand 

      ifelse count potential-buyers = 0 

      [ ; if there are no buyers for the item then put all items in stock 

        set stock-B stock-B + product-B 

        set maximum-stock-size maximum-stock-size - product-B 

        set counter-trade counter-trade + product-B 

        set counter-no-transaction counter-no-transaction + product-B 

        set product-B 0 

      ] 

      [ ; if there are potential buyers for the item consider selling it 

        let seller-price price 

        let buyer-price 0 

        ask potential-buyers [add-transport-cost]  

; determine whether a transport fee applies in cases where the buyer is not located on the 

same market as the seller         

        let likely-buyer one-of potential-buyers with-max [(price - transport-fee)]  

; select the buyer that offers the highest profit (the most likely buyer of the item) 

        ask likely-buyer [set buyer-price (price - transport-fee)] 

        ifelse ((buyer-price - transport-fee) - seller-price) >= 0  

; if the seller can make a profit then complete the transaction 

        [ 

          set counter-transaction counter-transaction + 1 

          set product-B product-B - 1 ; process the transaction for the seller 
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          ask likely-buyer ; process the transaction for the buyer, two possible actions... 

          [ 

            ifelse demand < 1  

; ... 1) if the buyer's demand is 0 and the average demand is higher than its own demand 

(captured by a positive maximum-stock-size) then store the item for redistribution in the next 

tick (with the prospect of trading it for a higher profit) 

            [ 

              set stock-B stock-B + 1 

              set maximum-stock-size maximum-stock-size – 1 

              set counter-stock-redist counter-stock-redist + 1 

            ] 

            [  

; ... 2) if the average demand is lower than my own demand then sell it to a consumer who 

deposits the item at a site 

              set demand demand – 1 

              ask one-of sites-here [set volume-B volume-B + 1] 

            ] 

          ] 

        ] 

        [ ; if the seller cannot make a profit then move this item in stock 

          set product-B product-B – 1 

          set stock-B stock-B + 1 

          set maximum-stock-size maximum-stock-size – 1 

          set counter-no-transaction counter-no-transaction + 1 

        ] 

        set counter-trade counter-trade + 1 

      ] 

    ] 

  ] 

end 

to trade-product-C 

  if count traders with [product-C > 0] > 0 ; if there are traders with this product ... 

  [ask one-of traders with [product-C > 0] ; select a seller at random 

    [let potential-buyers link-neighbors with [(demand > 0) or (maximum-stock-size > 0)]  

; trade can only happen with link neighbors that have a positive demand 

      ifelse count potential-buyers = 0 

      [ ; if there are no buyers for the item then put all items in stock 

        set stock-C stock-C + product-C 

        set maximum-stock-size maximum-stock-size - product-C 

        set counter-trade counter-trade + product-C 

        set counter-no-transaction counter-no-transaction + product-C 

        set product-C 0 

      ] 

      [ ; if there are potential buyers for the item consider selling it 

        let seller-price price 

        let buyer-price 0 

        ask potential-buyers [add-transport-cost]  

; determine whether a transport fee applies in cases where the buyer is not located on the 

same market as the seller 

        let likely-buyer one-of potential-buyers with-max [(price - transport-fee)]  
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; select the buyer that offers the highest profit (the most likely buyer of the item) 

        ask likely-buyer [set buyer-price (price - transport-fee)] 

        ifelse ((buyer-price - transport-fee) - seller-price) >= 0  

; if the seller can make a profit then complete the transaction 

        [ 

          set counter-transaction counter-transaction + 1 

          set product-C product-C - 1 ; process the transaction for the seller 

          ask likely-buyer ; process the transaction for the buyer, two possible actions... 

