
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Faculty of Physical Sciences and Engineering

Electronics and Computer Science

Web and Internet Science

EXPRESS: Resource-Oriented and RESTful Semantic Web Services

by

Areeb Alowisheq

Thesis for the degree of Doctor of Philosophy

17 October 2014

ABSTRACT

This thesis investigates an approach that simplifies the development of Semantic

Web services (SWS) by removing the need for additional semantic descriptions.

The most actively researched approaches to Semantic Web services introduce

explicit semantic descriptions of services that are in addition to the existing

semantic descriptions of the service domains. This increases their complexity and

design overhead. The need for semantically describing the services in such

approaches stems from their foundations in service-oriented computing, i.e. the

extension of already existing service descriptions. This thesis demonstrates that

adopting a resource-oriented approach based on REST will, in contrast to service-

oriented approaches, eliminate the need for explicit semantic service descriptions

and service vocabularies. This reduces the development efforts while retaining

the significant functional capabilities.

The approach proposed in this thesis, called EXPRESS (Expressing RESTful

Semantic Services), utilises the similarities between REST and the Semantic Web,

such as resource realisation, self-describing representations, and uniform

interfaces. The semantics of a service is elicited from a resource’s semantic

description in the domain ontology and the semantics of the uniform interface,

hence eliminating the need for additional semantic descriptions. Moreover, stub-

generation is a by-product of the mapping between entities in the domain

ontology and resources.

EXPRESS was developed to test the feasibility of eliminating explicit service

descriptions and service vocabularies or ontologies, to explore the restrictions

placed on domain ontologies as a result, to investigate the impact on the semantic

quality of the description, and explore the benefits and costs to developers. To

achieve this, an online demonstrator that allows users to generate stubs has been

developed. In addition, a matchmaking experiment was conducted to show that

the descriptions of the services are comparable to OWL-S in terms of their ability

to be discovered, while improving the efficiency of discovery. Finally, an expert

review was undertaken which provided evidence of EXPRESS’s simplicity and

practicality when developing SWS from scratch.

Table of Contents
Chapter 1: Introduction .. 1

1.1 Motivation and Approach ... 3
1.2 Hypothesis and Research Questions ... 5
1.3 Research Methodology ... 6
1.4 Contributions ... 7
1.5 Thesis Structure ... 8

Chapter 2: Background: Web Services, Representational State Transfer and
the Semantic Web .. 11

2.1 The World Wide Web (WWW) ... 11
2.1.1 Uniform Resource Identifier (URI).. 12
2.1.2 Hypertext Markup Language (HTML) ... 12
2.1.3 Hypertext Transfer Protocol (HTTP) ... 12

2.2 Web Services .. 13
2.2.1 The Origins of Web Services ... 13
2.2.2 Web Service Standards .. 15
2.2.3 Service-Oriented Architecture .. 18

2.3 REST Representational State Transfer (REST) ... 19
2.3.1 Origins .. 19
2.3.2 Resource-Oriented Architecture .. 20
2.3.3 REST vs. ROA .. 22
2.3.4 Comparison to SOA .. 24

2.4 The Semantic Web .. 26
2.4.1 Resource Description Framework (RDF) .. 27
2.4.2 Web Ontology Language (OWL) ... 28
2.4.3 SPARQL Protocol and Query Language (SPARQL) 29

2.5 Linked Data .. 29
2.5.1 Publishing Linked Data .. 30
2.5.2 Linked Data Applications .. 30

2.6 Semantic Web Services .. 31
2.7 Summary .. 33

Chapter 3: Approaches to Semantic Web Services ... 35
3.1 Meta-Models in SWS Descriptions ... 36
3.2 Service-Oriented Meta-Model Approaches ... 37

3.2.1 SWS Approaches for WSDL Web Services ... 37
3.2.2 SWS Approaches for RESTful Web Services .. 40

3.3 Resource-Oriented Meta-Model Approaches .. 42
3.4 A Classification Matrix for SWS Approaches .. 45
3.5 Comparison of SWS Approaches Capabilities ... 49
3.6 Adopted Research Methodologies in SWS Approaches ... 54
3.7 Conclusions .. 59

Chapter 4: Scenario Analysis and RO Modelling ... 61
4.1 Web Service Scenarios ... 62

4.1.1 Identifying Communities of Interest .. 62
4.1.2 Selecting the Scenarios .. 63
4.1.3 Scenario example ... 64

4.2 Scenario analysis .. 65
4.2.1 Eliciting requirements... 65
4.2.2 Resource-Oriented Modelling ... 65
4.2.3 Outcomes of the Scenario Analysis .. 68

4.3 SWS Approaches and Interaction Requirements .. 70
4.4 Conclusions .. 72

Chapter 5: EXPRESS: EXPressing REstful Semantic Services 73

 i

5.1 Overview of EXPRESS ... 73
5.2 Semantic Description ... 77

5.2.1 Resource Representation .. 77
5.2.2 Mutability .. 86
5.2.3 Plurality .. 89
5.2.4 Atomicity ... 89
5.2.5 Synchronisation .. 91
5.2.6 Roles .. 92
EXPRESS Design Principles ... 92

5.3 EXPRESS Online Demonstrator ... 92
5.4 EXPRESS and SWS approaches... 97
5.5 Conclusions ... 98

Chapter 6: Semantic Matchmaking in EXPRESS ... 100
6.1 Semantic Service Matchmaking... 100
6.2 Matchmaking in EXPRESS .. 101
6.3 Experimental Design ... 103

6.3.1 Adapting the iSeM Matchmaker ... 103
6.3.2 Creating the EXPRESSive Test Collection (EXPRESS-TC) 105
6.3.3 Evaluation Environment .. 109

6.4 Results and Analysis ... 112
6.5 Conclusions .. 116

Chapter 7: Expert Reviews ... 119
7.1 Experimental Design ... 120

7.1.1 Method .. 120
7.1.2 Scenario and Material Design .. 122
7.1.3 Interview Design ... 125
7.1.4 Interview Analysis .. 127

7.2 Experimental Results .. 128
7.2.1 Themes .. 128
7.2.2 Summary of Experts’ Responses by Theme .. 129

7.3 Discussion ... 138
7.3.1 Research Questions ... 138
7.3.2 Area of Expertise Influence on Results ... 142
7.3.3 Related Results .. 142

7.4 Conclusions .. 143
Chapter 8: Conclusions and Future Work ... 145

8.1 Summary ... 145
8.2 Contributions ... 146
8.3 Publications .. 148
8.4 Future Work .. 149

8.4.1 EXPRESS Aware Clients and Automated Conversational Services
 ... 149

8.4.2 Matchmaking in EXPRESS ... 150
8.4.3 Alternatives to URI Templates .. 151
8.4.4 Evaluation of EXPRESS through a Case Study .. 152

8.5 Final Conclusions .. 153
References 155
Appendices 167

Appendix A: Research Strategies in SWS Approaches ... 169
Appendix B: Web Service Scenarios and RO Models ... 175
Appendix C: Mappings to SPARQL Queries .. 211
Appendix D: DVD/MP3 Player OWL-S Service .. 223
Appendix E: Expert Review Materials .. 227
Appendix F: Sample Expert Review Transcript .. 253
Appendix G: Expert Review Analysis Screenshots ... 255

 ii

 iii

List of tables

Table 1 Capabilities of SWS approaches ... 51
Table 2 Validation techniques in software engineering (Shaw, 2002) 55
Table 3 Validation approaches in SWS ... 57
Table 4 Communities of interest definitions ... 62
Table 5 Number of reviewed papers in each community of interest 63
Table 6 List of Selected Web service Scenarios .. 63
Table 7 Interaction requirements of scenarios across communities of interest 69
Table 8 SWS approaches and interaction requirements .. 70
Table 9 Interaction requirements and the step in which they are expressed 77
Table 10 Resource types and corresponding URI and graph patterns 78
Table 11 Resource types and the effects of HTTP methods ... 86
Table 12 Formalisation of HTTP methods in SPARQL queries for a book individual87
Table 13 Uses of EXPRESS .. 93
Table 14 Comparison of SWS including EXPRESS .. 97
Table 15 iSeM matchmaker variants .. 104
Table 16 Results of running iSeM OWL-S and iSeM EXPRESS on SME2 112
Table 17 Friedman test for approximated logic-based and text similarity variants115
Table 18 % of Improvements of iSeM EXPRESS over OWL-S in terms of AQRT 116
Table 19 Service description size in LOC and bytes ... 116
Table 20 Interviewed Experts’ Areas of Expertise ... 121
Table 21 Summary of material presented to the experts .. 124
Table 22 Themes and the number of quotes about them ... 128
Table 23 Expert opinions on development effort .. 138
Table 24 Expert opinions on semantic expressivity and practicality........................... 139
Table 25 Analysis of research strategies in SWS .. 170
Table 26 Interaction requirements across scenarios ... 208
Table 27 HTTP methods as SPARQL queries for the class book 212
Table 28 HTTP methods as SPARQL queries for a book individual 214
Table 29 HTTP methods as SPARQL queries for a book's author 216
Table 30 HTTP methods as SPARQL queries a book with specified properties 218
Table 31 HTTP methods as SPARQL queries for properties of filtered individuals220

 v

List of figures
Figure 1 Components of Web services and SWS.. 4
Figure 2 Hypothesis, research questions and research activities .. 6
Figure 3 Web Services Architecture ... 16
Figure 4 Semantic Web Layer Cake ... 27
Figure 5 Paths to SWS (Fensel, 2004) .. 36
Figure 6 Classification Matrix of SWS Approaches ... 47
Figure 7 Collaboration Diagram ... 66
Figure 8 RO Diagram for B1: Reverse Auctioning Service .. 67
Figure 9 Steps for describing and providing a RESTful interface in EXPRESS 74
Figure 10 Steps for Deploying Web services in EXPRESS .. 93
Figure 11 Steps to deploy a Web service using the stub generator 94
Figure 12 Online EXPRESS, the 1st step providing an OWL file and the roles 95
Figure 13 Online EXPRESS, the 2nd step configuring the stubs .. 96
Figure 14 Using Poster to interact with the generated Stubs .. 96
Figure 15 The manual and automatic approaches to generate the test collection106
Figure 16 Architecture of SME2 .. 110
Figure 17 Macro-averaged Precision-Recall Curve for non-SVM variants 114
Figure 18 Macro-averaged Precision-Recall Curve for SVM variants 114
Figure 19 AQRT for iSeM OWL-S and iSeM EXPRESS (Approximate Logic-based) .. 115
Figure 20 Activity Diagram for EXPRESS .. 123
Figure 21 Activity Diagram for OWL-S ... 123
Figure 22 Activity Diagram for RESTdesc ... 124
Figure 23 Derivation of interview questions... 127
Figure 24 Themes related to research questions ... 129
Figure 25 Future Work... 149
Figure 26 RO Model of M1 .. 177
Figure 27 RO Model of M2 .. 179
Figure 28 RO Model of M3 .. 180
Figure 29 RO Model of M4 .. 181
Figure 30 RO Model of E1.. 183
Figure 31 RO Model of E2.. 183
Figure 32 RO Model of E3.. 184
Figure 33 RO Model of E4.. 185
Figure 34 RO Model of B1 ... 187
Figure 35 RO Model of B2 ... 189
Figure 36 RO Model of B3 ... 191
Figure 37 RO Model of B4 ... 193
Figure 38 RO Model of C1 ... 195
Figure 39 RO Model of C2 ... 196
Figure 40 RO Model of C3 ... 197
Figure 41 RO Model of C4 ... 198
Figure 42 RO Model of G1 ... 201
Figure 43 RO Model of G2 ... 204
Figure 44 RO Model of G3 ... 206
Figure 45 RO Model of G4 ... 208
Figure 46 Interview analysis document, text is annotated with identifiers 255
Figure 47 Interview analysis spreadsheet, Quote ID are the identifiers in Figure 46256

 vii

DECLARATION OF AUTHORSHIP
I, AREEB ALOWISHEQ

declare that this thesis and the work presented in it are my own and has been

generated by me as the result of my own original research.

EXPRESS: RESTful and Resource-Oriented Semantic Web Services

I confirm that:

1. This work was done wholly or mainly while in candidature for a research

degree at this University;

2. Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has been

clearly stated;

3. Where I have consulted the published work of others, this is always clearly

attributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

7. Parts of this work have been published as:

1. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2011).

Resource-Oriented Modelling: Describing Restful Web services Using

Collaboration Diagrams. In, The 8th International Joint Conference on e-

Business and Telecommunications, Seville, Spain, 18 - 21 Jul 2011.

2. Alowisheq, Areeb and Millard, David (2009) EXPRESS: EXPressing REstful

Semantic Services. In, 2009 IEEE/WIC/ACM International Joint Conference

on Web Intelligence and Intelligent Agent Technology, Doctoral Workshop,

Milan, Italy, 15 - 18 Sep 2009. , 453-456.

3. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2009) EXPRESS:

EXPressing REstful Semantic Services Using Domain Ontologies. In, 8th

International Semantic Web Conference (ISWC 2009), Doctoral Consortium,

Chantilly, VA, USA, 25 - 29 Oct 2009. Springer Berlin/Heidelberg, 941-948.

Signed: ...

Date: 17.10.2014

 ix

 x

Acknowledgements
I would like to thank the following people for their support:

My family: Muneera Alwohaiby and Dr Abdullah Alowaisheq, my husband Hassan

Alowairdhi, my sisters and brothers for their overwhelming love, support and

guidance your help was absolutely critical for completing the PhD, and of course

My children Faisal and Deema for your love and patience.

My supervisor: Dr David Millard for your guidance, assistance, patience,

persistence, and continuous encouragement. I have learnt so much from your

research skills, integrity and research ethic. It was a privilege working with you.

My advisor Dr Thanassis Tiropanis, for your valuable comments and

encouragement, and my internal examiner Dr Nicholas Gibbins for your

constructive feedback and support.

My friends who supported me during the PhD: Nada Albunni, Fatimah Akeel, Nora

Al Rajebah, Nora Alothman, Alaa Mashat, Dr Adolfo Ruiz-Calleja, Dr Kathryn

Bradbury, Dr Reena Pau, Dr Xin Wang, Dr Ilaria Licardi, Dalal Alazizy, Dr Heba

Kurdi, Dr Sarah AlHumoud, and Dr Hend Al-Khalifa.

Members of the WAIS lab, especially Dr Yvonne Howard for her support and vital

role in making the lab a positive and welcoming environment, and Dr Charlie

Hargood and Rikki Prince for their valuable advice.

Dr Kevin Page, who took the time to look at my work and provide me with useful

insights, and Dr Hugh Glaser for the enthusiastic discussions and encouragement.

The experts who participated in the expert review, for their time and insightful

comments.

I would also like to acknowledge the Saudi Cultural Bureau in the UK and the

Imam Muhammad bin Saud University for the PhD scholarship and their support

during this period, and the Royal Academy of Engineering fro the travel grant to

present my work at the WI-IAT 2009 conference in Italy.

 xi

Definitions and Abbreviations

endpoint a URI, which is an entry point to a service or resource, to expose them

on the Web; it should be registered at the Web server for it to be available.

service ontology/vocabulary: a data model that defines concepts and properties

for describing services.

semantic service description: a semantic description of a service instance that

uses concepts and properties defined in service ontologies or vocabularies.

domain ontology: Is a data model that captures valid knowledge for a specific

domain.

service-oriented/resource-oriented meta model: a model either a vocabulary,

ontology or conceptualisation of an interface as services/resources.

RESTful Web services: also referred to as Web APIs, these are web services that

expose endpoints to resources, which respond to HTTP requests and in practice

may not adhere to all of REST’s constraints.

client: The term client has been used in this thesis to refer to a service consumer.

server: The term server has been used in this thesis to refer to a service provider.

Resource-Oriented Modelling: A modelling approach which focuses on modelling

resources in an interface and their static relationships and dynamic interactions.

EXPRESS EXPressing REstful Semantic Services

REST REpresentational State Transfer

SWS Semantic Web Services

SPARQL SPARQL Protocol and RDF Query Language

RDF Resource Description Framework

HTTP Hypertext Transfer Protocol

OWL Web Ontology Language

OWL-S Semantic Markup for Web Services (OWL Services)

 xiii

 Chapter 1 Introduction

Chapter 1: Introduction

The advancement of software, hardware and networking has caused distributed

systems to evolve since the times of the ARPANET email application in the 1960s.

Distributed systems have gone from 1-tier architectures, to n-tier architectures,

built with middleware to accommodate the heterogeneity of underlying systems

and enable them to work together.

The emergence of the Web had a great impact on the way which distributed

systems were built. The distributed systems community was influenced by its

success, but instead of viewing the Web as a distributed system in itself, it was

viewed as a convenient transport mechanism: Web servers were widely available,

and easy to set up, and hence created a broad common layer through which

middleware could be tunneled together with a global unique addressing system

offered by URI. Another lesson the distributed community learnt from the Web

was the communicative power of text-based markup languages, which could

overcome the heterogeneity problems in exchanged messages.

As a result of this view of the Web, Web services emerged, wrapping the

functionality offered by existing solutions in XML-based descriptions. These Web

services are the XML-based parallels of their middleware predecessors, and are

heavily influenced by Remote Procedure Call (RPC) (Birrell and Nelson, 1984). For

example, The WSDL (Christensen et al., 2001) service description contains a

similar type of information offered by earlier Interface Definition Languages

(IDLs) i.e. the types of inputs and outputs of the service and how to invoke it.

Moreover the concept of a service directory has been mirrored by the Universal

Description Discovery and Integration (UDDI) in Web services.

Another result of this view was implicitly passing down the design objectives of

RPC to Web services, which aimed to ensure that a remote procedure should run

as if it was a local one. This design objective aimed to relieve programmers from

the burden of dealing with the complexities of the network and to maintain the

 1

Chapter 1 Introduction

reliability of the distributed system (Birrell and Nelson, 1984). This idea of hiding

remoteness, was one of the reasons the Web alone was overlooked as a

successful mechanism for providing services, it was lossy, stateless, and was

unable to accommodate the requirements of legacy systems built on the

expectation of reliable middleware. As a result, the development of Web services

continued to aim towards overcoming the unreliability of the Web and providing

richer descriptions for the services to automate or semi-automate their discovery

and invocation processes.

The request for richer descriptions was because the Web Service Discovery

Language (WSDL) standard provided syntactic descriptions of services. Offering

syntactic descriptions, however, is insufficient for the automation or semi-

automation of service discovery and composition, for example, stating that a

service accepts an integer and returns a string will not offer information on what

the service does, especially on a Web scale.

The Semantic Web is a set of technologies enabling the semantic description of

resources using standards such as Resource Description Framework (RDF) and

Web Ontology Language (OWL), hence providing machines with the ability to infer

more information about what a resource represents. Thus, the Semantic Web

offers a solution to the lack of semantics in the Web services world. The Semantic

Web services research community has introduced several approaches for Web

service semantic descriptions. These range from lightweight solutions like

SAWSDL (Farrell and Lausen, 2007) to complex ones like OWL-S (Martin et al.,

2004) and WSMO (Bruijn et al., 2005a). The complexity of these latter approaches

stems from their heavy reliance on logical reasoning for the automation of

discovery, matchmaking and composition. This complexity also means it is very

challenging for these features to be available at Web scale (Klusch, 2008b; Fensel

and van Harmelen, 2007; Hench et al., 2008). There is a trade-off between

automation and scalability, and existing Semantic Web service approaches tend to

focus on automation. However, recently there has been a rising interest in

lightweight Semantic Web services, for reasons of scalability and minimising

complexity and design overhead.

Another issue with these approaches, whether heavy or lightweight, is that they

require semantic service descriptions, therefore necessitating service ontologies

or vocabularies. This requirement of service descriptions stems from the RPC

mindset these approaches are based on. This was the prevalent mindset in

traditional Web services when SWS research began. However, there was an

increased realisation that the WSDL–based services were not gaining the

 2

 Chapter 1 Introduction

popularity anticipated, and that, for the reasons discussed above, they could not

scale the way the Web has scaled.

As a result, another approach, RESTful Web services, was put forward. This

approach is based on an understanding of the properties that make the Web scale

well, and attempts to offer the functionality of Web services through the

manipulation of Web resources; consequently these Web services do not have

service descriptions. REST (Fielding, 2000) is an architectural style for network-

based systems. It provides a set of constraints learnt from the Web’s HTTP

development and when applied can make systems scalable, reliable, reusable,

resilient and provide other desirable features of the Web as a network-based

system. The constraints of REST are: identification of resources, manipulation of

resources through representations, self-descriptive messages, and hypermedia as

the engine of application state. Although REST was not introduced as an approach

to designing Web services, it has been adopted by the majority of developers as

an alternative to WSDL/SOAP. Although not always adhering to all of REST’s

constraints (Fielding, 2007; Richardson and Ruby, 2007; Vinoski, 2008a), RESTful

Web services are gaining popularity and are adopted by major service providers

like Google, Amazon and Yahoo. The popularity of RESTful Web services comes

from their being light-weight (with no added layers of specification), accessible,

resource-oriented, and declarative (Zhao and Doshi, 2009).

This research focuses on developing an approach to provide RESTful Semantic

Web services, with the aim of reducing the complexity involved in developing

Semantic Web services. It does so by exploiting similarities between REST and the

Semantic Web, such as resource-realization, self‐describing representations, and

uniform interfaces.

1.1 Motivation and Approach

As discussed above, the influence of RPC resulted in Web services having service

descriptions, and consequently this has influenced Semantic Web service

approaches. More specifically, this is to have semantic descriptions for both the

service itself (semantic descriptions and vocabularies/ontologies) and the

resources the service interacts with (domain ontologies). This overhead is not

without consequences. Bachlechner and Fink (2008) surveyed and analysed

opinions from both practitioners and researchers about the potential of Semantic

Web services as integration architectures. According to their results one of main

challenges that SWS face is that they are perceived as highly complex, and it is not

clear how the research vision can be grounded into reality.

 3

Chapter 1 Introduction

The objective of this research is to simplify the development of SWS, by

eliminating the need for semantic service descriptions and vocabularies, through

an approach called EXPRESS (Alowisheq and Millard; Alowisheq et al., 2009).

EXPRESS uses ontologies that describe classes, instances and relationships among

them to create and describe resources accessible via RESTful interfaces. Figure 1

shows how EXPRESS aims to simplify providing SWS, by contrasting components

required in existing methods to the ones required in EXPRESS.

Figure 1 Components of Web services and SWS

A description of these components is provided below:

1. Implementation: this component encompasses the business logic, and its

functionality is to respond to service requests and manipulate them, by dealing

with the internal system components.

2. Endpoint: This is a URI, and its purpose is to expose the service on the Web, it

should be registered at the Web server for it to be available.

3. Service Description: This is the XML-based service description (usually in WSDL

but can be in other formats) this description exposes the types of inputs and

outputs and the endpoint.

4. Service Ontology/Vocabulary: An ontology/vocabulary defining concepts and

properties for describing services.

5. Semantic Service Description: Mechanisms to describe various aspects of the

service instance semantically, using the semantic service ontology mentioned

above, such as the services’ inputs, outputs, preconditions, and effects.

6. Domain Ontology: This provides a semantic description of the resources

referenced in the Service Description.

RESTful SWSSWS

Endpoint

Implementation

Service Description

Semantic Service Description

Service Vocabulary/ Ontology

Domain Ontology

Endpoint

Implementation

Domain Ontology

W
eb Service Com

ponents
SW

S Com
ponents

 4

 Chapter 1 Introduction

In EXPRESS stub-generation becomes a by-product of the mapping between

entities in the domain ontology and resources; therefore, by providing a domain

ontology describing the resources, endpoints can be automatically created as a

result of the mapping.

1.2 Hypothesis and Research Questions

The research hypothesis is as follows:

Utilising the semantics in the domain ontology and REST can provide a RESTful

SWS approach that (1) eliminates service ontologies/vocabularies and explicit

descriptions of interfaces, and (2) generates semantic descriptions as a by-product

of its provision, and this can simplify the development of SWS while preserving a

similar level of semantic expressivity as existing SWS approaches.

 “semantic expressivity” refers to the degree to which the exposed semantic

descriptions offer automated discovery and composition.

“simplify” means it reduces development effort and increases development speed.

EXPRESS is the RESTful SWS approach devised and evaluated in this thesis. The

above hypothesis is tested by answering the following research questions:

1. Is it possible to eliminate explicit service descriptions and service

ontologies/vocabularies while their semantic descriptions become a by-

product of their provision?

2. Does it simplify the process of providing SWS services?

3. Can it provide a similar level of semantic expressivity to existing

approaches, and what are the trade-offs in terms of practicality?

Figure 2 illustrates how the hypothesis and research questions relate to

research activities, which is discussed further in the next section: Research

Methodology.

 5

Chapter 1 Introduction

Figure 2 Hypothesis, research questions and research activities

1.3 Research Methodology

This section explains how the research questions were addressed by the research

activities.

Question one asks whether it is possible to have a RESTful SWS approach that:

(1) eliminates service ontologies/vocabularies and explicit interface descriptions

and (2) generates semantic descriptions as a by-product of its provision.

Three research activities were undertaken to answer this question.

Both the scenario analysis and approach design answer the first part of the

question, which is whether it is possible to eliminate service

ontologies/vocabularies and explicit interface descriptions.

The scenario analysis involved analysing the requirements of 20 Web service

scenarios from a resource-oriented perspective; this analysis results in identifying

interaction requirements that need to be addressed when utilising the domain

ontology and HTTP for semantically describing the services in those scenarios.

The approach design builds on the interaction requirements identified in the

scenario analysis and shows how those requirements can be fulfilled in EXPRESS,

the RESTful SWS approach proposed in this thesis.

With regard to the second part of question one, whether is it possible to have a

RESTful SWS approach that generates semantic descriptions as by-product of its

Utilise Semantics in the Domain ontology and REST to:
Eliminate explicit service descriptions and interface vocabularies
Obtain semantic service descriptions as a by-product of provision

Is it possible ? Does it reduce development
effort?

Matchmaking
Experiment

Approach
Design

Scenario
Analysis

Expert
Reviews

Can it provide a similar level
of semantic expressivity to
existing approaches? And
what are the trade-offs in

terms of practicality?

Online
Demonstrator

Chapter 4 Chapter 5 Chapter 5 Chapter 7 Chapter 6

 6

 Chapter 1 Introduction

provision, the online demonstrator for EXPRESS shows how, by semi-automatically

generating interface stubs from the domain ontology, they become semantically

described.

Question two, which asks if EXPRESS reduces the development effort, is addressed

by the expert review, where experts in Semantic Web technologies assess EXPRESS

and compare it to two other SWS approaches: OWL-S (Martin et al., 2004) and

RESTdesc (Verborgh et al., 2011).

Question three addresses the level of semantic expressivity in EXPRESS, and the

trade-offs in terms of practicality. The expert review mentioned above addresses

both aspects. In addition, the matchmaker experiment compares the

discoverability of EXPRESS to OWL-S services by running the same matchmaker

algorithm on two service test collections, one in EXPRESS and the other in OWL-S

and compares the performance of the matchmaker in terms of speed and

accuracy.

1.4 Contributions

The work described in this thesis has a number of specific contributions that will

be of value to the Semantic Web service research community:

1. The description of an approach called EXPRESS, for offering Semantic RESTful

Web services from domain ontologies, which embodies this approach of

eliminating service descriptions and interface vocabularies, and an online

demonstrator of an EXPRESS deployment engine that shows how the semantic

descriptions are a result of the service provision.

2. An analysis of 20 real scenarios in five Web service communities of interest,

resulting in the identification of interaction requirements that guide the

design of EXPRESS.

3. A Resource-Oriented Modelling approach based on UML collaboration

diagrams.

4. A mapping between EXPRESSive descriptions and OWL-S descriptions.

5. The evaluation of EXPRESS in both a matchmaker experiment, which required

the creation of an EXPRESSive service test collection (EXPRESS-TC) and the

adaptation of a semantic matchmaker, and in an expert review, in which

experts were asked to compare EXPRESS to two other SWS approaches in terms

of development effort and practicality.

 7

Chapter 1 Introduction

1.5 Thesis Structure

The thesis contains eight chapters which are summarised in this section.

This first chapter presented the motivation of this thesis, the hypothesis it

examines, the research questions and the methodology to answer them, and the

contributions.

Chapter 2 provides a background to the technologies and concepts that influence

the design of RESTful Semantic Web services. These are: middleware, the Web,

Web services, REST and the Semantic Web. It explains how Web services and

Semantic Web services were heavily influenced by earlier middleware approaches,

and how this influence led to adding extra layers of descriptions and treating the

Web as merely a transport layer for Web services. It also highlights the

distinguishing features in the Web, REST and the Semantic Web, which are:

abstracting distributed components as resources, not services, assigning them

URIs, and linking them together.

Chapter 3 discusses a total of 27 SWS approaches, which were either service or

resource-oriented, and the variations in their description means: whether they

introduced interface ontologies or vocabularies or introduced service descriptions

as extension mechanisms. Chapter 3 also discusses the research strategies

conducted to evaluate the viability of these approaches. It concludes by

establishing the research strategy for this thesis. Figure 2, above, illustrates how

chapters 4, 5, 6 and 7 fit into answering the research hypothesis.

Chapter 4 addresses the following two questions: if the resources are

semantically described in domain ontologies, what other aspects are required to

be expressed in an interface, so that the client can interact with the interface to

fulfil a specific scenario, and how can these be achieved using only REST and the

domain ontology? It presents the compilation and analysis of a total of twenty

representative Web service scenarios from five communities of interest.

Interaction requirements which emerged from the analysis are used inform the

design of the proposed RESTful SWS approach, EXPRESS.

Chapter 5 introduces EXPRESS, the RESTful SWS approach proposed by the thesis.

It provides an overview and shows how the interaction requirements identified in

Chapter 4 are achieved. It also presents a proof-of-concept demonstrator for

EXPRESS that shows how RESTful Services can be provided semi-automatically.

Chapter 6 assesses the discoverability of EXPRESSive descriptions, using a

standardised test-collection and evaluation environment. It discusses how service

 8

 Chapter 1 Introduction

matchmaking works in EXPRESS, the methodology for evaluation and the results

of the matchmaking experiment.

Chapter 7 discusses the expert review experiment, its methodology and results. In

the expert review, six experts were interviewed about EXPRESS as a Semantic Web

service approach, and how it compares to two other approaches: OWL-S and

RESTdesc.

Chapter 8 concludes the thesis. It discusses the overall results and conclusions in

the light of the hypothesis, and suggests future research directions.

 9

 Chapter 2 Web Services, REST and the Semantic Web

Chapter 2: Background: Web Services,

Representational State Transfer and the

Semantic Web

This chapter provides an overview of the technologies and concepts influencing

the design of RESTful Semantic Web services. It starts by providing an overview of

the Web then Web services and explains the effect of earlier middleware

technologies on their design, it then explains REST, its relationship with the Web

and how it has influenced the development of RESTful Web services. It also

discusses relevant Semantic Web technologies, and how Semantic Web services

emerged.

2.1 The World Wide Web (WWW)

The WWW was created at CERN by Tim Berners-Lee and Robert Cailliau in 1989. It

originally aimed to enable physicists to record and share data, results and news.

It was created as a distributed hypertext (text containing links to other text)

system, and Berners-Lee’s vision of the Web was heavily influenced by hypertext

pioneers such as Bush (1945), Engelbart (1963) and Nelson (1980).

There already existed successful hypertext systems with more complex hypertext

capabilities than the Web offered; however the Web’s focus on being distributed

over Wide Area Networks, rather than offering complex hypertext constructs

(Berners-Lee et al., 1992) turned out to be the key factor in its massive success.

Berners-Lee, with other collaborators, wrote proposals, protocols and developed

the first Web server and browser. This started in 1989, and by 1992 it grew

beyond CERN and expanded globally. This required formally written standards,

governed by standards organisations such as the Internet Engineering Task Force

(IETF), and later by W3C. Three main standards govern the Web, and have

 11

Chapter 2 Web Services, REST and the Semantic Web

contributed to its massive success: URI, HTML and HTTP, and these are explained

next.

2.1.1 Uniform Resource Identifier (URI)

URI provides a universal naming mechanism for resources on the Web, and other

application layer protocols. However, it is mainly associated with the Web. It is

used for locating and linking documents and resources. Other than its

universality, the importance of the URI was its compactness. One string—the

URI—combines the protocol used to access the resource (usually HTTP, but it

accommodates others), the host where the resource resides, the name of the

resource itself, and query strings and fragments (Kozierok, 2005). Berners-Lee

authored the first URI standard RFC 1630 in 1994, published by the IETF (Berners-

Lee, 1994). The URI standard went through several refinements. RFC 3986 is the

current standard, published in 2005, co-authored by Roy Fielding, who

coordinated the community refinement efforts (Berners-Lee et al., 2005).

2.1.2 Hypertext Markup Language (HTML)

The second important standard, HTML (Raggett et al., 1999), governs the format

of the content, and defines constructs for linking to resources. HTML is a subset

(profile) of Standard Generalised Markup Language (SGML). SGML is an ISO

standard, originally designed to share machine-readable documents in industry

and government (ISO 8879:1986). Web browsers interpret the HTML document to

display a formatted page, and also GUI elements that a user can interact with,

such as links and forms. When a user submits a form or follows a link, the

browser uses the appropriate HTTP method to contact the server.

2.1.3 Hypertext Transfer Protocol (HTTP)

HTTP is a TCP/IP application layer protocol. It has evolved since it was first

defined by Tim Berners-Lee in 1991 (Berners-Lee, 1991): this original version was

known as HTTP/0.9. It was designed to be very simple; it was only intended for

document transfer and it had only one method, GET. In 1996, HTTP/1.0 (Fielding

et al., 1996), RFC 1945, was introduced, which discussed headers, intermediaries,

media types, caching, status codes and two more methods HEAD and POST, but it

had been in use for several years prior to that publication. This version was very

successful; however, it suffered from some limitations: 1) did not support multiple

URLs for the same IP, as the hostname was not required as part of the message, 2)

each HTTP session handled one client request, which increased traffic

 12

 Chapter 2 Web Services, REST and the Semantic Web

unnecessarily. 3) Limited support for caching and proxying affected performance.

In 1997, RFC 2068 HTTP/1.1 (Fielding et al., 1997) was introduced and later

enhanced and republished in 1999 as RFC 2616 HTTP/1.1 (Fielding et al., 1999).

HTTP/1.1 resolved the issues with HTTP/1.0, so it enhanced caching and proxying

mechanisms, supported multiple host names, enabled the retrieval of partial

resources, supported persistent connections and added content negotiation.

HTTP/1.1 also introduced new methods: PUT, DELETE, OPTIONS and TRACE.

2.2 Web Services

This section provides an overview of Web services and their origins in

middleware technologies and explains the influences of middleware concepts on

how these services were designed.

2.2.1 The Origins of Web Services

Ever since the ARPANET email application in the 1960s, distributed systems have

evolved from one-tier systems (on a single machine), to two-tier systems (client

and server), to three-tier (client–middleware–server) systems. The motivation

behind this development has been to generalise the mechanism of remote

interaction, not only for specific application types, such as email servers, or file

servers, but also for any application through middleware in three-tier

architectures.

The term “middleware” in computer science literature was popularised by

Bernstein (1996) in a CACM article (Emmerich et al., 2007). Middleware evolved as

a response to the increasing demand for distributed systems, It provided

programming paradigms to facilitate the development of software components

capable of remote interaction.

Middleware plays two main roles in distributed systems (Alonso et al., 2004):

1. As programming abstractions

To simplify the development process, middleware masks the complexities of

the underlying networks and protocols behind programming abstractions, for

example, procedures, messages, objects, services and resources, hence

enabling developers to concentrate on application-specific problems. The more

useful the abstraction is, the more likely it is to be adopted.

2. As infrastructure

 13

Chapter 2 Web Services, REST and the Semantic Web

Those abstractions hide complex implementations provided by the

middleware infrastructure. The infrastructure provides both development

support, for example stub-generation, compilation and deployment, and run-

time support, such as interacting with network layers and marshalling and

translating messages.

RPC (Birrell and Nelson, 1984) was the first key middleware abstraction (Emmerich

et al., 2007). The main purpose of RPC was “to make distributed computing easy”.

The principal idea was to enable developers to invoke procedures on remote

hosts in a similar fashion to invoking local ones. RPC aimed to deal with both the

distribution and the heterogeneity in different systems. Clients and servers in an

RPC system interact through corresponding stubs; the stubs deal with

synchronisation, serialisation, data mapping and network communication. By

having the procedure’s interface (signature) defined in the form of Interface

Definition Language (IDL), IDL compilers can then generate the stubs

automatically. IDLs were introduced to overcome differences in programming

languages and machine architecture.

Another noteworthy aspect of RPC was “dynamic binding”, where a directory and

name server binds a client call with a service that matches the signature, hence

providing further decoupling between clients and servers.

Most middleware platforms were enhancements or extensions of RPC: they were

either built on top of RPC platforms (Alonso et al., 2004, p.44), or highly

influenced by the RPC paradigm (Emmerich et al., 2007). Object brokers

demonstrated this dependency by extending RPC to facilitate the development of

distributed object-oriented applications. Object Brokers were a response to the

shift towards object-orientation. Object methods replaced the role of procedures

in RPC. Specifications such as Common Object Request Broker Architecture

(CORBA) (Object Management Group, 1995) were established. CORBA allowed

brokers to expose object interfaces and provide access to them and to common

services that provide the functionality, such as concurrency, querying, naming,

licensing etc., needed by most objects (Alonso et al., 2004, p.54). A main issue

with CORBA is the incompatibility between different implementations. This is

mainly to do with overly complex and sometimes conflicting specifications

(Henning, 2006).

Although only RPC and CORBA are explained here, there are other extensively

deployed middleware paradigms, such as Transaction Process Monitors, Message

Brokers and Workflow Management Systems, all of which have been used in

Enterprise Application Integration (EAI). EAI aims to solve issues with integrating

 14

 Chapter 2 Web Services, REST and the Semantic Web

heterogeneous systems within one organisation. Nevertheless, middleware

platforms were expensive and unnecessarily complex, and did not provide an

adequate solution for business-to-business (B2B) demands (Alonso et al., 2004,

p.128). Unlike EAI, B2B integrates multiple organisations, which means integrating

over the Internet, rather than through LANs, hence adding more complexities and

scalability issues. Because there are different organisations to integrate, this also

means that they needed to support heterogeneous middleware platforms (Alonso

et al., 2004, p.128).

2.2.2 Web Service Standards

Originally the World Wide Web (WWW) emerged as a massively distributed system

for sharing documents. But these documents do not have to be static, they can be

dynamically generated according to the client’s actions. Technologies such as the

Common Gateway Interface (CGI) and server-side scripting emerged to support

the creation of dynamic websites, which expose and enable communication with a

server’s application logic through a Hypertext Markup Language (HTML)

presentation layer.

As a result of these advances, the WWW became a promising platform for B2B,

because it meant, unlike in RPC, RMI or other middleware protocols, integration

could happen by exchanging dynamically generated documents, which can pass

through firewalls. This led to considerable efforts in two directions:

1. The creation of application servers that encapsulate several middleware

technologies, making them accessible to Web applications.

2. Standardising the format of exchanged documents.

Extensible Markup Language (XML) (Bray et al., 2008) played a huge role in format

standardisation: it was both human-legible and machine-processable and provided

a standard way of structuring data and documents. Like HTML, XML is also a

profile of Standard Generalised Markup Language (SGML). The standardisation of

XML in 1998 (Bray et al., 1998), and its simple syntax, made it well-supported, as it

led to the development of a plethora of parsers and validators.

WWW Consortium (W3C) discussions for XML protocols for distributed

applications began in 1999. In 2000 SOAP (discussed in the next section), a

protocol for exchanging structured information, became an acknowledged W3C

submission. In 2001, WSDL (discussed in section 2.2.1.2), a protocol for describing

services also became an acknowledged submission. These two protocols form the

basic protocols for Web services. A third, less popular, specification, is Universal

 15

Chapter 2 Web Services, REST and the Semantic Web

Description Discovery and Integration (UDDI), designed to facilitate the discovery

of Web services (Bellwood et al., 2002).

According to the W3C Web Services Architecture Working Group, a Web service is:

“a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable

format (specifically WSDL). Other systems interact with the Web service in a

manner prescribed by its description, using SOAP-messages, typically conveyed

using HTTP with an XML serialisation in conjunction with other Web-related

standards.” (Booth et al., 2004)

Figure 3 Web Services Architecture1

There are three entities involved in the Web service usage scenario: the service

provider, the service requester, and the service registry. The service provider

publishes a description of the service to a registry (publishing stage), a developer

(on the client side) then looks for a desired service in that registry (finding stage).

The developer gets the service description, constructs the messages accordingly,

and then binds to the service (binding stage).

The aim of Web services is to provide well-defined descriptions for underlying

components, and offer them a Web interface. These services can then be

discovered, invoked and composed to perform a workflow of tasks.

2.2.2.1 Simple Object Access Protocol (SOAP)

One of the main Web service Technologies is SOAP (Box et al., 2000) which

provides a mechanism for representing a service call and its response in XML. The

word “Object” in the acronym indicates the influence of the Object-Oriented

paradigm at that time.

Box (2001) (the co-author of the SOAP specification) explains that what motivated

SOAP was the need to design a protocol for exchanging messages over the

Internet, and to design an XML serialisation format for those messages. They

1 Web Services Architecture, Wikipedia, https://en.wikipedia.org/wiki/File:Webservices.png

 16

https://en.wikipedia.org/wiki/File:Webservices.png

 Chapter 2 Web Services, REST and the Semantic Web

reviewed several RPC protocols and serialisation formats and aimed to satisfy the

majority of cases targeted by those specifications. Box also emphasises that much

of the effort at the beginning was to overcome the lack of a typing mechanism in

XML; however the focus shifted to integrating the XML schema, once it became

standardised.

SOAP defines messages as envelopes containing a header and a body. Originally,

SOAP was designed to work over the Hypertext Transfer Protocol (HTTP).

However, in version 1.1, it was improved so that it could be used in other

transport protocols. Version 1.2 clarifies and extends version 1.1 for protocol

binding and XML encoding.

The SOAP specification was written for the following purposes:

1. Standardising a message structure in XML: an envelope, containing a header

and a body, each of which could have multiple blocks.

2. Standardising how to structure an RPC request containing the variables and

method name, and its response in XML, containing the results. In addition to

sending messages as RPC, SOAP offers the option to exchange documents.

3. Defining the rules for processing the messages: how different entities have

different roles, and the elements the entities must understand, and actions to

take if they do not.

4. Describing SOAP bindings to HTTP and SMTP, and a generic binding

framework to other protocols.

5. Defining how to encode data in XML, this led to the design of the SOAP data

model.

The SOAP data model aims to represent data as object graphs. The SOAP encoding

defines the serialisation of the SOAP model into XML. The definition of this model

took up a substantial proportion of the effort invested in designing SOAP and

increased its complexities. This was because the XML Schema at that time was far

from standardised. Box, the co-author of SOAP explains: “SOAP's original intent

was fairly modest: to codify how to send transient XML documents to trigger

operations or responses on remote hosts. Because of our timing, we were forced

to tackle issues that the Schemas WG [Working Group] has since solved, which

caused the ‘S’ in SOAP to be somewhat lost.” (Box, 2001).

2.2.2.2 Web Service Description Language (WSDL)

WSDL (Christensen et al., 2001) is an XML language used to describe Web service

interfaces. It plays for SOAP services the same role as IDL for RPC and other

 17

Chapter 2 Web Services, REST and the Semantic Web

middleware platforms. A WSDL document describes the XML types of inputs and

outputs of the service. A WSDL 1.1 document is structured as follows:

1. Types: this part of the WSDL file defines the exchanged data types in the XML

schema.

2. Messages: this defines the structure of exchanged messages, and designates a

message part for each parameter.

3. Operation: this defines the inputs and outputs of a service, and its message

exchange pattern, which can be any of: one-way, request-response, solicit-

response and notification.

4. Port type: this defines the port type or interface groups in the operations

offered by the Web service.

5. Binding: this specifies the SOAP binding the RPC or document and the

transport protocol.

6. Service: this contains the actual ports, with their corresponding URIs; however,

these are usually available at the same address.

Even though WSDL 2.0 became a W3C recommendation in 2007 (Moreau et al.,

2007), WSDL 1.1 is still more popular and has more tool support. One of the

objectives of the WSDL 2.0 model was to better support RESTful Web service

descriptions, these are explained further in section 2.3.

2.2.3 Service-Oriented Architecture

The emergence of Web services popularised the vision of Service-Oriented

Architecture (SOA). SOA can be defined as: “A software architecture that starts

with an interface definition and builds the entire application topology as a

topology of interfaces, interface implementations and interface calls.” (Natis,

2003). SOA takes a unified view of both Enterprise Application Integration (EAI)

and Business-to-Business (B2B), where systems in organisations can integrate

internally in a similar fashion to integrating with other organisations externally.

According to Erl (2008), SOA principles are: standardised service contracts, loose

coupling, abstraction, reusability, statelessness, autonomy, discoverability,

composability, and service-orientation and interoperability.

Because of Web services’ standardisation and their seamless use of the WWW as a

transport medium, they became a basic component of SOA. The vision of SOA was

to have loosely-coupled reusable services, and dynamically build applications

from them, thus enabling integration across enterprises. This vision drove the

 18

 Chapter 2 Web Services, REST and the Semantic Web

research behind Semantic Web services, which will be discussed in more detail in

Chapter 3.

Although the WSDL/SOAP approach to Web services has become a widely accepted

standard and significantly reduced coupling compared to CORBA, RPC and other

middleware technologies, the RESTful approach based on the Web architecture

where resources are key actors, as discussed next, reduces coupling more, scales

further, and takes full advantage of the Web architecture.

2.3 REST Representational State Transfer (REST)

2.3.1 Origins

Fielding, in his PhD dissertation, introduced the REST architecture style (Fielding,

2000). It aimed to realise and sustain the architectural aspects that made the

Web—the HTTP protocol—succeed as a scalable network-based hypermedia

system. Fielding was an author of the Web standards such as HTTP and URI, and

in his dissertation he discussed the REST constraints on a system. These are: it is

client-server, stateless and enables caching; it has a uniform interface, is layered

and enables code on demand. The uniform interface constraint is further

explained by the following constraints: identification of resources, unified

semantics for resource access methods, manipulation of resources through

representations, self-descriptive messages, and hypermedia as the engine of the

application state. The client-server constraint makes the system scalable, portable

and decoupled. The statelessness constraint means that a request from the client

must contain all the information needed to process this request; this enables

simpler replication of the server, and hence more scalability. It also increases the

reliability of the system. The cache constraint increases the efficiency and

scalability. The layering constraint increases modularity, reusability, scalability

and resilience. Code on demand is an optional constraint which simplifies client

implementation.

Moreover, Vinoski (2008b) explains how the uniform interface constraints

maximise reuse. Because resources have a uniform interface, client applications

are simplified: there is no need to code them for customised interfaces. Error

handling becomes uniform. The server guides the client throughout the

interaction, hence maximising the decoupling. It also simplifies the adding of

intermediaries, increasing the modularity and scalability. The system design

becomes simpler and extensible, which decreases the number of defects. The

uniform interface constraint of having the application state controlled by

 19

Chapter 2 Web Services, REST and the Semantic Web

hypertext transitions provides a standard method for interaction and enables

further decoupling between the server and the client. Hence REST was never

intended as a Web service architecture; instead, it was a set of constraints on

network-based systems “specifically targeted at distributed information systems”

(Fielding, 2000, p.100).

2.3.2 Resource-Oriented Architecture

REST’s potential as an architectural style for Web services was identified by Mark

Baker and Paul Prescod (Fielding, 2007), who advocated it as alternative to the

SOAP approach (Prescod, 2002). Developers welcomed the RESTful Web service

approach. They saw it as a natural fit for the Web: it provided a simple, uniform

interface and did not impose additional layers, as did WSDL/SOAP. Many service

providers, such as Google, Yahoo and Amazon, started offering RESTful Web

services. The increasing popularity of RESTful Web services2 is based on many

factors: they are lightweight, provide easy accessibility, and are resource–

oriented, making them declarative (Zhao and Doshi, 2009).

This rapid uptake came at a cost: RESTful Web services were not always RESTful.

This was because of the misconception that as long as HTTP methods were used,

then the Web service was inherently RESTful.

The so-called RESTful Web services violate two REST constraints mentioned above:

the uniform interface and statelessness. The other constraints are maintained

because they are embedded in the HTTP servers’ architecture and do not require

implementation. Conversely, the uniform interface and statelessness required

implementation for each Web service. An example of violating the uniform

interface is the use of the HTTP method GET for updates; this in fact should have

a read-only effect. Violating the statelessness constraint is by having the server

store client-specific information, which should be stored on the client and sent

when needed to the server.

These violations happened because there was no authoritative reference for

designing RESTful Web services. Fielding’s dissertation was an abstract

explanation of the REST constraints and rarely provided examples for existing

scenarios or technologies. The need for a guide on how to design RESTful Web

services was met by Richardson and Ruby’s book ‘RESTful Web Services’

(Richardson and Ruby, 2007). This book, which provides practical examples and

highlights common mistakes, is considered an authoritative resource among the

2 According to the Programmable Web, on 16.7.2013, 69% of Web Service APIs are RESTful
http://www.programmableweb.com/apis.

 20

http://www.programmableweb.com/apis

 Chapter 2 Web Services, REST and the Semantic Web

REST community. The authors, however, focus on Resource-Oriented Architecture

(ROA), which is an architecture that adheres to REST constraints and provides a

concrete set of rules for designing resources and using HTTP methods.

The main idea in ROA is for the server to identify the resources in the Web

service, provide a uniform interface to those resources—a set of actions—through

which a client can create, read, update and delete the resources. These actions are

mapped respectively to the HTTP methods POST, GET, PUT and DELETE, taking

into account the HTTP constraints on these methods: GET is read-only and GET,

PUT and DELETE are idempotent. ROA also emphasises the use of the standard

HTTP error messages. They introduced a design method for developing Web

services. Its steps are as follows (Richardson and Ruby, 2007):

1. Identify the data set; and

2. Map the data into resources.

Then, for each type of resource:

3. Specify the URIs;

4. Expose a subset of the interface (establishing which HTTP methods can be

performed on the resource—these methods are GET, PUT, POST and

DELETE);

5. Design the representations sent and accepted to and from the client, and

decide on the media types;

6. Integrate the resources into existing resources using hyperlinks and forms;

7. Consider the typical course of events; and

8. Consider error handling.

These steps assume that resources have types, just before step 3, as it stated “for

each type of resource”. Therefore in most cases when designing an interface, the

developed endpoint URIs represent resource types, not individual resources, the

individual resource URIs are created dynamically. The conventions of having

resource types and methods that are applied to them, have their roots in object-

oriented (OO) design, this is an expected consequence considering the object-

oriented influences on the design of HTTP3, as the abstract of HTTP/1.0 states

that HTTP is:

3 This view is also held by other influential members of the W3C such as Dan Connolly
 “Distributed objects are the very heart of the Web, and have been since its invention. HTTP was
design as a distributed realization of the Objective C (originally Smalltalk) message passing
infrastructure: the first few bytes of every HTTP message are a method name: GET or POST. Uniform
Resource Locator is just the result of squeezing the term object reference through the IETF
standardization process.” Connolly, D. (1997). A draft of the editorial of the Mar/Apr 1997 issue of
Web Apps Magazine [Online]. Available: http://www.w3.org/People/Connolly/9703-web-apps-
essay.html [Accessed 12/12/2013].

 21

Chapter 2 Web Services, REST and the Semantic Web

“a generic, stateless, object-oriented protocol which can be used for many

tasks, such as name servers and distributed object management systems,

through extension of its request methods (commands).”

This OO influence has been passed on to the design of RESTful Web APIs, not only

because of its aforementioned influence on the design of HTTP, but also because

of the underlying OO programming languages and frameworks used to develop

those APIs such as Java, PHP, .NET, etc. and also the legacy applications they are

providing an interface for. As a result several parallels between ROA and OO

exist, as both approaches model the world as entities manipulated by methods,

they both have the notion of factories, and typed entities.

2.3.3 REST vs. ROA

The differences between REST and ROA can be summarised as follows:

1. REST is a set of architectural constraints, and a study of how they can be

applied to HTTP development; ROA is an architecture based on REST that uses

HTTP for developing Web services.

2. REST describes the requirements of the uniform interface, but it does not

restrict it to a set of methods. However, in ROA, the main effort lies in designing

the uniform interface by identifying resources, giving them URIs and deciding

which HTTP methods can be performed on them.

3. Although ROA required the use of hyperlinks to guide a client’s state, Fielding

(Fielding, 2007; 2008a) criticises ROA for not focusing on the hypermedia

constraint. This constraint means the use of media types to specify not only the

representations of the resources, but to specify also hypermedia controls that

denote what actions can be performed. As an example in HTML, from the anchor

element <a>, the client knows it can perform a GET, also from <form> the client

performs a GET or POST. Another example from the Atom Publishing Protocol (APP)

(Gregorio and de hOra, 2007) is the way it uses rel="edit" to specify entries that

are editable; hence atom clients know, from the media type, these entries accept

PUT and DELETE.

Fielding (2008b) explained the reason media type design was ignored in ROA:

“To some extent, people get REST wrong because I failed to include enough detail

on media type design within my dissertation. That’s because I ran out of time, not

because I thought it was any less important than the other aspects of REST.”

However even though ROA Web APIs are not entirely RESTful, they are extremely

popular. There are benefits from adhering to the Web Architecture, or parts of it,

 22

 Chapter 2 Web Services, REST and the Semantic Web

as Richardson, the co-author of the RESTful Web services book, argues in his

RESTful Maturity Model (Richardson, 2008), in which he elaborates on the use of

media types.

The maturity model focuses on the use of three elements: resources, HTTP verbs

and hypermedia, and defines four levels (0-3), to grade the API according to the

REST constraints.

Level 0: HTTP Tunnelling

An example would be SOAP, which is usually sent over HTTP using a POST

method. It does not utilise any properties of the transfer protocol. Interaction

usually happens through a single endpoint (URI); even though there may be

several services, the individual services are accessed using a different addressing

mechanism, SOAP ports, for example.

Level 1: Resources

When resources are given different URIs, a URI is an endpoint to interacting with

the resource. However, in this level, only one HTTP method is used, regardless of

the semantics of the interaction.

Level 2: HTTP Verbs (Methods)

At this level HTTP methods with correct semantics should be used, GET for read

only operations (safe), DELETE and PUT should be idempotent, and POST is for

non-safe and non-idempotent operations. In addition, the use of the correct HTTP

response codes is required.

Level 3: Hypermedia Controls

The Web services at this level adhere to the ‘hypermedia as the engine of the

application state’ constraint. This means the responses are designed to contain

hypermedia controls that tell the client what actions can be taken next. These

hypermedia controls can be either from ATOM (Nottingham and Sayre, 2005) or

defined in a new application-specific media type.

Moreover, although typically only APP (Gregorio and de hOra, 2007) and its media

type ATOM are acknowledged to have reached this maturity level, recent

publications such as Allamaraju (2010) and Webber et al. (2010) have enabled

developers to understand the hypermedia constraint. Nevertheless, debates exist

in the REST community on what media types to use. Opinion is divided between

the use of generic media types, such as APP or customised media types for

specific applications.

