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The expression gestural mapping is well imbedded in the language of instrument designers, 

describing the function from interface control parameters to synthesis control parameters. This 

function is in most cases implicitly assumed to be instantaneous, so that at any time its output 

depends only on its input at that time. Here more general functions are considered, in which the 

output depends on the history of input, especially functions that behave like physical dynamic 

systems, such as a damped resonator. Acoustic instruments are rich in dynamical behaviour. 

Introducing dynamics at the control stage of an electronic instrument can help compensate for lack 

of dynamics in later non-physical synthesis stages. A broadening of the function space offers new 

aesthetic possibilities for composing instruments. Examples are presented to illustrate the new 

design/composition mode as well as practical techniques. In this context, it is suggested that the 

word mapping be updated with the more descriptive expression dynamic control processing. 

 

1  Introduction  

Two technology classes have dominated electronic musical instrument design, interface and 

synthesis. Increasingly attention has been focused on the bridge between these. Gestural Mapping 

has become a common catch-all phrase to describe a process connecting interface parameters to 
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synthesis parameters. The main focus of research has been on identifying suitable matches between 

interface control parameters and synthesis parameters. Beyond this, cross coupling or mixing of 

interface parameters has been explored as a way to complicate and enrich the control process by 

several authors (Garnett and Goudeseune, 1999; Hunt, Wanderley and Kirk, 2000; Menzies 1995a; 

Menzies 1999). See Fig 1. 

Figure 1 

It seems that the adoption of the word mapping has perpetuated a vague and overly 

simplistic view of instrument design. The main deficiency is that mapping strongly suggests an 

instantaneous function. The output depends on the input at that time. A process in which the output 

depends on the history of the input parameters can instead be termed a dynamical process1. The 

generalized mapping can now be referred to more precisely as dynamic control processing.  

Note that we shall not use the usual musical meaning of dynamic, meaning volume or 

energy, although there is a connection in that the volume of an acoustic instrument is often very 

clearly a dynamical variable. The original mathematical use of term dynamics was to describe the 

motion of a physical system acting under Newton's Laws. To distinguish dynamics 'similar' to this 

from dynamics in general we shall call it physical dynamics. 

A secondary problem is that mapping excludes random variables, which by definition are 

not interface parameters. A process taking on random variables can be called a stochastic process. 

So the most general bridge-process is a stochastic dynamical process. Chadabe (Chadabe, 2002) 

also notes his dissatisfaction with 'mapping' principally because it does not allow for non-

                                                           
1 A process depending on future input, is not meaningful in a real-time instrument! For post-processing it could be 
useful, for example in time-reversed echoes. 
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deterministic, ie stochastic, processing.  However, even very simple dynamical systems can exhibit 

complex, even chaotic behaviour, that is perceived as random by the human observer. The classic 

but familiar example is the dripping tap. For an introduction see, for example (Hilborn, 2000). One 

of our goals is to show that deterministic behaviour in the bridge-process need not prevent 

perceptual complexity, if dynamics are used. Chadabe's virtual performers constitute a stochastic 

dynamical system, since the output depends on previous events and random variables. The virtual 

players are loosely-coupled to the real player's actions. In contrast, the kind of dynamics that shall 

be explored here shall be close-coupled and physical, as they are in an acoustic instrument. This 

provides an alternative approach. 

 This paper first attempts to justify the use of quasi-physical dynamic control processing by 

examining dynamic human interaction and control, in everyday situations and then in the context of 

performing an acoustic instrument. The concept of perceptual dynamics in instruments is identified 

and then broken into components. Practical considerations of dynamical synthesis are made, and 

some dynamical elements are then collected together. Finally some examples are provided of 

simple instruments designed using the dynamic control processing approach. The overall goal is to 

extract some of the inherent dynamical feel of acoustic instruments whilst freeing up creative 

possibilities for composing new instruments. 

The concepts and methods in this paper were introduced in (Menzies 1995a; Menzies 1999). 

as part of a general exploration of instrument properties. The recent growth of interest in interactive 

instrument design, as evidenced for instance, by NIME and the present focus by Organised Sound, 

has created an excellent platform for their discussion. 