          [ 

            ifelse demand < 1  

; ... 1) if the buyer's demand is 0 and the average demand is higher than its own demand 

(captured by a positive maximum-stock-size) then store the item for redistribution in the next 

tick (with the prospect of trading it for a higher profit) 

            [ 

              set stock-C stock-C + 1 

              set maximum-stock-size maximum-stock-size – 1 

              set counter-stock-redist counter-stock-redist + 1 

            ] 

            [  

; ... 2) if the average demand is lower than my own demand then sell it to a consumer who 

deposits the item at a site 

              set demand demand – 1 

              ask one-of sites-here [set volume-C volume-C + 1] 

            ] 

          ] 

        ] 

        [ ; if the seller cannot make a profit then move this item in stock 

          set product-C product-C – 1 

          set stock-C stock-C + 1 

          set maximum-stock-size maximum-stock-size – 1 

          set counter-no-transaction counter-no-transaction + 1 

        ] 

        set counter-trade counter-trade + 1 

      ] 

    ] 

  ] 

end 

to trade-product-D 

  if count traders with [product-D > 0] > 0 ; if there are traders with this product ... 

  [ask one-of traders with [product-D > 0] ; select a seller at random 

    [let potential-buyers link-neighbors with [(demand > 0) or (maximum-stock-size > 0)]  

; trade can only happen with link neighbors that have a positive demand 

      ifelse count potential-buyers = 0 

      [ ; if there are no buyers for the item then put it in stock 

        set stock-D stock-D + product-D 

        set maximum-stock-size maximum-stock-size - product-D 

        set counter-trade counter-trade + product-D 

        set counter-no-transaction counter-no-transaction + product-D 

        set product-D 0 

      ] 
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      [ ; if there are potential buyers for the item consider selling it 

        let seller-price price 

        let buyer-price 0 

        ask potential-buyers [add-transport-cost]  

; determine whether a transport fee applies in cases where the buyer is not located on the 

same market as the seller 

        let likely-buyer one-of potential-buyers with-max [(price - transport-fee)]  

; select the buyer that offers the highest profit (the most likely buyer of the item) 

        ask likely-buyer [set buyer-price (price - transport-fee)] 

        ifelse ((buyer-price - transport-fee) - seller-price) >= 0 ; if the seller can make a 

profit then complete the transaction 

        [ 

          set counter-transaction counter-transaction + 1 

          set product-D product-D - 1 ; process the transaction for the seller 

          ask likely-buyer ; process the transaction for the buyer, two possible actions... 

          [ 

            ifelse demand < 1  

; ... 1) if the buyer's demand is 0 and the average demand is higher than its own demand 

(captured by a positive maximum-stock-size) then store the item for redistribution in the next 

tick (with the prospect of trading it for a higher profit) 

            [ 

              set stock-D stock-D + 1 

              set maximum-stock-size maximum-stock-size – 1 

              set counter-stock-redist counter-stock-redist + 1 

            ] 

            [  

; ... 2) if the average demand is lower than my own demand then sell it to a consumer who 

deposits the item at a site 

              set demand demand – 1 

              ask one-of sites-here [set volume-D volume-D + 1] 

            ] 

          ] 

        ] 

        [ ; if the seller cannot make a profit then move this item in stock 

          set product-D product-D – 1 

          set stock-D stock-D + 1 

          set maximum-stock-size maximum-stock-size – 1 

          set counter-no-transaction counter-no-transaction + 1 

        ] 

        set counter-trade counter-trade + 1 

      ] 

    ] 

  ] 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; DISTRIBUTE TRADERS ;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

to setup-uniform-distribution 

  ask sites [set target-distribution ceiling (num-traders / num-sites)]  

; determine the number of traders that should be present at each site. Round up, this ensures 
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we have as many sites with the target number of traders as possible. 

  ask traders with [moved? = false]  

; ask each trader that has not been moved to a site yet in turn 

  [ifelse count sites with [count traders-here < target-distribution] = 0 

    [  

; move to a randomly selected site if all sites already reached their desired number of 

traders 

      move-to one-of sites 

      set moved? True 

    ] 

    [  

; if some sites did not yet reach their desired number of traders then move to one of these 

sites  

      move-to one-of sites with [count traders-here < target-distribution] 

      set moved? True 

    ] 

  ] 

end 

to setup-normal-distribution 

  ask sites 

  [set target-distribution ceiling (random-normal (num-traders / num-sites) floor((num-traders 

/ num-sites) / 3 ))]  

; round up, this ensures we have as many sites with the target number of traders as possible. 