 23

Chapter 2 Web Services, REST and the Semantic Web

2.3.4 Comparison to SOA

As discussed previously, the main influence for WSDL/SOAP services was RPC. For

RESTful Web services, the main influence was the Web architecture, and in

particular the HTTP protocol. These influences were clearly manifest in the ways

interfaces were conceptualised and abstracted: in the contrast between services

and resources, and in the introduction of a machine-readable description layer in

WSDL/SOAP services.

A description of the interface usually includes the address of the service, how to

invoke it, and the structure and format of exchanged messages. WSDL

descriptions of SOAP services state the address using the elements of port,

binding and operation; the latter specifies the name of the actual operation to

invoke (one endpoint can have more than one operation). The type and message

elements specify how messages are structured, and in SOAP 1.1 a service was

always invoked by sending an HTTP POST request with a SOAP message to the

endpoint (SOAP 1.2 supported HTTP GET).

On the other hand, for RESTful Web services developed in practice, the interface

descriptions are written as text in HTML pages to be read by developers. The

descriptions state the endpoints’ URIs, the HTTP method, and the structure and

media type of the accepted messages. The HTTP methods invoked on those URIs

could be any of the four HTTP methods. Although there are specifications such as

WADL (Hadley, 2009) and WSDL 2.0 that provide machine-readable descriptions for

RESTful Web services (as WSDL does for SOAP), because RESTful Web services

have simpler interfaces, these specifications not nearly as essential as WSDL is for

SOAP (Richardson and Ruby, 2007).

On this basic level of comparison, RESTful Web services are simpler than

WSDL/SOAP ones for providing a programmable interface. They have no

description layer, and interacting with them is very simple; for GET requests, only

a web browser is needed, and for other requests, an HTTP client library is

sufficient.

One of the benefits of WSDL descriptions is for tools that automatically create

client stubs to interact with the SOAP services. As noted above, interacting with

RESTful Web services is very simple in comparison, which eliminates the need for

this automation. On the contrary, in many cases the automatically created code

introduces unnecessary complexity (compared to RESTful Web services), which is

 24

 Chapter 2 Web Services, REST and the Semantic Web

supposed to be hidden by those tools; however, when there is a need to debug the

code, this complexity is amplified.

SOAP and WSDL were designed to provide versatility. For example, although SOAP

typically uses HTTP as its transport protocol, it can also use other protocols such

as the Simple Mail Transfer Protocol (SMTP) (Klensin, 2001). SOAP was designed

so that intermediaries could process the messages and forward them. This is

what Pautasso et al. (2008) referred to ‘as freedom of choice’ in WSDL/SOAP

compared to ‘freedom from choice’ in RESTful Web services. The ‘freedom of

choice’ mindset in the WSDL/SOAP approach is evident in the body of Web service

specifications built on top of them, which are typically referred to as ‘WS-*’. These

where developed to address the vision of SOA (Section 2.2.3), where integration in

EAI and B2B can be achieved using the same technologies and approaches, so

more standards and specifications needed to be developed to address the

requirements of these complex domains, such as support for security, reliability,

transactions and other Quality of Service (QoS) requirements. For example,

specifications such as WS-Addressing (Gudgin et al., 2006) and WS-Security

(Nadalin et al., 2006) were developed to offer advanced features: for example, WS-

Addressing is designed so that addresses can be embedded in SOAP messages. It

also enables the specification of ‘from’ and ‘reply-to’ addresses. WS-Security and

its related specifications provide end-to-end security, unlike in HTTP, where

security is limited to the transport level; moreover, it enables the sender to

encrypt part or all of the message body. There are many other WS specifications

that, while they add features, nevertheless introduce further complexity.

Critics of REST argue that it does not offer the tool support and Quality of Service

(QoS) options needed for enterprise application scenarios and that it is better

suited to ad hoc integration over the Web (Pautasso et al., 2008). This is because

Web services standards were driven by vendors like IBM and Microsoft, building

for the SOA vision, whereas REST supporters tend to be independent developers,

arguing for simpler and less vendor-specific standards. However, REST has

become the focus of increased interest and initiatives that offer QoS, for example

Webber et al. (2010) discussed RESTful alternatives for providing security,

reliability and transactions. Moreover there have been REST composition

initiatives, such as specifying Business Process Execution Language (BPEL) for

REST (Pautasso, 2009).

 25

Chapter 2 Web Services, REST and the Semantic Web

2.4 The Semantic Web

Tim Berners-Lee’s vision for the Semantic Web was to provide a machine-

comprehensible Web, a Web of Data where the data is expressed in a form that

enables intelligent reasoning (Berners-Lee, 1998).

Representing machine-comprehensible data, where systems can infer meaning,

was studied and implemented as knowledge-representation systems by artificial

intelligence researchers years before the Web was developed. These systems

were centralised, requiring users to share the same concepts, but it meant that

the inferences the system made were accurate. Moreover, these systems limited

the questions that could be asked to questions they could answer. The Semantic

Web sacrifices the accuracy and reliability of knowledge-representation systems

for the sake of interoperability, openness and decentralisation, in the same way

that the Web sacrificed the accuracy and reliability of hypertext systems for the

same reasons (Berners-Lee et al., 2001).

The Semantic Web is based on four fundamental principles (Allemang and

Hendler, 2011):

1. Anyone can say Anything about Any topic (the “AAA” slogan).

2. Open World Assumption (OWA), meaning that the absence of information

does not mean it does not exist; there is always more information that

could be known, this is in contrast to the Closed World Assumption (CWA),

typically applied in databases and hence more intuitive, where absence of

information means that information does not exist.

3. Nonunique naming: the same entity could be known by more than one

name.

4. The network effect, where the more people join the Semantic Web, the

more valuable it becomes.

To achieve the Semantic Web vision, languages such as Resource Description

Framework (RDF) and Web Ontology Language (OWL) describing resources and

relationships between resources were developed. The Semantic Web layer stack,

illustrated below, illustrates how these technologies fit with Web technologies

such as XML and URI.

 26

 Chapter 2 Web Services, REST and the Semantic Web

Figure 4 Semantic Web Layer Cake 4

2.4.1 Resource Description Framework (RDF)

RDF (Beckett and McBride, 2004) models data as assertions about resources. Each

assertion is a triple, in the following form: subject-predicate-object. A collection of

RDF triples represents a labelled directed multi-graph, where subjects and objects

are nodes and a predicate is a link from subject to object. RDF is designed as

triples to enable logical reasoning,

RDF identifies subjects, predicates (properties) and objects using URIs. A new

concept or relation can be defined easily by giving it a URI on the Web, hence the

“AAA” slogan. Originally, RDF was specified as “a foundation for processing

metadata”, as stated in the first RDF W3C working draft (Lassila and Swick, 1997).

However, the RDF data model described above proved successful in representing

data as well. RDF is serialised in XML. RDF/XML is the standard syntax, but it has

other popular serialisations, such Notation 3 (N3) (Berners-Lee et al., 2008), which

is more compact and readable than RDF/XML.

The RDF Schema language (RDFS) (Brickley and Guha, 2004) complements RDF, it

is an approach to describe RDF vocabularies using RDF. It defines a vocabulary for

describing vocabularies. In RDF there are no mechanisms to define a class (type)

of resources, nor information about properties, such as which types of resources

are described by a property, and what is the type of values of these properties.

Therefore RDF Schema extends RDF so that these types of descriptions are

possible, hence enabling a logical reasoner to infer additional information from

4 Semantic Web Stack, Wikipedia http://en.wikipedia.org/wiki/Semantic_Web_Stack

 27

http://en.wikipedia.org/wiki/Semantic_Web_Stack

Chapter 2 Web Services, REST and the Semantic Web

the data. Ontologies are another Semantic Web mechanism for describing

vocabularies, the Web Ontology Language (OWL) is discussed next.

2.4.2 Web Ontology Language (OWL)

OWL is a language for representing ontologies on the Web. It provides more

expressive formalisms than RDF Schema, and hence more inferences. Ontologies

emerged from research on modelling the domain of interests in the design of

knowledge-based systems. They are used to conceptualise domains and share this

conceptualisation. Ontologies occupy much of the research on the Semantic Web:

for example, research areas include ontology design, engineering, evolution,

management, reasoning, and alignment.

OWL is the standard language for ontologies on the Semantic Web. It is based on

Description Logic (DL). DLs are formal knowledge representation languages, and

their levels of expressivity vary. Baader (2003) provides a good overview of DL.

OWL ontologies have the following components: individuals (instances),

properties and classes. A property has a domain and range. Properties can be

either object properties (link to other individuals) or data properties (have literal

values). Properties in OWL can be functional, inverse, transitive and symmetric.

OWL enables complex class expressions. Classes can be defined using set

operators, constraints on properties (cardinality, range, value), and universal and

existential restrictions. Reasoning over ontologies can answer questions such as:

Which class does an instance belong to? Is it possible to satisfy the constraints in

the ontology (is it consistent)? And what are the subclasses and super-classes of a

given class?

There are two main specifications of OWL, both are W3C recommendations: OWL

1.0 in 2004 (McGuinness and Harmelen, 2004) and OWL 2 in 2009 (Hitzler et al.,

2012). OWL 1.0 has three sublanguages:

1. OWL Lite: The least expressive language of the three, does not support the use

of some modelling constructs or restricts their use; it aimed to simplify the

implementation of supporting tools.

2. OWL DL: More expressive than OWL Lite, and computationally complete and

decidable.

3. OWL Full: The most expressive of the three: it uses the same modelling

constructs as OWL DL. However OWL Full does not restrict the way they are

used; as a consequence, there are no computational guarantees.

 28

 Chapter 2 Web Services, REST and the Semantic Web

OWL 2 is fully backward compatible with OWL 1.0, but is more expressive. For

example, it enables the definition of keys, chained properties, and meta-modelling.

OWL 2 has three sublanguages (profiles), which target efficiency for different

application scenarios:

1. OWL EL: For applications that have ontologies with a large number of classes

and properties, reasoning can be performed in a polynomial time with respect

to the size of the ontology.

2. OWL QL: For efficient query answering in applications that have large volumes

of instance data.

3. OWL RL: Restricts modelling constructs, so the language resembles an OWL-

based rule language, aimed at applications that require scaled reasoning.

2.4.3 SPARQL Protocol and Query Language (SPARQL)

The SPARQL specification (Prud’Hommeaux and Seaborne, 2008) is a widely

adopted W3C recommendation that defines a query language for RDF datasets,

and a protocol for accessing SPARQL endpoints. Queries in SPARQL contain a

graph pattern (a set of triples containing variables) and when processed,

matching RDF graphs are returned from the dataset. New RDF graphs can be

created using the keyword CONSTRUCT; this can be used to transform the

structure of retrieved data. Update queries have been added to the specification,

enabling the modification of the underlying datasets using INSERT and DELETE

queries. This extension was proposed in 2009 (Schenk and Gearon, 2009), and

became a W3C recommendation 2013 (Gearon et al., 2013).

2.5 Linked Data

The Semantic Web community realised that the Web of Data, also referred to as

Linked Data, had to be specifically created to expedite the emergence and

spreading of the Semantic Web vision. The term ‘Linked Data’ was coined in Tim

Berners-Lee’s Design note in 2006 (Berners-Lee, 2006). It states four rules for

publishing Linked Data:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using (RDF,

SPARQL)

4. Include links to other URIs, so that they can discover more things.

 29

Chapter 2 Web Services, REST and the Semantic Web

These rules show the movement from the earlier Semantic Web perspective on

URIs as only identifiers, to using them as means for resource representation

retrievals. The note also specifies a 5–star rating system for Linked Open Data.

The rating system promotes publishing that is open-licensed, using open W3C

standards (RDF and SPARQL), and linking the data to other published datasets.

Recent statistics show that the overall number of triples published as Linked Data

is 61,976,332,7955 and is rapidly increasing. This trend is proving stronger with

the publishing of government datasets in both the UK and the USA.

2.5.1 Publishing Linked Data

This section overviews some issues with publishing Linked Data, which are

explained further in (Bizer et al., 2009) and (Heath and Bizer, 2011).

1. Minting URIs

This involves selecting the structure of the URI to represent classes properties

and individuals, and should follow guidelines for making them stable and simple

(Sauermann et al., 2008; Heath and Bizer, 2011).

2. Choosing RDF Vocabularies.

In describing the dataset well-known vocabularies should be used, and where new

vocabularies are defined, then these should be mapped to other vocabularies.

3. Linking

This involves linking resources in the published dataset to other Linked Data

datasets.

4. Metadata

Mechanisms have been introduced to describe datasets and how they are linked

to other datasets, such as vocabulary of interlinked Datasets (voiD) (Alexander et

al., 2009) and the Co-reference Resolution Service (CRS) (Glaser et al., 2009).

5. Publishing Tools

These can be classified as tools that serve the contents of RDF stores as Linked

Data, and tools that provide a Linked Data view to legacy data (Bizer et al., 2009).

2.5.2 Linked Data Applications

Bizer et al. (2009) classified Linked Data applications into: browsers, such as

Tabulator (Berners-Lee et al., 2006), search engines, such as Falcons (Cheng and

Qu, 2009) and Sindice (Tummarello et al., 2007), and domain specific applications:

5 LODStats, 10 April 2014, http://stats.lod2.eu/

 30

http://stats.lod2.eu/

 Chapter 2 Web Services, REST and the Semantic Web

these harvest the data and the links to address complex informational

requirements.

Recently there has been interest in the relationship between Linked Data and Web

services, and in particular Semantic Web services: Pedrinaci et al. (2010a) present

two views of their relationship—one is that the increase of semantic data on the

Web presents a very promising environment for annotating Semantic Web services

and publishing those annotations. The second is that complex services can be

built to produce and consume Linked Data; the capabilities of these services go

beyond data integration to cause real world effects.

A RESTful perspective to the relationship between Linked Data and Web services

is realised in the recent W3C “Linked Enterprise Data Patterns Workshop”, and the

resulting member submission “Linked Data Basic Profile 1.0” (Nally et al., 2012a),

where conventions have been proposed to update Linked Data RESTfully. This

submission reflects the increasing interest from both research and enterprise

communities in the rapid growth in the size of published Linked Data. These

conventions in the submission set out a set of standard patterns, design choices,

and best practices to help developers when designing a Linked Data architecture

(Nally et al., 2012b).

2.6 Semantic Web Services

As discussed earlier in this chapter, WSDL provides syntactic-level descriptions

for the services. Syntactic descriptions are insufficient for the automation or semi-

automation of service discovery and composition. For example, stating that a

service accepts an integer and returns a string will not offer information on what

the service does, especially on a Web-scale.

The Semantic Web services vision (McIlraith et al., 2001; Ankolekar et al., 2001)

utilises Semantic Web technologies to achieve automatic discovery, invocation,

composition and execution of Web services. The approach is to augment or mark

up (McIlraith et al., 2001) Web services with semantic descriptions that can be

interpreted and reasoned about by semantic-aware clients.

According to Cabral et al. (2004), Semantic Web service requirements can be

categorised into three dimensions: activities, architecture and service ontology.

1. Activities define the functional requirements expected from SWS

infrastructures. These are: publishing, discovery, selection, composition,

invocation, deployment and ontology management.

 31

Chapter 2 Web Services, REST and the Semantic Web

2. Architecture is the set of components to achieve the activities mentioned

above. These components include: a register, a reasoner, a matchmaker, a

decomposer and an invoker.

3. Service ontology can differ amongst approaches and involves Inputs;

Outputs; Pre-conditions: the necessary state of the world for executing the

service; Post-conditions: the state of the world after executing the service

successfully; Cost; Category; Atomic service; and composite service:

whether the service can be described as a composition of atomic services.

The first dimension, activities, and the third, Service ontology, are the most

significant, because activities define the requirements the SWS are expected to

achieve, regardless of any architectural components used to achieve them, and

the Service ontology addresses the elements typically contained in the semantic

service description.

The activities are explained briefly below:

1. Publishing

Publishing is concerned with advertising the services’ capability. It assumes there

is a registry where these service descriptions are published. The concept of

service registries can be traced back to RPC (directories), then UDDI.

2. Discovery

This means the discovery of services matching a given query. In the case of

Semantic Web services the matching depends on service’s semantic descriptions,

which involve name, input, output, preconditions and postconditions. The

selection activity is concerned with choosing between two or more matching

services, based on other criteria, such as cost or category.

3. Composition or choreography

This is concerned with the automatic or semi-automatic composition of larger

services from other services, and the control of how that composition is executed.

4. Invocation

This activity happens after the service is discovered and selected. It is concerned

with the actual invocation of the service, like preparing inputs and dealing with

exceptions.

5. Deployment

Cabral et al. (2004) assume that the deployment of a Web service is independent

of the publishing of its semantic description. However, there can be mechanisms

for instance deployment.

 32

 Chapter 2 Web Services, REST and the Semantic Web

6. Ontology management

Traditional Semantic Web services rely heavily on ontologies for both the domain

and the service description. This requires management of those ontologies in

terms of upgrading, maintenance, and accessibility.

Semantic Web service approaches will be surveyed in Chapter 3.

2.7 Summary

This chapter discussed approaches to achieve interoperability in distributed

systems, and the influences of the Web and later the Semantic Web in developing

Web services and Semantic Web services as solutions for distributed

interoperable systems.

It explained how Web services and Semantic Web services, were also heavily

influenced by earlier middleware approaches. For example, RPC provided IDL

descriptions for procedures, Web services provided WSDL descriptions for

services, and Semantic Web services augmented and annotated those service

descriptions further. Another result of this influence is that the Web is merely a

transport layer for Web services.

This chapter explained that abstracting distributed components as resources, not

services, assigning them URIs, and linking them together, has been the

distinguishing feature in the Web, REST and the Semantic Web.

 33

 Chapter 3 Approaches to Semantic Web Services

Chapter 3: Approaches to Semantic Web

Services

Chapter 2 discussed how traditional Web services were heavily influenced by

earlier middleware approaches, and how that resulted in a divergence from how

the Web works. It also discussed REST and how resource-oriented and RESTful

Web services emerged. The different semantic technologies used in the service

descriptions were also explained in Chapter 2, together with the functionalities

and goals of SWS.

In this chapter several approaches for implementing Semantic Web services are

reviewed. Sections 3.2 and 3.3 discuss a total of twenty-seven SWS approaches.

These sections show how the differences between how traditional Web services

and RESTful ones are conceptualised have led to interesting variations in how

they are semantically described. Section 3.2 includes approaches that are service-

oriented, whereas section 3.3 covers those that are resource-oriented. Section 3.4

further classifies these approaches according to whether they introduce service

or resource ontologies/vocabularies or extension mechanisms. Section 3.5

compares the approaches according to the capabilities they offer.

SWS approaches are considered emergent, and have not been adopted outside

their research communities (Wilkinson et al., 2009). Nevertheless they differ in

their maturity; some have supporting frameworks and architectures, whereas

others only present descriptive approaches. Since these approaches have not been

used in practice, with the exception of demonstrating use cases, there is no actual

user base to evaluate their viability. Therefore, the research activities undertaken

by the proposed approaches to provide evidence for their viability are of

relevance to developing an evaluation methodology for EXPRESS. Section 3.6

discusses these approaches in more detail.

 35

Chapter 3 Approaches to Semantic Web Services

3.1 Meta-Models in SWS Descriptions

Fensel (2004) states that there are two paths to SWS (Figure 5). The first starts

from traditional Web services and complements them with semantics. The other

starts from the Semantic Web and develops it further by adding more ontologies

and semantic annotations, with services that make use of this data then emerging

gradually.

Figure 5 Paths to SWS (Fensel, 2004)

Figure 5 implies that Web services add dynamicity to the Web; however, dynamic

Web pages predate Web services, although from a program point of view, utilising

the functionality offered by a remote server, and hence dynamically interacting

with it, was facilitated by Web services. This was a result of standardised,

machine-readable service descriptions and standardised formats for exchanged

data. One possible reason that RESTful Web services became a much more

popular approach was that they do not need machine-readable service

descriptions and blur the distinction between Web pages and Web services. The

difference is thus found in the standards used for exchanging data, i.e. HTML

versus XML, JSON or other data representation standards.

The existence of service descriptions is an interesting aspect to take into account

when discussing approaches to SWS. This is because these influence whether the

problems are conceptualised as an interaction with services, and hence a service

meta-model is introduced, or whether they are conceptualised as an interaction

with resources on the Web, and hence a resource-oriented meta-model is

introduced.

Imposing a semantic meta-model for Web service descriptions has been the

conventional route taken by the overwhelming majority of SWS approaches. The

meta-models imposed in these approaches differ in regard to whether the

approach describes a service or a resource. The description orientation of meta-

 36

 Chapter 3 Approaches to Semantic Web Services

models imposes constraints, transforms conceptualisations, and adds artefacts

when describing the service. The more this orientation fits the actual functionality

described, as well as the Web’s architecture, the smaller the descriptions, and thus

the easier it becomes to describe it. Moreover, the more complex and demanding

the semantic meta-model, the more it affects the adoption of the approach, and

thereby lessens its value.

Below is an explanation of what is meant by service-oriented and resource-

oriented meta-models.

1. Service-Oriented Meta-Models: These approaches separate service

descriptions from the domain descriptions, and introduce meta-models to

describe services, such as the names of operations, inputs and outputs,

preconditions and effects. They can describe either WSDL or RESTful Web

services. These include existing Web services which are semantically

described to form SWS and weave them into the Semantic Web. They are

based on the RPC mindset discussed in Chapter 2 and can be further

classified into:

a. WSDL-based SWS Approaches: These assume that the described Web

services are traditional WSDL/SOAP services.

b. RESTful Web Service Approaches: These describe RESTful Web

services or Web APIs. These are considered as service-oriented

approaches because they are treated and described as services not

resources.

2. Resource-Oriented Meta-Models: these follow the lower path in Figure 5. In

these meta-models conceptualise interactions as resources rather than

services. Therefore the meta-models describe elements such as resource

types, collections, representations and methods.

3.2 Service-Oriented Meta-Model Approaches

These approaches separate the service description from the domain description

and can be either WSDL-based or RESTful Web services.

3.2.1 SWS Approaches for WSDL Web Services

Semantic Annotations for WSDL (SAWSDL) (Farrell and Lausen, 2007), which was

developed from WSDL-S (Akkiraju et al., 2005), is a lightweight solution and the

only W3C SWS recommendation. It annotates WSDL components such as inputs

and outputs with references to ontologies. It adds the attribute

 37

Chapter 3 Approaches to Semantic Web Services

sawsdl:modelReference to elements of the inputs and outputs, the value of the

attribute would be a URI that points to a concept in an ontology. SAWSDL discards

the precondition and effect attributes that were in WSDL-S, and it aims to be

compatible with existing specifications and improve the automation of discovery

and composition.

More ambitious W3C submissions for SWS, such as OWL-S, WSMO and SWSF, are

more complex. OWL-S (Martin et al., 2004) is based on OWL. OWL-S defines an

ontology for describing Web services. It describes three aspects of the service:

profile, process and grounding. The profile is for advertising and discovery and

contains non-functional and functional properties: inputs, outputs, pre-conditions

and effects (IOPE). The description of IOPE for a service originates from the AI

notion of actions in the automated planning domain. The service process

describes the logic of the service in regard to how inputs relate to outputs and

pre-conditions to effects. The grounding describes mapping from the ontological

description to a concrete specification of a service, for example to WSDL. OWL-S

describes how to provide descriptions for composite services. These enables

explicit yet manually built compositions of services. Moreover several approaches

for automated composition for OWL-S have been surveyed by Klusch (2008a).

Meaning that OWL-S lends support for both manual and automated orchestration.

OWL-S use of OWL as a language based on description logics, hence operating

under the open world assumption, moreover description logic restricts its ability

to represent complex rules, OWL-S overcomes this by incorporating Semantic Web

Rule Language SWRL (Horrocks et al., 2004) for defining rules for preconditions

and effects.

Another approach is WSMO (Bruijn et al., 2005a), which is based on four major

elements for modelling Web services: ontologies, Web services, goals and

mediators. Ontologies provide the terminology to describe the domain and

services. Web services describe service capabilities (pre-conditions, assumptions,

post-conditions and effects) and interfaces (choreography – defining exchanged

messages – and orchestration). Goals model the service requester’s requirements,

which are used for matchmaking with service capabilities. The definitions of

choreographies and orchestrations in WSMO are based on Abstract State Machines

(ASM), and are described by states and guarded transitions. WSMO uses WSML

(Bruijn et al., 2005b) as the language for modelling ontologies and rules, which is

based on Frame logic (FL), unlike DL it follows the closed world assumption,

meaning that unless something is stated it is assumed false. One of the

criticisms of WSMO is that it drifted from the W3C standards (Bournez, 2005),

although efforts have been made to build bridges between them. Klusch (2008a)

 38

 Chapter 3 Approaches to Semantic Web Services

classified automated discovery and composition methods for SAWSDL, OWL-S and

WSML. What is interesting is that many discovery methods can be applied to the

three approaches, as they depend on the extraction of IO or IOPE, while for

automated composition/planning more methods targeted OWL-S than either WSML

or SAWSDL. The reason being that these planning methods are variations of well-

established AI planners, and OWL-S as mentioned above are conceptualised as

actions in AI planning. Research efforts in WSMO have stopped but are continued

in lighter-weight approaches such as MicroWSMO (Kopecky et al., 2008) and

WSMO-Lite (Vitvar et al., 2007) (discussed below).

Semantic Web Services Framework (SWSF) (Battle et al., 2005) is another SWS

approach, which builds upon the experiences of OWL-S and WSMO. It focuses on

supporting workflows and like WSMO it has its own language for defining the

Semantic Web Services Ontology (SWSO) called Semantic Web Services Language

(SWSL) which supports both first-order logic and logic programming, hence offers

greater expressivity than OWL-S. It provides a process model for web services that

introduces concepts for control, ordering, states and exceptions. It has received

less interest from the research community that the approaches above.

DIANE Elements (DE), which is an object-oriented language for service ontologies,

is used by DIANE Service Description (DSD) (Klein et al., 2005). DE provides

reasoning support for sets and fuzzy sets that describe services inputs, outputs

and effects. The rationale for introducing fuzzy sets is to enable variable degrees

for matching of services, where the selection of a service is based on the fuzzy

membership value of the service’s effects in the requested effects. DSD takes an

integrated approach towards service discovery and composition (Küster et al.,

2007).

iServe (Pedrinaci et al., 2010b) is a publishing platform for semantic descriptions

of WSDL services and Web APIs, to facilitate the discovery of services. It provides

two annotation editors: one for Web APIs, called SWEET (Semantic Web sErvice

Editing Tool), and the other for WSDL services, called SOWER (SWEET is nOt a Wsdl

EditoR). The vocabulary used for the annotation combines several parts of other

vocabularies, but is mainly based on the Minimal Service Model (MSM), which was

designed to be the largest common denominator of the OWL-S, WSMO, and WSMO-

Lite vocabularies. In addition, it uses some terms from other vocabularies, such as

hRESTS, SAWSDL and WSMO-Lite. iServe works as follows: first, it facilitates the

annotation of Web services; second, it publishes those annotations as Linked

Data; third, it provides a Web API to create and retrieve the descriptions and a

SPARQL endpoint to query the services’ descriptions dataset.

 39

Chapter 3 Approaches to Semantic Web Services

3.2.2 SWS Approaches for RESTful Web Services

With RESTful Web services gaining more popularity on the Web, interest in RESTful

SWS is rising. In REST-based approaches, existing RESTful Web services are

semantically described. SA-REST (Lathem et al., 2007) is similar to SAWSDL, as it

introduces a vocabulary to semantically annotate RESTful Web services, but

because there are no WSDL files for RESTful Web services, the annotations are

embedded into HTML Web pages that describe the services for programmers. The

annotations are embedded using RDFa (Adida et al., 2008) or GRDDL (Halpin and

Davis, 2007). By adding semantics, SA-REST aims to provide an easier way to

create and coordinate mashups.

hRESTS (Kopecky et al., 2008) is an HTML microformat for RESTful Web services.

Microformats facilitate the extraction of accurate data from HTML pages. They

provide designated values for markup tags’ attributes to encode extra information

about the content. Examples of popular microformats are hCalendar for events,

and hCard for contact information. The attributes used are class, rel, and rev,

usually in tags such as div, span, ul and il. In hRESTS, the attribute values are:

service, operation, method, input and output. hRESTS highlights the important

parts of a RESTful Web service description, however to add semantic annotations

MicroWSMO (Kopecky et al., 2008) was introduced. It extends hRESTS to add

references to service models and lowering and lifting schemas. WSMO-Lite (Vitvar

et al., 2007) is a lighter-weight version of the WSMO service ontology, that can be

used to describe services on top of MicroWSMO and also SAWSDL. Its aim is to

reduce the overhead in describing services and to be able to annotate RESTful

Web services.

These approaches aim to insert semantic annotation mechanisms into HTML

documents, achieved by mechanisms such as hRESTS and RDFa. In comparison to

hRESTS, RDFa is more flexible, as it does not restrict the type of triples added to

the HTML documents, but hRESTS is less intrusive, because, as a microformat, it

repurposes the use of certain attributes, whereas RDFa introduces new attributes

that can cause compatibility problems.

RESTfulGrounding (Filho and Ferreira, 2009) is another method to semantically

describe RESTful Web services. The authors introduce a new grounding ontology

in OWL-S to accommodate RESTful Web services.

Another approach to RESTful SWS was introduced by Battle and Benson (2008). In

their Semantic Bridge for Web Services (SBWS), they annotated WADL (Hadley,

 40

 Chapter 3 Approaches to Semantic Web Services

2009) documents, similar to SAWSDL, which linked WADL components to

ontologies. Their approach provided descriptions for WSDL too.

Several SWS approaches have emerged as a result of the increased interest in

Linked Data. Linked Data Services (LIDS) (Speiser and Harth, 2011) and Linked

Open Services (LOS) (Krummenacher et al., 2010) are inspired by Sbodio and

Moulin (2007), and Sbodio et al. (2010) in using SPARQL queries to describe

services (SPARQL descriptions). LIDS aims to augment linked datasets

dynamically with data extracted from Web APIs, so they focus on describing data

services using RDF and SPARQL. LOS provides semantic wrappers for WSDL and

Web APIs to function as RDF producers and consumers. It describes the

functionality of services, using RDF and graph patterns, and then describes their

composition in order to perform processes using SPARQL queries. However, LOS

requires a shared triple space, where all service descriptions should exist.

SADI (Semantic Automated Discovery and Integration) (Wilkinson et al., 2009) is a

set of practices for the automated integration of bioinformatics data and services.

It is based on the premise that compared to generic Web services, Web services in

bioinformatics exhibit less functionality. They are atomic, stateless, and

transformative. SADI utilises this by catering for these traits: as one of the

distinctive aspects of SADI is based on the services being transformative, this is

conceptualised in SADI by assuming that all services are annotating services.

Hence, outputs are actually the inputs but with annotations linking them to other

resources or transformations. SADI services also exchange RDF messages, which

means that providing annotating services becomes straightforward, as the base

URI of the input is the base URI of the output, but with more annotating triples. To

describe the services, SADI uses the myGrid/Moby service model6, with the inputs

and outputs being OWL classes defined in a referenced ontology. The OWL

classes used as inputs and outputs are named classes defined as equivalents of

restrictions on properties (predicates). These predicates are important for SADI

because they are used to facilitate the discovery and composition of services.

The discovery of SADI services is illustrated by providing a plug-in for Taverna

(Oinn et al., 2004). Taverna is a workflow management system for scientific

workflows. It provides a canvas for dragging and dropping services and resources

to create workflows. The SADI plug-in suggests applicable transformations

according to the type of workflow output, which is done by displaying the

properties that would be available as a result of executing the transformation

service. Therefore, these properties link the inputs to the outputs of a service.

SADI also demonstrates its composability through the Semantic Health And

6 The myGrid Moby Service Ontology, http://www.mygrid.org.uk/mygrid-moby-service/ .

 41

http://www.mygrid.org.uk/mygrid-moby-service/

Chapter 3 Approaches to Semantic Web Services

Research Environment (SHARE) system (Vandervalk et al., 2009). SHARE enables

users to query and analyse distributed data. It accepts SPARQL queries, and then

extracts the query triples, and for each triple it finds Web services that provide

triples matching the pattern. These Web services are executed, and then the

intermediate results are returned and used to execute other matching services.

SADI utilises HTTP to invoke services, so the service descriptions are retrieved by

a GET method and data is sent by a POST. Moreover, it supports both synchronous

and asynchronous services by utilising the HTTP response code 202 (Accepted

but incomplete) for asynchronous services.

The main difference between SADI and other SWS is that it does not provide a new

way of describing the service itself, as it adopts an existing model, but rather

enforces constraints on how the inputs and outputs of that service are defined in

the domain ontology.

3.3 Resource-Oriented Meta-Model Approaches

The majority of research efforts have so far been in semantically enhancing Web

services, but recently, approaches that are based on semantic resources have

appeared and these are discussed next.

Another part of Battle and Benson’s work involved providing a RESTful interface

for semantic data in a term they called Semantic REST (Battle and Benson, 2008).

They mapped the HTTP methods (GET, PUT, POST and DELETE) into SPARQL

commands, including extensions to SPARQL (proposed at that time by HP’s Jena

team) which were SELECT, INSERT, MODIFY and DELETE, these extensions were

origins of the current W3C Recommendation SPARQL 1.1 Update (Gearon et al.,

2013). In this way, RDF datasets offering SPARQL endpoints can also offer new

RESTful functionality, meaning they can be integrated with Web 2.0 clients.

Presto (DeLeon and Dumontier, 2008) provides a RESTful interface for resolving

OWL ontologies and endpoints for DL and SPARQL queries. This is particularly

effective when ontologies are large, e.g. in life sciences. Presto publishes the

entities in OWL files and enables retrieval of axioms about these entities through

a RESTful interface. This means Presto can be viewed as a RESTful Web service for

resolving entities in OWL ontologies. Although Presto does not aim to offer a

general framework for Web services, it shows the straightforward mapping from

OWL entities to resources. Zhao and Doshi (2009) categorised RESTful Web

services into three types: resources representing sets of resources, resources

representing instances, and resources representing transitional services. They

described these types using a lightweight ontology and rules for describing the

 42

 Chapter 3 Approaches to Semantic Web Services

transitional services. Their aim was to facilitate the automatic composition of

RESTful Web services, so they provided a framework for composing those services

using a state transition system (STS) based on situation calculus. According to

the classification introduced at the beginning of this chapter, their approach also

includes a service-oriented meta-model. This is because they used ontologies to

explicitly describe the third type of resources in their description, i.e. transitional

services.

Another approach that is based on semantic resources is Triple Space Computing

(TSC) (Riemer et al., 2006), which is based on Tuple Space Computing. The

communication is shifted from being message oriented, as in Web services, to

reading and writing RDF triples in a shared triple space. TSC has been used in

both Web service coordination (Fensel et al., 2007) and communication (Francisco

et al., 2008). Hernandez and Garcia (2010) took TSC further by modelling

resources in triple spaces, and mapping HTTP methods into triple space

operations. Furthermore, they also provided a process calculus method for

describing the composition of these resources. However, being confined to a

shared triple space limits the scalability and accessibility of such approaches.

SSWAP (Gessler et al., 2009) is a protocol and architecture for SWS. It enables the

creation and discovery of RESTful Web service descriptions. It was developed to

be used mainly in the field of bioinformatics, but it is proposed to be used for

generic Web services too. SSWAP provides an ontology for describing a service,

and this ontology has five main concepts: Provider, Resource, Graph, Subject and

Object. A Provider (organisation) provides a Resource, which corresponds to a

service. The Resource operates on a Graph. The Graph describes the mapping

between the input of the service described by the Subject, and the output

described by the Object. SSWAP assumes a relationship between the input and

output, and conceptualises this relationship as a mapping. The descriptions of the

services are called Resource Description Graphs (RDGs). SSWAP interacts by

exchanging RDGs, so the client provides values for the inputs and POSTs the RDG

to the service. This is called the Resource Invocation Graph (RIG). Then, the

service provides values for the outputs and returns it to the client, and the

returned description is called the Resource Response Graph (RRG). SSWAP

provides an SDK for developing services, and a method for publishing them to the

service directory that SSWAP hosts. This directory facilitates the discovery of Web

services. The directory is used to build SSWAP.info, which is a Web-based

interactive pipeline editor, where a user can drag and drop services and available

services are filtered according the outputs of the selected ones.

 43

Chapter 3 Approaches to Semantic Web Services

ReLL (Alarcon and Wilde, 2010) (Resource Linking Language) is an approach that

describes existing RESTful Web services on the Web (i.e. Web APIs) and also Web

pages to enable a crawler called RESTler to crawl them and produce a typed graph

representing the links, relationships between them and the representations. This

graph can then be translated into RDF. The aim of ReLL (Alarcon and Wilde, 2010)

is to establish a unified view of these resources. Although ReLL currently

describes read-only situations, the aim is to extend it to support creation,

modification and deletion.

RESTdesc (Verborgh et al., 2011) explicitly provides N3Logic (Berners-Lee et al.,

2008) rules for each resource, which describe the method, representation, and URI

structure, such that the client can reason over those rules, and execute an HTTP

request according to its internal state and the satisfied rules. Moreover, it utilises

link headers to guide clients to the next states.

Hyperdata (Kopecky et al., 2011), on the other hand, proposes a method for

updating RDF data stores. It is based on the argument that updating data via

SPARQL endpoints is not sufficient because of 1) data dependencies, where

updates need to be propagated to dependent data that are not expressed in the

SPARQL query; 2) security issues; and 3) validation. For these reasons, Hyperdata

is proposed to update RDF stores through APIs. However, instead of describing

the APIs separately, the API descriptions are stored as triples with the data in the

RDF store. It uses named graphs to represent API endpoints for resources in the

RDF store that will then be manipulated by the API. They have four types of

resources: classes, individuals, property resources, and value resources. The

approach uses a custom minimal vocabulary to describe the named graphs for

these resources and associated triples, as well as the triple patterns and the

relationships between them. The triples and triple patterns denote what will be

affected by the HTTP methods. These API descriptions are stored with the data

itself and are returned with the resource when it is retrieved. Thus, the

description of any one endpoint is also linked to other endpoints within the

application, so a client could navigate between endpoints.

Hypermedia RDF (Kjernsmo, 2012) is a proposed vocabulary to make RDF a

hypermedia type. A hypermedia type is a term defined by Amundsen (2011b) as:

“MIME media types that contain native hyper-linking semantics that induce

application flow. For example, HTML is a hypermedia type; XML is not”. Amundsen

also defines a classification scheme of hypermedia types called H Factors, which

are used to measure the level of hypermedia support the media type offers.

Hypermedia RDF is influenced by Amundsen’s argument for making RDF

sterilisations more powerful, instead of providing an API for RDF. The argument is

 44

 Chapter 3 Approaches to Semantic Web Services

that the Web is more successful because messages contain not only data but

application control information. The Hypermedia RDF vocabulary defines a set of

predicates and instances to describe what actions are applicable in regard to a

certain resource, for example that it can be updated, deleted, merged into, or

accepts formats. The approach does not specify the repercussions of updating or

deleting a resource.

RDF-REST (Champin, 2013) is an approach and an implementation (in Python) that

provides a unified method to provide both Web APIs and Linked Data. It therefore

facilitates the implementation of systems that expose both. This is done by

having RDF-REST as a layer embedded in the system architecture. It abstracts the

logic layer as a set of core objects or resources that expose a uniform interface.

The uniform interface provides methods that correspond to the HTTP methods,

and RDF representations are thus exchanged. One of the main design decisions in

RDF-REST is to have RDF as the native system format. Therefore, application-

specific Web APIs are provided through wrappers that interact with the core

objects. The wrappers use serialisers and parsers to transform between RDF and

other media types. Therefore, RDF-REST aims to comply with the Linked Data

Profile specification (Nally et al., 2012a) for manipulating Linked Data. One of its

limitations is that it is designed for developing Web APIs from scratch, so these

Web APIs would consequently be built on top of RDF-REST.

3.4 A Classification Matrix for SWS Approaches

Another way to classify SWSs is to look at the approach they take in enriching

services with semantics. These are not mutually exclusive and one may build on

the other (e.g. SAWSDL and OWL-S). Cabral et al. (2012) classify the description

approach into: service ontologies, and semantic annotation extension

mechanisms. The following matrix uses the meta-model classification discussed

in this chapter for the horizontal axes. For the vertical axis, it extends the

description classification presented in (Cabral et al., 2012) by first recognising

that ontologies are not only service ontologies: they can also be for describing

resources in resource-oriented approaches. And secondly, it further classifies

“Semantic Annotation Extension Mechanisms” into two subclasses: “Link to

Concepts in Ontologies” and “Use Graph Patterns”. In addition, some approaches

cannot be considered description approaches, as they focus on methods for

providing services, so a row has been added for “Provision Approaches” in the

matrix. A brief description of these classifications is provided below.

Description Approaches

 45

Chapter 3 Approaches to Semantic Web Services

1. Ontologies/Vocabularies: These approaches introduce ontologies or

vocabularies. The majority are for describing services; however there are

some that describe resources. These are different from a generic domain

ontology, as they have been introduced specifically for the purpose of

describing a service or resource interface.

2. Semantic Annotation Extension Mechanisms: These provide mechanisms to

annotate a specific service or resource with descriptions. These can be

categorised into approaches that:

a. Link to Concepts in Ontologies: These are mainly based on linking

to concepts defined in an ontology to describe inputs, outputs,

preconditions, effects, groundings, etc.

b. Use Graph Patterns: These approaches utilise graph patterns to

describe functionality in a service. They are more flexible than the

approaches that link to concepts in ontologies, and this flexibility is

discussed at the end of this section.

Provision Approaches

These provide conceptualisations architectures and implementations of methods

to provide SWS.

 Type of Meta-Model

 Service
Resource

 WSDL WS RESTful WS

De
sc

rip
tio

n
Ap

pr
oa

ch

O
nt

ol
og

y/

Vo
ca

bu
la

ry
 OWL-S

WSMO
SWSF

WSMO-Lite
DSD

MSM

RESTfulGrounding
WSMO-Lite

MSM
Zhao & Doshi

SSWAP
ReLL

Hypermedia RDF
Zhao & Doshi

An
no

ta
tio

n
Ex

te
ns

io
n

M
ec

ha
ni

sm

Li
nk

 to
 C

on
ce

pt
s

in
 O

nt
ol

og
ie

s

WSDL-S
SAWSDL

LOS

hRESTS
SA-REST

MicroWSMO
SBWS
LOS
SADI

Hernandez & Garcia

 46

 Chapter 3 Approaches to Semantic Web Services

U
se

 G
ra

ph
 P

at
te

rn
s

LOS
SPARQL descriptions

LIDS
LOS

SPARQL descriptions

SSWAP
ReLL

RESTdesc
HyperData

Hernandez & Garcia

Pr
ov

is
io

n
Ap

pr
oa

ch

Semantic REST
RDF-REST

Hernandez & Garcia
TSC

Figure 6 Classification Matrix of SWS Approaches

SAWASDL, SA-REST, hRESTS, LIDS, LOS, HyperData and RESTdesc are classified as

extension mechanisms; however, they do introduce minimal vocabularies, but

because these vocabularies are minor they are considered mainly extension

mechanisms.

Some approaches, such as LOS and Hernandez and Garcia (2010), fall under

several classifications because they use a mixture of approaches to achieve their

aims. LOS describes both RESTful Web services and WSDL ones, and in terms of

extension mechanisms, links to ontologies and uses graph patterns for inputs and

outputs. Hernandez and Garcia (2010) argue for the use of triple spaces, and

process calculus to formally represent RESTful Web services, hence providing

services using triple spaces. In addition their approach assumes that the services

would be described by linking to ontologies and also using graph patterns.

As mentioned above, semantic service-oriented meta-models for WSDL-based

services suffer from being too complex. This has led to new approaches shifting

towards describing increasingly popular RESTful Web services. However these

approaches explicitly describe their inputs and outputs, and in some cases pre-

and post-conditions; thus, in addition to adding an extra description layer, they

impose an RPC-mindset on these descriptions. So instead of them being

conceptualised as resources, as they would be in REST, these are transformed into

services. Moreover, these services focus on data retrieval and do not offer

extended functionality.

By comparison, resource-oriented meta-models focus on describing resources, and

all of these SWS approaches (except ReLL, RESTdesc, Hypermedia RDF and

HyperData) do not consider REST’s constraint of using hypermedia as the engine

of the application state, which provides an alternative method for the creation of

conversational interactive services for RESTful Web services. There is, however, an

issue with ReLL, RESTdesc, Hypermedia RDF and HyperData, in that they still

introduce vocabularies to describe how to interact with certain endpoints. ReLL

and RESTdesc, in particular, introduce vocabularies for descriptions that are

 47

Chapter 3 Approaches to Semantic Web Services

already provided by HTTP and do not need to be explicitly defined. Such

descriptions can be eliminated because adding them introduces redundancy and

there is an overhead in keeping them consistent.

The classification presented in this chapter is based on how SWS approaches

differ both conceptually and syntactically in their description of services.

However, there are other ways to classify SWS, one example provided by Klusch

(2008a) presented two comprehensive classifications of SWS discovery and

composition methods. For the discovery approaches, he classified 27 methods

according to

1. which parts of the service description are used in the matchmaking

process. These could be the profile (IOPE), the process, or non-functional

properties; and

2. how the matchmaking is performed, i.e. whether it is logic-based, non-logic-

based (text similarity, graph matching) or a hybrid of both.

For SWS composition methods, he classifies 16 methods based on

1. whether there was interleaving between planning and execution (i.e. static

or dynamic); and

2. Whether they are based on the SWS profile description (Functional Level

Composition: FLC) or on the SWS process description (Process Level

Composition: PLC).

An important issue to note, however, is that most of these discovery and

composition methods are for the same SWS approaches, namely OWL-S, WSMO and

SAWSDL, which, according to the classification presented in Figure 6, fall under

service-oriented meta-models for WSDL Web services. The service is semantically

annotated in these approaches by mainly linking to concepts in ontologies, which

greatly influences how discovery and composition approaches are implemented.

As shown in the classification matrix, another method for annotating services is

by using graph patterns, this provides greater flexibility for the descriptions. In

approaches that annotate by linking to concepts, inputs and outputs either link to

classes in an ontology or to simple data types, and when linking to simple data

types, there is no direct mechanism for telling what that simple data type

represents semantically. However, with graph patterns, inputs and outputs are

variables in these patterns, either as subjects or objects of predicates/properties.

This means that inputs and outputs could be simple data types while also being

described as an object or range of a certain predicate. The implication of using

graph patterns for description goes beyond providing more flexibility, as they

 48

 Chapter 3 Approaches to Semantic Web Services

introduce new methods for matching services, which are more scalable

(Stadtmüller and Norton, 2013).

3.5 Comparison of SWS Approaches Capabilities

In the previous section SWS approaches were classified according to how they

conceptualised and described interfaces, in this section their capabilities are

compared. The 27 SWS approaches were analysed according to which of the

following capabilities they offer, and the results are shown in Table 1.

1. Discovery

One of the main goals of SWS is to facilitate automated discovery of services,

therefore the purpose of many semantic description approaches is to address

discoverability.

2. Composition

Composition is the process of integrating several services or resources in a

workflow to achieve a certain goal. There are four main ways that composition

has been addressed in SWS:

2.1 Orchestration

There is a single point of control one entity is responsible for the execution of the

workflow. In the execution of the workflow, this entity is acting as a client to the

services that compose the workflow. The workflow is typically known in complete

to the controlling entity before it starts executing it. The Web service community

have introduced several specifications to describe workflows such as the Web

Services Business Execution Language (WSBPEL) (Alves et al., 2007), their aim was

to have interoperable descriptions of the workflows which can be processed by

execution engines. One of the areas that SWS approaches targeted was to

introduce vocabularies/ontologies for describing these workflows semantically,

such as composite services in OWL-S and orchestrations in WSMO.

2.2 Automated Composition Planning

This is another way to achieve the orchestration of services that utilises the

semantic descriptions of services. It automates the composition of services using

AI planning techniques, which view the world as states, where Web services are

actions that alter these states, and can be composed to achieve stated goals. As

mentioned above several SWS composition techniques have been surveyed by

Klusch (2008a) and has received growing attention from the SWS research

community.

2.3 Choreography

 49

Chapter 3 Approaches to Semantic Web Services

The aim of choreography in Web services is to enact a global plan/workflow that

is known to the participating entities, and is achieved when individual

participants execute their parts/roles. There is no single point of control. In a Web

environment, enacting the choreography means that the same participants will act

as both clients and services in a peer-to-peer fashion. As for orchestration, the

Web service community has introduced specifications for standardising

choreography descriptions, such as the Web Services Choreography Description

Language (WS-CDL) (Kavantzas et al., 2005). In SWS, WSMO describes service

interfaces as choreographies, and introduced an ontology for describing

choreographies of services as states and guarded transitions. With regards to

creating choreographies automatically, it can be considered a self-organisation or

a multi-agent planning problem as in (Falou et al., 2009). However this class of

problems is not popular in the SWS research community, and as mentioned above,

most of the research focused on automatically creating orchestrations by using AI

planning, rather than automatically creating choreographies.

2.4 Conversational Services

In RESTful Web services, the server guides the client through the next steps, this

the one of the constraints on the uniform interface in REST, namely using

“hypermedia as the engine of the application state”. Therefore when the client is

following the steps, it is actually interacting with several endpoints (resources),

and hence a form of composition. The server is controlling the workflow, however

the client has the autonomy to opt out at anytime, and to interact with endpoints

on other servers. Unlike orchestration and choreography in traditional Web

services, there is no declarative specification of workflow; however signposting

mechanisms are built into the media types. The workflow unfolds to the client,

and it knows how to respond at each step, but is not aware of the complete

workflow. As discussed in Chapter 2, few RESTful APIs adhere to the hypermedia

constraint. However there are SWS approaches that acknowledge the hypermedia

constraint and introduced vocabularies to describe possible choices to the client

such as ReLL (Alarcon and Wilde, 2010), RESTdesc (Verborgh et al., 2011),

Hypermedia RDF (Kjernsmo, 2012), and Hyperdata (Kopecky et al., 2011), these

approaches were explained previously in Section 3.3.

2.5 Linked Data Integration

With Linked Data becoming increasingly popular, many recent approaches to SWS

have targeted providing interface descriptions for Linked Data in the aim of

facilitating access to datasets through APIs instead of using SPARQL endpoints,

and to merge datasets together or with other non-linked data resources. And

while the aim of these interfaces is not service composition in the strict sense, if

 50

 Chapter 3 Approaches to Semantic Web Services

we take a RESTful view, the distinction between services and resources is blurred,

and data integration could be regarded as integration of resources. In some of the

approaches this type of integration has no side-effects, in other words it is merely

data retrieval, however this does not need to be the case and there are others,

where the integration of data automatically triggers real-world events. Table 1

shows each of the 27 approaches, and the capabilities they address.

Table 1 Capabilities of SWS approaches

Publication Purpose

Capabilities

Di
sc

ov
er

y

Composition

O
rc

he
st

ra
tio

n

Au
to

. C
om

po
si

tio
n

Ch
or

eo
gr

ap
hy

Co
nv

er
sa

tio
na

l

Li
nk

ed
 D

at
a

In
t.

OWL-S (Martin et al., 2004) General    x x x
WSMO (Bruijn et al., 2005a) General     x x
SAWSDL (Farrell and Lausen, 2007) General  x  x x x
WSDL-S (Akkiraju et al., 2005) General  x  x x x
SWSF (Battle et al., 2005) General     x x
DSD (Klein et al., 2005) General  x  x x x
SA-REST (Lathem et al., 2007) General  x  x x x
hRESTS (Kopecky et al., 2008) General * x * x x x
MicroWSMO (Kopecky et al., 2008) General * X * x x x
WSMO-Lite (Vitvar et al., 2007) General  X  x x x
RESTfulGrounding (Filho and Ferreira, 2009) General    x x x
ReLL (Alarcon and Wilde, 2010) Data Retrieval   x x  
SBWS (Battle and Benson, 2008) General  x  x x 
SPARQL descriptions (Sbodio et al., 2010) General  x  x x x
LIDS (Speiser and Harth, 2011) Data Retrieval  x x x x 
LOS (Krummenacher et al., 2010) General   x x x 
Semantic REST (Battle and Benson, 2008) General x x x x x 
Zhao and Doshi (2009) General x x  x x x
Hernandez and Garcia (2010) General x  x  x x
TSC (Riemer et al., 2006) General  * * * * 
RESTdesc (Verborgh et al., 2011) General  x  x  x
iServe (Pedrinaci et al., 2010b) General  x  x x x
SADI (Wilkinson et al., 2009) Bioinformatics  x  x x 
HyperData (Kopecky et al., 2011) General (LD) x x x x  
Hypermedia RDF (Kjernsmo, 2012) General (LD) x x x x  
RDF-REST (Champin, 2013) General (LD) x x x x  
SSWAP (Gessler et al., 2009) Bioinformatics  x  x x x
: addressed by the approach x: not addressed by the approach *: assumed existing & addressed by other layers

The purpose of the approach can be one of the following:

 51

Chapter 3 Approaches to Semantic Web Services

1. General: the approaches are not specific to a domain.

2. Generic (LD): it is the same as General except it deals with Linked Data.

3. Data Retrieval: the services targeted do not change data or the state of the

world.

4. Bioinformatics: the approaches are specific to the bioinformatics domain only.

Looking at the table, most approaches 19 out of 27 target service discovery, and

the ones that did not are: Zhoa and Doshi, Hernandez and Garcia, Semantic REST,

Hyperdata, Hypermedia RDF and RDF-REST. The former two approaches focused

on utilising semantic technologies to provide a formal definition of resource-

orientation, Hernandez and Garcia (using triple spaces and process calculus) and

Zhoa and Doshi (an ontology for resource types and situation calculus). The latter

four approaches focused on providing platforms or interfaces for linked data. In

Section 3.4, the six approaches, which did not target service discovery, had

resource-oriented meta-models; suggesting that when these approaches diverted

from the service-oriented mindset, they also diverted from the goals typically

targeted by the service-oriented approaches. Most of the approaches that targeted

discovery exposed either IO or PE, or both. Approaches that exposed IOPE are:

OWL-S, WSMO, WSDL-S, SWSF, DSD, WSMO-Lite, RESTful Grounding, LOS and iServe.

WSMO-Lite also added service categories. Approaches that expose IO are: SAWSDL,

SA-REST SBWS, SADI and LIDS, and approaches that exposed PE are SPARQL

descriptions and RESTdesc. RO approaches such as SSWAP, TSC, and ReLL exposed

resources in their interfaces.