 

2  Dynamics In Human Interaction 
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Our lives are rich with physical dynamic experience. When we move a limb or manipulate an 

object, we are bound by physical laws. Our brains are well adapted to achieving control objectives 

in spite of inertia, friction and gravity. The most primitive variable that we control is force. Via 

motor neurons and muscle-chemistry the brain controls the force that a muscle exerts. When we 

move our hand the muscle forces are controlled expertly using visual and internal-pressure 

feedback, so that we are hardly even aware of the process (Thompson and Floyd, 2000). At each 

time the position of the hand depends on the history of force control. Moving an external object we 

must adapt the control process to include the mass of the new object, and we become more 

conscious of the dynamical interaction, and the dynamical properties of the object. 

Dealing with dynamics is not only a daily necessity, but also a recreation. Physical sports all 

demand a high degree of dynamic control. The athlete pushes the dynamical control of their own 

bodies. The soccer player is an expert in the dynamics of the football as well as their body. A 

Snooker player’s performance is determined mostly by how well they can control the dynamics of 

several balls at once. The race car driver's objective is simple, but to win he must understand fully 

the dynamics of his car and the track. Closely related to music is dancing, which can be viewed as 

the art of body control dynamics. 

A well known feature of human perception is the delay between receiving a stimulus of any 

kind and reacting to it via a motor response. For high-level operations this can be as much as 50ms 

(Lennie 1981). For high time resolution control scenarios this means the human has roughly only 

been able to use information that is 50ms 'out of date' for any actions made. Being able to predict 

the course of dynamics is therefore very important. In order to make good predictions, a good 

understanding of the dynamics involved is required. So the conclusion is that we are very well 

adapted to control physical dynamics (Bhushan, and Shadmehr, 1998). To what extent this ability is 
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genetic or learned is a separate matter, but for the purpose of instrument design it is important to 

realize that we have it. 

Paradoxically, dynamics can help in achieving some specific control tasks, as well as 

hindering others. If the desired system trajectory happens to be one requiring little control input, 

then we just have to ensure the initial conditions are good, and make small adjustments during the 

trajectory. We are 'riding the system' rather than fighting it. If the initial conditions are bad, then 

some initial substantial effort may be required, but after that it is back to small adjustments. Fig 2 

illustrates this effect in a general parameter space, { x,y}  that might represent position for example.  

 

Figure 2 

A simple example is making an object accelerate downwards. We just have to let the object fall 

under gravity. Another example is walking. Our legs swing like pendulums, with adjustments so 

that we don't trip. 

Dynamics can also help by reducing control 'noise'. Since it is the integration of force over 

time that is important for causing changes is velocity, short inadvertent spikes of force have a 

minimal effect on the trajectory. See Fig 3. 
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3  Perceptual Dynamics in Acoustic Instruments 

Acoustic instruments have there own rich dynamics, which are again the result of the Newton's 

Laws acting in complicated ways with electric and gravitational forces. Instrument dynamics cover 

a broad frequency range. At the top of the range are the audio frequencies. A pure note is a 

perceptually static object despite the rapid pressure oscillations, so it is important to differentiate 

between the physical dynamics that may yield high frequencies and the perceptual dynamics of 

quantities that can be perceived to vary. Such quantities are usually subdivided into pitch, volume 

and timbre. The latter is, of course, a catch-all for anything that is not pitch or volume. Depending 

on the details of the quantity perceived, the frequency range available for perceived dynamics 

extends up to around 50Hz. At higher frequencies we can no longer capture the contour of the 

varying quantity and a transition to a new static perception occurs. A common expression used to 

describe acoustic instruments is 'liveliness'. This is an almost subconscious reference to perceptual 

dynamics. Just as dynamics enriches the recreational activities of the previous section, so it does to 

acoustic instruments. 

 The overall dynamic behaviour of an instrument can be broken down into two main stages; 

the dynamics of the interface and the acoustic dynamics of pressure and tension waves, shown in  

Fig 4. 

 

Figure 4 

 

 The piano action provides a good example of interface dynamics. The inertia of the hammer and 

the escape mechanism combine to create the 'feel' of the keyboard, see Fig 5.  

interface
dynamics

acoustic
dynamics
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Figure 5 

 

This dynamics has several subtle consequences. It allows the player to create a wide variety of 

strike velocities from small finger movements, since the final velocity is proportional to the impulse 

applied by the finger. This is the area under the finger force / time graph shown in Fig 6.  