; a normal distribution is created with a mean equal to the mean number of traders per site, 

and the standard deviation of the mean divided by three and rounded down 

; this ensures all sites will have a positive number of traders, since 99.9% of all values lie 

within three standard deviations from the mean 

  ask traders with [moved? = false]  

; ask each trader that has not been moved to a site yet in turn 

  [ifelse count sites with [count traders-here < target-distribution] = 0 

    [  

; move to a randomly selected site if all sites already reached their desired number of 

traders 

      move-to one-of sites 

      set moved? True 

    ] 

    [  

; if some sites did not yet reach their desired number of traders then move to one of these 

sites  

      move-to one-of sites with [count traders-here < target-distribution] 

      set moved? True 

    ] 

  ] 

end 

to setup-exponential-distribution 

  ask sites 

  [set target-distribution ceiling (random-exponential (num-traders / num-sites))]  

; round up, this ensures we have as many sites with the target number of traders as possible. 

; an exponential distribution is created with a mean equal to the mean number of traders per 

site 
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  ask traders with [moved? = false]  

; ask each trader that has not been moved to a site yet in turn 

  [ifelse count sites with [count traders-here < target-distribution] = 0 

    [  

; move to a randomly selected site if all sites already reached their desired number of 

traders 

      move-to one-of sites 

      set moved? True 

    ] 

    [  

; if some sites did not yet reach their desired number of traders then move to one of these 

sites  

      move-to one-of sites with [count traders-here < target-distribution] 

      set moved? True 

    ] 

  ] 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;; CONNECT TRADERS ;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

; if the experiments representing the hypotheses are compared with a random network with the 

same density then do the following procedure 

to connect-random-network 

  connect-traders-adjacent-sites connect-random-traders connect-to-av-degree single-connected-

component 

  let num-links count links 

  ask links [die] 

  repeat num-links [ask one-of traders [create-link-with one-of traders with [self != myself 

and (link-with myself = nobody)]]] 

end 

; if the experiments represent the hypotheses then do the following five steps: 

to connect-traders-adjacent-sites 

;; FIRST, connect one trader on each site to a trader on the next site in the circuar layout 

  set neighbor-site-links num-sites 

  let site-counter 0 

  while [site-counter < ( num-sites - 1 ) ] 

  [ 

    ask one-of traders with [site-number = site-counter] [create-link-with (one-of traders 

with [site-number = (site-counter + 1)])] 

    set site-counter site-counter + 1 

  ]   

;; connect a trader on the first site to one on the last site (since this is not done in the 

previous step) 

  ask one-of traders with [site-number = 0] 

  [create-link-with (one-of traders with [site-number = (num-sites - 1)])] 

end 

to connect-random-traders 

;; SECOND, create a variable number of inter-site links by randomly selecting a pair of 
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traders on different sites and connecting them 

;; in order for the proportion of inter-site links to be similar irrespective of the number of 

traders I adopt the approach by Jin et al 2001 

;;"at each time-step, we choose np * r0 pairs of vertices uniformly at random from the network 

to meet. 

;; if a pair meet who do not have a pre-existing connection, and if neither of them already 

has the maximum number of connections 

;; then a new connection is established between them." 

