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Abstract

A method is introduced for calculating driving
functions for loudspeaker arrays used to control
sound fields. This is based on the simultaneous
solution of multiple modal constraints whose cen-
tres are distributed in space. Several test exam-
ples are described. Subjects considered include the
control of the complete interior of convex and con-
cave array boundaries, the control of subregions,
loudspeaker distributions, open boundaries, inde-
pendent regions, point source targets, and encoding
and decoding.

1 Introduction

Sound field synthesis is the reproduction of any
sound field over a region of space using fixed loud-
speakers. In this article the surrounding space is
considered to be anechoic. There is no scattering
of sound back into the region. The control is purely
feedforward, with no feedback from sensors. Sound
field synthesis can be expressed exactly using a con-
tinuum of sources. In practice only a finite number
of drivers can be used, and reproduction error is
unavoidable. A variety of methods have been de-
veloped with different error and calculation proper-
ties. These were reviewed and compared together
at a recent conference [1] to highlight some pos-
sible areas for development. Some proposals were
discussed, including one referred to as Distributed
Modal Constraints (DMC). Parts of this work are
expanded here with the focus on DMC.

The next section reviews existing methods for
sound field synthesis using fixed drivers. Use-
age and performance characteristics are highlighted
rather than implementation details. In the follow-
ing section the development and implementation of
DMC is described. Simulations are then presented
covering a range of synthesis tasks. Comparisons

are made with existing systems in these cases. Fi-
nally the problem is considered of how to encode
and decode DMC so that it can be rendered on
different arrays.

2 Sound field systems review

2.1 Ambisonics

In its original form the Ambisonics system con-
sists of a method of approximately encoding 3-
dimensional sound fields with 4 channels and a
method for decoding these channels to surround-
ing loudspeaker arrays in order to reproduce the
encoded sound field in the interior [2]. The en-
coding approximates the directivity of sound inci-
dent at a point in space, and the loudspeaker repro-
duction approximately reconstructs this directivity
at the centre of the array. High-order Ambisonics
(HOA), [3], is an extension of Ambisonics based
on the Fourier-Bessel expansion (FBE), allowing
more accurate sound field encodings and reproduc-
tions using more channels and speakers. Increas-
ing the encoding order increases the angular reso-
lution and also allows a sound field to be accurately
represented over a wider region at each frequency.
For plane waves, and most naturally occuring fields
that are well separated from sources, the spherical
region r < N/k is accurately represented by using
an FBE to order N, for radius r and wavenumber
k [4, 5]. Fields for which this is not true are re-
ferred to in this article as badly behaved. A simple
example is defined by giving non-zero power to a
single mode with order greater than kr. A more
natural example is given by a monopole. As the
region moves closer to the monopole the error pro-
gressively worsens from that given by the r < N/k
criterion, [6]. In general for r > N/k the error is
non-uniformly distributed [7].

In the decoding step the sum of the FBEs of the
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contributing loudspeaker sources is matched to the
target FBE [3], also called mode-matching. The
first part of Section 3.1 gives details of the de-
coding formulation. If there are sufficiently many,
well distributed loudspeakers, then the sound field
represented by the FBE can be accurately repro-
duced, [4]. Spherical and circular arrays of evenly
distributed drivers are most commonly considered,
as these match the geometry of the reconstructed
region, and have the simplest driving functions.

The driver spacing required to completely control
the interior of a spherical or circular array up to a
given frequency can be estimated as follows. For
the 2D case the number of drivers is L = 2N + 1,
[3]. The perimeter is P = 2πr. The driver spacing
≈ P/L ≈ P/(2N) = P/(2kr) = (Pλ)/(4πr) =
λ/2. Similary for 3D, an even distribution on a
sphere can be locally approximated with area per
source ρ = (δλ)2, where δλ is the driver spacing.
The number of sources is L = (N + 1)2, [3]. The
total boundary area A = 4πr2 = Lρ ≈ N2ρ =
(2πr/λ)2(δλ)2, from which δ =

√

1/π ≈ 0.56. In
both 2D and 3D cases the value of δ is similar to
that expected from cartesian sampling in a line or
plane.

Decoding may be applied to any shape of driver
boundary, or even any distribution of drivers. The
reproduction region remains spherical at each fre-
quency, as it is determined by the FBE. It is not
possible to control the whole interior of a non-
spherical boundary as the FBE of each source about
the array centre is valid only as far as the radius
extending from the centre to the source. If the FBE
were valid beyond the source it would include the
source, which is not possible because any FBE field
is sourceless. Beyond the source the FBE differs to
that of a real source, so the fields that are rep-
resented by mode matching are different to those
actually generated by the sources, and the field is
not correct over the whole region.

To illustrate the last point Fig. 1 shows a
(20λ, 5λ) size simulated rectangular array, with
source spacing λ/2. An accurate reproduction is
shown of a 2D N = 20 FBE of a 2D plane wave
travelling from the top. The first plot shows the
real part of the field, the second shows the abso-
lute relative error |(p − p̂)/p̂|, where p is the syn-
thesized pressure and p̂ is the target pressure at
a point. The same keys are used for comparisons
across all the figures in this article. The expansion

order limit based on a limited radius equal to half
the width is N = (2.5)(2π) ≈ 15. Increasing N only
increases the region slightly up to the limit shown
for N = 20. The error transition at the FBE edge
is swift, as expected. Further increase in N actu-
ally causes the error in the central disk to increase
as shown in Fig. 2. The maximum size of the re-
constructed region cannot be improved by change
of order, source spacing or regularization. Fig 3
shows schematically the largest FBE area that can
represent the closest source.