 

Figure 6 

 

Timing is improved by virtue of the denoising effecting discussed in the previous section. Fast 

repeats are possible because the hammer does not return immediately, and can restart a hit from a 

short distance away from the string. Because the dynamics of the interface are relatively slow, they 

are perceptually relevant. 

time

force
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Acoustic dynamics yields frequencies well above the perceptual range, but also within the 

perceptual range. The following list attempts to seperate out different aspects of acoustic dynamics, 

but it is by no means exhaustive, and the boundaries are often unclear. 

 

Decay dynamics 

Perhaps the simplest examples of dynamics are the volume decays of struck instruments, see Fig 7.  

 

Figure 7 

 
As the different frequency components decay at different rates so the spectral contour and timbre 

change during the decay also. Decay dynamics also apply in continuously controlled instruments, 

immediately following a period of control, for example when a bow leaves a string.  

 

Beating and related dynamics 

Even signals that contain only frequencies above the perceptual upper limit, in the pure spectral 

domain, can evoke perceived frequencies. A simple example is the beating of two similar 

frequencies. In the sound of a piano note a host of complex timbral dynamics can be heard, 

resulting from beating and sympathetic interactions between strings.  

 

Onset dynamics 
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Instruments with which the player interacts continuously for the duration of the note expose richer 

dynamics than event based instruments such as percussion. In the continuous case the onset of a 

note is a critical period, as the instrument progresses through a turbulent dynamical transition to a 

'steady state' oscillation. During the transition the player must respond quickly to the available 

indicators of instrument state, the sound and vibration history, in order to guide the instrument to 

the desired state. The brevity of the period makes the task all the more challenging. 

 

Locking 

The instrument can enter different states that will have a lasting effect on the subsequent note, 

independent of the way the input develops. This is a general property of nonlinear dynamical 

systems called Mode-locking. An example is register shifting, whereby the output frequency of an 

instrument flips by an interval and remains locked into that shift. For instance, overblowing on a 

windinstrument can cause an octave rise, which holds as the pressure is reduced.  For the most part 

locking effects are more subtle than a register change, amounting to a change of timbre. 

 

Evolution Dynamics 

During the course of a note played with continuous control, the perceptual features vary smoothly, 

but control is still dynamically filtered in subtle ways. For instance, the energy within the 

instrument takes time to rise and fall and establish equilibrium as the blowing or bowing strength 

changes. 

 

Microunpredictability 

A general property of many acoustic instruments is a small degree of apparent unpredictability in 

the sound even when attempting to play a note as simply and statically as possible. This is inherent 
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in the dynamics of the instrument, as confirmed by the simplified physical models that recreate 

these effects. 

 

Macrounpredictability 

Many continuously controlled instruments can be driven to state of gross chaotic behaviour 

characterized noisy, rapidly fluctuating tones. An example is the vocalized saxophone style in 

which vocal sounds interact directly with vibrations in the saxophone. There is a fine line here 

between timbre and dynamics. 

 

This section has exposed a variety of physical dynamical effects and challenges that face players of 

acoustic instruments. Players learn to achieve these difficult control tasks using the same innate 

mechanisms required to deal with everyday dynamics. This is why incorporating physical dynamics 

into instruments is a good idea, but one easily overlooked because dynamic control is so much 

second nature. 

 

 

4 Existing Physical Dynamics In Electronic Instruments 

Close-coupled physical dynamics has already entered into electronic instrument design in several 

ways, as a consequence of emulating acoustic instruments.  

 

4.1 Dynamic Envelopes 

Perhaps the earliest example is the envelope, such as ADSR (Attack Decay Sustain Release) and its 

variants, used for amplitude and filter control in keyboard instruments, see Fig 8.  
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Figure 8 

 

A single event, a key depression, sets the trajectory of a note on course. A key release event makes 

the envelope jump towards the release section (To simulate piano dynamics, the sustain section is 

removed). This is a simple case because the output only depends on discrete events rather than a 

continuum. The envelope is a simple model of keyboard dynamics. 