For approaches that exposed IOPE, the matchmaking techniques typically applied

involve profile matching for IO or specification matching for PE or both. The

matching can be logic matching checking subsumption of concepts in IO, and the

entailment of PE. It can also be non-logic matching which utilises the structural

textual aspects of the underlying concepts. Moreover LIDS, LOS and RESTdesc use

graph patterns to describe interfaces, these graph patterns can be matched

according to the similarity of their predicates and resources (Stadtmüller and

Norton, 2013). The DSD described in the DIANE language enables fuzzy matching

of service requests and service offers. The matching boils down to checking if the

service offer’s effects are a subset of the service request’s effects. The IO in DSD

are part of the effect definition. In SPARQL descriptions, an agent’s goals are

represented as ASK queries, and services as CONSTRUCT queries, the CONSTRUCT

clause represents the effect of the service and the WHERE clause represents its

precondition. The agent has a KB, the service matching has two steps: 1) check if

the agent satisfies the preconditions, which it does if the CONSTRUCT query

representing the service yields results when applied to the agent’s KB. 2) after

 52

 Chapter 3 Approaches to Semantic Web Services

those results are obtained check if they fulfil the client’s goal by applying the ASK

query to them.

Regarding orchestration, fewer approaches attempt to formulate workflows

compared to discovery, they are: OWL-S with composite services (which applies

also to RESTful Grounding), WSMO, using interfaces that describe choreographies

and orchestrations, and SWSF, which specifically targets workflows by providing a

process model based on the Process Specification Language (PSL) (ISO 18629).

Hernandez & Garcia combined process calculus and triple space operations, ReLL

used Petri nets (Reisig, 1985), and LOS process model and SPARQL queries.

Many approaches target automatic composition; most apply AI planning methods,

where the world is modelled as states, and the services as actions that alter

states and have prerequisites (i.e. have preconditions and effects). For example in

OWL-S descriptions are typically transformed to PDDL, and hence, several

planning algorithms can be applied (Klusch, 2008a). Approaches that targeted

WSMO also converted descriptions into PDDL (Farnaghi and Mansourian, 2013) or

Hierarchal Task Networks (HTN) (Tabatabaei et al., 2009). There were no reported

approaches for SWSF however it is very similar to the OWL-S and WSMO, and

therefore the same methods can be applied. Approaches that automatically

composed SAWSDL added PE to the service descriptions (Klusch, 2008a). Zhao &

Doshi conceptualised RESTful Web services as actions that are comprised of the

HTTP method and the resource (these actions have preconditions and effects)

then modelled them in Situation Calculus and used regression to derive

compositions automatically. Automatic composition in WSMO-Lite was achieved by

modelling the problem as a STRIPS instance (Fikes and Nilsson, 1971), and then

the Graphplan algorithm (Blum and Furst, 1997) was applied. For SPARQL

descriptions, when a goal is not satisfied by one service, the precondition is

relaxed by using the OPTIONAL clause for the triple patterns, resulting in a set of

graph patterns which if cannot be fulfilled by a single service are adopted as new

goals, and regression planning is applied. Planning in RESTdesc is provided by

constructing proofs, since services are modelled as N3 rules. Although ReLL does

not target automatic composition, it does however model services as Petri nets,

which suggest compositions can be created using Petri net reachability

algorithms.

Only three approaches target choreography these are WSMO, SWSF and Hernandez

& Garcia. WSMO uses its choreography ontology, SWSF uses its FLOW ontology and

 53

Chapter 3 Approaches to Semantic Web Services

Hernandez & Garcia as mentioned above combines process calculus and triple

space operations.

RO approaches: ReLL, RESTdesc, Hyperdata, Hypermedia RDF and RDF-REST

provided or supported vocabularies for describing conversational mechanisms to

guide clients to next states. These also support Linked Data integration together

with SBWS, LIDS, LOD and TSC.

3.6 Adopted Research Methodologies in SWS Approaches

This section aims to provide an analysis of the research methodologies that the

27 SWS approaches discussed in this chapter applied to provide evidence for their

viability and effectiveness, the goal is to inform the choice of methodology for

evaluating the EXPRESS approach proposed in this thesis. This analysis draws on

Shaw’s (2002) model for analysing research strategies for software engineering.

Shaw classifies research strategies employed in software engineering research

papers by identifying the types of research questions they explore in the paper,

the types of results produced, and the type of validation provided. Her work

aimed to encourage experimental validation in software engineering research by

explicitly describing generally accepted research strategies in software

engineering. To analyse the research strategies in SWS approaches, 27

publications that introduce the SWS approaches were selected, in addition to five

others that presented evaluation efforts for certain SWS approaches.

Research Questions in SWS Approaches

Of the types of research questions identified by Shaw, the ones that are

addressed by research in SWS approaches are about:

• Design, evaluation or analysis of a particular instance:

o What is a (better) design or implementation of the SWS approach?

o How does an X SWS approach compare to a Y one?

• Feasibility/Viability

o Is it possible to accomplish this SWS approach?

Other research question types mentioned by Shaw were: means of development,

method for analysis, and generalisation/characterisation.

Research Results in SWS Approaches

 With regard to the types of research results identified by Shaw, the SWS

description approaches fall under the following the “Specific Solution” types.

According to Shaw (2002) this can be any of the following:

 54

 Chapter 3 Approaches to Semantic Web Services

• design, prototype, or full implementation

• careful analysis of a system or its development,

• result of a specific analysis, evaluation, or comparison.

Results in SWS approach papers are mainly the approach itself, its implementation

and associated tools if available. In evaluation papers, these were the results of

the evaluation and comparison.

Validations in SWS Approaches

Shaw (2002) categorises the validation approaches into types shown in Table 2

Table 2 Validation techniques in software engineering (Shaw, 2002)

Type of validation Examples

Analysis

 I have analysed my result and find it satisfactory through
(formal analysis) … rigorous derivation and proof
(empirical model) … data on controlled use
(controlled experiment) … carefully designed statistical experiment

Experience

My result has been used on real examples by someone other than me, and the evidence
of its correctness / usefulness / effectiveness is
(qualitative model) … narrative
(empirical model) … data, usually statistical, on practice
(notation, tool) … comparison of this with similar results in technique actual use

Example
Here’s an example of how it works on
(toy example) … a toy example, perhaps motivated by reality
(slice of life) …a system that I have been developing

Evaluation

Given the stated criteria, my result...
(descriptive model) … adequately describes the phenomena of interest …
(qualitative model) … accounts for the phenomena of interest…
(empirical model) … is able to predict … because …, or … gives results that fit real data …
Includes feasibility studies, pilot projects

Persuasion

I thought hard about this, and I believe
(technique) … if you do it the following way,
(system) … a system constructed like this would …
(model) … this model seems reasonable.
Note that if the original question was about feasibility, a working system, even without
analysis, can be persuasive

Blatant assertion No serious attempt to evaluate result

The validation types in the reviewed SWS publications fall under four types from

the above classification: examples, persuasion and analysis and evaluation. Table

3 shows the types of validation for each publication, and is a summary of Table

25 in Appendix A, which provides a short description for each publication

 55

Chapter 3 Approaches to Semantic Web Services

detailing what the paper achieves, then states the results mentioned in the paper

and their validation.

 56

 Chapter 3 Approaches to Semantic Web Services

Table 3 Validation approaches in SWS

Publication
Validation Approach

Examples Persuasion Analysis Evaluation
OWL-S (Martin et al., 2004)  
WSMO (Bruijn et al., 2005a)  
SAWSDL (Farrell and Lausen, 2007)  
SWS Coordination (Klusch, 2008a) 
SWS Comparison (Cabral et al., 2004) 
WSDL-S (Akkiraju et al., 2005)  
SWSF (Battle et al., 2005)  
DSD (Klein et al., 2005)  
SA-REST (Lathem et al., 2007)  
hRESTS (Kopecky et al., 2008)  
MicroWSMO (Kopecky et al., 2008)  
WSMO-Lite (Vitvar et al., 2007)  
Kopecky (2012)   
RESTfulGrounding (Filho and Ferreira, 2009)  
ReLL (Alarcon and Wilde, 2010)  
SBWS (Battle and Benson, 2008)  
SPARQL descriptions (Sbodio et al., 2010)   
LIDS (Speiser and Harth, 2011)  
LOS (Krummenacher et al., 2010)  
Semantic REST (Battle and Benson, 2008)  
Zhao and Doshi (2009)  
Hernandez and Garcia (2010)  
TSC (Riemer et al., 2006) 
RESTdesc (Verborgh et al., 2011)  
iServe (Pedrinaci et al., 2010b)  
SADI (Wilkinson et al., 2009)  
HyperData (Kopecky et al., 2011)  
Hypermedia RDF (Kjernsmo, 2012) 
RDF-REST (Champin, 2013)  
SSWAP (Gessler et al., 2009)  
SWS Challenge (Petrie et al., 2009) 
S3 Contest7 

According to the results of the analysis in the above table the validation

undertaken by the majority of the approaches was by using examples, 81%, and

persuasion, 91%. The majority of examples were “toy” examples, simplified to

ease the illustration of the approach. Persuasion was achieved either by

discussing a proof-of-concept implementation or providing links to online

demonstrators or supporting tools.

The publications that used analysis for validation constituted only 12.5% of the

papers and the type of analysis fell under “Experiment with statistically

significant results”. These included the SPARQL descriptions (Sbodio et al., 2010),

7 S3 Contest http://www-ags.dfki.uni-sb.de/~klusch/s3/

 57

http://www-ags.dfki.uni-sb.de/%7Eklusch/s3/

Chapter 3 Approaches to Semantic Web Services

and WSMO-Lite in Kopeckey (2012), which provided matchmaking experiments as

a validation of the discoverability of their proposed descriptions. This involved

converting the OWL-S test collection (Klusch and Kapahnke, 2010b) to their

approaches, either adapting a matchmaker or implementing one, and comparing

the results to existing matchmakers on the OWL-S test collection.

OWL-S, WSMO and SAWSDL discoverability and composability have been

demonstrated in the SWS Coordination (Klusch, 2008a), which surveyed several

matchmaking and planning algorithms designed for these approaches. Their

discoverability has also been demonstrated in the S3 contest for service

matchmaking, and thus was considered a representative of approaches that used

analysis for validation.

In the SWS Challenge (Petrie et al., 2009), the participants are given realistic

scenarios and are asked to fulfil them with their proposed SWS approaches. The

challenge evaluates the approaches according to their ability to mediate between

different formats, and to provide accurate descriptions for specified WSDL

services. Their accuracy is tested on their ability to be selected automatically and

accurately. Thus according to Shaw’s classification, this was the only publication

that used evaluation as a validation method. Moreover the SWS Challenge aimed

to understand the trade-offs between different approaches and how much human

intervention is needed to modify services to adapt to changes in the

requirements. However, the results of the challenge were not promising and no

participant had solved all of the problems, and they found even the simplest

problems challenging (Petrie et al., 2009, p.284).

The analysis shows that SWS is an emerging research area and that the

community has no well-established methods for evaluating new approaches, and

(as shown by the results of the SWS Challenge) approaches struggle to meet the

requirements of realistic problems.

A potential solution to evaluate SWS, involves analysis of expert opinions, as

undertaken by Bachlechner and Fink (2008), albeit this time to assess the viability

of SWS in general, not a specific approach, and therefore not present in Table 3.

Their study involved surveying and analysing opinions from both practitioners

and researchers to evaluate the potential of Semantic Web services as integration

architectures, and using Shaw’s categories, their validation technique is

considered an evaluation.

 58

 Chapter 3 Approaches to Semantic Web Services

3.7 Conclusions

This chapter has discussed and analysed twenty-seven SWS approaches. These

approaches impose either service-oriented or resource-oriented meta-models, and

show that the focus of research activities is shifting towards RESTful Web

services and resource-oriented meta-models. The description approaches also

differed in their method: some introduced ontologies or vocabularies, and others

were annotation extension mechanisms. They all assumed Web services are

already implemented and exist as an extra semantic layer.

Some approaches were not concerned with how the services are described but in

how to provide them. Approaches such as TSC, Semantic REST, RDF-REST, describe

the architecture or implementation for providing resource-oriented SWS that

exchange RDF messages, but they do not specify how these services are

described.

Hernandez and Garcia (2010) proposed providing services using triple space

computing, and suggested the existence of service descriptions and their link to

existing ontologies; however, they did not specify those descriptions. Moreover,

their architecture is implemented by interacting with triple spaces, which imposes

a specific architecture on service providers, making it harder to adopt.

The review of these approaches raises three interesting questions:

1) Is a meta-model even needed for resource-oriented services?

On the Semantic Web, resources are described by ontologies and these ontologies

are used in SWS as domain ontologies. However, as domain ontologies were seen

as insufficient to describe the functionality of the service, service ontologies have

been developed. REST provides a unified way to access resources, with well-

defined semantics. Therefore, can the combination of both REST’s unified

interface and the semantic description of resources be sufficient to describe the

functionality of the service?

2) Can the description be a result of the provision of the service?

Since the mapping between entities in the domain ontology and restful resources

is seemingly straightforward, is it possible to utilise that mapping so that the

description of the service is a by-product of its provision?

3) What are the types of results, and validations that are applicable for these

research questions?

 59

Chapter 3 Approaches to Semantic Web Services

Research in SWS is a relatively new field that has not been heavily used in practice

and the analysis of strategies adopted by SWS approaches showed that the results

were mainly the approach itself and the validation was by providing examples or

by persuasion by providing demonstrators, or proof of concept implementations.

Nevertheless there were validations based on experiments and formal

comparisons. In addition, there was qualitative analysis of expert opinions,

introduced by Bachlechner and Fink (2008).

In the light of this analysis the approach taken in this thesis is therefore to view

the result as the EXPRESS approach and its implementation, and to undertake a

broad validation combining several methods, specifically:

1. Examples and Persuasion: To show that it works and how it works.

2. Analysis: Experiments that test its efficiency.

3. Evaluation: Qualitative analysis of expert opinions comparing the approach

to others and discussing the trade-offs.

Chapter 4, presents a primary stage in answering the first question. It presents a

scenario analysis to elicit the required functionality of SWS, then studies the

limitations and requirements from the proposed approach that eliminate an

explicit meta-model.

 60

 Chapter 4 Scenarios Analysis and RO Modelling

Chapter 4: Scenario Analysis and RO

Modelling

In the previous chapter, several SWS approaches were reviewed. These

approaches semantically describe functionality to automate or semi-automate

their discovery and composition. They had two underlying assumptions in

common: firstly, explicit interface descriptions are required to describe the

functionality, and secondly, a domain ontology/vocabulary exists that describes

entities/resources manipulated by these interfaces. These two assumptions exist

in all of the reviewed approaches regardless of whether they were service or

resource-oriented. They all imposed an explicit semantic meta-model to describe

the functionally, in addition to semantic descriptions in the domain ontology. This

thesis questions these two assumptions.

In the conclusions of Chapter 3, the following question is asked: If resources on

the Semantic Web are described in ontologies (domain ontologies), and REST

provides a uniform method for manipulating resources, can these two elements

semantically describe the functionality of SWS applications?

This question can be decomposed into the following two questions:

 What sorts of functionality are SWS required to describe?

 If explicit service descriptions are eliminated, what are the requirements and

limitations in both the domain ontology and HTTP (as a RESTful mechanism)

when describing the required functionality?

This chapter addresses the above questions, by analysing 20 scenarios to study

the requirements of SWS, and then represents them as Resource-Oriented Models

to investigate the requirements and limitations in both the domain ontology and

HTTP. Section 4.1 explains the method of selecting the scenarios, Section 4.2

presents the analysis and results and Section 4.3 reflects on the SWS approaches

from Chapter 3, and Section 4.4 concludes the chapter.

 61

Chapter 4 Scenarios Analysis and RO Modelling

4.1 Web Service Scenarios

The approach taken by this research is to elicit the functional requirements from

real representative scenarios. However, another possible approach to gather the

functional requirements could have been to study the features and functionality

offered by other Web service approaches. The danger of this is of over

engineering and adding unnecessary complexity. Another reason for studying the

scenarios instead of technologies is discussed by Foster et al.(2008), when

comparing modelling state in different Web service specification approaches:

“Ideally, we would like to evaluate the relative merits of these two

positions in terms of concrete metrics such as code size. Such an

evaluation, however, requires agreement on the requirements that the

interfaces should support. Unfortunately, proponents of the different

approaches tend to differ also in their views of requirements.”

Therefore grounding the requirements in representative scenarios will provide

less subjective judgements.

4.1.1 Identifying Communities of Interest

The scenarios were selected from communities of interest where Web services are

used as integration technologies. Our intention is that they form a spectrum of

Web service uses. Starting from the low end of requirements and complexity,

these communities are: Web mashups, Enterprise Services, Business to Business

(B2B), Cloud Computing and Grid Computing. These domains are defined in Table

4.

Table 4 Communities of interest definitions

Community Definition

Mashups
Mashups are applications that combine APIs and data sources to form new applications
or new data sources (O'reilly, 2005).

Enterprise Services

Enterprise Services are concerned with integrating different systems within an
organisation, with the objective of enabling independent evolution of these
components (Fremantle et al., 2002).

Business to Business
Business to Business (B2B) services aim to offer the ability of sharing information and
performing business transactions between businesses on the Web (Kreger, 2003).

Cloud Computing
Cloud computing offers software, platforms and infrastructures as services to clients
who pay to lease them. The services are dynamically scalable (Armbrust et al., 2009).

Grid Computing

Grid Computing in general is concerned with enabling the utilisation of distributed and
heterogeneous resources to provide a seamless platform for computational or data
intensive applications. This platform can be used to enable remote collaboration and
expensive instrument sharing (Foster et al., 2002).

 62

 Chapter 4 Scenarios Analysis and RO Modelling

4.1.2 Selecting the Scenarios

The scenarios were selected according to the following criteria: they should be

real scenarios, representative of the communities, and exist in the literature.

Scenarios in research papers can be real existent scenarios or hypothetical ones.

The real scenarios are usually found in papers discussing experiences in

developing a system. However there are also scenarios in the literature that are

hypothetical motivating scenarios, tailored to highlight certain aspects of

technological solutions.

A total of seventy research papers in the five communities of interest were

reviewed. The papers were found by searching in Google Scholar for the keywords

“scenario”, “case study”, “Web service” and the name of the community of interest.

Out of the search results, seventy research papers were selected that appeared to

contain a scenario or case study.

Table 5 Number of reviewed papers in each community of interest

Community of interest # of reviewed papers
Mashups 14
Enterprise Services 14
Business to Business 14
Cloud Computing 13
Grid Computing 15

Out of those papers it was possible to find three or four real scenarios or case

studies, in each community. For mashups and Cloud Computing only three

scenarios were found in the literature. To provide a fourth scenario for mashups,

the “Yahoo Finance Stock Quote Watch List”, one of the featured pipes on Yahoo

Pipes was selected. For Cloud Computing, a case study of the Google App engine

LingoSpot was selected. This resulted in a total of 20 scenarios, listed in Table 4.

Table 6 List of Selected Web service Scenarios

Community of interest Scenarios

Mashups M1: Stock Quote Watch, Yahoo Pipes (Donnelly, 2010)

M2: The MashMaker Scenario (Ennals and Garofalakis, 2007)

M3: Displaying the time and location of a website’s visitors using a
layered mashup architecture (Biornstad and Pautasso, 2009)

M4: Creating situational applications using the enterprise
information mashup fabric. (Jhingran, 2006)

 63

Chapter 4 Scenarios Analysis and RO Modelling

Community of interest Scenarios

Enterprise Services E1: SSPD (City University) (City University, 2008)

E2: MLE (City University) (City University, 2008)

E3: BT.com (Integrating BT's OSS) (Calladine, 2004)

E4: SCORe (Integrating BT's OSS) (Calladine, 2004)

Business to Business B1: Reverse Auctioning Service (Decker and Weske, 2007)

B2: Telecommunications Wholesaler (Zimmermann et al., 2005)

B3: E-Procurement (Brodie, 2000)

B4: Supply Chain Management (Preist et al., 2005)

Cloud Computing C1: New York Times “Times Machine” (Klems et al., 2008)

C2: MLB Website’s Chat system (Klems et al., 2008)

C3: Colorado State University using Google Apps (Herrick, 2009)

C4: LingoSpot a business built using Google App Engine8

Grid Computing G1: NEESgrid: Grid Based System for the Earthquake Engineering
Domain (Gullapalli et al., 2004; Pearlman et al., 2004)

G2: DAME Distributed Aircraft (Jackson et al., 2003; Austin et al.,
2005; Jackson et al., 2006; Jackson et al., 2005)

G3: Virtual Screening with Desktop Grids (Chien et al., 2003)

G4: ChombeChem testbed on the Grid (Frey et al., 2003; Taylor et
al., 2006)

4.1.3 Scenario example

B1: Reverse Auctioning Service (Decker and Weske, 2007) is selected as an

example, the 20 scenarios are detailed in Appendix B.

 “A buyer (e.g., car manufacturer) uses reverse auctioning for procuring

specially designed components. In order to get help with selecting the

right suppliers and organizing and managing the auction, the buyer

outsources these activities to an auctioning service. The auctioning

service advertises the auction, before different suppliers can request the

permission to participate in it. The suppliers determine the shipper that

would deliver the components to the buyer or provide a list of shippers

with different transport costs and quality levels, which the buyer can

choose from. Once the auction has started, the suppliers can bid for the

lowest price. At the end, the buyer selects the supplier according to the

lowest bid. After the auction is over, the auctioning service is paid.”

8 Google App Engine, App Engine Developer Profiles
 http://code.google.com/appengine/casestudies.html

 64

http://code.google.com/appengine/casestudies.html

 Chapter 4 Scenarios Analysis and RO Modelling

4.2 Scenario analysis
To analyse the 20 scenarios we collected, two questions were asked: 1) How to

model a resource-oriented interface, mapping to an ontology, which can be used

by applications or agents to achieve functionality expressed in the scenario. 2) Do

similarities or patterns emerge?

To answer these questions, the requirements of the scenarios were elicited, and

then the scenarios were abstracted as resource-oriented models. Resource-

oriented modelling is an approach developed to represent the resources in the

interface, their relationships and interactions. The approach undertaken for

eliciting the requirements and resource-oriented modelling are explained below

with an example.

4.2.1 Eliciting requirements

This was the first step when analysing the scenarios, it involved capturing a high

level view of the requirements and abstracting them from the descriptions of the

scenarios. It involved looking at issues such as: the existence of different client

roles, the different systems involved, and are those systems managed by the

same entity.

As an example, these are the requirements from the one of the B2B scenarios, B1:

Reverse Auctioning Service, from Table 6:

1. Registration - The auctioning service deals with many participants/clients that

need to register before using the service. This implies the need for authentication

and authorisation.

2. Support for different client roles - There are two different roles for users of this

service: buyers and suppliers.

3. The service provider and the service consumers are different entities

The service provider is the auctioning services, and the consumers are the buyer

and the suppliers.

4.2.2 Resource-Oriented Modelling

Resource-Oriented Modelling is a novel approach, developed specifically for this

analysis (Alowisheq et al., 2011), devised to offer a formal and unified method to

facilitate the scenario analysis. In this modelling approach, resources are key

actors in the interfaces, in contrast to other approaches where services, messages

 65

Chapter 4 Scenarios Analysis and RO Modelling

or objects have primacy. It aims to provide a more intuitive mapping from model

to implementation than could be achieved with non-resource focused methods.

Resource-Oriented Modelling is based on re-purposing UML Collaboration

Diagrams.

4.2.2.1 UML Collaboration Diagrams

The UML collaboration diagram is one of the UML interaction diagrams. As well as

showing the interaction between objects, it focuses on the structural organisation

of these objects. Therefore it can model static and dynamic aspects of the system

which correspond to the structural relationships between objects and the

behaviour and exchanged messages, respectively. The following figure is a

collaboration diagram taken from (Booch et al., 1999)

Figure 7 Collaboration Diagram

It shows objects exchanging messages. The arrows are messages, the sequence

number on the arrows indicates the time order of messages, where 2 is the 2nd

message and 2.1 is a message nested in 2. Both the arrows and the sequence

numbers show the behaviour of the system. The links between the objects show

the structural relationships, such as associations, aggregations, compositions and

dependencies.

4.2.2.2 Collaboration Diagrams for RO Modelling

When building ROA and RESTful Web services, what is being created is an

interface for clients, not a complete system; therefore our modelling approach

focuses on the interface. The interface is formed by the resources that the server

exposes to the client. The client is not modelled as a resource; however, messages

that have no initiator are considered to be from the client. In our modelling

approach, resources take the place of objects in collaboration diagrams.

c : Client

p : ODBCProxy: Transaction

1 : create
2 : setActions(a, d, o)
3 : destroy

2.1 : setValues(d, 3.4)
2.2 : setActions(a, “CO”)

 66

 Chapter 4 Scenarios Analysis and RO Modelling

According to ROA, these resources have a uniform interface: they can be created,

read, updated or deleted, so the messages are restricted to these four actions.

Creation of resources in ROA is achieved by sending a POST request to a factory

resource and, in UML terms, these can be considered as classes. In the original

UML collaboration diagrams, there were no classes only objects, but later versions

introduced specification level modelling that showed the structural relationships

between classifiers. We do not take that approach, and instead represent factory

classes as resources. This is because factory resources are not abstract in ROA

but are actual elements that participate in the interaction. They need to be

included so that both the static and dynamic aspects can be modelled.

The example in Figure 8 shows a simple example of the RO modelling approach. It

models the B1: Reverse Auctioning Service scenario, which can be broken down

into the following steps:

(1.) The buyer creates an auction

(2.) The buyer starts the auction

(3.) The suppliers place their bids

(4.) The buyer selects a bid

(5.) The buyer pays for the service

(6.) The buyer deletes the auction

Figure 8 RO Diagram for B1: Reverse Auctioning Service

The letters c, u, d, and i on the messages respectively correspond to create,

update, delete and instantiate. The links labelled Has and For are structural links

that show how the resources relate to each other. We show the structural links

between factory resources and non-insatiable resources, which can only be

created by the server. The rationale behind this is to facilitate eliciting domain

ontologies. Below is the domain ontology for B1.

A1: Auction

Auction

1.1: i

Buyer: 1: c

P1: Payment

Payment

5.1: i

Buyer: 5: c

B1: Bid

Bid

3.1: i

B2: Bid

Buyer: 2: u

Buyer: 6: d

Supplier: 3: c

< For

3.1: i
Supplier: 3: c

B
uy

er
: 4

. u

H
as >

 67

Chapter 4 Scenarios Analysis and RO Modelling

:Auction a owl:Class.

:Bid a owl:Class;

:Payment a owl:Class.

:For a owl:ObjectProperty;

rdfs:domain :Bid;

rdfs:range :Auction.

:Has a owl:ObjectProperty;

rdfs:domain :Auction;

rdfs:range :Payment.

This ontology contains the classes and object properties in the scenario, however

data properties would still needed to be added.

The advantages of Resource-Oriented Modelling stem from it being a more natural

way to represent REST and ROA solutions, hence allowing designs to be more

easily mapped to solutions. This is because it provides a simple mechanism for

eliciting domain ontologies and captures both dynamic and static aspects of the

interface.

4.2.3 Outcomes of the Scenario Analysis

The RO models for the twenty scenarios were created (they are included along

with the Scenario descriptions in Appendix B). This was done by abstracting the

interface as resources, then deciding on the structural relationships between

these resources and the interactions needed to reflect the main success scenario

in those scenarios.

The underlying assumption in the analysis was that resources in the scenarios

were semantically described in domain ontologies, and these ontologies can be

accessed by clients. Therefore, the analysis focused on finding other interaction

requirements the client needed to be aware of (i.e. expressed to the client) in

order to interact with the resources to achieve the scenario. The resulting

interaction requirements are listed and explained below:

1. Mutability: Is the interaction with the resources to retrieve information or to

update them? Most of the interactions in the scenarios were presented as

updating resources. Table 7, where analysis results are compiled, shows that

out of 128 interactions 89 were updating compared to 39, which were

information retrieval.

HTTP offers four main methods for interacting with resources. These are GET,

PUT, POST and DELETE. A GET on a resource would be for information

retrieval, and the other three methods modify, create and remove resources,

 68

 Chapter 4 Scenarios Analysis and RO Modelling

respectively. The combination of the HTTP method and the URI of the resource

should be sufficient to semantically describe to the client how to formulate

the request and the effects of the interaction. Therefore, there needs to be a

mechanism where both the HTTP method and the URI are presented to the

client prior to the interaction.

2. Atomicity: Is the interaction atomic or conversational? Conversational

interactions are where the client follows a certain order of interactions to

achieve the business logic. Conversational interactions are made up of several

atomic ones. Conversational interactions can be achieved in HTTP by

providing the client with links to the possible next steps. Out of the twenty

scenarios, seventeen were conversational interactions.

3. Synchronisation: Is the interaction with the resources synchronous or

asynchronous? An aspect of interaction that needs to be expressed to the

client, is when the response is not immediate, e.g. a running job, hence

asynchronous. The default mode of interaction is a synchronous request-

response mode. This shows in the analyses of the scenarios, as only 34 out of

the 128 interactions were asynchronous. Asynchronous interaction in HTTP

can be achieved either through polling or pushing (notification). In polling, the

client checks if the processing is completed at set intervals; using HTTP, the

server can be made to respond with the status code “202 Accepted”, which

means that “The request has been accepted for processing, but the processing

has not been completed.”. However achieving pushing (notification) is not

natively supported by HTTP. The analysis of the scenarios shows that in 6

interactions notification was required, compared to 26 where polling sufficed.

4. Plurality: Do the resources represent collections? In the twenty scenarios

there were nineteen interactions with resources that represented collections.

Five out of those nineteen can be represented as dynamic filters on

collections, where the client provides values for properties on which the

collection is filtered. The method for expressing these types of interactions is

discussed in Chapter 5.

5. Roles: Are the types of interactions permitted by the server similar for every

client, or are there different client roles? In the analysed scenarios, six out of

the twenty scenarios had different client roles: for example, in the B1: Reverse

Auctioning scenario, there were two types of clients: suppliers, and buyers.

6. Resource Representation: This is a fundamental feature of RESTful

approaches, because interacting with the resources is performed by

exchanging representations of resources.

Table 7 Interaction requirements of scenarios across communities of interest

 Mutability Atomicity Synchronisation Plurality Roles

 69

Chapter 4 Scenarios Analysis and RO Modelling

In
fo

rm
at

io
n

Re
tr

ie
va

l

U
pd

at
in

g

Co
nv

er
sa

tio
na

l

Po
lli

ng

N
ot

ifi
ca

tio
n

Co
lle

ct
io

n

Fi
lte

re
d

Co
lle

ct
io

n

Mashups 12 13 3 3 1 4 2 0
Enterprise Services 6 6 2 0 1 1 0 2
B2B 8 25 4 2 0 5 1 1
Cloud Computing 2 18 4 9 0 3 0 0
Grid Computing 11 27 4 12 4 6 2 3
Total 39 89 17 26 6 19 5 6

Table 7 shows a summary of the number of times the interaction requirements

appeared in the five communities. Note that the sixth requirement is a

fundamental requirement of RESTful approaches and is present in all the

scenarios therefore it does not appear in the table. The full analysis per scenario

is included in Appendix B.

4.3 SWS Approaches and Interaction Requirements

This section reflects on the 27 SWS approaches reviewed in Chapter 3, and asks if

and how they support the six interaction requirements presented in the previous

section. Table 8 shows the approaches and which requirements they fulfil.

Table 8 SWS approaches and interaction requirements

Publication Purpose

Requirements

Re
so

ur
ce

 R
ep

.

M
ut

ab
ili

ty

Pl
ur

al
ity

At
om

ic
ity

Sy
nc

hr
on

is
at

io
n

Ro
le

s

OWL-S (Martin et al., 2004) Generic * x *  * x
WSMO (Bruijn et al., 2005a) Generic * x * x * x
SAWSDL (Farrell and Lausen, 2007) Generic * x * x * x
WSDL-S (Akkiraju et al., 2005) Generic * x * x * x
SWSF (Battle et al., 2005) Generic * x *  * x
DSD (Klein et al., 2005) Generic * x * x * x
SA-REST (Lathem et al., 2007) Generic *  * x x x
hRESTS (Kopecky et al., 2008) Generic *  * x x x
MicroWSMO (Kopecky et al., 2008) Generic *  * x x x
WSMO-Lite (Vitvar et al., 2007) Generic * x * x * x
RESTfulGrounding (Filho and Ferreira, 2009) Generic *  *  x x
ReLL (Alarcon and Wilde, 2010) Data Int. *    x x
SBWS (Battle and Benson, 2008) Generic * x * x * x
SPARQL descriptions (Sbodio et al., 2010) Generic * x * x * x
LIDS (Speiser and Harth, 2011) Data Int. * x x x x x
LOS (Krummenacher et al., 2010) Generic *  x x x x

 70

 Chapter 4 Scenarios Analysis and RO Modelling

Publication Purpose

Requirements

Re
so

ur
ce

 R
ep

.

M
ut

ab
ili

ty

Pl
ur

al
ity

At
om

ic
ity

Sy
nc

hr
on

is
at

io
n

Ro
le

s

Semantic REST (Battle and Benson, 2008) Generic    x x x
Zhao and Doshi (2009) Generic    x x x
Hernandez and Garcia (2010) Generic   x x  x
TSC (Riemer et al., 2006) Generic   * *  
RESTdesc (Verborgh et al., 2011) Generic *  x  x x
iServe (Pedrinaci et al., 2010b) Generic *  x x * x
SADI (Wilkinson et al., 2009) Bioinformatics *  x x  x
HyperData (Kopecky et al., 2011) Generic (LD)     x x
Hypermedia RDF (Kjernsmo, 2012) Generic (LD)   x  x x
RDF-REST (Champin, 2013) Generic (LD)      x
SSWAP (Gessler et al., 2009) Bioinformatics   x x x x
: addressed by the approach x: not addressed by the approach *: assumed existing & addressed by other layers

In SWS that are classified as service-oriented meta-models the resource

representation requirement is addressed by other layers typically the domain

ontology which describes the resources manipulated by the service, and in

approaches that have WSDL groundings, such as OWL-S, WSMO, SAWSDL, WSDL-S,

SWSF, DIANE, WSMO-Lite, the resources manipulated are also described in WSDL

types. This is also the case for plurality.

As for mutability, approaches that described RESTful Web services, whether they

adopted RO or SO meta-models, all provided mechanisms for specifying which

HTTP method to be used.

Regarding atomicity this is either fulfilled by providing the capability to describe

composite services such as in OWL-S, SWSF and RESTful Grounding, and

Hernandez & Garcia or providing methods for guiding the clients to the next state

as in ReLL, RESTdesc, Hyperdata, Hypermedia RDF and RDF-REST.

Synchronisation can be targeted in other layers such as Message Exchange

Patterns (MEP) in WSDL/SOAP based services, however it is ignored by most

RESTful and RO approaches, with the exception of Triple space approaches such

as TSC and Hernandez & Garcia. RDF-REST and SADI address this by providing

“202 Accepted” status codes.

The roles requirement is addressed by only one of the SWS approaches, TSC. The

triple space provides the definition of roles an permissions. Possibly, the reason

 71

Chapter 4 Scenarios Analysis and RO Modelling

that the roles interaction requirement is ignored by the SWS frameworks is that

these are regarded to be application-specific.

RDF-REST fulfils all the requirements except roles because it proposes to

implement the Linked Data Platform (LDP), which targets these requirements in

the interface descriptions.

4.4 Conclusions

This chapter set out to conceptualise Web service scenarios as RESTful

interactions with resources, and to understand their requirements as a result of

this conceptualisation.

It presented the compilation and analysis of a total of twenty representative Web

service scenarios from five communities of interest. RO models were introduced

to aid in the analysis and abstract resources in the interaction. The underlying

assumption was that the resources were semantically described in domain

ontologies; therefore the aim was to investigate other aspects that needed to be

expressed in the interface, so that the client can interact with the interface to

fulfil a specific scenario, and how to achieve those using only REST and the

domain ontology.

The need for five main interaction requirements emerged from the analysis.

These are mutability, atomicity, synchronisation, plurality and roles, in addition to

the underlying requirement assumed during the analysis, which is resource

representation. These requirements were used to reflect on the SWS approaches

reviewed in Chapter 3.

These requirements informed the design of the proposed RESTful SWS approach,

EXPRESS, and the next chapter discusses how they are implemented in EXPRESS.

 72

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Chapter 5: EXPRESS: EXPressing REstful

Semantic Services

This chapter introduces EXPRESS, an approach to both describing and providing

RESTful Semantic Web services.

EXPRESS eliminates explicit service descriptions and vocabularies, and shows how

RESTful Semantic Web services can be created semi-automatically by combining

the expressivity and semantics in ontologies and providing a uniform interface

for them. This requires the conceptualisation of problems as interactions with

semantically described resources, rather than services. So instead of semantically

describing a temperature service as a service that takes a location as input and

returns the degree as output, it is conceptualised as a temperature resource that

is filtered by a location. The difference is subtle, but this chapter shows how it

enables the elimination of explicit service descriptions and vocabularies.

Section 5.1 presents an overview of EXPRESS and a simple example of how it

works; Section 5.2 shows how EXPRESS describes and provides the interaction

requirements discussed in Chapter 4, Section 5.3 presents a proof-of-concept

demonstrator for EXPRESS that shows how RESTful Services can be provided semi-

automatically, and Section 5.4 discusses how EXPRESS compares to other SWS

approaches.

5.1 Overview of EXPRESS

The processes of semantically describing and providing services in EXPRESS are

intertwined and are undertaken in six steps. In the first of these, the developer

provides a domain ontology that describes the resources in the interface. All the

steps are illustrated in Figure 9 below.

 73

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Figure 9 Steps for describing and providing a RESTful interface in EXPRESS

A Simple Example

Following is a simple example to demonstrate the primary concepts in EXPRESS.

This example presents a bookstore Web service. The bookstore wants to enable

the ordering of books, and is referred to as the service provider. There are two

types of clients: customers and an independent delivery service.

(Step 1) The service provider needs to provide an ontology describing entities it

wants clients to deal with. In this case they are: book, order, and person. The

following listing describes the relevant parts of the ontology formatted in N3

:Book a owl:Class.

:title a owl:DatatypeProperty;

 rdfs:domain :Book;

 rdfs:range xsd:string.

:author a owl:ObjectProperty;

 rdfs:domain :Book;

 rdfs:range :Person.

:Person a owl:Class.

:isbn a owl:DatatypeProperty;

Design the domain
ontology describing

resources

Provide URI for
each resource

and deploy them
as endpoints

Specify roles and
permitted HTTP

methods on
each resource

Specify the
navigation
between
resources

Decide on
appropriate
state code
responses

Implement the
functionality in

response to
HTTP methods.

1

2

3

4

5

6

 74

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

 rdfs:domain :Book;

 rdfs:range xsd:string.

:Order a owl:Class.

:containsItem a owl:ObjectProperty;

 rdfs:domain :Order;

 rdfs:range :Book.

 :orderedBy a owl:ObjectProperty;

 rdfs:domain :Order;

rdfs:range :Customer.

 :creationdate a owl:DatatypeProperty;

rdfs:domain :Order;

rdfs:range xsd:dateTime.

 :Customer a owl:Class.

 :hasAddress a owl:DatatypeProperty;

rdfs:domain :Customer;

rdfs:range xsd:string.

(Step 2) The OWL file is used to create a RESTful interface for the resources. The

file is parsed; classes, properties and individuals are given URIs based on their

names in the file. The following are examples of generated URIs.

http://bookstore.com/Book (URI for a class)

http://bookstore.com/Book/DBSys (URI for a book instance)

http://bookstore.com/Order/Or11233 (URI for an order instance)

The book’s properties also have URIs, for example the book’s title has this URI

http://bookstore.com/Book/DBSys/title

The URIs are designed to include the types of the requested resources as shown

above; this is consistent with the W3C note on cool URIs9.

(Step 3) The service provider then states, via mechanisms later discussed in the

chapter, which methods (GET, PUT, POST and DELETE) can be applied to each URI. If

the server provider has several types of clients, it can state that permitted

methods on a URI differ depending on what type of client is accessing it.

The interface is deployed after specifying the access control lists, as stubs are

automatically created.

(Step 4) In this case the interaction is conversational, so the client would be

guided by the server on which links to follow next. This means that, in the

implementation, the developer would specify that when a book is retrieved, a link

to order a book is presented to the client.

9 Cool URIs for the Semantic Web, W3C, http://www.w3.org/TR/cooluris/

 75

http://www.w3.org/TR/cooluris/

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

(Step 5) The developer does not need to specify default HTTP response codes,

such as 200 OK or 201 Created, when retrieving or creating a resource

respectively, which is the case in this example; however, to make the interaction

synchronous the developer would need to change the response. This is explained

further in Section 5.2.5.

 (Step 6) The service provider maps these stubs to existing services or codes the

business logic in them.

To illustrate how a client customer interacts with the interface to place an order,

we assume the client has already discovered the service10. For the client to invoke

the service it needs to have the OWL file. It can access this from the service in the

same way it GETs any other resource.

The purpose of the OWL file is to show the resource representation and thus the

exchanged messages format, relationships, and special instances. The client also

needs to know how to invoke HTTP methods on resources. After the client has got

the OWL file, to place an order it sends a POST request to

 http://bookstore.com/Order

with the following payload

_:a223 a :Order;

 :containsItem <http://bookstore.com/Book/DBSys>;

:hasTime "2013-04-23T11:19:35"^^xsd:dateTime;

 :orderedBy :c1245.

The server will respond by creating a new order and sending back its URI to the

client. For example http://bookstore.com/Order/Order11233. The orderedBy property

indicates which customer placed the order.

As an example of how role-based access control (RBAC) is applied, on the URI

http://bookstore.com/Order/Order11233/hasStatus

customer clients can only invoke GET. The delivery service, which is also a client

of the bookstore service can invoke GET or PUT to modify the status, but cannot

modify other Order properties, however customers can. This is explained further

in Section 5.2.6.

10 Another assumption is that the client knows the URI of the book it wants to order. This example is
extended in Section 5.2

 76

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2 Semantic Description

This section shows how EXPRESS provides the interaction requirements discussed

in Chapter 4. These interaction requirements are first listed in Table 9, which

states the means of description or provision and the step in which they occur (as

illustrated in Figure 9).

Table 9 Interaction requirements and the step in which they are expressed

Interaction
requirement

Means Step

Domain
ontology

Resource
URI

HTTP
Methods Links

HTTP
Status
Codes

RBAC 1 2 3 4 5 6

 Resource
 Representation    

 Mutability    

 Plurality  

 Atomicity  

 Synchronisation  

 Roles  

5.2.1 Resource Representation

The main argument of this thesis is that the resource representation in the

domain ontology and the standard interface are sufficient to describe the

required functionality. Therefore the resource representation requirement plays

the main role in the design of EXPRESS approach, and it is the foundation upon

which the other five requirements stand, hence a thorough explanation of the

resource representation requirement is substantially longer than the other

requirements.

Referring to the bookstore example in the previous section, the representation of

a Book individual is as follows:

<http://bookstore.com/Book/DBSys> a :Book;

:isbn "0123735564"^^xsd:string;

:title "Database Systems"^^xsd:string;

:author <http://bookstore.com/Person/JSmith>.

The resource representation is constructed from the specified properties of the

resource and their values. In EXPRESS rdfs:domain that links a property to class,

specifies that individuals of the class would have those associated properties in

the representation, and the types of those properties would depend on the

rdfs:range statements in the ontology.

 77

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Typically, the server is responsible for minting URIs for newly created resources.

In a case where the client is creating a new resource such as the Order in Section

5.1, EXPRESS requires the client to send URIs as blank nodes (bNodes), then

creates the resource and sends the URIs back to the client.

This section explains the resource types, their representations, and the rationales

for the design decisions. In a RESTful interface, clients and service providers

interact by exchanging resource representations. Specifying the resource

representation is important because it sets restrictions on the exchanges between

the server and the client, this establishes a common language that manages

expectations and hence enables validation and facilitates future automation of the

interaction.

5.2.1.1 Resource Types

The messages exchanged in EXPRESS are in RDF. The interface is described by the

domain ontology, which can contain several resource types. The main resource

types are classes, individuals, or properties of individuals. Each one of these

resources types has a different URI pattern that corresponds to a graph pattern

(shown in Table 10). This graph pattern, together with the domain ontology,

dictate the format of the resource representation.

The aim is to enable automated generation of URIs endpoints and server-side

stubs from the description of resources in the ontology.

Table 10 Resource types and corresponding URI and graph patterns

Resource Type URI Pattern Corresponding Graph Pattern

Class /AClass ?x a AClass
?x ?p ?o

Individual /AClass/Individual Individual a AClass
Individual ?x ?y

Object Property /AClass/Individual/Property Individual Property ?x
?x ?p ?o

Data Property /AClass/Individual/Property Individual Property ?x

Filtered Individuals /AClass?Property={value}

?x a AClass
?x ?p ?o
?x Property value
value ?y ?z

Properties of
Filtered Individuals

/AClass/Property1?Property2=
{value}

?x a AClass
?x Property1 ?y
?x Property2 value
?y ?p ?o

The six resource types in Table 10 are explained in further detail below.

1. Class

 78

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

This resource type serves as a factory endpoint for creating new individuals of

this class, or listing existing ones. Having a factory endpoint for creating

resources is a well-known convention in the design of Web applications and Web

API, and the URI for such an endpoint typically ends with the name of the class or

resource type. For example in the Facebook Graph API11, the following endpoint is

used to add photos

/{album-id}/photos

To form the newly added photo’s URI, the photo ID will be appended to the URI

above, and EXPRESS follows the same convention, by having the URI pattern

representing a class end with the class name.

The corresponding graph pattern aims to match any individual of this class,

together with the individual’s properties. The notion of properties here is also

influenced by object-oriented design. That is the properties assume a direction;

therefore, in the design of the ontologies for EXPRESS the developer should define

the domain and range of the property. This is one of the requirements EXPRESS

imposes on the design of ontologies. Thus when manipulating an individual of

this class, or returning its properties, only properties which have been defined to

have this class as a domain will be considered as part of the result. This functions

to manage server and client expectations.

2. Individual

This resource type represents an individual of a class, the corresponding URI

pattern is also in line with cool URIs and conventions and practices in the design

of Web APIs. When a resource is created of a certain type, its URI is formed by

appending its ID to the URI of the Class it belongs to. The corresponding graph

pattern represents a single resource as well as its associated properties and their

values.

3. Object Property

The object property resource type accesses the values of object properties for a

certain individual. This fine-grained access allows the client to retrieve or

manipulate a property of the resource, rather than the whole resource, thereby

increasing the efficiency of the interaction when resources are large, and enabling

different levels of access control over resource properties.

The URI pattern of an object property, since it accesses part of a resource,

becomes an extension to the resource’s URI and takes the following form, as

shown in Table 10:

11 Facebook Graph API https://developers.facebook.com/docs/graph-api/using-graph-api/v2.1

 79

https://developers.facebook.com/docs/graph-api/using-graph-api/v2.1

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

 /AClass/Individual/Property

The corresponding graph pattern matches the individual which is the value of the

property as well as its associated properties and their values.

4. Data Property

The data property resource type is very similar to the object property resource

type, the only difference is in the corresponding graph pattern, which matches the

triple connecting the individual to the value of the data property.

5. Filtered Individuals

This resource type represents individuals that are filtered by one or more

property values. It is intended to provide an efficient mechanism for retrieving

and creating resources. This is a factory endpoint, like the Class resource type.

The class resource type had two main functionalities:

1. To create a new individual of this class.

2. To provide access to all individuals of this class.

The Filtered Individuals resource type is a special case of the Class resource type.

It enables both the creation and retrieval of individuals, however unlike the Class

resource types, these individuals are filtered by property values during retrieval.

Individuals created by this resource type can have certain property values

specified by the client. Examples include a server generated ID, or a creation date.

Let us assume that the Order resource in the bookstore has a creation date, which

is created by the server. This is indicated to the client by specifying the all the

properties needed to create the Order in the query string, and leaving out the

properties that the server would create, as shown below.

Link: <http://bookstore.com/Order?orderedby={}&containsItem={}>; rel="POST"

This would tell the client that values for both orderedBy and containsItem are

required for creating an Order, and as a result an Order would be created, that

has the client provided values for both orderedBy and containsItem, and a

creation date specified by the server.

The URI pattern for the Filtered Individuals resource type is comprised of the

name of the Class and a query string with name-value pairs for the filtering

properties. This offers flexibility for defining endpoints of this type, so that

several endpoints may exist to filter individuals by different combinations of

 80

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

properties. Moreover the structure of the URI pattern, being a query string, differs

from those of other resource types, so it is not confused with them.

The corresponding graph pattern matches individuals of the Class, that have the

given value for the specified property, as well as those individuals associated

properties and their values.

6. Properties of filtered individuals

In a case where the client only wants a value of a certain property for filtered

individuals, such as titles of books by a certain author, it is inefficient to return all

the properties of those individuals.

This follows the convention established in the previous resource type; however

only the required property of the individual is returned, not all the properties of

the individuals.

Therefore, the URI pattern for this resource type is similar to the Filtered

Individuals URI pattern in terms of the query string and name-value pairs, but it

differs in that it has the the required property before the query string. The

corresponding graph pattern matches the individuals, their required properties

and the properties used for filtering.

Property paths are a new feature in SPARQL 1.1 (Harris and Seaborne, 2013). They

enable the specification of an arbitrary length route between two resources; triple

patterns are paths of length 1.

For example

?order :containsItem/:title ?title

would return the titles of books in orders. Property paths make writing graph

patterns more concise, allow resources connected by arbitrary length paths to be

matched and support inverse paths where roles of subject and object are

reversed.

The use of property paths is a potential future extension for EXPRESS, which

would add greater flexibility to the introduced resource types. However this is

currently out of the scope of this thesis. For example

/Order/{OrderID}/containsItem/title

would be the URI for the pattern above.

 81

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.1.2 Resource Types in RO SWS Approaches

Having different resource types that exhibit differ in behaviour as a result of

applying HTTP methods, or differ in their representation is common in the design

of resource-oriented SWS. For example in Semantic REST (Battle and Benson, 2008)

they had two main endpoint types, a class-level and a resource-level endpoint.

Each has a different URI pattern. The URI form for a class-level resource is:

/ResourceType/

The URI form for a resource-level endpoint is:

/ResourceType/ResourceID

Moreover these endpoints accept SPARQL queries to be sent and resolved, in

EXPRESS this is not allowed for security reasons, however basic filtering is offered

by introducing the two other resource types Filtered Individuals, and Properties of

filtered individuals. In EXPRESS, if advanced SPARQL queries are required they

should be defined explicitly as a resource in the ontology.

Zhao and Doshi (2009) identified three types of resources, these are: resource set,

individual resource and transitional service. Each of these types has an associated

URI pattern. A resource set type, represents a collection of resources of a certain

type therefore the HTTP methods applied to it will manipulate all individuals in

the set. In addition this type of endpoint serves as a factory endpoint to create

new individuals of this type. An individual resource represents one resource, and

hence the HTTP methods affect a single resource. The third type is different, it is

loosely defined, to encompass all functionally that does not map directly to

manipulating sets, or individuals, and that is considered more transformation-

oriented, or resources that update other resources. They provide examples such

as ShipOrder, and SubmitPayment. EXPRESS’s alternative for this, is to represent

the functionality as an update of resource’s property, this way EXPRESS provides a

unified view of resources.

RDF-REST (Champin, 2013) proposes to implement the Linked Data Platform (LDP)

(Speicher et al., 2014). In LDP there is a notion of LDP Resources (LDPR) and LDP

Containers (LDPC), these two types of resources respond differently to HTTP

methods.

Hyperdata (Kopecky et al., 2011) uses named graphs to represent API endpoints

for resources in the RDF store. They have four types of resources: classes,

individuals, property resources, and value resources. These are defined as named

graphs, and in Hyperdata are considered as endpoints, which accept HTTP

 82

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

methods. These definitions also include the resource description, so that the

boundaries of the resources are defined.

In TSC approaches such as the one by Hernandez and Garcia (2010), they assumed

that there were domain ontologies that define the classes of individuals, and that

each triple space has a URI and corresponds to a certain class, therefore

individuals that exist in a triple space, are all of the same class, and each one of

those individuals had a specific URI. Thus the underlying assumption is that there

are two different resource types (class and individual), which exhibit different

behaviours when HTTP methods were applied.

SSWAP (Gessler et al., 2009) on the other hand was developed for bioinformatics

applications, and the functionality is conceptualised as mapping an input

provided by the client to a related output provided by the service, therefore it

defines only one resource type. The client can send POST request with the input to

the endpoint URI, or perform a GET request with the input value appended to the

endpoint URI by means of a query string.

These RO SWS approaches, used resource types to specify:

1. How the server would respond: Would it manipulate a list of resources, a

single resource, or a part of a resource?

2. What the payload looks like: What does a resource contain and what are its

boundaries, in other words what is the payload structure?

Three other RO SWS reviewed in Chapter 3 do not use resource types for the

purposes above these are RESTdesc (Verborgh et al., 2011), ReLL (Alarcon and

Wilde, 2010), and Hypermedia RDF (Kjernsmo, 2012). In RESTdesc there is no RDF

serialization of the resource representations; graph patterns represent resources

that are necessary for the composition or discovery of the APIs. Therefore, those

graph patterns provide a flexible way to define the expectations from the

endpoint, but only the ones necessary to compose or discover them, not to

represent the resource. In other words, the resource representation is left to the

lower layers. ReLL is similar in this sense, where the resource representation is

left to the schema and media types. Hypermedia RDF is a proposed vocabulary to

make RDF a hypermedia type. The approach does not specify the repercussions of

updating or deleting a resource. So in a sense the resource representation does

not define the resource boundaries, therefore there are no resource types.

Ultimately, RO SWS can take two methods, either they impose general types of

resources or endpoints with similar behaviours and rules for payload structures,

or theyoffer more flexibility and define implications for each endpoint separately,

 83

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

such as the three approaches discussed in the last paragraph. EXPRESS adopts the

first method. The whole purpose of resource types in EXPRESS is to strike a

balance between imposed restrictions and generality so that several applications

can be fulfilled, while being easy for developers to understand the concepts.

5.2.1.3 EXPRESSive Ontologies

As explained above EXPRESS utilises mechanisms in the ontology itself to

represent requirements in the interaction. This imposes assumptions on the

design and the interpretation of the ontology. An example discussed above was

the specification of the domain and range for each property. Two other

assumptions are explained below. This requires designing the ontology with

EXPRESS in mind. EXPRESS also assumes ontologies are in OWL DL, however since

no reasoning is required at this stage, the OWL profile of less importance.

1. Potential addition of new concepts

In service-oriented approaches to SWS, domain ontologies are mainly used to

specify inputs and outputs for the services. A resource-oriented approach

requires a different conceptualisation of the problem, as any resource the client

may interact with would need to be specified. For example in a resource-oriented

approach if you want customers to be able to order books you need to have an

Order class, whereas in a service-oriented approach there would typically be a

Book Order service, described using a service ontology, this service may have a

book as input and an order ID as output. For that reason a resource-oriented

approach such as EXPRESS may require the addition of new concepts to the

domain ontology.

2. Alignment to classes and properties in popular ontologies or vocabularies

Although this step is not necessary for an ontology to become an EXPRESSive

ontology (and is usually a part of designing any ontology) it serves the purpose of

service matchmaking in EXPRESS. Using owl:equivalentClass, and

owl:equivalentProperty enables linking the definitions of classes and properties

in an EXPRESSive ontology to other ontologies. For example, consider the Book

class, from the example used earlier in the chapter

:Book a owl:Class;
 owl:equivalentClass dbpedia:Book.