From a computational viewpoint, HOA consists
of two steps, encoding and decoding. The decod-
ing is applied only once to the sum of all encoded
sources. Each encoded source requires N filter cal-
culations. Decoding requires a separate filter for
each component of the encoding, (N + 1)2 compo-
nents in 3D and 2N + 1 in 2D. A feature of HOA
is that an encoding can be rotated prior to decod-
ing, without using filters. This is useful in virtual
reality applications where the head rotates relative
to a complex background environment [8].

Realistic drivers are complex sources, rather than
point sources, and can be approximated as mul-
tipole expansions. Driving functions for fixed di-
rectivity cardioid drivers have been derived using
mode matching constraints [9]. It was also shown
how separate dipole drivers can be controlled to
minimize external radiation, as would be expected
from the Kirchhoff-Helmholtz integral.

HOA encodings have been constructed for mul-
tiple listening zones [10, 11], in which at least two
regions appear to have independent sound fields,
although they are actually part of the same enclos-
ing sound field. If decoded with mode-matching,
the same limitations apply as before.

2.2 Wave Field Synthesis

The original formulation of Wave Field Synthesis
(WFS) is based on Rayleigh’s integrals, which can
be derived from the Kirchhoff-Helmholtz integral.
A sound field is constructed in a half-space from
a continuum of monopole sources on the boundary
[12, 13]. This half-space is restricted to free-fields
that can be composed of plane waves travelling
away from the boundary. The driving functions for
plane and point target sources are computationally
efficient consisting of a single pre-filter and a delay
depending on driver position. Additional weights
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Figure 1: An FBE of a plane wave with N = 20
decoded for a rectangular array.
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Figure 2: An FBE of a plane wave with N = 26
decoded for a rectangular array.

Figure 3: Limit of representation of the closest
source by an FBE at the centre of a rectangular
array.

can be introduced to minimize truncation effects.
Approximate control with a linear rather than pla-
nar source boundary is possible using a modified
pre-filter. For a real array the driving function must
be sampled at intervals. Where the intervals are
equal, this causes error that increases rapidly for
δ > 1/2, as for HOA. However in this case the er-
ror is usually distributed in space around the array
[7].

Linear array WFS systems can be extended by
combining several line arrays to make a convex en-
closure, or more generally placing drivers along a
curved boundary. These geometries no longer sat-
isfy the conditions of Rayleigh’s integral, however
surprisingly low error is obtained by using the same

plane wave driving function as before with an added
window term that switches the driver off when the
interior surface normal is opposed to the target
plane wave direction. The error introduced by join-
ing two line arrays is referred to as corner effect in
[14], and in general any non-linear or non-planar
boundary shape creates additional error, although
this is not fully understood [15]. The above ex-
tension for non-linear boundaries does not work for
concave boundaries. The region around a single
concave point cannot be covered by a locally gen-
erated plane wave field for some angles. A concave
point is any point where there is an external cen-
tre of curvature, or it is where two line segments
join with an interior angle greater than 180 degrees.
Concave boundaries are potentially useful for ex-
tending sound fields across connecting rooms.

Interior point sources, in other words those lo-
cated in the reproduction area, can be approxi-
mated by focused sources [14], for which the driv-
ing functions are similar to those for the exterior
sources. Focused sources are similar to a point
source in a half-space away from the array, but the
error increases significantly inside one wavelength
from the source centre, where the focused source
is limited and the point source is unlimited. With
access to all plane wave directions it is possible to
better approximate point sources in a half space
within one wavelength, but this requires increased
driving power and higher resolution. In HOA both
approximations of the point source can be produced
directly [16, 17].

Focused sources have unusual error properties in
the context of WFS. The drivers can be spatially
subsampled, meaning δ > 1/2, and still yield a fo-
cused source that is accurate around its centre [18].
This has recently been exploited in a proposal for
controlling local regions, local WFS [19]. A virtual
driver array composed of focused sources is con-
trolled by the real array, which contains the virtual
array. The virtual array is driven to control the tar-
get required using WFS, and this then determines
how the real array is driven. This enables synthesis
of convex subregions which is efficient computation-
ally and in terms of numbers of drivers used. This
is related to the situation in HOA where δ > 1/2. It
is not clear from [19] how local WFS would perform
for elongated boundaries.

A WFS enclosure can reproduce approximate
plane waves at all angles, so it can approximate
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any free field, including those represented by HOA
encodings. This offers the advantage over HOA de-
coding of reproducing the HOA encoding over the
entire interior of a WFS boundary of any shape.
The total cost of such a WFS decoding is compa-
rable with HOA decoding as filters result from the
evaluation of the mode velocities at the boundary.

There is no direct way to produce a multi-zone
sound field using WFS, although the WFS decoding
approach just described could be applied to a multi-
zone HOA encoding.