;; np = 1/2*N *(N-1) (in this procedure called node-pairs1) 

;; s0 is a variable (called r0 by Jin et al.; in this procedure called proportion-inter-site-

links) 

  let node-pairs1 ( ( num-traders / 2 ) * (num-traders - 1) )  

; this is called np in jin etal 2001, i.e. the number of node pairs 

  set random-inter-site-links ceiling(node-pairs1 * proportion-inter-site-links)  

; show the number of random links in this setup of the model 

  let time 0 

  while [time < random-inter-site-links] ; np * s0 pairs of vertices are selected at random 

  [ask one-of traders with [count link-neighbors < maximum-degree]; select node1 

    [ 

      let node2 one-of traders with [ self != myself and (link-with myself = nobody) and 

[site-number] of self != [site-number] of myself and count link-neighbors < maximum-degree]  

; identify a node that is not myself, is not a link-neighbor, and is located on another site 

      create-link-with node2 

      set time time + 1]] 

end 

to connect-to-av-degree 

  set random-intra-site-links 0 

  set mutual-neighbors-intra-site-links 0 

  while [av-degree <= (maximum-degree - ((maximum-degree / 100) * 10))]  

; the following two processes of link creation are looped until the average degree is reached 

  [ 

; THIRD, create links between pairs of randomly selected traders on the same site 

; step 1 of the Jin etal 2001 simplified model starts here, but modified to only select 

traders on the same site 

; "at each time-step, we choose np * r0 pairs of vertices uniformly at random from the network 

to meet. 

; if a pair meet who do not have a pre-existing connection, and if neither of them already has 

the maximum number of connections 

; then a new connection is established between them." 

; np = 1/2*N *(N-1) (called node-pairs2 in this procedure) 

; r0 is a variable (called proportion-intra-site-links in this procedure) 

    let node-pairs2 ( ( (count traders) / 2 ) * ((count traders) - 1) )  

; this is called np in jin etal 2001 

    repeat (node-pairs2 * proportion-intra-site-links)  

; np * r0 pairs of vertices are selected at random 

    [if any? traders with [count link-neighbors < maximum-degree] 

      [ask one-of traders with [count link-neighbors < maximum-degree] 

        [if any? (traders-here with [self != myself and (link-with myself = nobody) and count 

link-neighbors < maximum-degree]) 

          [ 
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; identify a node that is not myself, is not a link-neighbor, does not have the maximum 

degree, and is located at the same site as node1 

            create-link-with one-of (traders-here with [self != myself and (link-with myself = 

nobody) and count link-neighbors < maximum-degree]) 

            set random-intra-site-links random-intra-site-links + 1]]]] 

; FOURTH, nodes with a mutual contact on the same site are invited to become connected 

; step 2 of the Jin etal 2001 simplified model starts here 

; at each time-step, we choose NmR1 vertices at random, with probabilities proportional to Zi 

( Zi - 1 ). 

; for each vertex chosen we randomly choose one pair of its neighbors to meet, and establish a 

new connection between them 

; if they do not have a pre-existing connection and if neither of them already has the maximum 

number of connections. 

; mutual-neighbors = 1/2 * SUMi ( Zi * ( Zi - 1) ). Parameter Nm in Jin etal 2001 and 

represents the number of mutual neighbors. 

; proportion-mutual-neighbors (r1 in Jin et al 2001) 

    let mutual-neighbors ((sum([( count link-neighbors ) * ( ( count link-neighbors ) - 1 )] 

of traders)) / 2) ; calculate nm 

    repeat (mutual-neighbors * proportion-mutual-neighbors) ; repeat nm * r1 times 

    [ask one-of traders ; each time randomly select a trader 

      [ 

        let possible-mutual-neighbors link-neighbors with [[site-number] of self = [site-

number] of myself and count link-neighbors < maximum-degree] 

        if any? possible-mutual-neighbors 

        [ 

          let node1 one-of possible-mutual-neighbors 

          ask node1 

            [ 

              let possible-node2 possible-mutual-neighbors with [self != node1 and (link-with 

node1 = nobody)] 

              if any? possible-node2 

              [ 

              create-link-with one-of possible-node2 

              set mutual-neighbors-intra-site-links (mutual-neighbors-intra-site-links + 

1)]]]]]] 

end 

to single-connected-component 

; FIFTH, we ensure that the network consists of one connected component, i.e. that there are 

no isolated traders and multiple components 

; this to reflect the theoretical possibility in the static network that objects produced 

anywhere can end up in any site 

; to enforce this the network nodes need to be able to be connected by a path 

  set random-component-links 0 

  let length-c length nw:weak-component-clusters  

; calculate the number of components and save this as length-c 

  let components nw:weak-component-clusters  

; identify the components as a list of different agentsets 

  let number-components n-values length-c [?]  