 84

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

The Book class is now mapped to the dbpedia:Book class.

5.2.1.4 Open Issues

There are two open issues related to resource representation, solutions for these

issues are suggested below. For a client to interpret and interact with EXPRESS

services autonomously these issues must be further explored.

1. Which resource properties are required from the client and which are optional?

This could be defined using the cardinality restrictions in OWL, specifically

owl:minCardinality. For example if author was an optional property for Book, it

could be expressed as follows:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⊑ ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜

which is a cardinality restriction that at least zero authors are required for a book.

2. Which resource properties link to sub-objects or dependent ones (weak entities)?

Taking for example, a book’s author, and assume that the server would allow

clients to create books. The client would be allowed to create an author individual

when creating the book, these resources would not have been created yet, and

would be sent as bNodes: then the server would create them and send back their

URIs. However if the client wishes to link to an existing author, it can provide

their URIs instead, and the server would understand not to create them. So what if

the server would not allow the client to create a Book without having an Author.

How would that be conveyed to the client? This could be conveyed using OWL

restrictions. For example:

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⊑ ∃ 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜.𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

This would tell the client that an author would need to exist, before creating a

Book.

However the issue with using restrictions, either existential (such as the one

above) or cardinality restrictions (such as in point 1) are not enforced in OWL,

because its standard semantics adhere to Open World Assumption (OWA),

therefore reasoners do not notify if an Book instance exists without having an

author.

Therefore EXPRESS aware clients need to interpret these as restrictions and use

other mechanisms to extract and deal with these restrictions accordingly. This is

out of the scope of this thesis, and two potential solutions are discussed as

future work in Section 8.4.

 85

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.2 Mutability

Resources in EXPRESS can be created, read, updated and deleted; the offered

functionality is indicated by which HTTP method the resource accepts: these are

POST, GET, PUT and DELETE. The effects of applying these methods to the resource

types are shown in the following table.

Table 11 Resource types and the effects of HTTP methods

Resource Type GET PUT POST DELETE

Class
Gets information
about all individuals
of this class

Creates a named
individual: the client
states the identifier

Creates an individual:
the server decides the
identifier

Deletes individuals of
this class

Individual Gets all properties
of the individual

Updates individual’s
properties values N/A Deletes individual and its

properties

Object Property Gets the value of
this property

Updates the value of
this property N/A

Deletes the relationship
between the property
value and the individual;
the decision whether the
value is deleted is left to
the implementation

Data Property Gets the value of
this property

Updates the value of
this property N/A Deletes the property

value

Filtered
Individuals

Gets individuals
that have the given
property value

Updates individuals
that have the given
property value

Creates individual(s)
with the given
property value

Deletes all individuals
that have the given
property value

Properties of
Filtered
Individuals

Gets property1, of
all individuals that
have the given
value for property2

Updates property1, of
all individuals that
have the given value
for property2

N/A

Deletes property1, of all
individuals that have the
given value for
property2

In EXPRESS, as in ROA, the HTTP methods POST, GET, PUT, and DELETE map to

Create, Read, Update and Delete (CRUD), respectively. To be meaningful in the

context of EXPRESS, the POST method, which creates new instances, can only be

applied to the factory resource types: class and filtered individuals. In all the

other cases, GET retrieves, PUT updates, and DELETE deletes the associated graph

pattern represented by the resource type, as explained in Table 10. PUT is used

for creating individuals only when applied to the Class resource type, this means

the server permits the client to provide the identifier, which is consistent with

ROA practices (Richardson and Ruby, 2007, p99, p220).

 It is possible to formalise each request as a SPARQL query. This formalisation

provides a specification of the request’s behaviour, or effects. To represent the

GET method SPARQL CONSTRUCT queries are used. To enable the representation

of the PUT, POST and DELETE methods the SPARQL Update Language (Gearon et al.,

2013) specifically DELETE and INSERT operations are used.

The mapping to SPARQL queries has the following assumptions:

 86

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

1. The service provider has an internal RDF graph named <Server>

2. The resource type and the HTTP method determine the SPARQL query

3. In PUT and POST the payload, is considered another RDF graph <Payload>

The following example in

Table 12 illustrates the mapping to SPARQL queries, it maps the HTTP methods’

effects on the “individual” resource type, shown in the second row in Table 11.

The rest of the mappings are in Appendix C.

This example represents the mapping of HTTP methods into SPARQL queries on a

book individual from the bookstore example in Section 5.1. The URI pattern and

corresponding graph pattern for an individual is as follows.

URI Pattern

AClass/Individual

Graph Pattern

Individual a AClass;

Individual ?x ?y.

And in the case of a specific book, DBSys, this would be:

URI

http://bookstore.com/Book/DBSys

RDF Graph

<http://bookstore.com/Book/DBSys> a :Book;

:isbn "0123735564"^^xsd:string;

:title "Database Systems"^^xsd:string;

:author <http://bookstore.com/Person/JSmith>.

Table 12 Formalisation of HTTP methods in SPARQL queries for a book individual

GET

Description Retrieves information about DBSys at this URI
 http://bookstore.com/Book/DBSys

Corresponding
SPARQL Query

CONSTRUCT {
 <http://bookstore.com/Book/DBSys> ?p ?o }
WHERE {
 <http://bookstore.com/Book/DBSys> ?p ?o }

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation
The CONSTRCUT query returns triples in the format specified by the graph pattern
associated with the individual resource type (see Table 10), which returns the values of
the associated triples.

PUT

Description
Updating the ISBN of the book at this URI
 http://bookstore.com/Book/DBSys

Payload <http://bookstore.com/Book/DBSys>

 87

http://bookstore.com/Book/DBSys
http://bookstore.com/Book/DBSys

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

:isbn "1334340005"^^xsd:string.

Corresponding
SPARQL Query

WITH <Server>
DELETE
 { <http://bookstore.com/Book/DBSys> ?p ?oOld}
INSERT
 { <http://bookstore.com/Book/DBSys> ?p ?oNew}
WHERE
 { GRAPH <Payload> {
 <http://bookstore.com/Book/DBSys> ?p ?oNew }
 GRAPH <Server> {
 <http://bookstore.com/Book/DBSys> ?p ?oOld }}

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "1334340005"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation

To update an individual, this is mapped to a DELETE/INSERT operation, the payload
contains the triples that specify the properties that will be updated and their new values.
The DELETE/INSERT operation deletes from the server the triples that match the pattern :
Individual ?p ?old
But since there is a WHERE clause, this pattern also matches the triples provided in the
payload. Therefore only triples containing properties provided in the payload will be
affected in the server, and replaced by the triples provided in the payload which is the
effect of the INSERT clause.

DELETE

Description Deletes the individual and associated properties.

Corresponding
SPARQL Query

DELETE {
 GRAPH <Server> {
 <http://bookstore.com/Book/DBSys> ?p ?o. }}
WHERE
 { <http://bookstore.com/Book/DBSys> ?p ?o. }

Explanation The triple
<http://bookstore.com/Book/DBSys> ?p ?o.
matches the individual and its properties at the server, and the DELETE operation removes
those triples.

When designing Web services in EXPRESS, a developer specifies through the

interface (explained in Section 5.3) which methods can be applied to which

resources. The client discovers this from the HTTP Link Header when retrieving

the ontology. Below are some examples:

Link: <http://bookstore.com/Order?containsItem={}>; rel="POST"
Link: <http://bookstore.com/Book?isbn={}>; rel="GET"

The Link Header is explained in more detail in Section 5.2.4

Of course the client could know through sending an OPTIONS request to a certain

resource, but that would mean an extra roundtrip to the server for each

interaction. It is more efficient to provide the client with the possible next actions

as soon as it receives a response from the server, rather than blindly sending

OPTIONS requests to resources to know what method is allowed.

 88

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.3 Plurality

EXPRESS provides multiple mechanisms to represent and manipulate collections.

In Table 11, all the resource types except “Individual” can be used to represent

collections. The “Class” and “Filtered Individuals” resource types represent

factory endpoints for creating new individuals using the POST method. However,

when applying GET, PUT or DELETE to them, these endpoints represent collections,

and would affect all individuals which “Class” or “Filtered Individuals” represent.

For example, if a client performs a GET on the following URI

http://bookstore.com/Book/

all instances of books at the bookstore would be returned. However, the

functionality of returning all the books would not be likely to be provided by the

bookstore. Instead there would be a mechanism to look up books by title or

author. This is provided by the “Filtered Individuals” resource type. For example,

performing a GET on the following resource

http://bookstore.com/Book?title="Database Systems"

returns books with the title “Database Systems”.

The importance of whether a resource is a collection or not, is for managing client

expectations, so the client should be prepared to deal with multiple individuals

when performing GET, PUT or DELETE on the two resource types mentioned above,

and multiple property values in the other three resource types, which are “Data

Properties”, “Object Properties” and “Properties of Filtered Individuals”.

5.2.4 Atomicity

As explained in Chapter 4, most of the scenarios in the analysis were

conversational, meaning the client interacted with the server in several steps to

achieve the business logic. In RESTful applications the server guides the client by

providing hypermedia controls (discussed in Chapter 2): these controls provide

the resource location and state how it can be manipulated. In EXPRESS, a possible

method for achieving this, without introducing new vocabularies, is to use the

HTTP Link header.

The Link Header was in the HTTP/1.1 2068 1997 protocol (Fielding et al., 1997),

but was not specified in the later version HTTP/1.1 2616 1999 (Fielding et al.,

1999). However, it was argued for by Connolly and Hickson (1999), and more

 89

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

recently in (Nottingham, 2010). Using the Link headers enables the linking of

resources regardless of their representation format (i.e. serialisation).

To show how this is achieved in EXPRESS, an example is presented from the

bookstore scenario mentioned in this chapter. When the client retrieves the

ontology, it also receives, in the header, a link for the next possible action(s) and

associated HTTP method.

HTTP/1.1 200 OK

Link: <http://bookstore.com/Book?isbn={}>; rel="GET"

The client then knows that the next possible action it can take is to perform a GET

on the following resource /Book?isbn={} .

EXPRESS repurposes the use of the link relations (rel) to specify the HTTP method.

In RESTful applications such as APP (Gregorio and de hOra, 2007), possible values

of link relations are defined in the media type specification, and are used not only

to specify the HTTP method, but also the expectations in terms of payload

structure (Webber et al., 2010, p116). Since in EXPRESS the payload structure is

specified by the resource type, what is left is the HTTP method.

In RESTful practices, link headers have been proposed to be used to fulfil the

uniform interface constraint “hypermedia as the engine of application state” for

media types that are not hypertext. In EXPRESS using link headers was one of

three possible solutions:

1. Embedding the links in the RDF representations returned from the server.

This would mean adding or using other vocabularies or ontologies to

define the links, and EXPRESS actively avoids using or introducing

interaction vocabularies.

2. Returning multipart messages from the server, the first part would be the

RDF representation of the resource and the other would be in either HTML

or ATOM containing the links. This would be a less elegant solution, due to

the overhead of providing manipulating messages with different media

types.

3. Using link headers.

Using Link headers is proposed to fulfil conversational services, (Appendix E

provides an example of a conversational service that has been used in the expert

reviews in Chapter 7) however the practicality of this approach has yet to be

assessed. Section 8.4 discusses future work, which aims to provide automated

conversational services and to use case studies to assess the practicality of

 90

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

solutions. However, below is an open issue that would need to be addressed to

achieve this.

Identifying which resources must be created first

For example, when creating an Order, the client should already have a created

Customer, otherwise it would need to create one. In the interaction the server

presents the client with the following options.

Link: <http://bookstore.com/Order>; rel="POST"

Link: <http://bookstore.com/Customer>; rel="POST"

Although this issue seems different than point two in Section 5.2.1.4, they are

actually similar. In both cases the client would be allowed to create the related or

required individual when creating the main one. So in the previous point, point 2,

the client would send the author’s information when creating a Book, and in this

point, it would send the customer’s information when creating the Order. As

explained in point 2 these would be sent as bNodes: then the server would create

them and send back their URIs. So what if the server would not allow the client to

create an Order without having a Customer. How would that be conveyed to the

client? This could be conveyed using OWL restrictions, as in point 2. For example:

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ⊑ ∃ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

As explained before, restrictions are not enforced in OWL, because its standard

semantics adhere to OWA, and potential solutions for this are discussed in future

work in Section 8.4.

5.2.5 Synchronisation

Synchronisation is discussed in Chapter 4, and while there is no native support

for notification in HTTP, polling can be achieved by implementing clients that

interpret the HTTP code Accepted (202). This means that, in the resource

implementation, if the response to the client would not be immediate (i.e. it needs

processing) the server should return Accepted (202), and this would tell the client

to try again later. In a case of a POST, when the resource needs processing before

being created, the URI of this new resource would be returned in the location

header. The client should be designed to poll this new URI at intervals using GET

until it gets a Created (201) response from the server, with a representation of the

newly created resource. This supports polling, but not pushing which is a one of

the limitations in HTTP and consequently of EXPRESS.

 91

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.6 Roles

EXPRESS enables simple yet fine-grained, Role-Based Access Control (RBAC).

Service providers can specify which client roles are permitted to apply to which

HTTP methods on which resource. In the bookstore example, a delivery service,

(which is a bookstore client) was permitted to update the status of an order, so it

was permitted to apply PUT to the following URI pattern

http://bookstore.com/Order/{OrderID}/hasStatus

However a customer was only permitted to apply a GET. In Section 5.3, the

implementation of this requirement is discussed.

EXPRESS Design Principles

EXPRESS aims to take intuitive prevalent familiar conventions and map them into

semantic structures. The design decisions aim to:

1. Minimise roundtrips to the server

2. Control granularity

3. Give resources cool URIs

4. Actively avoid adding interaction vocabularies, or ontologies, that either

describe the resources or services.

5.3 EXPRESS Online Demonstrator

This section discusses the design and implementation of the EXPRESS deployment

system. The deployment system aids in the creation of Semantic and RESTful Web

services. The following figure illustrates the steps involved:

1. An OWL file describing entities in the existing system is given.

2. The deployment engine extracts resources from the OWL file and assigns

URIs.

3. The roles and access control are specified on URIs and stubs are

generated.

4. Stubs are connected to existing business logic, coded, or the code is

generated.

5. Clients can access the Web service.

 92

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Figure 10 Steps for Deploying Web services in EXPRESS

We can envision the use of EXPRESS in three cases, depending on the type of the

existing system:

1. To provide a RESTful interface for Semantic datasets;

2. To make existing Web services RESTful and Semantic;

3. To provide legacy systems with Semantic and RESTful Web services;

Table 13 describes what EXPRESS offers for these systems and the tasks required.

Table 13 Uses of EXPRESS

Existing System What EXPRESS offers Tasks Required

Semantic datasets
(Linked Data)

 Data manipulation through
a RESTful interface

 Access Control

OWL file exists
EXPRESS : Generates Stubs
Developer : Specifies Access Control
EXPRESS : Generates the code in the stubs because
it is direct data manipulation

Web service  Makes the Web service
RESTful and Semantic

Developer : Creates OWL file
Developer : Specifies Access Control
EXPRESS : Generates Stubs
Developer : Links the generated stubs to business
logic in existing Web services

Legacy System
No Web service

 A RESTful and Semantic
Web service

Developer : Creates OWL file
Developer : Specifies Access Control
EXPRESS : Generates Stubs
Developer : Links the generated stubs to business
logic or codes it in the stubs

A prototype EXPRESS deployment engine was developed. The aim was to assess

the applicability of EXPRESS and identify potential problems. The engine parses

the OWL file then assigns for each class, property or individual a URI or a URI

pattern. It then enables the user to specify which URIs can be accessed, by which

type of clients, and which methods (GET, PUT, POST, or DELETE) the clients can

apply to those URIs. After that the stubs that respond to the HTTP methods for

these URIs are created.

 93

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Jena12 was used for parsing the OWL files and generating the URIs and the URI

patterns. To generate the stubs Restlet13 was used. Restlet is a REST framework

in Java. Using the Restlet API it enables the creation of stubs called restlets that

respond to HTTP methods. These restlets represent resources or classes of

resources. It also provides a routing mechanism to forward requests, based on

the URI structure, to appropriate restlets. In terms of security, it offers several

authentication and authorisation methods. The stubs generated by the EXPRESS

deployment engine are restlets. The routing and authorisation code is generated

based on the information about the types of clients and the methods they are

authorised to perform on the URIs. The type of authorisation needed in EXPRESS

is a fine-grained RBAC. For instance, in the Bookstore example, the Customer can

only perform a GET on this type of URI

http://bookstore.com/Order/{OrderID}/hasStatus

At the same time a delivery service can perform GET and PUT. This kind of fine-

grained access control is not directly supported by Restlet, so its authorisation

mechanisms were extended to implement it. The following figure shows the steps

a developer should follow to deploy Web services in EXPRESS.

Figure 11 Steps to deploy a Web service using the stub generator

12 Jena, Semantic Web Framework for Java, http://jena.sourceforge.net/
13 Restlet, Lightweight REST framework, http://www.restlet.org/

Run Stub
Generator

Specify HTTP
methods

Create Java
Project

Add Business
Logic to Stubs

Add Authorised
users’ credentials

Conversational Add Links to
Resource Stubs

Run Web Service

Yes

No

URIs:
/AClass
/AClass/AIndividual

Restlet Library

.OWL

J

J

J

J

J

J

Resource Stubs

EXPRSSApplication.java

EXPRESSComponent.java

Start.java

RoleMethods.java

RoleMethodsAuthorizer.java

 94

http://jena.sourceforge.net/
http://www.restlet.org/

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

The EXPRESS Prototype is also available online at

(http://express.ecs.soton.ac.uk/), a user can upload an ontology, and configure

the Web stubs through a webpage; as a result the online engine will generate the

stubs. The generated stubs can be downloaded, or deployed temporarily at the

server (run in a sandbox). If they are deployed at the server, they can be tested

them using either using a browser for GET requests, developing a client that

performs the calls, or more conveniently test them using tools such as Poster14, a

Firefox plug-in developer tool to facilitate interacting with Web services, by

constructing HTTP requests from within the browser.

Figure 12 Online EXPRESS, the 1st step providing an OWL file and the roles

Figure 12 shows the webpage where the user can upload the ontology and

provide the user roles for the EXPRESSive service; this is the first step. Based on

the information provided in Step 1, the second webpage, shown in Figure 13,

shows the resource URIs obtained from the uploaded ontology, and enables the

user to specify, the interaction requirements, access control and allowed HTTP

methods on each one of them.

14 Poster Firefox Extension https://code.google.com/p/poster-extension/

 95

https://code.google.com/p/poster-extension/

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Figure 13 Online EXPRESS, the 2nd step configuring the stubs

Figure 14 Using Poster to interact with the generated Stubs

After the stubs are generated and deployed at the server, they are given a

temporary URI. In the example in Figure 13 it was in the path /163631b6-f8f1-

419f-8460-732ede52ef27/ at the server. The stubs deployed there can be

accessed via Poster. Figure 14 shows a GET request on a protected resource

/163631b6-f8f1-419f-8460-732ede52ef27/Instance -in which a username and

password were provided- and the server’s response.

 96

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.4 EXPRESS and SWS approaches

Section 3.5 compared the 27 SWS approaches that were reviewed in Chapter 3 in

terms of the capabilities they offered, and Section 4.3 compared them according

to the interaction requirements they fulfilled. This section compares EXPRESS to

these SWS approaches. Table 14 is the combination of Table 1 and Table 8 with

the addition of EXPRESS in the last row, which shows the capabilities it supports

and interaction requirements it fulfils.

Table 14 Comparison of SWS including EXPRESS

Publication

Capabilities Requirements

Di
sc

ov
er

y

Composition

Re
so

ur
ce

 R
ep

.

M
ut

ab
ili

ty

Pl
ur

al
ity

At
om

ic
ity

Sy
nc

hr
on

is
at

io
n

Ro
le

s

O
rc

he
st

ra
tio

n

Au
to

. C
om

po
si

tio
n

Ch
or

eo
gr

ap
hy

Co
nv

er
sa

tio
na

l

Da
ta

 In
te

gr
at

io
n

OWL-S (Martin et al., 2004)    x x x * x *  * x
WSMO (Bruijn et al., 2005a)     x x * x * x * x
SAWSDL (Farrell and Lausen, 2007)  x  x x x * x * x * x
WSDL-S (Akkiraju et al., 2005)  x  x x x * x * x * x
SWSF (Battle et al., 2005)     x x * x *  * x
DSD (Klein et al., 2005)  x  x x x * x * x * x
SA-REST (Lathem et al., 2007)  x  x x x *  * x x x
hRESTS (Kopecky et al., 2008) * x * x x x *  * x x x
MicroWSMO (Kopecky et al., 2008) * X * x x x *  * x x x
WSMO-Lite (Vitvar et al., 2007)  X  x x x * x * x * x
RESTfulGrounding (Filho and Ferreira, 2009)    x x x *  *  x x
ReLL (Alarcon and Wilde, 2010)   x x   *    x x
SBWS (Battle and Benson, 2008)  x  x x  * x * x * x
SPARQL descriptions (Sbodio et al., 2010)  x  x x x * x * x * x
LIDS (Speiser and Harth, 2011)  x x x x  * x x x x x
LOS (Krummenacher et al., 2010)   x x x  *  x x x x
Semantic REST (Battle and Benson, 2008) x x x x x     x x x
Zhao and Doshi (2009) x x  x x x    x x x
Hernandez and Garcia (2010) x  x  x x   x x  x
TSC (Riemer et al., 2006)  * * * *    * *  
RESTdesc (Verborgh et al., 2011)  x  x  x *  x  x x
iServe (Pedrinaci et al., 2010b)  x  x x x *  x x * x
SADI (Wilkinson et al., 2009)  x  x x  *  x x  x
HyperData (Kopecky et al., 2011) x x x x       x x
Hypermedia RDF (Kjernsmo, 2012) x x x x     x  x x
RDF-REST (Champin, 2013) x x x x        x
SSWAP (Gessler et al., 2009)  x  x x x   x x x x
EXPRESS    x x x      
: addressed by the approach x: not addressed by the approach *: assumed existing & addressed by other layers

 97

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

As the table shows EXPRESS fulfils the six interaction requirements, which was

shown in Section 5.2, the closest approach to EXPRESS in terms of interaction

requirements is RDF-REST, which fulfils them all except roles. As for capabilities,

EXPRESS addresses discovery, which is demonstrated in the next chapter. It also

supports data integration, because it consumes and produces RDF, which makes

it suitable for providing interfaces for datasets. Conversational services are a goal

for EXPRESS, which it supports by using Link Headers, the practicality of this

solution is left for future work, and discussed in Section 8.4.

5.5 Conclusions

This chapter presented EXPRESS, a RESTful Semantic Web service approach which

aims to eliminate explicit service descriptions for describing services. EXPRESS

works by providing a straightforward mapping between resources (described in

an ontology) and URIs that respond to HTTP requests. This chapter also shows

how such mapping can facilitate stub generation in the aim to reduce

implementation effort.

The design of EXPRESS is based on the argument that the Web’s infrastructure has

more to offer than mere data retrieval, and achieving extended functionality does

not mean that extra layers of definitions are required, or a new infrastructure.

Instead, EXPRESS suggests that what is needed is a different conceptualisation of

the problem, and although this conceptualisation may in itself impose something

of an overhead, this is outweighed by the simpler relationship between ontology,

service and protocol that we have achieved with EXPRESS. This method allows

ontologies to be transformed into SWS without the need for additional meta-

models or vocabularies.

The next two chapters present evaluations of EXPRESS: in Chapter 6 the

discoverability of EXPRESS’s semantic description is evaluated, and in Chapter 7 it

is evaluated in terms of development effort and practicality.

 98

 Chapter 5 EXPRESS: EXPressing REstful Semantic Services

 99

Chapter 6 Semantic Matchmaking in EXPRESS

Chapter 6: Semantic Matchmaking in

EXPRESS

Chapter 5 presented EXPRESS and demonstrated how it provides and semantically

describes Web services. This chapter assesses the discoverability of the semantic

descriptions, using a standardised test-collection and evaluation environment.

This chapter will discuss service matchmaking in EXPRESS, the methodology for

evaluation and the results. It addresses the third research question: Can EXPRESS

provide a similar level of semantic expressivity to existing approaches?

Section 6.1 provides an overview of semantic service matchmaking, Section 6.2

discusses semantic service matchmaking in EXPRESS. The experimental design is

explained in Section 6.3, Section 6.4 presents and discusses the results and 6.5

concludes this chapter.

6.1 Semantic Service Matchmaking

This section provides a brief overview of semantic service matchmaking.

According to Klusch (2008a), semantic service discovery is: “the process of

locating existing Web services based on the description of their functional and

non-functional semantics.”

Dong et al. (2012) identify six dimensions for analysing SWS matchmakers. These

are

1. The languages used for describing the semantics of Web services.

These differ among the SWS approaches, for example OWL and RDF are used in

OWL-S, WSML is used in WSMO and N3 in RESTdesc.

2. The SWS matching parts or parameters.

 100

 Chapter 6 Semantic Matchmaking in EXPRESS

Different parts/parameters of service description are used for matchmaking.

These can be: the service profile, i.e. inputs, outputs and/or preconditions and

effects (IOPE), the service process, and non-functional properties.

3. Matching approaches and matching degrees.

The matching approaches can be logic-based, non-logic-based (e.g. text

similarity or graph matching) or a hybrid of both. The mechanism is

considered adaptive if it involves learning (Klusch, 2008a).

As for matching degrees or degrees of logical relevance, these are usually

specified for logic-based matching. These differ slightly from one approach to

another, but in general are: exact, plug-in, subsume, intersection and fail.

(Paolucci et al., 2002; Dong et al., 2012; Klusch, 2008a).

4. The testing platforms and collections.

The two main evaluation platforms for SWS are SWS Challenge and Semantic

Service Selection (S3) contest: their goals are mentioned in Chapter 3. The

approach used in S3 is adopted in the evaluation of EXPRESS and is further

discussed in this chapter.

5. The SWS discovery mechanisms.

This concerns where and how information such as service descriptions,

ontologies and registries are stored, published and discovered.

6. The SWS discovery architecture.

The architecture can be centralised or decentralised, as in P2P.

The SWS discovery mechanism and architecture (the fifth and sixth dimension) are

of less concern in the scope of this thesis, as the matchmaking process is bound

to happen, regardless of where the service descriptions are assumed to reside, as

even in the case where there is no dedicated architecture for discovery, the

service consumer (or client) would be performing some form of matchmaking,

locally.

6.2 Matchmaking in EXPRESS

Starting with the first dimension mentioned above, the language used in EXPRESS

is OWL, as explained in Chapter 5. The second and third dimension, the matching

parts and the potential matching approaches, are discussed below.

A service in EXPRESS is mainly described by two elements:

1. The URI of the endpoint, that maps to a resource or several resources in the

domain ontology provides three main aspects:

 101

Chapter 6 Semantic Matchmaking in EXPRESS

a. As discussed in Chapter 5, the URI templates correspond to graph

patterns, hence, graph matching methods can be applied, such as the

approach by Stadtmüller and Norton (2013).

b. In cases where a URI refers to a class, the monolithic DL matching

techniques can be applied. In monolithic DL services, the whole service

is defined as a concept. Examples of such definitions, from (Grimm,

2007) are:

𝑆𝑆 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 ⊓ ∀ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

𝑅𝑅 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑡𝑡 ⊓ ∀ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓.𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

S and R represent service and request definitions, respectively. Few

matchmakers assume this way of defining services, only four out of the

27 classified by Klusch (2008a).

c. From the filtering resources’ URIs, inputs and outputs can be extracted.

Hence profile-matching techniques can be applied, which is the method

adopted in this evaluation.

2. The HTTP method allowed on the endpoint.

An effect or postcondition in EXPRESS is a direct function of the HTTP method

and the resource represented by the endpoint, and hence, there is no need to

explicitly state the postconditions. This is one of the ways EXPRESS reduces

the complexity of service descriptions. However, as a consequence EXPRESS is

less flexible than OWL-S in defining postconditions, because, in OWL-S,

postconditions are logical expressions and the number and type of variables

are not restricted.

The advantage EXPRESS has over OWL-S is its utilisation of the HTTP methods’

semantics in the semantic service description. In OWL-S, the semantic service

description builds on the basic description of inputs and outputs only, and as

result, there is a need for other means to describe what the service does with

those inputs and outputs: that is why explicit preconditions and effects

needed to be introduced, to describe the state of the world required before

and resulting after the service is executed.

The approach that EXPRESS takes is that a service request will be formulated in a

similar fashion to the service offer. Hence, the matchmaking between service

request and the service offer is a matching based on the two elements mentioned

above.

As for the fourth dimension, the testing platforms and collections are discussed

in the following section, the Experimental Design.

 102

 Chapter 6 Semantic Matchmaking in EXPRESS

6.3 Experimental Design

This experiment is designed to test whether the semantic elements exposed by

EXPRESSive service descriptions are sufficient to be consumed/utilised by well-

performing matchmaker algorithms, and hence enable similar matching quality to

other semantic service approaches, while minimising the required semantic

descriptions. The approach we take is similar to (Sbodio et al., 2010).

Three main components were required to perform this experiment:

1. A well-performing matchmaker, adapted to be used with EXPRESSive

descriptions.

2. A test collection of EXPRESSive services and an equivalent test collection in

another SWS approach (OWL-S is chosen for this experiment) to compare

the effect of the service descriptions on the performance of the

matchmaker.

3. An evaluation environment (which serves as a benchmarking platform),

used to run the matchmaker on both test collections, and calculate results.

The Semantic Web service Matchmaking Evaluation Environment SME2 is

used in this experiment. It is designed so that matchmakers and test-

collections can be plugged in, and provides a platform for evaluating the

matchmakers’ performances.

These components are discussed in further detail in the following subsections.

6.3.1 Adapting the iSeM Matchmaker

The iSeM (Klusch and Kapahnke, 2010a) matchmaker was chosen, because it

fulfils the following requirements:

1. Has a good performance on OWL-S and SAWSDL descriptions.

2. Implements an interface for SME2.

3. Access to source code, and hence can be adapted to EXPRESSive service

descriptions.

It was developed by experts in the field, and it has a better performance than

other matchmakers, according to the S3 2010 and 2012 competitions15, and since

the aim of the experiment is to compare the expressiveness of the semantic

descriptions, having a fixed matchmaker algorithm is more objective.

15 Annual International Contest S3 on Semantic Service Selection
2010 http://www-ags.dfki.uni-sb.de/~klusch/s3/html/2010.html
2012 http://www-ags.dfki.uni-sb.de/~klusch/s3/html/2012.html

 103

http://www-ags.dfki.uni-sb.de/%7Eklusch/s3/html/2010.html
http://www-ags.dfki.uni-sb.de/%7Eklusch/s3/html/2012.html

Chapter 6 Semantic Matchmaking in EXPRESS

The iSeM matchmaker is a hybrid and adaptive matchmaker for both OWL-S and

SAWSDL descriptions. It matches service functional descriptions and has the

following features (Klusch and Kapahnke, 2010a):

1. Signature Matching (IO).

iSeM deploys several matching methods for the services’ inputs and outputs.

These matching methods are: strict-logical, approximated-logical, structural and

textual. Approximate-logical, structural and textual matching methods aim to

compensate for the strict-logical-matching false negatives.

The strict-logical matching performs subsumption checks on input and output

classes: this causes some matches to fail. Approximate logical matching assumes

that the parts of class definitions causing the match failure are unnecessary, and

matches concepts accordingly. This approximation also enables the ranking of

services according to the resulting information gain and loss in the redefined

concepts. The structural and textual matching methods are non-logical ones. The

structural match is calculated according to the typology of the ontology

containing the defining concepts. The textual match, on the other hand, is

calculated according to the weighted keyword vectors containing the concepts’

unfolding (i.e. their primitive concept definitions).

2. Specification Postconditions and Effects (PE) matching.

This matches postconditions and effects written in PDDL. It checks if a service

plugs in a request, i.e. that the preconditions of the request entail the

preconditions of the service and the effects of the service entail the effects of the

request.

3. SVM (support vector machine)-based semantic relevance learning.

The SVM learns the weighted aggregation of the matching methods mentioned

above. It uses 5% of the test collection as a training set.

Both the source code and the binary version of the iSeM v1.116 are implemented to

work on OWL-S. iSeM v1.1 contains several variants (matchmaking methods)

implemented as modularised filters. The variants and their types are presented in

the following table.

Table 15 iSeM matchmaker variants

The iSeM matchmaker variant IO PE SVM

Logic-based 

Approximate logic-based 

Structure 

16 Adaptive, hybrid semantic service profile (IOPE) matchmaker iSeM V1.1 (OWL-S)
http://www.semwebcentral.org/projects/isem/

 104

http://www.semwebcentral.org/projects/isem/

 Chapter 6 Semantic Matchmaking in EXPRESS

Text similarity 

SVM logic-based, text-similarity, structure  

SVM logic-based, text-similarity, structure, specification   

SVM logic-based, text-similarity, structure, approx. logic-based, specification   

The iSeM source code was used to develop an EXPRESSive version by modifying

the service manipulation package to extract the service signature concepts from a

service written in EXPRESS instead of OWL-S. To distinguish between the

EXPRESSive version of iSeM and the original one throughout this chapter, they will

be referred to as iSeM EXPRESS and iSeM OWL-S respectively.

6.3.2 Creating the EXPRESSive Test Collection (EXPRESS-TC)

OWLS-TC (Klusch and Kapahnke, 2010b) is a test collection for semantic

matchmaking evaluations. It has been used in the S3 contests and is widely

accepted by the SWS community. Version 4.0 contains 1083 services, 42 queries

(service requests), and 48 ontologies. The relevance of services with respect to

queries is also provided as binary and graded judgements. These judgements are

not complete, as only 10% of the request-service combination has been judged,

using a pooling strategy adopted by Text Retrieval Conference (TREC). The

judgments are derived from the top 100 results from matchmakers in the 2008 S3

contest (Klusch et al., 2010b).

The services are grounded in WSDL 1.1, and the test collection includes the WSDL

files as well. 160 services and 18 requests out of the total have been modified to

include preconditions and effects expressed in the Planning Domain Definition

Language (PDDL) 2.1.

The OWLS-TC was chosen for the experiment because in addition to it being

widely accepted by the community, the source code available for the iSeM

matchmaker is developed for OWL-S services.

There are two methods to create an EXPRESSive test collection, and a decision had

to be made between:

1. Manual Conversion

Selecting a subset of the OWL-S test collection services to be converted

manually into EXPRESSive descriptions and performing the experiment on

a subset of the test collection.

2. Automatic Conversion

 105

Chapter 6 Semantic Matchmaking in EXPRESS

Finding an approach to automatically convert the whole OWL-S test

collection to an EXPRESSive test collection, both the 42 requests and the

1083 services.

Figure 15 The manual and automatic approaches to generate the test collection

Figure 15 illustrates the two approaches. They both have advantages and risks,

which are discussed next.

Advantages and Risks of the Manual Conversion

The manual conversion is achieved by reading the OWL-S description, reverting to

the actual problem it aims to solve and then using that abstract problem to create

a description in EXPRESS.

This ensures that the EXPRESSive description is not influenced by another

approach’s conceptualization of the problem, in this case OWL-S, hence the

semantic elements exposed by EXPRESS truly reflect what would be reached if

there was no OWL-S description, However there are two risks, with this approach:

1. The size of the test collection will be considerably smaller, and as a result

the reliability of the experiment will be weaker.

2. There is more chance of bias when converting the queries and services.

The bias could occur by making the services closer to matching the

queries; however this could be overcome by asking impartial/neutral

participants to perform the semantic description of both queries and

services.

Advantages and Risks of the Automatic Conversion

The advantages of the automatic conversion approach over the manual one is that

it results in a considerably larger test collection, which increases the reliability of

the results. The automatic conversion however also introduces a risk that could

weaken the argument for the experiment.

 106

 Chapter 6 Semantic Matchmaking in EXPRESS

In the automatic approach, the risk is that the automatic conversion may render

an EXPRESSive description that would not occur as a natural process of

conceptualising the problem in EXPRESS, and will only be an OWL-S description

coerced into an EXPRESSive representation. Hence the semantic elements

exposed by the EXPRESSive version would be the same as the ones exposed by

the OWL-S ones, and this may not have occurred if we started with the abstract

problem, and took a manual approach to the conversion instead of an automatic

one. The reason this is a risk, is that the matchmaking capabilities of EXPRESS,

would not be a result of following the approach itself, instead they would exist

because of the conversion from OWL-S.

However, there are multiple ways to design either an OWL-S or EXPRESSive

representation of the same service. A reasonable assumption to make, is that at

least one OWL-S representation and one EXPRESSive one would expose the same

inputs and outputs.

The discussion above has raised issues with both the automatic and the manual

conversion from OWL-S service descriptions to EXPRESSive ones. The automatic

conversion was preferred, because it would render a considerably larger test

collection, and was achieved by the following methods:

1. For each OWL-S description, whether a request or a service, extracting the

semantic elements, in this case the inputs and outputs.

2. Providing an EXPRESSive semantic description template, where those

elements could be plugged in.

To minimise the risk of the automatic conversion (i.e. the EXPRESSive descriptions

not occurring naturally), a subset of the services were converted manually to

inform the design of the automatic conversion method. The 42 queries from the

OWLS-TC were chosen to be converted manually, as they can be considered a

representative subset of the test collection they will be matched against.

The 42 queries have inputs and outputs, 37 of the queries are read-only

(informational) services, and 5 of them are updating queries. The read-only

services in EXPRESS, are modelled by applying a GET method to a resource and, as

discussed in Chapter 5, these resources represent either a class, an individual, a

property of a named individual, or a filter on a collection. With class, individual

and property, resource types, the client does not provide any inputs. So to

represent the read-only queries in the test collection, we needed to represent

them as filters on a collection.

 107

Chapter 6 Semantic Matchmaking in EXPRESS

The method was to take each one of the queries and to conceptualise the

problems they represent as EXPRESSive services, then analyse how they relate to

the OWL-S service. This resulted in the realisation of several approximations

required for automatic conversion:

1. An issue that causes a mismatch between EXPRESSive and OWL-S descriptions

is a design decision of EXPRESS, discussed in Chapter 5, which restricts the

representation of multiple outputs. This means if an OWL-S service has

multiple outputs, EXPRESS will represent them as one output, which is the

union of those outputs.

2. In some cases, such as when a service returns a price of merchandise, the

intuitive conceptualisation is to have the price as a property of the

merchandise (for example the query named “2For 1 DVD/MP3 player price

service”). However, it is also possible to reverse the relationship and to have

the merchandise as properties of the price.

3. The preconditions and effects (PE) in the OWL-S service are ignored because,

in EXPRESS, preconditions are not specified, and as for effects, the semantics

are described by the method and the type of resource. However, as discussed

by Klusch and Kapahnke (2010a), the effect on the results is minor because

only 17% of the services in the OWL-S test collection have PE.

4. As discussed in Chapter 5, the HTTP method is a part of the service definition

in EXPRESS; in Section 6.2, the method can also be used for matchmaking.

However in the OWL-S test collection, 37 out of 42 of the queries were read-

only services and the others were updating services. As for the services, only

47 out of the 1083 services are judged to be relevant to these queries. Since

these form only a very small percentage of services, we assumed that all the

services, after transforming them into EXPRESS, are to be retrieved with a GET.

In addition to undertaking this manual process to guide the automatic conversion,

in Chapter 7 (Expert Reviews), experts are asked to compare two versions of an

EXPRESSive service, a manually created one, and another which is automatically

converted from an OWL-S service. Results are discussed in Section 7.3.1.3.

Taking into consideration the approximations above, the following steps were

taken to transform an OWL-S service into an EXPRESSive one:

1. Create an ontology containing the inputs and outputs of the OWL-S service.

2. If more than one output exists, a new class is created which is the union of

all the outputs.

3. Create Properties, where the domains of the properties is the OWL-S

output, and their ranges are the OWL-S inputs.

 108

 Chapter 6 Semantic Matchmaking in EXPRESS

4. Create the URI of the endpoint in the following form

Output?hasInput1={}&hasInput2={}&…

The following is the conversion of the “2 For 1 DVD/MP3 player price service”,

which is described by “This service returns prices of a given pair MP3 Player

brand and DVD Player brand”. It has the following inputs: MP3PLAYER and

DVDPLAYER, and this output: PRICE. The full OWL-S service is in Appendix D.

The EXPRESSive version of this service is below

The endpoint is

Price?hasMP3player={}&hasDVDplayer{}

and the following ontology represents the EXPRESSive interface

:MP3player a owl:Class;

owl:equivalentClass

<http://127.0.0.1/ontology/my_ontology.owl#MP3player> .

:DVDplayer a owl:Class;

owl:equivalentClass

<http://127.0.0.1/ontology/my_ontology.owl#DVDplayer> .

:Price a owl:Class;

owl:equivalentClass

<http://127.0.0.1/ontology/concept.owl#Price> .

:hasDVDplayer a owl:ObjectProperty;

 rdfs:domain :Price;

 rdfs:range :DVDplayer .

:hasMP3player a owl:ObjectProperty;

 rdfs:domain :Price;

 rdfs:range :MP3player .

The restrictions EXPRESS imposes on ontology design are shown in the example

above: for example, the domain and range have had to be stated for each

property.

6.3.3 Evaluation Environment

The matchmaking experiment is conducted using the Semantic Web service

Matchmaking Evaluation Environment17 SME2. This environment is used in the

annual Semantic Service Selection (S3) contest. SME2 provides an extensible

framework for testing different matchmaking approaches (algorithms). It enables

17 The Semantic Web Service Matchmaker Evaluation Environment (SME2)
http://projects.semwebcentral.org/projects/sme2/

 109

http://projects.semwebcentral.org/projects/sme2/

Chapter 6 Semantic Matchmaking in EXPRESS

developers of matchmaking approaches to plug-in their matchmakers and run

them against the provided test collections of services. A service test collection is

made up of service requests (called queries), service offers, referenced

ontologies, and the result set, i.e. the correct answers. Two test collections are

shipped with SME2, the OWLS-TC mentioned above, and SAWSDL-TC (Klusch and

Kapahnke, 2010c), a SAWSDL version of almost all of the services in the OWLS-TC.

In addition, new test collections can be plugged in.

Figure 16 Architecture of SME2

SME2 calculates several information retrieval (IR) measures, for binary relevance,

graded relevance and time consumption. The main measures presented in S3 are:

1. For binary relevance:

a. Macro-averaging for Precision/Recall measures.

Precision and recall in IR are defined as follows, where A is a set of

relevant documents in the dataset, and B is the set of retrieved results.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = |𝐴𝐴 ∩ 𝐵𝐵| |𝐵𝐵|⁄

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = |𝐴𝐴 ∩ 𝐵𝐵| |𝐴𝐴|⁄

A method for averaging these values is called macro-averaging, and it

is calculated for precision as follows (Klusch et al., 2010a):

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) =
1

|𝑄𝑄| ∙ � max�𝑃𝑃𝑂𝑂�𝑅𝑅𝑂𝑂 ≥ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ∧ (𝑅𝑅𝑂𝑂 ,𝑃𝑃𝑂𝑂) ∈ 𝑂𝑂𝑞𝑞 �
𝑞𝑞 𝜖𝜖 𝑄𝑄

where 0 ≤ 𝑖𝑖 ≤ 𝜆𝜆, in SME2 𝜆𝜆 = 20,

 𝑂𝑂𝑞𝑞 is the set of observed precision/recall values for true positives

and

 𝑄𝑄 is the set queries

SAWSDL

SAWSDL
Test Collection

SAWSDL
Matchmaker

SME2

OWL-S

OWL-S
Test Collection

OWL-S
Matchmaker

EXPRESS

EXPRESS
Matcmaker

EXPRESSive
Test Collection

IMatchmaker

ITestCollection

 110

 Chapter 6 Semantic Matchmaking in EXPRESS

For each query, the maximum precision at an 𝑖𝑖 level of recall is taken

(i.e. after a certain percentage of documents have been retrieved),

summed then averaged over the total number of queries. This means

each query will have an equal weight. An alternative method for

averaging is called micro-averaging, where each document (service) has

an equal weight; however, since it is not presented in the results, it is

not discussed here. The results of macro-averaging are usually

presented as a graph such as in Figure 17.

b. Average Precision (AP)

AP involves precision, recall, and ranking in the measure of

performance.

𝐴𝐴𝐴𝐴 =
1
𝑅𝑅

 �𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

∑ 𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑛𝑛

where 𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑛𝑛) = 1 if the document at rank n is relevant and 0 if it is not.

𝑅𝑅 is the total number of relevant documents.

AP is the average of the precision value after each relevant document

is retrieved. After AP is calculated for each query the mean for all

queries is calculated, to obtain a single score for the matchmaker.

2. For graded relevance:

In these measures the degree of relevance (ranking) of services is taken into

consideration. Unlike binary relevance, where a service is either relevant or

not, graded relevance assumes varied degrees of relevance. In the test

collections used with SME2, there are four degrees of relevance: highly

relevant, relevant, partially relevant, and not relevant. The graded relevance

measured used are:

a. normalised Discounted Cumulative Gain (nDCG):

This is based on discounting the gains (value) according to the ranking

of documents. The cumulative gain (cg) is the sum of relevance weights

of retrieved documents. The discounted cg (DCG) takes the rank into

consideration and reduces the weight of lower ranked documents,

usually be dividing them by log2(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). There is usually a cut-off rank p,

where DCG
p
 is calculated. The normalised DCG, is obtained in order to

average the DCG values at a specific rank across a set of queries with

different numbers of relevant documents. nDCG is the result of

dividing the DCG value by the ideal DCG value; the nDCG values can

then be averaged for all queries.

b. Q-Measure:

 111

Chapter 6 Semantic Matchmaking in EXPRESS

Q-measure is a generalisation of AP to accommodate graded relevance

and it is a modification of weighted average precision.

𝑄𝑄 =
1
𝑅𝑅

 �𝑟𝑟𝑟𝑟𝑟𝑟(𝑑𝑑𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝐼𝐼 + 𝑛𝑛

where 𝑐𝑐𝑐𝑐𝐼𝐼is the ideal cumulative gain at rank n

and 𝑐𝑐𝑐𝑐𝑐𝑐is the cumulative-bonused gain

cbg is similar to cg: instead of just summing the weights of relevant

documents, it adds an extra reward for each relevant document.

For AP, nDCG and Q-Measure, SME2 calculates two scores, for both complete and

incomplete judgements. The measures for incomplete judgments are the ones

reported in the S3 contest, and are named AP’, nDCG’ and Q’. These are calculated

using only the results that are rated in the judgement sets (as mentioned in

Section 6.3.2, these are incomplete). Zhou and Yao (2010) provide a detailed

explanation of these measures and a discussion of their effectiveness.

3. Time consumption: Average Query Response Time (AQRT)

AQRT is the average time a matchmaker takes to return results for a query, and it

is calculated in seconds.

6.4 Results and Analysis

The seven variants of iSeM EXPRESS, and iSeM OWL-S were run on their

corresponding test collections. Table 16 shows the results from the runs.

Table 16 Results of running iSeM OWL-S and iSeM EXPRESS on SME2

 Matchmaker Variant (Filter) AQRT (s) AP' Q' nDCG'

 i

Se
M

 O
W

L-
S

Logic-based 0.190 0.699 0.726 0.807
approx. Logic-based 0.702 0.696 0.701 0.748
Structure 0.303 0.747 0.734 0.783
Text-similarity 1.517 0.800 0.804 0.891
SVM logic-based, text-similarity, structure 3.056 0.821 0.751 0.790
SVM logic-based, text-similarity, structure, specification 3.211 0.840 0.782 0.829
SVM logic-based, text-similarity, structure, approx. logic-
based, specification 3.942 0.839 0.783 0.820

iS
eM

Logic-based 0.153 0.700 0.724 0.815
approx. Logic-based 0.592 0.681 0.690 0.739
Structure 0.290 0.717 0.712 0.755
Text-similarity 0.942 0.811 0.812 0.895
SVM logic-based, text-similarity, structure 1.398 0.411 0.463 0.519

 112

 Chapter 6 Semantic Matchmaking in EXPRESS

SVM logic-based, text-similarity, structure, specification 1.507 0.309 0.365 0.387
SVM logic-based, text-similarity, structure, approx. logic-
based, specification 2.211 0.309 0.381 0.400

The table shows the AQRT, AP, Q and nDCG for iSeM EXPRESS and iSeM OWL-S.

The values in bold indicate better performance. From the AQRT results it is clear

that the iSeM EXPRESS filters are faster than the iSeM OWL-S ones.

The values of AP, Q and nDCG for the first four variants (the non-SVM ones) are

very close for iSeM OWL-S and iSeM EXPRESS. For text similarity and logic based

iSeM, EXPRESS performs slightly better in terms of AP’, and slightly worse in

approximated logic-based and structure. The highest performing variant for iSeM

EXPRESS out of the seven variants, in terms of precision-recall, is text-similarity.

For iSeM OWL-S text similarity is the highest of the non-SVM ones.

On the other hand, for the SVM variants (the last three variants), iSeM EXPRESS

performs much worse. This is due to the SVM variants being trained on an OWL-S

sample of services rather than on EXPRESS sample, and hence tuned towards

OWL-S services. Figure 17 and Figure 18 show the macro-averaged precision-recall

curves. Figure 17 shows the non-SVM variant’s performance, and shows the very

close similarity between the iSeM OWL-S variants and the iSeM EXPRESS ones.

Figure 18 shows how iSeM EXPRESS variants perform considerably worse than the

iSeM OWL-S ones, due the SVM learning effect, as discussed above.

 113

Chapter 6 Semantic Matchmaking in EXPRESS

Figure 17 Macro-averaged Precision-Recall Curve for non-SVM variants

Figure 18 Macro-averaged Precision-Recall Curve for SVM variants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall
 OWL-S Logic based EXPRESS Logic based

 OWL-S approx. logic based EXPRESS approx. logic based

 OWL-S Structure EXPRESS Structure

 OWL-S Text Similarity EXPRESS Text Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall
 OWL-S SVM 1 EXPRESS SVM 1
 OWL-S SVM 2 EXPRESS SVM 2
 OWL-S SVM 3 EXPRESS SVM 3

 114

 Chapter 6 Semantic Matchmaking in EXPRESS

Figure 19 shows the AQRT differences between the approximated logic-based

iSeM EXPRESS and iSeM OWL-S. The approximated logic-based variant is used as a

representative of the other variants because, as shown in Figure 19 all the iSeM

EXPRESS variants outperform the OWL-S ones in terms of speed.

Figure 19 AQRT for iSeM OWL-S and iSeM EXPRESS (Approximate Logic-based)

The statistical significance of the results was measured for two variants, the

approximated logic-based, and the text similarity, by conducting the Friedman

test for the AP and AQRT for the variants, as shown in Table 17

Table 17 Friedman test for approximated logic-based and text similarity variants

 Approximated logic-based Text similarity
AQRT AP’ AQRT AP’

iSeM OWL-S 0.701 0.696 1.517 0.800
iSeM EXPRESS 0.592 0.681 0.942 0.811

P = 0.000 0.028 0.000 0.317

The values of p in Table 17 show that the AQRT improvements in the EXPRESS

variants are statistically significant for p<0.05. However, this differs for the AP’,

the approximate logic-based variant, where iSeM EXPRESS performs slightly

worse, with a statistical significance p=0.028<0.05, meaning that this performance

is consistently worse, albeit the difference is small. In the text similarity variance,

although the performance of iSeM EXPRESS seems to be slightly better, it is not

statistically significant p=0.317>0.05.

The objective of this experiment was to show whether EXPRESSive descriptions

are as discoverable as other SWS descriptions such as OWL-S. This experiment

clearly shows very close performances in terms of precision and recall in the non-

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

AQRT in ms

Query

iSeM OWL-S Approximate logic-based iSeM EXPRESS Approximate logic-based

 115

Chapter 6 Semantic Matchmaking in EXPRESS

SVM variants and a slightly better performance in speed, ranging from 4% to 38%,

as shown in Table 18.

Table 18 % of Improvements of iSeM EXPRESS over OWL-S in terms of AQRT

 iSeM OWL-S iSeM EXPRESS %
Logic-based 0.19 0.153 19%

Approximated logic-based 0.702 0.593 15%
Structure 0.303 0.29 4%

Text similarity 1.517 0.942 38%

The table does not list the SVM variants because, although EXPRESS performance

is better in terms of AQRT (around 50%), the SVM precision and recall values are

much worse, as discussed before, and speed alone is not a gain if those values

are not comparable. However, as mentioned before, this is due to the SVM training

effect.

Moreover EXPRESS considerably reduces the descriptions sizes, Table 19 shows

the means and medians for service descriptions (lines of code (LOC) and size in

bytes) in the test collections, it shows that EXPRESSive descriptions are %78-%79

smaller on average.

Table 19 Service description size in LOC and bytes

File size in Description approach Mean Median

LOC
OWL-S 117.89 116

EXPRESS 25.23 24
% %79 %79

Bytes
OWL-S 6653.71 6422

EXPRESS 1467.28 1354
% %78 %79

6.5 Conclusions

This chapter assessed the discoverability of EXPRESSive descriptions. It provided

an overview of SWS matchmaking and explained how to achieve it in EXPRESS,

then discussed the matchmaking experimental design and the results.

The results of the experiment show that EXPRESS descriptions offer very close

semantic expressivity to the OWL-S ones. This is indicated by the adapted iSeM

matchmaker performance, which yielded very close precision-recall measures with

an improvement in speed ranging from 4% to 38%, depending on the matchmaker

variant. However, the SVM variants did not work as well with EXPRESS, as they

have been trained with OWL-S. This is a promising result considering that

EXPRESS massively reduces the size of the service descriptions. However, it also

raises an important question: Having demonstrated EXPRESS’s competence for

semantic matchmaking, what are the trade-offs, i.e. how does this affect the ease

 116

 Chapter 6 Semantic Matchmaking in EXPRESS

of development, practicality, and semantic richness? This is further investigated

in the next chapter.

 117

 Chapter 7 Expert Reviews

Chapter 7: Expert Reviews

As a Semantic Web service approach EXPRESS aims to provide semantic

descriptions of services while minimising their development effort. Chapter 5 and

6 discussed the functional aspects of EXPRESS, in terms of description,

development and matchmaking; this chapter aims to discuss and provide

evidence on how EXPRESS reduces the development effort, compared to other

Semantic Web service approaches.

Development effort is a non-functional, subjective aspect. Moreover, EXPRESS and

the other approaches in the study (OWL-S and RESTdesc) are still research

prototypes, which have not been used yet in practice. Therefore, as there is no

user base in relation to which a questionnaire or observation can be used to

assess development effort, the research method that is applicable in this case is

to undertake an expert review. To achieve this, feedback was solicited on the

development effort and practicality from experts, by showing them the

development process in regard to a specific scenario in different approaches

including EXPRESS, and asking them open-ended questions on the development

effort required in these approaches.

As a follow-up to Chapter 6’s matchmaking experiment, the interviews also

explored the experts’ opinions on the representativeness of the results of the

automatic conversion that created the EXPRESS test collection (EXPRESS-TC) used

in the experiment.

In this chapter, the experimental design is explained in Section 7.1, Section 7.2

presents the results and analysis, Section 7.3 discusses the results and how they

relate to the research questions and 7.4 concludes the chapter.