2.3 Sampled Simple Source

The Kirchhoff-Helmholtz integral provides a con-
struction for any interior free-field defined in any
closed boundary in terms of monopole and dipole
sources on the boundary. This can be manipulated
to provide a construction just using monopoles,
known as the simple source formulation [5]. This
can be approximated for a practical realization by
sampling the driving function and is referred to as
Sampled Simple Source (SSS).

For circular arrays in 2D and spherical arrays in
3D, simple source driving functions can be found
by applying simple functions to the HOA encoding
[4]. These driving functions coincide with mode
matched decodings for some symmetric arrays in-
cluding the 2D polygons and 3D platonic solids. As
the number of sources increase and they become
more closely spaced, SSS and HOA solutions con-
verge. Because the simple source decoding is sim-
pler and has other attractions it is sometimes pre-
ferred over mode matching, and has become part
of the overall HOA methodology.

For general boundaries the simple source driving
functions can be found by numerical solution. The
direct approach according to the formulation of the
simple source representation is equivalent to solving
a scattering problem [20]. This can be implemented
using a boundary element approach, such as the
fast multipole method [21], and solving it for the
velocity of the scattered field on the boundary. For
convex boundaries, SSS and WFS converge towards
high frequency [20].

2.4 Pressure Constraints

Driving functions can be found numerically by
satisfying pressure constraints at a set of points

[22, 20, 23], abbreviated here as the PC method. In
some cases accurate solutions can be found, how-
ever in general poor conditioning and numerical dif-
ficulties can degrade solutions. The solution sought
is not exactly well defined as there always exist non-
trivial fields at certain eigenfrequencies, for which
the pressure constraints are all zero [5]. When the
constraints are on a simple shell the eigenfrequen-
cies will be in the range of interest.

Some active control systems use pressure micro-
phones to adapt the driving functions to compen-
sate for room acoustics. The initial driving func-
tions are for an anechoic environment using a feed-
forward synthesis procedure. There are two exam-
ples of this approach based on WFS [23, 24]. The
microphones alone cannot identify the field. Stabil-
ity is provided by the free field WFS driving func-
tions, which are known.

2.5 Summary

The following list summarizes features that may be
desired in spatial synthesis and how these are met
by the methods discussed. The particular combi-
nation of features favoured in a given application
varies, and so no approach is always preferable.

• Full interior control for general convex bound-
aries. Possible with WFS and PC but not
HOA.

• Subregion control, with subsampled boundary.
This is inherent with HOA, and possible with
PC in some cases. Local WFS looks promising
but it is not clear, for example, how this would
perform for elongated regions in 3D.

• Full interior and subregion control for general
concave boundaries. This has not been demon-
strated using any of the methods. SSS can
be used for concave boundaries but not subre-
gions, and in any case calculation is relatively
difficult.

• Control in multiple regions. This has been
demonstrated by constructing an HOA encod-
ing with constrained subregions, but not for
general boundary and subregion geometry.

• Low computational cost. Per source WFS has
lowest costs, consisting of interpolated delays
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and one filter. HOA encoding requires more
filters per source, and then decoding.

• Sound field encoding method for storing a
complex scene, with low complexity rotation.
HOA encodings are an example of this. WFS
decoding for HOA encodings is possible, but
the advantage is not clear.

It is evident that two possible areas for devel-
opment are subregions and concave boundaries.
These provide the initial motivations for developing
DMC.

3 Distributed Modal Con-

straints

From an intuitive viewpoint, PC has only indirect
knowledge of the wave equation, through the sam-
pling of each driving function by the constraints.
On the other hand in HOA knowledge of the wave
equation is implicit in the representation of the
field by modes satisfying the wave equation. The
N = kr criterion implies knowledge of the sound
field in a non-vanishing sphere (3D) or disc (2D)
when N >= 1. A pressure constraint is equiva-
lent to N = 0 and has no spatial extent of such a
kind. This suggests that the effectiveness of PC can
be improved by replacing each pressure constraint
by an HOA type modal constraint, in other words
Distributed Modal Constraints (DMC).

DMC is related to multi-zone HOA, but can be
applied to a wider range of problems. The con-
straints are applied directly in the calculation of
the driving functions, allowing FBE regions to be
placed anywhere within the boundary. The size of
each region given by the radius r = N/k determines
how close the region centre can be to the bound-
ary. Regions that are separated can either sample
the same underlying target field or else sample dif-
ferent target fields, which is the multi-zone case.
Overlapping FBE regions are also considered, in
which case the constraints must sample from the
same well behaved underlying field. The smallest
non-trivial FBE region is 1st order. Overlapping
1st order regions therefore provide the highest res-
olution for defining a general shape of a controlled
region.

Fig 4 illustrates three cases for FBE region place-
ment, overlapped, touching and separated.

Figure 4: Modal regions, overlaped, touching and
separated.

