HJNIVERSITY OF

Southampton

University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Faculty of Physical Sciences and Engineering

Electronics and Computer Science

Web and Internet Science

EXPRESS: Resource-Oriented and RESTful Semantic Web Services
by

Areeb Alowisheq

Thesis for the degree of Doctor of Philosophy

17 October 2014

ABSTRACT

This thesis investigates an approach that simplifies the development of Semantic

Web services (SWS) by removing the need for additional semantic descriptions.

The most actively researched approaches to Semantic Web services introduce
explicit semantic descriptions of services that are in addition to the existing
semantic descriptions of the service domains. This increases their complexity and
design overhead. The need for semantically describing the services in such
approaches stems from their foundations in service-oriented computing, i.e. the
extension of already existing service descriptions. This thesis demonstrates that
adopting a resource-oriented approach based on REST will, in contrast to service-
oriented approaches, eliminate the need for explicit semantic service descriptions
and service vocabularies. This reduces the development efforts while retaining

the significant functional capabilities.

The approach proposed in this thesis, called EXPRESS (Expressing RESTful
Semantic Services), utilises the similarities between REST and the Semantic Web,
such as resource realisation, self-describing representations, and uniform
interfaces. The semantics of a service is elicited from a resource’s semantic
description in the domain ontology and the semantics of the uniform interface,
hence eliminating the need for additional semantic descriptions. Moreover, stub-
generation is a by-product of the mapping between entities in the domain

ontology and resources.

EXPRESS was developed to test the feasibility of eliminating explicit service
descriptions and service vocabularies or ontologies, to explore the restrictions
placed on domain ontologies as a result, to investigate the impact on the semantic
quality of the description, and explore the benefits and costs to developers. To
achieve this, an online demonstrator that allows users to generate stubs has been
developed. In addition, a matchmaking experiment was conducted to show that
the descriptions of the services are comparable to OWL-S in terms of their ability
to be discovered, while improving the efficiency of discovery. Finally, an expert
review was undertaken which provided evidence of EXPRESS’s simplicity and

practicality when developing SWS from scratch.

Table of Contents

Chapter 1: Introduction
1.1 Motivation and Approach
1.2 Hypothesis and Research Questions
1.3 Research Methodology
1.4 Contributions
1.5 Thesis Structure

Chapter 2:

2.1

2.2

2.3

2.4

cONOYUVIW —

the Semantic Web

The World Wide Web (WWW)

2.1.1 Uniform Resource Identifier (URI)

2.1.2 Hypertext Markup Language (HTML)
2.1.3 Hypertext Transfer Protocol (HTTP)

Web Services

2.2.1 The Origins of Web Services

2.2.2 Web Service Standards

2.2.3 Service-Oriented Architecture

REST Representational State Transfer (REST)

2.3.1 Origins

2.3.2 Resource-Oriented Architecture

233 REST vs. ROA

234 Comparison to SOA
The Semantic Web

24.1 Resource Description Framework (RDF)

2.4.2 Web Ontology Language (OWL)

243 SPARQL Protocol and Query Language (SPARQL)
2.5 Linked Data
2.5.1 Publishing Linked Data
2.5.2 Linked Data Applications
2.6 Semantic Web Services
2.7 Summary
Chapter 3: Approaches to Semantic Web Services
3.1 Meta-Models in SWS Descriptions
3.2 Service-Oriented Meta-Model Approaches
3.2.1 SWS Approaches for WSDL Web Services
3.2.2 SWS Approaches for RESTful Web Services
3.3 Resource-Oriented Meta-Model Approaches
3.4 A Classification Matrix for SWS Approaches
3.5 Comparison of SWS Approaches Capabilities
3.6 Adopted Research Methodologies in SWS Approaches
3.7 Conclusions
Chapter 4: Scenario Analysis and RO Modelling
4.1 Web Service Scenarios
4.1.1 Identifying Communities of Interest
4.1.2 Selecting the Scenarios
4.1.3 Scenario example
4.2 Scenario analysis
4.2.1 Eliciting requirements
4.2.2 Resource-Oriented Modelling
4.2.3 Outcomes of the Scenario Analysis
4.3 SWS Approaches and Interaction Requirements
4.4 Conclusions

Chapter 5: EXPRESS: EXPressing REstful Semantic Services

Background: Web Services, Representational State Transfer and

11

11
12

12
12

13
13

15
18

19
19

20
22
24

26
27

28
29

29
30
30
31
33
35
36
37
37
40
42
45
49
54
59
61
62
62
63
64
65
65
65
68
70
72
73

5.1 Overview of EXPRESS 73
5.2 Semantic Description 77
5.2.1 Resource Representation 77
5.2.2 Mutability 86
5.23 Plurality 89
5.2.4 Atomicity 89
5.2.5 Synchronisation 91
5.2.6 Roles 92
EXPRESS Design Principles 92
5.3 EXPRESS Online Demonstrator 92
5.4 EXPRESS and SWS approaches 97
5.5 Conclusions 98
Chapter 6: Semantic Matchmaking in EXPRESS 100
6.1 Semantic Service Matchmaking 100
6.2 Matchmaking in EXPRESS 101
6.3 Experimental Design 103
6.3.1 Adapting the iSeM Matchmaker 103
6.3.2 Creating the EXPRESSive Test Collection (EXPRESS-TC) ...ccccouusenuens 105
6.3.3 Evaluation Environment 109
6.4 Results and Analysis 112
6.5 Conclusions 116
Chapter 7: Expert Reviews 119
7.1 Experimental Design 120
7.1.1 Method 120
7.1.2 Scenario and Material Design 122
7.1.3 Interview Design 125
7.14 Interview Analysis 127
7.2 Experimental Results 128
7.2.1 Themes 128
7.2.2 Summary of Experts’ Responses by Theme 129
7.3 Discussion 138
7.3.1 Research Questions 138
7.3.2 Area of Expertise Influence on Results 142
733 Related Results 142
7.4 Conclusions 143
Chapter 8: Conclusions and Future Work 145
8.1 Summary 145
8.2 Contributions 146
8.3 Publications 148
8.4 Future Work 149
8.4.1 EXPRESS Aware Clients and Automated Conversational Services
149
8.4.2 Matchmaking in EXPRESS 150
8.4.3 Alternatives to URI Templates 151
8.4.4 Evaluation of EXPRESS through a Case Study 152
8.5 Final Conclusions 153
References 155
Appendices 167
Appendix A: Research Strategies in SWS Approaches 169
Appendix B: Web Service Scenarios and RO Models 175
Appendix C: Mappings to SPARQL Queries 211
Appendix D: DVD/MP3 Player OWL-S Service 223
Appendix E: Expert Review Materials 227
Appendix F: Sample Expert Review Transcript 253
Appendix G: Expert Review Analysis Screenshots 255

List of tables

Table 1 Capabilities of SWS approaches 51
Table 2 Validation techniques in software engineering (Shaw, 2002)coceeervesenenns 55
Table 3 Validation approaches in SWS 57
Table 4 Communities of interest definitions 62
Table 5 Number of reviewed papers in each community of interest... 63
Table 6 List of Selected Web service Scenarios 63
Table 7 Interaction requirements of scenarios across communities of interest....69
Table 8 SWS approaches and interaction requirements 70
Table 9 Interaction requirements and the step in which they are expressed........... 77
Table 10 Resource types and corresponding URI and graph patterns......n 78
Table 11 Resource types and the effects of HTTP methods 86
Table 12 Formalisation of HTTP methods in SPARQL queries for a book individual87
Table 13 Uses of EXPRESS 93
Table 14 Comparison of SWS including EXPRESS 97
Table 15 iSeM matchmaker variants 104
Table 16 Results of running iSeM OWL-S and iSeM EXPRESS on SME-......cccoueeeereeue 112

Table 17 Friedman test for approximated logic-based and text similarity variants115
Table 18 % of Improvements of iSeM EXPRESS over OWL-S in terms of AQRT...... 116

Table 19 Service description size in LOC and bytes 116
Table 20 Interviewed Experts’ Areas of Expertise 121
Table 21 Summary of material presented to the experts 124
Table 22 Themes and the number of quotes about them 128
Table 23 Expert opinions on development effort 138
Table 24 Expert opinions on semantic expressivity and practicality.....mm 139
Table 25 Analysis of research strategies in SWS 170
Table 26 Interaction requirements across scenarios 208
Table 27 HTTP methods as SPARQL queries for the class book 212
Table 28 HTTP methods as SPARQL queries for a book individual .eeesemsemseeas 214
Table 29 HTTP methods as SPARQL queries for a book's author 216

Table 30 HTTP methods as SPARQL queries a book with specified properties...218
Table 31 HTTP methods as SPARQL queries for properties of filtered individuals220

List of figures

Figure 1 Components of Web services and SWS 4
Figure 2 Hypothesis, research questions and research activities 6
Figure 3 Web Services Architecture 16
Figure 4 Semantic Web Layer Cake 27
Figure 5 Paths to SWS (Fensel, 2004) 36
Figure 6 Classification Matrix of SWS Approaches 47
Figure 7 Collaboration Diagram 66
Figure 8 RO Diagram for B1: Reverse Auctioning Service 67
Figure 9 Steps for describing and providing a RESTful interface in EXPRESS............ 74
Figure 10 Steps for Deploying Web services in EXPRESS 93
Figure 11 Steps to deploy a Web service using the stub generator 94
Figure 12 Online EXPRESS, the 1st step providing an OWL file and the roles............ 95
Figure 13 Online EXPRESS, the 2™ step configuring the stubs 96
Figure 14 Using Poster to interact with the generated Stubs 96
Figure 15 The manual and automatic approaches to generate the test collection106
Figure 16 Architecture of SME? 110
Figure 17 Macro-averaged Precision-Recall Curve for non-SVM variants.......ccuee. 114
Figure 18 Macro-averaged Precision-Recall Curve for SVM variants ... 114
Figure 19 AQRT for iSeM OWL-S and iSeM EXPRESS (Approximate Logic-based)..115
Figure 20 Activity Diagram for EXPRESS 123
Figure 21 Activity Diagram for OWL-S 123
Figure 22 Activity Diagram for RESTdesc 124
Figure 23 Derivation of interview questions 127
Figure 24 Themes related to research questions 129
Figure 25 Future Work 149
Figure 26 RO Model of M1 177
Figure 27 RO Model of M2 179
Figure 28 RO Model of M3 180
Figure 29 RO Model of M4 181

Figure 30 RO Model of E1 183
Figure 31 RO Model of E2 183
Figure 32 RO Model of E3 184
Figure 33 RO Model of E4 185
Figure 34 RO Model of B1 187
Figure 35 RO Model of B2 189
Figure 36 RO Model of B3 191

Figure 37 RO Model of B4 193
Figure 38 RO Model of C1 195
Figure 39 RO Model of C2 196
Figure 40 RO Model of C3 197
Figure 41 RO Model of C4 198
Figure 42 RO Model of G1 201

Figure 43 RO Model of G2 204
Figure 44 RO Model of G3 206
Figure 45 RO Model of G4 208
Figure 46 Interview analysis document, text is annotated with identifiers............ 255

Figure 47 Interview analysis spreadsheet, Quote ID are the identifiers in Figure 46256

vii

DECLARATION OF AUTHORSHIP

I, AREEB ALOWISHEQ

declare that this thesis and the work presented in it are my own and has been

generated by me as the result of my own original research.

EXPRESS: RESTful and Resource-Oriented Semantic Web Services

I confirm that:

1. This work was done wholly or mainly while in candidature for a research
degree at this University;

2. Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated,;

3. Where | have consulted the published work of others, this is always clearly
attributed;

4. Where | have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. | have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, | have
made clear exactly what was done by others and what | have contributed
myself;

7. Parts of this work have been published as:

1. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2011).
Resource-Oriented Modelling: Describing Restful Web services Using
Collaboration Diagrams. In, The 8th International Joint Conference on e-
Business and Telecommunications, Seville, Spain, 18 - 21 Jul 2011.

2. Alowisheq, Areeb and Millard, David (2009) EXPRESS: EXPressing REstful
Semantic Services. In, 2009 |IEEE/WIC/ACM International Joint Conference
on Web Intelligence and Intelligent Agent Technology, Doctoral Workshop,
Milan, Italy, 15 - 18 Sep 2009., 453-456.

3. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2009) EXPRESS:
EXPressing REstful Semantic Services Using Domain Ontologies. In, 8th
International Semantic Web Conference (ISWC 2009), Doctoral Consortium,
Chantilly, VA, USA, 25 - 29 Oct 2009. Springer Berlin/Heidelberg, 941-948.

Signed:
Date: 17.10.2014

Acknowledgements

I would like to thank the following people for their support:

My family: Muneera Alwohaiby and Dr Abdullah Alowaisheq, my husband Hassan
Alowairdhi, my sisters and brothers for their overwhelming love, support and
guidance your help was absolutely critical for completing the PhD, and of course

My children Faisal and Deema for your love and patience.

My supervisor: Dr David Millard for your guidance, assistance, patience,
persistence, and continuous encouragement. | have learnt so much from your

research skills, integrity and research ethic. It was a privilege working with you.

My advisor Dr Thanassis Tiropanis, for your valuable comments and
encouragement, and my internal examiner Dr Nicholas Gibbins for your

constructive feedback and support.

My friends who supported me during the PhD: Nada Albunni, Fatimah Akeel, Nora
Al Rajebah, Nora Alothman, Alaa Mashat, Dr Adolfo Ruiz-Calleja, Dr Kathryn
Bradbury, Dr Reena Pau, Dr Xin Wang, Dr llaria Licardi, Dalal Alazizy, Dr Heba
Kurdi, Dr Sarah Al[Humoud, and Dr Hend Al-Khalifa.

Members of the WAIS lab, especially Dr Yvonne Howard for her support and vital
role in making the lab a positive and welcoming environment, and Dr Charlie

Hargood and Rikki Prince for their valuable advice.

Dr Kevin Page, who took the time to look at my work and provide me with useful

insights, and Dr Hugh Glaser for the enthusiastic discussions and encouragement.

The experts who participated in the expert review, for their time and insightful

comments.

I would also like to acknowledge the Saudi Cultural Bureau in the UK and the
Imam Muhammad bin Saud University for the PhD scholarship and their support
during this period, and the Royal Academy of Engineering fro the travel grant to

present my work at the WI-IAT 2009 conference in Italy.

Xi

Definitions and Abbreviations

endpoint a URI, which is an entry point to a service or resource, to expose them

on the Web; it should be registered at the Web server for it to be available.

service ontology/vocabulary: a data model that defines concepts and properties

for describing services.

semantic service description: a semantic description of a service instance that

uses concepts and properties defined in service ontologies or vocabularies.

domain ontology: Is a data model that captures valid knowledge for a specific

domain.

service-oriented/resource-oriented meta model: a model either a vocabulary,

ontology or conceptualisation of an interface as services/resources.

RESTful Web services: also referred to as Web APIs, these are web services that
expose endpoints to resources, which respond to HTTP requests and in practice

may not adhere to all of REST’s constraints.
client: The term client has been used in this thesis to refer to a service consumer.
server: The term server has been used in this thesis to refer to a service provider.

Resource-Oriented Modelling: A modelling approach which focuses on modelling

resources in an interface and their static relationships and dynamic interactions.
EXPRESS EXPressing REstful Semantic Services

REST REpresentational State Transfer

SWS Semantic Web Services

SPARQL SPARQL Protocol and RDF Query Language

RDF Resource Description Framework
HTTP Hypertext Transfer Protocol
OWL Web Ontology Language

OWL-S Semantic Markup for Web Services (OWL Services)

Xiii

Chapter 1 Introduction

Chapter 1: Introduction

The advancement of software, hardware and networking has caused distributed
systems to evolve since the times of the ARPANET email application in the 1960s.
Distributed systems have gone from 1-tier architectures, to n-tier architectures,
built with middleware to accommodate the heterogeneity of underlying systems

and enable them to work together.

The emergence of the Web had a great impact on the way which distributed
systems were built. The distributed systems community was influenced by its
success, but instead of viewing the Web as a distributed system in itself, it was
viewed as a convenient transport mechanism: Web servers were widely available,
and easy to set up, and hence created a broad common layer through which
middleware could be tunneled together with a global unique addressing system
offered by URI. Another lesson the distributed community learnt from the Web
was the communicative power of text-based markup languages, which could

overcome the heterogeneity problems in exchanged messages.

As a result of this view of the Web, Web services emerged, wrapping the
functionality offered by existing solutions in XML-based descriptions. These Web
services are the XML-based parallels of their middleware predecessors, and are
heavily influenced by Remote Procedure Call (RPC) (Birrell and Nelson, 1984). For
example, The WSDL (Christensen et al., 2001) service description contains a
similar type of information offered by earlier Interface Definition Languages
(IDLs) i.e. the types of inputs and outputs of the service and how to invoke it.
Moreover the concept of a service directory has been mirrored by the Universal

Description Discovery and Integration (UDDI) in Web services.

Another result of this view was implicitly passing down the design objectives of
RPC to Web services, which aimed to ensure that a remote procedure should run
as if it was a local one. This design objective aimed to relieve programmers from

the burden of dealing with the complexities of the network and to maintain the

Chapter 1 Introduction

reliability of the distributed system (Birrell and Nelson, 1984). This idea of hiding
remoteness, was one of the reasons the Web alone was overlooked as a
successful mechanism for providing services, it was lossy, stateless, and was
unable to accommodate the requirements of legacy systems built on the
expectation of reliable middleware. As a result, the development of Web services
continued to aim towards overcoming the unreliability of the Web and providing
richer descriptions for the services to automate or semi-automate their discovery

and invocation processes.

The request for richer descriptions was because the Web Service Discovery
Language (WSDL) standard provided syntactic descriptions of services. Offering
syntactic descriptions, however, is insufficient for the automation or semi-
automation of service discovery and composition, for example, stating that a
service accepts an integer and returns a string will not offer information on what

the service does, especially on a Web scale.

The Semantic Web is a set of technologies enabling the semantic description of
resources using standards such as Resource Description Framework (RDF) and
Web Ontology Language (OWL), hence providing machines with the ability to infer
more information about what a resource represents. Thus, the Semantic Web
offers a solution to the lack of semantics in the Web services world. The Semantic
Web services research community has introduced several approaches for Web
service semantic descriptions. These range from lightweight solutions like
SAWSDL (Farrell and Lausen, 2007) to complex ones like OWL-S (Martin et al.,
2004) and WSMO (Bruijn et al., 2005a). The complexity of these latter approaches
stems from their heavy reliance on logical reasoning for the automation of
discovery, matchmaking and composition. This complexity also means it is very
challenging for these features to be available at Web scale (Klusch, 2008b; Fensel
and van Harmelen, 2007; Hench et al., 2008). There is a trade-off between
automation and scalability, and existing Semantic Web service approaches tend to
focus on automation. However, recently there has been a rising interest in
lightweight Semantic Web services, for reasons of scalability and minimising

complexity and design overhead.

Another issue with these approaches, whether heavy or lightweight, is that they
require semantic service descriptions, therefore necessitating service ontologies
or vocabularies. This requirement of service descriptions stems from the RPC
mindset these approaches are based on. This was the prevalent mindset in
traditional Web services when SWS research began. However, there was an

increased realisation that the WSDL-based services were not gaining the

Chapter 1 Introduction

popularity anticipated, and that, for the reasons discussed above, they could not

scale the way the Web has scaled.

As a result, another approach, RESTful Web services, was put forward. This
approach is based on an understanding of the properties that make the Web scale
well, and attempts to offer the functionality of Web services through the
manipulation of Web resources; consequently these Web services do not have
service descriptions. REST (Fielding, 2000) is an architectural style for network-
based systems. It provides a set of constraints learnt from the Web’s HTTP
development and when applied can make systems scalable, reliable, reusable,
resilient and provide other desirable features of the Web as a network-based
system. The constraints of REST are: identification of resources, manipulation of
resources through representations, self-descriptive messages, and hypermedia as
the engine of application state. Although REST was not introduced as an approach
to designing Web services, it has been adopted by the majority of developers as
an alternative to WSDL/SOAP. Although not always adhering to all of REST’s
constraints (Fielding, 2007; Richardson and Ruby, 2007; Vinoski, 2008a), RESTful
Web services are gaining popularity and are adopted by major service providers
like Google, Amazon and Yahoo. The popularity of RESTful Web services comes
from their being light-weight (with no added layers of specification), accessible,

resource-oriented, and declarative (Zhao and Doshi, 2009).

This research focuses on developing an approach to provide RESTful Semantic
Web services, with the aim of reducing the complexity involved in developing
Semantic Web services. It does so by exploiting similarities between REST and the
Semantic Web, such as resource-realization, self-describing representations, and

uniform interfaces.

1.1 Motivation and Approach

As discussed above, the influence of RPC resulted in Web services having service
descriptions, and consequently this has influenced Semantic Web service
approaches. More specifically, this is to have semantic descriptions for both the
service itself (semantic descriptions and vocabularies/ontologies) and the
resources the service interacts with (domain ontologies). This overhead is not
without consequences. Bachlechner and Fink (2008) surveyed and analysed
opinions from both practitioners and researchers about the potential of Semantic
Web services as integration architectures. According to their results one of main
challenges that SWS face is that they are perceived as highly complex, and it is not

clear how the research vision can be grounded into reality.

Chapter 1 Introduction

The objective of this research is to simplify the development of SWS, by
eliminating the need for semantic service descriptions and vocabularies, through
an approach called EXPRESS (Alowisheq and Millard; Alowisheq et al., 2009).
EXPRESS uses ontologies that describe classes, instances and relationships among
them to create and describe resources accessible via RESTful interfaces. Figure 1
shows how EXPRESS aims to simplify providing SWS, by contrasting components

required in existing methods to the ones required in EXPRESS.

SWS RESTful SWS =

o

‘ Implementation ‘ ‘ Implementation ‘ §
<.

®

‘ Endpoint ‘ ‘ Endpoint ‘ o
3

‘ Service Description ‘ 3
>

. (%)

‘ Service Vocabulary/ Ontology ‘ =
g

‘ Semantic Service Description ‘ 3
. 3

‘ Domain Ontology ‘ ‘ Domain Ontology i

Figure 1 Components of Web services and SWS
A description of these components is provided below:

1. Implementation: this component encompasses the business logic, and its
functionality is to respond to service requests and manipulate them, by dealing

with the internal system components.