 

4.2 Effects Processing 

Effects processing is a common way of adding dynamical behaviour. It is added at the end of the 

signal chain rather than the beginning. A note played into an echo processor for example, produces 

a stream of decaying notes. The output at any time depends on previous input events, see Fig 9.  
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The popularity of a range of abstract effects processors is possibly as much due to their dynamical 

effect as the immediate timbral effect. While effects offer possibilities for creative design of 

dynamics, this is limited by the fact that the effects act at the end of the instrument signal chain 

where there are only a few available connections, and not within it, see Fig 10. Also effects 

necessarily operate at audio rate, so the computational cost is significant. 

 

Figure 10 

4.3 Physical modeling 

The advent of physical modeling introduced all the dynamic qualities of acoustic instruments into 

the electronic arena. By default, the interface controls connect directly to the synthesizer. The 

design process hasn't forced us to acknowledge the importance of dynamics, they have just 

appeared as a natural consequence of the modeling process. The 'liveliness' present in acoustic 

instruments is inherited.  

Physical modeling comes in various forms. Accurate waveguide models seek to simulate 

the propagation of sound waves in an object, including critical regions of nonlinear interaction 

(Smith, 1992). Matching a waveguide structure to an existing instrument is a demanding task. A 

given structure is only capable of a certain range of behaviour. Identifying a structure that will 

realize some arbitrary imagined dynamics is intractable in most cases. 

Physically inspired modeling models bulk motion in instruments such as shakers, by 

making physically reasonable assumptions about the overall sonically relevant behaviour without 

worrying about detailed behaviour (Cook, 97). If the bulk dynamics are modeled accurately this 

interface synthesisfunction effects
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allows the details of interaction sounds to be explored, and is particularly effective when 

accompanied by a graphical rendering of the bulk system (Menzies, 99). Fig 11 shows a screenshot 

of a system of rigid bodies. 

 

Figure 11 

 

The outer ball can rotate but its centre is fixed, the midsized ball is controlled via an invisible 

spring by the mouse. All balls have different resonant properties. It is also possible to model the 

acoustic dynamics itself in a semi-physical way, for example using noise for diffuse resonance 

(Menzies, 2002) 

 

4.4 Data driven modelling  

Recently data-driven techniques have been developed to extract and then reproduce the dynamical 

properties of instruments without reference to a physical model. The general idea is to sample 

dynamics in a way analagous to sampling notes directly. Gershenfeld exploits a beautiful theorem 

of well behaved dynamical systems, that they are in general characterized by a function of a finite 

number of  'lag' points behind the current input (Gershenfeld, Schoner, and Metois, 1999). The lag-

function is constructed by training weighted clusters with example pairs of input and output from a 



 14

real instrument. In performance, the output of the clusters mixes short basis samples to generate the 

output. Using this approach Schoner has succeeded in producing recognizable, if not hi-fidelity, 

string synthesis (Schoner, Cooper, Douglas and Gershenfeld, 1999). This is a promising area for 

development, especially if the captured dynamics can be analyzed into perceptually meaningful 

'subdynamics', so that they can be creatively transformed. 

 

5  Composing Dynamics 

The case for dynamics in instruments has been made. Existing dynamics in electronic instruments 

has been reviewed. Now we turn to new practical design processes for adding control processing 

dynamics to an interface-synthesis system in which the synthesis component has little or no 

inherent perceptual dynamical properties. The following discussion will not assume much technical 

knowledge, but hopefully it will also be of interest to the experienced reader by being cast in the 

context of instrument control dynamics. Additional background material can be found in 

introductory books on filters, for instance (Oppenheim, Schafer and Buck, 1999). 

 

5.1  Linear Filters 

The original definition of a dynamical system given, was a function depending on the history of 

signal input. Since we are working in the digital domain, we must discretise time into small finite 

steps, so the input and output signals are streams of samples. If the definition were implemented 

directly this would imply storage of the accumulating input history without limit. In practice all 

interesting dynamics can be implemented by using a finite store of state variables that encode the 

dynamical state of the system. This is essentially the 'memory' the dynamical system has of the 

past. The bigger the memory, the more complex can be the reaction to the past. At each time step, 
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the output, and the state variables, are a function of the current input and the state variables, see Fig 

12. 