3.1 Formulation

The modal constraint of an Ambisonic decoder for
freely located loudspeaker sources, in the frequency
domain, can be written as

cn =
∑

Sjn(rsj
− rc)sj =

∑

Mnjsj , (1)

where cn are the coefficients of the constrained
modes and sj are the loudspeaker source complex
weights. Formulae here use a single modal index
n that can apply to either the 2D or 3D case.
Sjn(rsj

− rc) is the nth component of the FBE
decompostion of the jth unweighted source with lo-
cation rsj

− rc relative to the FBE centre. rsj
and

rc are the locations of the sources and the FBE
centre respectively. In the simplest case Sjn = Sn

describes identical monopoles, but any function can
be used, for instance to model a speaker more accu-
rately, or incorporate room reflections. The matrix
M is defined for convenience. The decoder is solved
by finding the pseudo inverse of M , M+ which aims
to satisfy

sj =
∑

M+
jncn . (2)

Regularization of the inversion can be used to im-
prove numerical stability and limit source coeffi-
cient magnitude and in return for some increase
in solution error. The simplest form of Tikhonov
regularization is used in this article, so that M+

becomes the regularized pseudo inverse (MT M +
α2I)−1MT , with parameter α. This regularization
yields smoothly varying source coefficients as fre-
quency is varied. Regularization by zeroing singu-
lar values, such as that built into Matlab’s pinv
function, is not appropriate because the source co-
efficients jump at frequencies where a singular value
is lost, and efficient filters cannot be formed.

α is dimensionless as both s and c measure pres-
sure, but in different geometric contexts. However
choice of α does depend on problem geometry and
parameters. If the density of sources is doubled
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then the source signals are about half as big as the
original. M increases in dimension, and the singu-
lar values all increase, by nearly the same factor.
Then a larger value of α achieves a similar result.
The fraction relative to the largest singular value
σmax/α gives a measure of regularization that is
independent of the density change, and is also the
condition number of the regularized system ma-
trix. In the simulations the values of α are quoted
for completeness, and their choice is explained. In
most cases the reproductions are very similar for a
wide range of values.

To extend to constraints with multiple FBE cen-
tres, l is used to index them. Then the total set of
constraints is written

cln =
∑

Sjn(rsj
− rcl

)sj =
∑

Mlnjsj . (3)

The l and n indices can be combined into one index
n̄ with NL values, where N is the number of modes
and L is the number of FBE centres. Then cl can be
written in terms of n̄, and the constraint equation
can be expressed as a single matrix equation,

c̄ = M̄s , (4)

where M̄ is indexed by n̄ and j, and c̄ by n̄. The
pseudo inverse M̄+ of the extended matrix M̄ at-
tempts to satisfy

s = M̄+c̄ . (5)

Regularization will again have the effect of limit-
ing source energy for some reduction in solution
accuracy. The formulation has made a shift away
from the single centre view of Ambisonics, includ-
ing multi-zone methods with a single Ambisonic en-
coding.

In the simulations considered here the bound-
aries are transparent, with point source drivers, and
there is no room acoustic contribution. The result-
ing basis functions and expansions for 2D and 3D
cases are now described. Positive and negative fre-
quency versions are provided here as a useful refer-
ence.

In 2D, or equivalently 3D with line sources, FBE
basis functions Jn(kr)einφ are used. Then with
the positive frequency convention, which is most
common in Ambisonic literature, the loudspeaker

source function H
(2)
0 (kr), where r is the radius from

the source centre, has components

Sn(r) = H(2)
n (kr)e−inφ = H(2)

n (kr)((x − iy)/r)n ,
(6)

where r is the location of the source relative to
the expansion centre. r = (r, φ) in polar coordi-
nates and (x, y) in cartesians [25]. The negative

frequency convention loudspeaker source H
(1)
0 (kr)

has components Sn(r) = H
(1)
n (kr)e−inφ. Note that

scaling the loudspeaker source functions has no ef-
fect on the solution field. The components cln for
a simple source target field are

cln = Sn(rs − rcl
) , (7)

where rs is the location of the target source. The
dependence on rcl

ensures the multiple expansions
consistently sample from the same target field.

The other type of target field considered here is
a plane wave. In the positive frequency convention
e−ik·r represents a wave traveling in the direction
of k. The components at the expansion centres are

cln = (−i)ne−inφke−ik·rcl , (8)

where k = (k, φk) in polar coordinates. The last
factor is a phase adjustment due to the location
of each expansion centre. With the negative fre-
quency convention a wave traveling with direction
k is instead given by eik·r, and has components
ine−inφkeik·rcl .

In 3D the N3D harmonics, Ymn(r̂) can be used
[3]. These are a natural extension of the functions
used in low order Ambisonics. The basis functions
are imjm(kr)Ymn(r̂). The literature is inconsistent
in the lettering and naming of the indices for har-
monics. The first index m is called here the order,
with range from 0 to N , the maximum order. This
is the more usual naming but is contrary to that
used in [3]. The equation N = kr applies in both
the 2D and 3D cases. In the positive frequency con-

vention a simple source e−ikr

kr
located at position r

relative to the expansion centre has components

Smn(r) = i−(1+m)h(2)
m (kr)Ymn(r̂) , (9)

where the index n is replaced by the two in-
dices m, n. In the negative frequency conven-

tion for a simple source eikr

kr
the components are

i(1−m)h
(1)
m (kr)Ymn(r̂).
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As for the 2D case, e−ik·r in the positive fre-
quency convention represents a plane wave travel-
ing in the direction of k, and has components

clmn = Ymn(−k̂)e−ik·rcl , (10)

again with a phase factor depending on the expan-
sion centre. In the negative frequency case eik·r is
a plane wave traveling along k, with components
Ymn(k̂)eik·rcl .