2. Endpoint: This is a URI, and its purpose is to expose the service on the Web, it

should be registered at the Web server for it to be available.

3. Service Description: This is the XML-based service description (usually in WSDL
but can be in other formats) this description exposes the types of inputs and

outputs and the endpoint.

4. Service Ontology/Vocabulary: An ontology/vocabulary defining concepts and
properties for describing services.

5. Semantic Service Description: Mechanisms to describe various aspects of the
service instance semantically, using the semantic service ontology mentioned

above, such as the services’ inputs, outputs, preconditions, and effects.

6. Domain Ontology: This provides a semantic description of the resources

referenced in the Service Description.

Chapter 1 Introduction

In EXPRESS stub-generation becomes a by-product of the mapping between
entities in the domain ontology and resources; therefore, by providing a domain
ontology describing the resources, endpoints can be automatically created as a

result of the mapping.

1.2 Hypothesis and Research Questions

The research hypothesis is as follows:

Utilising the semantics in the domain ontology and REST can provide a RESTful
SWS approach that (1) eliminates service ontologies/vocabularies and explicit
descriptions of interfaces, and (2) generates semantic descriptions as a by-product
of its provision, and this can simplify the development of SWS while preserving a

similar level of semantic expressivity as existing SWS approaches.

“semantic expressivity” refers to the degree to which the exposed semantic

descriptions offer automated discovery and composition.
“simplify” means it reduces development effort and increases development speed.

EXPRESS is the RESTful SWS approach devised and evaluated in this thesis. The
above hypothesis is tested by answering the following research questions:

1. Is it possible to eliminate explicit service descriptions and service
ontologies/vocabularies while their semantic descriptions become a by-
product of their provision?

Does it simplify the process of providing SWS services?
Can it provide a similar level of semantic expressivity to existing

approaches, and what are the trade-offs in terms of practicality?

Figure 2 illustrates how the hypothesis and research questions relate to
research activities, which is discussed further in the next section: Research

Methodology.

Chapter 1 Introduction

Utilise Semantics in the Domain ontology and REST to:
Eliminate explicit service descriptions and interface vocabularies
Obtain semantic service descriptions as a by-product of provision

Can it provide a similar level
of semantic expressivity to
existing approaches? And
what are the trade-offsin
terms of practicality?

t t tt
I I I

Does it reduce development

i ible ?
Is it possible ? offort?

Scenario Approach Online Expert Matchmaking
Analysis Design Demonstrator Reviews Experiment
Chapter 4 Chapter 5 Chapter 5 Chapter 7 Chapter 6

Figure 2 Hypothesis, research questions and research activities

1.3 Research Methodology

This section explains how the research questions were addressed by the research

activities.

Question one asks whether it is possible to have a RESTful SWS approach that:
(1) eliminates service ontologies/vocabularies and explicit interface descriptions
and (2) generates semantic descriptions as a by-product of its provision.

Three research activities were undertaken to answer this question.

Both the scenario analysis and approach design answer the first part of the
question, which is whether it is possible to eliminate service

ontologies/vocabularies and explicit interface descriptions.

The scenario analysis involved analysing the requirements of 20 Web service
scenarios from a resource-oriented perspective; this analysis results in identifying
interaction requirements that need to be addressed when utilising the domain

ontology and HTTP for semantically describing the services in those scenarios.

The approach design builds on the interaction requirements identified in the
scenario analysis and shows how those requirements can be fulfilled in EXPRESS,

the RESTful SWS approach proposed in this thesis.

With regard to the second part of question one, whether is it possible to have a

RESTful SWS approach that generates semantic descriptions as by-product of its

Chapter 1 Introduction

provision, the online demonstrator for EXPRESS shows how, by semi-automatically
generating interface stubs from the domain ontology, they become semantically

described.

Question two, which asks if EXPRESS reduces the development effort, is addressed
by the expert review, where experts in Semantic Web technologies assess EXPRESS
and compare it to two other SWS approaches: OWL-S (Martin et al., 2004) and
RESTdesc (Verborgh et al., 2011).

Question three addresses the level of semantic expressivity in EXPRESS, and the
trade-offs in terms of practicality. The expert review mentioned above addresses
both aspects. In addition, the matchmaker experiment compares the
discoverability of EXPRESS to OWL-S services by running the same matchmaker
algorithm on two service test collections, one in EXPRESS and the other in OWL-S
and compares the performance of the matchmaker in terms of speed and

accuracy.

1.4 Contributions

The work described in this thesis has a number of specific contributions that will

be of value to the Semantic Web service research community:

1. The description of an approach called EXPRESS, for offering Semantic RESTful
Web services from domain ontologies, which embodies this approach of
eliminating service descriptions and interface vocabularies, and an online
demonstrator of an EXPRESS deployment engine that shows how the semantic
descriptions are a result of the service provision.

2. An analysis of 20 real scenarios in five Web service communities of interest,
resulting in the identification of interaction requirements that guide the
design of EXPRESS.

3. A Resource-Oriented Modelling approach based on UML collaboration
diagrams.

4. A mapping between EXPRESSive descriptions and OWL-S descriptions.

5. The evaluation of EXPRESS in both a matchmaker experiment, which required
the creation of an EXPRESSive service test collection (EXPRESS-TC) and the
adaptation of a semantic matchmaker, and in an expert review, in which
experts were asked to compare EXPRESS to two other SWS approaches in terms

of development effort and practicality.

Chapter 1 Introduction
1.5 Thesis Structure

The thesis contains eight chapters which are summarised in this section.

This first chapter presented the motivation of this thesis, the hypothesis it
examines, the research questions and the methodology to answer them, and the

contributions.

Chapter 2 provides a background to the technologies and concepts that influence
the design of RESTful Semantic Web services. These are: middleware, the Web,
Web services, REST and the Semantic Web. It explains how Web services and
Semantic Web services were heavily influenced by earlier middleware approaches,
and how this influence led to adding extra layers of descriptions and treating the
Web as merely a transport layer for Web services. It also highlights the
distinguishing features in the Web, REST and the Semantic Web, which are:
abstracting distributed components as resources, not services, assigning them

URIs, and linking them together.

Chapter 3 discusses a total of 27 SWS approaches, which were either service or
resource-oriented, and the variations in their description means: whether they
introduced interface ontologies or vocabularies or introduced service descriptions
as extension mechanisms. Chapter 3 also discusses the research strategies
conducted to evaluate the viability of these approaches. It concludes by
establishing the research strategy for this thesis. Figure 2, above, illustrates how

chapters 4, 5, 6 and 7 fit into answering the research hypothesis.

Chapter 4 addresses the following two questions: if the resources are
semantically described in domain ontologies, what other aspects are required to
be expressed in an interface, so that the client can interact with the interface to
fulfil a specific scenario, and how can these be achieved using only REST and the
domain ontology? It presents the compilation and analysis of a total of twenty
representative Web service scenarios from five communities of interest.
Interaction requirements which emerged from the analysis are used inform the
design of the proposed RESTful SWS approach, EXPRESS.

Chapter 5 introduces EXPRESS, the RESTful SWS approach proposed by the thesis.
It provides an overview and shows how the interaction requirements identified in
Chapter 4 are achieved. It also presents a proof-of-concept demonstrator for

EXPRESS that shows how RESTful Services can be provided semi-automatically.

Chapter 6 assesses the discoverability of EXPRESSive descriptions, using a

standardised test-collection and evaluation environment. It discusses how service

Chapter 1 Introduction

matchmaking works in EXPRESS, the methodology for evaluation and the results

of the matchmaking experiment.

Chapter 7 discusses the expert review experiment, its methodology and results. In
the expert review, six experts were interviewed about EXPRESS as a Semantic Web
service approach, and how it compares to two other approaches: OWL-S and
RESTdesc.

Chapter 8 concludes the thesis. It discusses the overall results and conclusions in

the light of the hypothesis, and suggests future research directions.

Chapter 2 Web Services, REST and the Semantic Web

Chapter 2: Background: Web Services,
Representational State Transfer and the

Semantic Web

This chapter provides an overview of the technologies and concepts influencing
the design of RESTful Semantic Web services. It starts by providing an overview of
the Web then Web services and explains the effect of earlier middleware
technologies on their design, it then explains REST, its relationship with the Web
and how it has influenced the development of RESTful Web services. It also
discusses relevant Semantic Web technologies, and how Semantic Web services

emerged.

2.1 The World Wide Web (WWW)

The WWW was created at CERN by Tim Berners-Lee and Robert Cailliau in 1989. It
originally aimed to enable physicists to record and share data, results and news.
It was created as a distributed hypertext (text containing links to other text)
system, and Berners-Lee’s vision of the Web was heavily influenced by hypertext
pioneers such as Bush (1945), Engelbart (1963) and Nelson (1980).

There already existed successful hypertext systems with more complex hypertext
capabilities than the Web offered; however the Web’s focus on being distributed
over Wide Area Networks, rather than offering complex hypertext constructs

(Berners-Lee et al., 1992) turned out to be the key factor in its massive success.

Berners-Lee, with other collaborators, wrote proposals, protocols and developed
the first Web server and browser. This started in 1989, and by 1992 it grew
beyond CERN and expanded globally. This required formally written standards,
governed by standards organisations such as the Internet Engineering Task Force
(IETF), and later by W3C. Three main standards govern the Web, and have

11

Chapter 2 Web Services, REST and the Semantic Web

contributed to its massive success: URI, HTML and HTTP, and these are explained

next.

2.1.1 Uniform Resource Identifier (URI)

URI provides a universal naming mechanism for resources on the Web, and other
application layer protocols. However, it is mainly associated with the Web. It is
used for locating and linking documents and resources. Other than its
universality, the importance of the URI was its compactness. One string—the
URI—combines the protocol used to access the resource (usually HTTP, but it
accommodates others), the host where the resource resides, the name of the
resource itself, and query strings and fragments (Kozierok, 2005). Berners-Lee
authored the first URI standard RFC 1630 in 1994, published by the IETF (Berners-
Lee, 1994). The URI standard went through several refinements. RFC 3986 is the
current standard, published in 2005, co-authored by Roy Fielding, who

coordinated the community refinement efforts (Berners-Lee et al., 2005).

2.1.2 Hypertext Markup Language (HTML)

The second important standard, HTML (Raggett et al., 1999), governs the format
of the content, and defines constructs for linking to resources. HTML is a subset
(profile) of Standard Generalised Markup Language (SGML). SGML is an ISO
standard, originally designed to share machine-readable documents in industry
and government (ISO 8879:1986). Web browsers interpret the HTML document to
display a formatted page, and also GUI elements that a user can interact with,
such as links and forms. When a user submits a form or follows a link, the

browser uses the appropriate HTTP method to contact the server.

2.1.3 Hypertext Transfer Protocol (HTTP)

HTTP is a TCP/IP application layer protocol. It has evolved since it was first
defined by Tim Berners-Lee in 1991 (Berners-Lee, 1991): this original version was
known as HTTP/0.9. It was designed to be very simple; it was only intended for
document transfer and it had only one method, GET. In 1996, HTTP/1.0 (Fielding
et al., 1996), RFC 1945, was introduced, which discussed headers, intermediaries,
media types, caching, status codes and two more methods HEAD and POST, but it
had been in use for several years prior to that publication. This version was very
successful; however, it suffered from some limitations: 1) did not support multiple
URLs for the same IP, as the hostname was not required as part of the message, 2)

each HTTP session handled one client request, which increased traffic

12

Chapter 2 Web Services, REST and the Semantic Web

unnecessarily. 3) Limited support for caching and proxying affected performance.
In 1997, RFC 2068 HTTP/1.1 (Fielding et al., 1997) was introduced and later
enhanced and republished in 1999 as RFC 2616 HTTP/1.1 (Fielding et al., 1999).
HTTP/1.1 resolved the issues with HTTP/1.0, so it enhanced caching and proxying
mechanisms, supported multiple host names, enabled the retrieval of partial
resources, supported persistent connections and added content negotiation.
HTTP/1.1 also introduced new methods: PUT, DELETE, OPTIONS and TRACE.

2.2 Web Services

This section provides an overview of Web services and their origins in
middleware technologies and explains the influences of middleware concepts on

how these services were designed.

2.2.1 The Origins of Web Services

Ever since the ARPANET email application in the 1960s, distributed systems have
evolved from one-tier systems (on a single machine), to two-tier systems (client
and server), to three-tier (client-middleware-server) systems. The motivation
behind this development has been to generalise the mechanism of remote
interaction, not only for specific application types, such as email servers, or file
servers, but also for any application through middleware in three-tier

architectures.

The term “middleware” in computer science literature was popularised by
Bernstein (1996) in a CACM article (Emmerich et al., 2007). Middleware evolved as
a response to the increasing demand for distributed systems, It provided
programming paradigms to facilitate the development of software components

capable of remote interaction.
Middleware plays two main roles in distributed systems (Alonso et al., 2004):
1. As programming abstractions

To simplify the development process, middleware masks the complexities of
the underlying networks and protocols behind programming abstractions, for
example, procedures, messages, objects, services and resources, hence
enabling developers to concentrate on application-specific problems. The more

useful the abstraction is, the more likely it is to be adopted.

2. As infrastructure

13

Chapter 2 Web Services, REST and the Semantic Web

Those abstractions hide complex implementations provided by the
middleware infrastructure. The infrastructure provides both development
support, for example stub-generation, compilation and deployment, and run-
time support, such as interacting with network layers and marshalling and

translating messages.

RPC (Birrell and Nelson, 1984) was the first key middleware abstraction (Emmerich
et al., 2007). The main purpose of RPC was “to make distributed computing easy”.
The principal idea was to enable developers to invoke procedures on remote
hosts in a similar fashion to invoking local ones. RPC aimed to deal with both the
distribution and the heterogeneity in different systems. Clients and servers in an
RPC system interact through corresponding stubs; the stubs deal with
synchronisation, serialisation, data mapping and network communication. By
having the procedure’s interface (signature) defined in the form of Interface
Definition Language (IDL), IDL compilers can then generate the stubs
automatically. IDLs were introduced to overcome differences in programming

languages and machine architecture.

Another noteworthy aspect of RPC was “dynamic binding”, where a directory and
name server binds a client call with a service that matches the signature, hence

providing further decoupling between clients and servers.

Most middleware platforms were enhancements or extensions of RPC: they were
either built on top of RPC platforms (Alonso et al., 2004, p.44), or highly
influenced by the RPC paradigm (Emmerich et al., 2007). Object brokers
demonstrated this dependency by extending RPC to facilitate the development of
distributed object-oriented applications. Object Brokers were a response to the
shift towards object-orientation. Object methods replaced the role of procedures
in RPC. Specifications such as Common Object Request Broker Architecture
(CORBA) (Object Management Group, 1995) were established. CORBA allowed
brokers to expose object interfaces and provide access to them and to common
services that provide the functionality, such as concurrency, querying, naming,
licensing etc., needed by most objects (Alonso et al., 2004, p.54). A main issue
with CORBA is the incompatibility between different implementations. This is
mainly to do with overly complex and sometimes conflicting specifications
(Henning, 2006).

Although only RPC and CORBA are explained here, there are other extensively
deployed middleware paradigms, such as Transaction Process Monitors, Message
Brokers and Workflow Management Systems, all of which have been used in

Enterprise Application Integration (EAI). EAl aims to solve issues with integrating

14

Chapter 2 Web Services, REST and the Semantic Web

heterogeneous systems within one organisation. Nevertheless, middleware
platforms were expensive and unnecessarily complex, and did not provide an
adequate solution for business-to-business (B2B) demands (Alonso et al., 2004,
p.128). Unlike EAI, B2B integrates multiple organisations, which means integrating
over the Internet, rather than through LANs, hence adding more complexities and
scalability issues. Because there are different organisations to integrate, this also
means that they needed to support heterogeneous middleware platforms (Alonso
et al., 2004, p.128).

2.2.2 Web Service Standards

Originally the World Wide Web (WWW) emerged as a massively distributed system
for sharing documents. But these documents do not have to be static, they can be
dynamically generated according to the client’s actions. Technologies such as the
Common Gateway Interface (CGI) and server-side scripting emerged to support
the creation of dynamic websites, which expose and enable communication with a
server’s application logic through a Hypertext Markup Language (HTML)
presentation layer.

As a result of these advances, the WWW became a promising platform for B2B,
because it meant, unlike in RPC, RMI or other middleware protocols, integration
could happen by exchanging dynamically generated documents, which can pass

through firewalls. This led to considerable efforts in two directions:

1. The creation of application servers that encapsulate several middleware
technologies, making them accessible to Web applications.

2. Standardising the format of exchanged documents.

Extensible Markup Language (XML) (Bray et al., 2008) played a huge role in format
standardisation: it was both human-legible and machine-processable and provided
a standard way of structuring data and documents. Like HTML, XML is also a
profile of Standard Generalised Markup Language (SGML). The standardisation of
XML in 1998 (Bray et al., 1998), and its simple syntax, made it well-supported, as it

led to the development of a plethora of parsers and validators.

WWW Consortium (W3C) discussions for XML protocols for distributed
applications began in 1999. In 2000 SOAP (discussed in the next section), a
protocol for exchanging structured information, became an acknowledged W3C
submission. In 2001, WSDL (discussed in section 2.2.1.2), a protocol for describing
services also became an acknowledged submission. These two protocols form the

basic protocols for Web services. A third, less popular, specification, is Universal

15

Chapter 2 Web Services, REST and the Semantic Web

Description Discovery and Integration (UDDI), designed to facilitate the discovery
of Web services (Bellwood et al., 2002).

According to the W3C Web Services Architecture Working Group, a Web service is:
“a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a
manner prescribed by its description, using SOAP-messages, typically conveyed
using HTTP with an XML serialisation in conjunction with other Web-related
standards.” (Booth et al., 2004)

Service
Broker
A0 a uDD|
[*
WSDL) WSDL,
. 28
B Ly
OmlTine,
Service Service
Requester Provider

Figure 3 Web Services Architecture'

There are three entities involved in the Web service usage scenario: the service
provider, the service requester, and the service registry. The service provider
publishes a description of the service to a registry (publishing stage), a developer
(on the client side) then looks for a desired service in that registry (finding stage).
The developer gets the service description, constructs the messages accordingly,
and then binds to the service (binding stage).

The aim of Web services is to provide well-defined descriptions for underlying
components, and offer them a Web interface. These services can then be

discovered, invoked and composed to perform a workflow of tasks.

2.2.2.1 Simple Object Access Protocol (SOAP)

One of the main Web service Technologies is SOAP (Box et al., 2000) which
provides a mechanism for representing a service call and its response in XML. The
word “Object” in the acronym indicates the influence of the Object-Oriented

paradigm at that time.

Box (2001) (the co-author of the SOAP specification) explains that what motivated
SOAP was the need to design a protocol for exchanging messages over the

Internet, and to design an XML serialisation format for those messages. They

' Web Services Architecture, Wikipedia, https://en.wikipedia.org/wiki/File:Webservices.png

16

https://en.wikipedia.org/wiki/File:Webservices.png

Chapter 2 Web Services, REST and the Semantic Web

reviewed several RPC protocols and serialisation formats and aimed to satisfy the
majority of cases targeted by those specifications. Box also emphasises that much
of the effort at the beginning was to overcome the lack of a typing mechanism in
XML; however the focus shifted to integrating the XML schema, once it became

standardised.

SOAP defines messages as envelopes containing a header and a body. Originally,
SOAP was designed to work over the Hypertext Transfer Protocol (HTTP).
However, in version 1.1, it was improved so that it could be used in other
transport protocols. Version 1.2 clarifies and extends version 1.1 for protocol

binding and XML encoding.
The SOAP specification was written for the following purposes:

1. Standardising a message structure in XML: an envelope, containing a header
and a body, each of which could have multiple blocks.

2. Standardising how to structure an RPC request containing the variables and
method name, and its response in XML, containing the results. In addition to
sending messages as RPC, SOAP offers the option to exchange documents.

3. Defining the rules for processing the messages: how different entities have
different roles, and the elements the entities must understand, and actions to
take if they do not.

4. Describing SOAP bindings to HTTP and SMTP, and a generic binding
framework to other protocols.

5. Defining how to encode data in XML, this led to the design of the SOAP data

model.

The SOAP data model aims to represent data as object graphs. The SOAP encoding
defines the serialisation of the SOAP model into XML. The definition of this model
took up a substantial proportion of the effort invested in designing SOAP and
increased its complexities. This was because the XML Schema at that time was far
from standardised. Box, the co-author of SOAP explains: “SOAP's original intent
was fairly modest: to codify how to send transient XML documents to trigger
operations or responses on remote hosts. Because of our timing, we were forced
to tackle issues that the Schemas WG [Working Group] has since solved, which
caused the ‘S’ in SOAP to be somewhat lost.” (Box, 2001).

2.2.2.2 Web Service Description Language (WSDL)

WSDL (Christensen et al., 2001) is an XML language used to describe Web service

interfaces. It plays for SOAP services the same role as IDL for RPC and other

17

Chapter 2 Web Services, REST and the Semantic Web

middleware platforms. A WSDL document describes the XML types of inputs and

outputs of the service. A WSDL 1.1 document is structured as follows:

1. Types: this part of the WSDL file defines the exchanged data types in the XML
schema.

2. Messages: this defines the structure of exchanged messages, and designates a
message part for each parameter.

3. Operation: this defines the inputs and outputs of a service, and its message
exchange pattern, which can be any of: one-way, request-response, solicit-
response and notification.

4. Port type: this defines the port type or interface groups in the operations
offered by the Web service.

5. Binding: this specifies the SOAP binding the RPC or document and the
transport protocol.

6. Service: this contains the actual ports, with their corresponding URIs; however,

these are usually available at the same address.

Even though WSDL 2.0 became a W3C recommendation in 2007 (Moreau et al.,
2007), WSDL 1.1 is still more popular and has more tool support. One of the
objectives of the WSDL 2.0 model was to better support RESTful Web service

descriptions, these are explained further in section 2.3.

2.2.3 Service-Oriented Architecture

The emergence of Web services popularised the vision of Service-Oriented
Architecture (SOA). SOA can be defined as: “A software architecture that starts
with an interface definition and builds the entire application topology as a
topology of interfaces, interface implementations and interface calls.” (Natis,
2003). SOA takes a unified view of both Enterprise Application Integration (EAI)
and Business-to-Business (B2B), where systems in organisations can integrate
internally in a similar fashion to integrating with other organisations externally.