 

Figure 12 

 

Linear dynamical systems, are a subclass with additional properties. They are useful for 

modeling a variety of real processes, including physical dynamics, and can be analyzed in depth. In 

the language of audio signal processing such systems are more commonly known as linear filters, 

and are frequently used as building blocks. In the current context, however, we are interested in 

processing control signals rather than audio signals, so the characteristic timescale is larger, and the 

bandwidth smaller. A general linear filter can be realized by choosing the state variables to be 

recent input and output samples, lagging behind the current sample by fixed amounts. The 

functions in Fig 12 are constrained to be linear. If only inputs are chosen then the system is 

described as finite impulse response otherwise infinite impulse response. The familiarity of linear 

filters will be an aid to their deployment in control processing.  

We have already observed that the acoustic dynamics of instruments is often characterized 

by non-linearities imbedded within a linear system, so we should question whether non-linearities 

should be introduced into the control processing. In this introductory study we shall only consider 

linear processing. Interesting results can be hoped from this because the timescale of the processing 

is, by design, the same as the human player interacting with it, so the player takes on the role of an 

important non-linear interacting element, from the global player-instrument system viewpoint. 

state
variables

function F1 function F2
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Linear filters can be classified by their order, or how far backwards in time the state 

variables extend in their simplified input, output form. Here we consider just first and second order 

filters. To aid comprehension, and avoid the technical language of z-transforms, the filters will not 

necessarily be constructed in their purest and most efficient form. This doesn't matter because the 

computational demands of signal processing at low bandwidth are small compared the demands of 

audio rate signal processing in the synthesis section. We shall be more concerned with the details of 

the time domain behaviour than would be the case for audio signal processing. Hence filters with 

similar frequency responses may have quite different effects as control processors. 

 

5.2  Implementation 

There are many ways to implement control filters. Max-related systems have become very popular 

for real-time music applications, primarily because of the user-friendly graphical interface. On the 

other hand programming languages such as C and C++ offer the greatest flexibility and efficiency. 

We shall take the comparatively unpopular middle route of using Csound, which offers several 

advantages. Csound is free and available on many platforms, requires modest resources and has a 

common multichannel audio interface. The script language is flexible enough to build filter 

structures compactly, and enables rapid development. It also means that specific code can be 

quoted within this document. One minor draw back is that the real-time capability has been grafted 

on to a batch style architecture, so workarounds are sometimes required.  

In theory it would be convenient to use the built-in audio filters for control processing. 

Unfortunately it is usually found that the filters don't function correctly, if at all, at the low 

frequencies of interest. Also, audio rate processing is wasteful on control rate signals that have low 

bandwidth. In any case there is sometimes no obvious or simple way to construct a particular filter 

from those available, and we must resort to coding from scratch using variables. 
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Depending on what we wish to do, it may be worth upsampling the processed control signal 

to improve the final audio output quality. For instance, if a control has a large effect on output 

amplitude then up-sampling will reduce zipper noise. Frequency stepping is less noticeable, but 

may be worth improving by upsampling.  

 

5.3  A Control Dynamics Kit 

The aim here is to present a collection of practical techniques for dynamic control processing. It is 

in no way designed to be exhaustive, but rather illustrative of the methods involved. In the 

following code snippets, global variables are used so that values can be passed between 

instruments, and so that values are retained between performance passes. gkdt is the control time 

step, and should be set to 1/kr, the inverse of the control sampling rate. The code should reside in a 

Csound instr that is active for the duration of the performance, which normally means switching on 

from within the score. Time responses to various signals are used to illustrate the dynamics.  

 

1st order Differentiator 

This is the simplest useful linear filter for control processing. It outputs the rate of change of the 

input, see Fig 13. 
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 It has the special property of being point-local. Local means that the output only depends on a 

finite stretch of input history. This is true in general for finite impulse response filters. Point-local 

additionally means that the history dependence is confined to a small fixed number of samples.2 

The Csound implementation looks like: 

gkout = (gkin - gkinold) * kr 
 
gkinold = gkin 

 

The differentiator is useful for calculating the velocity of an interface object such as a bow or 

hammer. From this we can infer the energy associated with interactions of the control object. 

Because it is point-local its dynamic behaviour is simple. The acceleration can be found by 

chaining two differentiators together. 

 

1st order Integrator 

The integrator is the inverse to the differentiator, see Fig 14.  