For convex enclosures with interior corner an-
gles less than 180o, transparent boundaries give the
same interior field as absorbing boundaries. For
concave boundaries this is not so, and for non-
transparent walls diffraction must be considered.
In principle, scattering, diffraction and source di-
rectivity could be included by simulating the re-
sponse to each driver using acoustic simulation soft-
ware or measurement, then encoding in the expan-
sion components Sjn(rsj

−rcl
). This is not pursued

here.

3.2 Simulations

Some tests of DMC are now presented using a va-
riety of target sound fields and boundaries. In each
case plots have been produced showing the sim-
ulated fields and the absolute relative error. To
simplify the investigation the boundaries are con-
sidered to be transparent, with 2D point source
drivers. From previous discussion, where WFS or
HOA can be used to control a whole interior, the
driver spacing is at most δ = 1/2. In the following
simulations using DMC δ = 1/2 is chosen initially,
and then varied.

3.2.1 Touching and overlapping modal re-

gions

In the first simulation the example in Fig. 1 is re-
visited, this time with 4 neighboring modal con-
straints each of order N = 15. The results are
shown in Fig. 5. The parameters shown include the
number of centres L, the number of loudspeaker
sources J , the source spacing as a fraction of a
wavelength δ, the regularization parameter α, the
maximum absolute value of the source coefficients
max(s). The maximum absolute value of the field
max(p) will be introduced later. The plane wave
and source fields are as described in the previous
section. As p is unbounded towards each source,
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Figure 5: Reproduction of plane wave from the top,
with 4 touching modal constraints.

max(p) is considered everywhere in the interior ex-
cept points that closer than δλ from the boundary.
Both max(s) and max(p) can be used to judge how
practical a solution is. max(s) depends on source
spacing, but this is not varied much in the following
simulations.

The value of α is initially chosen to be as small
as possible while keeping max(s) comparable to the
target field. Further decrease reduces reproduction
error at the expense of excessive source strength.
With 4 centres the error is low across the entire

region, with obvious significant error outside the
end modal regions. The gaps between modal re-
gions have been bridged, although increased error
in those parts is still apparent.

For the angled plane wave shown in Fig. 6, again
4 centres, the error is significantly higher. Us-
ing 100 equally spaced regions the error is lowered
across the whole target region, Fig. 7. The high
degree of degeneracy created by the modal overlap
does not affect the solution adversely, and max(s)
is only slightly increased.

Reducing source density slightly disrupts the so-
lution, as shown in Fig. 8 where δ = 0.6. Increasing
the density reduces the error slightly. This supports
the original assumption that a spacing of λ/2 is a
good choice.

3.2.2 Maximum resolution coverage

In the previous examples the corner areas are un-
constrained, and consequently show raised error.
These areas can be covered with additional smaller
constraint regions. In general, target regions can
be covered with the greatest spatial accuracy using
N = 1 modes. Fig. 9 shows the result for a 500
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Figure 6: Reproduction of plane wave from the top-
left, with 4 touching modal constraints.
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Figure 7: Reproduction of plane wave from the top-
left, with 100 overlapping modal constraints.

by 20 array of modal regions, with a λ/3 margin
separating the boundary from the centres. Com-
pared with the previous case lower error is achieved
with lower max(s). N = 1 constraints are equiva-
lent to combined pressure and gradient constraints.
Such constraints defined continuously on a closed
boundary define the interior sound field uniquely,
according to the Kirchhoff-Helmholtz integral, so it
would be expected that the interior constraints are
to some degree redundant. Fig. 10 shows a simu-
lation with the same number of constraints located
on the boundary of the constrained region. The so-
lution is worse than with interior constraints, and
changing the number of constraints does not sig-
nificantly improve the solution. As the number of
sources increase, both types of solution converge to
the target.

3.2.3 Concave boundaries

Consider an L-shaped boundary, with FBE centres
placed on an L-shaped line in the interior. Fig. 11
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Figure 8: Reproduction of plane wave from the
top-left, with 100 overlapping modal constraints.
Source spacing has been increased slightly.
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Figure 9: Reproduction of plane wave from the top-
left, with 10000 interior modal constraints.

shows a reproduced wave moving from the top left.
The reproduction problem is similar to that for a
rectangular interior. Little power is needed around
the concave part. In Fig. 12 the wave moves in
the other direction, sourced mostly from the con-
cave part. The error and max(s) are increased. In-
creasing the source density with δ = 0.4 in Fig. 13
produces low error and power solution. The re-
maining error is seen to focus around the concave
point. This suggests that an optimum distribution
of sources will be slightly more dense at points of
increased curvature, and smoothing out sharp cor-
ners will help to improve the solution for a given
number of sources.