According to Erl (2008), SOA principles are: standardised service contracts, loose
coupling, abstraction, reusability, statelessness, autonomy, discoverability,

composability, and service-orientation and interoperability.

Because of Web services’ standardisation and their seamless use of the WWW as a
transport medium, they became a basic component of SOA. The vision of SOA was
to have loosely-coupled reusable services, and dynamically build applications

from them, thus enabling integration across enterprises. This vision drove the

18

Chapter 2 Web Services, REST and the Semantic Web

research behind Semantic Web services, which will be discussed in more detail in
Chapter 3.

Although the WSDL/SOAP approach to Web services has become a widely accepted
standard and significantly reduced coupling compared to CORBA, RPC and other
middleware technologies, the RESTful approach based on the Web architecture
where resources are key actors, as discussed next, reduces coupling more, scales

further, and takes full advantage of the Web architecture.

2.3 REST Representational State Transfer (REST)

2.3.1 Origins

Fielding, in his PhD dissertation, introduced the REST architecture style (Fielding,
2000). It aimed to realise and sustain the architectural aspects that made the
Web—the HTTP protocol—succeed as a scalable network-based hypermedia
system. Fielding was an author of the Web standards such as HTTP and URI, and
in his dissertation he discussed the REST constraints on a system. These are: it is
client-server, stateless and enables caching; it has a uniform interface, is layered
and enables code on demand. The uniform interface constraint is further
explained by the following constraints: identification of resources, unified
semantics for resource access methods, manipulation of resources through
representations, self-descriptive messages, and hypermedia as the engine of the
application state. The client-server constraint makes the system scalable, portable
and decoupled. The statelessness constraint means that a request from the client
must contain all the information needed to process this request; this enables
simpler replication of the server, and hence more scalability. It also increases the
reliability of the system. The cache constraint increases the efficiency and
scalability. The layering constraint increases modularity, reusability, scalability
and resilience. Code on demand is an optional constraint which simplifies client

implementation.

Moreover, Vinoski (2008b) explains how the uniform interface constraints
maximise reuse. Because resources have a uniform interface, client applications
are simplified: there is no need to code them for customised interfaces. Error
handling becomes uniform. The server guides the client throughout the
interaction, hence maximising the decoupling. It also simplifies the adding of
intermediaries, increasing the modularity and scalability. The system design
becomes simpler and extensible, which decreases the number of defects. The

uniform interface constraint of having the application state controlled by

19

Chapter 2 Web Services, REST and the Semantic Web

hypertext transitions provides a standard method for interaction and enables
further decoupling between the server and the client. Hence REST was never
intended as a Web service architecture; instead, it was a set of constraints on
network-based systems “specifically targeted at distributed information systems”
(Fielding, 2000, p.100).

2.3.2 Resource-Oriented Architecture

REST’s potential as an architectural style for Web services was identified by Mark
Baker and Paul Prescod (Fielding, 2007), who advocated it as alternative to the
SOAP approach (Prescod, 2002). Developers welcomed the RESTful Web service
approach. They saw it as a natural fit for the Web: it provided a simple, uniform
interface and did not impose additional layers, as did WSDL/SOAP. Many service
providers, such as Google, Yahoo and Amazon, started offering RESTful Web
services. The increasing popularity of RESTful Web services® is based on many
factors: they are lightweight, provide easy accessibility, and are resource-

oriented, making them declarative (Zhao and Doshi, 2009).

This rapid uptake came at a cost: RESTful Web services were not always RESTful.
This was because of the misconception that as long as HTTP methods were used,
then the Web service was inherently RESTful.

The so-called RESTful Web services violate two REST constraints mentioned above:
the uniform interface and statelessness. The other constraints are maintained
because they are embedded in the HTTP servers’ architecture and do not require
implementation. Conversely, the uniform interface and statelessness required
implementation for each Web service. An example of violating the uniform
interface is the use of the HTTP method GET for updates; this in fact should have
a read-only effect. Violating the statelessness constraint is by having the server
store client-specific information, which should be stored on the client and sent

when needed to the server.

These violations happened because there was no authoritative reference for
designing RESTful Web services. Fielding’s dissertation was an abstract
explanation of the REST constraints and rarely provided examples for existing
scenarios or technologies. The need for a guide on how to design RESTful Web
services was met by Richardson and Ruby’s book ‘RESTful Web Services’
(Richardson and Ruby, 2007). This book, which provides practical examples and

highlights common mistakes, is considered an authoritative resource among the

2 According to the Programmable Web, on 16.7.2013, 69% of Web Service APIs are RESTful
http://www.programmableweb.com/apis.

20

http://www.programmableweb.com/apis

Chapter 2 Web Services, REST and the Semantic Web

REST community. The authors, however, focus on Resource-Oriented Architecture
(ROA), which is an architecture that adheres to REST constraints and provides a

concrete set of rules for designing resources and using HTTP methods.

The main idea in ROA is for the server to identify the resources in the Web
service, provide a uniform interface to those resources—a set of actions—through
which a client can create, read, update and delete the resources. These actions are
mapped respectively to the HTTP methods POST, GET, PUT and DELETE, taking
into account the HTTP constraints on these methods: GET is read-only and GET,
PUT and DELETE are idempotent. ROA also emphasises the use of the standard
HTTP error messages. They introduced a design method for developing Web

services. Its steps are as follows (Richardson and Ruby, 2007):

1. Identify the data set; and

2. Map the data into resources.

Then, for each type of resource:

3. Specify the URlIs;

4. Expose a subset of the interface (establishing which HTTP methods can be
performed on the resource—these methods are GET, PUT, POST and
DELETE);

5. Design the representations sent and accepted to and from the client, and
decide on the media types;

Integrate the resources into existing resources using hyperlinks and forms;

7. Consider the typical course of events; and

Consider error handling.

These steps assume that resources have types, just before step 3, as it stated “for
each type of resource”. Therefore in most cases when designing an interface, the
developed endpoint URIs represent resource types, not individual resources, the
individual resource URIs are created dynamically. The conventions of having
resource types and methods that are applied to them, have their roots in object-
oriented (OO) design, this is an expected consequence considering the object-
oriented influences on the design of HTTP3, as the abstract of HTTP/1.0 states
that HTTP is:

* This view is also held by other influential members of the W3C such as Dan Connolly

“Distributed objects are the very heart of the Web, and have been since its invention. HTTP was
design as a distributed realization of the Objective C (originally Smalltalk) message passing
infrastructure: the first few bytes of every HTTP message are a method name: GET or POST. Uniform
Resource Locator is just the result of squeezing the term object reference through the IETF
standardization process.” Connolly, D. (1997). A draft of the editorial of the Mar/Apr 1997 issue of
Web Apps Magazine [Online]. Available: http://www.w3.org/People/Connolly/9703-web-apps-
essay.html [Accessed 12/12/2013].

21

Chapter 2 Web Services, REST and the Semantic Web

“a generic, stateless, object-oriented protocol which can be used for many
tasks, such as name servers and distributed object management systems,

through extension of its request methods (commands).”

This OO influence has been passed on to the design of RESTful Web APIs, not only
because of its aforementioned influence on the design of HTTP, but also because
of the underlying OO programming languages and frameworks used to develop
those APIs such as Java, PHP, .NET, etc. and also the legacy applications they are
providing an interface for. As a result several parallels between ROA and OO
exist, as both approaches model the world as entities manipulated by methods,

they both have the notion of factories, and typed entities.

2.3.3 REST vs. ROA

The differences between REST and ROA can be summarised as follows:

1. REST is a set of architectural constraints, and a study of how they can be
applied to HTTP development; ROA is an architecture based on REST that uses
HTTP for developing Web services.

2. REST describes the requirements of the uniform interface, but it does not
restrict it to a set of methods. However, in ROA, the main effort lies in designing
the uniform interface by identifying resources, giving them URIs and deciding

which HTTP methods can be performed on them.

3. Although ROA required the use of hyperlinks to guide a client’s state, Fielding
(Fielding, 2007; 2008a) criticises ROA for not focusing on the hypermedia
constraint. This constraint means the use of media types to specify not only the
representations of the resources, but to specify also hypermedia controls that
denote what actions can be performed. As an example in HTML, from the anchor
element <a>, the client knows it can perform a GET, also from <form> the client
performs a GET or POST. Another example from the Atom Publishing Protocol (APP)
(Gregorio and de hOra, 2007) is the way it uses rel="edit" to specify entries that
are editable; hence atom clients know, from the media type, these entries accept
PUT and DELETE.

Fielding (2008b) explained the reason media type design was ignored in ROA:
“To some extent, people get REST wrong because | failed to include enough detail
on media type design within my dissertation. That’s because | ran out of time, not

because | thought it was any less important than the other aspects of REST.”

However even though ROA Web APIs are not entirely RESTful, they are extremely

popular. There are benefits from adhering to the Web Architecture, or parts of it,

22

Chapter 2 Web Services, REST and the Semantic Web

as Richardson, the co-author of the RESTful Web services book, argues in his
RESTful Maturity Model (Richardson, 2008), in which he elaborates on the use of
media types.

The maturity model focuses on the use of three elements: resources, HTTP verbs
and hypermedia, and defines four levels (0-3), to grade the APl according to the

REST constraints.

Level O: HTTP Tunnelling

An example would be SOAP, which is usually sent over HTTP using a POST
method. It does not utilise any properties of the transfer protocol. Interaction
usually happens through a single endpoint (URI); even though there may be
several services, the individual services are accessed using a different addressing

mechanism, SOAP ports, for example.

Level 1: Resources
When resources are given different URIs, a URI is an endpoint to interacting with
the resource. However, in this level, only one HTTP method is used, regardless of

the semantics of the interaction.

Level 2: HTTP Verbs (Methods)

At this level HTTP methods with correct semantics should be used, GET for read
only operations (safe), DELETE and PUT should be idempotent, and POST is for
non-safe and non-idempotent operations. In addition, the use of the correct HTTP

response codes is required.

Level 3: Hypermedia Controls

The Web services at this level adhere to the ‘hypermedia as the engine of the
application state’ constraint. This means the responses are designed to contain
hypermedia controls that tell the client what actions can be taken next. These
hypermedia controls can be either from ATOM (Nottingham and Sayre, 2005) or

defined in a new application-specific media type.

Moreover, although typically only APP (Gregorio and de hOra, 2007) and its media
type ATOM are acknowledged to have reached this maturity level, recent
publications such as Allamaraju (2010) and Webber et al. (2010) have enabled
developers to understand the hypermedia constraint. Nevertheless, debates exist
in the REST community on what media types to use. Opinion is divided between
the use of generic media types, such as APP or customised media types for

specific applications.

23

Chapter 2 Web Services, REST and the Semantic Web

2.3.4 Comparison to SOA

As discussed previously, the main influence for WSDL/SOAP services was RPC. For
RESTful Web services, the main influence was the Web architecture, and in
particular the HTTP protocol. These influences were clearly manifest in the ways
interfaces were conceptualised and abstracted: in the contrast between services
and resources, and in the introduction of a machine-readable description layer in
WSDL/SOAP services.

A description of the interface usually includes the address of the service, how to
invoke it, and the structure and format of exchanged messages. WSDL
descriptions of SOAP services state the address using the elements of port,
binding and operation; the latter specifies the name of the actual operation to
invoke (one endpoint can have more than one operation). The type and message
elements specify how messages are structured, and in SOAP 1.1 a service was
always invoked by sending an HTTP POST request with a SOAP message to the
endpoint (SOAP 1.2 supported HTTP GET).

On the other hand, for RESTful Web services developed in practice, the interface
descriptions are written as text in HTML pages to be read by developers. The
descriptions state the endpoints’ URIs, the HTTP method, and the structure and
media type of the accepted messages. The HTTP methods invoked on those URIs
could be any of the four HTTP methods. Although there are specifications such as
WADL (Hadley, 2009) and WSDL 2.0 that provide machine-readable descriptions for
RESTful Web services (as WSDL does for SOAP), because RESTful Web services
have simpler interfaces, these specifications not nearly as essential as WSDL is for
SOAP (Richardson and Ruby, 2007).

On this basic level of comparison, RESTful Web services are simpler than
WSDL/SOAP ones for providing a programmable interface. They have no
description layer, and interacting with them is very simple; for GET requests, only
a web browser is needed, and for other requests, an HTTP client library is

sufficient.

One of the benefits of WSDL descriptions is for tools that automatically create
client stubs to interact with the SOAP services. As noted above, interacting with
RESTful Web services is very simple in comparison, which eliminates the need for
this automation. On the contrary, in many cases the automatically created code

introduces unnecessary complexity (compared to RESTful Web services), which is

24

Chapter 2 Web Services, REST and the Semantic Web

supposed to be hidden by those tools; however, when there is a need to debug the

code, this complexity is amplified.

SOAP and WSDL were designed to provide versatility. For example, although SOAP
typically uses HTTP as its transport protocol, it can also use other protocols such
as the Simple Mail Transfer Protocol (SMTP) (Klensin, 2001). SOAP was designed
so that intermediaries could process the messages and forward them. This is
what Pautasso et al. (2008) referred to ‘as freedom of choice’ in WSDL/SOAP
compared to ‘freedom from choice’ in RESTful Web services. The ‘freedom of
choice’ mindset in the WSDL/SOAP approach is evident in the body of Web service
specifications built on top of them, which are typically referred to as ‘WS-*’. These
where developed to address the vision of SOA (Section 2.2.3), where integration in
EAl and B2B can be achieved using the same technologies and approaches, so
more standards and specifications needed to be developed to address the
requirements of these complex domains, such as support for security, reliability,
transactions and other Quality of Service (QoS) requirements. For example,
specifications such as WS-Addressing (Gudgin et al., 2006) and WS-Security
(Nadalin et al., 2006) were developed to offer advanced features: for example, WS-
Addressing is designed so that addresses can be embedded in SOAP messages. It
also enables the specification of ‘from’ and ‘reply-to’ addresses. WS-Security and
its related specifications provide end-to-end security, unlike in HTTP, where
security is limited to the transport level;, moreover, it enables the sender to
encrypt part or all of the message body. There are many other WS specifications

that, while they add features, nevertheless introduce further complexity.

Critics of REST argue that it does not offer the tool support and Quality of Service
(QoS) options needed for enterprise application scenarios and that it is better
suited to ad hoc integration over the Web (Pautasso et al., 2008). This is because
Web services standards were driven by vendors like IBM and Microsoft, building
for the SOA vision, whereas REST supporters tend to be independent developers,
arguing for simpler and less vendor-specific standards. However, REST has
become the focus of increased interest and initiatives that offer QoS, for example
Webber et al. (2010) discussed RESTful alternatives for providing security,
reliability and transactions. Moreover there have been REST composition
initiatives, such as specifying Business Process Execution Language (BPEL) for
REST (Pautasso, 2009).

25

Chapter 2 Web Services, REST and the Semantic Web

2.4 The Semantic Web

Tim Berners-Lee’s vision for the Semantic Web was to provide a machine-
comprehensible Web, a Web of Data where the data is expressed in a form that

enables intelligent reasoning (Berners-Lee, 1998).

Representing machine-comprehensible data, where systems can infer meaning,
was studied and implemented as knowledge-representation systems by artificial
intelligence researchers years before the Web was developed. These systems
were centralised, requiring users to share the same concepts, but it meant that
the inferences the system made were accurate. Moreover, these systems limited
the questions that could be asked to questions they could answer. The Semantic
Web sacrifices the accuracy and reliability of knowledge-representation systems
for the sake of interoperability, openness and decentralisation, in the same way
that the Web sacrificed the accuracy and reliability of hypertext systems for the

same reasons (Berners-Lee et al., 2001).

The Semantic Web is based on four fundamental principles (Allemang and
Hendler, 2011):

1. Anyone can say Anything about Any topic (the “AAA” slogan).

2. Open World Assumption (OWA), meaning that the absence of information
does not mean it does not exist; there is always more information that
could be known, this is in contrast to the Closed World Assumption (CWA),
typically applied in databases and hence more intuitive, where absence of
information means that information does not exist.

3. Nonunique naming: the same entity could be known by more than one
name.

4. The network effect, where the more people join the Semantic Web, the

more valuable it becomes.

To achieve the Semantic Web vision, languages such as Resource Description
Framework (RDF) and Web Ontology Language (OWL) describing resources and
relationships between resources were developed. The Semantic Web layer stack,
illustrated below, illustrates how these technologies fit with Web technologies
such as XML and URLI.

26

Chapter 2 Web Services, REST and the Semantic Web

User interface and applications

Trust

Proof
Unifying Logic
. Rules: Q
Ontologies: OWL <
Querying: RIF/ISWRL -g
SPARQL =]
Taxonomies: RDFS 2
=
Data Interchange: RDF
Syntax: XML
|dentifiers: URI ‘ ‘ Character set: UNICODE

Figure 4 Semantic Web Layer Cake *

2.4.1 Resource Description Framework (RDF)

RDF (Beckett and McBride, 2004) models data as assertions about resources. Each
assertion is a triple, in the following form: subject-predicate-object. A collection of
RDF triples represents a labelled directed multi-graph, where subjects and objects
are nodes and a predicate is a link from subject to object. RDF is designed as

triples to enable logical reasoning,

RDF identifies subjects, predicates (properties) and objects using URIs. A new
concept or relation can be defined easily by giving it a URI on the Web, hence the
“AAA” slogan. Originally, RDF was specified as “a foundation for processing
metadata”, as stated in the first RDF W3C working draft (Lassila and Swick, 1997).
However, the RDF data model described above proved successful in representing
data as well. RDF is serialised in XML. RDF/XML is the standard syntax, but it has
other popular serialisations, such Notation 3 (N3) (Berners-Lee et al., 2008), which

is more compact and readable than RDF/XML.

The RDF Schema language (RDFS) (Brickley and Guha, 2004) complements RDF, it
is an approach to describe RDF vocabularies using RDF. It defines a vocabulary for
describing vocabularies. In RDF there are no mechanisms to define a class (type)
of resources, nor information about properties, such as which types of resources
are described by a property, and what is the type of values of these properties.
Therefore RDF Schema extends RDF so that these types of descriptions are

possible, hence enabling a logical reasoner to infer additional information from

* Semantic Web Stack, Wikipedia http://en.wikipedia.org/wiki/Semantic_Web_Stack

27

http://en.wikipedia.org/wiki/Semantic_Web_Stack

Chapter 2 Web Services, REST and the Semantic Web

the data. Ontologies are another Semantic Web mechanism for describing
vocabularies, the Web Ontology Language (OWL) is discussed next.

2.4.2 Web Ontology Language (OWL)

OWL is a language for representing ontologies on the Web. It provides more
expressive formalisms than RDF Schema, and hence more inferences. Ontologies
emerged from research on modelling the domain of interests in the design of
knowledge-based systems. They are used to conceptualise domains and share this
conceptualisation. Ontologies occupy much of the research on the Semantic Web:
for example, research areas include ontology design, engineering, evolution,

management, reasoning, and alignment.

OWL is the standard language for ontologies on the Semantic Web. It is based on
Description Logic (DL). DLs are formal knowledge representation languages, and

their levels of expressivity vary. Baader (2003) provides a good overview of DL.

OWL ontologies have the following components: individuals (instances),
properties and classes. A property has a domain and range. Properties can be
either object properties (link to other individuals) or data properties (have literal
values). Properties in OWL can be functional, inverse, transitive and symmetric.
OWL enables complex class expressions. Classes can be defined using set
operators, constraints on properties (cardinality, range, value), and universal and
existential restrictions. Reasoning over ontologies can answer questions such as:
Which class does an instance belong to? Is it possible to satisfy the constraints in
the ontology (is it consistent)? And what are the subclasses and super-classes of a

given class?

There are two main specifications of OWL, both are W3C recommendations: OWL
1.0 in 2004 (McGuinness and Harmelen, 2004) and OWL 2 in 2009 (Hitzler et al.,
2012). OWL 1.0 has three sublanguages:

1. OWL Lite: The least expressive language of the three, does not support the use
of some modelling constructs or restricts their use; it aimed to simplify the
implementation of supporting tools.

2. OWL DL: More expressive than OWL Lite, and computationally complete and
decidable.

3. OWL Full: The most expressive of the three: it uses the same modelling
constructs as OWL DL. However OWL Full does not restrict the way they are

used; as a consequence, there are no computational guarantees.

28

Chapter 2 Web Services, REST and the Semantic Web

OWL 2 is fully backward compatible with OWL 1.0, but is more expressive. For
example, it enables the definition of keys, chained properties, and meta-modelling.
OWL 2 has three sublanguages (profiles), which target efficiency for different

application scenarios:

1. OWL EL: For applications that have ontologies with a large number of classes
and properties, reasoning can be performed in a polynomial time with respect
to the size of the ontology.

2. OWL QL: For efficient query answering in applications that have large volumes
of instance data.

3. OWL RL: Restricts modelling constructs, so the language resembles an OWL-

based rule language, aimed at applications that require scaled reasoning.

2.4.3 SPARQL Protocol and Query Language (SPARQL)

The SPARQL specification (Prud’Hommeaux and Seaborne, 2008) is a widely
adopted W3C recommendation that defines a query language for RDF datasets,
and a protocol for accessing SPARQL endpoints. Queries in SPARQL contain a
graph pattern (a set of triples containing variables) and when processed,
matching RDF graphs are returned from the dataset. New RDF graphs can be
created using the keyword CONSTRUCT; this can be used to transform the
structure of retrieved data. Update queries have been added to the specification,
enabling the modification of the underlying datasets using INSERT and DELETE
queries. This extension was proposed in 2009 (Schenk and Gearon, 2009), and

became a W3C recommendation 2013 (Gearon et al., 2013).

2.5 Linked Data

The Semantic Web community realised that the Web of Data, also referred to as
Linked Data, had to be specifically created to expedite the emergence and
spreading of the Semantic Web vision. The term ‘Linked Data’ was coined in Tim
Berners-Lee’s Design note in 2006 (Berners-Lee, 2006). It states four rules for

publishing Linked Data:

Use URIs as names for things
Use HTTP URIs so that people can look up those names.
When someone looks up a URI, provide useful information, using (RDF,
SPARQL)
4. Include links to other URIs, so that they can discover more things.