 

Figure 14 

 

                                                           
2 For the more mathematically inclined: The entire history of an infinitely differentiable function is defined by the 
derivatives at a point. In the discrete domain, however, calculating the analog of derivatives amounts to knowing the 
history, so point-local is useful for describing filters with history dependence that shrinks with time step size. 

in

timeout



 19

Combining them leaves the input unchanged. The integrator is not local, since it is an infinite 

impulse response filter. The output depends on the entire history of input. In the following 

implementation our state variable gkout1 is a delayed output (gkout1 could be dropped and 

replaced with gkout providing it is not modifed later on in the code). 

gkout = (gkin * gkdt) + gkout1 
 
gkout1 = gkout 
 

Leaky integrator 

In practice the pure integrator is limited in usefulness because the output always grows for positive 

input. The leaky integrator is an integrator with an exponential 'drain' added so that the output 

decays if no input is present, see Fig 15.  

 

Figure 15 

 

This can model the energy in a resonant object like a string. Energy can be accumulated by 

repeated bowing, but ultimately it dissipates.  

gkout = (gkin * gkdt) + gkoutold 
 
gkoutold = gkout * gkdecay 
 

Where gkdecay = 2^(-gkdt/gkhl), and gkhl is the half life of the decay. Note gkdecay is not 
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specified as a variable, so that it can be controlled in run time. 
 

1st order Lowpass 

We now consider some common filters in their original forms as audio filters. The low pass filter 

reduces high frequency content while the lowest frequency content is unchanged, and in fact is the 

same as a leaky integrator, but with gain normalized for low frequencies, and a different control 

viewpoint (The pure integrator is the low frequency limit of lowpass, with infinite gain at 0Hz). Its 

audio implementation in Csound is tone. 

gkout = gka * gkin + gkb * gkout1 

gkout1 = gkout 

For normalization  gka = 1 - gkb . gkb can be controlled directly, or via its relation to the 

formal cutoff frequency kf : 

   kb = 2 - cos(kf*6.282*gkdt) 

gkb = kb - sqrt(kb*kb-1.0) 

 This definition for gkb is of limited use because the cutoff is not very sharp, but it does at least 

provide a way to scale gkb for differing kr. 

 Lowpass intuitively resists change in the input signal, so it provides a simple model for a 

physical damping action, see Fig 16.  

 

Figure 16 
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A more accurate model of damping must introduce the notion of acceleration and requires a second 

order filter. This is expressed in the resonators below. Lowpass filters can be chained to create 

sharper cutoffs, but more ideal filters can be created using other higher-order designs. 

 Lowpass can also be viewed as a time averaging of the input, so it extracts the large 

timescale motion of the input. For sufficiently small gka the output converges to the signal offset, 

if that exists. 

 

1st order Highpass 

The high pass filter attenuates low frequencies. It transmits rapid change well, see Fig 17.  

 

Figure 17 

 

It can be constructed by subtracting the lowpass output from the input. Add : 

gkout = gkin - gkout  

(a more efficient construction is possible, but efficiency is not very important at control rates). The 

highpass is useful for generating signals from sudden changes in the input. 

 For very low cutoff frequency the highpass is better known as a DC block, which passes all 

frequencies unattenuated except the 0Hz or DC offset signal. This is useful for shifting the input so 
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that its time average value is zero, more of a practical than a perceptual-dynamical operation, see 

Fig 18. 

 

Figure 18 

Resonator 

Moving up to second order filters introduces the possibility of oscillation. We consider recursive or 

IIR filters whose output depends on the entire history of input, as for the recursive first order filters. 

Following the direct form implementation of reson in Csound, we define a control version: 

gkout = gkin + ka * gkout1 - kb * gkout2 
 

  gkout1 = gkout 
 

gkout2 = gkout1 
 

kca and kcb are obtained from the centre frequency kcf, and bandwidth kbw as follows: 

kb = exp(-kbw * 6.282 * gkdt) 
 
ka = 4 * kb * cos(kcf * 6.282 * gkdt) / (kb + 1) 

 

Note that numerical errors may cause problems in setting ka, kb if kcf is too small compared to kr. 