3.2.4 Source distribution and control of

subregions

Two questions arise. If the whole interior is con-
trolled, how much freedom is there to redistribute
the sources? If the constrained region is a subset

8



N=1, L=10000, J=100, δ=0.5, α=0.010, max(s)=1.2
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Figure 10: Reproduction of plane wave from the
top-left, with 10000 boundary modal constraints .

of the interior can the number of sources be re-
duced, and how? For the first question it is clear
that for a long rectangular interior, moving sources
to the ends and thinning out the sides will not be
acceptable since the end contribution is small. So
in general only a small amount of redistribution is
possible.

For the second question again consider a long
rectangular interior, with a narrow central target
region. If the narrow region were controlled by a
second boundary of sources that directly enclosed
it, the required source spacing is λ/2, from the
first question. The same number of sources are
required on the outer boundary, so the spacing re-
quired there is the same, Fig. 14. In other words
the outer spacing cannot be increased to control the
narrow region. The number of sources required is
J = 2P/λ where P is now redefined as the perime-
ter of the controlled region. J ∼ l where l is the
length of the region. To achieve control of the
same region using an Ambisonic array, as shown
in Fig. 15, would require more speakers, but still
J ∼ l.

In 3D the picture is different. Consider a long
tubular boundary. The interior can be controlled
with sources on the boundary with spacing λ/2.
The same number of sources are needed to control
this region from an outer boundary, as shown in
Fig. 14, by comparison with 2D HOA. The total
number of sources is J = 4A/λ2 ∼ l where A is
the surface area of the controlled region, and l the
length of the tube. If the outer boundary is further
distorted to the shape of a sphere, Fig. 15, further
simulation shows that the number of sources re-
quired is the same, provided they are redistributed
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Figure 11: L-shaped boundary and control region.
Wave from top left.

so that those in contact with the tube are spaced by
λ/2, with spacing increasing with distance from the
tube. The cross sections look like Fig. 14. On the
other hand the whole sphere interior could be con-
trolled using 3D HOA with J ∼ l2, which is a factor
of l more expensive than control using DMC. This
could be valuable in situations where the listeners
are constrained to move along lines, for instance
gangways in museums, and in spherical projection
theatres.

Optimal source configuration for any boundary
and controlled subregion is not investigated in de-
tail here, however simulations such as the above
example indicate that for any region with perime-
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Figure 12: L-shaped boundary and control region.
Wave from bottom right.

ter P or area A, and an outer boundary, a bound-
ary configuration of 2P/λ or 4A/λ2 sources can be
found that controls the region. A concave region
is a subset of a convex region with lower P or A,
and so requires less sources than implied by the P
or A of the concave region. However not all con-
cave boundary fields are reproducible using enclos-
ing convex boundaries. The question is revisited in
the later section on encoding.

3.2.5 Open boundaries

In the previous examples most of the power comes
from sources on parts of the boundary where the
wave travels from. If the opposite sources are re-
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Figure 13: L-shaped boundary and control region.
Wave from bottom right. Increased source density.

moved, it is still possible to form good waves over
a limited range of directions. Fig. 16 shows the re-
production of a plane wave using just a single line
array at the top, which is the same configuration as
a linear array WFS system. The controlled region
is a bar from location (5, 5) to (15, 5). In the exam-
ple the error is low in the control region and also
in a region beyond this. Additional constraints can
be used to improve the reproduction in a triangular
region for a range of plane wave angles. As the an-
gle of wave direction moves closer to the direction
of the array, reproduction quality reduces, and an
inward moving wave is impossible. max(s) can be
reduced to 3 with α = 0.1, for a small increase in
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Figure 14: Source on inner and outer boundaries
in 2D (left only) and 3D (both, cross section). The
controlled region is shaded.
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Figure 15: Rectangle or tube enclosed by a circular
or spherical array. The controlled region is shaded.

error in the control region. Reducing δ to 0.4 does
not have a significant effect.

Another example of an open boundary is a semi-
circle (2D) or hemisphere (3D). These might be
used because they support a wider range of plane
wave angles for an enclosed control region than a
finite plane or line array. In listening spaces it is
usually not practical to locate sources beneath the
listeners, so dome shaped boundaries are common.
DMC can be used to focus the control where it is
needed most. In an auditorium this might be a bar
shaped region raised off the ground, enclosing the
heads and shoulders of the listeners, as shown in
Fig. 17. Fig 18 shows a sideways directed plane
wave. Source energy is low outside the beam, so
this reduces unnecessary excitation of the enclos-
ing space. The previous discussion on distribution
of sources is relevant 3.2.4, although optimal redis-
tribution is not attempted here.

3.2.6 Separated regions

When control regions are separated according to
the N = kr criterion, a different target field can be
applied to each. Following the previous result for a
single region, the least number of sources required
is expected to be approximately J =

∑

2P/λ or
∑

4A/λ2, where P, A are the perimeters or sur-
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Figure 16: Reconstruction of a plane wave from a
line array above.

face areas of control regions of any shape. This is
found to be true for regions that are constrained
to independent fields. Fig. 19 shows an example
for 4 constraint regions with N = 7, 9, 10, 8 and
J = 100. The third region is a quiet zone, and
the error shown is absolute, not relative as shown
for the other regions. The expected number of re-
quired sources is

∑

2P/λ =
∑

2Nl = 68. This is
found to be sufficient, and for J < 68 the solution
progressively degrades.