29

Chapter 2 Web Services, REST and the Semantic Web

These rules show the movement from the earlier Semantic Web perspective on
URIs as only identifiers, to using them as means for resource representation
retrievals. The note also specifies a 5-star rating system for Linked Open Data.
The rating system promotes publishing that is open-licensed, using open W3C
standards (RDF and SPARQL), and linking the data to other published datasets.
Recent statistics show that the overall number of triples published as Linked Data
is 61,976,332,795° and is rapidly increasing. This trend is proving stronger with
the publishing of government datasets in both the UK and the USA.

2.5.1 Publishing Linked Data

This section overviews some issues with publishing Linked Data, which are
explained further in (Bizer et al., 2009) and (Heath and Bizer, 2011).

1. Minting URIs

This involves selecting the structure of the URI to represent classes properties
and individuals, and should follow guidelines for making them stable and simple
(Sauermann et al., 2008; Heath and Bizer, 2011).

2. Choosing RDF Vocabularies.
In describing the dataset well-known vocabularies should be used, and where new

vocabularies are defined, then these should be mapped to other vocabularies.

3. Linking
This involves linking resources in the published dataset to other Linked Data

datasets.

4. Metadata

Mechanisms have been introduced to describe datasets and how they are linked
to other datasets, such as vocabulary of interlinked Datasets (voiD) (Alexander et
al., 2009) and the Co-reference Resolution Service (CRS) (Glaser et al., 2009).

5. Publishing Tools
These can be classified as tools that serve the contents of RDF stores as Linked

Data, and tools that provide a Linked Data view to legacy data (Bizer et al., 2009).

2.5.2 Linked Data Applications

Bizer et al. (2009) classified Linked Data applications into: browsers, such as
Tabulator (Berners-Lee et al., 2006), search engines, such as Falcons (Cheng and

Qu, 2009) and Sindice (Tummarello et al., 2007), and domain specific applications:

> LODStats, 10 April 2014, http://stats.lod2.eu/

30

http://stats.lod2.eu/

Chapter 2 Web Services, REST and the Semantic Web

these harvest the data and the links to address complex informational

requirements.

Recently there has been interest in the relationship between Linked Data and Web
services, and in particular Semantic Web services: Pedrinaci et al. (2010a) present
two views of their relationship—one is that the increase of semantic data on the
Web presents a very promising environment for annotating Semantic Web services
and publishing those annotations. The second is that complex services can be
built to produce and consume Linked Data; the capabilities of these services go

beyond data integration to cause real world effects.

A RESTful perspective to the relationship between Linked Data and Web services
is realised in the recent W3C “Linked Enterprise Data Patterns Workshop”, and the
resulting member submission “Linked Data Basic Profile 1.0” (Nally et al., 2012a),
where conventions have been proposed to update Linked Data RESTfully. This
submission reflects the increasing interest from both research and enterprise
communities in the rapid growth in the size of published Linked Data. These
conventions in the submission set out a set of standard patterns, design choices,
and best practices to help developers when designing a Linked Data architecture
(Nally et al., 2012b).

2.6 Semantic Web Services

As discussed earlier in this chapter, WSDL provides syntactic-level descriptions
for the services. Syntactic descriptions are insufficient for the automation or semi-
automation of service discovery and composition. For example, stating that a
service accepts an integer and returns a string will not offer information on what

the service does, especially on a Web-scale.

The Semantic Web services vision (Mcllraith et al., 2001; Ankolekar et al., 2001)
utilises Semantic Web technologies to achieve automatic discovery, invocation,
composition and execution of Web services. The approach is to augment or mark
up (Mcllraith et al., 2001) Web services with semantic descriptions that can be

interpreted and reasoned about by semantic-aware clients.

According to Cabral et al. (2004), Semantic Web service requirements can be

categorised into three dimensions: activities, architecture and service ontology.

1. Activities define the functional requirements expected from SWS
infrastructures. These are: publishing, discovery, selection, composition,

invocation, deployment and ontology management.

31

Chapter 2 Web Services, REST and the Semantic Web

2. Architecture is the set of components to achieve the activities mentioned
above. These components include: a register, a reasoner, a matchmaker, a
decomposer and an invoker.

3. Service ontology can differ amongst approaches and involves Inputs;
Outputs; Pre-conditions: the necessary state of the world for executing the
service; Post-conditions: the state of the world after executing the service
successfully; Cost; Category; Atomic service; and composite service:

whether the service can be described as a composition of atomic services.

The first dimension, activities, and the third, Service ontology, are the most
significant, because activities define the requirements the SWS are expected to
achieve, regardless of any architectural components used to achieve them, and
the Service ontology addresses the elements typically contained in the semantic

service description.
The activities are explained briefly below:

1. Publishing
Publishing is concerned with advertising the services’ capability. It assumes there
is a registry where these service descriptions are published. The concept of

service registries can be traced back to RPC (directories), then UDDI.

2. Discovery

This means the discovery of services matching a given query. In the case of
Semantic Web services the matching depends on service’s semantic descriptions,
which involve name, input, output, preconditions and postconditions. The
selection activity is concerned with choosing between two or more matching

services, based on other criteria, such as cost or category.

3. Composition or choreography
This is concerned with the automatic or semi-automatic composition of larger

services from other services, and the control of how that composition is executed.

4. Invocation
This activity happens after the service is discovered and selected. It is concerned
with the actual invocation of the service, like preparing inputs and dealing with

exceptions.

5. Deployment
Cabral et al. (2004) assume that the deployment of a Web service is independent
of the publishing of its semantic description. However, there can be mechanisms

for instance deployment.

32

Chapter 2 Web Services, REST and the Semantic Web

6. Ontology management
Traditional Semantic Web services rely heavily on ontologies for both the domain
and the service description. This requires management of those ontologies in

terms of upgrading, maintenance, and accessibility.

Semantic Web service approaches will be surveyed in Chapter 3.

2.7 Summary

This chapter discussed approaches to achieve interoperability in distributed
systems, and the influences of the Web and later the Semantic Web in developing
Web services and Semantic Web services as solutions for distributed

interoperable systems.

It explained how Web services and Semantic Web services, were also heavily
influenced by earlier middleware approaches. For example, RPC provided IDL
descriptions for procedures, Web services provided WSDL descriptions for
services, and Semantic Web services augmented and annotated those service
descriptions further. Another result of this influence is that the Web is merely a
transport layer for Web services.

This chapter explained that abstracting distributed components as resources, not
services, assigning them URIs, and linking them together, has been the
distinguishing feature in the Web, REST and the Semantic Web.

33

Chapter 3 Approaches to Semantic Web Services

Chapter 3: Approaches to Semantic Web

Services

Chapter 2 discussed how traditional Web services were heavily influenced by
earlier middleware approaches, and how that resulted in a divergence from how
the Web works. It also discussed REST and how resource-oriented and RESTful
Web services emerged. The different semantic technologies used in the service
descriptions were also explained in Chapter 2, together with the functionalities
and goals of SWS.

In this chapter several approaches for implementing Semantic Web services are
reviewed. Sections 3.2 and 3.3 discuss a total of twenty-seven SWS approaches.
These sections show how the differences between how traditional Web services
and RESTful ones are conceptualised have led to interesting variations in how
they are semantically described. Section 3.2 includes approaches that are service-
oriented, whereas section 3.3 covers those that are resource-oriented. Section 3.4
further classifies these approaches according to whether they introduce service
or resource ontologies/vocabularies or extension mechanisms. Section 3.5

compares the approaches according to the capabilities they offer.

SWS approaches are considered emergent, and have not been adopted outside
their research communities (Wilkinson et al., 2009). Nevertheless they differ in
their maturity; some have supporting frameworks and architectures, whereas
others only present descriptive approaches. Since these approaches have not been
used in practice, with the exception of demonstrating use cases, there is no actual
user base to evaluate their viability. Therefore, the research activities undertaken
by the proposed approaches to provide evidence for their viability are of
relevance to developing an evaluation methodology for EXPRESS. Section 3.6

discusses these approaches in more detail.

35

Chapter 3 Approaches to Semantic Web Services
3.1 Meta-Models in SWS Descriptions

Fensel (2004) states that there are two paths to SWS (Figure 5). The first starts
from traditional Web services and complements them with semantics. The other
starts from the Semantic Web and develops it further by adding more ontologies
and semantic annotations, with services that make use of this data then emerging
gradually.

Web Services | Semantic Web
UDDI,WSDL,SDAU Services

!
|

Web I_ I;Im-emtiu: Web
URIHTML HTTP | XML, RDF,OWL

Cynamic

L J

Semantics
Figure 5 Paths to SWS (Fensel, 2004)

Figure 5 implies that Web services add dynamicity to the Web; however, dynamic
Web pages predate Web services, although from a program point of view, utilising
the functionality offered by a remote server, and hence dynamically interacting
with it, was facilitated by Web services. This was a result of standardised,
machine-readable service descriptions and standardised formats for exchanged
data. One possible reason that RESTful Web services became a much more
popular approach was that they do not need machine-readable service
descriptions and blur the distinction between Web pages and Web services. The
difference is thus found in the standards used for exchanging data, i.e. HTML

versus XML, JSON or other data representation standards.

The existence of service descriptions is an interesting aspect to take into account
when discussing approaches to SWS. This is because these influence whether the
problems are conceptualised as an interaction with services, and hence a service
meta-model is introduced, or whether they are conceptualised as an interaction
with resources on the Web, and hence a resource-oriented meta-model is

introduced.

Imposing a semantic meta-model for Web service descriptions has been the
conventional route taken by the overwhelming majority of SWS approaches. The
meta-models imposed in these approaches differ in regard to whether the

approach describes a service or a resource. The description orientation of meta-

36

Chapter 3 Approaches to Semantic Web Services

models imposes constraints, transforms conceptualisations, and adds artefacts
when describing the service. The more this orientation fits the actual functionality
described, as well as the Web’s architecture, the smaller the descriptions, and thus
the easier it becomes to describe it. Moreover, the more complex and demanding
the semantic meta-model, the more it affects the adoption of the approach, and

thereby lessens its value.

Below is an explanation of what is meant by service-oriented and resource-

oriented meta-models.

1. Service-Oriented Meta-Models: These approaches separate service
descriptions from the domain descriptions, and introduce meta-models to
describe services, such as the names of operations, inputs and outputs,
preconditions and effects. They can describe either WSDL or RESTful Web
services. These include existing Web services which are semantically
described to form SWS and weave them into the Semantic Web. They are
based on the RPC mindset discussed in Chapter 2 and can be further
classified into:

a. WSDL-based SWS Approaches: These assume that the described Web
services are traditional WSDL/SOAP services.

b. RESTful Web Service Approaches: These describe RESTful Web
services or Web APIs. These are considered as service-oriented
approaches because they are treated and described as services not
resources.

2. Resource-Oriented Meta-Models: these follow the lower path in Figure 5. In
these meta-models conceptualise interactions as resources rather than
services. Therefore the meta-models describe elements such as resource

types, collections, representations and methods.

3.2 Service-Oriented Meta-Model Approaches

These approaches separate the service description from the domain description
and can be either WSDL-based or RESTful Web services.

3.2.1 SWS Approaches for WSDL Web Services

Semantic Annotations for WSDL (SAWSDL) (Farrell and Lausen, 2007), which was
developed from WSDL-S (Akkiraju et al., 2005), is a lightweight solution and the
only W3C SWS recommendation. It annotates WSDL components such as inputs

and outputs with references to ontologies. It adds the attribute

37

Chapter 3 Approaches to Semantic Web Services

sawsdl :modelReference to elements of the inputs and outputs, the value of the
attribute would be a URI that points to a concept in an ontology. SAWSDL discards
the precondition and effect attributes that were in WSDL-S, and it aims to be
compatible with existing specifications and improve the automation of discovery

and composition.

More ambitious W3C submissions for SWS, such as OWL-S, WSMO and SWSF, are
more complex. OWL-S (Martin et al., 2004) is based on OWL. OWL-S defines an
ontology for describing Web services. It describes three aspects of the service:
profile, process and grounding. The profile is for advertising and discovery and
contains non-functional and functional properties: inputs, outputs, pre-conditions
and effects (IOPE). The description of IOPE for a service originates from the Al
notion of actions in the automated planning domain. The service process
describes the logic of the service in regard to how inputs relate to outputs and
pre-conditions to effects. The grounding describes mapping from the ontological
description to a concrete specification of a service, for example to WSDL. OWL-S
describes how to provide descriptions for composite services. These enables
explicit yet manually built compositions of services. Moreover several approaches
for automated composition for OWL-S have been surveyed by Klusch (2008a).
Meaning that OWL-S lends support for both manual and automated orchestration.
OWL-S use of OWL as a language based on description logics, hence operating
under the open world assumption, moreover description logic restricts its ability
to represent complex rules, OWL-S overcomes this by incorporating Semantic Web
Rule Language SWRL (Horrocks et al., 2004) for defining rules for preconditions

and effects.

Another approach is WSMO (Bruijn et al., 2005a), which is based on four major
elements for modelling Web services: ontologies, Web services, goals and
mediators. Ontologies provide the terminology to describe the domain and
services. Web services describe service capabilities (pre-conditions, assumptions,
post-conditions and effects) and interfaces (choreography - defining exchanged
messages - and orchestration). Goals model the service requester’s requirements,
which are used for matchmaking with service capabilities. The definitions of
choreographies and orchestrations in WSMO are based on Abstract State Machines
(ASM), and are described by states and guarded transitions. WSMO uses WSML
(Bruijn et al., 2005b) as the language for modelling ontologies and rules, which is
based on Frame logic (FL), unlike DL it follows the closed world assumption,
meaning that unless something is stated it is assumed false. One of the
criticisms of WSMO is that it drifted from the W3C standards (Bournez, 2005),
although efforts have been made to build bridges between them. Klusch (2008a)

38

Chapter 3 Approaches to Semantic Web Services

classified automated discovery and composition methods for SAWSDL, OWL-S and
WSML. What is interesting is that many discovery methods can be applied to the
three approaches, as they depend on the extraction of 10 or IOPE, while for
automated composition/planning more methods targeted OWL-S than either WSML
or SAWSDL. The reason being that these planning methods are variations of well-
established Al planners, and OWL-S as mentioned above are conceptualised as
actions in Al planning. Research efforts in WSMO have stopped but are continued
in lighter-weight approaches such as MicroWSMO (Kopecky et al.,, 2008) and
WSMO-Lite (Vitvar et al., 2007) (discussed below).

Semantic Web Services Framework (SWSF) (Battle et al., 2005) is another SWS
approach, which builds upon the experiences of OWL-S and WSMO. It focuses on
supporting workflows and like WSMO it has its own language for defining the
Semantic Web Services Ontology (SWSO) called Semantic Web Services Language
(SWSL) which supports both first-order logic and logic programming, hence offers
greater expressivity than OWL-S. It provides a process model for web services that
introduces concepts for control, ordering, states and exceptions. It has received

less interest from the research community that the approaches above.

DIANE Elements (DE), which is an object-oriented language for service ontologies,
is used by DIANE Service Description (DSD) (Klein et al., 2005). DE provides
reasoning support for sets and fuzzy sets that describe services inputs, outputs
and effects. The rationale for introducing fuzzy sets is to enable variable degrees
for matching of services, where the selection of a service is based on the fuzzy
membership value of the service’s effects in the requested effects. DSD takes an
integrated approach towards service discovery and composition (Kiister et al.,
2007).

iServe (Pedrinaci et al., 2010b) is a publishing platform for semantic descriptions
of WSDL services and Web APIs, to facilitate the discovery of services. It provides
two annotation editors: one for Web APIs, called SWEET (Semantic Web sErvice
Editing Tool), and the other for WSDL services, called SOWER (SWEET is nOt a Wsdl
EditoR). The vocabulary used for the annotation combines several parts of other
vocabularies, but is mainly based on the Minimal Service Model (MSM), which was
designed to be the largest common denominator of the OWL-S, WSMO, and WSMO-
Lite vocabularies. In addition, it uses some terms from other vocabularies, such as
hRESTS, SAWSDL and WSMO-Lite. iServe works as follows: first, it facilitates the
annotation of Web services; second, it publishes those annotations as Linked
Data; third, it provides a Web APl to create and retrieve the descriptions and a

SPARQL endpoint to query the services’ descriptions dataset.

39

Chapter 3 Approaches to Semantic Web Services

3.2.2 SWS Approaches for RESTful Web Services

With RESTful Web services gaining more popularity on the Web, interest in RESTful
SWS is rising. In REST-based approaches, existing RESTful Web services are
semantically described. SA-REST (Lathem et al., 2007) is similar to SAWSDL, as it
introduces a vocabulary to semantically annotate RESTful Web services, but
because there are no WSDL files for RESTful Web services, the annotations are
embedded into HTML Web pages that describe the services for programmers. The
annotations are embedded using RDFa (Adida et al., 2008) or GRDDL (Halpin and
Davis, 2007). By adding semantics, SA-REST aims to provide an easier way to

create and coordinate mashups.

hRESTS (Kopecky et al., 2008) is an HTML microformat for RESTful Web services.
Microformats facilitate the extraction of accurate data from HTML pages. They
provide designated values for markup tags’ attributes to encode extra information
about the content. Examples of popular microformats are hCalendar for events,
and hCard for contact information. The attributes used are class, rel, and rev,
usually in tags such as div, span, ul and il. In hRESTS, the attribute values are:
service, operation, method, input and output. hRESTS highlights the important
parts of a RESTful Web service description, however to add semantic annotations
MicroWSMO (Kopecky et al., 2008) was introduced. It extends hRESTS to add
references to service models and lowering and lifting schemas. WSMO-Lite (Vitvar
et al., 2007) is a lighter-weight version of the WSMO service ontology, that can be
used to describe services on top of MicroWSMO and also SAWSDL. Its aim is to
reduce the overhead in describing services and to be able to annotate RESTful

Web services.

These approaches aim to insert semantic annotation mechanisms into HTML
documents, achieved by mechanisms such as hRESTS and RDFa. In comparison to
hRESTS, RDFa is more flexible, as it does not restrict the type of triples added to
the HTML documents, but hRESTS is less intrusive, because, as a microformat, it
repurposes the use of certain attributes, whereas RDFa introduces new attributes

that can cause compatibility problems.

RESTfulGrounding (Filho and Ferreira, 2009) is another method to semantically
describe RESTful Web services. The authors introduce a new grounding ontology

in OWL-S to accommodate RESTful Web services.

Another approach to RESTful SWS was introduced by Battle and Benson (2008). In
their Semantic Bridge for Web Services (SBWS), they annotated WADL (Hadley,

40

Chapter 3 Approaches to Semantic Web Services

2009) documents, similar to SAWSDL, which linked WADL components to

ontologies. Their approach provided descriptions for WSDL too.

Several SWS approaches have emerged as a result of the increased interest in
Linked Data. Linked Data Services (LIDS) (Speiser and Harth, 2011) and Linked
Open Services (LOS) (Krummenacher et al., 2010) are inspired by Sbodio and
Moulin (2007), and Sbodio et al. (2010) in using SPARQL queries to describe
services (SPARQL descriptions). LIDS aims to augment linked datasets
dynamically with data extracted from Web APIs, so they focus on describing data
services using RDF and SPARQL. LOS provides semantic wrappers for WSDL and
Web APIs to function as RDF producers and consumers. It describes the
functionality of services, using RDF and graph patterns, and then describes their
composition in order to perform processes using SPARQL queries. However, LOS

requires a shared triple space, where all service descriptions should exist.

SADI (Semantic Automated Discovery and Integration) (Wilkinson et al., 2009) is a
set of practices for the automated integration of bioinformatics data and services.
It is based on the premise that compared to generic Web services, Web services in
bioinformatics exhibit less functionality. They are atomic, stateless, and
transformative. SADI utilises this by catering for these traits: as one of the
distinctive aspects of SADI is based on the services being transformative, this is
conceptualised in SADI by assuming that all services are annotating services.
Hence, outputs are actually the inputs but with annotations linking them to other
resources or transformations. SADI services also exchange RDF messages, which
means that providing annotating services becomes straightforward, as the base
URI of the input is the base URI of the output, but with more annotating triples. To
describe the services, SADI uses the myGrid/Moby service model®, with the inputs
and outputs being OWL classes defined in a referenced ontology. The OWL
classes used as inputs and outputs are named classes defined as equivalents of
restrictions on properties (predicates). These predicates are important for SADI

because they are used to facilitate the discovery and composition of services.

The discovery of SADI services is illustrated by providing a plug-in for Taverna
(Oinn et al., 2004). Taverna is a workflow management system for scientific
workflows. It provides a canvas for dragging and dropping services and resources
to create workflows. The SADI plug-in suggests applicable transformations
according to the type of workflow output, which is done by displaying the
properties that would be available as a result of executing the transformation
service. Therefore, these properties link the inputs to the outputs of a service.
SADI also demonstrates its composability through the Semantic Health And

¢ The myGrid Moby Service Ontology, http://www.mygrid.org.uk/mygrid-moby-service/ .

41

http://www.mygrid.org.uk/mygrid-moby-service/

Chapter 3 Approaches to Semantic Web Services

Research Environment (SHARE) system (Vandervalk et al., 2009). SHARE enables
users to query and analyse distributed data. It accepts SPARQL queries, and then
extracts the query triples, and for each triple it finds Web services that provide
triples matching the pattern. These Web services are executed, and then the
intermediate results are returned and used to execute other matching services.
SADI utilises HTTP to invoke services, so the service descriptions are retrieved by
a GET method and data is sent by a POST. Moreover, it supports both synchronous
and asynchronous services by utilising the HTTP response code 202 (Accepted

but incomplete) for asynchronous services.

The main difference between SADI and other SWS is that it does not provide a new
way of describing the service itself, as it adopts an existing model, but rather
enforces constraints on how the inputs and outputs of that service are defined in

the domain ontology.

3.3 Resource-Oriented Meta-Model Approaches

The majority of research efforts have so far been in semantically enhancing Web
services, but recently, approaches that are based on semantic resources have
appeared and these are discussed next.

Another part of Battle and Benson’s work involved providing a RESTful interface
for semantic data in a term they called Semantic REST (Battle and Benson, 2008).
They mapped the HTTP methods (GET, PUT, POST and DELETE) into SPARQL
commands, including extensions to SPARQL (proposed at that time by HP’s Jena
team) which were SELECT, INSERT, MODIFY and DELETE, these extensions were
origins of the current W3C Recommendation SPARQL 1.1 Update (Gearon et al.,
2013). In this way, RDF datasets offering SPARQL endpoints can also offer new
RESTful functionality, meaning they can be integrated with Web 2.0 clients.