; create a list of length-c counting from 0 to (length-c - 1). This list will be used to give 

each component a different number 
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; loop through the two lists just created: the components and the numbers 

  (foreach components number-components 

    [ 

      let cluster ?1 

      let cluster-no ?2 

      ask cluster ; for each trader in the component 

      [set comp cluster-no] ; give them a number according to the component they are in 

    ] 

  ) 

  let count-components length-c 

  while [count-components > 1]  

; repeat the following process of link creation between pairs of traders located on the same 

site but in different network components as long as there are multiple connected components 

  [ask one-of sites ; randomly select a site 

    [ 

      let f min [comp] of traders-here 

      let g max [comp] of traders-here 

      if f != g ; if there is a difference in the components its traders belong to ... 

      [ask one-of traders-here with [comp = f] ; ... select two traders in different 

components and create a link between them  

        [ask one-of other traders-here with [comp = g] 

          [ 

            create-link-with myself 

            set random-component-links random-component-links + 1] 

        ] 

      ] 

    ] ; re-calculate the number of components 

    set length-c length nw:weak-component-clusters  

; calculate the number of components and save this as length-c 

    set count-components length-c 

    set components nw:weak-component-clusters  

; identify the components as a list of different agentsets 

    set number-components n-values length-c [?]  

; create a list of length-c counting from 0 to (length-c - 1). This list will be used to give 

each component a different number 

; loop through the two lists just created: the components and the numbers 

    ( 

      foreach components number-components 

      [ 

        let cluster ?1 

        let cluster-no ?2 

        ask cluster ; for each trader in the component 

        [set comp cluster-no] ; give them a number according to the component they are in 

      ] 

    ) 

  ] 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;; PRICE SETTING ;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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to identify-known-traders  

; every tick each trader will only have commercial information available from a fraction of 

its link neighbors. These traders are identified here to ensure they remain the same 

throughout the tick. 

  set known-traders n-of ceiling((count link-neighbors) * local-knowledge) link-neighbors 

end 

to price-setting 

; the trader estimates what the current price for one item of a product is, based on the 

demand and supply of a proportion of his link-neighbors. 

  find-average-demand ; determine the average demand of this fraction of neighbors 

  let sum-prod sum[product-A + product-B + product-C + product-D] of known-traders  

; determine the total supply of this fraction of neighbors 

  let average-supply ((sum-prod + product-A + product-B + product-C + product-D) / ((count 

known-traders) + 1))  

; determine the average supply of this fraction of neighbors + myself 

  set price (average-demand / (average-supply + average-demand))  

; determine the trader's price estimate 

; the price of the product as perceived by the actor is the average demand divided by the 

average supply plus the average demand (to normalise the result) 

end 

to find-average-demand 

  let sum-demand sum[demand] of known-traders  

; determine the total demand of this fraction of neighbors 

  set average-demand ((sum-demand + demand) / ((count known-traders) + 1))  

; determine the average demand of this fraction of neighbors + myself 

end 

to set-maximum-stock-size 

  let sum-prod (product-A + product-B + product-C + product-D)  

; determine total number of items possessed 

  ifelse sum-prod > demand ; if this is higher than trader's demand ... 