 119

Chapter 7 Expert Reviews

7.1 Experimental Design

Semi-structured interviews with six experts were conducted. Each participant was

presented with a scenario, which was shown in three Semantic Web service

approaches (EXPRESS, OWL-S and RESTdesc). This section explains the

methodology, the scenario and material design, the interview design and how the

interviews were analysed.

7.1.1 Method

The main aim of the expert reviews was to get the expert’s assessment of

EXPRESS in terms of development effort, a sense of how it compares to other

approaches, and where or if the intended simplicity of EXPRESS compromises its

functionality.

The other aim concerned the matchmaking experiment in Chapter 6. EXPRESS-TC

was generated from the OWL-S test collection (OWLS-TC) and used in an

experiment to evaluate the semantic expressiveness of the EXPRESS service

descriptions. Therefore, it is important to verify that the automatically generated

descriptions are one of the possible and plausible solutions that a developer

could come up with manually.

The interviews were designed in two parts. The first aim (i.e. assessing EXPRESS

in terms of development effort and practicality) was addressed in part one of the

interviews, while the second aim (i.e. verifying the plausibility of automatically

generated EXPRESS descriptions) was addressed in part two.

For the first part, two Semantic Web service approaches, OWL-S (Martin et al.,

2004) and RESTdesc (Verborgh et al., 2011), were selected to compare EXPRESS

against. The reasons for selecting these are listed below.

For OWL-S:

1. As explained in Chapter 3, it is one of the most actively researched Semantic

Web service approaches.

2. It is a W3C submission, which is indicative of a community investment and

higher maturity level.

The matchmaking experiment in Chapter 6 compared the descriptive power of

OWL-S and EXPRESS’s semantic descriptions, so comparing the development effort

provides a broader examination of the impacts of the design decisions in both

approaches.

 120

 Chapter 7 Expert Reviews

However, a difficulty arises in that OWL-S was not designed to work with RESTful

Web services, and although there is one paper introducing RESTful groundings for

OWL-S (Filho and Ferreira, 2009), WSDL groundings dominate the research

mainstream. Therefore we also selected a RESTful Semantic Web services

approach, RESTdesc. The reasons for selecting RESTdesc were:

1. Like EXPRESS it is a RESTful approach.

2. RESTdesc provides minimal descriptions and compared to other RESTful

Semantic Web service approaches, uses a smaller vocabulary.

3. The research on it is still active, indicating the potential for it to mature. For

example, a recent publication from the approach’s author about RESTdesc was

published in 2013 (Verborgh et al., 2013).

4. It is a general purpose approach, compared to other RESTful approaches like

LIDS (Speiser and Harth, 2011), which focus on integrating Web APIs with

Linked Data.

5. Unlike some RESTful approaches such as RESTler (Alarcon and Wilde, 2010),

which supports only the GET method, RESTdesc can support GET, PUT, POST and

DELETE.

Details of how the materials were designed for parts one and two are explained in

section 7.1.2.

Six experts in Semantic Web technologies were recruited from the School of

Electronics and Computer Science at the University of Southampton. These

experts are involved in the research and development of applications using

Semantic Web technologies. Hence they had both a theoretical and practical

background in semantic technologies. The experts included two PhD candidates,

two research staff, one senior developer and one senior academic. The following

table explains their range of expertise:

Table 20 Interviewed Experts’ Areas of Expertise

Expert Area of Expertise in Semantic Technologies
Expert one Distributed SPARQL queries
Expert two Ontologies for multimedia, semantic annotation
Expert three Linked Data, annotating multimedia, and media fragments
Expert four Publishing Linked Data, developing libraries for handling RDF and SPARQL
Expert five Social media, semantic annotation
Expert six Publishing and advocating Linked Open Data

The selection of experts aimed to focus on their familiarity with Semantic Web

technologies in general, while also deliberately avoiding people with a high level

of familiarity with any of the Semantic Web service approaches used in the

 121

Chapter 7 Expert Reviews

interviews. This was to reduce the possibility of their bias towards an approach

they were more familiar with.

7.1.2 Scenario and Material Design

A bookstore scenario was designed; it involved retrieving a book by its ISBN, then

ordering the book. The aim was to make the scenario simple, so it would be easy

for the experts to focus on understanding the approaches and differences

between them, and then provide feedback in a reasonable amount of time (forty

to eighty minutes). Another consideration in the selection of the scenario was that

the scenario involved not only data retrieval but also updating.

Having both data retrieval and updating services corresponds to the mutability

requirement mentioned in Chapter 4. The atomicity requirement for RESTdesc and

EXPRESS is shown in the interaction phase of the scenario, and as a composite

service in OWL-S. Therefore the scenario covers two interaction requirements

from Chapter 4. With regard to the other requirements: synchronicity, plurality,

and roles, RESTdesc and OWL-S do not introduce mechanisms for expressing

them. In addition the chosen scenario is a typical one used in the literature see for

example the one used by Decker et al. (2008). The materials were presented to

the experts on paper. The interviews involved two parts, and developing the

materials for them are explained below.

7.1.2.1 Part One: Comparison of Semantic Web Service Approaches

The bookstore scenario was designed in the three Semantic Web service

approaches: EXPRESS, OWL-S and RESTdesc. Both RESTdesc and OWL-S do not

involve the steps in deploying the Web service, with both coming after the design

and deployment phase. Because we are comparing them to EXPRESS, and it is

involved in the design and deployment, it was necessary to discuss the tasks

RESTdesc and OWL-S assume are done. However, it was emphasised in the

material and when explaining the approaches to the experts that the service

design and deployment are not part of RESTdesc and OWL-S. Moreover, the first

page in each approach had a small activity diagram emphasising the different

steps involved and which steps are not part of the approach itself but are

assumed as being done. The figures below reproduce these activity diagrams.

 122

 Chapter 7 Expert Reviews

Figure 20 Activity Diagram for EXPRESS

Figure 21 Activity Diagram for OWL-S

Design Domain Ontology

Select Endpoints and HTTP methods for Roles

Provide/Integrate with Business Logic

EXPRESS
Domain
Ontology

Endpoints + Methods

Generated
Stubs

Generate and Deploy Stubs

Provide Business Logic

Generate WSDL and Deploy Services

Optional: Design Domain Ontology

Design OWL-s Service Descriptions

Domain
Ontology

WSDLfiles

OWL-s
Services

Development
Phase not part of

OWL-s

OWL-s

 123

Chapter 7 Expert Reviews

Figure 22 Activity Diagram for RESTdesc

For each approach, three main phases of the service life cycle were shown:

1. The service design and deployment.

2. The semantic description.

3. The interaction with the client.

The materials shown in each phase are described briefly in the following table.

Table 21 Summary of material presented to the experts

Approach Design and Deployment Service Description Interaction

EXPRESS

A domain ontology containing
the classes and properties
relevant to this bookstore
scenario, the endpoints, and a
brief explanation of how
EXPRESS works

None, because the
description is a by-product of
the deployment

The retrieval of the
ontology, and the
exchange of RDF

OWL-S

A brief description of OWL-S
and two WSDL files, one for
retrieving the book’s details by
its ISBN and the other for
ordering a book

Two OWL-S files (one for
each service) and a domain
ontology

The retrieval of service
descriptions, ontologies
and the exchange of
SOAP messages

RESTdesc

A brief description of RESTdesc,
and a human-readable
description of the API, as
usually provided by Web APIs,
including two JSON versions of
the same services

Two versions of the RESTdesc
descriptions in N3 rules

The retrieval of service
descriptions, ontology
and the exchange of
JSON messages

Provide Business Logic

Provide An API

Optional: Design Domain Ontology

Design RESTdesc Service Descriptions

Domain
Ontology

RESTdesc
Descriptions

Development
Phase not part of

RESTdesc

RESTdesc

 124

 Chapter 7 Expert Reviews

The complete material examined by the experts is in Appendix E.

The OWL-S descriptions were generated from the WSDL files using the OWL-S

Protégé plug-in. This created the structure of the OWL-S files which were then

edited manually to link to the domain ontologies.

RESTdesc materials were developed by consulting its author and developer Ruben

Verborgh. I contacted Ruben with an initial draft of the RESTdesc material and he

suggested minor modifications. He also mentioned that there is a more recent

RESTdesc version, in which URI templates are deliberately avoided, he requested

that I show the scenario in the two versions of RESTdesc, I agreed because it

would provide a fairer comparison, and more insight into the experts’ opinions

about URI templates. Ruben also answered the interview questions, which

provided an initial verification of the interview questions.

The vocabularies used to describe the domain concepts such as book, author,

title, ISBN, are the same across the three approaches, this was to reduce the

variance between the scenario versions, making it easier for the experts to focus

on the actual differences in the approaches.

7.1.2.2 Part Two: Comparing an EXPRESS description generated from an

automatic conversion of an OWL-S version, to a manually written

EXPRESS description.

Considering the time limitation of the interviews, and to build on the familiarity

the experts gained by participating in part one, I chose to use the bookstore

scenario again in part two. The service retrieving the book by its ISBN was

selected, since it is a data retrieval service, and the services used in the

matchmaking experiment are all considered as data retrieval services.

The OWL-S service was run through the OWL-S to EXPRESS conversion program.

This provided one version; the other version was the EXPRESS version of the

‘retrieving the book by its ISBN’ service created for part one.

7.1.3 Interview Design

The process of the interview went as follows: I asked the participants to sign a

consent form, after they read the participant information sheet. The interviews

were conducted individually with each participant, and the interview was

recorded. They were between forty to eighty minutes long. In the first part of the

 125

Chapter 7 Expert Reviews

interview, the experts were shown and walked through the materials of the three

Semantic Web service approaches that were discussed in the previous section.

They were given time to read them and enquire about issues they did not find

clear. They were then asked the three open-ended questions for part one,

discussed in the next paragraph. After that they were shown the material for part

two, and asked the last interview question.

To design the interview questions effectively, they are derived from the research

questions. The interview questions are listed below and their mapping to

research questions is shown in Figure 23.

Part One

Question One: Using EXPRESS means that the URIs of your services will be generated automatically,
how might that affect the flexibility and ease of deployment?
Question Two: You are required to provide a Semantic API for a bookstore, to provide information
about books and search for books by title or author. If you had to use one of these approaches, how
long would it take you?
Question Three: Imagine you were developing clients for those services, how would you describe
the descriptions in terms of
1. Practical quality: ease of use, development speed
2. Semantic quality: semantic richness, ability to infer over

Part Two
Question Four: Given these two EXPRESS descriptions how similar/different do they seem?

Question four is not linked directly to the research questions, and therefore is not

present in Figure 23. However it is related indirectly to the third research

question, because it aims to assess the representativeness of EXPRESS-TC used in

the matchmaking experiment, and the experiment was designed to answer the

third research question.

 126

 Chapter 7 Expert Reviews

Figure 23 Derivation of interview questions

Questions Two and Three were designed so that the experts would need to think

about using these approaches to design a specific service and a client,

respectively, and hence, make it easier for them to provide a fairly grounded

judgement.

The interviews were semi-structured, and the questions were open-ended

questions, so follow-up questions were asked. For example, in Question 4, after

the experts had tried to compare the two versions of the service and listed some

similarities or differences, they were asked the question, “If I explained how

EXPRESS works to a developer, which one of these two examples are they more

likely to come up with?”

7.1.4 Interview Analysis

The interviews were qualitatively analysed, involving the following steps:

1. Transcribing the interviews.

2. Reading the interviews and highlighting individual quotes that appeared

related to research questions. These individual quotes were numbered

sequentially for cross referencing: for example 5-12 indicated that it was

quote number 12 from the 5th expert.

3. Deciding on preliminary codes, from highlighted text and research

questions.

4. Three transcripts were coded with preliminary codes, then used to code

the rest of the interviews, adding new codes when needed. The quotes

Utilise Semantics in the Domain ontology and REST to:
Eliminate explicit service descriptions and interface vocabularies
Obtain semantic service descriptions as a by-product of provision

Does it reduce development
effort?

Can it provide a similar level
of semantic expressivity to
existing approaches? , and
what are the trade-offs in

terms of practicality

Question
One

Question
Two

Question
Three

Question
One

Question
Two

 127

Chapter 7 Expert Reviews

were copied into a spreadsheet, and marked with a code and

corresponding theme.

5. Arranging the codes into themes.

6. Categorising the quotes according to the themes.

7. Summarising the arguments and opinions in each theme.

8. Identifying agreements or disagreements between experts, and their

explanation for their opinions and unexpected and interesting comments.

9. Examining and analysing the issues identified in step 8, to draw out

results.

A sample of an expert review transcript is in Appendix F. Screenshots of the

coded transcript document and the spreadsheet are available in Appendix G.

7.2 Experimental Results

This section presents the results of the experiment, section 7.2.1 discusses the

different themes that emerged from the interviews, and section 7.2.2 provides a

description for each theme and overview of the experts’ responses.

7.2.1 Themes

Nine themes were elicited from the transcript analysis. The table below lists the

themes and the number of quotes about them; some quotes were categorised

under more than one theme. Some themes were discussed by all the experts, such

as Ease of Development, Flexibility, Manual vs. Automatic Descriptions, Semantic

Quality. An interesting theme that arose unexpectedly was, “The aim of SWS”: in

which experts questioned the practicality of SWS in general. In total there were

136 coded quotes, and since some discussed more than one theme, the total

number of quotes was 179.

Table 22 Themes and the number of quotes about them

Theme
of

quotes
of quotes about the theme from expert

one two three four five six
Development Speed 25 3 8 7 - 3 4
Ease of Development 64 7 15 3 16 10 13
Flexibility 16 2 2 1 4 5 2
Linked Data 5 - 1 1 2 - 1
Man. vs. Automatic Descriptions 16 2 2 1 4 5 2
Semantic Quality 24 3 9 1 5 1 5
The aim of SWS 13 - - - 7 3 3
Underspecified 11 - 1 3 7 - -
Extra features 5 - - 2 2 - 1
Total 179 17 38 19 47 27 31
Total # of quotes from experts 136 11 26 15 36 21 27

 128

 Chapter 7 Expert Reviews

Figure 24 Themes related to research questions

Figure 23 is similar to Figure 24; however, instead of the interview questions, it

shows the themes. It also shows how they are related to the research questions;

this relationship is manifested in the discussions in section 7.3.

7.2.2 Summary of Experts’ Responses by Theme

7.2.2.1 Theme 1: Development Speed

Development Speed refers to what the experts thought about the time it would

take them to develop a Semantic API and/or a client in the three approaches

presented to them. The focus of the question was on the first time they would

develop in these approaches, so it involves the learning time.

Expert one preferred RESTdesc because it uses N3 rules, and thought it would be

very fast to develop a Semantic API or a client. He also thought that EXPRESS

would be very fast too, but felt it provided less semantic quality. As for OWL-S as

he thought it was “heavy duty”. Expert two thought that development times in

ascending order would be RESTdesc, EXPRESS and then OWL-S. He thought that

EXPRESS would be slower than RESTdesc, because you need EXPRESS in mind

when developing, and that OWL-S would be slowest because WSDL services are

more complex and need more debugging time. He also stated that developing

clients in OWL-s may be quicker because of WSDL/SOAP tool support, and the

exchange would be in SOAP messages not RDF.

Development
Speed

Ease of
Development

Flexibility

Linked DataUnder-
specified

Semantic
Quality

Extra Features

The aim of
SWS

Utilise Semantics in the Domain ontology and REST to:
Eliminate explicit service descriptions and interface vocabularies
Obtain semantic service descriptions as a by-product of provision

Does it reduce development
effort?

Can it provide a similar level
of semantic expressivity to
existing approaches? And
what are the trade-offs in

terms of practicality?

 129

Chapter 7 Expert Reviews

Expert three said, “OWL-S will take me a really long time”, and when comparing

EXPRESS and RESTdesc, he perceived that if a new service was added, a new

RESTdesc description would be needed. However, with EXPRESS, the same

ontology would be used. Expert four was enthusiastic in discussing the aim of

SWS in general (one of the themes that emerged from the analysis), and avoided

commenting on the development speed in particular.

Expert five mentioned that the OWL-S will take him the longest, and attributed

that to it being built on WSDL descriptions. Comparing EXPRESS to RESTdesc, he

said that, if the services were built from scratch, EXPRESS would be the fastest.

Expert six agreed with the other experts about OWL-S. He said starting from

scratch EXPRESS is much simpler. He also said that he would be able to

understand RESTdesc quickly, but in terms of typing, it would take him a long

time.

7.2.2.2 Theme 2: Ease of Development

Ease of development, encompasses aspects concerning the comprehensibility of

the approaches and the effort required to learn and develop solutions in them.

Expert one felt OWL-S required a lot of work to provide OWL-S descriptions. He

preferred RESTdesc, and described it as tidy, neat and very straightforward to

build on top of HTTP APIs. He mentioned that EXPRESS would be very convenient

in a small organization and a relatively simple service. However when things

scale, it wouldn’t be very convenient, because having all the possible links in the

header is a constraint. He concluded by saying that EXPRESS would be convenient

for a beginner to semantic technologies, but because he is not, he prefers

RESTdesc. Expert two also regarded OWL-S as more complex than EXPRESS and

REST. However, he also stated that it depends whether you are building a project

from scratch. In that case, both OWL-S and EXPRESS would be suitable, because

RESTdesc “doesn’t rely on the business logic so much, which I guess is good; it is

a lot simpler to work with”. He liked the way RESTdesc used the implies “=>” to

define the services, and thought it was “simpler and cleaner”. However, he

mentioned that one of downsides compared with OWL-S was dealing with the URI

templates. For EXPRESS he compared it to a schema: “So you’ve got it on top of the

schema, so once you’ve got the schema there, you can control it the way you

want”. However, in the order book example, he considered passing a URI as part

of the URL to be complex. In terms of creating clients, he mentioned that needing

an RDF handling library for EXPRESS adds extra complexity, whereas in RESTdesc

it would be easy, because there are many libraries that support JSON. He also

stated that it depends on the programming languages used. An issue with OWL-S

 130

 Chapter 7 Expert Reviews

he considered complex was translating the messages from XML to RDF, and OWL-

S provided more semantic information but it was less easy to explore.

Expert three viewed EXPRESS as a “very standard expression of the API”, and

thought it was very simple compared to OWL-S and RESTdesc. He felt there would

not be a problem implementing it. He liked that RESTdesc returned JSON and

suggested that EXPRESS provide content negotiation to provide JSON, too. Expert

four preferred EXPRESS because it is succinct and less verbose, meaning fewer

errors, and also because it uses CRUD. However, he noted that people will find

the equivalent classes hard to learn, and although he preferred EXPRESS to

RESTdesc and OWL-S it is still hard, and he added, “Why should I bother marking

up my endpoints with it?” This point of view is discussed in Theme 6: The aim of

SWS. He commented that OWL-S was very verbose, and he thought the XSLT

conversions for grounding were verbose, fragile and were neither readable nor

debuggable. As for RESTdesc, he was not familiar with the implies (=>) in N3 and

thought that the N3 descriptions were not clear enough to state that when a book

is retrieved that it was not actually created then retrieved.

When explaining EXPRESS in the beginning, Expert five asked about the stub

generation and commented that EXPRESS, compared to RESTdesc and OWL-S, is a

much simpler and nicer system and that EXPRESS is for building a service from

the ground up. He mentioned that OWL-S would be the hardest to deal with. He

summarised his opinion in the following quote: “What would I develop in, if I was

writing it from scratch? Yes, I would write in EXPRESS. But what would I expect to

be more useful in the real world? RESTdesc. And what I think is, we should never

ever use OWL-S, WSDL is such as waste of time”. Expert six highlighted several

issues with RESTdesc. One was the ambiguity of version two of the scenario,

where a POST on a book’s URI created an order; however, he preferred version two

because he thought that the templating in version one was challenging. This is

because it is encoded in strings and therefore, it is harder to debug, as a mistake

would not be picked up by an RDF parser. He commented, “What is the support

that is going to help me get that right and not get bugs in it? On a very pragmatic

level, what happens when I make a syntax error?” When comparing EXPRESS to

RESTdesc, he mentioned that version two of RESTdesc (which has no URI

templates) looked easier and is probably comparable to EXPRESS.

7.2.2.3 Theme 3: Flexibility

This includes the experts’ opinion on the flexibility of the approaches: whether

EXPRESS was less practical than the other approaches because of the way it

controls the structure of the URIs.

 131

Chapter 7 Expert Reviews

Expert one preferred RESTdesc in terms of flexibility, and for EXPRESS, he

regarded having all the possible links in the header a constraint. Expert two

pointed out that RESTdesc does not rely on the business logic, compared to

EXPRESS, and regarding the URIs being controlled by EXPRESS, he said, “It is nice

to have some control on the URIs”, indicating that EXPRESS was restrictive and

that makes it less application-specific. Expert three suggested adding content

negotiation and returning JSON. Expert four talked about adding sub-objects and

reverse properties to the specification, to make EXPRESS more flexible, and when

asked about the way EXPRESS controls the URI structure, and whether or not it

was a limitation, he said, “Definitely yes, limitations are how you survive,

limitations are fine if people can see them for what they are”.

Expert five, in the beginning of the interview, said, “It is clear that RESTdesc is

more flexible, but as I was saying earlier on, being flexible doesn’t give you that

much help”. This was because he was comparing it to the generation of stubs that

EXPRESS offers. Commenting on EXPRESS’s control of URIs, he said, “At least it will

be semi-standard, at least folks will start to understand what they could expect

from your Web service […] in a way, it will be more predictable”. However when I

explained that the N3 RESTdesc file does not need to be in a specific location, he

picked up on the fact that both RESTdesc and OWL-S can be used to describe

third-party services. “So that is what is interesting about this, because I could

write a set of N3 rules for a third party API like Twitter, for example, and it will

describe what the Twitter API means in the semantic sense, OK, which is quite

cool”. He also pointed out that EXPRESS is different because it develops Web

services from scratch: “Well, clearly EXPRESS is for building services from the

ground up, to be in some sense semantically aware. Obviously, if you had a

handful of EXPRESS services, that would be remarkably useful”. Expert six did not

regard EXPRESS’s control over the URI structure as limiting, and commented, “So,

as a service provider, you are going to provide a system where I can just throw

this [the OWL file] at it, and it generates this [the services]. Sounds great to me.

[...] So essentially I just edit an RDF description of my service, which is nice and

flexible. If I want to change my service I edit the RDF, and press the button again,

so that is very flexible, isn’t it?” When I explained that EXPRESS imposes a certain

URI structure that cannot be changed, he said, “Oh, I don’t want to do that [change

the URI structure], why do I want to do that? That is the last thing I want to do,

I’ve got customers who care about my URI structure. As a Linked Data person, one

of the things I know is the first thing you need is to work out your URI structure

[...] you need to get them right first time”. He further explained that URI structure

is good because it becomes a language that users can learn and have

 132

 Chapter 7 Expert Reviews

expectations about, and added, “If you give the service provider complete

freedom, then it is harder for the user”.

7.2.2.4 Theme 4: Linked Data

The Linked Data theme includes what the experts said about the relationship

between Linked Data and the presented approaches.

Expert two regarded RESTdesc as a way to layer Linked Data on top of an API.

Expert three asked whether all the URIs returned by EXPRESS were resolvable and

followed Linked Data Principles. He further explained the question by asking

about the implementation details, and how the URI structure that EXPRESS

imposes can be propagated to the backend storage systems. He drew parallels to

the D2R18 server and how to provide the correct URI structure on the fly. Expert

four saw similarities between EXPRESS and the Linked Data API19. The Linked Data

API provided an RDF configuration file to specify the API and the endpoints to

retrieve and format Linked Data. Expert six compared the way EXPRESS controls

the URI structure to the process of minting URIs for Linked Data.

7.2.2.5 Theme 5: Semantic Quality

This includes the experts’ opinions about whether the descriptions were

unambiguous, and the ability to infer over them.

Expert one regarded EXPRESS as a more structured way of providing HTTP URIs;

however, he said “it doesn’t provide much semantics”. On the other hand, for

RESTdesc, he said, “You can see the potential of providing semantics here”. Expert

two initially regarded RESTdesc as not as semantically rich as the other two and

said that compared to EXPRESS it requires more work to investigate its richness

and to handle the logic. However, he later stated that the three approaches

provide similar information about inputs and outputs, and that RESTdesc is

simpler and cleaner, and while OWL-S would probably provide more semantic

information, it is less easy to explore. As for EXPRESS, he liked the URI structure

and that it provided fine-grained access, and he also appreciated retrieving the

RDF data: “I guess EXPRESS is good because you get the raw RDF back, so you can

actually put into a reasoner, you have access to the domain ontology on top of

that”. However, he thought the lack of explicit process definitions was a

downside. Expert three discussed tool support for parsing semantic information

and how it depended on the programming language used. If it was PHP or Java,

18D2R Server http://d2rq.org/d2r-server
19 Linked Data API https://code.google.com/p/linked-data-api/

 133

http://d2rq.org/d2r-server
https://code.google.com/p/linked-data-api/

Chapter 7 Expert Reviews

there would not be a problem. He also highlighted as a factor the developer’s

familiarity with semantic technologies.

Expert four said that RESTdesc does not state whether a service has a side effect

or whether it is merely a query. He stated that EXPRESS was missing a human-

readable description, and also, as mentioned before, he thought EXPRESS was

missing reverse properties and sub-objects as well as the ability to describe

complex data structures. Expert five thought that these approaches were similar

in terms of the semantic descriptions they provide, as they all described the

inputs and the outputs and how to interact with the service. Expert six stated that

three approaches describe how to interact with the service, but not what the

service actually does, he suggested using Good Relations20 to describe the type of

business the Web service represents. With RESTdesc he regarded the way version

2 works as ambiguous, because it meant POSTing to a book’s URI to create an

order. He also noted that RESTdesc was enforcing the use of their template

ontology, which might not work for him and that he required something simpler.

As for EXPRESS, he said, “I have a suspicion if I was to gather descriptions from a

number of places and put them in a store and then try and do clever reasoning,

this will be the hardest, this has the least information [...] normally when people

write clients they don’t do that, there is nobody doing that, everybody just wants

this information so they can write their PHP or Python to use it, and that is

probably why this [EXPRESS] appeals to me more because that tends to be what I

do”.

7.2.2.6 Theme 6: The aim of Semantic Web services

This includes comments about what experts thought of the viability of Semantic

Web services in general. This is an interesting theme as it shows that some

experts value practicality over semantic richness, and that the advantages of SWS

are not of value to them.

Expert four was discussing the aim of Semantic Web services (SWS) and was

sceptical of their value. He said, “The problem is, my gut says that this starts with

a solution rather than starting with a problem, and this feels very academic, this

doesn’t feel like someone who has got a problem and is trying to solve it, it feels

like somebody is writing a paper”. He went on to say, “Well all these are solving a

question that I didn’t think anyone asked. That is the problem. It seems a long

way ahead from where the actual real-world problems are”. When I explained that

SWS aimed to offer automatic discovery and composition, he said, “No one has

ever asked for one of these, no programmer has ever said: Why don’t you have an

20 Good Relations http://www.heppnetz.de/projects/goodrelations/

 134

http://www.heppnetz.de/projects/goodrelations/

 Chapter 7 Expert Reviews

auto-discovery mechanism for your APIs?” and “When you say discover a service,

and who would want to discover a service, why would you? I mean I wouldn’t trust

something that said it could do something, I am much more interested in knowing

about the people who wrote it, is this John Smith’s third-year project or is it

Amazon or the British Library? If it is the British library I am probably going to be

more interested in using their API”.

Expert five initially doubted the usefulness of Semantic Web services. He said,

“Like in reality that is not how you would interact with these Web services, right

[...] you are not building like this robot and you are telling the robot, ‘Hey I want to

order a book and that’s it’, and it goes, ‘OK, I know what a book is, I know what it

means to order a book, here is my list of my Web services, can you do this? Can

you? Oh you can do it OK’”. However as he tried to think of applications, he

seemed to realise the benefits of semi-automation: “Practically speaking, you are

going to be writing a client that can interact with a particular service, or a set of

services, and to tell the client how to interact with them individually, so that is

where the richness comes in, that is where the benefit comes in, so here you have

a generic behaviour which works across a set of services, and as long as the

services tell you how to interact with them potentially your client can make sense

of that and interact with it in a way that is useful for its task”. He went further by

providing a use case from his experience, where he saw that RESTdesc provided a

better solution. “Say you are doing social media analysis, say you are interacting

with these five or six different social media platforms and under the platform

they all have users and the users will have geolocations, and if somehow you

could interact with a semantic layer of these services and these services tell you

[...] this is the information we provide and then your client can go through [...] so

if I want a service that provides geolocation this is what I have to do for

Facebook, this what I have to do for Flickr and this is what I have to do for

Twitter, and then that means that you can write a client that sits there and churns

through user geolocations, but exactly how it gets it from each service is done

automatically. That is quite cool, you can imagine that saving a load of work.

Again, that is if they all provided that semantic information, but I suppose this is

what RESTdesc gives, the ability to describe that semantic information for

services you didn’t write”.

Expert six believed SWS described how to interact with the service. He was

sceptical they captured the actual semantics. For example, in creating an order, he

asked, “The other thing that is missing from all this, I don’t actually know what

the service is doing, nobody attempts to tell me what the service does, in some

sense what is an order? Does an order buy me a chicken or does it sell something,

 135

Chapter 7 Expert Reviews

or give me a description of something?” I explained that this is resolved by

agreeing on vocabularies or ontologies to describe shared concepts. However, he

still continued to consider SWS as an interaction layer, and suggested adding a

Good Relations description for what the service does, and a mechanism to

advertise trust.

7.2.2.7 Theme 7: Underspecified

Experts’ opinions about aspects that were missing from EXPRESS are included in

this theme.

Expert two asked if EXPRESS gave any other filtering options, such as searching

for a keyword within the text, and also asked about sorting options. Expert three,

when discussing EXPRESS, questioned the lack of complex data structures in the

examples and asked how they will be encoded and transferred. He also thought

that the author should be a data property, not an on object property. He asked

about whether there were guidelines for writing the ontology. Regarding EXPRESS,

expert four asked about error handling and what will happen if someone tried to

add arbitrary triples. He discussed the lack of explicit support for sequences,

containers, sub-objects, and reverse properties. With regards to RESTdesc, he

asked if there was a mapping between the returned JSON and the N3, and said,

“Well if the client can’t tell that the ISBN here [the N3 description] is the ISBN here

[in the JSON response], then it is useless, you know you are not getting anything

semantic you are only getting JSON, you might as well have done a GET query for.

I don’t see how this will work”.

7.2.2.8 Theme 8: Extra features

Any extra features that were suggested by the experts are included here.

Expert three was interested in how EXPRESS would interact with a conventional

database and asked if there was an association between the database design and

the interface design. He suggested the option of creating the ontology from the

database schema; he also discussed methods for generating the URIs for the

entities in the database and suggested looking at the D2R server and integrating

it with EXPRESS. He also suggested versioning for the endpoint and URIs to

maintain backward compatibility. Expert four suggested adding mechanisms to

query for reverse properties, and also emphasised the importance of trusting a

service. Expert six also suggested adding a mechanism to convey the trust level

of the service, “and then you might have something like this is my trust service

where you can find something about my trust”.

 136

 Chapter 7 Expert Reviews

7.2.2.9 Theme 9: Manual vs. Automatic Descriptions

This includes the experts’ opinions about the differences between the manual and

automatically generated version of EXPRESS.

Expert one thought both descriptions were equally possible, and that it depends

on the publisher’s preference. He also thought both have the same semantic

power. Expert two highlighted the syntactic differences such as the underscore

and the different namespaces. He also noted the existence of extra properties the

manual description. However, he was not very decisive, and seemed to agree on

the semantic similarities, and remarked that the automatic one takes more work.

Expert three highlighted the syntactic differences and different properties. He

thought that the automated one was more flexible and the manual one was easier

for implementation, and when asked which one a developer is more likely to come

up with he said it depends on the complexity of the problem; in example two [the

automatic one], it just returns the book, whereas in example one [the manual one],

it returns its attributes, too. Expert four thought the underscore was ugly, and

said about the automatically converted version, “The ontology in example two

[the automated one] looks like it describes a single lookup. This seems slightly

more verbose for a worst result”, and “This second layer of stuff has its strength

and weaknesses, the strength being separating your ontology from your markup,

as they are two different things.” However when asked which one a developer is

more likely to come up with, he said, “Well, I don’t know from the information

available. To be honest I’ve only seen fairly small amount”.

Expert five also highlighted the syntactic differences and the difference in

properties, and when asked which one a developer is more likely to come up with,

he said, “I think this really depends on what the developer understands the

application to be, so if the developer says ‘OK, all we want you to give you back is

a unique URI of the book’, then I understand most applications don’t care about

the author, they don’t care about the title, they just want to know they can get a

unique URI of a book, so I’ll just tell them that [...] Alternatively, if a developer

knows that, OK, the reason most of the time people ask for a book is they want a

title, to put on a website somewhere then I should tell them”. However, he later

said, “It is interesting that these descriptions are technically both valid, you can

then go off and resolve that book URI and get the extra information if you wanted,

it is interesting how different they are”. Like the other experts, Expert six

highlighted the syntactic differences and the difference in properties, and when

asked about which one a developer is more likely to come up with, he said, “If

they are very keen on ontologies, this one [the automatically converted one], but

 137

Chapter 7 Expert Reviews

the standard developer will understand this better [the manual one]”. However,

as he spent more time examining them, he said, “Ah sorry, this just looks so nice

and clean [the manual one], I can’t see why anyone would do that [the

automatically converted one] if they can do that”.

7.3 Discussion

In this section the results of the interviews are presented and discussed, Section

7.3.1 uses the interview results to answer the research questions and Section

7.3.2 discusses the link between the expert’s expertise and their views.

7.3.1 Research Questions

The research questions are answered by synthesising the results from its

associated themes, in addition to analysing the experts views on the

representativeness of EXPRESSive descriptions that are automatically converted

from OWL-S versions.

7.3.1.1 Does EXPRESS reduce the development effort?

The themes associated to this question are: Theme 1: Development Speed and

Theme 2: Ease of Development. The experts agreed that developing in EXPRESS or

RESTdesc is both faster and easier than OWL-S; they considered OWL-S verbose,

complex, and harder to debug. Moreover, being built on WSDL descriptions

increases the complexity. However, their opinions differed when comparing

EXPRESS to RESTdesc. Half of the experts preferred RESTdesc (Experts one, two

and five) and the other half favoured EXPRESS (Experts three, four and six). Below

I present the experts’ opinions on the pros and cons of RESTdesc and EXPRESS in

terms of development effort.

Table 23 Expert opinions on development effort

 Expert Opinions
 PROS CONS

RE
ST

de
sc

• Follows N3 which is a widely accepted format
(Expert 1)

• Would be very fast for providing a building on top
of HTTP APIs (Expert 1)

• Tidy, neat and straightforward (Expert 1)
• It would be the fastest for developing semantic

APIs (Expert 2)
• Use of N3 implies symbol (=>) makes service

definitions simpler & cleaner (Expert 2)
• Easier if you have an existing API (Experts 3, 5)
• Less work than OWL-S and EXPRESS, just hosting

an N3 file (Expert 5)

• A new RESTdesc description has to be added each
time a new service is added (Expert 3)

• Dealing with URI templates is difficult (Expert 2, 6)
• Typing the descriptions will take a long time

(Expert 6)
• Use of N3 implies symbol (=>) to define the

services is intimidating (Expert 4)
• In version 2 of RESTdesc, creating an order by
POSTing to a book URI is unexpected (Experts 4,
6)

• String encoding of the URI templates, makes it
harder to debug (Expert 6)

 138

 Chapter 7 Expert Reviews

EX
PR

ES
S

• Convenient in a small organisation (Expert 1)
• Convenient for a beginner in semantic

technologies (Expert 1)
• Faster and easier for building an API from scratch

(Experts 1,2,5,6)
• Simple compared to RESTdesc and EXPRESS

(Expert 3)
• Only an endpoint has to be added each time a

new service is added (Expert 3)
• Succinct and achieves goals with less verbosity

(Experts 4,6)
• Easier to debug (Experts 4,6)
• It can be completely automated, simpler and nicer

(Expert 5)
• Easier to understand: less cognitive models

required (Expert 6)

• When it scales, it is not convenient to have all the
possible links in the header (Expert 1)

• You have to have EXPRESS in mind when
developing for it (Expert 2)

• Passing URIs as part of the URL is complex (Expert
2)

• An RDF handling library would be needed to parse
the results (Expert 2)

• EXPRESS has equivalent classes in the ontology
which people will find hard to learn (Expert 4)

• The use of query strings complicates EXPRESS
(Expert 6)

To answer the question, EXPRESS was clearly perceived to reduce the

development effort compared to OWL-S; however, compared to RESTdesc, there is

a consensus from the interviewed experts that EXPRESS only reduces the

development effort for developing an API from scratch, and this is evident from

the number of experts who have mentioned this explicitly, even if they preferred

RESTdesc.

7.3.1.2 Can it provide a similar level of semantic expressivity to existing

approaches? And what are the trade-offs in terms of practicality?

Referring back to Figure 24, the related themes to this question are Theme 3:

flexibility, Theme 4: Linked Data, Theme 5: semantic quality, Theme 7:

underspecified, and Theme 9: extra features. Starting with OWL-S, in terms of

semantic quality, Expert two said that although the three approaches provide

similar content about the service, OWL-S would probably provide more semantic

information, but it is less easy to explore. In terms of flexibility Expert five noted

that the service descriptions could be written by third parties, which makes it

useful for Semantic Web experts interacting with existing APIs. In general the

experts found OWL-S overwhelming and mostly dismissed OWL-S from the

comparison, by providing short comments on its complexity. As for RESTdesc and

EXPRESS, expert opinions were divided, as they were about development effort.

Experts one, two and five preferred RESTdesc and Experts three, four and six

preferred EXPRESS. Table 18 summarises their opinions.

Table 24 Expert opinions on semantic expressivity and practicality

 Expert Opinions
 PROS CONS

 139

Chapter 7 Expert Reviews

RE
ST

de
sc

• Experts would prefer RESTdesc to write service

descriptions (Expert 1)
• It has a better potential for providing semantics

(Expert 1)
• Does not rely on the business logic (Expert 2)
• A good way of layering Linked Data on top of your

service (Expert 2)
• JSON is better supported (Expert 3)
• Useful for writing descriptions for third party APIs

(Expert 5)
• RESTdesc has more semantic information about

the service (Expert 6)

• There is ambiguity in determining if a service has a
side-effect (Expert 4)

• It is not clear how RESTdesc will deal with objects
such as lists and containers (Expert 4)

• No mapping between the JSON responses and the
N3 descriptions, hence less useful (Expert 4)

• RESTdesc V2.0 POSTing to a book’s URI to create
an order is ambiguous (Experts 4,6)

• Enforces ontologies for service descriptions, (HTTP
and HTTP template vocabulary) (Expert 6)

• Although it provides more semantic information,
that information is not useful (Expert 6)

EX
PR

ES
S

• Raw RDF is returned, so it can put in the reasoner
with the ontology (Expert 2)

• It is more predictable, you know what to expect
from a service (Experts 3,4,5,6)

• Having the URI structure controlled is a limitation,
but a good one (Expert 4)

• It could become a semi-standard (Expert 5)
• It is flexible, all is needed is editing the ontology

(Expert 6)
• Once the URI structure is right it should not be

changed (Expert6)
• The information EXPRESS provides is more useful

for writing clients (Expert 6)

• Does not provide much semantics (Expert 1)
• Would be hard to scale if all the URIs are in the

header (Expert 1)
• Not having control over the URI structure would

be restrictive (Expert 2)
• Does not provide definitions for the services

(Expert 2)
• Does not support sequences and containers

(Experts 3,4)
• No human readable description (Expert 4)
• Does not support sub-objects or reverse

properties (Expert 4)
• Cannot be used for 3rd party services (Expert 5)

Most of the interviewed experts agreed that RESTdesc in general provided more

semantic information than EXPRESS. However, they considered differences

between the semantic information offered minimal. Experts who preferred

EXPRESS saw that any more semantic information provided was unnecessary.

In terms of flexibility, in general, they also considered RESTdesc more flexible.

Expert two appreciated that it did not rely on the business logic, and Expert five

was particularly keen on its potential for describing APIs of third parties. The

experts who preferred EXPRESS did not see the flexibility of RESTdesc as useful,

and appreciated the predictability of EXPRESS.

Experts also discussed areas where EXPRESS was underspecified, such as in

providing sequences, containers, sub-objects, reverse properties and error

handling.

Extra features suggested by the experts included aspects such as advance

filtering, content negotiation, trust, versioning, and the association between the

database design and the interface design.

 140

 Chapter 7 Expert Reviews

7.3.1.3 Is an EXPRESSive service description that is automatically

converted from an OWL-S version comparable to a EXPRESSive

service description designed manually?

The experts agreed that there were syntactic differences between the two

versions, like the underscore and the different namespaces, which were a result

of how the conversion was implemented and could have been changed easily.

In terms of semantic differences, they also agreed that the results would be

similar. They highlighted the fact that the manual one specified the return of

extra information (properties), but that the automatically generated one could

also do this.

As for the likeliness of a programmer to come up with the automatic version,

there were mixed responses. Experts attributed the differences between the two

versions to differences in the developers’ style. These experts described a

developer who would come up with the automated version, as someone who is

keen on ontologies, lazy, reflecting their understanding of the problem

complexity, or attempting to separate the ontology from the markup.

As for individual responses, Expert one thought both versions were equally

possible, Experts three and Expert five said it depended on the developer’s

understanding of the application: whether only the book was required or its

attributes (title and author) were required too, and that either way the former

leads to the latter, so once the book’s URI is retrieved, other attributes can be

retrieved too. Their responses indicate that they believed it is plausible that a

developer could have written the automatically converted version.

Experts two and four were uncertain. After discussing the syntactic and semantic

aspects of the two versions, Expert four explicitly said, “Well, I don’t know from

the information available. To be honest I’ve only seen fairly small amount”. Expert

two kept repeating the syntactic differences and was hesitant to give a verdict.

Expert six, began by entertaining the plausibility of a developer producing the

automatically converted version. However he ended his observation by saying,

“Ah sorry this just looks so nice and clean [the manual one], I can’t see why

anyone would do that [the automatically converted one], if they can do that”

In general, the experts found the fourth question difficult to answer, and seemed

to seek guidance and approval for their answers. They also asked questions such

as, “So what am I looking for?”, and “Is that correct?” However I emphasised that

their opinion is what matters, and gave neutral responses.

 141

Chapter 7 Expert Reviews

The experts did find it plausible that a human developer would have created

something similar to the automated description, but that there was less certainty

over whether this was likely.

7.3.2 Area of Expertise Influence on Results

As mentioned in section 7.3.1 half of the experts preferred RESTdesc (Experts one,

two and five) and the other half favoured EXPRESS (Experts three, four and six). In

this section, I reflect on how their area of expertise influenced their preferences.

Expert one is researching effective methods for distributed SPARQL queries. This

involves intensive study of graph patterns. Service descriptions in RESTdesc are

in N3 rules; an N3 rule constitutes two graph patterns, one for the rule head and

the other for the body. Expert one described RESTdesc as tidy and neat, and said

if he was a beginner in Semantic Web technologies he would have preferred

EXPRESS. However, since he is an expert, he prefers RESTdesc.

Experts two and five are involved in researching effective methods for multimedia

retrieval. They have both worked on designing ontologies for multimedia, and

providing mechanisms for annotating its data. Expert five, who also researches

social media retrieval, appreciated that RESTdesc descriptions can be written by

3rd parties.

Experts four and six, who preferred EXPRESS, are both heavily involved with

Linked Data, developing systems and discussing standards. They expressed their

familiarity with the concepts EXPRESS incorporates, such as minting URIs and

RESTful interaction. They discussed projects they worked on which had similar

concepts to EXPRESS. Expert three, who preferred EXPRESS too, works on using

Linked Data to publish information about media fragments.

Therefore, it seems that the interviewed experts who had worked on publishing

Linked Data preferred EXPRESS, and appreciated its applicability.

A possible extrapolation from the results would be that experts who tended to

develop APIs for Linked Data preferred EXPRESS, and those who used existing

APIs preferred RESTdesc.

7.3.3 Related Results

A research paper by Bachlechner and Fink (2008) involved surveying experts’

opinions on Semantic Web services. The main aim of the research was to collect

opinions from both practitioners and researchers about the potential of Semantic

 142

 Chapter 7 Expert Reviews

Web services as integration architectures. The authors conducted a Delphi study

with experts from industry and academia. The study involved providing the

experts with two questionnaires, in two stages. The first questionnaire contained

open-ended questions to gain experts’ views on Semantic Web services in general.

In the second stage, the results from the first were used to design a second

questionnaire, where experts were asked to rate statements on a scale from 1-5.

Amongst the challenges that the experts agreed on, was the grounding of the

research in reality, and the proof of cost-effectiveness. The author suggested that

the industry is not yet convinced of the potential of Semantic Web services.

This finding is in line with some of the comments from the study conducted here.

Experts four, five and six were sceptical about the practicality of Semantic Web

services in general.

Expert four, for example, said: “The problem is, my gut says that this starts with a

solution rather than starting with a problem, and this feels very academic, this

doesn’t feel like someone who has got a problem and is trying to solve it, it feels

like somebody is writing a paper”. He went on to say, “Well all these are solving a

question that I didn’t think anyone asked. That is the problem. It seems a long

way ahead from where the actual real-world problems are”.

Another similar finding from the paper, in explaining the lack of industrial

adoption, respondents mentioned “the lack of skilled developers and effective

tools”. Expert four from the interviews also provided the following comment:

“making the Semantic Web more accessible for programmers who don’t have

PhDs. So one in 50 computer science graduates may know about this stuff, or

even one in 10: it is not enough, it is not enough to make this technology stable,

so we have to make it as easy as possible to do it badly and until the people who

knock up WordPress sites can make bad RDF links, we are not there”.

“High complexity” was one of the challenges that both academics and

practitioners in the paper ranked high. This coincides with the experts’ view of

OWL-S as they preferred RESTdesc and EXPRESS because OWL-S was too complex.

7.4 Conclusions

This chapter discussed the Expert Review experiment: the methodology and

results. The aim was to evaluate EXPRESS as a Semantic Web service approach in

comparison to two other approaches: OWL-S and RESTdesc. Six experts in

Semantic Web technologies were recruited and presented with a scenario of

providing a Semantic Web service designed in each one of the approaches.

 143

Chapter 7 Expert Reviews

The experts’ preferences were divided between EXPRESS and RESTdesc. The

experts who preferred EXPRESS have expertise in publishing Linked Data, and

they discussed similarities to Linked Data, this suggests that their familiarity with

concepts of Linked Data has influenced their preference.

However, all the experts agreed that EXPRESS is a more suitable solution for

providing SWS from scratch, and for that purpose they considered it is easier than

both RESTdesc and OWL-S.

They also noted that there were some areas in which EXPRESS was underspecified,

such as dealing with lists, sequences and complex filtering mechanisms.

An interesting insight was some of the experts’ scepticism about the viability of

Semantic Web services in practice.

As for the representativeness of the EXPRESS-TC in the matchmaking experiment,

the experts did find it plausible that a human developer would have created

something similar to the automated description, but that there was less certainty

over whether this was likely. This validates the choice to use the automatically

created test, as the experts viewed this as plausible (if inelegant) approach.

 144

 Chapter 8 Conclusions and Future Work

Chapter 8: Conclusions and Future Work

The complexity of Semantic Web services is one of the main obstacles to their

adoption in the industry. This thesis demonstrated that an alternative approach is

possible which does not require additional meta-models about services. This was

achieved by the development and validation of EXPRESS – a SWS approach where

the semantics are derived from the domain ontology and the standard interface

offered by REST. The goal has been to see to what extent this approach is

feasible, what compromises need to be made to make it work in practice, and to

explore how successful it is in terms of reducing development effort while

providing semantic richness. This chapter summarises the work done, discusses

the explicit contributions made, and suggests areas for future work.

8.1 Summary

EXPRESS utilises the similarities between REST and the Semantic Web, such as

resource realisation, self-describing representations, and uniform interfaces. The

semantics of a service is elicited from a resource’s semantic description in the

domain ontology and the semantics of the uniform interface, hence eliminating

the need for semantically describing services. Moreover stub-generation is a by-

product of the mapping between entities in the domain ontology and resources.

Chapter 2 provided a background on middleware, the Web, Web services, REST

and the Semantic Web. It highlighted the influence of middleware approaches on

Web services and SWS, and the similarities between the Web, REST and the

Semantic Web. Chapter 3 analysed existing SWS approaches, both in the way they

describe services and in the research strategies that they have adopted. The aim

of Chapter 4 was to avoid over-engineering the approach, by grounding the

design decisions on the analysis of real scenarios to see if and how an approach

could describe them, and what interaction requirements would need to be

described. Chapter 5 discussed and demonstrated the development of EXPRESS,

and provided a detailed description of it and the online deployment engine.

 145

Chapter 8 Conclusions and Future Work

Chapter 6 assessed the discoverability of EXPRESSive descriptions. The results of

the experiment show that EXPRESS descriptions offer very close semantic

expressivity to the OWL-S ones: this is indicated by the adapted iSeM matchmaker

performance, which yielded very close precision-recall measures, with an

improvement in speed ranging from 4% to 38%, depending on the matchmaker

variant. Chapter 7 presented the methodology and results of an Expert Review

experiment, in which EXPRESS was compared to two other SWS approaches: OWL-S

and RESTdesc, by providing the experts with the same scenario designed in the

three approaches. The results show that experts’ preferences were divided

between EXPRESS and RESTdesc. Moreover, experts who tended to develop APIs

for Linked Data preferred EXPRESS, while those who used existing APIs preferred

RESTdesc. However, all the interviewed experts agreed that EXPRESS is a more

suitable solution for providing SWS from scratch, and for that purpose they

considered it easier than both RESTdesc and OWL-S.

8.2 Contributions

The work described in this thesis has made the following contributions to the

field of Semantic Web services:

1. A new approach called EXPRESS, for offering Semantic RESTful Web services

from domain ontologies, which eliminates service descriptions and interface

vocabularies; an online demonstrator of an EXPRESS deployment engine shows

how the semantic descriptions are a result of the service provision.

2. An analysis of 20 real scenarios in five Web service communities of interest,

resulting in the identification of interaction requirements that guide the

design of EXPRESS.

3. A Resource-Oriented Modelling approach based on UML collaboration

diagrams.

4. A mapping between EXPRESSive descriptions and OWL-S descriptions.

5. The evaluation of EXPRESS in both a matchmaker experiment, which required

the creation of an EXPRESSive service test collection (EXPRESS-TC) and the

adaptation of a semantic matchmaker, and in an expert review, in which

experts were asked to compare EXPRESS to two other SWS approaches in terms

of development effort and practicality.

The research hypothesis was as follows:

Utilising the semantics in the domain ontology and REST can provide a RESTful

SWS approach that (1) eliminates service ontologies/vocabularies and explicit

descriptions of interfaces, and (2) generates semantic descriptions as a by-

 146

 Chapter 8 Conclusions and Future Work

product of its provision, and can simplify the development of SWS while

preserving a similar level of semantic expressivity to existing SWS approaches.

The hypothesis led to the following research questions:

1. Is it possible to eliminate explicit service descriptions and service

ontologies/vocabularies while their semantic descriptions become a by-

product of their provision?

An online demonstrator for EXPRESS that generates and deploys Semantic RESTful

Web was explained in Chapter 5. It showed how EXPRESS requires no explicit

service descriptions or service vocabularies. Moreover, Chapter 5 showed how

EXPRESS fulfils the six interaction requirements derived from the scenario

analysis in Chapter 4, in which twenty representative scenarios from five Web

service communities of interest were selected and analysed (aided by the RO

models).

This shows the feasibility of EXPRESS as a SWS approach, as it provides a

semantic description and at the same time fulfils the interaction requirements

required by representative Web service scenarios.

However, as a result of the expert review, it is apparent that there are still some

aspects that were underspecified: this included lack of explicit support for

sequences, sorting, containers, sub-objects, and reverse properties. Future work

(Section 8.4) discusses research activities to address these issues.

2. Can it provide a similar level of semantic expressivity to existing approaches,

and what are the trade-offs in terms of practicality?

This question was answered by conducting a matchmaking experiment to

compare the effect of the SWS description approach in EXPRESS and OWL-S. The

results of the experiment show that EXPRESS descriptions offer very close

semantic expressivity, in terms of discoverability, to the OWL-S ones. This is

indicated by the adapted iSeM matchmaker performance which yielded very close

precision-recall measures, with an improvement in speed ranging from 4% to 38%,

depending on the matchmaker variant, while massively reducing the size of the

service descriptions.

Moreover, the expert reviews provided feedback on the semantic quality of

EXPRESS compared to the other approaches, RESTdesc and OWL-S. In general the

experts found OWL-S overwhelmingly complex and this complexity outweighed

the semantic richness it offered. Comparing RESTdesc and EXPRESS, most of the

interviewed experts agreed that RESTdesc provided more semantic information

 147

Chapter 8 Conclusions and Future Work

than EXPRESS; however, they considered the differences minimal. Experts who

preferred EXPRESS stated the view that to provide any more semantic information

was unnecessary.

Nevertheless, more work could be undertaken to evaluate EXPRESS’s practicality.

One of the directions for future work would to perform a case study were

EXPRESS would be applied to develop a full application, and to study developers’

feedback on both the practically and their opinions of the role of semantic

descriptions; this is explained in further detail in Section 8.4.

3. Does it simplify the process of providing SWS services?

The expert review in Chapter 7 addresses this question. A scenario designed in

EXPRESS was compared to the same scenario designed in two other SWS

approaches, OWL-S and RESTdesc. The results show that in terms of simplicity

experts’ preferences were divided between EXPRESS and RESTdesc. The experts

who preferred EXPRESS have expertise in publishing Linked Data, and they

discussed similarities to Linked Data. This suggests that their familiarity with the

concepts of Linked Data has influenced their preference. Moreover, experts who

tended to develop APIs for Linked Data preferred EXPRESS, and those who used

existing APIs preferred RESTdesc. However, all the experts agreed that EXPRESS is

a more suitable solution for providing SWS from scratch, and for that purpose

they considered it is easier than both RESTdesc and OWL-S.

8.3 Publications

The following publications were a result of this thesis.

1. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2011). Resource-

Oriented Modelling: Describing Restful Web services Using Collaboration

Diagrams. In, The 8th International Joint Conference on e-Business and

Telecommunications, Seville, Spain, 18 - 21 Jul 2011.

2. Alowisheq, Areeb and Millard, David (2009) EXPRESS: EXPressing REstful

Semantic Services. In, 2009 IEEE/WIC/ACM International Joint Conference on

Web Intelligence and Intelligent Agent Technology, Doctoral Workshop, Milan,

Italy, 15 - 18 Sep 2009. , 453-456.

3. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2009) EXPRESS:

EXPressing REstful Semantic Services Using Domain Ontologies. In, 8th

International Semantic Web Conference (ISWC 2009), Doctoral Consortium,

Chantilly, VA, USA, 25 - 29 Oct 2009. Springer Berlin/Heidelberg, 941-948.