Presto (DeLeon and Dumontier, 2008) provides a RESTful interface for resolving
OWL ontologies and endpoints for DL and SPARQL queries. This is particularly
effective when ontologies are large, e.g. in life sciences. Presto publishes the
entities in OWL files and enables retrieval of axioms about these entities through
a RESTful interface. This means Presto can be viewed as a RESTful Web service for
resolving entities in OWL ontologies. Although Presto does not aim to offer a
general framework for Web services, it shows the straightforward mapping from
OWL entities to resources. Zhao and Doshi (2009) categorised RESTful Web
services into three types: resources representing sets of resources, resources
representing instances, and resources representing transitional services. They

described these types using a lightweight ontology and rules for describing the

42

Chapter 3 Approaches to Semantic Web Services

transitional services. Their aim was to facilitate the automatic composition of
RESTful Web services, so they provided a framework for composing those services
using a state transition system (STS) based on situation calculus. According to
the classification introduced at the beginning of this chapter, their approach also
includes a service-oriented meta-model. This is because they used ontologies to
explicitly describe the third type of resources in their description, i.e. transitional

services.

Another approach that is based on semantic resources is Triple Space Computing
(TSC) (Riemer et al., 2006), which is based on Tuple Space Computing. The
communication is shifted from being message oriented, as in Web services, to
reading and writing RDF triples in a shared triple space. TSC has been used in
both Web service coordination (Fensel et al., 2007) and communication (Francisco
et al., 2008). Hernandez and Garcia (2010) took TSC further by modelling
resources in triple spaces, and mapping HTTP methods into triple space
operations. Furthermore, they also provided a process calculus method for
describing the composition of these resources. However, being confined to a

shared triple space limits the scalability and accessibility of such approaches.

SSWAP (Gessler et al., 2009) is a protocol and architecture for SWS. It enables the
creation and discovery of RESTful Web service descriptions. It was developed to
be used mainly in the field of bioinformatics, but it is proposed to be used for
generic Web services too. SSWAP provides an ontology for describing a service,
and this ontology has five main concepts: Provider, Resource, Graph, Subject and
Object. A Provider (organisation) provides a Resource, which corresponds to a
service. The Resource operates on a Graph. The Graph describes the mapping
between the input of the service described by the Subject, and the output
described by the Object. SSWAP assumes a relationship between the input and
output, and conceptualises this relationship as a mapping. The descriptions of the
services are called Resource Description Graphs (RDGs). SSWAP interacts by
exchanging RDGs, so the client provides values for the inputs and POSTs the RDG
to the service. This is called the Resource Invocation Graph (RIG). Then, the
service provides values for the outputs and returns it to the client, and the
returned description is called the Resource Response Graph (RRG). SSWAP
provides an SDK for developing services, and a method for publishing them to the
service directory that SSWAP hosts. This directory facilitates the discovery of Web
services. The directory is used to build SSWAP.info, which is a Web-based
interactive pipeline editor, where a user can drag and drop services and available

services are filtered according the outputs of the selected ones.

43

Chapter 3 Approaches to Semantic Web Services

ReLL (Alarcon and Wilde, 2010) (Resource Linking Language) is an approach that
describes existing RESTful Web services on the Web (i.e. Web APIs) and also Web
pages to enable a crawler called RESTler to crawl them and produce a typed graph
representing the links, relationships between them and the representations. This
graph can then be translated into RDF. The aim of ReLL (Alarcon and Wilde, 2010)
is to establish a unified view of these resources. Although ReLL currently
describes read-only situations, the aim is to extend it to support creation,

modification and deletion.

RESTdesc (Verborgh et al., 2011) explicitly provides N3Logic (Berners-Lee et al.,
2008) rules for each resource, which describe the method, representation, and URI
structure, such that the client can reason over those rules, and execute an HTTP
request according to its internal state and the satisfied rules. Moreover, it utilises

link headers to guide clients to the next states.

Hyperdata (Kopecky et al., 2011), on the other hand, proposes a method for
updating RDF data stores. It is based on the argument that updating data via
SPARQL endpoints is not sufficient because of 1) data dependencies, where
updates need to be propagated to dependent data that are not expressed in the
SPARQL query; 2) security issues; and 3) validation. For these reasons, Hyperdata
is proposed to update RDF stores through APIs. However, instead of describing
the APIs separately, the APl descriptions are stored as triples with the data in the
RDF store. It uses named graphs to represent APl endpoints for resources in the
RDF store that will then be manipulated by the API. They have four types of
resources: classes, individuals, property resources, and value resources. The
approach uses a custom minimal vocabulary to describe the named graphs for
these resources and associated triples, as well as the triple patterns and the
relationships between them. The triples and triple patterns denote what will be
affected by the HTTP methods. These API descriptions are stored with the data
itself and are returned with the resource when it is retrieved. Thus, the
description of any one endpoint is also linked to other endpoints within the

application, so a client could navigate between endpoints.

Hypermedia RDF (Kjernsmo, 2012) is a proposed vocabulary to make RDF a
hypermedia type. A hypermedia type is a term defined by Amundsen (2011b) as:
“MIME media types that contain native hyper-linking semantics that induce
application flow. For example, HTML is a hypermedia type; XML is not”. Amundsen
also defines a classification scheme of hypermedia types called H Factors, which
are used to measure the level of hypermedia support the media type offers.
Hypermedia RDF is influenced by Amundsen’s argument for making RDF

sterilisations more powerful, instead of providing an API for RDF. The argument is

44

Chapter 3 Approaches to Semantic Web Services

that the Web is more successful because messages contain not only data but
application control information. The Hypermedia RDF vocabulary defines a set of
predicates and instances to describe what actions are applicable in regard to a
certain resource, for example that it can be updated, deleted, merged into, or
accepts formats. The approach does not specify the repercussions of updating or

deleting a resource.

RDF-REST (Champin, 2013) is an approach and an implementation (in Python) that
provides a unified method to provide both Web APIs and Linked Data. It therefore
facilitates the implementation of systems that expose both. This is done by
having RDF-REST as a layer embedded in the system architecture. It abstracts the
logic layer as a set of core objects or resources that expose a uniform interface.
The uniform interface provides methods that correspond to the HTTP methods,
and RDF representations are thus exchanged. One of the main design decisions in
RDF-REST is to have RDF as the native system format. Therefore, application-
specific Web APIs are provided through wrappers that interact with the core
objects. The wrappers use serialisers and parsers to transform between RDF and
other media types. Therefore, RDF-REST aims to comply with the Linked Data
Profile specification (Nally et al., 2012a) for manipulating Linked Data. One of its
limitations is that it is designed for developing Web APIs from scratch, so these
Web APIs would consequently be built on top of RDF-REST.

3.4 A Classification Matrix for SWS Approaches

Another way to classify SWSs is to look at the approach they take in enriching
services with semantics. These are not mutually exclusive and one may build on
the other (e.g. SAWSDL and OWL-S). Cabral et al. (2012) classify the description
approach into: service ontologies, and semantic annotation extension
mechanisms. The following matrix uses the meta-model classification discussed
in this chapter for the horizontal axes. For the vertical axis, it extends the
description classification presented in (Cabral et al., 2012) by first recognising
that ontologies are not only service ontologies: they can also be for describing
resources in resource-oriented approaches. And secondly, it further classifies
“Semantic Annotation Extension Mechanisms” into two subclasses: “Link to
Concepts in Ontologies” and “Use Graph Patterns”. In addition, some approaches
cannot be considered description approaches, as they focus on methods for
providing services, so a row has been added for “Provision Approaches” in the

matrix. A brief description of these classifications is provided below.

Description Approaches

45

Chapter 3 Approaches to Semantic Web Services

Ontologies/Vocabularies: These approaches introduce ontologies or
vocabularies. The majority are for describing services; however there are
some that describe resources. These are different from a generic domain
ontology, as they have been introduced specifically for the purpose of
describing a service or resource interface.

Semantic Annotation Extension Mechanisms: These provide mechanisms to
annotate a specific service or resource with descriptions. These can be
categorised into approaches that:

a. Link to Concepts in Ontologies: These are mainly based on linking
to concepts defined in an ontology to describe inputs, outputs,
preconditions, effects, groundings, etc.

b. Use Graph Patterns: These approaches utilise graph patterns to
describe functionality in a service. They are more flexible than the
approaches that link to concepts in ontologies, and this flexibility is

discussed at the end of this section.

Provision Approaches

These provide conceptualisations architectures and implementations of methods
to provide SWS.

Type of Meta-Model
Service
Resource
WSDL WS RESTful WS
OWL-S
= ; WSMO RESTfulGrounding SSWAP
= 3 3 SWSF WSMO-Lite RelL
g 2g WSMO-Lite MSM Hypermedia RDF
s c 3 DSD Zhao & Doshi Zhao & Doshi
< MSM
c
2 g, hRESTS
g S5cf 38 SA-REST
2 k3sg 52 WSDL-S MicroWSMO
o s 2§ o5 '
o 8 ‘EE t‘.; £ SAWSDL SBWS Hernandez & Garcia
=]
o5 L0 LOS LOS
=1 SADI

46

Chapter 3 Approaches to Semantic Web Services

w
= SSWAP
b= RelLL
(C
; LOS LLHODSS RESTdesc
= e
8 SPARQL descriptions SPARQL descriptions HyperData .
(G} Hernandez & Garcia
b
=)
S 5 Semantic REST
5 o RDF-REST
§ 'g Hernandez & Garcia
ag TSC

Figure 6 Classification Matrix of SWS Approaches

SAWASDL, SA-REST, hRESTS, LIDS, LOS, HyperData and RESTdesc are classified as
extension mechanisms; however, they do introduce minimal vocabularies, but
because these vocabularies are minor they are considered mainly extension

mechanisms.

Some approaches, such as LOS and Hernandez and Garcia (2010), fall under
several classifications because they use a mixture of approaches to achieve their
aims. LOS describes both RESTful Web services and WSDL ones, and in terms of
extension mechanisms, links to ontologies and uses graph patterns for inputs and
outputs. Hernandez and Garcia (2010) argue for the use of triple spaces, and
process calculus to formally represent RESTful Web services, hence providing
services using triple spaces. In addition their approach assumes that the services

would be described by linking to ontologies and also using graph patterns.

As mentioned above, semantic service-oriented meta-models for WSDL-based
services suffer from being too complex. This has led to new approaches shifting
towards describing increasingly popular RESTful Web services. However these
approaches explicitly describe their inputs and outputs, and in some cases pre-
and post-conditions; thus, in addition to adding an extra description layer, they
impose an RPC-mindset on these descriptions. So instead of them being
conceptualised as resources, as they would be in REST, these are transformed into
services. Moreover, these services focus on data retrieval and do not offer

extended functionality.

By comparison, resource-oriented meta-models focus on describing resources, and
all of these SWS approaches (except ReLL, RESTdesc, Hypermedia RDF and
HyperData) do not consider REST’s constraint of using hypermedia as the engine
of the application state, which provides an alternative method for the creation of
conversational interactive services for RESTful Web services. There is, however, an
issue with RelLL, RESTdesc, Hypermedia RDF and HyperData, in that they still
introduce vocabularies to describe how to interact with certain endpoints. RelLL

and RESTdesc, in particular, introduce vocabularies for descriptions that are

47

Chapter 3 Approaches to Semantic Web Services

already provided by HTTP and do not need to be explicitly defined. Such
descriptions can be eliminated because adding them introduces redundancy and

there is an overhead in keeping them consistent.

The classification presented in this chapter is based on how SWS approaches
differ both conceptually and syntactically in their description of services.
However, there are other ways to classify SWS, one example provided by Klusch
(2008a) presented two comprehensive classifications of SWS discovery and
composition methods. For the discovery approaches, he classified 27 methods

according to

1. which parts of the service description are used in the matchmaking
process. These could be the profile (IOPE), the process, or non-functional
properties; and

2. how the matchmaking is performed, i.e. whether it is logic-based, non-logic-

based (text similarity, graph matching) or a hybrid of both.

For SWS composition methods, he classifies 16 methods based on

1. whether there was interleaving between planning and execution (i.e. static
or dynamic); and

2. Whether they are based on the SWS profile description (Functional Level
Composition: FLC) or on the SWS process description (Process Level

Composition: PLC).

An important issue to note, however, is that most of these discovery and
composition methods are for the same SWS approaches, namely OWL-S, WSMO and
SAWSDL, which, according to the classification presented in Figure 6, fall under
service-oriented meta-models for WSDL Web services. The service is semantically
annotated in these approaches by mainly linking to concepts in ontologies, which

greatly influences how discovery and composition approaches are implemented.

As shown in the classification matrix, another method for annotating services is
by using graph patterns, this provides greater flexibility for the descriptions. In
approaches that annotate by linking to concepts, inputs and outputs either link to
classes in an ontology or to simple data types, and when linking to simple data
types, there is no direct mechanism for telling what that simple data type
represents semantically. However, with graph patterns, inputs and outputs are
variables in these patterns, either as subjects or objects of predicates/properties.
This means that inputs and outputs could be simple data types while also being
described as an object or range of a certain predicate. The implication of using

graph patterns for description goes beyond providing more flexibility, as they

48

Chapter 3 Approaches to Semantic Web Services

introduce new methods for matching services, which are more scalable
(Stadtmiiller and Norton, 2013).

3.5 Comparison of SWS Approaches Capabilities

In the previous section SWS approaches were classified according to how they
conceptualised and described interfaces, in this section their capabilities are
compared. The 27 SWS approaches were analysed according to which of the

following capabilities they offer, and the results are shown in Table 1.

1. Discovery
One of the main goals of SWS is to facilitate automated discovery of services,
therefore the purpose of many semantic description approaches is to address

discoverability.

2. Composition

Composition is the process of integrating several services or resources in a
workflow to achieve a certain goal. There are four main ways that composition
has been addressed in SWS:

2.1 Orchestration

There is a single point of control one entity is responsible for the execution of the
workflow. In the execution of the workflow, this entity is acting as a client to the
services that compose the workflow. The workflow is typically known in complete
to the controlling entity before it starts executing it. The Web service community
have introduced several specifications to describe workflows such as the Web
Services Business Execution Language (WSBPEL) (Alves et al., 2007), their aim was
to have interoperable descriptions of the workflows which can be processed by
execution engines. One of the areas that SWS approaches targeted was to
introduce vocabularies/ontologies for describing these workflows semantically,

such as composite services in OWL-S and orchestrations in WSMO.

2.2 Automated Composition Planning

This is another way to achieve the orchestration of services that utilises the
semantic descriptions of services. It automates the composition of services using
Al planning techniques, which view the world as states, where Web services are
actions that alter these states, and can be composed to achieve stated goals. As
mentioned above several SWS composition techniques have been surveyed by
Klusch (2008a) and has received growing attention from the SWS research

community.

2.3 Choreography

49

Chapter 3 Approaches to Semantic Web Services

The aim of choreography in Web services is to enact a global plan/workflow that
is known to the participating entities, and is achieved when individual
participants execute their parts/roles. There is no single point of control. In a Web
environment, enacting the choreography means that the same participants will act
as both clients and services in a peer-to-peer fashion. As for orchestration, the
Web service community has introduced specifications for standardising
choreography descriptions, such as the Web Services Choreography Description
Language (WS-CDL) (Kavantzas et al., 2005). In SWS, WSMO describes service
interfaces as choreographies, and introduced an ontology for describing
choreographies of services as states and guarded transitions. With regards to
creating choreographies automatically, it can be considered a self-organisation or
a multi-agent planning problem as in (Falou et al., 2009). However this class of
problems is not popular in the SWS research community, and as mentioned above,
most of the research focused on automatically creating orchestrations by using Al

planning, rather than automatically creating choreographies.

2.4 Conversational Services

In RESTful Web services, the server guides the client through the next steps, this
the one of the constraints on the uniform interface in REST, namely using
“hypermedia as the engine of the application state”. Therefore when the client is
following the steps, it is actually interacting with several endpoints (resources),
and hence a form of composition. The server is controlling the workflow, however
the client has the autonomy to opt out at anytime, and to interact with endpoints
on other servers. Unlike orchestration and choreography in traditional Web
services, there is no declarative specification of workflow; however signposting
mechanisms are built into the media types. The workflow unfolds to the client,
and it knows how to respond at each step, but is not aware of the complete
workflow. As discussed in Chapter 2, few RESTful APIs adhere to the hypermedia
constraint. However there are SWS approaches that acknowledge the hypermedia
constraint and introduced vocabularies to describe possible choices to the client
such as RelLL (Alarcon and Wilde, 2010), RESTdesc (Verborgh et al., 2011),
Hypermedia RDF (Kjernsmo, 2012), and Hyperdata (Kopecky et al., 2011), these

approaches were explained previously in Section 3.3.

2.5 Linked Data Integration

With Linked Data becoming increasingly popular, many recent approaches to SWS
have targeted providing interface descriptions for Linked Data in the aim of
facilitating access to datasets through APIs instead of using SPARQL endpoints,
and to merge datasets together or with other non-linked data resources. And

while the aim of these interfaces is not service composition in the strict sense, if

50

Chapter 3 Approaches to Semantic Web Services

we take a RESTful view, the distinction between services and resources is blurred,
and data integration could be regarded as integration of resources. In some of the
approaches this type of integration has no side-effects, in other words it is merely
data retrieval, however this does not need to be the case and there are others,
where the integration of data automatically triggers real-world events. Table 1

shows each of the 27 approaches, and the capabilities they address.

Table 1 Capabilities of SWS approaches

Capabilities
Composition
=l | 2| z| 2|2
Publication Purpose % -‘% 'g '§ § =
g || E| 2| 8|8
o | 28| | ¢ |3
5 . o c ~
51888 |¢
<
OWL-S (Martin et al., 2004) General 4 v v X X X
WSMO (Bruijn et al., 2005a) General 4 v v 4 X X
SAWSDL (Farrell and Lausen, 2007) General 4 X v X X X
WSDL-S (Akkiraju et al., 2005) General 4 X v X X X
SWSF (Battle et al., 2005) General 4 v v 4 X X
DSD (Klein et al., 2005) General 4 X v X X X
SA-REST (Lathem et al., 2007) General 4 X v X X X
hRESTS (Kopecky et al., 2008) General * X * X X X
MicroWSMO (Kopecky et al., 2008) General * X * X X X
WSMO-Lite (Vitvar et al., 2007) General 4 X v X X X
RESTfulGrounding (Filho and Ferreira, 2009) General 4 v v X X X
ReLL (Alarcon and Wilde, 2010) Data Retrieval 4 v X X 4 4
SBWS (Battle and Benson, 2008) General 4 X v X X v
SPARQL descriptions (Sbodio et al., 2010) General 4 X v X X X
LIDS (Speiser and Harth, 2011) Data Retrieval 4 X X X X 4
LOS (Krummenacher et al., 2010) General 4 v X X X v
Semantic REST (Battle and Benson, 2008) General X X X X X 4
Zhao and Doshi (2009) General X X v X X X
Hernandez and Garcia (2010) General X v X 4 X X
TSC (Riemer et al., 2006) General 4 * * * * 4
RESTdesc (Verborgh et al., 2011) General 4 X v X 4 X
iServe (Pedrinaci et al., 2010b) General 4 X v X X X
SADI (Wilkinson et al., 2009) Bioinformatics 4 X v X X v
HyperData (Kopecky et al., 2011) General (LD) X X X X 4 4
Hypermedia RDF (Kjernsmo, 2012) General (LD) X X X X 4 v
RDF-REST (Champin, 2013) General (LD) X X X X 4 v
SSWAP (Gessler et al., 2009) Bioinformatics 4 X v X X X
v': addressed by the approach x: not addressed by the approach *: assumed existing & addressed by other layers

The purpose of the approach can be one of the following:

51

Chapter 3 Approaches to Semantic Web Services

1. General: the approaches are not specific to a domain.

2. Generic (LD): it is the same as General except it deals with Linked Data.
Data Retrieval: the services targeted do not change data or the state of the
world.

4. Bioinformatics: the approaches are specific to the bioinformatics domain only.

Looking at the table, most approaches 19 out of 27 target service discovery, and
the ones that did not are: Zhoa and Doshi, Hernandez and Garcia, Semantic REST,
Hyperdata, Hypermedia RDF and RDF-REST. The former two approaches focused
on utilising semantic technologies to provide a formal definition of resource-
orientation, Hernandez and Garcia (using triple spaces and process calculus) and
Zhoa and Doshi (an ontology for resource types and situation calculus). The latter
four approaches focused on providing platforms or interfaces for linked data. In
Section 3.4, the six approaches, which did not target service discovery, had
resource-oriented meta-models; suggesting that when these approaches diverted
from the service-oriented mindset, they also diverted from the goals typically
targeted by the service-oriented approaches. Most of the approaches that targeted
discovery exposed either 10 or PE, or both. Approaches that exposed IOPE are:
OWL-S, WSMO, WSDL-S, SWSF, DSD, WSMO-Lite, RESTful Grounding, LOS and iServe.
WSMO-Lite also added service categories. Approaches that expose 10 are: SAWSDL,
SA-REST SBWS, SADI and LIDS, and approaches that exposed PE are SPARQL
descriptions and RESTdesc. RO approaches such as SSWAP, TSC, and RelLL exposed

resources in their interfaces.

For approaches that exposed IOPE, the matchmaking techniques typically applied
involve profile matching for 10 or specification matching for PE or both. The
matching can be logic matching checking subsumption of concepts in 10, and the
entailment of PE. It can also be non-logic matching which utilises the structural
textual aspects of the underlying concepts. Moreover LIDS, LOS and RESTdesc use
graph patterns to describe interfaces, these graph patterns can be matched
according to the similarity of their predicates and resources (Stadtmiiller and
Norton, 2013). The DSD described in the DIANE language enables fuzzy matching
of service requests and service offers. The matching boils down to checking if the
service offer’s effects are a subset of the service request’s effects. The 10 in DSD
are part of the effect definition. In SPARQL descriptions, an agent’s goals are
represented as ASK queries, and services as CONSTRUCT queries, the CONSTRUCT
clause represents the effect of the service and the WHERE clause represents its
precondition. The agent has a KB, the service matching has two steps: 1) check if
the agent satisfies the preconditions, which it does if the CONSTRUCT query

representing the service yields results when applied to the agent’s KB. 2) after

52

Chapter 3 Approaches to Semantic Web Services

those results are obtained check if they fulfil the client’s goal by applying the ASK

query to them.