Where some of the subregions sample the same
well behaved underlying field, then the number of
sources required can be less than that given by the
surface sum. This is because two such subregions
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Figure 17: Semicircular boundary, wave from
above.

may be a subset of a region with a surface that is
smaller than the surface sum of the members.

Some further tests were made to investigate how
the relative position of regions and their targets
affect the solution. The results are summarized
here. First two single centre regions were consid-
ered with N = 10, spaced 4λ apart inside a 5λ by
10λ boundary. Therefore each region has a radius
according to N = kr of 10/(2π)λ ≈ λ. With each
target set to a plane wave in the same direction be-
tween centres, low error is achieved for 44 sources,
max(p) = 1.4, α = 0.01. With target waves point-
ing inwards against each other, low error is achieved
for 44 sources, max(p) = 145, α = 0.0001. Increas-
ing the number of sources to 300 brings max(p)
down to a limit of ≈ 52. The lower max(p) limit
is caused by conflicting targets, rather than lack of
sources.

The interior was then expanded to 10λ by 10λ
with the target waves pointing in opposite direc-
tions sideways. For 40 sources a low error solution
was found for max(p) = 3. However if the regions
are extended sideways into bars, they become diffi-
cult to control. Bars of width 6λ do not have good
solutions for any set of parameters. In Fig. 19 the
modal regions are close, but none of the regions lies
in the path of reproduced plane waves of another
region, and so a much better solution is achieved
than would otherwise be possible.

In summary, in some cases there are no low error
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Figure 18: Semicircular boundary, wave from the
side.
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Figure 19: Reconstruction of four independent re-
gions in a rectangular array.

solutions for any number of sources. Even if a low
error solution exists then a low error, low max(p)
solution may not exist. Low error, low max(p) so-
lutions generally require at most J =

∑

2P/λ or
∑

4A/λ2 sources.

In [26] the possibility of moving a single modal
centre in realtime to track the head of a listener is
examined. With multiple modal centres multiple
listeners can be tracked. If the listeners are all lis-
tening to the same underlying field then this can be
achieved with a δ = 0.5 boundary. Sources cannot
be repositioned in real-time, so a source reduction
is not possible while also allowing free movement of
the listeners. If the listeners each have a different
target then control in general is impractical unless
the listeners remain well separated.
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Figure 20: Reconstruction of an exterior point
source.

3.2.7 Point source control methods

The reproduction of free field regions of point
source fields is now considered. The modal region
expansions for a simple source are given in Section
3.1. An example is shown in Fig. 20 for a source
4H(2)(r) located at (15λ,−2.5λ). It was noted pre-
viously that a sample field becomes progressively
more badly behaved as it approaches a source. This
is evident in the example where a reduction of δ to
0.4 causes the error and max(p) to fall to low val-
ues.

For an internal source it is not possible to include
the centre in a constrained region because the area
would then not be a free-field. However constrained
regions can be placed around the centre. It is then
possible to have several listeners facing each other
while perceiving a single source at the centre as
they would with a real central source field, Fig. 21.
By comparison, in WFS or HOA listeners must be
on one side. The target here is 10H(2)(r), and has
been amplified to give a clearer picture for the scale
used in the Figures.

This is a special case of independent control re-
gions sampling an underlying field as discussed in
the last section. It is perhaps surprising that en-
ergy is able to flow inwards from multiple direc-
tions then outwards through the control regions,
requiring only moderate driver and field strength,
except at localised field strength hot spots appar-
ent in Fig. 22, which shows the absolute value of
the field.

If the control regions are enlarged slightly, the
solution rapidly disintegrates, even with reduced α
and δ. A geometrical limit is reached.

The question arises how far can the target source
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Figure 21: Interior target source surrounded by
separate constrained regions.

be enclosed in a single region, maybe more than
a half-space? This would be counterintuitive as
this limit is a half-space for an FBE of a source
or a focused source. A constrained arc of over-
lapping modal regions was constructed around a
source such that the arc has an angle > π to the
centre. The fountain-like solution shown in Fig. 21
is achieved with low α and high max(p). The er-
ror scale maximum has been changed to 0.5. The
monopole is clearly over an arc > π, but this is not a
practical solution. Attempts to extend the arc fur-
ther lead to increased error, regardless of parameter
choices.
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Figure 22: Absolute value plot of an interior target
source surrounded by separate regions.

3.3 Encoding and decoding

Driver signals provide a direct encoding for the re-
produced sound field. If the least number of opti-
mally placed drivers are used to achieve the desired
accuracy for the range of possible target fields, then
the driver signals provide an optimally compact en-
coding. If the boundary is concave it cannot be
replaced by an enclosing convex boundary with a
fewer drivers, because there exist fields that cannot
be reproduced by the convex boundary that can be
reproduced by the concave boundary. An example
is the field of an external source placed near the
concave point, Fig. 24. The study connected with
Fig. 23 shows that it is not possible to reproduce
such a field as part of a free field.

Suppose that given the driving functions s
(1)
j for

one array we wish to find the driving functions for

another s
(2)
j that reproduces all or part of the first.