 148

 Chapter 8 Conclusions and Future Work

8.4 Future Work

The work done in this thesis explored EXPRESS’s significance as a contribution to

SWS research, as it successfully proposed and developed an approach for both

describing and deploying RESTful SWS that reduced development effort and

provided evidence of its practicality and semantic richness. This section describes

the future work which is explained in the four subsections which address two

main venues for exploring and improving EXPRESS: semantic richness and

practicality, as shown in Figure 25.

Figure 25 Future Work

8.4.1 EXPRESS Aware Clients and Automated Conversational

Services

Chapter 5 of this thesis described the design and development of EXPRESS

services. It explained the implementation of the server and how for

conversational services the server provides the next states as URIs with allowed

methods. The current implementation of EXPRESS provides deployment stubs and

describes how a developer creates the code within those stubs. Chapter 5 also

demonstrated the use of POSTer as a client, showing that any HTTP client can

interact with those deployed stubs.

However that interaction is not automated. The ultimate aim is to design

semantically intelligent clients that can interact with EXPRESSive services

automatically in order to achieve goals, so the server provides the next states as

URIs with allowed methods, and the client would then reason about them by

converting them to rules and adding them to its knowledge base (KB).

A client’s goal, specified as a rule, will be triggered, and the client will submit a

request, if an appropriate URI rule is available and triggered. The next example

sheds some light on the approach:

Client’s goal as a rule

Semantic Richness Practicality

8.4.1 Automated
Choreography and

EXPRESS Aware Clients

8.4.2 Matchmaking in
EXPRESS

8.4.3 Alternatives to URI
Templates

8.4.4 Evaluation of
EXPRESS through a

Case Study

 149

Chapter 8 Conclusions and Future Work

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(? 𝑐𝑐) ∧ 𝑈𝑈𝑈𝑈𝑈𝑈(?𝑢𝑢) ∧ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(? 𝑏𝑏) ∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(? 𝑏𝑏, "𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑊𝑊𝑊𝑊") ∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (? 𝑏𝑏, ? 𝑝𝑝) ∧

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(?𝑢𝑢, "𝑆𝑆𝑆𝑆𝑆𝑆 𝑊𝑊𝑊𝑊𝑊𝑊") ∧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(?𝑢𝑢, ? 𝑝𝑝) ∧ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(? 𝑐𝑐, ?𝑢𝑢) ∧ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(?𝑢𝑢, 1) ⟶

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (? 𝑐𝑐, ?𝑢𝑢)

The service URI and the method:

Link: </Book/hasPrice?hasTitle={}>; rel="GET"

This can be directly mapped to a rule and added to the KB:

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(? 𝑐𝑐) ∧ 𝑈𝑈𝑈𝑈𝑈𝑈(_:𝑈𝑈𝑈𝑈𝑈𝑈_1) ∧ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(? 𝑏𝑏) ∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(? 𝑏𝑏, ? 𝑡𝑡) ∧ ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (? 𝑏𝑏, ? 𝑝𝑝) ⟶

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(? 𝑐𝑐, _:𝑈𝑈𝑈𝑈𝑈𝑈_1) ∧ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(_:𝑈𝑈𝑈𝑈𝑈𝑈_1, ? 𝑡𝑡) ∧ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(_:𝑈𝑈𝑈𝑈𝑈𝑈_1, ? 𝑝𝑝)

If the client’s KB has sufficient assertions to trigger the URI rule, and the URI rule

matches the goal rule, then the goal rule is triggered initiates action on the client.

This would enable automated conversational services.

Other requirements on the client regardless of the type of interaction

(conversational or atomic) would be automatically constructing messages from

the client’s KB, which means the client automatically constructing and responding

to HTTP headers, and responding to HTTP codes.

In addition the clients would to be designed to interpret OWL restrictions as

constraints, an issue discussed in Section 5.4. There are two potential ways

around this issue, one is to use the syntax of OWL not its semantics (which has

been the assumption in EXPRESS in Chapter 5) and programmatically deal with

restrictions accordingly, rather than depending on a reasoner to trigger constraint

violations. The other is to utilise approaches for local closed world reasoning

(LCWR), which combines open world ontology languages like OWL with closed

world assumptions. Tao et al. (2010) shows the use of LCWR for checking

integrity constraints and several approaches have been proposed that add axioms

to the ontology to enable closed world reasoning, such as the DBox approach

(Seylan et al., 2009) and NBox (Ren et al., 2010). Moreover in the context of

Semantic Web services Grimm and Hitlzer (Grimm and Hitzler, 2007) discuss the

importance of LCWR for resource matching and approaches for achieving it.

Further work is required to select and implement an appropriate approach for

EXPRESS.

8.4.2 Matchmaking in EXPRESS

The plan for the short term is to participate in the S3 contest, by submitting both

EXPRESS-TC (test collection) and iSeM EXPRESS (matchmaker) which where

explained in Chapter 6. This has been encouraged by organisers of the S3

contests when contacted for enquiries about SME2. Participating in the experiment

 150

 Chapter 8 Conclusions and Future Work

would offer a platform where other researches could use the EXPRESS-TC and

hence provide more feedback to the community about EXPRESS.

Moreover results of the matchmaking experiment in Chapter 6 showed that SVM

variants of iSeM EXPRESS perform much worse than their OWL-S counterparts, this

is due to the SVM variants being trained on an OWL-S sample of services, so

further work is needed to train them on an EXPRESS sample of services.

The long term plan would be to develop a matchmaker designed for EXPRESS. In

the matchmaking experiment in Chapter 6, the iSeM matchmaker, designed for

OWL-S and SAWSDL was adapted to EXPRESS and used on an EXPRESSive test

collection. However further research needs to be undertaken to see whether a

matchmaker designed specifically for EXPRESSive services can outperform iSeM.

Section 6.2 explained the two elements in EXPRESSive descriptions that can be

used for matchmaking. These are the URI of the endpoint (this maps to a resource

or several resources in the domain ontology) and the HTTP method allowed on

that URI. For the endpoint URI there are three main ways to utilise it for

matchmaking. This thesis chose to explore one of them, which was extracting

input and output concepts from filtering resources URI. The two other aspects

provide different methods for matchmaking (explained in Section 6.2), these are:

1. graph matching (using graphs that correspond to the URI

templates),

2. and monolithic DL matching, where URIs refer to classes.

An interesting venue to explore is which of these methods is more effective, and

whether a hybrid approach that combines them would improve the performance.

Moreover an adaptive method could be designed for the hybrid approach, using

SVM that is trained to learn the appropriate weights for the combined methods.

Another method of matchmaking in EXPRESS, that could be explored, is to make

use of ontology matching approaches such as (Doan et al., 2004), where a client

would specify the required concepts in an ontology and EXPRESSive ontologies

would be retrieved and compared.

8.4.3 Alternatives to URI Templates

One of the potential criticisms of EXPRESS is dependency on URI templates. The

argument against using URI templates is that introduces coupling between the

server and the client, because from a purist viewpoint the URI should be opaque,

and yet the client could infer information from the URI structure. It is interesting

 151

Chapter 8 Conclusions and Future Work

that despite this argument the reviews from the interviewed experts seem to

prefer URI templates, and view them as a practical solution.

Nevertheless, EXPRESS could be designed differently. There are two other possible

alternatives that could be further investigated and developed: One is to have a

mechanism to represent the resource type in the headers of exchanged messages,

as an extra attribute in the Link elements. Another alternative that would provide

more flexibility, would be to define a machine-readable media type specification.

For a start, it would have the following features:

1. The type of a resource linked to an ontology or vocabulary

2. Effects of a certain method, or the value of rel attribute, expressed as a

rule or SPARQL CONSTRUCT.

Media type specifications are written as human readable documents, developers

read them then design the servers or clients accordingly. An interesting area of

research would be studying the feasibility of machine-readable media type

specifications. An excellent explanation of designing media-types is by Amundsen

(2011a).

8.4.4 Evaluation of EXPRESS through a Case Study

The work described in this thesis uses exemplars, demonstrators and expert

reviews to explore the practical issues around EXPRESS, as Section 3.5 pointed out

this is in line with existing work (and in fact using expert reviews goes beyond

the efforts made with most proposed approaches). However, in Section 3.5, Table

2 from Shaw (2002) referred to other validation techniques, such as experience,

which can be achieved using longitudinal case studies, typically applied

elsewhere in the Software Engineering world, where developers use and then

reflect on a given approach as part of a longer term project.

For EXPRESS this would mean a study where developers would use EXPRESS in a

real project. This would provide comprehensive qualitative feedback about the

hands-on application of EXPRESS.

Moreover, applying EXPRESS to a real application would ground solutions to

underspecified issues in EXPRESS, such as in providing sequences, containers,

sorting sub-objects, reverse properties and error handling. It would also enable

extra features suggested by the experts to be addressed, including aspects such

as advanced filtering, content negotiation, trust, and versioning.

 152

 Chapter 8 Conclusions and Future Work

An area for future investigation is the association between the database design

and the interface design, which was suggested by one of the experts, in which the

ontology is derived from the database schema. This provides further opportunity

for automation, as the SPARQL mappings (described in Section 5.2.2 and Appendix

C) are not only specifications, but could become the actual implementation of the

Web service.

8.5 Final Conclusions

This research aimed to study the potential of pragmatic solutions that can lower

the entry barrier for Semantic Web services, and to develop an effective Semantic

Web service approach that offers rich discovery by harnessing the strengths of

semantic technologies while being accessible to every day Web developers.

The underlying assumption behind the approach is that an implicit, intuitive meta-

model would be more likely to be adopted than an explicit, complex one.

Therefore, in designing EXPRESS, interaction service descriptions and service

ontologies or vocabularies were deliberately avoided, the aim was to investigate

to what extent does using only the domain ontology and REST provide a viable

substitute.

The demonstrator, evaluation and expert review that have been conducted show

that compared to OWL-S, EXPRESS has succeeded in massively reducing the size of

semantic descriptions, and improving the speed of semantic matchmaking, while

providing similar accuracy. However, EXPRESS requires a different

conceptualisation of the problem, leading the interviewed experts to voice mixed

opinions about its practicality, although all of them appreciated its simplicity for

building Web services from scratch. This is the area in which EXPRESS seems to

hold the most promise, as a way of creating SWS from the ground up, driven by

ontology design, and supported where possible by automated deployment. It is an

approach that may have a lot of resonance with the Linked Data community who

prioritise practical solutions, and are experienced with developing around

existing Web standards.

It seems that, although much research has been done in SWS, the issue of their

practicality in real world applications still remains in question. Above all the work

undertaken with EXPRESS shows that we need to start from real problems and

conduct a careful analysis of whether these are practical solutions, through

engagement with practitioners, and not only Semantic Web enthusiasts.

 153

Chapter 8 Conclusions and Future Work

 154

 References

References

Adida, B., Birbeck, M., McCarron, S. & Pemberton, S. (2008). RDFa in XHTML: Syntax
and Processing. W3C Recommendation, World Wide Web Consortium (W3C)
[Online]. Available: http://www.w3.org/TR/2013/REC-rdfa-core-20130822/
[Accessed 14/10/2010].

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A. P. & Verma,
K. (2005). Web Service Semantics - WSDL-S. W3C Member Submission, World
Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/ [Accessed
14/9/2011].

Alarcon, R. & Wilde, E. (2010) Linking Data from RESTful Services. In: Proceedings
of the WWW2010 Workshop on Linked Data on the Web (LDOW 2010), April
27, Raleigh, North Carolina. volume 628.

Alexander, K., Cyganiak, R., Hausenblas, M. & Zhao, J. (2009) Describing Linked
Datasets, On the Design and Usage of voiD, the "Vocabulary of Interlinked
Datasets". In: Proceedings of the WWW2009 Workshop Linked Data on the
Web (LDOW2009) April 20, Madrid, Spain. CEUR Workshop Proceedings,
CEUR-WS.org, volume 583.

Allamaraju, S. (2010). RESTful Web Services Cookbook, O'Reilly.
Allemang, D. & Hendler, J. (2011). Semantic Web for the Working Ontologist:

Effective Modeling in RDFS and OWL 2nd ed., Morgan Kaufmann.
Alonso, G., Casati, F., Kuno, H. & Machiraju, V. (2004). Web services, Berlin

Heidelberg, Springer.
Alowisheq, A. & Millard, D. E. (2009) EXPRESS: EXPressing REstful Semantic

Services. In: Proceedings of the 2009 IEEE/WIC/ACM International
Conference on Web Intelligence and International Conference on Intelligent
Agent Technology - Workshops | 2nd Doctoral Workshop (DOCW 2009),
September 15-18, Milan, Italy. IEEE, pages 453-456.

Alowisheq, A., Millard, D. E. & Tiropanis, T. (2009) EXPRESS: EXPressing REstful
Semantic Services Using Domain Ontologies. In: Proceedings of the 8th
International Semantic Web Conference (ISWC 2009) | Doctoral Consortium
October 25-29, Chantilly, VA, USA. Lecture Notes in Computer Science,
Springer, volume 5823, pages 941-948.

Alowisheq, A., Millard, D. E. & Tiropanis, T. (2011) Resource-Oriented Modelling:
Describing Restful Web Services Using Collaboration Diagrams. In:
Proceedings of the 8th International Joint Conference on e-Business and
Telecommunications (ICE-B 2011), July 18-21, Seville, Spain. SciTePress,
pages 113-118.

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y.,
Guízar, A., Kartha, N., Liu, C. K., Khalaf, R., König, D., Marin, M., Mehta, V.,
Thatte, S., Rijn, D. v. d., Yendluri, P. & Yiu, A. (2007). Web Services Business
Process Execution Language Version (WSBPEL) OASIS Standard, OASIS
Committee [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel [Accessed
21/07/2013].

Amundsen, M. (2011a). Building Hypermedia APIs With HTML 5 and Node, O'Reilly
Media, USA

Amundsen, M. (2011b). Hypermedia Types. In: WILDE, E. & PAUTASSO, C. (eds.)
REST: From Research to Practice. New York: Springer.

Ankolekar, A., Burstein, M., Hobbs, J. R., Lassila, O., Martin, D. L., McIlraith, S. A.,
Narayanan, S., Paolucci, M., Payne, T. & Sycara, K. (2001) DAML-S: Semantic
Markup for Web Services. In: Proceedings of the International Semantic

 155

http://www.w3.org/TR/2013/REC-rdfa-core-20130822/
http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

References

Web Working Symposium (SWWS), July 30 - August 1, Stanford University,
California, USA. pages 411-430.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Randy Katz, Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I. & Zaharia, M. (2009). Above the Clouds: A
Berkeley View of Cloud Computing. UC Berkeley Reliable Adaptive
Distributed Systems Laboratory. UCB/EECS-2009-28.

Austin, J., Davis, R., Fletcher, M., Jackson, T., Jessop, M., Liang, B. & Pasley, A.
(2005). DAME: Searching Large Data Sets within a Grid-enabled Engineering
Application. Proceedings of the IEEE, 93(3):496-509.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. & Patel-Schneider, P. F. (2003).
The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, New York.

Bachlechner, D. & Fink, K. (2008). Semantic Web Service Research: Current
Challenges and Proximate Achievements. International Journal of
Computer Science & Applications (IJCSA), 5(3b):117-140.

Battle, R. & Benson, E. (2008). Bridging the semantic Web and Web 2.0 with
Representational State Transfer (REST). Journal of Web Semantics, 6(1):61–
69.

Battle, S., Bernstein, A., Boley, H., Gruninger, M., Hull, R., Kifer, M., Martin, D.,
McLlraith, S., McGuinness, D., Su, J. & Tabet, S. (2005). Semantic Web
Services Framework (SWSF) Overview. W3C Member Submission, World
Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2005/SUBM-SWSF-20050909/ [Accessed
9/10/2012].

Beckett, D. & McBride, B. (eds.) (2004). Resource Description Framework (RDF):
Concepts and Abstract Syntax W3C Recommendation, World Wide Web
Consortium (W3C) [Online]. Available: http://www.w3.org/TR/2004/REC-
rdf-syntax-grammar-20040210/ [Accessed 17/7/2012].

Bellwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y.,
Januszewski, K., Lee, S., McKee, B. & Munter, J. (2002). The Universal
Description, Discovery and Integration (UDDI) Specification. Technical
Report, OASIS Committee [Online]. Available: https://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm [Accessed 22/06/2012].

Berners-Lee, T. (1991). The Original HTTP as defined in 1991 [Online]. Available:
http://www.w3.org/Protocols/HTTP/AsImplemented.html [Accessed
13/7/2013].

Berners-Lee, T. (1994). RFC 1630: Universal Resource Identifiers in WWW: A
Unifying Syntax for the Expression of Names and Addresses of Objects on
the Network as used in the World-Wide Web. IETF [Online]. Available:
http://www.ietf.org/rfc/rfc1630.txt [Accessed 22/6/2012].

Berners-Lee, T. (1998). Semantic Web Roadmap [Online]. World Wide Web
Consortium (W3C). Available:
http://www.w3.org/DesignIssues/Semantic.html [Accessed 3/6/2013].

Berners-Lee, T. (2006). Linked Data - Design Issues [Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html [Accessed 3/7/2013].

Berners-Lee, T., Cailliau, R., Groff, J.-F. & Pollermann, B. (1992). World-Wide Web:
The Information Universe. Internet Research, 2(1):52-58.

Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer,
A. & Sheets, D. (2006) Tabulator: Exploring and Analyzing Linked Data on
the Semantic Web. In: Proceedings of the 3rd International Semantic Web
User Interaction Workshop, November 6, Athens, Georgia, USA.
SemanticWeb.org.

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y. & Hendler, J. (2008). N3Logic: A
logical framework for the World Wide Web. Theory and Practice of Logic
Programming, 8(3):249-269.

Berners-Lee, T., Fielding, R. & Masinter, L. (2005). RFC 3986: Uniform Resource
Identifier (URI): Generic Syntax. IETF [Online]. Available:
http://www.ietf.org/rfc/rfc3986.txt.

 156

http://www.w3.org/Submission/2005/SUBM-SWSF-20050909/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.ietf.org/rfc/rfc1630.txt
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.ietf.org/rfc/rfc3986.txt

 References

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific
American, 284(5):28-37.

Bernstein, P. A. (1996). Middleware: a Model for Distributed System Services.
Communications of the ACM, 39(2):86-98.

Biornstad, B. & Pautasso, C. (2009) Let It Flow: Building Mashups with Data
Processing Pipelines. In: Proceedings of Service-Oriented Computing -
ICSOC 2007 Workshops, September 17, Vienna, Austria. Lecture Notes in
Computer Science, Springer, volume 4907, pages 15-28.

Birrell, A. D. & Nelson, B. J. (1984). Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(1):39-59.

Bizer, C., Heath, T. & Berners-Lee, T. (2009). Linked Data - The Story So Far.
International Journal on Semantic Web and Information Systems, 5(3):1-22.

Blum, A. & Furst, M. (1997). Fast planning through planning graph analysis.
Artificial Intelligence, 90(1):281-300.

Booch, G., Rumbaugh, J. & Jacobson, I. (1999). Unified Modeling Language User
Guide, Reading, MA, Addison-Wesley

Booth, D., Haas, H., McCabe, F., Necomer, E., Champion, M., Ferris, C. & Orchard, D.
(2004). Web Services Architecture. W3C Working Group Note, World Wide
Web Consortium (W3C) [Online]. Available:
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Bournez, C. (2005). Team Comment on Web Service Modeling Ontology (WSMO)
Submission. World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2005/06/Comment.

Box, D. (2001). A Brief History of SOAP [Online]. Available:
http://www.xml.com/lpt/a/759 [Accessed 13/7/2013].

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S. & Winer, D. (2000). Simple Object Access Protocol (SOAP) 1.1. W3C
Note, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

Bray, T., Paoli, J. & Sperberg-McQueen, C. M. (1998). Extensible Markup Language
(XML) 1.0. W3C Recommendation, World Wide Web Consortium (W3C)
[Online]. Available: http://www.w3.org/TR/1998/REC-xml-19980210
[Accessed 14/10/2010].

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. & Yergeau, F. (2008).
Extensible Markup Language (XML) 1.0. W3C Recommendation, World Wide
Web Consortium (W3C) [Online]. Available:
http://www.w3.org/TR/2008/REC-xml-20081126/ [Accessed 13/12/2012].

Brickley, D. & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, World Wide Web Consortium (W3C)
[Online]. Available: http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/ [Accessed 10/10/2012].

Brodie, M. L. (2000). The B2B e-commerce Revolution: Convergence, Chaos, and
Holistic Computing. Information Systems Engineering, 15-36.

Bruijn, J. d., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman,
D., Scicluna, J. & Stollberg, M. (2005a). Web Service Modeling Ontology
(WSMO). W3C Member Submission, World Wide Web Consortium (W3C)
[Online]. Available: http://www.w3.org/Submission/2005/SUBM-WSMO-
20050603/ [Accessed 12/12/2010].

Bruijn, J. d., Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher, R., Polleres,
A. & Predoiu, L. (2005b). Web Service Modeling Language (WSML). W3C
Member Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2005/SUBM-WSML-20050603/ [Accessed
12/12/2010].

Bush, V. (1945). As we may think. Atlantic Monthly, 176(1):101–108.
Cabral, L., Domingue, J., Motta, E., Payne, T. R. & Hakimpour, F. (2004) Approaches

to Semantic Web Services: An Overview and Comparison. In: Proceedings
of 1st European Semantic Web Symposium,The Semantic Web: Research

 157

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/Submission/2005/06/Comment
http://www.xml.com/lpt/a/759
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.w3.org/Submission/2005/SUBM-WSML-20050603/

References

and Applications (ESWS 2004), May 10-12, Heraklion, Crete, Greece. Lecture
Notes in Computer Science, Springer, volume 3053, pages 225-239.

Cabral, L., Ning, L. & Kopecký, J. (2012) Building the WSMO-Lite Test Collection on
the SEALS Platform. In: Proceedings of the ESWC2012 2nd International
Workshop on Evaluation of Semantic Technologies (IWEST 2012), May 28,
Heraklion, Greece. CEUR Workshop Proceedings, CEUR-WS.org, volume 843.

Calladine, J. (2004). Giving Legs to the Legacy - Web Services Integration within
the Enterprise. BT Technology Journal, 22(1):87-98.

Champin, P.-A. (2013) RDF-REST: A Unifying Framework for Web APIs and Linked
Data. In: Proceedings of the ESWC2013 1st Workshop on Services and
Applications over Linked APIs and Data (SALAD 2013), May 26, Montpellier,
France. CEUR Workshop Proceedings, CEUR-WS.org, volume 1056.

Cheng, G. & Qu, Y. Z. (2009). Searching Linked Objects with Falcons: Approach,
Implementation and Evaluation. International Journal on Semantic Web and
Information Systems, 5(3):49-70.

Chien, A., Calder, B., Elbert, S. & Bhatia, K. (2003). Entropia: Architecture and
Performance of an Enterprise Desktop Grid System. Journal of Parallel and
Distributed Computing, 63(5):597-610.

Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. (2001). Web Services
Description Language (WSDL) 1.1. W3C Note, World Wide Web Consortium
(W3C) [Online]. Available: http://www.w3.org/TR/2001/NOTE-wsdl-
20010315 [Accessed 10/10/2012].

City University. (2008). Going For Gold, Introducing SOA at City University London.
Connolly, D. (1997). A draft of the editorial of the Mar/Apr 1997 issue of Web

Apps Magazine [Online]. Available:
http://www.w3.org/People/Connolly/9703-web-apps-essay.html [Accessed
12/12/2013].

Connolly, D. & Hickson, I. (1999). An Entity Header for Linked Resources. Draft,
World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Protocols/9707-link-header.html.

Decker, G., Lüders, A., Overdick, H., Schlichting, K. & Weske, M. (2008) RESTful Petri
Net Execution. In: Proceedings of the 5th International Workshop on Web
Services and Formal Methods, September 4-5, Milan, Italy. Lecture Notes in
Computer Science, Springer, volume 5387.

Decker, G. & Weske, M. (2007) Behavioral Consistency for B2B Process Integration.
In: Proceedings of the 19th International Conference on Advanced
Information Systems Engineering (CAiSE 2007), June 11-15, Trondheim,
Norway. Lecture Notes in Computer Science, Springer, volume 4495, pages
81-95.

DeLeon, A. & Dumontier, M. (2008) Publishing OWL Ontologies with Presto. In:
Proceedings of the OWLED 2008 OWL: Experiences and Directions, April 1-
2, Washington, DC. CEUR Workshop Proceedings, CEUR-WS.org, volume 496.

Doan, A., Madhavan, J., A Domingos, P. & Halevy, A. (2004). Ontology Matching: A
Machine Learning Approach. In: STAAB, S. & STUDER, R. (eds.) Handbook on
Ontologies. Springer Berlin Heidelberg.

Dong, H., Hussain, F. K. & Chang, E. (2012). Semantic Web Service matchmakers:
state of the art and  ch allen g es. Concurrency and Computation: Practice
and Experience, 25(7):961–988.

Donnelly, P. (2010). Yahoo Finance Stock Quote Watch List Feed [Online]. Yahoo.
Available: http://pipes.yahoo.com/31337/watchlist [Accessed 26/02/2010].

Emmerich, W., Aoyama, M. & Sventek, J. (2007). The Impact of Research on
Middleware Technology. ACM SIGOPS Operating Systems Review, 41(1):89-
112.

Engelbart, D. C. (1963). Conceptual Framework for the Augmentation of Man's
Intellect. In: HOWERTON, P. W. (ed.) Vistas in Information Handling.
Washington, D.C.: Spartan Books.

Ennals, R., Brewer, E., Garofalakis, M., Shadle, M. & Gandhi, P. (2007). Intel Mash
Maker: Join the Web. SIGMOD Record, 36(4):27-33.

 158

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/People/Connolly/9703-web-apps-essay.html
http://www.w3.org/Protocols/9707-link-header.html
http://pipes.yahoo.com/31337/watchlist

 References

Ennals, R. J. & Garofalakis, M. N. (2007) MashMaker: Mashups for the Masses. In:
Proceedings of the ACM SIGMOD International Conference on Management
of Data, June 12-14, Beijing, China. 1247626: ACM, pages 1116-1118.

Erl, T. (2008). SOA: Principles of Service Design, Upper Saddle River, Prentice Hall
Falou, M. E., Bouzid, M., Mouaddib, A.-I. & Vidal, T. (2009) Automated Web Service

Composition: A Decentralised Multi-agent Approach. In: Proceedings of the
2009 IEEE/WIC/ACM International Conference on Web Intelligence and
International Conference on Intelligent Agent Technology, September 15-
18, Milan, Italy. IEEE, pages 387-394.

Farnaghi, M. & Mansourian, A. (2013). Automatic Composition of WSMO based
Geospatial Semantic Web Services Using Artificial Intelligence Planning.
Journal of Spatial Science, 58(2):235-250.

Farrell, J. & Lausen, H. (2007). Semantic Annotations for WSDL and XML Schema.
W3C Recommendation, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/TR/2007/REC-sawsdl-20070828/ [Accessed
14/10/2010].

Fensel, D. (2004) Triple-Space Computing: Semantic Web Services Based on
Persistent Publication of Information. In: Proceedings of the IFIP
International Conference Intelligence in Communication Systems
(INTELLCOMM 2004), November 23-26, Bangkok, Thailand. Lecture Notes in
Computer Science, Springer, volume 3283, pages 43-53.

Fensel, D., Krummenacher, R., Shafiq, O., Kühn, E., Riemer, J., Ding, Y. & Draxler, B.
(2007). TSC – Triple Space Computing. e & i Elektrotechnik und
Informationstechnik, 124(1):31–38.

Fensel, D. & van Harmelen, F. (2007). Unifying Reasoning and Search to Web Scale.
IEEE Internet Computing, 11(2):94-96.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H. & Berners-Lee, T. (1997). RFC 2068:
Hypertext Transfer Protocol–HTTP/1.1 IETF [Online]. Available:
http://www.ietf.org/rfc/rfc2068.txt [Accessed 22/6/2012].

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. & Berners-Lee, T.
(1999). RFC 2616: Hypertext Transfer Protocol–HTTP/1.1 IETF [Online].
Available: http://www.ietf.org/rfc/rfc2616.txt [Accessed 22/6/2012].

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures. Doctoral Dissertation, University of California.

Fielding, R. T. (2007). A Little REST and Relaxation. Presented at: The International
Conference on Java Technology (JAZOON07), June 24-28 Zurich,
Switzerland.

Fielding, R. T. (2008a). On Software Architecture [Online]. Untagled. Available:
http://roy.gbiv.com/untangled/2008/on-software-architecture [Accessed
23/22/2010].

Fielding, R. T. (2008b). REST APIs Must Be Hypertext-driven [Online]. Untangled.
Available: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-
hypertext-driven [Accessed 23/22/2010].

Fielding, R. T., Berners-Lee, T. & Frystyk, H. (1996). RFC 1945: Hypertext Transfer
Protocol-HTTP/1.0. IETF [Online]. Available:
https://www.ietf.org/rfc/rfc1945.txt [Accessed 22/6/2012].

Fikes, R. E. & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2(3):189–208.

Filho, O. F. F. & Ferreira, M. A. G. V. (2009) Semantic Web Services: A RESTful
Approach. In: Proceedings of the IADIS International Conference on
WWW/Internet 2009, November 19 - 22, Rome, Italy. IADIS Press.

Foster, I., Kesselman, C., Nick, J. M. & Tuecke, S. (2002). Grid Services for
Distributed System Integration. Computer, 35(6):37-46.

Foster, I., Parastatidis, S., Watson, P. & McKeown, M. (2008). How Do I Model State?
Let Me Count the Ways. Communications of the ACM, 51(9):34-41.

Francisco, D. d., Nixon, L. & Valle, G. T. d. (2008) Towards a Multimedia Content
Marketplace Implementation Based on Triplespaces. In: Proceedings of the
7th International Semantic Web Conference (ISWC 2008), October 26-30,

 159

http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc2616.txt
http://roy.gbiv.com/untangled/2008/on-software-architecture
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.ietf.org/rfc/rfc1945.txt

References

Karlsruhe, Germany. Lecture Notes in Computer Science, Springer, volume
5318, pages 875–888.

Fremantle, P., Weerawarana, S. & Khalaf, R. (2002). Enterprise Services.
Communications of the ACM, 45(10):77-82.

Frey, J., De Roure, D., Taylor, K., Essex, J., Mills, H. & Zaluska, E. (2006) CombeChem:
A Case Study in Provenance and Annotation Using the Semantic Web. In:
Proceedings of the International Provenance and Annotation Workshop
(IPAW 2006), May 3-5, Chicago, IL, USA. Lecture Notes in Computer Science,
Springer, volume 4145, pages 270-277.

Frey, J. G., Bradley, M., Essex, J., Hursthouse, M. B., Lewis, S. M., Luck, M., Moreau, L.,
De Roure, D., M., S. & Welsh, A. (2003). Combinatorial Chemistry and the
Grid. In: F.BERMAN, G.FOX & T.HEY (eds.) Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons Ltd.

Gearon, P., Passant, A. & Polleres, A. (2013). SPARQL 1.1 Update. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/ [Accessed
10/12/2013].

Gessler, D. D., Schiltz, G. S., May, G. D., Avraham, S., Town, C. D., Grant, D. & Nelson,
R. T. (2009). SSWAP: A Simple Semantic Web Architecture and Protocol for
Semantic Web Services. BMC Bioinformatics [Online], 10(1).

Glaser, H., Jaffri, A. & Millard, I. (2009) Managing Co-reference on the Semantic
Web. In: Proceedings of the WWW2009 Workshop Linked Data on the Web
(LDOW2009) April 20, Madrid, Spain.: CEUR Workshop Proceedings, CEUR-
WS.org, volume 583.

Gregorio, J. & de hOra, B. (eds.) (2007). RFC:5023 The Atom Publishing Protocol.
IETF [Online]. Available: http://www.ietf.org/rfc/rfc5023.txt [Accessed
23/6/2012].

Grimm, S. (2007). Discovery - Identifying Relevant Services In: STUDER, R., GRIMM,
S. & ABECKER, A. (eds.) Semantic Web Services. Springer.

Grimm, S. & Hitzler, P. (2007). Semantic Matchmaking of Web Resources with Local
Closed-World Reasoning. International Journal of Electronic Commerce,
12(2):89-126.

Gudgin, M., Hadley, M. & Rogers, T. (2006). Web Services Addressing 1.0 - Core.
W3C Recommendation, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
[Accessed 13/12/2012].

Gullapalli, S., Dyke, S., Hubbard, P., Marcusiu, D., Pearlman, L. & Severance, C.
(2004) Showcasing the Features and Capabilities of NEESgrid: A Grid-based
System for the Earthquake Engineering Domain. In: Proceedings of the
13th IEEE International Symposium on High Performance Distributed
Computing (HPDC-13 2004), June 4-6, Honolulu, Hawaii USA. IEEE, pages
268-269.

Hadley, M. (2009). Web Application Description Language (WADL). W3C Member
Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2009/SUBM-wadl-20090831/ [Accessed
31/8/2012].

Halpin, H. & Davis, I. (2007). Gleaning Resource Descriptions from Dialects of
Languages (GRDDL). W3C Recommendation, World Wide Web Consortium
(W3C) [Online]. Available: http://www.w3.org/TR/2007/REC-grddl-
20070911/ [Accessed 11/9/2012].

Harris, S. & Seaborne, A. (2013). SPARQL 1.1 Query Language, Section 9: Property
Paths. W3C Recommendation, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/TR/sparql11-query/#propertypaths
[Accessed 15/9/2014].

Heath, T. & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data
Space. Synthesis Lectures on the Semantic web: Theory and Technology,
1(1):1-136. Morgan & Claypool.

Hench, G., Simperl, E., Wahler, A. & Fensel, D. (2008) A Conceptual Roadmap for
Scalable Semantic Computing. In: Proceedings of the 2th IEEE International

 160

http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://www.ietf.org/rfc/rfc5023.txt
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/Submission/2009/SUBM-wadl-20090831/
http://www.w3.org/TR/2007/REC-grddl-20070911/
http://www.w3.org/TR/2007/REC-grddl-20070911/
http://www.w3.org/TR/sparql11-query/%23propertypaths

 References

Conference on Semantic Computing (ICSC 2008), August 4-7, Santa Clara,
CA, USA. IEEE, pages 562-568.

Henning, M. (2006). The Rise and Fall of CORBA. Queue, 4(5):28-34.
Hernandez, A. G. & Garcia, M. N. M. (2010) A Formal Definition of RESTful Semantic

Web Services. In: Proceedings of the First International Workshop on
RESTful Design (WS-REST 2010), Raleigh, North Carolina, USA. ACM, pages
39-45.

Herrick, D. R. (2009) Google this!: Using Google Apps for Collaboration and
Productivity. In: Proceedings of the ACM SIGUCCS Fall Conference on User
Services 2009, October 11-14, St. Louis, Missouri, USA. 1629513: ACM,
pages 55-64.

Hitzler, P., Krötzsch, M., Parisa, B., Patel-Schneider, P. F. & Rudolph, S. (2012). OWL 2
Web Ontology Language Primer W3C Recommendation, World Wide Web
Consortium (W3C) [Online]. Available: http://www.w3.org/TR/2012/REC-
owl2-primer-20121211/ [Accessed 2/9/2013].

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B. & Dean, M. (2004).
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/ [Accessed
21/2/2011].

International Organization for Standardization (1986). ISO 8879:1986 Information
Processing — Text and Office Systems — Standard Generalized Markup
Language (SGML).

International Organization for Standardization (2004). ISO 18629:2004 Industrial
automation systems and integration -- Process specification language (PSL).

Jackson, T., Austin, J., Fletcher, M. & Jessop, M. (2003) Delivering a Grid-enabled
Distributed Aircraft Maintenance Environment (DAME). In: Proceedings of
the UK e-Science All Hands Meeting, September 2-4, Nottingham, UK. pages
420-427.

Jackson, T., Austin, J., Fletcher, M., Jessop, M., Liang, B., Pasley, A., Ong, M., Ren, X.,
Allan, G., Kadirkamanathan, V., Thompson, H. & Fleming, P. (2005)
Distributed Health Monitoring for Aero-engines on the GRID: DAME. In:
Proceedings of the IEEE Aerospace Conference, March 5-12, Big Sky,
Montana. IEEE pages 3738-3747.

Jackson, T., Jessop, M., Fletcher, M. & Austin, J. (2006) A Virtual Organisation
Deployed on a Service Orientated Architecture for Distributed Data Mining
Applications. In: Proceedings of the IFIP TC2/ WG 2.5 Working Conference
on Grid-Based Problem Solving Environments: Implications for Development
and Deployment of Numerical Software, July 17–21, Prescott, Arizona, USA.
Lecture Notes in Computer Science, Springer, volume 239, pages 155-170.

Jhingran, A. (2006) Enterprise Information Mashups: Integrating Information,
Simply. In: Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB 2006), September 12-15, Seoul, Korea. 1164128:
ACM, pages 3-4.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y. & Barreto, C. (2005).
Web Services Choreography Description Language Version 1.0. W3C
Candidate Recommendation, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/ [Accessed
12/12/2013].

Kjernsmo, K. (2012). The Necessity of Hypermedia RDF and an Approach to
Achieve it. Presented at: The 1st Linked APIs Workshop (LAPIS) at
ESWC2012, May 27-31 Heraklon, Crete.

Klein, M., Konig-Ries, B. & Mussig, M. (2005). What is Needed for Semantic Service
Descriptions? A Proposal for Suitable Language Constructs. International
Journal of Web and Grid Services, 1(3/4):328–364.

Klems, M., Nimis, J. & Tai, S. (2008) Do Clouds Compute? A Framework for
Estimating the Value of Cloud Computing. In: Proceedings of the
(WEB2008) 7th Workshop on E-Business, December 13, Paris, France.

 161

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

References

Lecture Notes in Business Information Processing, Springer, volume 22,
pages 110-123.

Klensin, J. (ed.) (2001). RFC 2821: Simple Mail Transfer Protocol. IETF [Online].
Available: https://www.ietf.org/rfc/rfc2821.txt [Accessed 21/7/2014].

Klusch, M. (2008a). Semantic Web Service Coordination. In: SCHUMACHER, M.,
HELIN, H. & SCHULDT, H. (eds.) CASCOM: Intelligent Service Coordination in
the Semantic Web. Birkhäuser Verlag.

Klusch, M. (2008b). Semantic Web Service Description. In: SCHUMACHER, M., HELIN,
H. & SCHULDT, H. (eds.) CASCOM: Intelligent Service Coordination in the
Semantic Web. Birkhäuser Verlag.

Klusch, M., Dudev, M., Mišutka, J., Kapahnke, P. & Vasileski, M. (2010a). Semantic
Web Service Matchmaker Evaluation Environment User Manual. DFKI.

Klusch, M. & Kapahnke, P. (2010a) iSem: Approximated Reasoning for Adaptive
Hybrid Selection of Semantic Services. In: Proceedings of the 4th IEEE
International Conference on Semantic Computing (ICSC 2010), Pittsburgh,
PA, USA. IEEE, pages 184-191.

Klusch, M. & Kapahnke, P. (2010b). OWL-S Service Retrieval Test Collection version
4.0 (OWLS-TC) [Online]. Available:
http://projects.semwebcentral.org/projects/owls-tc/ [Accessed
22/2/2012].

Klusch, M. & Kapahnke, P. (2010c). SAWSDL Service Retrieval Test Collection
version 3.0 (SAWSDL-TC) [Online]. Available:
http://projects.semwebcentral.org/projects/sawsdl-tc/ [Accessed
22/2/2012].

Klusch, M., Khalid, M. A., Kapahnke, P., Fries, B. & Vasileski, M. (2010b). OWL-S
Service Retrieval Test Collection User Manual. DFKI.

Kopecky, J. (2012). Web Service Automation Supported by Lightweight Semantic
Annotations. Doctoral Dissertation, Semantic Technology Institute
Innsbruck.

Kopecky, J., Gomadam, K. & Vitvar, T. (2008) hRESTS: An HTML Microformat for
Describing RESTful Web Services. In: Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and
International Conference on Intelligent Agent Technology, December 9-12,
Sydney, Australia. IEEE, pages 619-625.

Kopecky, J., Pedrinaci, C. & Duke, A. (2011) RESTful Write-oriented API for
Hyperdata in Custom RDF Knowledge Bases. In: Proceedings of the 7th
IEEE International Conference on Next Generation Web Services Practices
(NWeSP2011), October 19-21, Salamanca, Spain. IEEE, pages 199 - 204.

Kozierok, C. (2005). The TCP/IP-Guide: A Comprehensive, Illustrated Internet
Protocols Reference, No Starch Press.

Kreger, H. (2003). Fulfilling the Web Services Promise. Communications of the
ACM, 46(6):29-34.

Krummenacher, R., Norton, B. & Marte, A. (2010) Towards Linked Open Services
and Processes. In: Proceedings of the 3rd Future Internet Symposium
(FIS2010), September 20-22, Berlin, Germany. Lecture Notes in Computer
Science, Springer, volume 6369, pages 68-77.

Küster, U., König-Ries, B., Stern, M. & Klein, M. (2007) DIANE: an Integrated
Approach to Automated Service Discovery, Matchmaking and Composition.
In: Proceedings of the 16th International World Wide Web Conference
(WWW2007), 8-12 May, Banff, Alberta, Canada. ACM, pages 1033-1042.

Lassila, O. & Swick, R. R. (1997). Resource Description Framework (RDF) Model and
Syntax. W3C Working Draft, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/TR/WD-rdf-syntax-971002/ [Accessed
10/10/2012].

Lathem, J., Gomadam, K. & Sheth, A. P. (2007) SA-REST and (S)mashups: Adding
Semantics to RESTful Services. In: Proceedings of the First IEEE
International Conference on Semantic Computing (ICSC2007), September
17-19, Irvine, California. IEEE, pages 469-476.

 162

http://www.ietf.org/rfc/rfc2821.txt
http://projects.semwebcentral.org/projects/owls-tc/
http://projects.semwebcentral.org/projects/sawsdl-tc/
http://www.w3.org/TR/WD-rdf-syntax-971002/

 References

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McLlraith, S.,
Narayanan, S., Paulocci, M., Parsia, B., Payne, T. R., Sirin, E., Srinivasan, N. &
Sycara, K. (2004). OWL-S: Semantic Markup for Web Services. W3C Member
Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ [Accessed
10/10/2012].

McGuinness, D. & Harmelen, F. v. (2004). OWL Web Ontology Language Overview.
W3C Recommendation, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/TR/2004/REC-owl-features-20040210/
[Accessed 12/2/2013].

McIlraith, S. A., Son, T. C. & Zeng, H. L. (2001). Semantic Web services. IEEE
Intelligent Systems & Their Applications, 16(2):46-53.

Moreau, J.-J., Chinnici, R., Ryman, A. & Weerawarana, S. (2007). Web Services
Description Language (WSDL) Version 2.0 Part 1: Core language. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/TR/2007/REC-wsdl20-20070626/ [Accessed
14/2/2012].

Nadalin, A., Kaler, C., Monzillo, R. & Hallam-Baker, P. (eds.) (2006). Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Standard
[Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss [Accessed
10/12/2013].

Nally, M., Speicher, S., Arwe, J. & Hors, A. L. (2012a). Linked Data Basic Profile 1.0.
W3C Member Submission, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/Submission/2012/SUBM-ldbp-20120326/
[Accessed 12/2/2013].

Nally, M., Speicher, S., Arwe, J. & Hors, A. L. (2012b). Linked Data Basic Profile 1.0 -
Use Cases and Requirements. W3C Member Submission, World Wide Web
Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2012/SUBM-ldbpucr-20120326/ [Accessed
12/2/2013].

Natis, Y. V. (2003). Service-Oriented Architecture Scenario. AV-19-6751, Gartner
Research [Online]. Available:
http://www.gartner.com/resources/114300/114358/114358.pdf [Accessed
9/10/2012].

Nelson, T. H. (1980) Replacing the Printed Word: A Complete Literary System. In:
Proceedings of IFIP Congress 80, October 14-17, North Holland. 1013–1023.

Nottingham, M. (2010). RFC 5988: Web Linking. IETF [Online]. Available:
http://tools.ietf.org/html/rfc5988 [Accessed 22/6/2012].

Nottingham, M. & Sayre, R. (2005). The Atom Syndication Format. RFC 4287.
O'reilly, T. (2005). What is Web 2.0: Design Patterns and Business Models for the

Next Generation of Software [Online]. Available:
http://oreilly.com/web2/archive/what-is-web-20.html [Accessed
21/12/2011].

Object Management Group (1995). The Common Object Request Broker:
Architecture and Specification.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M., Wipat, A. & Li, P. (2004). Taverna: a Tool for the
Composition and Enactment of Bioinformatics Workflows. Bioinformatics,
20(17):3045-3054.

Paolucci, M., Kawamura, T., Payne, T. R. & Sycara, K. P. (2002) Semantic Matching of
Web Services Capabilities. In: Proceedings of the 1st International
Semantic Web Conference (ISWC 2002), Chia, Sardinia, Italy. Lecture Notes
in Computer Science, Springer, volume 2342, pages 333-347.

Pautasso, C. (2009). RESTful Web Service Composition with BPEL for REST. Data &
Knowledge Engineering, 68(9):851-866.

Pautasso, C., Zimmermann, O. & Leymann, F. (2008) RESTful Web Services vs. "Big"'
Web Services: Making the Right Architectural Decision. In: Proceedings of

 163

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.w3.org/Submission/2012/SUBM-ldbp-20120326/
http://www.w3.org/Submission/2012/SUBM-ldbpucr-20120326/
http://www.gartner.com/resources/114300/114358/114358.pdf
http://tools.ietf.org/html/rfc5988
http://oreilly.com/web2/archive/what-is-web-20.html

References

WWW 2008 the 17th International Conference on World Wide Web, April 21-
25, Beijing, China. ACM, pages 805–814.

Pearlman, L., Kesselman, C., Gullapalli, S., Spencer, B. F., Futrelle, J., Ricker, K.,
Foster, I., Hubbard, P. & Severance, C. (2004) Distributed Hybrid Earthquake
Engineering Experiments: Experiences with a Ground-shaking Grid
Application. In: Proceedings of the 13th IEEE International Symposium on
High Performance Distributed Computing, June 4-6, Honolulu, Hawaii, USA.
IEEE, pages 14-23.

Pedrinaci, C., Domingue, J. & Krummenacher, R. (2010a) Services and the Web of
Data: An Unexploited Symbiosis. In: Proceedings of the AAAI Spring
Symposium 2010 Workshop Linked Data Meets Artificial Intelligence, March
22–24, Palo Alto, California, USA. pages 99-100.

Pedrinaci, C., Liu, D., Maleshkova,, M., L., D.,, Kopecky, J. & Domingue, J. (2010b)
iServe: a Linked Services Publishing Platform. In: Proceedings of the
ESWC2010 Workshop on Ontology Repositories and Editors for the
Semantic Web, May 30th - June 2nd, Heraklion, Greece. CEUR Workshop
Proceedings, CEUR-WS.org, volume 596.

Petrie, C., Margaria, T., Lausen, H. & Zaremba, M. (2009). Semantic Web Services
Challenge: Results from the First Year, Springer.

Preist, C., Esplugas-Cuadrado, J., Battle, S. A., Grimm, S. & Williams, S. K. (2005)
Automated Business-to-Business Integration of a Logistics Supply Chain
Using Semantic Web Services Technology. In: Proceedings of the 4th
International Semantic Web Conference (ISWC 2005), Galway, Ireland.
Lecture Notes in Computer Science, Springer, volume 3729, pages 987-
1001.

Prescod, P. (2002) Roots of the REST/SOAP Debate. In: Proceeding of the Extreme
Markup Languages®, August 4-9, Montréal, Quebec, Canada.

Prud’Hommeaux, E. & Seaborne, A. (2008). SPARQL Query Language for RDF. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ [Accessed
12/2/2012].

Raggett, D., Le Hors, A. & Jacobs, I. (1999). HTML 4.01 Specification. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. [Accessed
10/1/2012].

Reisig, W. (1985). Petri nets: An Introduction, New York, Springer-Verlag.
Ren, Y., Pan, J. Z. & Zhao, Y. (2010). Closed World Reasoning for OWL2 with NBox.

Tsinghua Science & Technology, 15(6):692-701.
Richardson, L. (2008). Act Three: The Maturity Heuristic. Slides for QCon 2008

Talk [Online]. Available: http://www.crummy.com/writing/speaking/2008-
QCon/act3.html [Accessed 13/7/2013].

Richardson, L. & Ruby, S. (2007). RESTful Web Services, O'Reilly Media.
Riemer, J., Martin-Recuerda, F., Ding, Y., Murth, M., Sapkota, B., Krummenacher, R.,

Shafiq, O., Fensel, D. & Kühn, E. (2006) Triple Space Computing: Adding
Semantics to Space-Based Computing. In: Proceedings of the 1st Asian
Semantic Web Conference (ASWC 2006), September 3-7, Beijing, China.
Lecture Notes in Computer Science, Springer, volume 4185, pages 300–306.

Sauermann, L., Cyganiak, R. & Völkel, M. (2008). Cool URIs for the Semantic Web.
W3C Interest Group Note, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.org/TR/2008/NOTE-cooluris-20081203/
[Accessed 11/2/2012].

Sbodio, M. & Moulin, C. (2007) SPARQL as an Expression Language for OWL-S. In:
Proceedings of ESWC2007 Workshop on OWL-S: Experiences and Future
Developments, June 3-7th, Innsbruck, Austria.

Sbodio, M. L., Martin, D. & Moulin, C. (2010). Discovering Semantic Web Services
Using SPARQL and Intelligent Agents. Journal of Web Semantics, 8(4):310-
328.

Schenk, S. & Gearon, P. (2009). SPARQL 1.1 Update. W3C Working Draft, World
Wide Web Consortium (W3C) [Online]. Available:

 164

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.crummy.com/writing/speaking/2008-QCon/act3.html
http://www.crummy.com/writing/speaking/2008-QCon/act3.html
http://www.w3.org/TR/2008/NOTE-cooluris-20081203/

 References

http://www.w3.org/TR/2009/WD-sparql11-update-20091022/ [Accessed
14/2/2012].

Seylan, I., Franconi, E. & Bruijn, J. D. (2009) Effective Query Rewriting with
Ontologies over DBoxes. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI2009), July 11-17, Pasadena, CA,
USA. pages 923-925.

Shaw, M. (2002). What Makes Good Research in Software Engineering?
International Journal on Software Tools for Technology Transfer, 4(1):1-7.

Speicher, S., Arwe, J. & Malhotra, A. (2014). Linked Data Platform 1.0. W3C Last Call
Working Draft, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/TR/2014/WD-ldp-20140916/ [Accessed 17/9/2014].

Speiser, S. & Harth, A. (2011) Integrating Linked Data and Services with Linked
Data Services. In: Proceedings of the 8th Extended Semantic Web
Conference (ESWC 2011), May 29-June 2, Heraklion, Crete, Greece. Lecture
Notes in Computer Science, Springer, volume 6643, pages 170-184.

Stadtmüller, S. & Norton, B. (2013). Scalable Discovery of Linked APIs. International
Journal of Metadata, Semantics and Ontologies, 8(2):95-105.

Tabatabaei, S. G. H., Kadir, W. M. N. W. & Ibrahim, S. (2009). Automatic Discovery
and Composition of Semantic Web Services Using AI Planning and WSMO.
International Journal of Web Services Practices 4(1):1-10.

Tao, J., Sirin, E., Bao, J. & McGuinness, D. L. (2010) Integrity Constraints in OWL. In:
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI
2010), July 11-15, Atlanta, Georgia, USA. AAAI Press.

Taylor, K. R., Essex, J. W., Frey, J. G., Mills, H. R., Hughes, G. & Zaluska, E. J. (2006).
The Semantic Grid and chemistry: Experiences with CombeChem. Journal
of Web Semantics, 4(2):84-101.

Tummarello, G., Delbru, R. & Oren, E. (2007) Sindice.com: Weaving the Open Linked
Data. In: Proceedings of the 6th International Semantic Web Conference
(ISWC 2007), November 11-15, Busan, Korea. Lecture Notes in Computer
Science, Springer, volume 4825, pages 552-565.

Vandervalk, B., McCarthy, L. & Wilkinson, M. (2009) SHARE: A Semantic Web Query
Engine for Bioinformatics. In: Proceedings of the 4th Asian Semantic Web
Conference (ASWC 2009), December 6-9, Shanghai, China. Lecture Notes in
Computer Science, Springer, volume 5926, pages 367-369.

Verborgh, R., Steiner, T., Deursen, D. V., Roo, J. D., Walle, R. V. d. & Vallés, J. G.
(2013). Capturing the Functionality of Web services with Functional
Descriptions. Multimedia Tools and Applications, 64(2):365-387.

Verborgh, R., Steiner, T., Van Deursen, D., R., V. d. W. & Gabarró Vallés, J. (2011)
Efficient Runtime Service Discovery and Consumption with Hyperlinked
RESTdesc. In: Proceedings of the 7th IEEE International Conference on Next
Generation Web Services Practices (NWeSP2011), October 19-21, Salamanca,
Spain. IEEE, pages 373 - 379.

Vinoski, S. (2008a). RESTful Web Services Development Checklist. Internet
Computing, IEEE, 12(6):96-95.

Vinoski, S. (2008b). Serendipitous Reuse. Internet Computing, IEEE, 12(1):84-87.
Vitvar, T., Kopecky, J., Zaremba, M. & Fensel, D. (2007) WSMO-lite: Lightweight

Semantic Descriptions for Services on the Web. In: Proceeding of the 5th
IEEE European Conference on Web Services (ECOWS 2007), November 26-
28, Halle (Saale), Germany. IEEE, pages 77-86.

Webber, J., Parastatidis, S. & Robinson, I. (2010). REST in Practice, O'Reilly Media.
Wilkinson, M. D., Vandervalk, B. & McCarthy, L. (2009) SADI Semantic Web Services‚

Cause You Can't Always GET What You Want! In: Proceedings of the Asia-
Pacific Services Computing Conference (APSCC 2009), December 7-11,
Singapore. IEEE, pages 113-18.

Zhao, H. & Doshi, P. (2009) Towards Automated RESTful Web Service Composition.
In: Proceedings of the 2009 IEEE International Conference on Web Services
(ICWS 2009), July 6-10, Los Angeles, CA, USA. 1586928: IEEE, pages 189-196.

 165

http://www.w3.org/TR/2009/WD-sparql11-update-20091022/
http://www.w3.org/TR/2014/WD-ldp-20140916/

References

Zhou, B. & Yao, Y. (2010). Evaluating information retrieval system performance
based on user preference. Journal of Intelligent Information Systems (JIIS),
34(3):227-248.

Zimmermann, O., Doubrovski, V., Grundler, J. & Hogg, K. (2005) Service-Oriented
Architecture and Business Process Choreography in an Order Management
Scenario: Rationale, Concepts, Lessons Learned. In: Proceedings of Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA
2005) Companion to the 20th Annual ACM SIGPLAN Conference, October
16-20, San Diego, CA, USA. 1094965: ACM, pages 301-312.

 166

 Appendices

Appendices

 167

 Appendix A

Appendix A: Research Strategies in SWS Approaches

 169

Appendix A

Table 25 Analysis of research strategies in SWS

Publication Description Result Validation

OWL-S
(Martin et
al., 2004)

Presents the service ontology for
marking up services semantically to
provide automated Web service
discovery, execution and
composition.