Regarding orchestration, fewer approaches attempt to formulate workflows
compared to discovery, they are: OWL-S with composite services (which applies
also to RESTful Grounding), WSMO, using interfaces that describe choreographies
and orchestrations, and SWSF, which specifically targets workflows by providing a
process model based on the Process Specification Language (PSL) (ISO 18629).
Hernandez & Garcia combined process calculus and triple space operations, RelLL

used Petri nets (Reisig, 1985), and LOS process model and SPARQL queries.

Many approaches target automatic composition; most apply Al planning methods,
where the world is modelled as states, and the services as actions that alter
states and have prerequisites (i.e. have preconditions and effects). For example in
OWL-S descriptions are typically transformed to PDDL, and hence, several
planning algorithms can be applied (Klusch, 2008a). Approaches that targeted
WSMO also converted descriptions into PDDL (Farnaghi and Mansourian, 2013) or
Hierarchal Task Networks (HTN) (Tabatabaei et al., 2009). There were no reported
approaches for SWSF however it is very similar to the OWL-S and WSMO, and
therefore the same methods can be applied. Approaches that automatically
composed SAWSDL added PE to the service descriptions (Klusch, 2008a). Zhao &
Doshi conceptualised RESTful Web services as actions that are comprised of the
HTTP method and the resource (these actions have preconditions and effects)
then modelled them in Situation Calculus and used regression to derive
compositions automatically. Automatic composition in WSMO-Lite was achieved by
modelling the problem as a STRIPS instance (Fikes and Nilsson, 1971), and then
the Graphplan algorithm (Blum and Furst, 1997) was applied. For SPARQL
descriptions, when a goal is not satisfied by one service, the precondition is
relaxed by using the OPTIONAL clause for the triple patterns, resulting in a set of
graph patterns which if cannot be fulfilled by a single service are adopted as new
goals, and regression planning is applied. Planning in RESTdesc is provided by
constructing proofs, since services are modelled as N3 rules. Although ReLL does
not target automatic composition, it does however model services as Petri nets,
which suggest compositions can be created using Petri net reachability

algorithms.

Only three approaches target choreography these are WSMO, SWSF and Hernandez
& Garcia. WSMO uses its choreography ontology, SWSF uses its FLOW ontology and

53

Chapter 3 Approaches to Semantic Web Services

Hernandez & Garcia as mentioned above combines process calculus and triple

space operations.

RO approaches: RelLL, RESTdesc, Hyperdata, Hypermedia RDF and RDF-REST
provided or supported vocabularies for describing conversational mechanisms to
guide clients to next states. These also support Linked Data integration together
with SBWS, LIDS, LOD and TSC.

3.6 Adopted Research Methodologies in SWS Approaches

This section aims to provide an analysis of the research methodologies that the
27 SWS approaches discussed in this chapter applied to provide evidence for their
viability and effectiveness, the goal is to inform the choice of methodology for
evaluating the EXPRESS approach proposed in this thesis. This analysis draws on
Shaw’s (2002) model for analysing research strategies for software engineering.
Shaw classifies research strategies employed in software engineering research
papers by identifying the types of research questions they explore in the paper,
the types of results produced, and the type of validation provided. Her work
aimed to encourage experimental validation in software engineering research by
explicitly describing generally accepted research strategies in software
engineering. To analyse the research strategies in SWS approaches, 27
publications that introduce the SWS approaches were selected, in addition to five

others that presented evaluation efforts for certain SWS approaches.

Research Questions in SWS Approaches
Of the types of research questions identified by Shaw, the ones that are
addressed by research in SWS approaches are about:
¢ Design, evaluation or analysis of a particular instance:
o What is a (better) design or implementation of the SWS approach?
o How does an X SWS approach compare to a Y one?
e Feasibility/Viability

o Is it possible to accomplish this SWS approach?

Other research question types mentioned by Shaw were: means of development,

method for analysis, and generalisation/characterisation.

Research Results in SWS Approaches
With regard to the types of research results identified by Shaw, the SWS
description approaches fall under the following the “Specific Solution” types.

According to Shaw (2002) this can be any of the following:

54

Chapter 3 Approaches to Semantic Web Services

e design, prototype, or full implementation

e careful analysis of a system or its development,

e result of a specific analysis, evaluation, or comparison.
Results in SWS approach papers are mainly the approach itself, its implementation
and associated tools if available. In evaluation papers, these were the results of

the evaluation and comparison.

Validations in SWS Approaches

Shaw (2002) categorises the validation approaches into types shown in Table 2

Table 2 Validation techniques in software engineering (Shaw, 2002)

Type of validation Examples

| have analysed my result and find it satisfactory through
. (formal analysis) ... rigorous derivation and proof

Analysis ..
(empirical model) ... data on controlled use

(controlled experiment) ... carefully designed statistical experiment

My result has been used on real examples by someone other than me, and the evidence
of its correctness / usefulness / effectiveness is

Experience (qualitative model) ... narrative

(empirical model) ... data, usually statistical, on practice

(notation, tool) ... comparison of this with similar results in technique actual use

Here’s an example of how it works on
Example (toy example) ... a toy example, perhaps motivated by reality
(slice of life) ...a system that | have been developing

Given the stated criteria, my result...

(descriptive model) ... adequately describes the phenomena of interest ...

Evaluation (qualitative model) ... accounts for the phenomena of interest...

(empirical model) ... is able to predict ... because ..., or ... gives results that fit real data ...
Includes feasibility studies, pilot projects

| thought hard about this, and | believe
(technique) ... if you do it the following way,

. (system) ... a system constructed like this would ...
Persuasion i
(model) ... this model seems reasonable.

Note that if the original question was about feasibility, a working system, even without

analysis, can be persuasive

Blatant assertion No serious attempt to evaluate result

The validation types in the reviewed SWS publications fall under four types from
the above classification: examples, persuasion and analysis and evaluation. Table
3 shows the types of validation for each publication, and is a summary of Table

25 in Appendix A, which provides a short description for each publication

55

Chapter 3 Approaches to Semantic Web Services

detailing what the paper achieves, then states the results mentioned in the paper

and their validation.

56

Table 3 Validation approaches in SWS

Chapter 3 Approaches to Semantic Web Services

Publication

Validation Approach

Examples

Persuasion

Analysis

Evaluation

OWL-S (Martin et al., 2004)

v

v

WSMO (Bruijn et al., 2005a)

v

v

SAWSDL (Farrell and Lausen, 2007)

v

v

SWS Coordination (Klusch, 2008a) v

SWS Comparison (Cabral et al., 2004)

WSDL-S (Akkiraju et al., 2005)

SWSF (Battle et al., 2005)

DSD (Klein et al., 2005)

SA-REST (Lathem et al., 2007)

hRESTS (Kopecky et al., 2008)

MicroWSMO (Kopecky et al., 2008)

WSMO-Lite (Vitvar et al., 2007)

Kopecky (2012)

RESTfulGrounding (Filho and Ferreira, 2009)

RelLL (Alarcon and Wilde, 2010)

SBWS (Battle and Benson, 2008)

SPARQL descriptions (Sbodio et al., 2010)

LIDS (Speiser and Harth, 2011)

LOS (Krummenacher et al., 2010)

Semantic REST (Battle and Benson, 2008)

Zhao and Doshi (2009)

AN ANANANENENANENEANENENENENEN

Hernandez and Garcia (2010)

TSC (Riemer et al., 2006)

RESTdesc (Verborgh et al., 2011)

iServe (Pedrinaci et al., 2010b)

SADI (Wilkinson et al., 2009)

AR AN

HyperData (Kopecky et al., 2011)

Hypermedia RDF (Kjernsmo, 2012)

AN

RDF-REST (Champin, 2013)

AR S N A RN AN AN AN AN AN AN A AN AV A AN A A A AN A A YRR

AN

SSWAP (Gessler et al., 2009)

SWS Challenge (Petrie et al., 2009) v

S3 Contest’ v

According to the results of the analysis in the above table the validation
undertaken by the majority of the approaches was by using examples, 81%, and
persuasion, 91%. The majority of examples were “toy” examples, simplified to
ease the illustration of the approach. Persuasion was achieved either by
discussing a proof-of-concept implementation or providing links to online

demonstrators or supporting tools.

The publications that used analysis for validation constituted only 12.5% of the
papers and the type of analysis fell under “Experiment with statistically
significant results”. These included the SPARQL descriptions (Sbodio et al., 2010),

7 S3 Contest http://www-ags.dfki.uni-sb.de/~klusch/s3/

57

http://www-ags.dfki.uni-sb.de/%7Eklusch/s3/

Chapter 3 Approaches to Semantic Web Services

and WSMO-Lite in Kopeckey (2012), which provided matchmaking experiments as
a validation of the discoverability of their proposed descriptions. This involved
converting the OWL-S test collection (Klusch and Kapahnke, 2010b) to their
approaches, either adapting a matchmaker or implementing one, and comparing

the results to existing matchmakers on the OWL-S test collection.

OWL-S, WSMO and SAWSDL discoverability and composability have been
demonstrated in the SWS Coordination (Klusch, 2008a), which surveyed several
matchmaking and planning algorithms designed for these approaches. Their
discoverability has also been demonstrated in the S3 contest for service
matchmaking, and thus was considered a representative of approaches that used

analysis for validation.

In the SWS Challenge (Petrie et al., 2009), the participants are given realistic
scenarios and are asked to fulfil them with their proposed SWS approaches. The
challenge evaluates the approaches according to their ability to mediate between
different formats, and to provide accurate descriptions for specified WSDL
services. Their accuracy is tested on their ability to be selected automatically and
accurately. Thus according to Shaw’s classification, this was the only publication
that used evaluation as a validation method. Moreover the SWS Challenge aimed
to understand the trade-offs between different approaches and how much human
intervention is needed to modify services to adapt to changes in the
requirements. However, the results of the challenge were not promising and no
participant had solved all of the problems, and they found even the simplest

problems challenging (Petrie et al., 2009, p.284).

The analysis shows that SWS is an emerging research area and that the
community has no well-established methods for evaluating new approaches, and
(as shown by the results of the SWS Challenge) approaches struggle to meet the

requirements of realistic problems.

A potential solution to evaluate SWS, involves analysis of expert opinions, as
undertaken by Bachlechner and Fink (2008), albeit this time to assess the viability
of SWS in general, not a specific approach, and therefore not present in Table 3.
Their study involved surveying and analysing opinions from both practitioners
and researchers to evaluate the potential of Semantic Web services as integration
architectures, and using Shaw’s categories, their validation technique is

considered an evaluation.

58

Chapter 3 Approaches to Semantic Web Services
3.7 Conclusions

This chapter has discussed and analysed twenty-seven SWS approaches. These
approaches impose either service-oriented or resource-oriented meta-models, and
show that the focus of research activities is shifting towards RESTful Web
services and resource-oriented meta-models. The description approaches also
differed in their method: some introduced ontologies or vocabularies, and others
were annotation extension mechanisms. They all assumed Web services are

already implemented and exist as an extra semantic layer.

Some approaches were not concerned with how the services are described but in
how to provide them. Approaches such as TSC, Semantic REST, RDF-REST, describe
the architecture or implementation for providing resource-oriented SWS that
exchange RDF messages, but they do not specify how these services are

described.

Hernandez and Garcia (2010) proposed providing services using triple space
computing, and suggested the existence of service descriptions and their link to
existing ontologies; however, they did not specify those descriptions. Moreover,
their architecture is implemented by interacting with triple spaces, which imposes

a specific architecture on service providers, making it harder to adopt.
The review of these approaches raises three interesting questions:
1) Is a meta-model even needed for resource-oriented services?

On the Semantic Web, resources are described by ontologies and these ontologies
are used in SWS as domain ontologies. However, as domain ontologies were seen
as insufficient to describe the functionality of the service, service ontologies have
been developed. REST provides a unified way to access resources, with well-
defined semantics. Therefore, can the combination of both REST’s unified
interface and the semantic description of resources be sufficient to describe the

functionality of the service?
2) Can the description be a result of the provision of the service?

Since the mapping between entities in the domain ontology and restful resources
is seemingly straightforward, is it possible to utilise that mapping so that the

description of the service is a by-product of its provision?

3) What are the types of results, and validations that are applicable for these

research questions?

59

Chapter 3 Approaches to Semantic Web Services

Research in SWS is a relatively new field that has not been heavily used in practice
and the analysis of strategies adopted by SWS approaches showed that the results
were mainly the approach itself and the validation was by providing examples or
by persuasion by providing demonstrators, or proof of concept implementations.
Nevertheless there were validations based on experiments and formal
comparisons. In addition, there was qualitative analysis of expert opinions,
introduced by Bachlechner and Fink (2008).

In the light of this analysis the approach taken in this thesis is therefore to view
the result as the EXPRESS approach and its implementation, and to undertake a

broad validation combining several methods, specifically:

Examples and Persuasion: To show that it works and how it works.
2. Analysis: Experiments that test its efficiency.
Evaluation: Qualitative analysis of expert opinions comparing the approach

to others and discussing the trade-offs.

Chapter 4, presents a primary stage in answering the first question. It presents a
scenario analysis to elicit the required functionality of SWS, then studies the
limitations and requirements from the proposed approach that eliminate an

explicit meta-model.

60

Chapter 4 Scenarios Analysis and RO Modelling

Chapter 4: Scenario Analysis and RO
Modelling

In the previous chapter, several SWS approaches were reviewed. These
approaches semantically describe functionality to automate or semi-automate
their discovery and composition. They had two underlying assumptions in
common: firstly, explicit interface descriptions are required to describe the
functionality, and secondly, a domain ontology/vocabulary exists that describes
entities/resources manipulated by these interfaces. These two assumptions exist
in all of the reviewed approaches regardless of whether they were service or
resource-oriented. They all imposed an explicit semantic meta-model to describe
the functionally, in addition to semantic descriptions in the domain ontology. This
thesis questions these two assumptions.

In the conclusions of Chapter 3, the following question is asked: If resources on
the Semantic Web are described in ontologies (domain ontologies), and REST
provides a uniform method for manipulating resources, can these two elements

semantically describe the functionality of SWS applications?
This question can be decomposed into the following two questions:

= What sorts of functionality are SWS required to describe?
= |If explicit service descriptions are eliminated, what are the requirements and
limitations in both the domain ontology and HTTP (as a RESTful mechanism)

when describing the required functionality?

This chapter addresses the above questions, by analysing 20 scenarios to study
the requirements of SWS, and then represents them as Resource-Oriented Models
to investigate the requirements and limitations in both the domain ontology and
HTTP. Section 4.1 explains the method of selecting the scenarios, Section 4.2
presents the analysis and results and Section 4.3 reflects on the SWS approaches

from Chapter 3, and Section 4.4 concludes the chapter.

61

Chapter 4 Scenarios Analysis and RO Modelling
4.1 Web Service Scenarios

The approach taken by this research is to elicit the functional requirements from
real representative scenarios. However, another possible approach to gather the
functional requirements could have been to study the features and functionality
offered by other Web service approaches. The danger of this is of over
engineering and adding unnecessary complexity. Another reason for studying the
scenarios instead of technologies is discussed by Foster et al.(2008), when

comparing modelling state in different Web service specification approaches:

“Ideally, we would like to evaluate the relative merits of these two
positions in terms of concrete metrics such as code size. Such an
evaluation, however, requires agreement on the requirements that the
interfaces should support. Unfortunately, proponents of the different
approaches tend to differ also in their views of requirements.”

Therefore grounding the requirements in representative scenarios will provide

less subjective judgements.

4.1.1 Identifying Communities of Interest

The scenarios were selected from communities of interest where Web services are
used as integration technologies. Our intention is that they form a spectrum of
Web service uses. Starting from the low end of requirements and complexity,
these communities are: Web mashups, Enterprise Services, Business to Business
(B2B), Cloud Computing and Grid Computing. These domains are defined in Table
4,

Table 4 Communities of interest definitions

Community Definition
Mashups are applications that combine APIs and data sources to form new applications
Mashups or new data sources (O'reilly, 2005).
Enterprise Services are concerned with integrating different systems within an
Enterprise Services organisation, with the objective of enabling independent evolution of these

components (Fremantle et al., 2002).

Business to Business (B2B) services aim to offer the ability of sharing information and

Business to Business performing business transactions between businesses on the Web (Kreger, 2003).

Cloud computing offers software, platforms and infrastructures as services to clients

Cloud Computing who pay to lease them. The services are dynamically scalable (Armbrust et al., 2009).

Grid Computing in general is concerned with enabling the utilisation of distributed and
heterogeneous resources to provide a seamless platform for computational or data
Grid Computing intensive applications. This platform can be used to enable remote collaboration and

expensive instrument sharing (Foster et al., 2002).

62

Chapter 4 Scenarios Analysis and RO Modelling

4.1.2 Selecting the Scenarios

The scenarios were selected according to the following criteria: they should be

real scenarios, representative of the communities, and exist in the literature.

Scenarios in research papers can be real existent scenarios or hypothetical ones.
The real scenarios are usually found in papers discussing experiences in
developing a system. However there are also scenarios in the literature that are
hypothetical motivating scenarios, tailored to highlight certain aspects of
technological solutions.

A total of seventy research papers in the five communities of interest were
reviewed. The papers were found by searching in Google Scholar for the keywords
“scenario”, “case study”, “Web service” and the name of the community of interest.
Out of the search results, seventy research papers were selected that appeared to

contain a scenario or case study.

Table 5 Number of reviewed papers in each community of interest

Community of interest | # of reviewed papers
Mashups 14
Enterprise Services 14
Business to Business 14
Cloud Computing 13
Grid Computing 15

Out of those papers it was possible to find three or four real scenarios or case
studies, in each community. For mashups and Cloud Computing only three
scenarios were found in the literature. To provide a fourth scenario for mashups,
the “Yahoo Finance Stock Quote Watch List”, one of the featured pipes on Yahoo
Pipes was selected. For Cloud Computing, a case study of the Google App engine
LingoSpot was selected. This resulted in a total of 20 scenarios, listed in Table 4.

Table 6 List of Selected Web service Scenarios

Community of interest | Scenarios

Mashups M1: Stock Quote Watch, Yahoo Pipes (Donnelly, 2010)

M2: The MashMaker Scenario (Ennals and Garofalakis, 2007)

M3: Displaying the time and location of a website’s visitors using a
layered mashup architecture (Biornstad and Pautasso, 2009)

M4: Creating situational applications using the enterprise
information mashup fabric. (Jhingran, 2006)

63

Chapter 4 Scenarios Analysis and RO Modelling

Community of interest | Scenarios

Enterprise Services E1: SSPD (City University) (City University, 2008)
E2: MLE (City University) (City University, 2008)
E3: BT.com (Integrating BT's OSS) (Calladine, 2004)
E4: SCORe (Integrating BT's OSS) (Calladine, 2004)

Business to Business B1: Reverse Auctioning Service (Decker and Weske, 2007)

B2: Telecommunications Wholesaler (Zimmermann et al., 2005)
B3: E-Procurement (Brodie, 2000)

B4: Supply Chain Management (Preist et al., 2005)

Cloud Computing C1: New York Times “Times Machine” (Klems et al., 2008)

C2: MLB Website’s Chat system (Klems et al., 2008)

C3: Colorado State University using Google Apps (Herrick, 2009)
C4: LingoSpot a business built using Google App Engine8

Grid Computing G1: NEESgrid: Grid Based System for the Earthquake Engineering
Domain (Gullapalli et al., 2004; Pearlman et al., 2004)

G2: DAME Distributed Aircraft (Jackson et al., 2003; Austin et al.,
2005; Jackson et al., 2006; Jackson et al., 2005)

G3: Virtual Screening with Desktop Grids (Chien et al., 2003)

G4: ChombeChem testbed on the Grid (Frey et al., 2003; Taylor et
al., 2006)

4.1.3 Scenario example

B1: Reverse Auctioning Service (Decker and Weske, 2007) is selected as an

example, the 20 scenarios are detailed in Appendix B.

“A buyer (e.g., car manufacturer) uses reverse auctioning for procuring
specially designed components. In order to get help with selecting the
right suppliers and organizing and managing the auction, the buyer
outsources these activities to an auctioning service. The auctioning
service advertises the auction, before different suppliers can request the
permission to participate in it. The suppliers determine the shipper that
would deliver the components to the buyer or provide a list of shippers
with different transport costs and quality levels, which the buyer can
choose from. Once the auction has started, the suppliers can bid for the
lowest price. At the end, the buyer selects the supplier according to the

lowest bid. After the auction is over, the auctioning service is paid.”

8 Google App Engine, App Engine Developer Profiles
http://code.google.com/appengine/casestudies.html

64

http://code.google.com/appengine/casestudies.html

Chapter 4 Scenarios Analysis and RO Modelling

4.2 Scenario analysis

To analyse the 20 scenarios we collected, two questions were asked: 1) How to
model a resource-oriented interface, mapping to an ontology, which can be used
by applications or agents to achieve functionality expressed in the scenario. 2) Do

similarities or patterns emerge?

To answer these questions, the requirements of the scenarios were elicited, and
then the scenarios were abstracted as resource-oriented models. Resource-
oriented modelling is an approach developed to represent the resources in the
interface, their relationships and interactions. The approach undertaken for
eliciting the requirements and resource-oriented modelling are explained below

with an example.

4.2.1 Eliciting requirements

This was the first step when analysing the scenarios, it involved capturing a high
level view of the requirements and abstracting them from the descriptions of the
scenarios. It involved looking at issues such as: the existence of different client
roles, the different systems involved, and are those systems managed by the

same entity.

As an example, these are the requirements from the one of the B2B scenarios, B1:

Reverse Auctioning Service, from Table 6:

1. Registration - The auctioning service deals with many participants/clients that
need to register before using the service. This implies the need for authentication

and authorisation.

2. Support for different client roles - There are two different roles for users of this

service: buyers and suppliers.

3. The service provider and the service consumers are different entities
The service provider is the auctioning services, and the consumers are the buyer

and the suppliers.

4.2.2 Resource-Oriented Modelling

Resource-Oriented Modelling is a novel approach, developed specifically for this
analysis (Alowisheq et al., 2011), devised to offer a formal and unified method to
facilitate the scenario analysis. In this modelling approach, resources are key

actors in the interfaces, in contrast to other approaches where services, messages

65

Chapter 4 Scenarios Analysis and RO Modelling

or objects have primacy. It aims to provide a more intuitive mapping from model
to implementation than could be achieved with non-resource focused methods.
Resource-Oriented Modelling is based on re-purposing UML Collaboration

Diagrams.