  [set maximum-stock-size round(average-demand - sum-prod)]  

; ... set its maximum stock size to the difference with the average-demand 

  [set maximum-stock-size round(average-demand - demand)]  

; if not, then set its maximum stock size to the difference with the trader's demand 

end 

to add-transport-cost  

; potential buyers observe that the seller will need to pay a transport fee if the pair is not 

on the same market. This fee is stored in the transport-fee parameter of the potential buyer 

  set transport-fee 0  

; ensure possible transport fee values of previous transactions are not considered by setting 

the parameter to 0 

  if [site-number] of myself != site-number [set transport-fee transport-cost]  

; per experiment the transport-fee is set by the variable transport-cost 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;;;; LAYOUT ;;;;;;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;; 
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to layout  

; the number 3 here is arbitrary; more repetitions slows down the model, but too few gives 

poor layouts 

  repeat 3 [ 

; the more nodes we have to fit into the same amount of space, 

; the smaller the inputs to layout-spring we'll need to use 

    let factor sqrt count traders 

    ; numbers here are arbitrarily chosen for pleasing appearance 

    layout-spring traders links (1 / factor) (7 / factor) (1 / factor) 

    display  ; for smooth animation 

  ] 

  ; don't bump the edges of the world 

  let x-offset max [xcor] of traders + min [xcor] of traders 

  let y-offset max [ycor] of traders + min [ycor] of traders 

  ; big jumps look funny, so only adjust a little each time 

  set x-offset limit-magnitude x-offset 0.1 

  set y-offset limit-magnitude y-offset 0.1 

  ask traders [ setxy (xcor - x-offset / 2) (ycor - y-offset / 2) ] 

end 

to-report limit-magnitude [number limit] 

  if number > limit [ report limit ] 

  if number < (- limit) [ report (- limit) ] 

  report number 

end 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;;;;; Network measures ;;;;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

to-report report-neighbor-site-links 

  report neighbor-site-links 

end 

to-report report-random-inter-site-links 

  report random-inter-site-links 

end 

to-report report-random-intra-site-links 

  report random-intra-site-links 

end 

to-report report-mutual-neighbors-intra-site-links 

  report mutual-neighbors-intra-site-links 

end 

to-report report-random-component-links 

  report random-component-links 

end 

to-report report-av-tdegree 

  set av-degree sum([count link-neighbors] of traders) / num-traders 
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  report av-degree 

end 

to-report number-tlinks 

  report count links 

end 

to-report average-shortest-path-length 

  report network:mean-link-path-length traders links 

end 

; clustering coefficient (cc) measure, based on small-world model in Netlogo library 

; for an alternative calculation see: 

; http://www.ladamic.com/netlearn/NetLogo4/SmallWorldWS.nlogo 

to-report in-neighborhood? [ hood ] 

  report ( member? end1 hood and member? end2 hood ) 

end 

to-report find-clustering-coefficient 

  let traders-with-links traders with [ count link-neighbors != 0 ] 

  ifelse all? traders-with-links [count link-neighbors <= 1] 

  [ 

    ; it is undefined 

    ; what should this be? 

    set clustering-coefficient 0 

  ] 

  [ 

    let total 0 

    ask traders-with-links with [ count link-neighbors <= 1] 

    [ 

        set trader-clustering-coefficient "undefined" 

    ] 

    ask traders-with-links with [ count link-neighbors > 1]  

; only when more than one neighbor exists will cc be calculated 

    [ 

      let hood link-neighbors 

      set trader-clustering-coefficient (2 * count links with [ in-neighborhood? hood ] / 

                                         ((count hood) * (count hood - 1)) ) 

      ; find the sum for the value at turtles 

      set total total + trader-clustering-coefficient 

    ] 

    ; take the average 

    set clustering-coefficient total / count traders-with-links with [count link-neighbors > 

1] 

    report clustering-coefficient 

  ] 

end 
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13. Glossary 
This glossary contains definitions of terms used in this thesis. Some of these are explained 

using figure 79 as an example. 

 

Fig. 79. Example network used in some of the definitions below to clarify network concepts. 

Arc: in network jargon an arc is a directed line joining two points in a network. 