Generally kr should be kept to a maximum of 5000, and can be much lower. As the  bandwidth is 

reduced the filter becomes more resonant and oscillations decay more slowly. Control input which 

oscillates near the centre frequency will cause a build up of output oscillations towards a saturation 

level, see Fig 19. 
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Figure 19 

 

Resonant-Follower 

Resonance can also be approached from a physical viewpoint, and this aids the intuitive 

construction of variations on the basic resonator. As an example consider the physical system 

shown in Fig 20.   

 

Figure 20 

 
The input control is the position of one end a spring relative to a fixed point. The other end of the 

spring is attached to a mass and one end of a damper. The other end of the damper is fixed. The 

filter output is the displacement of the mass from its resting position when the input is zero. The 

force on the mass depends on the extension/compression of the spring and the velocity of the 

damper extension. Without loss of generality take the mass to be 1. In Csound we can integrate the 

system to a first approximation with: 
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gkvel = gkvel + ( (gkin-gkout1)*gkk - gkvel*gkd ) * gkdt  
 

  gkout = gkout + gkvel * gkdt 
 
  gkout1 = gkout 

 

gkvel is the velocity, gkk is the spring constant and gkd is the damping constant. The step 

response is shown in Fig 21.  

 

Figure 21 

 

This is a resonator with DC pass. We call it a resonant-follower to emphasize that the output 

follows the input, with added resonance caused by sudden change. It is typical of mechanical 

suspension systems that transmit the input but impose resonance and damping as well. 

 

Modified Resonator 

The DC component of the resonant-follower can be removed by subtracting the output from the 

input. Add: 

  gkout = gkin - gkout 
 
 

The step response is shown in Fig 22.  
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Figure 22 

 

This is similar to the resonator step response but with an initial discontinuity. The modified 

resonator is equivalent to a resonator and differentiator attached in series, with gain adjustment. 

The frequency response does not roll off at high frequencies, so impulses are responded to rapidly 

irrespective of the resonant frequency. This feature is exploited in the first example.  

 

Only filters up to 2nd order have been considered. This may seem somewhat restrictive, but in 

practice a wide range of perceptual dynamics can be approximated well using the filters described. 

They have the advantage that the behaviour of each can be clearly understood. Higher order filters 

can be built from networks of simpler filters, in a structured way. 

 

6  Example I - Bird 

The purpose of the examples is to present complete instruments that use dynamic control 

processing, without becoming submerged in synthesis details. To this end we return to the simplest 

of instruments, the Theremin, as the starting point. The synthesis section will consist only of a sine 

oscillator. The design or compositional elements contributing to the first example are: 

a

f
breath
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key freq

freq / damping
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• The amplitude and frequency should by effected by output from dynamic control processing. 

This should create possibilities for output that the player could not achieve by direct control. 

• The interface is a standard wind controller, such as a Yamaha WX7 / WX11. Use should be 

made of the reed pressure sensor.  

• It would be useful if the instrument could be driven to a 'normalized state' where playing keys 

produced corresponding scale tones, with no superimposed frequency changes. 

• It would similarly be useful if the instrument could be driven to an 'anti-normalized' state in 

which we control the frequency directly and continuously, like the Theremin. 

• The overall aesthetic inspiration is from bird song, the rapid, complex and varied modulation of 

simple tones. The effect should be one of intimate rather than loose control, as if the player 

were singing directly. 

 

The design process proceeds roughly as follows: To generate frequency modulations, we use a 

resonator. But what should drive the resonator? The breath control should be mainly used to control 

amplitude, in agreement with the normalization requirement. The staccato nature of bird song 

suggests that changes of breath should excite resonant modulation. Using the derived resonator 

from the last section we can additionally drive the instrument into an anti-normalized state at low 

frequencies, so that breath changes directly control frequency. The remaining piece of the jigsaw is 

to use the reed pressure to control the resonant frequency and damping.  

Fig 23 shows the overall scheme. The method for controlling the resonant frequency and the 

damping is to multiply the time step gkdt by a factor depending on the reed pressure.  A tighter 

reed pressure causes faster oscillations and damping. The full code and recorded examples can be 

downloaded (Menzies, 1995b). Recorded examples are also included on the accompanying cd. 