First the control regions must be oriented so that
an intersection region can be defined, as shown in
Fig. 25. The second array can reproduce anything
in the overlap that can be reproduced by the first.
The jth driver in the first array defines a field in the
intersection with a reproduction in the second array
that is defined here as a filter matrix skj . Then for

a general field given by driving functions s
(1)
j , the

sources reproducing this in the intersection on the

second array are s
(2)
k =

∑

skjs
(1)
j .

Ambisonics uses an array independent encoding,
the FBE. A single FBE can also be used for a gen-
eral convex control region by finding a minimal en-
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Figure 23: Interior target source surrounded by a
control arc with angle to centre > π.

closing FBE region, Fig. 26. This in general will
have redundancy because it encodes some regions
that are not reproduced.

FBE encoding is not in general possible for a con-
cave boundary. An external source at the concave
point cannot be represented as part of a free field.
Other encoding methods such as driver encoding
are necessary.

For each FBE basis field, there are driving func-
tions reproducing the field in the control region,
found using DMC. Each basis has an expansion at
each modal centre given by its translation from the
encoding FBE. The translations can be given in
closed form, as for example in [27]. Call these the
decoding coefficients, Bnj for the nth hamonic and
jth driver. Then the driving functions for a general
FBE with coefficients bn are sj =

∑

bnBnj .
HOA supports every direction of plane wave ex-
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Figure 24: Source at concave corner of boundary.

Figure 25: Two loudspeaker arrays with control re-
gions, and the control region intersection.

actly up to the angular bandlimit. Open bound-
aries can support a restricted set of plane waves
accurately over the target region, although gener-
ally not exactly in the bandlimited sense. Exam-
ples have been given using DMC. WFS on a closed
boundary is effectively of this type, since drivers
that face against the plane wave have no signal.

The problem of decoding for restricted arrays
was considered previously [28]. The approach de-
scribed here is based on a plane wave decomposi-
tion. How should a general HOA encoding be de-
coded to a restricted array? The simplest strategy
is to map plane waves that fall outside the set to
silence. More complex strategies are conceivable in
which restricted directions are mapped to permit-
ted directions, or mixes of directions. For the first
strategy a restricted set of basis fields R̄n(r) can
be constructed by plane wave re-expansion of the
HOA basis, with angular windowing [29]. The an-
gular sampling resolution must be sufficient to rep-
resent plane waves accurately over the whole repro-
duction region. The restricted decoding functions
B̄nj , with j indexing the drivers, are then found
by summing the decoding contribution from each
plane wave, for example using DMC.

If a target field with HOA coefficients bn has no

Figure 26: Single FBE region enclosing the control
region.

energy in the restricted directions then

∑

bnRn(r) =
∑

bnR̄n(r) , (11)

even though Rn are unrestricted. This means
that a restricted target field will be accurately re-
produced on the restricted array when driven by
sources sj =

∑

bnB̄nj . Other field encodings will
lose restricted plane wave components when repro-
duced on the restricted array.

In [28] a reduced size basis is constructed in or-
der to reduce the size of encodings. An alternative
approach is to work directly with the plane wave de-
composition, discarding plane wave directions that
cannot be reproduced. The method can be adapted
to encode efficiently for an arbitrary reproduction
region by varying the angular sample spacing as
λ/2r, where r is the distance from the origin to the
reproduction boundary. This is related to encoding
using optimal driving signals, as discussed earlier.

4 Conclusion

DMC has been shown to be effective for a vari-
ety of harmonic target fields. In particular the
two initial motivating cases, general sub-regions
and concave boundaries have been demonstrated.
The investigation of interior point sources showed
that constraint regions can be used as a design
method for the global field, rather than just a con-
trol method, sometimes producing unexpected and
useful results. This could be used to generate en-
codings that can be applied across different repro-
duction systems.

The optimal source spacing for total interior con-
trol was found to be near λ/2 in every case. The
spacing must be reduced around sharp corners, par-
ticularly concave points, and for fields that are not
well behaved in the sense given. Interior regions
sampling the same well behaved underlying field are
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controllable using at most 2P/λ or 4A/λ2 sources in
2D or 3D respectively for perimeter P and surface
area A. Independent subregions are not in general
practically controllable, but are when sufficiently
separated.

DMC driving functions are straightforward to
evaluate, but not directly at interactive rates. If
driving functions for HOA or plane wave basis func-
tions were pre-calculated, then the driving func-
tions for sources could be calculated at interactive
rates. The application of DMC driving functions
as filters is costly compared with those required by
WFS, and HOA on a circle or sphere, but feasible
in real-time. Playback of pre-calculated driving sig-
nals from hard-disc storage is possible, and does not
critically depend on driver calculation costs. Sim-
ilarly HOA encodings can be pre-calculated, and
decoded with interactive rotation.

Areas for future investigation include time do-
main and wideband treatment including aliasing.
The freedom to specify many constraints may allow
aliasing to be optimized in some sense. The more
practical case of 3D sources for horizontal arrays
should be considered, as well as a more detailed
study of optimal driver placement. Driver place-
ment may also be relevant for alias control. Com-
plex drivers were mentioned. These can be studied
from the viewpoint of realistic driver modelling and
also the control of external radiation. The method
of regularization can be generalized so that varying
priority can be given to different constraints. An
interactive graphical environment for constraint de-
sign could be a useful tool.
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