Average degree: the degree of a node is the number of edges connected to it and the average 

degree is therefore the average of all degree scores in a single network (Newman 

2010, 133-136; Nooy et al. 2005, 63-64). 

Average shortest path length: a shortest path or geodesic path in network terms is the shortest 

route over the network that runs from one vertex to another along the edges of the 

network and the average shortest path length is the average of all shortest path scores 

between all possible pairs of vertices in the network (Newman 2010 136-140; de 

Nooy et al. 2005, 127). For example, the shortest path from Node 1 to Node 4 in 

figure 79 is 3, and the average shortest path length of the network is 1.667. 

Betweenness centrality: the proportion of all shortest paths between pairs of other vertices 

that include this vertex (de Nooy et al. 2005, 131). 

Centrality: [something that refers to a number of measures, including the ones defined 

elsewhere, e.g., betweeness, closeness, degree, eigenvector] 
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Closeness centrality: “the number of other vertices divided by the sum of all distances 

between the vertex and all others” (Nooy et al. 2005, 127; Sabidussi 1966). 

Clustering coefficient: the Watts-Strogatz clustering coefficient measures the average 

probability that two neighbours of a vertex are themselves neighbours as a ratio of the 

number of edges between the neighbours of a given node and the maximum number 

of edges that could possibly exist between these neighbours (Newman 2010, 262-266; 

Watts and Strogatz 1998, 441). 

Cohesion: network cohesion (usually called density) is the fraction of the maximum possible 

number of edges in the network that is actually present (Newman 2010, 134; 

Wasserman and Faust 1994, 101-103). 

Complete network: “a network with maximum density” (Nooy et al. 2005, 63). 

Components: connected parts of a network (Nooy et al. 2005, 66-70). See also weak 

component and strong component. 

Degree: the degree of a node is the number of edges connected to it and the average degree is 

therefore the average of all degree scores in a single network (Newman 2010, 133-

136; Nooy et al. 2005, 63-64). For example, Node 2 in figure 79 has a degree of 3. 

See also indegree and outdegree. 

Degree distribution: the degree distribution represents the fraction of nodes in a network with 

a certain degree (Albert and Barabási 2002, 49; Newman 2010, 243-247). 

Density: network density (sometimes called cohesion) is the fraction of the maximum 

possible number of edges in the network that is actually present (Newman 2010, 134; 

Wasserman and Faust 1994, 101-103). 

Diameter: The network diameter is the length of the longest geodesic path between any pair 

of nodes in the network (Newman 2010, 140; Wasserman and Faust 1994, 111-112). 

Edge: in network jargon an edge is an undirected line joining two points in a network. 

e.g.: example given.
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Ego-network: a node, the nodes it is directly connected to, and the connections between them. 

ERGM: exponential random graph models, introduced in detail in chapter 4. 

Geodesic path: a shortest path or geodesic path in network terms is the shortest route over the 

network that runs from one vertex to another along the edges of the network and the 

average shortest path length is the average of all shortest path scores between all 

possible pairs of vertices in the network (Newman 2010, 136-140; Nooy et al. 2005, 

127). For example, the shortest path from Node 1 to Node 4 in figure 79 is 3, and the 

average shortest path length of the network is 1.667. 

Graph: “a graph is a set of vertices and a set of lines between pairs of vertices” (Nooy et al. 

2005, 6). 

Hubs and authorities: in citation networks Hubs are publications that cite many other 

publications and many good authorities in particular. Authorities are publications that 

are cited by many other publications and by good hubs in particular (Kleinberg 1999). 

i.e.: id est.

Indegree: “the indegree of a vertex is the number of arcs it receives” (Nooy et al. 2005, 64). 

For example, Node 2 in figure 79 has an indegree of 2. See also degree and outdegree. 

Input domain: represents the number of all other vertices that are connected to a given vertex 

by a path (Nooy et al. 2005, 193). 