There are broadly three regimes of playing.  
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Figure 23 

 

With a tight reed, oscillations die away fast and scales can be played. With a looser reed the 

oscillations become slower, and the player interacts dynamically with the oscillations. It is here that 

interesting and perceptually unpredictable behaviour can occur. The player has control of the 

overall shape of a phrase, but the details of modulation are ever fluid. With a loose reed, breath 

drives the frequency directly. By moving rapidly through these regimes the player can achieve a 

variety of interesting bird-like performances, that would be impossible without dynamic 

processing. 

Interesting variations on bird have been made by combining several sine oscillators, each 

controlled by slightly different dynamics. The oscillators tend to join and spread according to the 

playing conditions, creating chorus like effects and adding more dynamic interest. 

 

7  Example II - Spiro 

For the second example we stay with sine modulation, but use a keyboard as the interface. Instead 

of using linear filters for dynamic processing we return to the ADSR envelope and wavetable 

oscillator, to demonstrate how  ‘off the shelf parts’  can be given a new lease of dynamics life. The 

ADSR was designed for modeling the volume and filter dynamics of event-based notes. However, 
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it also provides a compact dynamical unit for building more general dynamic processing. The 

specific criteria this time are: 

• The inspiration is taken from the sustained animal song common in jungles and elsewhere, for 

instance by birds and frogs. Cyclic patterns of sound that repeat approximately but never 

perfectly.  

• Each key 'contributes' to the output in a different way, and the contribution has dynamical 

behaviour.  

• The modulation and pitch wheels can additionally be used to modify the behaviour in some 

global way. 

These goals are achieved by associating two enveloped oscillators, operating at frequencies in the 

perceptual-dynamic range, with each key that has been pressed, one for amplitude and one for 

frequency, see Fig 24.  

 

Figure 24 
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The output of the currently active enveloped oscillators is summed to provide the final pitch and 

amplitude modulation parameters. Various parameters for the enveloped oscillators, wavetable, 

frequency, mode (cycle/oneshot), attack time, decay time, sensitivity to key velocity, are all 

selected from tables indexed by the key number. The mod wheel is used to shift the global 

oscillator frequencies, while the pitch wheel shifts the final modulation pitch. A simple variation 

employs separate amplitude oscillators for right and left channels, so that panning movement 

patterns additionally occur. 

Csound provides a very efficient structure for implementing this design. A single instrument 

definition is accessed by each key that is played, and global variables are used to accumulate the 

final modulation parameters (Menzies, 1996). The envelopes are implemented with linenr, which 

forces the instrument to remain active after the key is released. This  permits a smooth fade of the 

effect associated with the key, under the players control. 

A variety of tables were generated for experimentation. The most rewarding frequency 

range to operate the instrument is just at the point where the patterns of pitches cannot each be 

followed exactly but are none the less recognizable from one another. One then perceives a mixture 

of dynamics in the sound, possibly resulting from correlations between repeating features. The 

effect is analagous to spirograph pattern generators used on some bank notes. As the envelopes 

vary the oscillator outputs, so they interact dynamically to create transitional pattern changes in the 

output, similar to those heard in nature. A piece, lifeforms, was written combining performances on 

bird and spiro, (Menzies, 1996), and has been diffused by the group nerve8 on several occasions. 

 

Conclusion 

The motivation for this work has been the belief in the value of dynamical behaviour in 

instruments, and physically related dynamics in particular. Examples have been provided of how 



 30

dynamics is important generally, and specifically in the performance of acoustic instruments. 

Physical modeling has opened the doors to dynamics, but within certain boundaries. By explicitly 

designing perceptually relevant dynamics, a broader more abstract design space is accessible, yet 

one still benefiting from dynamics. From a practical viewpoint, the computational costs of 

perceptual dynamics are small compared to audio signal processing because of the lower 

bandwidth. 

 Some examples have been given of simple control dynamics processing that yield 

compelling results given their simplicity. More generally any dynamical process, whatever its form 

or origin, can be considered and transferred to the perceptual band, thus creating a rich field for 

experimentation. Of course, the sine generators can be replaced with arbitrarily complex synthesis 

units with parameters effecting timbre in many ways. Even physical synthesis units may benefit 

from dynamic control preprocessing, by enhancing and modifying aspects of the existing dynamics 

that might otherwise be difficult. 

 Instrument design is foremost an artistic compositional process, but one that is likely to 

benefit increasingly from technical proficiency in the abstract manipulation of dynamical systems. 
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