[Specific Solution]
• OWL-S ontology

[Examples]
[Persuasion]

WSMO
(Bruijn et al.,
2005a)

Presents the WSMO service
ontology, part of the Web Service
Modelling Framework (WSMF).

[Specific Solution]
• WSMO ontology

[Examples]
[Persuasion]

SAWSDL
(Farrell and
Lausen,
2007)

Defines SASWDL, a mechanism for
extending WSDL documents for
semantic annotation.

[Specific Solution]
• SAWSDL Semantic

Annotation Extension
Mechanism

[Examples]
[Persuasion]

SWS
Coordination
(Klusch,
2008a)

Presents a survey of matchmakers
and composition planners for SWS
description approaches (mainly
OWL-S, WSMO and SAWSDL).

[Specific Solution: Result
of an evaluation]
• Matchmaking or

composition
Experiment

[Analysis: Experiment with
statistically significant results]
• The efficiency of a

matchmaker or planner is
typically measured on a test
collection of Web service
descriptions, and can be
compared to the
performance of similar
matchmakers or planners.
These indirectly provide
evidence for the
discoverability and
composability of the
approaches.

SWS
Comparison
(Cabral et
al., 2004)

Devised a conceptual model of SWS
dimensions and used it to compare
OWL-S, WSMO and other
approaches.

[Specific Solution: Result
of specific analysis]
• Analysis of the

approaches according
to the model

[Persuasion]
• Discussion of approaches

according to the proposed
model

WSDL-S
(Akkiraju et
al., 2005)

Defines WSDL-S, a mechanism for
extending WSDL documents for
semantic annotation.

[Specific Solution]
• WSDL-S Semantic

Annotation Extension
Mechanism

[Examples]
[Persuasion]

SWSF (Battle
et al., 2005)

Defines the Semantic Web Service
Framework (SWSF,) which includes
Semantic Web Service Ontology
(SWSO) and Semantic Web Service
Language (SWSL).

[Specific Solution]
• SWSO Ontology
• SWSL
• SWSF

[Examples]
[Persuasion]

DSD (Klein
et al., 2005)

Introduces DIANE Elements (DE), a
language for defining ontologies,
and DIANE Service Description
(DSD), and a process for creating
service descriptions.

[Specific Solution]
• DIANE Elements (DE)
• DSD
• Service Description

Process

[Examples]
[Persuasion]

SA-REST
(Lathem et
al., 2007)

Defines SA-REST, a mechanism for
semantic annotation of RESTful Web
Services.

[Specific Solution]
• SA-REST annotation

mechanism

[Examples]
[Persuasion]

hRESTS
(Kopecky et
al., 2008)

Introduces hRESTS, a microformat
for semantic annotation of RESTful
Web services.

[Specific Solution]
• hRESTS microformat

[Examples]
[Persuasion]

MicroWSMO
(Kopecky et
al., 2008)

Introduces MicroWSMO an
extension of hRESTS the for
semantic annotation of RESTful Web
services.

[Specific Solution]
• MicroWSMO

microformat

[Examples]
[Persuasion]

 170

 Appendix A

Publication Description Result Validation

WSMO-Lite
(Vitvar et al.,
2007)

Introduces WSMO-Lite, a lightweight
service ontology.

[Specific Solution]
• WSMO-Lite Ontology

[Examples]
[Persuasion]

Kopecky
(2012)

Introduces WSMO-Lite, MircoWSMO
and hRESTS

[Specific Solution]
• WSMO-Lite Ontology
• hRESTS Mircroformat
• MicroWSMO

microformat
• Matchmaking

Experiment

[Examples]
[Persuasion]
[Analysis: Experiment with
statistically significant results]
• To demonstrate the viability

of WSMO-Lite, in several
SWS automation algorithms
for discovery, ranking and
composition have been
adapted to WSMO-Lite and
their performance
compared to their original
versions for SAWSDL and
OWL-S.

RESTfulGrou
nding (Filho
and Ferreira,
2009)

Introduces RESTfulGrounding
ontology to map WADL to OWL-S.

[Specific Solution]
• RESTfulGrounding

Ontology.

[Examples]
[Persuasion]

ReLL
(Alarcon and
Wilde, 2010)

Introduces ReLL, a vocabulary for
describing Web pages and Web APIs.

[Specific Solution]
• ReLL vocabulary

[Examples]
[Persuasion]
• Proof of concept

implementation of a use
case

SBWS (Battle
and Benson,
2008)

Introduces SBWS, a method for
integrating existing Web services by
annotating WSDL and WADL
documents so that these services
can be used as if they were SPARQL
endpoints.

[Specific Solution]
• SBWS annotation

method and
implementation

[Examples]
[Persuasion]
• Implementation of the

wrappers for Amazon
RESTful Web services and
using the descriptions for
resolving SPARQL queries.

SPARQL
descriptions
(Sbodio et
al., 2010)

Introduces a method for
representing preconditions and
effects of Web services as graph
patterns, and a method for their
discovery using SPARQL queries

[Specific Solution]
• A description method

using graph patterns
• A discovery method
• Matchmaking

experiment

[Examples]
[Persuasion]
[Analysis: Experiment with
statistically significant results]
• To demonstrate the

efficiency of the discovery
(matchmaking) method
and descriptions a standard
OWL-S test collection was
transformed to SPAQL
descriptions and the
performance compared to
the original version for
OWL-S and associated
matchmaker.

LIDS (Speiser
and Harth,
2011)

Introduces LIDS, an approach for
integrating data services with Linked
Data

[Specific Solution]
• LIDS approach
• service description

formalism
• access mechanism for

LIDS interfaces
• LIDS wrapper

[Examples]
[Persuasion]
• Implementation of LIDS

wrappers for GeoNames
and Twitter, and used those
to interlink with the Billion
Triple Challenge dataset
(BTC), and measured the
time and added links as a
result.

 171

Appendix A

Publication Description Result Validation

LOS
(Krummenac
her et al.,
2010)

Introduces Linked Open Services
(LOS) as a method for describing
both RESTful and non-RESTful
Services as consumers and
producers of RDF, and using SPARQL
constructs for composing services
exposing LOS descriptions.

[Specific Solution]
• LOS method.

[Examples]
[Persuasion]
• A proof of concept

implementation
demonstrated with a use
case.

Semantic
REST (Battle
and Benson,
2008)

Introduces Semantic REST, an
implementation method to integrate
REST-based websites into the
Semantic Web.

[Specific Solution]
• Semantic REST

implementation
method

[Examples]
[Persuasion]
• Implementation of a

RESTful interface for a
SPARQL endpoint for
SemWebCentral.org mock
semantic dataset.

Zhao and
Doshi (2009)

Introduces a lightweight ontology
for describing RESTful services as
either sets of resources, instances or
transitional services. It also
introduces a conceptual model for
representing the composition of
services using situation calculus
based state transition system.

[Specific Solution]
• Lightweight ontology
• Situation Calculus

based STS

Examples]
[Persuasion]

Hernandez
and Garcia
(2010)

Introduces a formal model for
RESTful Web services using a
combination of process calculus and
triple space computing.

[Specific Solution]
• A formal model for

RESTful Semantic
Web services

[Examples]
[Persuasion]
• Implementation of a

RESTful interface for a
SPARQL endpoint for
SemWebCentral.org mock
semantic dataset.

TSC (Riemer
et al., 2006)

Introduces Triple Space Computing
(TSC) as a method for providing
Semantic Web services.

[Specific Solution]
• Architecture of TSC
• TSC API design

[Persuasion]
• Architecture and

functionality specification
RESTdesc
(Verborgh et
al., 2011)

Introduces RESTdesc an approach to
describe Web APIs as N3 rules, in
addition to a method for discovering
and composing them.

[Specific Solution]
• RESTdesc description

approach
• Method for discovery

and composition

[Examples]
[Persuasion]
• Online demonstrator

iServe
(Pedrinaci et
al., 2010b)

Introduces the iServe architecture
and model that enables publishing
service descriptions as Linked Data
and supports annotating services
with a Minimal Service Model
(MSM).

[Specific Solution]
• iServe Architecture
• Publishing platform,
• annotation tools
• MSM Service

description
vocabulary

[Examples]
[Persuasion]
• Online demonstrator

SADI
(Wilkinson et
al., 2009)

Introduces SADI, a framework to
facilitate automatic integration of
bioinformatics data and services.

[Specific Solution]
• A method for

conceptualising SWS
for bioinformatics by
imposing constraints
on how I/O are
defined in domain
ontolgoy

• A method for
discovering services

• A method for
composing them
using SPARQL queries

[Examples]
[Persuasion]
• Code available online
• Online demonstrator
• Implementation of two use

cases, one in SHARE, and
the other as a Taverna plug-
in

 172

 Appendix A

Publication Description Result Validation

HyperData
(Kopecky et
al., 2011)

Description mechanism for RDF APIs
and the integration of those
descriptions as triples stored with
the data, so that RDF data self-
describes how it is updated.

[Specific Solution]
• A method for the data

to describe how it can
be updated

• A vocabulary to
describe the
resources as graphs
and the relationships
between them

[Examples]
[Persuasion]
• proof-of-concept triple-

store wrapper
demonstrated in a use case

Hypermedia
RDF
(Kjernsmo,
2012)

Vocabulary for making RDF a
hypermedia type that not only
describes data but what actions are
applicable to it.

[Specific Solution]
• A vocabulary for

describing what
actions are applicable
to a certain RDF
resource

[Persuasion]
• Argument

RDF-REST
(Champin,
2013)

Design of an RDF-REST approach to
bridge the gap between RESTful
Web services and Linked Data, by
building conventional RESTful
services on top of Linked Data.

[Specific Solution]
• RDF-REST

Architecture
• Implementation of

RDF-REST

[Examples]
[Persuasion]
• Is part of a real application,

kernel for Trace-Based
Systems, kTBS

SSWAP
(Gessler et
al., 2009)

Introduces the design of SSWAP
Protocol Architecture and
implementation for creating
describing publishing and discovery
Web services to design RESTful
Semantic Web services by describing
a mapping between its inputs and
outputs, using an RDF graph
template.

[Specific Solution]
• SSWAP Protocol
• SSWAP Architecture
• SSWAP

Implementation

[Examples]
[Persuasion]
• Code online
• Pipeline discovery platform
• Online directory of services

where more services can
published

SWS
Challenge
(Petrie et al.,
2009)

The aim of the challenge is to
explore the trade-offs among
existing Semantic Web service
approaches.

[Specific Solution]
• Scenarios
• Evaluation Framework

[Evaluation]
• Qualitative evaluation of

how well each approach
achieves the scenarios

S3 Contest S3 Contest on Semantic Service
Selection, the reference contest for
evaluating semantic service
matchmakers.

[Specific Solution]
• Test Collections
• Evaluation Framework
• Matchmaking

Experiment

[Analysis: Experiment with
statistically significant results]

(Bachlechner
and Fink,
2008)

Study involved surveying and
analysing opinions from both
practitioners and researchers to
evaluate the potential of Semantic
Web services as integration
architectures.

[Specific solution: answer
or judgement]
• Expert opinions on

the potential of
Semantic Web
services as integration
architectures.

[Evaluation]
• Expert interviews and

questionnaires

 173

 Appendix B

Appendix B: Web Service Scenarios and RO Models

 175

Appendix B

Mashups

M1: Yahoo Pipes (Mashups)

The scenario is an example of creating a mashup using Yahoo Pipes. Yahoo Pipes

is an interactive Web application which enables the creation and execution of

mashups. It offers a workspace in which a user can add widgets such as data

sources, filters, and functions to refine and merge the data.

A user has built a stock quote watch mashup using Yahoo Pipes (Donnelly, 2010),

this displays the last quote and chart for the stocks. In this example, he uses the

widgets provided to retrieve the original stock data from a .csv file stored at the

Yahoo Finance downloads. He then uses a filter widget to filter the stock file for

certain stock quotes. To loop through the obtained data he uses a loop widget

that displays the results as a chart.

Infrastructural and Functional Requirements

1. Proprietary Workflows - The workflows description is not in an open format; it

is specific to the platform executing it.

2. Workflows are controlled by and executed on one machine - There is no need

for a participation of multiple machines or a their coordination.

3. Server/Service provider ownership of data - The data accessed by the client

belongs to the service provider.

4. Open Accessibility to the Data - The data is accessible; there are no security

restrictions.

5. Creation of the workflows is done by the end user with a GUI - Mashup

Creator’s level of expertise is minimal; the filtering and programming is through

GUI, no coding is required from the end user, EU.

Non-functional Requirements

Tolerance of failure - In this scenario, and many other mashup scenarios,

mashups are used by end users for providing specialised data for non-critical

tasks, so the failure of mashups does not have a large impact on other tasks.

Scenario Breakdown

The generic scenario of building mashups using Yahoo Pipes (Donnelly, 2010) is

broken down into the following steps:

(1.) The client creates a mashup;

(2.) It creates widgets that read inputs from other widgets or external resources;

(3.) The widget produces the results;

(4.) The client reads the results.

 176

 Appendix B

Resource-Oriented Model

Figure 26 RO Model of M1

In this scenario, step 2, (creating widgets) is iterative. We used the *[j:= 1..n]

UML convention to indicate this. The Has links show the structural relationships

between the mashup, its widgets, and the results.

M2: The MashMaker Scenario, Desktop Mashups

(Ennals and Garofalakis, 2007) describe MashMaker, an interactive browser plug-

in for creating mashups from Intel. The scenario provided explains how a user,

who is planning to rent a house, uses MashMaker.

A user is interested in houses that have the best restaurants around. The user

visits a housing website and adds it to MashMaker by clicking an icon in the

browser. The houses are displayed in MashMaker as a tree where each house is a

node, when a node is clicked, MashMaker suggests appropriate queries like

“things nearby”. The user searches for food nearby, then applies a filter widget to

include only those within 0.5 a mile and having a rating of 3 or more. He adds a

count widget to count how many restaurants match these criteria, and then copies

this widget to the other houses, saves it, and publishes it.

The interaction occurs between the different Web servers where the data resides

and MashMaker on the client. The actual processing and aggregation of the data

happens on the client. However, in case of overlaying information on maps,

Google Maps is utilised and some of the processing happens on the Google Maps

Server. Then the results are transferred to the client.

Infrastructural and Functional Requirements

Similar to the requirements discussed in M1

Non-functional Requirements

Similar to the requirements discussed in M1

Technical Notes

 177

Appendix B

1. Client/Intermediary Data processing, filtering and aggregation

The processing of the data is performed on the client or partially, on an

intermediary server like Google Maps.

2. Data aggregating compositions

The compositions involved in creating mashups are based on joining data

providing services, where the composition depends on matching elements or

attributes of the data.

3. Standards of data resources

The formats of the data sources vary, from HTML (Web pages), RSS, JSON to

RDF.

4. Scalability issue

Although the mashup is executed on the client there is a point that could

affect the scalability of the architecture: this is the MashMaker server that

hosts a database of extractors (Ennals et al., 2007). Extractors describe how to

extract structured information from HTML pages. The creation and

maintenance of extractors is done in a wiki collaborative manner. The

scalability issue is minor if the extraction is executed on the client, which

seems to be the case, although is not explicitly stated.

5. Architecture

1. Multiple Servers for Data Sources

2. An intermediary server for maintaining extractors and mashup reuse

3. An application on the client to create mashups

Scenario Breakdown

(1.) The user creates a mashup

(2.) The user creates two Web resources that link two websites to mashup

(3.) The user updates the mashup to mash the two Web resources

(4.) The user runs the mashup

(5.) The mashup returns the results

Resource-Oriented Model

 178

 Appendix B

Figure 27 RO Model of M2

M3: Displaying the time and location of a Website’s visitors using a

layered mashup architecture

(Biornstad and Pautasso, 2009) Proposed a layered architecture for creating

mashups from streaming data. Their approach is similar to Yahoo Pipes, where

the mashup architecture executes the mashup and the results are sent to the

client. They provide an example of a mashup that combines a Web server’s log file

with a geolocation service.

In this scenario a user wants to display the geographic locations of a website’s

visitors on a map. This map is constantly updated. He or she does that by using

the system built on this architecture to access the Web server’s log, through a

secure shell socket (SSH). This provides real-time updates through a streaming

push mechanism, in contrast to a request/response mechanism using HTTP, which

increases the latency and network traffic. The user then uses the system to create

components to extract the IPs from the log, resolving the DNS, looking up the

coordinates and overlaying them on a map, which is the sent to the client.

The requirements are similar to the ones in scenario M2. However, there are some

additional ones:

Infrastructural and Functional Requirements

1. Accepts Streaming Data pushed by servers

Unlike other approaches it accepts data pushed to the mashup engine over

open ports;

Non-functional Requirements

1. Secure Access

In this scenario, access is enabled to access secure files on remote Web

servers using SSH;

M1: Mashup

Mashup

W1: Web Resource

Web Resource

W2: Web Resource

R1: Results

Results

1. c

1.1 i

3. u

2. c

2.1 i

2.1 i
C

onsum
es >

P
roduces >

4.1 c3.1 r3.1 r

4. u

4.1.1 i

5. r

 179

Appendix B

Technical Notes

1. Standards of data resources

Web logs, RSS, JSON, accesses data from Web services using SOAP.

Scenario Breakdown

(1.) The application reads a Web log.

(2.) A local copy of the Web log is created.

(3.) The client reads the local copy. (The search is discussed in the modelling

issues.)

(4.) IPs are extracted from the Web log.

(5.) The IPs are read to be sent to the DNS.

(6.) Resolve the IPs at the DNS.

(7.) Create a resource representing the DNS coordinates

(8.) Getting the Coordinates from the DNS.

(9.) Creates a Map.

(10.) Overlay the Map with the coordinates.

Resource-Oriented Model

Figure 28 RO Model of M3

 180

 Appendix B

M4: Creating situational applications using the enterprise information

mashup fabric

In (Jhingran, 2006), the author discusses the enterprise’s need for Situational

Applications. The author describes these as “applications that come together for

solving some immediate business problems”. The paper describes two scenarios

to illustrate where it would be useful.

M4A: In the first example a salesperson needs information on a client before

making a call on prospect. The information needed is how much was sold to the

customer during the last quarter, and did the customer have problems with sales.

M4B: A CFO that has a meeting with his CEO. The CFO wants to present a

summary of the financial picture. This summary needs to be assembled from

emails by finance personnel including presentations that contain embedded

spreadsheets about the financial picture.

Infrastructural and Functional Requirements

1. Information Assembly

In M4A there is no merging done on the data on information assembly.

Non-functional Requirements

1. Closed

The system is to be used inside an enterprise.

Technical Notes

1. Standards of data sources

The data depends on the applications that the enterprise uses; the more the

mashup engine understands the formats of enterprise data, the more useful it

would be.

Scenario Breakdown

(1.) Query the Customer info.

(2.) Reading the results of the query,

Resource-Oriented Model

Figure 29 RO Model of M4

 181

Appendix B

Enterprise Services

E1: SSPD (City University) (Enterprise Services)

The scenarios chosen were two integration projects from City University (City

University, 2008). The first project was Single Sourcing of Programme Data (SSPD).

The university uses information about the study programmes in different

processes, like producing student handbooks, publishing programme information

on the website, producing prospectus and quality and approval processes for

development of new programmes. These processes are using the same

information but they were operating independently. This led to inconsistencies in

data and effort duplication.

SSPD is concerned with how programme information is created, updated and used

enabling the processes mentioned above to be facilitated and any inconsistencies

resolved. It enables academic and administrative staff to define and maintain

module and programme specifications and submit them for approval.

Infrastructural and functional requirements

1. Complete control over the service providers and service consumers - The

university systems are the service providers and the service consumers. There are

no external entities involved.

2. Actions are triggered as a result of service invocation, so it is not a read only

situation - The state of resources can be altered because of the service invocation.

3. The ability to deal with multiple systems and data formats – The services deal

with legacy systems that use different technologies and formats to represent the

data.

Scenario Breakdown

The SSPD scenario from City University (City University, 2008) can be decomposed

into the following steps:

(1.) Academic staff read the program info.

(2.) Creates a modification.

(3.) Can update it, when it is finished.

(4.) It is approved by the administrative staff.

(5.) The program info is updated.

(6.) It can be read by interested processes.

Resource-Oriented Model

 182

 Appendix B

Figure 30 RO Model of E1

With step (3.), an update can also change the status of the modification to indicate

it is ready to be submitted. Figure 30 shows how roles are modelled, with the

name of the role associated with the action on the messages.

E2: MLE (City University) (Enterprise Services)

The other integration project from City University is called the Managed Learning

Environment (MLE)

The University uses both the SITS:Vision student information management

system, and a Virtual Learning Environment (WebCT Vista). The transfer of

student information from SITS:Vision to WebCT Vista took place using a nightly

scripting process, this was slow and had errors. MLE aims to have the SITS system

trigger the updating process so that new information is added to WebCT directly.

Infrastructural and functional requirements

Similar to the requirements discussed in E1

Scenario Breakdown

The other integration project from City (MLE) is modelled below. The steps

involved in MLE are

(1.) The SITS system creates updates,

(2.) The SITS system notifies WebCT,

(3.) WebCT reads the changes and gets updated.

Resource-Oriented Model

Figure 31 RO Model of E2

WebCT and SITS are active resources, indicated by the heavy lines (a UML

convention). This means they initiate control activity.

 183

Appendix B

E3: BT.com (Integrating BT's OSS)

BT used Web services to integrate core operational support systems (OSS) which

are legacy subsystems to enhance existing services or provide new ones. The

following scenario mentioned in (Calladine, 2004) illustrates this.

BT.com Online website

BT.com offers many customer services such as ‘View my bill’, ‘Friends and

Family’, etc. BT would like its customers to use the website because it reduces the

cost of operator-assisted services. BT.com needs access to core services from

multiple internal heterogonous sub-systems.

Infrastructural and Functional Requirements

Complete control over the service providers and service consumers.

BT systems are the service providers and the service consumers; there are no

external entities involved.

Actions are triggered as a result of service invocation, so it is not a read only

situation.

The state of resources can be altered because of the service invocation.

The ability to deal with multiple systems and data formats.

The services deal with legacy systems that use different technologies and formats

to represent the data.

Scenario Breakdown

The customer can read the bill, this will invoke reads to the subsystems.

The customer can update and read Family and Friends options, this will also

invoke update and read requests to the system.

Resource-Oriented Model

Figure 32 RO Model of E3

E4: SCORe (Integrating BT's OSS)

Another BT project for the integration of operational support systems (OSS) is the

SCORe scenario (Calladine, 2004).

Project SCORe (Service Consolidation and Operational Revitalisation)

 184

 Appendix B

A problem that was identified with the call-centres is the complexity of retrieving

the data relative to a customer’s contact. SCORe aims at reducing costs and

increasing customer satisfaction. Because the data is held in multiple databases

and controlled by several systems, this means that several calls to these systems

were needed, using different technologies.

Infrastructural and Functional Requirements

Similar to the requirements discussed in E3.

Scenario Breakdown

The operator can retrieve customer information, which then retrieves it from the

subsystems.

Resource-Oriented Model

Figure 33 RO Model of E4

 185

Appendix B

B2B

B1: Reverse Auctioning (B2B)

The scenario modelled here is a reverse auctioning scenario mentioned in (Decker

and Weske, 2007):

“A buyer (e.g., car manufacturer) uses reverse auctioning for procuring specially

designed components. In order to get help with selecting the right suppliers and

organizing and managing the auction, the buyer outsources these activities to an

auctioning service. The auctioning service advertises the auction, and beforehand,

different suppliers can request permission to participate in it. The suppliers

determine the shipper that would deliver the components to the buyer or provide

a list of shippers with different transport costs and quality levels, which the buyer

can choose from. Once the auction has started, the suppliers can bid for the

lowest price. At the end, the buyer selects the supplier according to the lowest bid.

After the auction is over, the auctioning service is paid.”

Infrastructural and functional requirements

1. Registration - The auctioning service deals with many participants/clients that

need to register before using the service. This implies the need for authentication

and authorisation

2. Support for different client roles - There are two different roles for users of this

service: buyers and suppliers.

3. The service provider and the service consumers are different entities

The service provider is the auctioning service, and the consumers are the buyer

and the suppliers.

Non-functional requirements

1. Security

This involves authentication and authorisation for service consumers and

encryption of payment transactions.

Scenario Breakdown

The reverse auctioning scenario mentioned in (Decker and Weske, 2007) can be

broken down into these steps:

(1.) The buyer creates an auction.

(2.) The buyer starts the auction.

(3.) The suppliers place their bids.

(4.) The buyer selects a bid.

(5.) The buyer pays for the service.

(6.) The buyer deletes the auction.

 186

 Appendix B

Resource-Oriented Model

Figure 34 RO Model of B1

B2: Telecommunications Wholesaler

In (Zimmermann et al., 2005), the authors discuss an IBM project that aims to

enable a large telecommunications wholesaler to supply services to more than

150 customers. The wholesaler owns the physical network. The customers are

either telecommunications companies extending their own network

infrastructure, or companies that want to bundle telecommunication services with

their products. These customers will use the order management services of the

wholesaler to connect, configure, or disconnect telephone services for end users.

The order management application should offer two main processes:

1. Provide a new Public Switched Telephone Network (PSTN) telephone

service.

2. Move a PSTN telephone service to a new address.

A customer needs to follow the next steps, summarised from (Zimmermann et al.,

2005), in order to perform the aforementioned processes:

1. Identify the service to be moved and its current location or site address.

2. Identify the new address for the service. This has to be the address as

recognized by the systems that record telecommunications plant and

service information. Hence search aids are required.

3. When a recognized address is identified, the next step is to search for a

transmission cable plant which exists at the target address and could be

reused for provisioning this service.

 187

Appendix B

4. Having identified a particular copper transmission path, this result has to

be recorded.

5. Determine the features of the service at the new address, which depends

on a complex set of factors. Some features may already exist from a

previous service at this address, some transferred from the old address,

and some may be requested.

6. Next, determine a phone number for the service at the new address and

reserve it. The old number maybe kept, if the network at the new address

permits, otherwise a list of numbers available must be supplied.

7. If a visit is required, then a time must be negotiated which suits both the

customer and the field staff to be assigned to the task.

8. The request to move and the reservation is confirmed, allowing the

commercial transaction to proceed.

Infrastructural and Functional Requirements

1. Negotiation

The service infrastructure should support conventions that enable the service

provider and service consumers to negotiate.

2. Workflow support

The processes needed involve the invocation of several services in a certain

order.

3. Conversational services

The service infrastructure should enable execution of services where the all

inputs cannot be known upfront.

Non-functional Requirements

4. Security

This involves authentication and authorisation for service consumers.

Scenario Breakdown

(1.) The client creates a service request.

(2.) Adds the new address of the service.

(3.) Determines the features of this service.

(4.) A number is created:

(4.A) A list of new numbers,

(4.B) The old number is kept.

(5.) Choose a number:

(5.A) The client chooses a number,

(5.B) The old number is read.

(6.) [Optional] A visit is arranged.

(7.) The client pays for the service.

 188

 Appendix B

Resource-Oriented Model

Figure 35 RO Model of B2

B3: E-Procurement

 (Brodie, 2000) presents an e-procurement general scenario:

 189

Appendix B

“E-procurement has a buy side, a sell side, and the connection of the two.

On the buy side, a customer such as a company purchasing agent needs

to access information on all relevant products, including product

specifications, comparisons with all competitive products, pricing

including discounts, delivery arrangements, and promises. The seller

must have all relevant information on the buyer, including company,

finance, credit, contact, logistics, preferences, and legal. On the sell side,

the vendor must provide all relevant, up-to-date catalogue information

from hundreds or thousands of suppliers, together with real-time

inventories and pricing. For a sale, transaction details must be irrefutably

committed on both sides, and reflected in the inventory and financial

systems.”

Infrastructural and Functional Requirements

The characteristics are identical to the ones in scenario B2.

Non-functional Requirements

Security

This involves authentication of buyers and sellers and the encryption of payment

transactions.

Scenario Breakdown

(1.) The buyer reads the catalogue.

(2.) The buyer places the order.

(3.) The seller provides the pricing for that order.

(4.) The buyer reads the pricing.

(5.) The buyer provides the payment.

Resource-Oriented Model

 190

 Appendix B

Figure 36 RO Model of B3

B4: Supply Chain Management

A scenario mentioned in (Preist et al., 2005) illustrates an example of a supply

chain and the different entities and interactions involved:

“We consider a manufacturing company in Bristol, UK, which needs to distribute

its goods internationally. It does not maintain its own transportation capability,

but instead outsources this to other companies, which we refer to as Freight

Forwarders. These companies provide a service to the manufacturing company –

they transport crates on its behalf. However, the manufacturing company still

needs to manage relationships with these service providers. One role within this

company, which we refer to as the Logistics Coordinator, is responsible for doing

this. Specifically, it carries out the following tasks;

1. Commissioning new service providers, and agreeing the nature of the service

they will provide (e.g. locating a new freight forwarder in Poland, and

agreeing that it will regularly transport crates from Gdansk to Warsaw).

2. Communicating with service providers to initiate, monitor and control

shipments (e.g. informing the Polish freight forwarder that a crate is about

to arrive at Gdansk; receiving a message from them that it has been

 191

Appendix B

delivered in Warsaw, and they want payment). This is done using one of the

messaging standards, EDIFACT.

3. Coordinating the activity of service providers to ensure that they link

seamlessly to provide an end-to-end service (e.g. making sure the shipping

company plans to deliver the crate to Gdansk when the Polish transport

company is expecting it; informing the Polish company when the shipping

company is about to drop it off).

4. Communicating with other roles in the company to coordinate logistics with

other corporate functions (e.g. sales, to know what to dispatch; financial, to

ensure payment of freight forwarders).

In our scenario, we consider a specific logistics supply chain from Bristol, UK, to

Warsaw, Poland. It consists of three freight forwarders. The first is a trucking

company, responsible for transporting crates from the manufacturing plant in

Bristol to the port of Portsmouth, UK. The second is a shipping company,

responsible for shipping crates from Portsmouth to the Polish port of Gdansk. The

third is another trucking company, which transports crates to the distribution

warehouse in Warsaw. We assume that the Logistics Provider communicates with

the Freight Forwarders using the EDIFACT standard, and is already successfully

using this logistics chain.”

Infrastructural and Functional Requirements

The requirements are identical to scenarios B2 and B3. However, there are others:

1. Mediating between different standards

In this example, EDIFACT and RosettaNet, and this involves both the mediation

of data and the mediation of protocols used.

2. Discovery of services

In this example, EDIFACT and RosettaNet, and this involves both the mediation

of data and the mediation of protocols used.

Non-functional Requirements

Similar to B1’s requirements

Scenario Breakdown

(1.) Logistics coordinator creates a supply chain.

(2.) Read the offered services from the shipping company.

(3.) Logistics coordinator creates a service request.

(4.) The shipping company creates an offer.

(5.) Logistics coordinator agrees to that offer.

(6.) The shipping company starts a shipment.

(7.) Logistics coordinator updates the supply chain with info from the agreement

(8.) Logistics coordinator updates the shipping monitor with info from the

shipment.

(9.) The shipping monitor monitors the shipment.

 192

 Appendix B

Resource-Oriented Model

Figure 37 RO Model of B4

Cloud Computing

C1: NYT TimesMachine

The cloud computing scenario we chose is the New York Times project called

TimesMachine, which is discussed in (Klems et al., 2008). It aims to provide

access to issues dating back to 1851, adding up to 11 million articles.

The technical team wanted to generate the PDF files from TIFF images. The

generation was done based on request. However, this solution would not work for

high traffic. The team decided to generate all the PDF files and serve them on

request. The size of the TIFF files was 4 Terabytes. So they used Amazon's Elastic

Compute Cloud (EC2) and Simple Storage Service (S3). The TIFF files were

uploaded to S3 and they started a Hadoop cluster of 100 customized EC2 Amazon

Machine Images. They transferred the conversion application. That resulted in the

conversion to PDFs and storing the results to S3 taking only 36 hours.

Infrastructural and functional requirements

 193

Appendix B

1. Configuration of Virtual Machines - In this scenario, the Amazon Machine

Images (AMI) were configured to form a Hadoop cluster. This can be done through

a Web-based control panel or through Web services. EC2 offers a SOAP interface

and a query interface.

2. Transferring large amounts of data to and from the servers - This implies the

need for reliable, efficient and secure data transfer. This is explained discussed in

the following 3 points.

3. The data is owned and manipulated by the client - In contrast to mashups

where the client requests the data, here clients request resources to manipulate

their data.

4. The client transfers the job/application to the servers - In this scenario the

client uploads to the cloud the application that manipulates the data.

5. Multitenancy - This means that the services and resources are used by multiple

clients other than the New York Times and this implies a stronger need for

security and for resource virtualisation.

6. Batch processing - Interaction with the server does not need to happen during

the processing.

Non-functional requirements

1. Service Level Agreements - There is no formal specification for the agreement,

as the SLA is a webpage. Therefore, the negotiation of SLA is not automated.

2. Reliability - This should be based on the SLA and include:

The availability of services;

The recoverability of data and applications.

Since it is built on a business model, what are the penalties in the case the

reliability criteria are not met?

3. Security - The security involves:

The authentication and authorisation of the service consumer, in this case the

technical team at The New York Times:

The encryption of the communication to guarantee confidentiality

The encryption of the data and applications on the client which are owned by the

clients, to ensure that no one else can access them.

4. Monitoring - Amazon offers a Web console, command line tools, and a Web API

(Web service) to monitor the instances.

Scenario Breakdown

The New York Times project scenario TimesMachine (Klems et al., 2008) is

decomposed into the following steps:

(1.) Create the data items, upload the images;

(2.) Create a Hadoop Cluster;

(3.) Create an application and upload the converter;

 194

 Appendix B

(4.) The application returns the results;

(5.) The client reads the results.

Resource-Oriented Model

Figure 38 RO Model of C1

The client sends the representation of the resource when creating or updating it,

the client receives a resource representation when it reads a resource.

C2: Major League Baseball MLB Website’s Chat System

Another scenario mentioned in (Klems et al., 2008), the MLB Advanced Media a

company that develops and maintains the MLB websites wanted to add a chat

service.

The technical team faced the problem that this chat service has to be up and

running at a very short notice, there was no time to buy and set up new

equipment. So they decided to use machines from Joynet, a cloud computing

provider. The machines acquired were used to test and launch the new product.

At the development stage they needed 10 virtual machines and 20 for the chat

clusters. When they launched the chat system they needed extra RAM for the

machines; when the playoff and World Series started they needed extra machines

with extra RAM and processing power. When the season ended they could scale

down on the resources required.

Infrastructural and Functional Requirements

 195

Appendix B

The requirements are similar to C1. However, they differ in some technical

issues.

1. Flexible Scalability

The resources are utilised efficiently, acquired when needed or released

otherwise.

2. Standards used

There is no Web API (Web service) interface to Joynet services.

3. Used as hosting server

The scenario described here is more like a hosting server than cloud

computing.

Non-functional Requirements

Identical to C1s requirements

Scenario Breakdown

(1.) Create Machine instances.

(2.) Increase the number of machines and increase their RAM.

(3.) Install “Create” the chat system.

(4.) Run the Chat system.

(5.) Increase the RAM in the machines.

(6.) Scale down the machines.

Resource-Oriented Model

Figure 39 RO Model of C2

C3: Colorado State University using Google Apps

In (Herrick, 2009), the author discusses Colorado State University’s use of Google

Apps, including Google Mail, Google Calendar, and Google Talk, Google Docs,

Google Sites and Google Video.

In 2009, Colorado State University (CSU) used Google Apps as an e-mail hosting

solution for its undergraduate students. Google Apps Education Edition, is free for

colleges and universities. CSU wanted to replace their old system with an

outsourced e-mail and collaboration solution. The important issues were cost,

reliability and the scope of services. Google Apps was selected mainly because it

 196

 Appendix B

offered e-mail, calendar and personal website services for students. Moreover. the

interoperability between these applications was a also plus. This increased

students’ collaboration and communication. The faculty and move their accounts

to use the suite because of its potential.

Infrastructural and Functional Requirements

The requirements are similar to C2. However it differs in the following

1. It is a Software as a service

2. Instead of acquiring software solutions, the university used Google Apps.

3. The client does not transfer applications to the server.

4. The client uses the services as applications existing on their systems.

Non-functional Requirements

Identical to C1s requirements.

Scenario Breakdown

(1.) Create a user account.

(2.) Pay for the service.

(3.) The Apps are created for this account.

Resource-Oriented Model

Figure 40 RO Model of C3

C4: LingoSpot, a business built using Google App Engine

LingoSpot is one of the case studies mentioned in Google App Engine’s

documentation21. Lingospot provides services for online publishers to help

readers discover more of their content, including virally-distributed widgets for

related videos and articles, as well as smart discovery links within context.

“We use the App Engine to scale our services to Web audiences limitlessly,

ranging from a million+ users in 30 minutes at large sites, to supporting

21 Google App Engine, App Engine Developer Profiles,
http://code.google.com/appengine/casestudies.html

 197

http://code.google.com/appengine/casestudies.html

Appendix B

hundreds of smaller sites that have installed our viral widgets, without

worrying an iota about provisioning capacity for the traffic and growth.

Google App Engine enables users to run programs written in Python or

Java, it also offers APIs to access datastore, Google Accounts, URL fetch,

Google Maps, and email services. It offers a Web-based Administration

Console to manage applications.”

Infrastructural and Functional Requirements

1. Platform as a service

2. LingoSpot used Google Apps Engine as a development and hosting platform

3. Dynamic Scalability

4. The system autonomously responds to the peaks on demand.

Non-functional Requirements

Identical to C1s requirements.

Scenario Breakdown

(1.) Create a user account.

(2.) Read the SDK.

(3.) Upload the application.

(4.) Run the application.

Resource-Oriented Model

Figure 41 RO Model of C4

 198

 Appendix B

Grid Computing

G1: NEESgrid (Grid Computing)

NEES is an NSF funded project to build a virtual laboratory for earthquake

engineers. Using grid technologies it enables remote access and control to

observational sensors, experimental data, computational resources, and

earthquake engineering control systems such as shake tables, reaction walls, and

robots. NEESgrid also enables access to collaboration tools (Gullapalli et al.,

2004).

Earthquake engineers wanted to study the effect of an earthquake on different

types of substances and structures. These different structures and their shake

tables are distributed across a number of labs. The aim was to coordinate these

experiments with computer simulations. So the Multi-site Online Simulation Test,

MOST, was devised to test and illustrate this capability using the NEESgrid

system. MOST combined physical experiments testing the effect of an earthquake

on the interior of a multi-story building at three different sites, each testing a

part of the structure. MOST linked the physical experiments at the University of

Illinois at Urbana-Champaign (UIUC) and at the University of Colorado, Boulder

(CU) with a numerical simulation at National Centre for Supercomputing

Applications (NCSA). A simulation coordinator coordinates the overall experiment

(Pearlman et al., 2004).

Infrastructural and functional requirements

1. Remote access to instruments - Services can be interfaces to instruments, in

this case lab instruments such as shake tables.

2. Notifications - Running services send notifications to the clients or to the

service/job scheduler.

3. Batch Processing - When a service or job is run, there is no need for the client to

interact and results are delivered when it stops.

4. Coordination between running services - The services communicate to ensure

correct synchronisation.

5. Negotiation - It involves interactions between the client and the server to

ensure compliance between the client’s requirement and the server’s policies.

6. Support of sending and receiving large volumes of data - Large volumes of data

are being transferred between different services, requiring reliable, efficient, and

secure transfer.

7. Service Scheduling - Services are invoked and controlled by schedulers, in this

case the Experiment Coordinator is controlling several experiment executions.

Non-functional requirements

1. Security - The security involves:

 199

Appendix B

• The authentication and authorisation of the researchers and scientists to

protect sensitive data and applications;

• The encryption of the messages and transferred data to guarantee

confidentiality.

2. Monitoring - This is needed to ensure that the different components are

functioning.

3. Reliability - Reliable data transfer and service execution, no delays,

interruptions or outages.

Scenario Breakdown

The NEESgrid scenario consists of the following steps:

(1.) Create experiments and the simulation.

(2.) Create an experiment coordinator.

(3.) The coordinator starts the experiments.

(4.) The coordinator retrieves experiment results.

(5.) The coordinator reads the results.

(6.) The coordinator aggregates the results

(7.) The results are read.

Resource-Oriented Model

 200

 Appendix B

Figure 42 RO Model of G1

Due to the complex nature of the NEESgrid scenario and the limited space,

structural links between resources were not modelled.

G2: Distributed Aircraft Maintenance Environment

The DAME (Distributed Aircraft Maintenance Environment) project (Jackson et al.,

2003), is a Grid enabled system for aeroengine fault diagnosis and prognosis. The

aim of the project is to use Grid technology to manage and analyse the vast

amounts of data to diagnose existing anomalies and predict potential problems in

aircraft engines. (Jackson et al., 2005) state the challenges for DAME, which are:

the huge amount of data captured by the monitoring tool; the need for advanced

pattern matching and data mining of the captured and historical data; the

requirement of collaboration from diverse actors, and the heterogeneity and

distributiveness of the data assets and tools.

Work on DAME was further researched in BROADEN (Business Resource

Optimisation for Aftermarket and Design Engineering on Networks) (Jackson et

 201

Appendix B

al., 2006) which investigated the use of SOA techniques to achieve their goals.

The main usage scenarios for DAME are:

There is a QUICK monitoring service installed on the aircraft. This service

captures the engine’s monitoring data. QUICK can produce up to 1 Gigabyte of

data for each engine. An aircraft can have two or more engines; this can scale to

many Terabytes each year, for a fleet. Downloading and storing this amount of

data efficiently requires a huge number of distributed repositories at different

airports and these repositories must be available for the health monitoring of the

engines. DAME’s Engine Data Service is responsible for the downloading and

storage of that data. The scenario mentioned in (Austin et al., 2005) illustrates

the challenge.

“Heathrow, with its two runways, is authorized to handle a maximum of

36 landings per hour. Let us assume that on average half of the aircraft

landing at Heathrow have four engines and the remaining half have two

engines. In future, if each engine downloads around 1 GB of data per

flight, the system at Heathrow must be capable of dealing with a typical

throughput of around 100 GB of raw engine data per hour, all of which

must be processed and stored. The data storage requirement alone for an

operational day is, therefore, around 1 TB, with subsequent processing

generating yet more data.”

Due to the vast amounts of data, the choice for DAME was to be highly

distributed, having the airports as the units of distribution. The monitoring data

from an aeroplane arriving at an airport is stored at that airport. Therefore, the

search queries are distributed across airport nodes, where each node deals with

the data it stores. This means that data relating to one engine is found in the

different airports it landed in. To make DAME work, each airport node has a data

repository, pattern matching service, and a data catalogue.

An engine specialist wants to analyse a particular engine’s data. The specialist

provides the engine’s identifiers; the system submits it to a global catalogue,

which returns a handle to the data in the repository and also provides access to a

pattern matching control (PMC) service, which can distribute the search process

across different nodes. The specialist searches for a feature in the engine data;

the PMC becomes the master node and distributes the query to the other nodes.

The search is performed in parallel; the PMC collects the results and returns them

to the specialist.

The requirements are similar to G1. However, it differs in the following issues:

Infrastructural and Functional Requirements

1. Clients and Servers are controlled and managed by the same entity.

Although DAME is implemented on a grid infrastructure, all the different

components belong to the same entity.

 202

 Appendix B

2. Service Brokering

There is a service broker which forwards services to different machines

(servers/nodes), in this scenario, the PMC.

Non-functional Requirements

1. Support of sending and receiving large volumes of data

Large volumes of data are being transferred between different services

requiring reliable, efficient, and secure transfer.

Scenario Breakdown

(1.) Downloading the engine monitoring data.

(2.) Copying it to the nodes.

(3.) A client reads the Global Catalogue.

(4.) Sends a query to the node, the node distributes the query.

(4.1) The query is run on the data.

(4.2) Reads the results.

(4.3) Aggregates the results.

(5.) The client reads the results.

Resource-Oriented Model

 203

Appendix B

Figure 43 RO Model of G2

G3: Virtual Screening with Desktop Grids

Entropia, (Chien et al., 2003) is an architecture for desktop grids. Desktop grids

utilise the idle commodity computing resources (desktops) to perform highly

distributed and computing intensive tasks. A binary virtual machine is installed

on each desktop. These communicate with a job manager and resource scheduler

to receive jobs, execute them, and return results. Desktop grids are effective

when there is high need for parallel processing power and there is no need for

communication between nodes during processing or the communication is

minimal. (Chien et al., 2003) describe “Virtual Screening” as one of the scenarios

that make use of desktop grids:

In virtual screening, for drug discovery, a vast number of potential drug

molecules are tested, ranging from hundreds of thousands to millions. The aim is

to discover if these drugs affect the activity of a studied protein. Testing involves

a process called docking that assesses the binding affinity of the test molecule to

a specific place on a protein. Each potential molecule can be evaluated

independently making the process suitable for desktop grids. The results are

binding scores.

 204

 Appendix B

So a scenario based on that would be: an end-user submits a computation to the

Job Manager, for example evaluating 50000 potential molecules. The Job

Manager divides the computation into independent subjobs: in this scenario

evaluating every five molecules together results in 10000 subjobs. The subjobs

are submitted to the Subjob Scheduler. Any available resources are periodically

reported to the Node Manager that informs the Subjob Scheduler. Results of the

subjobs are sent to the Job Manager then handed back to the end-user.

Infrastructural and Functional Requirements

1. Virtual Machines installed on clients/participants

For the desktop grid to work, virtual machines need to be installed on the

nodes or desktops forming the grid computational resources.

2. Job Management

Managing breaking down the jobs into independent sub-jobs that are assigned

to nodes, then assembling the results and returning them to the client.

3. Job Scheduling

The scheduling involves having knowledge of the numbers and sizes of

tasks/jobs and the availability of resources. The VMs on the nodes inform the

scheduler of the availability.

4. There are three entities in this scenario

Desktop grid service provider: in this scenario Entropia;

Nodes/participants: the desktops, which become grid resources after

installing the VMs;

Client: who has a computationally intensive task to run.

Non-functional Requirements

1. Security

In addition to the security issues mentioned in G1, another security measure is

unobtrusiveness, meaning that the virtual machines and any jobs running on

them do not harm or access unauthorised data or applications on the nodes they

are executed on.

2. Tolerance of failure

3. In this scenario, tasks are being submitted to desktops, which are volatile, and

it is likely that they could be switched off or cut off the network.

Scenario Breakdown

(1.) Create VMs on nodes.

(2.) Create the job.

(3.) Submit the job to the Job Manager.

(4.) The Job Manager splits the job into subjobs.

(5.) The Job Scheduler reads the subjobs.

(6.) The Job Scheduler sends them to the nodes.

(7.) The subjobs have results.

 205

Appendix B

(8.) The Job Manager reads the results.

(9.) Aggregates the results.

(10.) The client reads the results.

Resource-Oriented Model

Figure 44 RO Model of G3

 206

 Appendix B

G4: CombeChem testbed on the Grid

The CombeChem project (Frey et al., 2003) developed a testbed to combine

structure data sources and property data sources, using the grid technologies to

create a knowledge-sharing environment. The grid infrastructure enriches

laboratory devices and supports provenance and automation techniques.

As part of the CombeChem project, Smart Lab was developed. It is intended to aid

chemists during the different stages of an experiment, i.e. planning the

experiment, performing the experiment, and analysing the results. The following

scenario of using Smart Lab is built upon the description of the Smart Lab in

(Taylor et al., 2006).

A chemist uses the tablet PC to plan an experiment, gets it authorised by his/her

supervisor. After the plan is authorised, the chemist follows it through to perform

the experiment; during the experiment the chemist can observe and make notes

that will be stored with the experimental process. Moreover, sensors and devices

in the lab will store observations related to the experiment while it is being

executed. After the experiment is performed, results are recorded.

The requirements are identical to scenario G1 and G2. However, there are others:

Infrastructural and Functional Requirements

1. Workflow support

The different processes that are executed can be coordinated and saved as

workflows, so new workflows can be generated from them by changing processes

or parameters.

2. Provenance Maintenance

The workflows provide means to link results to the steps they were generated

from, thus providing a trial record and a method to reproduce the results.

Scenario Breakdown

(1.) The chemist creates the plan.

(2.) The chemist creates the experiment process that is based on the plan.

(3.) The process is updated by sensors and the chemist’s observations.

(4.) Chemist can retrieve the process containing all the information about the

process.

Resource-Oriented Model

 207

Appendix B

Figure 45 RO Model of G4

Table 26 Interaction requirements across scenarios

 Mutability Atomicity Synchronisation Plurality
Roles

 Info
Retrieval Updating

Conversa-
tional Polling

Notifica-
tion Collection

Filtered
Collection

Mashups
M1: Yahoo Pipes
 (Donnelly, 2010) 3 3 Y 0 0 1 1 0

M2: MashMaker
(Ennals and Garofalakis, 2007) 1 6 Y 1 0 1 0 0

M3: Layered Mashup Architecture
(Biornstad and Pautasso, 2009) 7 4 Y 1 1 2 1 0

M4: Mashup Fabric Customer Info
(Jhingran, 2006) 1 0 N 1 0 0 0 0

Total 12 13 3 3 1 4 2 0

Enterprise Services
E1: SSPD (City University)
(City University, 2008) 1 4 Y 0 0 0 0 1

E2:MLE (City University)
(City University, 2008) 1 1 Y 0 1 0 0 0

E3: BT.com (Integrating BT's OSS)
(Calladine, 2004) 2 1 N 0 0 0 0 1

E4: SCORe (Integrating BT's OSS)
(Calladine, 2004) 2 0 N 0 0 1 0 0

Total 6 6 2 0 1 1 0 2

B2B
B1: Reverse Auctioning
(Decker and Weske, 2007) 2 6 Y 0 0 1 0 1

B2: Telecommunications Wholesaler
(Zimmermann et al., 2005) 2 9 Y 1 0 1 0 0

B3: E-Procurement
(Brodie, 2000) 2 3 Y 1 0 1 1 0

B4: Supply Chain Management
(Preist et al., 2005) 2 7 Y 0 0 2 0 0

Total 8 25 4 2 0 5 1 1

Cloud Computing
C1: NYT Times Machine
(Klems et al., 2008) 1 5 Y 3 0 2 0 0

C2: MLB Website Chat System
(Klems et al., 2008) 0 6 Y 3 0 0 0 0

C3: Colorado State University
(Herrick, 2009) 0 3 Y 1 0 1 0 0

C4: LingoSpot 22 1 4 Y 2 0 0 0 0

Total 2 18 4 9 0 3 0 0

Grid Computing

22 Google App Engine, App Engine Developer Profiles,
http://code.google.com/appengine/casestudies.html

 208

 Appendix B

G1: NEESGrid
(Pearlman et al., 2004) 2 7 Y 0 1 2 0 1

G2: Dist. Aircraft Maintenance Env.
(Jackson et al., 2005) 5 6 Y 4 0 2 1 0

G3: Virtual Screening on Desktop
Grids(Chien et al., 2003) 4 9 Y 4 2 2 1 1

G4: CombeChem testbed on the Grid
(Frey et al., 2006) 0 5 Y 4 1 0 0 1

Total 11 27 4 12 4 6 2 3

Total 39 89 17 26 6 19 5 6

 209

 Appendix C

Appendix C: Mappings to SPARQL Queries

 211

Appendix C

Class

URI Pattern
 /AClass
Graph Pattern
?x a AClass;
?x ?y ?z.

And in the case of a specific class, Book this would be:

URI
http://bookstore.com/Book
RDF Graph
<http://bookstore.com/Book/DBSys> a :Book;

:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

<http://bookstore.com/Book/SemWeb> a :Book;
:isbn "2266776375"^^xsd:string;
:title "Semantic Web"^^xsd:string;
:author <http://bookstore.com/Person/TBL>.

Table 27 HTTP methods as SPARQL queries for the class book

GET

Description Retrieves information about all books

Corresponding
SPARQL Query

CONSTRUCT { ?s ?p ?o}
WHERE { ?s a <http://bookstore.com/Book>;
 ?p ?o }

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

<http://bookstore.com/Book/SemWeb> a :Book;
:isbn "2266776375"^^xsd:string;
:title "Semantic Web"^^xsd:string;
:author <http://bookstore.com/Person/TBL>.

Explanation
The triples returned by the CONSTRUCT query are formatted according to the graph pattern
associated with the class resource type. Every individual of class book is returned, with triples
where this individual is the subject.

PUT

Description Creates a named individual

Payload

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Corresponding
SPARQL Query

INSERT
{GRAPH <Server> { ?s ?p ?o}}
WHERE {GRAPH <Payload> { ?s ?p ?o}}

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "1334340005"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation

The INSERT operation adds triples to the server, these triples will match triples in the payload,
in this case it is a book individual together with associated triples. Of course there needs to be
checks on the payload to ensure it adheres to the structure accepted by this resource type,
which is denoted by the associated graph pattern, and that the subject of these triples is a
named individual.

 212

 Appendix C

POST

Description Creates an individual

Payload

_:a232324 a :Book;
:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Corresponding
SPARQL Query

INSERT {GRAPH <Server>
 { ?s ?p ?o}}
WHERE {GRAPH <Payload>
 { ?s ?p ?o}}

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "1334340005"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation
Similar to the PUT method above, the only difference is that the subject of these triples in the
payload is a blank node which also needs to be checked, and replaced by the server with a
named individual of class book in this case.

DELETE

Description Delete all individuals of this class

Corresponding
SPARQL Query

DELETE {
 GRAPH <Server> {
 ?s a <http://bookstore.com/Book>;
 ?p ?o. }}
WHERE
 { ?s a <http://bookstore.com/Book>;
 ?p ?o.}

Explanation The DELETE operation would delete all the individuals of this class, and their associated
properties: i.e. triples which have these individuals as their subjects.

 213

Appendix C

Individual

URI Pattern
/AClass/Individual
Graph Pattern
Individual a AClass;
Individual ?x ?y.

And in the case of a specific book, DBSys, this would be:

URI
http://bookstore.com/Book/DBSys
RDF Graph
<http://bookstore.com/Book/DBSys> a :Book;

:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Table 28 HTTP methods as SPARQL queries for a book individual

GET

Description
Retrieves information about DBSys at this URI
 http://bookstore.com/Book/DBSys

Corresponding
SPARQL Query

CONSTRUCT {
 <http://bookstore.com/Book/DBSys> ?p ?o }
WHERE {
 <http://bookstore.com/Book/DBSys> ?p ?o }

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation
The CONSTRCUT query returns triples in the format specified by the graph pattern
associated with the individual resource type (see Table 10), which returns the values of
the associated triples.

PUT

Description Updating the ISBN of the book at this URI
 http://bookstore.com/Book/DBSys

Payload
<http://bookstore.com/Book/DBSys>

:isbn "1334340005"^^xsd:string.