4.2.2.1 UML Collaboration Diagrams

The UML collaboration diagram is one of the UML interaction diagrams. As well as
showing the interaction between objects, it focuses on the structural organisation
of these objects. Therefore it can model static and dynamic aspects of the system
which correspond to the structural relationships between objects and the
behaviour and exchanged messages, respectively. The following figure is a

collaboration diagram taken from (Booch et al., 1999)

¢ : Client

1: create
2 : setActions(a, d, 0)
3 : destroy

: Transaction p_: ODBCProxy
EE—
2.1 : setValues(d, 3.4)
2.2 : setActions(a, “CQ”")

Figure 7 Collaboration Diagram

It shows objects exchanging messages. The arrows are messages, the sequence
number on the arrows indicates the time order of messages, where 2 is the 2nd
message and 2.1 is a message nested in 2. Both the arrows and the sequence
numbers show the behaviour of the system. The links between the objects show
the structural relationships, such as associations, aggregations, compositions and

dependencies.

4.2.2.2 Collaboration Diagrams for RO Modelling

When building ROA and RESTful Web services, what is being created is an
interface for clients, not a complete system; therefore our modelling approach
focuses on the interface. The interface is formed by the resources that the server
exposes to the client. The client is not modelled as a resource; however, messages
that have no initiator are considered to be from the client. In our modelling
approach, resources take the place of objects in collaboration diagrams.

66

Chapter 4 Scenarios Analysis and RO Modelling

According to ROA, these resources have a uniform interface: they can be created,

read, updated or deleted, so the messages are restricted to these four actions.

Creation of resources in ROA is achieved by sending a POST request to a factory
resource and, in UML terms, these can be considered as classes. In the original
UML collaboration diagrams, there were no classes only objects, but later versions
introduced specification level modelling that showed the structural relationships
between classifiers. We do not take that approach, and instead represent factory
classes as resources. This is because factory resources are not abstract in ROA
but are actual elements that participate in the interaction. They need to be

included so that both the static and dynamic aspects can be modelled.

The example in Figure 8 shows a simple example of the RO modelling approach. It
models the B1: Reverse Auctioning Service scenario, which can be broken down

into the following steps:

(1.) The buyer creates an auction
(2.) The buyer starts the auction
(3.) The suppliers place their bids
(4.) The buyer selects a bid

(5.) The buyer pays for the service
(6.) The buyer deletes the auction

Buyer: 1: c ;
y > Auction [—

< For

Supplier: 3: ¢

=
= Bi
- F |
Buyer: 2: u Supplier: 3: ¢
—
— >

< SseH

g

1TE

Buyer: 5: c Payment |—

|

P1: Payment

R

Buyer: 4. u

Figure 8 RO Diagram for B1: Reverse Auctioning Service

The letters ¢, u, d, and i on the messages respectively correspond to create,
update, delete and instantiate. The links labelled Has and For are structural links
that show how the resources relate to each other. We show the structural links
between factory resources and non-insatiable resources, which can only be
created by the server. The rationale behind this is to facilitate eliciting domain

ontologies. Below is the domain ontology for B1.

67

Chapter 4 Scenarios Analysis and RO Modelling

Auction a owl:Class.

:Bid a owl:Class;

:Payment a owl:Class.

:For a owl:ObjectProperty;
rdfs:domain :Bid;
rdfs:range :Auction.

:Has a owl:ObjectProperty;
rdfs:domain :Auction;
rdfs:range :Payment.

This ontology contains the classes and object properties in the scenario, however

data properties would still needed to be added.

The advantages of Resource-Oriented Modelling stem from it being a more natural
way to represent REST and ROA solutions, hence allowing designs to be more
easily mapped to solutions. This is because it provides a simple mechanism for
eliciting domain ontologies and captures both dynamic and static aspects of the

interface.

4.2.3 Outcomes of the Scenario Analysis

The RO models for the twenty scenarios were created (they are included along
with the Scenario descriptions in Appendix B). This was done by abstracting the
interface as resources, then deciding on the structural relationships between
these resources and the interactions needed to reflect the main success scenario

in those scenarios.

The underlying assumption in the analysis was that resources in the scenarios
were semantically described in domain ontologies, and these ontologies can be
accessed by clients. Therefore, the analysis focused on finding other interaction
requirements the client needed to be aware of (i.e. expressed to the client) in
order to interact with the resources to achieve the scenario. The resulting

interaction requirements are listed and explained below:

1. Mutability: Is the interaction with the resources to retrieve information or to
update them? Most of the interactions in the scenarios were presented as
updating resources. Table 7, where analysis results are compiled, shows that
out of 128 interactions 89 were updating compared to 39, which were
information retrieval.

HTTP offers four main methods for interacting with resources. These are GET,
PUT, POST and DELETE. A GET on a resource would be for information

retrieval, and the other three methods modify, create and remove resources,

68

Chapter 4 Scenarios Analysis and RO Modelling

respectively. The combination of the HTTP method and the URI of the resource
should be sufficient to semantically describe to the client how to formulate
the request and the effects of the interaction. Therefore, there needs to be a
mechanism where both the HTTP method and the URI are presented to the
client prior to the interaction.

Atomicity: Is the interaction atomic or conversational? Conversational
interactions are where the client follows a certain order of interactions to
achieve the business logic. Conversational interactions are made up of several
atomic ones. Conversational interactions can be achieved in HTTP by
providing the client with links to the possible next steps. Out of the twenty
scenarios, seventeen were conversational interactions.

Synchronisation: Is the interaction with the resources synchronous or
asynchronous? An aspect of interaction that needs to be expressed to the
client, is when the response is not immediate, e.g. a running job, hence
asynchronous. The default mode of interaction is a synchronous request-
response mode. This shows in the analyses of the scenarios, as only 34 out of
the 128 interactions were asynchronous. Asynchronous interaction in HTTP
can be achieved either through polling or pushing (notification). In polling, the
client checks if the processing is completed at set intervals; using HTTP, the
server can be made to respond with the status code “202 Accepted”, which
means that “The request has been accepted for processing, but the processing
has not been completed.”. However achieving pushing (notification) is not
natively supported by HTTP. The analysis of the scenarios shows that in 6
interactions notification was required, compared to 26 where polling sufficed.
Plurality: Do the resources represent collections? In the twenty scenarios
there were nineteen interactions with resources that represented collections.
Five out of those nineteen can be represented as dynamic filters on
collections, where the client provides values for properties on which the
collection is filtered. The method for expressing these types of interactions is
discussed in Chapter 5.

Roles: Are the types of interactions permitted by the server similar for every
client, or are there different client roles? In the analysed scenarios, six out of
the twenty scenarios had different client roles: for example, in the B1: Reverse
Auctioning scenario, there were two types of clients: suppliers, and buyers.
Resource Representation: This is a fundamental feature of RESTful
approaches, because interacting with the resources is performed by

exchanging representations of resources.

Table 7 Interaction requirements of scenarios across communities of interest

| Mutability | Atomicity | Synchronisation | Plurality | Roles

69

Chapter 4 Scenarios Analysis and RO Modelling

©
= c =
= S g 2 oo 2 5 IS S
©) © = © b5 - 0
EE| 3 o S = o 2o
gE 3 : € |3 3 |t
£ S = < <
O
Mashups 12 13 3 3 1 4 2 0
Enterprise Services 6 6 2 0 1 1 0 2
B2B 8 25 4 2 0 5 1 1
Cloud Computing 2 18 4 9 0 3 0 0
Grid Computing 11 27 4 12 4 6 2 3
Total 39 89 17 26 6 19 5 6

Table 7 shows a summary of the number of times the interaction requirements
appeared in the five communities. Note that the sixth requirement is a
fundamental requirement of RESTful approaches and is present in all the
scenarios therefore it does not appear in the table. The full analysis per scenario

is included in Appendix B.

4.3 SWS Approaches and Interaction Requirements

This section reflects on the 27 SWS approaches reviewed in Chapter 3, and asks if
and how they support the six interaction requirements presented in the previous

section. Table 8 shows the approaches and which requirements they fulfil.

Table 8 SWS approaches and interaction requirements

Requirements

c

g | -
Publication Purpose < % 2 S 2 2
E|le| 5|5 |8 |2
e |2 |= |2 |8 |°

g 3

wv
OWL-S (Martin et al., 2004) Generic * X * v X
WSMO (Bruijn et al., 2005a) Generic * X * X * X
SAWSDL (Farrell and Lausen, 2007) Generic * X * X * X
WSDL-S (Akkiraju et al., 2005) Generic * X * X * X
SWSF (Battle et al., 2005) Generic * X * v * X
DSD (Klein et al., 2005) Generic * X * X * X
SA-REST (Lathem et al., 2007) Generic * 4 * X X X
hRESTS (Kopecky et al., 2008) Generic * 4 * X X X
MicroWSMO (Kopecky et al., 2008) Generic * 4 * X X X
WSMO-Lite (Vitvar et al., 2007) Generic * X * X * X
RESTfulGrounding (Filho and Ferreira, 2009) Generic * 4 * v X X
ReLL (Alarcon and Wilde, 2010) Data Int. * 4 4 v X X
SBWS (Battle and Benson, 2008) Generic * X * X * X
SPARQL descriptions (Sbodio et al., 2010) Generic * X * X * X
LIDS (Speiser and Harth, 2011) Data Int. * X X X X X
LOS (Krummenacher et al., 2010) Generic * 4 X X X X

70

Chapter 4 Scenarios Analysis and RO Modelling

Requirements
g | 5 E
Publication Purpose g % :E ‘E g 8
158|282 |2
wv
Semantic REST (Battle and Benson, 2008) Generic v v 4 X X X
Zhao and Doshi (2009) Generic 4 4 v X X X
Hernandez and Garcia (2010) Generic 4 4 X X 4 X
TSC (Riemer et al., 2006) Generic 4 4 * * 4 4
RESTdesc (Verborgh et al., 2011) Generic * 4 X v X X
iServe (Pedrinaci et al., 2010b) Generic * 4 X X X
SADI (Wilkinson et al., 2009) Bioinformatics 4 X X 4 X
HyperData (Kopecky et al., 2011) Generic (LD) 4 4 v v X X
Hypermedia RDF (Kjernsmo, 2012) Generic (LD) 4 4 X v X X
RDF-REST (Champin, 2013) Generic (LD) 4 4 v v 4 X
SSWAP (Gessler et al., 2009) Bioinformatics 4 4 X X X X
v': addressed by the approach x: not addressed by the approach *: assumed existing & addressed by other layers

In SWS that are classified as service-oriented meta-models the resource
representation requirement is addressed by other layers typically the domain
ontology which describes the resources manipulated by the service, and in
approaches that have WSDL groundings, such as OWL-S, WSMO, SAWSDL, WSDL-S,
SWSF, DIANE, WSMO-Lite, the resources manipulated are also described in WSDL
types. This is also the case for plurality.

As for mutability, approaches that described RESTful Web services, whether they
adopted RO or SO meta-models, all provided mechanisms for specifying which
HTTP method to be used.

Regarding atomicity this is either fulfilled by providing the capability to describe
composite services such as in OWL-S, SWSF and RESTful Grounding, and
Hernandez & Garcia or providing methods for guiding the clients to the next state
as in RelLL, RESTdesc, Hyperdata, Hypermedia RDF and RDF-REST.

Synchronisation can be targeted in other layers such as Message Exchange
Patterns (MEP) in WSDL/SOAP based services, however it is ignored by most
RESTful and RO approaches, with the exception of Triple space approaches such
as TSC and Hernandez & Garcia. RDF-REST and SADI address this by providing
“202 Accepted” status codes.

The roles requirement is addressed by only one of the SWS approaches, TSC. The

triple space provides the definition of roles an permissions. Possibly, the reason

71

Chapter 4 Scenarios Analysis and RO Modelling

that the roles interaction requirement is ignored by the SWS frameworks is that

these are regarded to be application-specific.

RDF-REST fulfils all the requirements except roles because it proposes to
implement the Linked Data Platform (LDP), which targets these requirements in

the interface descriptions.

4.4 Conclusions

This chapter set out to conceptualise Web service scenarios as RESTful
interactions with resources, and to understand their requirements as a result of

this conceptualisation.

It presented the compilation and analysis of a total of twenty representative Web
service scenarios from five communities of interest. RO models were introduced
to aid in the analysis and abstract resources in the interaction. The underlying
assumption was that the resources were semantically described in domain
ontologies; therefore the aim was to investigate other aspects that needed to be
expressed in the interface, so that the client can interact with the interface to
fulfil a specific scenario, and how to achieve those using only REST and the

domain ontology.

The need for five main interaction requirements emerged from the analysis.
These are mutability, atomicity, synchronisation, plurality and roles, in addition to
the underlying requirement assumed during the analysis, which is resource
representation. These requirements were used to reflect on the SWS approaches

reviewed in Chapter 3.

These requirements informed the design of the proposed RESTful SWS approach,
EXPRESS, and the next chapter discusses how they are implemented in EXPRESS.

72

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Chapter 5: EXPRESS: EXPressing REstful

Semantic Services

This chapter introduces EXPRESS, an approach to both describing and providing

RESTful Semantic Web services.

EXPRESS eliminates explicit service descriptions and vocabularies, and shows how
RESTful Semantic Web services can be created semi-automatically by combining
the expressivity and semantics in ontologies and providing a uniform interface
for them. This requires the conceptualisation of problems as interactions with
semantically described resources, rather than services. So instead of semantically
describing a temperature service as a service that takes a location as input and
returns the degree as output, it is conceptualised as a temperature resource that
is filtered by a location. The difference is subtle, but this chapter shows how it

enables the elimination of explicit service descriptions and vocabularies.

Section 5.1 presents an overview of EXPRESS and a simple example of how it
works; Section 5.2 shows how EXPRESS describes and provides the interaction
requirements discussed in Chapter 4, Section 5.3 presents a proof-of-concept
demonstrator for EXPRESS that shows how RESTful Services can be provided semi-
automatically, and Section 5.4 discusses how EXPRESS compares to other SWS

approaches.

5.1 Overview of EXPRESS

The processes of semantically describing and providing services in EXPRESS are
intertwined and are undertaken in six steps. In the first of these, the developer
provides a domain ontology that describes the resources in the interface. All the

steps are illustrated in Figure 9 below.

73

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

. . A
Design the domain
1 ontology describing g>o
resources
Provide URI for A]
2 each resource Ei Q Q Q
and deploy them
as endpoints
Specify roles and A]
3 permitted HTTP it CP (P CP
methods on [% @ [%
each resource

Specify the A

4 navigation g (P (P/ﬂ
between [% [% [%
resources \/‘
Decide on A ﬁ ﬁ ﬁ

5 appropriate i)) Q QN
state code @ [% @
responses \/4

Implement the A g g ﬁ
functionality in
6 response to i>o o° [% [% [%

HTTP methods

Figure 9 Steps for describing and providing a RESTful interface in EXPRESS

A Simple Example

Following is a simple example to demonstrate the primary concepts in EXPRESS.
This example presents a bookstore Web service. The bookstore wants to enable
the ordering of books, and is referred to as the service provider. There are two

types of clients: customers and an independent delivery service.

(Step 1) The service provider needs to provide an ontology describing entities it
wants clients to deal with. In this case they are: book, order, and person. The

following listing describes the relevant parts of the ontology formatted in N3

:Book a owl:Class.

stitle a owl :DatatypeProperty;
rdfs:domain :Book;
rdfs:range xsd:string.

sauthor a owl:ObjectProperty;
rdfs:domain :Book;
rdfs:range :Person.

:Person a owl:Class.

sisbn a owl :DatatypeProperty;

74

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

rdfs:domain :Book;
rdfs:range xsd:string.
:Order a owl:Class.
containsltem a owl:ObjectProperty;
rdfs:domain :Order;
rdfs:range :Book.
sorderedBy a owl:ObjectProperty;
rdfs:domain :Order;
rdfs:range :Customer.
:creationdate a owl :DatatypeProperty;
rdfs:domain :Order;
rdfs:range xsd:dateTime.
:Customer a owl:Class.
-hasAddress a owl :DatatypeProperty;
rdfs:domain :Customer;
rdfs:range xsd:string.

(Step 2) The OWL file is used to create a RESTful interface for the resources. The
file is parsed; classes, properties and individuals are given URIs based on their

names in the file. The following are examples of generated URIs.

http://bookstore.com/Book (URI for a class)
http://bookstore.com/Book/DBSys (URI for a book instance)
http://bookstore.com/Order/0r11233 (URI for an order instance)

The book’s properties also have URIs, for example the book’s title has this URI

http://bookstore.com/Book/DBSys/title

The URIs are designed to include the types of the requested resources as shown

above; this is consistent with the W3C note on cool URIs®.

(Step 3) The service provider then states, via mechanisms later discussed in the
chapter, which methods (GET, PUT, POST and DELETE) can be applied to each URL. If
the server provider has several types of clients, it can state that permitted

methods on a URI differ depending on what type of client is accessing it.

The interface is deployed after specifying the access control lists, as stubs are

automatically created.

(Step 4) In this case the interaction is conversational, so the client would be
guided by the server on which links to follow next. This means that, in the
implementation, the developer would specify that when a book is retrieved, a link

to order a book is presented to the client.

° Cool URIs for the Semantic Web, W3C, http://www.w3.org/TR/cooluris/

75

http://www.w3.org/TR/cooluris/

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

(Step 5) The developer does not need to specify default HTTP response codes,
such as 200 OK or 201 Created, when retrieving or creating a resource
respectively, which is the case in this example; however, to make the interaction
synchronous the developer would need to change the response. This is explained
further in Section 5.2.5.

(Step 6) The service provider maps these stubs to existing services or codes the

business logic in them.

To illustrate how a client customer interacts with the interface to place an order,
we assume the client has already discovered the service'. For the client to invoke
the service it needs to have the OWL file. It can access this from the service in the

same way it GETs any other resource.

The purpose of the OWL file is to show the resource representation and thus the
exchanged messages format, relationships, and special instances. The client also
needs to know how to invoke HTTP methods on resources. After the client has got

the OWL file, to place an order it sends a POST request to
http://bookstore.com/Order

with the following payload

_ta223 a :Order;
containsltem <http://bookstore.com/Book/DBSys>;
thasTime ""2013-04-23T11:19:35""xsd:dateTime;
torderedBy :c1245.

The server will respond by creating a new order and sending back its URI to the
client. For example http://bookstore.com/Order/0Order11233. The orderedBy property

indicates which customer placed the order.

As an example of how role-based access control (RBAC) is applied, on the URI

http://bookstore.com/Order/0Order11233/hasStatus
customer clients can only invoke GET. The delivery service, which is also a client
of the bookstore service can invoke GET or PUT to modify the status, but cannot
modify other Order properties, however customers can. This is explained further

in Section 5.2.6.

> Another assumption is that the client knows the URI of the book it wants to order. This example is
extended in Section 5.2

76

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2 Semantic Description

This section shows how EXPRESS provides the interaction requirements discussed
in Chapter 4. These interaction requirements are first listed in Table 9, which
states the means of description or provision and the step in which they occur (as

illustrated in Figure 9).

Table 9 Interaction requirements and the step in which they are expressed

Means Step
i . HTTP
rlen(:j:l'aecr:::t oDan:‘y Reﬁ’:lrce M:::: 4 | Links Status | RBAC |1|23|4a|5]|6
Codes
2::::::\tation d d Y
Mutability v v V|V
Plurality 4 v
Atomicity v v
Synchronisation v v
Roles v v

5.2.1 Resource Representation

The main argument of this thesis is that the resource representation in the
domain ontology and the standard interface are sufficient to describe the
required functionality. Therefore the resource representation requirement plays
the main role in the design of EXPRESS approach, and it is the foundation upon
which the other five requirements stand, hence a thorough explanation of the
resource representation requirement is substantially longer than the other

requirements.

Referring to the bookstore example in the previous section, the representation of

a Book individual is as follows:

<http://bookstore.com/Book/DBSys> a :Book;
sisbn ""0123735564"Mxsd:string;
stitle "Database Systems"/xsd:string;
sauthor <http://bookstore.com/Person/JSmith>.

The resource representation is constructed from the specified properties of the
resource and their values. In EXPRESS rdfs:domain that links a property to class,
specifies that individuals of the class would have those associated properties in
the representation, and the types of those properties would depend on the
rdfs:range statements in the ontology.

77

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Typically, the server is responsible for minting URIs for newly created resources.
In a case where the client is creating a new resource such as the Order in Section
5.1, EXPRESS requires the client to send URIs as blank nodes (bNodes), then

creates the resource and sends the URIs back to the client.

This section explains the resource types, their representations, and the rationales
for the design decisions. In a RESTful interface, clients and service providers
interact by exchanging resource representations. Specifying the resource
representation is important because it sets restrictions on the exchanges between
the server and the client, this establishes a common language that manages
expectations and hence enables validation and facilitates future automation of the

interaction.

5.2.1.1 Resource Types

The messages exchanged in EXPRESS are in RDF. The interface is described by the
domain ontology, which can contain several resource types. The main resource
types are classes, individuals, or properties of individuals. Each one of these
resources types has a different URI pattern that corresponds to a graph pattern
(shown in Table 10). This graph pattern, together with the domain ontology,

dictate the format of the resource representation.

The aim is to enable automated generation of URIs endpoints and server-side

stubs from the description of resources in the ontology.

Table 10 Resource types and corresponding URI and graph patterns

Resource Type URI Pattern Corresponding Graph Pattern
?X a AClass
Class /AClass x 2p %
Individual /AClass/Individual Individual a AClass
Individual ?x ?y
Object Property /AClass/Individual/Property ,')Qd fvidual 2;°perty Zg
Data Property /AClass/Individual/Property Individual Property 2X
X a AClass
. .. - _ ?X ?p ?0
Filtered Individuals | /AClass?Property={value} 2% Property value
value ?y ?z
X a AClass
Properties of /AClass/Propertyl?Property2= ?X Propertyl ?y
Filtered Individuals |{value} ?X Property2 value
?y ?p 20

The six resource types in Table 10 are explained in further detail below.