Isolates: nodes that are unconnected to other nodes within a sample or population. 

M-slices: M-slices include vertices linked by lines with a value equal to or greater than m 

(Nooy et al. 2005, 109). 

Network: “a network consists of a graph and additional information on the vertices or the 

lines of the graph” (Nooy et al. 2005, 7). “A network is, in its simplest form, a 

collection of points joined together in pairs by lines” (Newman 2010, 1). 

Node: in network jargon a node or vertex is a point in a network. 
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One-mode network: “In a one-mode network, each vertex can be related to each other 

vertex.” (Nooy et al. 2005, 103). 

Outdegree: the outdegree is the number of arcs a vertex sends (Nooy et al. 2005, 64). For 

example, Node 2 in figure 79 has an outdegree of 1. See also degree and indegree. 

Path: “a path is a walk in which no vertex in between the first and last vertex of the walk 

occurs more than once” (Nooy et al. 2005, 67). For example, a path from Node 1 to 

Node 4 in figure 79 passes over arcs 3, 1 and 4. The difference with a walk is that in a 

path none of these steps can be performed multiple times. 

RMSE: root-mean-square-error. 

Semipath: “a semipath is a semiwalk in which no vertex in between the first and last vertex of 

the semiwalk occurs more than once” (Nooy et al. 2005, 67). For example, a semipath 

from Node 1 to Node 4 in figure 79 passes over arcs 3, 1 and 4. The difference with a 

semiwalk is that in a semipath none of these steps can be performed multiple times. 

Semiwalk: “a semiwalk from vertex u to vertex v is a sequence of lines such that the end 

vertex of one line is the starting vertex of the next line and the sequence starts at 

vertex u and ends at vertex v” (Nooy et al. 2005, 67). For example, a semiwalk from 

Node 1 to Node 4 in figure 79 passes over arcs 3, 1 and 4. The difference with a 

semipath is that in a walk some of these steps can be performed multiple times. 

Shortest path: a shortest path or geodesic path in network terms is the shortest route over the 

network that runs from one vertex to another along the edges of the network and the 

average shortest path length is the average of all shortest path scores between all 

possible pairs of vertices in the network (Newman 2010, 136-140; Nooy et al. 2005, 

127). For example, the shortest path from Node 1 to Node 4 in figure 79 is 3, and the 

average shortest path length of the network is 1.667. 

Strong component: “a strong component is a maximal strongly connected subnetwork” (Nooy 

et al. 2005, 68). For example, figure 79 contains three strong components: nodes 2, 3, 

and 4 (because they are connected by a path); secondly the isolated node 5; and 

thirdly node 1 (which cannot be connected to by a path). 
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Strongly connected network: “a network is strongly connected if each pair of vertices is 

connected by a path” (Nooy et al. 2005, 67). For example, figure 79 is not strongly 

connected because Node 5 is isolated. 

Two-mode network: “In a two-mode network, vertices are divided into two sets and vertices 

can only be related to vertices in the other set.” (Nooy et al. 2005, 103). 

Vertex (vertices pl.): in network jargon a vertex or node is a point in a network. In this special 

issue the term node is preferred over vertex. 

Walk: “a walk is a semiwalk with the additional condition that none of its lines are an arc of 

which the end vertex is the arc’s tail” (Nooy et al. 2005, 67). For example, a walk 

from Node 1 to Node 4 in figure 79 passes over arcs 3, 1 and 4. The difference with a 

path is that in a walk some of these steps can be performed multiple times. 

Weak component: “a (weak) component is a maximal (weakly) connected subnetwork” 

(Nooy et al. 2005, 68). For example, figure 79 contains the (weak) component 

consisting of nodes 1, 2, 3 and 4. 

Weakly connected network: “a network is (weakly) connected if each pair of vertices is 

connected by a semipath” (Nooy et al. 2005, 68). For example, figure 79 is not 

(weakly) connected because Node 5 is isolated. 

474 