Corresponding
SPARQL Query

WITH <Server>
DELETE
 { <http://bookstore.com/Book/DBSys> ?p ?oOld}
INSERT
 { <http://bookstore.com/Book/DBSys> ?p ?oNew}
WHERE
 { GRAPH <Payload> {
 <http://bookstore.com/Book/DBSys> ?p ?oNew }
 GRAPH <Server> {
 <http://bookstore.com/Book/DBSys> ?p ?oOld }}

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "1334340005"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation

To update an individual, this is mapped to a DELETE/INSERT operation, the payload
contains the triples that specify the properties that will be updated and their new values.
The DELETE/INSERT operation deletes from the server the triples that match the pattern :
Individual ?p ?old
But since there is a WHERE clause, this pattern has to also match the triples provided in
the payload. Therefore only triples containing properties provided in the payload will be
affected in the server, and replaced by the triples provided in the payload which is the
effect of the INSERT clause.

 214

http://bookstore.com/Book/DBSys
http://bookstore.com/Book/DBSys

 Appendix C

DELETE

Description Deletes the individual and associated properties.

Corresponding
SPARQL Query

DELETE {
 GRAPH <Server> {
 <http://bookstore.com/Book/DBSys> ?p ?o. }}
WHERE
 { <http://bookstore.com/Book/DBSys> ?p ?o. }

Explanation The triple
<http://bookstore.com/Book/DBSys> ?p ?o.
Matches the individual and its properties at the server, and the DELETE operation
removes those triples.

 215

Appendix C

Property

The Individual’s property URI Pattern
/AClass/Individual/Property
Corresponding Graph Pattern for an Object Property
Individual Property ?x
?x ?p ?o

This applies to GET. However, for PUT and DELETE the corresponding Graph Pattern is either the one
above or

Individual Property ?x
meaning, when the author of a book is deleted, only the link between the author and this specific article
is deleted, the author’s information is not, the decision whether the value is deleted is left to the
implementation. Moreover the latter pattern is also the corresponding graph pattern for Data Properties.

Table 29 HTTP methods as SPARQL queries for a book's author

GET

Description
Retrieving information about the author of the book DBSys at this URI
 http://bookstore.com/Book/DBSys/author

Corresponding
SPARQL Query

CONSTRUCT {
 <http://bookstore.com/Book/DBSys> :author ?x.
 ?x ?p ?o. }
WHERE {<http://bookstore.com/Book/DBSys> :author ?x.
 ?x ?p ?o. }

Result

<http://bookstore.com/Book/DBSys> :author
 <http://bookstore.com/Person/JSmith>.
<http://bookstore.com/Person/JSmith> a :Person;
 :name "John Smith"^^xsd:string.

Explanation

The CONSTRUCT query returns a triple containing the author as the subject, replacing the
variable ?x, moreover it returns properties and their values where the author is the
subject. If this was a data property instead of an object property the ?x ?p ?o triple
pattern will be omitted.

PUT

Description Changing the author of the book at this URI
 http://bookstore.com/Book/DBSys/author

Payload <http://bookstore.com/Book/DBSys> a :Book;
 :author <http://bookstore.com/Person/TBL>.

Corresponding
SPARQL Query

WITH <Server>
DELETE
 { <http://bookstore.com/Book/DBSys> :author ?oOld}
INSERT
 { <http://bookstore.com/Book/DBSys> :author ?oNew}
WHERE
 { GRAPH <Payload> {
 <http://bookstore.com/Book/DBSys> :author ?oNew }
 GRAPH <Server> {
 <http://bookstore.com/Book/DBSys> :author ?oOld }}

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "1334340005"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/TBL>.

If the server had multiple values for author, they would all be deleted and replaced with
author(s) in the payload.

Explanation

The PUT method updates the value of the author. The DELETE/INSERT operation replaces
triples, so to update the author in this case, the triples in the payload replace the ones in
the server. This is also the case for data properties. However assuming that the property is
a dependent one, for it to be completely replaced, not only for the triple that connects it
to the book, the following triple pattern would be added to the DELETE clause, and the
server clause: ?oOld ?p ?o, and this triple pattern ?oNew ?p ?o to the INSERT clause and
the payload clause, hence replacing triples associated with the replaced property value.

 216

 Appendix C

DELETE

Description Deletes the author of the book at this URI

Corresponding
SPARQL Query

DELETE {
 GRAPH <Server> {
 <http://bookstore.com/Book/DBSys> :author ?x. }}
WHERE
 { <http://bookstore.com/Book/DBSys> :author ?x. }

Result
<http://bookstore.com/Book/DBSys> a :Book;

:isbn "1334340005"^^xsd:string;
:title "Database Systems"^^xsd:string.

Explanation

As explained above the table, this depends on the implementation, either the association
between the book an author is deleted, as shown in the operation above, or the triples
who have the author as the subject are deleted too, and in that case the triple pattern
?x ?p ?o, would exist in both clauses.

 217

Appendix C

Filtered Individuals

URI Pattern
/AClass?DataProperty={value1}&ObjectProperty={value2}

Corresponding Graph Pattern
?x a AClass
?x DataProperty value1
?x ObjectProperty value2
?x ?y ?z

Table 30 HTTP methods as SPARQL queries a book with specified properties

GET

Description

Retrieves information about all books who have “Database Systems” as their title and
JSmith as their author.
/Book?title="Database Systems"
&author="http://bookstore.com/Person/JSmith"

Corresponding
SPARQL Query

CONSTRUCT {
 ?s ?p ?o.
}
WHERE {
 ?s :title "Database Systems".
 ?s :author <http://bookstore.com/Person/JSmith>.
 ?s ?p ?o.}

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "0123735564"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation This is similar to the GET method in Table 27, however the CONSTRUCT query differs in
the WHERE clause as it specifies values for given properties.

PUT

Description

Updates individuals who have “Database Systems” as their title and JSmith as their
authors, by changing their ISBN.
/Book?title="Database Systems"
&author="http://bookstore.com/Person/JSmith"

Payload _:b a :Book;
 :isbn "1234567890"^^xsd:string.

Corresponding
SPARQL Query

WITH <Server>
DELETE
 { ?s ?p ?oOld}
INSERT
 { ?s ?p ?oNew}
WHERE
 { GRAPH <Payload> { ?x ?p ?oNew }
 GRAPH <Server> {
 ?s ?p ?oOld.
 ?s :title "Database Systems".
 ?s :author <http://bookstore.com/Person/JSmith>. }}

Result

<http://bookstore.com/Book/DBSys> a :Book;
:isbn "1234567890"^^xsd:string;
:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation

The DELETE/INSERT operation above means: for book individuals, (?s) which match the
two triple patterns i.e. have the title “Database Systems” and the author JSmith, delete
the old triples at the server, replace them with new ones, where the subject would remain
the same as it was (i.e. the same book (?s)) but the replaced properties matches the ones
provided in the payload (?p).

POST

Description
Creates an individual which has “Database Systems” as its title and JSmith as its author.
/Book?title="Database Systems"
&author=<http://bookstore.com/Person/JSmith>

 218

 Appendix C

Corresponding
SPARQL Query

INSERT DATA
{GRAPH <Server>
 { <http://bookstore.com/Book/NewBook> a :Book;
 :title "Database Systems";
 :author <http://bookstore.com/Person/JSmith>.}}
The book URI is provided by the server for the newly created book.

Result
<http://bookstore.com/Book/DBSys> a :Book;

:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/JSmith>.

Explanation Similar to the POST operation in Table 27, however the property values are specified in
the query string rather than the payload.

DELETE

Description Delete all individuals of this class who have “Database Systems” as their title and JSmith as
their author.

Corresponding
SPARQL Query

DELETE {
 GRAPH <Server> {
 ?s ?p ?o. }}
WHERE
 { ?s ?p ?o;
 :title "Database Systems";
 :author <http://bookstore.com/Person/JSmith>.}

Explanation Also similar to the DELETE operation in Table 27, however the graph pattern specifies
individuals who have these values for the specified properties.

 219

Appendix C

Properties of Filtered Individuals

URI Pattern
/AClass/TheProperty?Property1={valueA}&Property2={valueB}

Corresponding Graph pattern
?x a AClass
?x TheProperty ?y
?x Property1 valueA
?x Property2 valueB
?y ?p ?o

Table 31 HTTP methods as SPARQL queries for properties of filtered individuals

GET

Description
Retrieves information about authors of books with the title “Database Systems”.
Book/author?title="Database Systems"

Corresponding
SPARQL Query

CONSTRUCT {
 ?b :author ?x.
 ?x ?p ?o }
WHERE {
 ?b :title "Database Systems".
 ?b :author ?x.
 ?x ?p ?o }

Result

<http://bookstore.com/Book/DBSys> :author :
 <http://bookstore.com/Person/JSmith>.
<http://bookstore.com/Person/JSmith> :name
 "John Smith"^^xsd:string.

Explanation The CONSTRUCT query returns triples about the author (?x) of the book, which has been
specified to have the title “Database Systems” in the WHERE clause.

PUT

Description
Updates the authors of books who have “Database Systems” as their title
/Book/author?title="Database Systems"

Payload
?x a :Book;
 :author <http://bookstore.com/Person/TBL>.

Corresponding
SPARQL Query

WITH <Server>
DELETE {
 ?book :author ?oldAuthor.
 ?oldAuthor ?oldp ?oldo. }
INSERT {
 ?book :author ?newAuthor.
 ?newAuthor ?newp ?newo. }
WHERE
 { GRAPH <Payload> {
 ?somebook :author ?newAuthor.
 ?newAuthor ?newp ?newo. }
 GRAPH <Server> {
 ?book :author ?oldAuthor.
 ?oldAuthor ?oldp ?oldo.
 ?book :title "Database Systems".}}

Result
<http://bookstore.com/Book/DBSys> a :Book;

:title "Database Systems"^^xsd:string;
:author <http://bookstore.com/Person/TBL>.

Explanation
This is similar to the PUT operation in Filtered individuals in Table 30, the
difference however, is in that operation, the replaced properties can be many, in
this case it is specified :author.

 220

 Appendix C

DELETE

Description Delete the author property of books which have “Database Systems” as their title.

Corresponding
SPARQL Query

DELETE {
 GRAPH <Server> {
 ?book :author ?author.
 ?author ?p ?o. }}
WHERE { ?book :author ?author.
 ?author ?p ?o.
 ?book :title "Database Systems".}

Explanation The association between the author and the book, would be deleted, and also details of
the author, for books who have “Database Systems” as their title.

 221

 Appendix D

Appendix D: DVD/MP3 Player OWL-S Service

 223

Appendix D

<?xml version="1.0" encoding="WINDOWS-1252"?>
<rdf:RDF xmlns:owl = "http://www.w3.org/2002/07/owl#"
xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:service = "http://www.daml.org/services/owl-s/1.1/Service.owl#"
xmlns:process = "http://www.daml.org/services/owl-s/1.1/Process.owl#"
xmlns:profile = "http://www.daml.org/services/owl-s/1.1/Profile.owl#"
xmlns:grounding = "http://www.daml.org/services/owl-s/1.1/Grounding.owl#"

xml:base =
"http://127.0.0.1/services/1.1/dvdplayermp3player_price_service.owls">

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http://127.0.0.1/ontology/Service.owl" />
<owl:imports rdf:resource="http://127.0.0.1/ontology/Process.owl" />
<owl:imports rdf:resource="http://127.0.0.1/ontology/Profile.owl" />
<owl:imports rdf:resource="http://127.0.0.1/ontology/Grounding.owl" />
<owl:imports rdf:resource="http://127.0.0.1/ontology/my_ontology.owl" />
<owl:imports rdf:resource="http://127.0.0.1/ontology/concept.owl" />
</owl:Ontology>

<service:Service rdf:ID="DVDPLAYERMP3PLAYER_PRICE_SERVICE">
<service:presents rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROFILE"/>
<service:describedBy rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROCESS"/>
<service:supports rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_GROUNDING"/>
</service:Service>

<profile:Profile rdf:ID="DVDPLAYERMP3PLAYER_PRICE_PROFILE">
<service:isPresentedBy rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<profile:serviceName xml:lang="en">
2For 1 Price service
</profile:serviceName>
<profile:textDescription xml:lang="en">
This service returns prices of a given pair MP3 Player brand and
DVD Player brand.
</profile:textDescription>
<profile:hasInput rdf:resource="#_MP3PLAYER"/>
<profile:hasOutput rdf:resource="#_PRICE"/>
<profile:hasInput rdf:resource="#_DVDPLAYER"/>

<profile:has_process rdf:resource="DVDPLAYERMP3PLAYER_PRICE_PROCESS" />
</profile:Profile>

<!--<process:ProcessModel rdf:ID="DVDPLAYERMP3PLAYER_PRICE_PROCESS_MODEL">
<service:describes rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<process:hasProcess rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROCESS"/>
</process:ProcessModel>-->

<process:AtomicProcess rdf:ID="DVDPLAYERMP3PLAYER_PRICE_PROCESS">
<service:describes rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<process:hasInput rdf:resource="#_MP3PLAYER"/>
<process:hasOutput rdf:resource="#_PRICE"/>
<process:hasInput rdf:resource="#_DVDPLAYER"/>
</process:AtomicProcess>

<process:Input rdf:ID="_MP3PLAYER">
<process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.0.0.1/ontolo
gy/my_ontology.owl#MP3Player</process:parameterType>
<rdfs:label></rdfs:label>
</process:Input>

<process:Output rdf:ID="_PRICE">
<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/ontology/concept.owl#Price</process:parameterType>
<rdfs:label></rdfs:label>
</process:Output>

 224

 Appendix D

<process:Input rdf:ID="_DVDPLAYER">
<process:parameterType
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">http://127.0.0.1/ontolo
gy/my_ontology.owl#DVDPlayer</process:parameterType>
<rdfs:label></rdfs:label>
</process:Input>

<grounding:WsdlGrounding rdf:ID="DVDPLAYERMP3PLAYER_PRICE_GROUNDING">
<service:supportedBy rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<grounding:hasAtomicProcessGrounding>
 <grounding:WsdlAtomicProcessGrounding
rdf:ID="DVDPLAYERMP3PLAYER_PRICE_AtomicProcessGrounding"/>
 </grounding:hasAtomicProcessGrounding>
</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding
rdf:about="#DVDPLAYERMP3PLAYER_PRICE_AtomicProcessGrounding">
 <grounding:wsdlDocument
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1.wsdl</grounding:wsdlDocument>
 <grounding:owlsProcess rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROCESS"/>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>

<grounding:operation rdf:datatype=
"http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1/get_PRICE

</grounding:operation>
 <grounding:portType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1/Dvdplayermp3playerPri
ceSoap

 </grounding:portType>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>
 <grounding:wsdlInputMessage

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1/get_PRICERequest
</grounding:wsdlInputMessage>

<grounding:wsdlOutputMessage
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1/get_PRICEResponse
</grounding:wsdlOutputMessage>

 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:owlsParameter rdf:resource="#_MP3PLAYER"/>
 <grounding:wsdlMessagePart rdf:datatype=

 "http://www.w3.org/2001/XMLSchema#anyURI">
 http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1/_MP3PLAYER
 </grounding:wsdlMessagePart>

 <grounding:xsltTransformationString>None(XSL)
</grounding:xsltTransformationString>

 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>
 <grounding:wsdlInput>
 <grounding:WsdlInputMessageMap>
 <grounding:owlsParameter rdf:resource="#_DVDPLAYER"/>
 <grounding:wsdlMessagePart

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1/_DVDPLAYER

 </grounding:wsdlMessagePart>
 <grounding:xsltTransformationString>None(XSL)

 </grounding:xsltTransformationString>
 </grounding:WsdlInputMessageMap>
 </grounding:wsdlInput>
 <grounding:wsdlOutput>
 <grounding:WsdlOutputMessageMap>
 <grounding:owlsParameter rdf:resource="#_PRICE"/>
 <grounding:wsdlMessagePart

 225

Appendix D

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://127.0.0.1/wsdl/Dvdplayermp3playerPrice1/_PRICE
</grounding:wsdlMessagePart>

 <grounding:xsltTransformationString>None (XSL)
 </grounding:xsltTransformationString>

 </grounding:WsdlOutputMessageMap>
 </grounding:wsdlOutput>
 </grounding:WsdlAtomicProcessGrounding>
</rdf:RDF>

 226

 Appendix E

Appendix E: Expert Review Materials

 227

Appendix E

PART ONE

EXPRESS

 228

 Appendix E

EXPRESS – Service Design and Deployment

1. A developer provides an ontology representing entities in the Web service interface they
would like to expose.

2. The EXPRESS deployment engine extracts resources from the OWL file and assigns URIs.
3. The developer chooses URIs for endpoints and permitted HTTP methods and optionally

roles and access control.
4. Stubs are connected to existing business logic, coded, or the code is generated.

The semantics of interacting with the endpoints is implicitly expressed by two things:
1. The resource type the endpoint represents: this is indicated by way EXPRESS provides

endpoints.
2. The HTTP method.

Resource Type URI Template Graph Pattern

Class /Class ?x a Class

Individual /Class/Individual Individual ?x ?y

Property /Class/Individual/Property Individual Property ?x
?x ?p ?o

Filter Individuals /Class?Property={a}
?x a Class
?x Property a1
a1 ?p ?o

Filtered
Individuals’
Properties

/Class/Property1?Property2={b}

?x a Class
?x Property1 ?y
?x Property2 b
?y ?p ?o

Bookstore EXPRESS Ontology
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix : <http://bookstore.com/EXPRESS/>.
<http://bookstore.com/EXPRESS> a owl:Ontology.
:Book a owl:Class;
 owl:equivalentClass dbpedia:Book.
:title a owl:DatatypeProperty;
 owl:equivalentProperty dc:title;
 rdfs:domain :Book;
 rdfs:range xsd:string.
:author a owl:DatatypeProperty;
 owl:equivalentProperty dc:author;
 rdfs:domain :Book;
 rdfs:range xsd:string.
:isbn a owl:DatatypeProperty;
 owl:equivalentProperty dbpedia:isbn;
 rdfs:domain :Book;
 rdfs:range xsd:string.
:Order a owl:Class.
:containsItem a owl:ObjectProperty;
 rdfs:domain :Order;
 rdfs:range :Book.

Some possible endpoints
GET http://bookstore.com/EXPRESS/Book/DBSys
PUT http://bookstore.com/EXPRESS/Book/DBsys/title
DELETE http://bookstore.com/EXPRESS/Order/1231324

The Endpoints for this example
GET http://bookstore.com/EXPRESS/Book?isbn={}
POST http://bookstore.com/EXPRESS/Order?containsItem={}

 229

Appendix E

EXPRESS – Interaction

Client Server
GET /EXPRESS HTTP/1.1
Host: bookstore.com

 HTTP/1.1 200 OK
Link: </EXPRESS/Book?isbn={}>;
rel="GET"

GET /EXPRESS/Books?isbn={0123735564}
HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK
Link: </EXPRESS/Order?containsItem={}>;
rel="POST"

@prefix xsd:
<http://www.w3.org/2001/XMLSchema#>.
@prefix :
<http://bookstore.com/EXPRESS/>.

<http://bookstore.com/EXPRESS/Book/Sem>
a :Book;
 :isbn "0123735564"^^xsd:string;
 :title "Semantic Web for the
Working Ontologist"^^xsd:string;
 :author "Allemang and
Hendler"^^xsd:string.

POST /EXPRESS/Order?containsItem=
http://bookstore.com/EXPRESS/Book/Sem
HTTP/1.1
Host: bookstore.com

HTTP 201 Created
Location:
http://bookstore.com/EXPRESS/Order_1

@prefix :
<http://bookstore.com/EXPRESS/>.

:Order_1 a :Order;
 :containsItem
<http://bookstore.com/EXPRESS/Book/Sem>

Bookstore

EXPRESS

Ontology

 230

 Appendix E

OWL-S

 231

Appendix E

OWL-S Service Design and Deployment
OWL-S does not involve the steps in deploying the Web service, as it comes after the development
phase. However, because we are comparing it with EXPRESS and it is involved in the development
phase, it is necessary to discuss the tasks OWL-S assumes are done.
Deploying a service can be done by generating a WSDL file from the business logic, which can be
written either in Java, PHP, .NET. The underlying framework used also takes care of translating the
exchange messages into SOAP.
The Bookstore WSDL files

1. Get a Book by its ISBN
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
xmlns="http://bookstore.com/wsdl/bookbyisbn.wsdl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://bookstore.com/wsdl/bookbyisbn.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://bookstore.com/wsdl/bookbyisbn.wsdl" name="book">
<wsdl:types>

<xsd:schema targetNamespace="http://bookstore.com/wsdl/bookbyisbn.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="book">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="author" type="xsd:string"/>

<xsd:element name="isbn" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</wsdl:types>
<wsdl:message name="getBookByISBNRequest">
 <wsdl:part name="isbn" type="xsd:string">
 </wsdl:part>
</wsdl:message>

<wsdl:message name="getBookByISBNResponse">
 <wsdl:part name="book" type="tns:book">
 </wsdl:part>
</wsdl:message>
<wsdl:portType name="BookByISBNSoap">
 <wsdl:operation name="getBookByISBN">
 <wsdl:input message="tns:getBookByISBNRequest">
 </wsdl:input>
 <wsdl:output message="tns:getBookByISBNResponse">
 </wsdl:output>
 </wsdl:operation>
</wsdl:portType>
<wsdl:binding name="BookByISBNSoapBinding" type="BookByISBNSoap">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getBookByISBN">
 <wsdlsoap:operation soapAction="getBookByISBN"/>
 <wsdl:input>

<wsdlsoap:body use="encoded" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://bookstore.com/wsdl/bookbyisbn"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://bookstore.com/wsdl/bookbyisbn"/>

 </wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="getBookByISBNService">
<wsdl:port name="BookByISBNSoap" binding="BookByISBNSoapBinding">

 232

 Appendix E

<wsdlsoap:address location="http://bookstore.com/BookService"/>
</wsdl:port>
</wsdl:service></wsdl:definitions>

2. Order a Book
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
xmlns="http://bookstore.com/wsdl/bookorder.wsdl"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://bookstore.com/wsdl/bookorder.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://bookstore.com/wsdl/bookorder.wsdl" name="bookorder">

<wsdl:types>
 <xsd:schema targetNamespace="http://bookstore.com/wsdl/bookorder.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="book">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="author" type="xsd:string"/>
 <xsd:element name="ISBN" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="order">
 <xsd:element name="book" maxOccurs="unbounded"
type="bookType"/>
 </xsd:complexType>
 </xsd:schema>
</wsdl:types>
<wsdl:message name="BookOrderServiceRequest">
 <wsdl:part name="book" type="tns:book">
 </wsdl:part>
</wsdl:message>
<wsdl:message name="BookOrderServiceResponse">
 <wsdl:part name="order" type="tns:order">
 </wsdl:part>
</wsdl:message>

<wsdl:portType name="BookOrderServiceSoap">
 <wsdl:operation name="BookOrderService">
 <wsdl:input message="tns:BookOrderServiceRequest">
 </wsdl:input>
 <wsdl:output message="tns:BookOrderServiceResponse">
 </wsdl:output>
 </wsdl:operation>
</wsdl:portType>
<wsdl:binding name="BookOrderServiceSoapBinding" type="BookOrderServiceSoap">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="BookOrderService">
 <wsdlsoap:operation soapAction="BookOrderService"/>
 <wsdl:input>

<wsdlsoap:body use="encoded" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://bookstore.com/wsdl/bookorder"/>
 </wsdl:input>
 <wsdl:output>
 <wsdlsoap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://bookstore.com/wsdl/bookorder"/>

 </wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="BookOrderService">
<wsdl:port name="BookOrderServiceSoap" binding="BookOrderServiceSoapBinding">
<wsdlsoap:address location="http://bookstore.com/BookService"/>
</wsdl:port>
</wsdl:service></wsdl:definitions>

 233

Appendix E

OWL-S Semantic Description
The Bookstore OWL-S files

1. Get a book by its ISBN
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix service: <http://www.daml.org/services/OWL-S/1.1/Service.owl#>.
@prefix profile: <http://www.daml.org/services/OWL-S/1.1/Profile.owl#>.
@prefix process: <http://www.daml.org/services/OWL-S/1.1/Process.owl#>.
@prefix grounding: <http://www.daml.org/services/OWL-S/1.1/Grounding.owl#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix expr: <http://www.daml.org/services/OWL-
S/1.1/generic/Expression.owl#>.
@prefix swrlb: <http://www.w3.org/2003/11/swrlb#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix domOnt: <http://bookstore.com/DomainOntology#>.
@prefix groundingWSDL: <http://bookstore.com/wsdl/getBookByISBN.wsdl#>.
@prefix : <http://bookstore.com/owls/getBookByISBN.owls#>.

<http://bookstore.com/owls/getBookByISBN.owls> a owl:Ontology;
 owl:imports <http://bookstore.com/DomainOntology.owl>,
 <http://dbpedia.org/ontology/>,
 <http://www.daml.org/services/OWL-S/1.1/Grounding.owl>,
 <http://www.daml.org/services/OWL-S/1.1/Process.owl>,
 <http://www.daml.org/services/OWL-S/1.1/Profile.owl>,
 <http://www.daml.org/services/OWL-S/1.1/Service.owl>,

<http://www.w3.org/2003/11/swrl>,
<http://www.daml.org/services/OWL-S/1.1/generic/Expression.owl>.

:getBookByISBNService a service:Service;
 service:presents :getBookByISBNProfile;
 service:describedBy :getBookByISBNProcess;
 service:supports :getBookByISBNGrounding.
:getBookByISBNProfile a profile:Profile;
 profile:hasInput :ISBN;
 profile:hasOutput :Book;
 service:presentedBy :getBookByISBNService;
 profile:serviceName "getBookByISBN"^^xsd:string.
:getBookByISBNProcess a process:AtomicProcess;
 process:hasInput :ISBN;
 process:hasOutput :Book;

process:hasPrecondition :ValidISBN;
 process:hasResult :BookhasISBN;
 service:describes :getBookByISBNService;
 rdfs:label "getBookByISBNProcess"^^xsd:string.
:ISBN a process:Input;
 process:parameterType
 "http://bookstore.com/DomainOntology#ISBN"^^xsd:anyURI;
 rdfs:label "ISBN"^^xsd:string.
:Book a process:Output;
 process:parameterType "http://dbpedia.org/ontology/Book"^^xsd:anyURI;
 rdfs:label "Book"^^xsd:string.
:ValidISBN a expr:SWRL-Condition;
 expr:expressionLanguage expr:SWRL;
 expr:expressionBody "<swrl:AtomList
 xmlns:swrl=\"http://www.w3.org/2003/11/swrl#\">
 <rdf:first xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">
 <swrl:ClassAtom>

<swrl:classPredicate
rdf:resource=\"http://bookstore.com/DomainOntology#Valid\" />

 <swrl:argument1 rdf:resource=\"#ISBN\" />
</swrl:ClassAtom>
</rdf:first>
<rdf:rest rdf:resource=\"http://www.w3.org/1999/02/22-rdf-syntax-

ns#nil\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-
syntax-ns#\">

</swrl:AtomList>"^^rdf:XMLLiteral.

 234

 Appendix E

:BookhasISBN a process:Result;
 process:hasEffect [a expr:SWRL-Expression;
 expr:expressionLanguage expr:SWRL;
 expr:expressionBody "<swrl:AtomList
 xmlns:swrl=\"http://www.w3.org/2003/11/swrl#\">
 <rdf:first xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">
 <swrl:ClassAtom>

<swrl:classPredicate
rdf:resource=\"http://bookstore.com/DomainOntology#hasISBN\" />

 <swrl:argument1 rdf:resource=\"#Book\" />
 <swrl:argument2 rdf:resource=\"#ISBN\" />
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest rdf:resource=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil\"

xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" />
 </swrl:AtomList>"^^rdf:XMLLiteral.].
:getBookByISBNGrounding a grounding:WsdlGrounding;
 grounding:hasAtomicProcessGrounding :getBookByISBNAtomicProcessGrounding;
 service:supportedBy :getBookByISBNService.

:getBookByISBNAtomicProcessGrounding a grounding:WsdlAtomicProcessGrounding;
 grounding:owlsProcess :getBookByISBNProcess;
 grounding:wsdlDocument

"http://bookstore.com/wsdl/bookbyisbn.wsdl"^^xsd:anyURI;
 grounding:wsdlOperation [a grounding:WsdlOperationRef;

grounding:operation "groundingWSDL:getBookByISBN"^^xsd:anyURI;
grounding:portType "groundingWSDL:BookByISBNSoap"^^xsd:anyURI.];

grounding:wsdlInputMessage "groundingWSDL:getBookByISBNRequest"^^<xsd:anyURI>;
grounding:wsdlOutputMessage
 "groundingWSDL:getBookByISBNResponse"^^<xsd:anyURI>;
 grounding:wsdlInput [a grounding:WsdlInputMessageMap;
 grounding:owlsParameter :ISBN;

 grounding:wsdlMessagePart "groundingWSDL:ISBN"^^xsd:anyURI;
 grounding:xsltTransformationString "<?xml version=\"1.0\"?>
 <xsl:stylesheet version=\"1.0\"
 xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\"
 xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"
 xmlns:domOnt=\"http://bookstore.com/DomainOntology#\">
 <xsl:template match=\"/ \">
 <xsl:value-of select=\"rdf:RDF/domOnt:ISBN/domOnt:hasISBNValue\"/>
 </xsl:template></xsl:stylesheet>"^^xsd:string.];
 grounding:wsdlOutput [a grounding:WsdlOutputMessageMap;
 grounding:owlsParameter :Book;
 grounding:wsdlMessagePart "groundingWSDL:book"^^xsd:anyURI;
 grounding:xsltTransformationString "<xsl:stylesheet version=\"1.0\"
 xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">
 <xsl:template match=\"/\">
 <rdf:RDF xmlns:rdfs=\"http://www.w3.org/2000/01/rdf-schema#\"
 xmlns:dbpedia=\"http://dbpedia.org/ontology/\"
 xmlns:xsd=\"http://www.w3.org/2001/XMLSchema#\"
 xmlns:owl=\"http://www.w3.org/2002/07/owl#\"
 xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"
 xmlns:dc=\"http://purl.org/dc/terms/\">
 <dbpedia:Book>
 <dc:title rdf:datatype=\"xsd:string\">
 <xsl:value-of select=\"book/title\"/>
 </dc:title>
 <dc:author rdf:datatype=\"xsd:string\">
 <xsl:value-of select=\"book/author\"/>
 </dc:author>
 </dbpedia:Book>
 </rdf:RDF>
 </xsl:template>
 </xsl:stylesheet>"^^xsd:string.].

 235

Appendix E

2. Order a Book
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix service: <http://www.daml.org/services/OWL-S/1.1/Service.owl#>.
@prefix profile: <http://www.daml.org/services/OWL-S/1.1/Profile.owl#>.
@prefix process: <http://www.daml.org/services/OWL-S/1.1/Process.owl#>.
@prefix grounding: <http://www.daml.org/services/OWL-S/1.1/Grounding.owl#>.
@prefix swrl: <http://www.w3.org/2003/11/swrl#>.
@prefix expr: <http://www.daml.org/services/OWL-
S/1.1/generic/Expression.owl#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix domOnt: <http://bookstore.com/DomainOntology#>.
@prefix groundingWSDL: <http://bookstore.com/wsdl/bookorder.wsdl#>.
@prefix : <http://bookstore.com/owls/BookOrderService.owls#>.
<http://bookstore.com/owls/BookOrderService.owls> a owl:Ontology;
 owl:imports <http://bookstore.com/DomainOntology.owl>,
 <http://dbpedia.org/ontology/>,
 <http://www.daml.org/services/OWL-S/1.1/Grounding.owl>,
 <http://www.daml.org/services/OWL-S/1.1/Process.owl>,
 <http://www.daml.org/services/OWL-S/1.1/Profile.owl>,
 <http://www.daml.org/services/OWL-S/1.1/Service.owl>,

<http://www.w3.org/2003/11/swrl>,
<http://www.daml.org/services/OWL-S/1.1/generic/Expression.owl>.

:BookOrderServiceService a service:Service;
 service:describedBy :BookOrderServiceProcess;
 service:presents :BookOrderServiceProfile;
 service:supports :BookOrderServiceGrounding.

:BookOrderServiceProfile a profile:Profile;
 profile:hasInput :Book;
 profile:hasOutput :Order;

profile:hasResult :OrderedBook;
 profile:serviceName "BookOrderService";
 service:presentedBy :BookOrderServiceService.

:BookOrderServiceProcess a process:AtomicProcess;
 process:hasInput :Book;
 process:hasOutput :Order;
 process:hasResult :OrderedBook;
 service:describes :BookOrderServiceService;
 rdfs:label "BookOrderServiceProcess".

:Book a process:Input;
 process:parameterType "http://dbpedia.org/ontology/Book"^^xsd:anyURI;
 rdfs:label "Book".

:Order a process:Output;
 process:parameterType "http://bookstore.com/DomainOntology#Order"^^xsd:anyURI;
 rdfs:label "Order".

:OrderedBook a process:Result;
 process:hasEffect [a expr:SWRL-Expression;
 expr:expressionLanguage expr:SWRL;
 expr:expressionBody
 "<swrl:AtomList xmlns:swrl=\"http://www.w3.org/2003/11/swrl#\">
 <rdf:first xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">
 <swrl:ClassAtom>
 <swrl:classPredicate

 rdf:resource=\"http://bookstore.com/DomainOntology#containsItem\" />
 <swrl:argument1 rdf:resource=\"#Order\" />
 <swrl:argument2 rdf:resource=\"#Book\" />
 </swrl:ClassAtom>
 </rdf:first>
 <rdf:rest rdf:resource=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil\"

xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" />
 </swrl:AtomList>"^^rdf:XMLLiteral.].

 236

 Appendix E

:BookOrderServiceGrounding a grounding:WsdlGrounding;
 service:supportedBy :BookOrderServiceService;
 grounding:hasAtomicProcessGrounding
:BookOrderServiceAtomicProcessGrounding.

:BookOrderServiceAtomicProcessGrounding a
grounding:WsdlAtomicProcessGrounding;
 grounding:owlsProcess :BookOrderServiceProcess;
 grounding:wsdlDocument "http://bookstore.com/wsdl/bookorder.wsdl"^^xsd:anyURI;
 grounding:wsdlOperation [a grounding:WsdlOperationRef;
 grounding:operation "groundingWSDL:BookOrderService"^^xsd:anyURI;
 grounding:portType "groundingWSDL:BookOrderServiceSoap"^^xsd:anyURI.];
grounding:wsdlInputMessage groundingWSDL:BookOrderServiceRequest"^^xsd:anyURI;
grounding:wsdlOutputMessage "groundingWSDL:BookOrderServiceResponse"^^xsd:anyURI;
grounding:wsdlInput [a grounding:WsdlInputMessageMap;
 grounding:owlsParameter :Book;
 grounding:wsdlMessagePart "groundingWSDL:book"^^xsd:anyURI;
 grounding:xsltTransformationString

"<xsl:stylesheet version=\"1.0\"
xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\"

 xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"
 xmlns:domOnt=\"http://bookstore.com/DomainOntology#\"
 xmlns:tns=\"http://bookstore.com/wsdl/bookorder.wsdl\">
 <xsl:template match=\"/\">
 <xsl:for-each select=\"rdf:RDF/domOnt:Book/\">
 <book>
 <ISBN><xsl:value-of select=\"dbpedia:isbn\"/></ISBN>
 <title><xsl:value-of select=\"dc:title\"/></title>
 <author><xsl:value-of select=\"dc:author\"/></author>
 </book>
 </xsl:template>
 </xsl:stylesheet>"^^xsd:string.
];
 grounding:wsdlOutput [a grounding:WsdlOutputMessageMap;
 grounding:owlsParameter :Order;
 grounding:wsdlMessagePart "groundingWSDL:order"^^xsd:anyURI;
 grounding:xsltTransformationString "<xsl:stylesheet version=\"1.0\"
 xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">
 <xsl:template match=\"/\">
 <rdf:RDF xmlns:rdfs=\"http://www.w3.org/2000/01/rdf-schema#\"
 xmlns:dbpedia=\"http://dbpedia.org/ontology/\"
 xmlns:xsd=\"http://www.w3.org/2001/XMLSchema#\"
 xmlns:owl=\"http://www.w3.org/2002/07/owl#\"
 xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"
 xmlns:dc=\"http://purl.org/dc/terms/\"
 xmlns:domOnt=\"http://bookstore.com/DomainOntology#\">
 <domOnt:Order>
 <domOnt:containsItem>
 <dbpedia:Book>
 <dbpedia:isbn>
 <xsl:value-of select=\"Order/Book/ISBN\"/>
 </dbpedia:isbn>
 </dbpedia:Book>
 </domOnt:containsItem>
 <domOnt:OrderID>
 <xsl:value-of select=\"Order/@orderId\"/>

</domOnt:OrderID>
</domOnt:Order>

 </rdf:RDF>
 </xsl:template>
 </xsl:stylesheet>"^^xsd:string.].

 237

Appendix E

Composite Service
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix list: <http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#>.
@prefix grounding: <http://www.daml.org/services/owl-s/1.1/Grounding.owl#>.
@prefix profile: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>.
@prefix process: <http://www.daml.org/services/owl-s/1.1/Process.owl#>.
@prefix service: <http://www.daml.org/services/owl-s/1.1/Service.owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
<http://bookstore.com/owls/OrderBookByISBNService.owls> a owl:Ontology;
 owl:imports <http://bookstore.com/DomainOntology.owl>,
 <http://dbpedia.org/ontology/>,
 <http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl>,
 <http://www.daml.org/services/owl-s/1.1/Grounding.owl>,
 <http://www.daml.org/services/owl-s/1.1/Process.owl>,
 <http://www.daml.org/services/owl-s/1.1/Profile.owl>,
 <http://www.daml.org/services/owl-s/1.1/Service.owl>,
 <http://www.w3.org/2003/11/swrl>.
:OrderBookByISBNService a service:Service;
 service:describedBy :OrderBookByISBNProcess;
 service:presents :OrderBookByISBNProfile;
 service:supports :OrderBookByISBNGrounding.
:OrderBookByISBNProfile a profile:Profile;
 profile:hasInput :Book,:ISBN;
 profile:hasOutput :Order;
 profile:serviceName "Order Book By ISBN";
 service:presentedBy :OrderBookByISBNService.
:Book a process:Input;
 process:parameterType "http://dbpedia.org/ontology/Book"^^xsd:anyURI.
:ISBN a process:Input;
 process:parameterType "http://bookstore.com/DomainOntology#ISBN"^^xsd:anyURI.
:Order a process:Output;
 process:parameterType "http://bookstore.com/DomainOntology#Order"^^xsd:anyURI.
:OrderBookByISBNProcess a process:CompositeProcess;
 process:composedOf [a process:Sequence;
 process:components [a process:ControlConstructList;
 list:first :Perform1;
 list:rest [list:first :Perform2;
 list:rest list:nil.].].];
 process:hasInput :Book,:ISBN;
 process:hasOutput :Order;
 process:hasResult [a process:Result;
 process:withOutput [a process:OutputBinding;
 process:toParam :Order;
 process:valueSource [a process:ValueOf;
 process:fromProcess :Perform2;
 process:theVar :Order.];];];
 service:describes :OrderBookByISBNService.
:Perform1 a process:Perform;
 process:hasDataFrom [a process:InputBinding;
process:toParam <http://bookstore.com/owls/getBookByISBN.owls#ISBN>;
process:valueSource [a process:ValueOf;
process:fromProcess process:TheParentPerform;
 process:theVar :ISBN.];];
process:process <http://bookstore.com/owls/getBookByISBN.owls#getBookByISBNProcess>.
:Perform2 process:hasDataFrom [a process:InputBinding;
 process:toParam <http://bookstore.com/owls/BookOrderService.owls#Book>;
 process:valueSource [a process:ValueOf;
 process:fromProcess :Perform1;
 process:theVar <http://bookstore.com/owls/getBookByISBN.owls#Book>;].];
 process:process <http://bookstore.com/owls/BookOrderService.owls#BookOrderServiceProcess>;
 a process:Perform.
:OrderBookByISBNGrounding a grounding:WsdlGrounding;
 grounding:hasAtomicProcessGrounding
<http://bookstore.com/owls/BookOrderService.owls#BookOrderServiceGrounding>,
<http://bookstore.com/owls/getBookByISBN.owls#getBookByISBNGrounding>;
 service:supportedBy :OrderBookByISBNService.

 238

 Appendix E

The bookstore domain ontology

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix : <http://bookstore.com/DomainOntology#>.

<http://bookstore.com/DomainOntology> a owl:Ontology.

:Valid a owl:Class.

:ISBN a owl:Class.

:hasISBN a owl:ObjectProperty;
 rdfs:domain dbpedia:Book;
 rdfs:range :ISBN.

:hasISBNValue a owl:DatatypeProperty;
 rdfs:domain :ISBN;
 rdfs:range xsd:string.

:Order a owl:Class.

:containsItem a owl:ObjectProperty;

 rdfs:domain :Order;

 rdfs:range :Book.

:orderID a owl:DatatypeProperty;
 rdfs:domain :Order;
 rdfs:range xsd:string.

 239

Appendix E

OWL-S Interaction
Client Server

GET /owls/getBookByISBN.owls HTTP/1.1
Host: bookstore.com

 HTTP/1.1 200 OK

GET /DomainOntology HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK

GET /wsdl/getBookByISBN.wsdl HTTP/1.1
Host: bookstore.com

 HTTP/1.1 200 OK

POST /BookService HTTP/1.1
Host: bookstore.com

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soa
p/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soa
p/encoding/">
<soapenv:Body
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wns="http://bookstore.com/wsdl/bookbyis
bn.wsdl">
 <wns: getBookByISBN>
 <wns:getBookByISBNRequest>
 0123735564
 <wns:getBookByISBNRequest>
 </wns: getBookByISBN>
 </soapenv:Body>
</soapenv:Envelope>

 HTTP/1.1 200 OK
Content-Type: application/soap+xml

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/12
/soap-encoding">
<soap:Body xmlns:wsn="
http://bookstore.com/wsdl/bookbyisbn.wsdl">
 <wns:getBookByISBN>
 <wns:getBookByISBNResponse>
 <wns:book>
 <wns:title>Semantic Web for the Working
 </wns:title>
 <wns:author>Allemang and Hendler
 </wns:author>
 <wns:isbn>0123735564</wns:isbn>
 </wns:book>
 </wns: getBookByISBNResponse>
<wns:getBookByISBN>

Get Book
by its

ISBN OWL-
S File

Bookstore
Domain
Ontology

GET Book
by its

ISBN WSDL
File

 240

 Appendix E

 </soap:Body>
</soap:Envelope>

GET /owls/BookOrderService.owls HTTP/1.1
Host: bookstore.com

 HTTP/1.1 200 OK

GET /wsdl/getBookByISBN.wsdl HTTP/1.1
Host: bookstore.com

 HTTP/1.1 200 OK

POST /BookService HTTP/1.1
Host: bookstore.com

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soa
p/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soa
p/encoding/">
 <soapenv:Body
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wns="http://bookstore.com/wsdl/bookorde
r.wsdl">
<wns: BookOrder>
 <wns:BookOrderRequest>
 <wns:book>
 <wns:title>Semantic Web for the Working
Ontologist
 </wns:title>
 <wns:author>Allemang and
Hendler</wns:author>
 <wns:isbn>0123735564</wns:isbn>
 </wns:Book>
 </wns:BookOrderRequest>
 </wns: BookOrder>
 </soapenv:Body>
</soapenv:Envelope>

 <?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/12
/soap-encoding">
<soap:Body xmlns:wsn="
http://bookstore.com/wsdl/bookorder.wsdl">
 <wns:BookOrder>
 <wns:BookOrderResponse>
 <wns:order ordered="12345">
 <wns:book>
 <wns:title>Semantic Web for the Working
 </wns:title>
 <wns:author>Allemang and Hendler
 </wns:author>
 <wns:isbn>0123735564</wns:isbn>
 </wns:book>
 </wns:order>
 </wns:BookOrderResponse>
<wns:BookOrder>
</soap:Body>
</soap:Envelope>

Order
Book
OWL-S
File

Order
Book
WSDL
File

 241

Appendix E

RESTdesc

 242

 Appendix E

RESTdesc – Service Design and Deployment

RESTdesc does not involve the steps regarding deploying the API, because it assumes the APIs have
already been developed and deployed. However because we are comparing it with EXPRESS, and
this is involved in the development phase, it is necessary to discuss the tasks RESTdesc assumes are
there.
In developing the API, several factors come into place, like the programming language and
framework, their support of HTTP (RESTful concepts), the existence of legacy software, involved or
a Web Application.
However, process usually is the same across RESTful Web service frameworks:

1. Map the data into resources.
2. Specify their URIs.
3. Decide which HTTP methods can be performed on the resource.
4. Design the representations sent and accepted to and from the client, decide on the media

types, and link the resources.

The Existing Web API

Resource Description
1. GET /Books?isbn={ISBN} Returns a book with the given ISBN
2. POST /Order Given a book, this creates an order for a book, returns order ID

1. GET /Books?isbn={ISBN}
Sample Request
GET /Books?isbn={1585425524} HTTP/1.1
Host: www.bookstore.com
Accept: application/json;
Sample Response

HTTP/1.1 200 OK
{"book": {
 "isbn": "0123735564",
 "title": "Semantic Web for the Working Ontologist",
 "author": "Allemang and Hendler"
 }}

2. POST /Order
Sample Request
POST /Order HTTP/1.1
Content-type: application/json;
Accept: application/json;

{"book": {
 "ISBN": "0123735564",
 "title": "Semantic Web for the Working Ontologist",
 "author": "Allemang and Hendler"
}}
Sample Response

HTTP/1.1 201 Created
Location: http://www.bookstore.com/Order/123242

 {"order": {
 "id": "123242",
 "contains":
 [{"book": {"isbn": "0123735564",

"title": "Semantic Web for the Working Ontologist",
 "author": "Allemang and Hendler"
 }}
]
 }
}

 243

Appendix E

RESTdesc – Semantic Description
RESTdesc v.1

1 GET /Books?isbn={ISBN}

@prefix http: <http://www.w3.org/2011/http#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix tmpl: <http://purl.org/restdesc/http-template#>.
@prefix dc: <http://purl.org/dc/terms/>.
{
?book a dbpedia:Book;
 dbpedia:isbn ?isbn.
}
=>
{
_:request http:methodName "GET";
 http:requestURI ("/books?isbn=" ?isbn);
 http:resp [http:body ?book].

?book dc:title _:title;
 dc:author _:author.}.

2 POST /Order V.1

@prefix ord: <http://bookstore.com/bookorder#>.
@prefix http: <http://www.w3.org/2011/http#>.
@prefix tmpl: <http://purl.org/restdesc/http-template#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
{
?book a dbpedia:Book;
}
=>
{
_:request http:methodName "POST";
 http:requestURI "/order";
 http:body [tmpl:formData ("book=" ?book)];
 http:resp [tmpl:location ("order/" ?orderID);
 http:body ?order].
?order a ord:Order;
 ord:orderID ?orderId;
 ord:containsItem ?book.}.

RESTdesc v2.0

1 GET (BookURI)

@prefix http: <http://www.w3.org/2011/http#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix tmpl: <http://purl.org/restdesc/http-template#>.
@prefix dc: <http://purl.org/dc/terms/>.
{
 ?book a dbpedia:Book;
}
=>
{
 _:request http:methodName "GET";
 http:requestURI ?book ;
 http:resp [http:body ?book].
 ?book dc:title _:title.
 ?book dc:author _:author.}.

2 POST (BookURI)

@prefix ord: <http://bookstore.com/bookorder#>.
@prefix http: <http://www.w3.org/2011/http#>.
{
 ?book a dbpedia:Book;
}

 244

 Appendix E

=>
{
 _:request http:methodName "POST";
 http:requestURI ?book;
 http:resp [http:body ?order].

?order a ord:Order;
 ord:orderID _:id;
 ord:containsItem ?book.}.

The bookstore domain ontology for the RESTdesc Service

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix : <http://bookstore.com/bookorder#>.

<http://bookstore.com/bookorder> a owl:Ontology.

:Order a owl:Class.

:containsItem a owl:ObjectProperty;
 rdfs:domain :Order;
 rdfs:range dbpedia:Book.

:orderID a owl:DatatypeProperty;
 rdfs:domain :Order;
 rdfs:range xsd:string.

 245

Appendix E

RESTdesc – Interaction

Client Server

OPTIONS /API
HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK
Allow: GET,HEAD,OPTIONS
Content-Type: text/n3

GET /bookorder
HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK
Content-Type: text/n3

GET /book?isbn={0123735564}
HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK
{"book": {
 "isbn": "0123735564",
 "title": "Semantic Web for the
Working Ontologist",
 "author": "Allemang and Hendler",
 "uri":
"http://bookstore.com/books/0123735564"
 }}

POST /order
HTTP/1.1
Host: bookstore.com

{"book": {
 "isbn": "0123735564",
 "title": "Semantic Web for the
Working Ontologist",
 "author": "Allemang and Hendler"
}}

HTTP 201 Created
Location:
http://bookstore.com/Order/12345

RESTdesc API
Descriptions

RESTdesc
Domain
Ontology

 246

 Appendix E

PART TWO

EXPRESS Example 1:
Endpoint:

GET http://bookstore.com/EXPRESS/Book?isbn={}

Ontology:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix dc: <http://purl.org/dc/terms/>.
@prefix : <http://bookstore.com/EXPRESS/>.
<http://bookstore.com/EXPRESS> a owl:Ontology.

:Book a owl:Class;
 owl:equivalentClass dbpedia:Book.

:title a owl:DatatypeProperty;
 owl:equivalentProperty dc:title;
 rdfs:domain :Book;
 rdfs:range xsd:string.

:author a owl:DatatypeProperty;
 owl:equivalentProperty dc:author;
 rdfs:domain :Book;
 rdfs:range xsd:string.

:isbn a owl:DatatypeProperty;
 owl:equivalentProperty dbpedia:isbn;
 rdfs:domain :Book;
 rdfs:range xsd:string.

 247

Appendix E

EXPRESS Example 2:

Endpoint:

GET http://bookstore.com/getBookByISBN/Book?_isbn={}

Ontology:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix domOnt: <http://bookstore.com/DomainOntology#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix : <http://bookstore.com/getBookByISBN/>.

<http://bookstore.com/getBookByISBNEXPRESS.owl> a owl:Ontology;
 owl:imports <http://bookstore.com/DomainOntology>,
 <http://dbpedia.org/ontology>.

:Book a owl:Class;
 owl:equivalentClass dbpedia:Book.

:ISBN a owl:Class;
 owl:equivalentClass domOnt:ISBN.

:_isbn a owl:ObjectProperty;
 rdfs:domain dbpedia:Book;
 rdfs:range domOnt:ISBN.

domOnt : http://bookstore.com/DomainOntology

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix : <http://bookstore.com/DomainOntology#>.

<http://bookstore.com/DomainOntology> a owl:Ontology.

:ISBN a owl:Class.

:hasISBN a owl:ObjectProperty;
 rdfs:domain dbpedia:Book;
 rdfs:range :ISBN.

:hasISBNValue a owl:DatatypeProperty;
 rdfs:domain :ISBN;
 rdfs:range xsd:string.

 248

 Appendix E

Participant Information Sheet

Study Title: Towards RESTful and Resource-Oriented Semantic Web Services

Researcher: Areeb Alowisheq

Ethics number: 6324

Please read this information carefully before deciding to take part

in this research. If you are happy to participate you will be asked to

sign a consent form.

What is the research about?

This research investigates an approach for simplifying the development of Semantic

Web services (SWS) by reducing their semantic descriptions. This study aims to

compare three Semantic Web service approaches in terms of their required development

effort. These are OWL-S, RESTdesc and EXPRESS.

Why have I been chosen to participate?

You invited to participate in this study because you are an expert in Semantic Web

Technologies. Your opinion and expertise will help in assessing and comparing aspects

of different Semantic Web service approaches.

What will happen to me if I take part?

I will ask you to sign a consent form, and then the study will begin. I will conduct an

interview with you, with open-ended questions, and I will record your voice during the

interview.

Are there any benefits in my taking part?

This research is not designed to help you personally, but your feedback will help me

gather expert opinions on the development efforts

Will my participation be confidential?

Yes. Any data will be stored will not be linked to your name. Your data and that of

other participants will be stored and used on secure systems.

 249

Appendix E

Are there any risks involved?

No.

What happen if I change my mind?

You have the right to terminate your participation in the research, at any stage, you do

not need to give any reasons, and without your legal rights being affected. Any data

collected form you will be immediately destroyed.

Where I can get more information?

For further details, please contact either myself or my study supervisor, Dr.David

E. Millard.

Areeb Alowisheq: aaa08r@ecs.soton.ac.uk

Dr.David E. Millard: dem@ecs.soton.ac.uk

 250

mailto:aaa08r@ecs.soton.ac.uk
mailto:dem@ecs.soton.ac.uk

 Appendix E

CONSENT FORM (Version 1)

Study title: Towards Resource-oriented RESTful Semantic Web services

Researcher name: Areeb Alowisheq

Study reference: Towards Resource-oriented RESTful Semantic Web

services

Ethics reference: 6324

Please initial the box(es) if you agree with the statement(s):

I have read and understood the information sheet and have

had the opportunity to ask questions about the study

I agree to take part in this research project and agree for my

data to be used for the purpose of this study

I understand my participation is voluntary and I may

withdraw at any time without consequence and my data will

be deleted if I withdraw at any time

I agree to record my voice during my participation in this

study

Data Protection

I understand that information collected about me during my participation in this

study will be stored on a password protected computer and that this information

will only be used for the purpose of this study. All files containing any personal

data will be made anonymous.

Name of participant (print

name)…………………………………………………

Signature of participant……………………………………………..…….……….

Name of Researcher (print name): Areeb Alowisheq

Signature of

Researcher……………………………………………………………..

Date………………………………………………………………………………………

 251

 Appendix F

Appendix F: Sample Expert Review Transcript

The transcript below is from the interview with second expert, answering the question about

development speed.

Time Speaker Discussion

29:18 Researcher If you were required to provide a semantic API for a

bookstore, if you had to use one of these approaches how

long do you think it will take you?

29:36 Participant For each approach?

29:37 Researcher Yes.

29:40 Participant I think so in order of time, sort of ascending I imagine, it will

go like, I guess RESTdesc, EXPRESS and then OWL-S. But it

does depend I think on, if you are building it with that in

mind I suppose, than if you are building it, a service, from

scratch, from the start, then I guess OWL-S is rigorous way

of building it, but I think for development time so I guess

RESTdesc would be the quickest way, just because of

simplicity, then I guess EXPRESS after that coz it’s a, I guess,

you have to bear it more in mind while you are developing it,

I guess as soon as you get into WSDL Web services that will

get more complex so it needs more debugging time and

testing and um.. yeah it is a lot harder. I think it will bind you

a bit more to which languages you developing it as well, so

some languages have better support than other languages,

so I guess for SOAP services java obviously is really good, if

you go to python or PHP it gets more sort of unreliable, I can

imagine RESTdesc and EXPRESS are a bit more lighter

weight, and it is less reliant on what language you use, so

you can probably be a bit more agnostic for language, yeah

 253

 Appendix G

Appendix G: Expert Review Analysis Screenshots

Figure 46 Interview analysis document, text is annotated with identifiers

 255

Appendix G

Figure 47 Interview analysis spreadsheet, Quote ID are the identifiers in Figure 46

 256