1. Class

78

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

This resource type serves as a factory endpoint for creating new individuals of
this class, or listing existing ones. Having a factory endpoint for creating
resources is a well-known convention in the design of Web applications and Web
API, and the URI for such an endpoint typically ends with the name of the class or
resource type. For example in the Facebook Graph API", the following endpoint is
used to add photos

/{album-id}/photos

To form the newly added photo’s URI, the photo ID will be appended to the URI
above, and EXPRESS follows the same convention, by having the URI pattern

representing a class end with the class name.

The corresponding graph pattern aims to match any individual of this class,
together with the individual’s properties. The notion of properties here is also
influenced by object-oriented design. That is the properties assume a direction;
therefore, in the design of the ontologies for EXPRESS the developer should define
the domain and range of the property. This is one of the requirements EXPRESS
imposes on the design of ontologies. Thus when manipulating an individual of
this class, or returning its properties, only properties which have been defined to
have this class as a domain will be considered as part of the result. This functions

to manage server and client expectations.

2. Individual

This resource type represents an individual of a class, the corresponding URI
pattern is also in line with cool URIs and conventions and practices in the design
of Web APIs. When a resource is created of a certain type, its URI is formed by
appending its ID to the URI of the Class it belongs to. The corresponding graph
pattern represents a single resource as well as its associated properties and their

values.

3. Object Property

The object property resource type accesses the values of object properties for a
certain individual. This fine-grained access allows the client to retrieve or
manipulate a property of the resource, rather than the whole resource, thereby
increasing the efficiency of the interaction when resources are large, and enabling

different levels of access control over resource properties.

The URI pattern of an object property, since it accesses part of a resource,
becomes an extension to the resource’s URI and takes the following form, as

shown in Table 10:

" Facebook Graph API https://developers.facebook.com/docs/graph-api/using-graph-api/v2.1

79

https://developers.facebook.com/docs/graph-api/using-graph-api/v2.1

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

/AClass/Individual/Property

The corresponding graph pattern matches the individual which is the value of the

property as well as its associated properties and their values.

4. Data Property
The data property resource type is very similar to the object property resource

type, the only difference is in the corresponding graph pattern, which matches the

triple connecting the individual to the value of the data property.

5. Filtered Individuals
This resource type represents individuals that are filtered by one or more
property values. It is intended to provide an efficient mechanism for retrieving

and creating resources. This is a factory endpoint, like the Class resource type.
The class resource type had two main functionalities:

1. To create a new individual of this class.

2. To provide access to all individuals of this class.

The Filtered Individuals resource type is a special case of the Class resource type.
It enables both the creation and retrieval of individuals, however unlike the Class
resource types, these individuals are filtered by property values during retrieval.
Individuals created by this resource type can have certain property values
specified by the client. Examples include a server generated ID, or a creation date.
Let us assume that the Order resource in the bookstore has a creation date, which
is created by the server. This is indicated to the client by specifying the all the
properties needed to create the Order in the query string, and leaving out the

properties that the server would create, as shown below.

Link: <http://bookstore.com/Order?orderedby={}&containsltem={}>; rel="POST"

This would tell the client that values for both orderedBy and containsltem are
required for creating an Order, and as a result an Order would be created, that
has the client provided values for both orderedBy and containsltem, and a

creation date specified by the server.

The URI pattern for the Filtered Individuals resource type is comprised of the
name of the Class and a query string with name-value pairs for the filtering
properties. This offers flexibility for defining endpoints of this type, so that

several endpoints may exist to filter individuals by different combinations of

80

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

properties. Moreover the structure of the URI pattern, being a query string, differs

from those of other resource types, so it is not confused with them.

The corresponding graph pattern matches individuals of the Class, that have the
given value for the specified property, as well as those individuals associated

properties and their values.

6. Properties of filtered individuals
In a case where the client only wants a value of a certain property for filtered
individuals, such as titles of books by a certain author, it is inefficient to return all

the properties of those individuals.

This follows the convention established in the previous resource type; however
only the required property of the individual is returned, not all the properties of

the individuals.

Therefore, the URI pattern for this resource type is similar to the Filtered
Individuals URI pattern in terms of the query string and name-value pairs, but it
differs in that it has the the required property before the query string. The
corresponding graph pattern matches the individuals, their required properties

and the properties used for filtering.

Property paths are a new feature in SPARQL 1.1 (Harris and Seaborne, 2013). They
enable the specification of an arbitrary length route between two resources; triple

patterns are paths of length 1.
For example
?order ccontainslten/:title ?title

would return the titles of books in orders. Property paths make writing graph
patterns more concise, allow resources connected by arbitrary length paths to be
matched and support inverse paths where roles of subject and object are

reversed.

The use of property paths is a potential future extension for EXPRESS, which
would add greater flexibility to the introduced resource types. However this is

currently out of the scope of this thesis. For example

/0rder/{OrderID}/containslten/title

would be the URI for the pattern above.

81

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.1.2 Resource Types in RO SWS Approaches

Having different resource types that exhibit differ in behaviour as a result of
applying HTTP methods, or differ in their representation is common in the design
of resource-oriented SWS. For example in Semantic REST (Battle and Benson, 2008)
they had two main endpoint types, a class-level and a resource-level endpoint.

Each has a different URI pattern. The URI form for a class-level resource is:

/ResourceType/

The URI form for a resource-level endpoint is:

/ResourceType/ResourcelD

Moreover these endpoints accept SPARQL queries to be sent and resolved, in
EXPRESS this is not allowed for security reasons, however basic filtering is offered
by introducing the two other resource types Filtered Individuals, and Properties of
filtered individuals. In EXPRESS, if advanced SPARQL queries are required they

should be defined explicitly as a resource in the ontology.

Zhao and Doshi (2009) identified three types of resources, these are: resource set,
individual resource and transitional service. Each of these types has an associated
URI pattern. A resource set type, represents a collection of resources of a certain
type therefore the HTTP methods applied to it will manipulate all individuals in
the set. In addition this type of endpoint serves as a factory endpoint to create
new individuals of this type. An individual resource represents one resource, and
hence the HTTP methods affect a single resource. The third type is different, it is
loosely defined, to encompass all functionally that does not map directly to
manipulating sets, or individuals, and that is considered more transformation-
oriented, or resources that update other resources. They provide examples such
as ShipOrder, and SubmitPayment. EXPRESS’s alternative for this, is to represent
the functionality as an update of resource’s property, this way EXPRESS provides a

unified view of resources.

RDF-REST (Champin, 2013) proposes to implement the Linked Data Platform (LDP)
(Speicher et al., 2014). In LDP there is a notion of LDP Resources (LDPR) and LDP
Containers (LDPC), these two types of resources respond differently to HTTP

methods.

Hyperdata (Kopecky et al., 2011) uses named graphs to represent APl endpoints
for resources in the RDF store. They have four types of resources: classes,
individuals, property resources, and value resources. These are defined as named

graphs, and in Hyperdata are considered as endpoints, which accept HTTP

82

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

methods. These definitions also include the resource description, so that the

boundaries of the resources are defined.

In TSC approaches such as the one by Hernandez and Garcia (2010), they assumed
that there were domain ontologies that define the classes of individuals, and that
each triple space has a URI and corresponds to a certain class, therefore
individuals that exist in a triple space, are all of the same class, and each one of
those individuals had a specific URIL. Thus the underlying assumption is that there
are two different resource types (class and individual), which exhibit different

behaviours when HTTP methods were applied.

SSWAP (Gessler et al., 2009) on the other hand was developed for bioinformatics
applications, and the functionality is conceptualised as mapping an input
provided by the client to a related output provided by the service, therefore it
defines only one resource type. The client can send POST request with the input to
the endpoint URI, or perform a GET request with the input value appended to the

endpoint URI by means of a query string.
These RO SWS approaches, used resource types to specify:

1. How the server would respond: Would it manipulate a list of resources, a
single resource, or a part of a resource?
2. What the payload looks like: What does a resource contain and what are its

boundaries, in other words what is the payload structure?

Three other RO SWS reviewed in Chapter 3 do not use resource types for the
purposes above these are RESTdesc (Verborgh et al., 2011), ReLL (Alarcon and
Wilde, 2010), and Hypermedia RDF (Kjernsmo, 2012). In RESTdesc there is no RDF
serialization of the resource representations; graph patterns represent resources
that are necessary for the composition or discovery of the APIs. Therefore, those
graph patterns provide a flexible way to define the expectations from the
endpoint, but only the ones necessary to compose or discover them, not to
represent the resource. In other words, the resource representation is left to the
lower layers. ReLL is similar in this sense, where the resource representation is
left to the schema and media types. Hypermedia RDF is a proposed vocabulary to
make RDF a hypermedia type. The approach does not specify the repercussions of
updating or deleting a resource. So in a sense the resource representation does

not define the resource boundaries, therefore there are no resource types.

Ultimately, RO SWS can take two methods, either they impose general types of
resources or endpoints with similar behaviours and rules for payload structures,

or theyoffer more flexibility and define implications for each endpoint separately,

83

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

such as the three approaches discussed in the last paragraph. EXPRESS adopts the
first method. The whole purpose of resource types in EXPRESS is to strike a
balance between imposed restrictions and generality so that several applications

can be fulfilled, while being easy for developers to understand the concepts.

5.2.1.3 EXPRESSive Ontologies

As explained above EXPRESS utilises mechanisms in the ontology itself to
represent requirements in the interaction. This imposes assumptions on the
design and the interpretation of the ontology. An example discussed above was
the specification of the domain and range for each property. Two other
assumptions are explained below. This requires designing the ontology with
EXPRESS in mind. EXPRESS also assumes ontologies are in OWL DL, however since

no reasoning is required at this stage, the OWL profile of less importance.

1. Potential addition of new concepts

In service-oriented approaches to SWS, domain ontologies are mainly used to
specify inputs and outputs for the services. A resource-oriented approach
requires a different conceptualisation of the problem, as any resource the client
may interact with would need to be specified. For example in a resource-oriented
approach if you want customers to be able to order books you need to have an
Order class, whereas in a service-oriented approach there would typically be a
Book Order service, described using a service ontology, this service may have a
book as input and an order ID as output. For that reason a resource-oriented
approach such as EXPRESS may require the addition of new concepts to the

domain ontology.

2. Alignment to classes and properties in popular ontologies or vocabularies

Although this step is not necessary for an ontology to become an EXPRESSive
ontology (and is usually a part of designing any ontology) it serves the purpose of
service matchmaking in EXPRESS. Using owl:equivalentClass, and
owl:equivalentProperty enables linking the definitions of classes and properties
in an EXPRESSive ontology to other ontologies. For example, consider the Book
class, from the example used earlier in the chapter

:Book a owl:Class;
owl:equivalentClass dbpedia:Book.

84

Chapter 5 EXPRESS: EXPressing REstful Semantic Services
The Book class is now mapped to the dbpedia:Book class.

5.2.1.4 Open Issues

There are two open issues related to resource representation, solutions for these
issues are suggested below. For a client to interpret and interact with EXPRESS

services autonomously these issues must be further explored.

1. Which resource properties are required from the client and which are optional?

This could be defined using the cardinality restrictions in OWL, specifically
owl:minCardinality. For example if author was an optional property for Book, it
could be expressed as follows:

Book T = 0 author
which is a cardinality restriction that at least zero authors are required for a book.

2. Which resource properties link to sub-objects or dependent ones (weak entities)?

Taking for example, a book’s author, and assume that the server would allow
clients to create books. The client would be allowed to create an author individual
when creating the book, these resources would not have been created yet, and
would be sent as bNodes: then the server would create them and send back their
URIs. However if the client wishes to link to an existing author, it can provide
their URIs instead, and the server would understand not to create them. So what if
the server would not allow the client to create a Book without having an Author.
How would that be conveyed to the client? This could be conveyed using OWL

restrictions. For example:
Book E 3 author.Person

This would tell the client that an author would need to exist, before creating a
Book.

However the issue with using restrictions, either existential (such as the one
above) or cardinality restrictions (such as in point 1) are not enforced in OWL,
because its standard semantics adhere to Open World Assumption (OWA),
therefore reasoners do not notify if an Book instance exists without having an
author.

Therefore EXPRESS aware clients need to interpret these as restrictions and use
other mechanisms to extract and deal with these restrictions accordingly. This is
out of the scope of this thesis, and two potential solutions are discussed as

future work in Section 8.4.

85

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.2 Mutability

Resources in EXPRESS can be created, read, updated and deleted; the offered
functionality is indicated by which HTTP method the resource accepts: these are
POST, GET, PUT and DELETE. The effects of applying these methods to the resource

types are shown in the following table.

Table 11 Resource types and the effects of HTTP methods

Resource Type

GET

PUT

POST

DELETE

Gets information

Creates a named

Creates an individual:

Deletes individuals of

this property

this property

Class about all individuals |individual: the client the server decides the .
. . . . - this class
of this class states the identifier identifier
Individual Gets al.l pljo.pertles Update§ individual’s N/A Deletes.mdlwdual and its
of the individual properties values properties
Deletes the relationship
between the property
Object Property Ge:ts the value of Updates the value of N/A value ar_1d_ the individual;
this property this property the decision whether the
value is deleted is left to
the implementation
Data Property Gets the value of Updates the value of N/A Deletes the property

value

Filtered
Individuals

Gets individuals
that have the given
property value

Updates individuals
that have the given
property value

Creates individual(s)
with the given
property value

Deletes all individuals
that have the given
property value

Properties of
Filtered
Individuals

Gets propertyl, of
all individuals that
have the given
value for property2

Updates propertyl, of
all individuals that
have the given value
for property2

N/A

Deletes property1, of all
individuals that have the
given value for
property2

In EXPRESS, as in ROA, the HTTP methods POST, GET, PUT, and DELETE map to
Create, Read, Update and Delete (CRUD), respectively. To be meaningful in the
context of EXPRESS, the POST method, which creates new instances, can only be
applied to the factory resource types: class and filtered individuals. In all the
other cases, GET retrieves, PUT updates, and DELETE deletes the associated graph
pattern represented by the resource type, as explained in Table 10. PUT is used
for creating individuals only when applied to the Class resource type, this means
the server permits the client to provide the identifier, which is consistent with

ROA practices (Richardson and Ruby, 2007, p99, p220).

It is possible to formalise each request as a SPARQL query. This formalisation
provides a specification of the request’s behaviour, or effects. To represent the
GET method SPARQL CONSTRUCT queries are used. To enable the representation
of the PUT, POST and DELETE methods the SPARQL Update Language (Gearon et al.,
2013) specifically DELETE and INSERT operations are used.

The mapping to SPARQL queries has the following assumptions:

86

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

1. The service provider has an internal RDF graph named <Server>
2. The resource type and the HTTP method determine the SPARQL query
3. In PUT and POST the payload, is considered another RDF graph <Payload>

The following example in

Table 12 illustrates the mapping to SPARQL queries, it maps the HTTP methods
effects on the “individual” resource type, shown in the second row in Table 11.

The rest of the mappings are in Appendix C.

This example represents the mapping of HTTP methods into SPARQL queries on a
book individual from the bookstore example in Section 5.1. The URI pattern and

corresponding graph pattern for an individual is as follows.

URI Pattern
AClass/Individual

Graph Pattern
Individual a AClass;
Individual ?X ?y.
And in the case of a specific book, DBSys, this would be:

URI
http://bookstore.com/Book/DBSys

RDF Graph

<http://bookstore.com/Book/DBSys> a :Book;
s isbn ""0123735564"Mxsd:string;
stitle "Database Systems"/~xsd:string;

sauthor <http://bookstore.com/Person/JSmith>.

Table 12 Formalisation of HTTP methods in SPARQL queries for a book individual

GET

Retrieves information about DBSys at this URI

pesSieter http://bookstore.com/Book/DBSys

CONSTRUCT {
Corresponding <http://bookstore.com/Book/DBSys> ?p 7?0 }

SPARQL Query WHERE {
<http://bookstore.com/Book/DBSys> ?p ?0 }

<http://bookstore.com/Book/DBSys> a :Book;
Result :i§bn "'0123735564"Mxsd:string;)

“title "Database Systems"/Mxsd:string;
author <http://bookstore.com/Person/JSmith>.

The CONSTRCUT query returns triples in the format specified by the graph pattern
Explanation associated with the individual resource type (see Table 10), which returns the values of
the associated triples.

PUT

Updating the ISBN of the book at this URI

DS http://bookstore.com/Book/DBSys

Payload <http://bookstore.com/Book/DBSys>

87

http://bookstore.com/Book/DBSys
http://bookstore.com/Book/DBSys

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

sisbn ""1334340005"Mxsd:string.

WITH <Server>
DELETE
{ <http://bookstore.com/Book/DBSys> ?p ?00ld}
INSERT
Corresponding { <http://bookstore.com/Book/DBSys> ?p ?oNew}
SPARQL Query WHERE
{ GRAPH <Payload> {
<http://bookstore.com/Book/DBSys> ?p “?oNew }
GRAPH <Server> {
<http://bookstore.com/Book/DBSys> ?p ?00ld }}

<http://bookstore.com/Book/DBSys> a :Book;

Result sisbn ""1334340005"Mxsd:string;
esu stitle "Database Systems"/Mxsd:string;
author <http://bookstore.com/Person/JSmith>.
To update an individual, this is mapped to a DELETE/INSERT operation, the payload
contains the triples that specify the properties that will be updated and their new values.
The DELETE/INSERT operation deletes from the server the triples that match the pattern :
Explanation Individual ?p ?old
P But since there is a WHERE clause, this pattern also matches the triples provided in the
payload. Therefore only triples containing properties provided in the payload will be
affected in the server, and replaced by the triples provided in the payload which is the
effect of the INSERT clause.
DELETE
Description Deletes the individual and associated properties.
Corresponding DELETE {
SPARQL Query GRAPH <Server> {
<http://bookstore.com/Book/DBSys> ?p ?0. }}
WHERE
{ <http://bookstore.com/Book/DBSys> ?p ?0. }
Explanation The triple

<http://bookstore.com/Book/DBSys> ?p ?o.
matches the individual and its properties at the server, and the DELETE operation removes
those triples.

When designing Web services in EXPRESS, a developer specifies through the
interface (explained in Section 5.3) which methods can be applied to which
resources. The client discovers this from the HTTP Link Header when retrieving
the ontology. Below are some examples:

Link: <http://bookstore.com/Order?containsltem={}>; rel=""POST"

Link: <http://bookstore.com/Book?isbn={}>; rel=""GET"

The Link Header is explained in more detail in Section 5.2.4

Of course the client could know through sending an OPTIONS request to a certain
resource, but that would mean an extra roundtrip to the server for each
interaction. It is more efficient to provide the client with the possible next actions
as soon as it receives a response from the server, rather than blindly sending

OPTIONS requests to resources to know what method is allowed.

88

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.3 Plurality

EXPRESS provides multiple mechanisms to represent and manipulate collections.
In Table 11, all the resource types except “Individual” can be used to represent
collections. The “Class” and “Filtered Individuals” resource types represent
factory endpoints for creating new individuals using the POST method. However,
when applying GET, PUT or DELETE to them, these endpoints represent collections,
and would affect all individuals which “Class” or “Filtered Individuals” represent.

For example, if a client performs a GET on the following URI
http://bookstore.com/Book/

all instances of books at the bookstore would be returned. However, the
functionality of returning all the books would not be likely to be provided by the
bookstore. Instead there would be a mechanism to look up books by title or
author. This is provided by the “Filtered Individuals” resource type. For example,

performing a GET on the following resource
http://bookstore.com/Book?title=""Database Systems"
returns books with the title “Database Systems”.

The importance of whether a resource is a collection or not, is for managing client
expectations, so the client should be prepared to deal with multiple individuals
when performing GET, PUT or DELETE on the two resource types mentioned above,
and multiple property values in the other three resource types, which are “Data

Properties”, “Object Properties” and “Properties of Filtered Individuals”.

5.24 Atomicity

As explained in Chapter 4, most of the scenarios in the analysis were
conversational, meaning the client interacted with the server in several steps to
achieve the business logic. In RESTful applications the server guides the client by
providing hypermedia controls (discussed in Chapter 2): these controls provide
the resource location and state how it can be manipulated. In EXPRESS, a possible
method for achieving this, without introducing new vocabularies, is to use the
HTTP Link header.

The Link Header was in the HTTP/1.1 2068 1997 protocol (Fielding et al., 1997),
but was not specified in the later version HTTP/1.1 2616 1999 (Fielding et al.,
1999). However, it was argued for by Connolly and Hickson (1999), and more

89

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

recently in (Nottingham, 2010). Using the Link headers enables the linking of
resources regardless of their representation format (i.e. serialisation).

To show how this is achieved in EXPRESS, an example is presented from the
bookstore scenario mentioned in this chapter. When the client retrieves the
ontology, it also receives, in the header, a link for the next possible action(s) and
associated HTTP method.

HTTP/1.1 200 OK

Link: <http://bookstore.com/Book?isbn={}>; rel="GET"

The client then knows that the next possible action it can take is to perform a GET

on the following resource /Book?isbn={} .

EXPRESS repurposes the use of the link relations (rel) to specify the HTTP method.
In RESTful applications such as APP (Gregorio and de hOra, 2007), possible values
of link relations are defined in the media type specification, and are used not only
to specify the HTTP method, but also the expectations in terms of payload
structure (Webber et al., 2010, p116). Since in EXPRESS the payload structure is
specified by the resource type, what is left is the HTTP method.

In RESTful practices, link headers have been proposed to be used to fulfil the
uniform interface constraint “hypermedia as the engine of application state” for
media types that are not hypertext. In EXPRESS using link headers was one of

three possible solutions:

1. Embedding the links in the RDF representations returned from the server.
This would mean adding or using other vocabularies or ontologies to
define the links, and EXPRESS actively avoids using or introducing
interaction vocabularies.

2. Returning multipart messages from the server, the first part would be the
RDF representation of the resource and the other would be in either HTML
or ATOM containing the links. This would be a less elegant solution, due to
the overhead of providing manipulating messages with different media

types.
3. Using link headers.

Using Link headers is proposed to fulfil conversational services, (Appendix E
provides an example of a conversational service that has been used in the expert
reviews in Chapter 7) however the practicality of this approach has yet to be
assessed. Section 8.4 discusses future work, which aims to provide automated

conversational services and to use case studies to assess the practicality of

20

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

solutions. However, below is an open issue that would need to be addressed to

achieve this.

Identifying which resources must be created first
For example, when creating an Order, the client should already have a created
Customer, otherwise it would need to create one. In the interaction the server

presents the client with the following options.

Link: <http://bookstore.com/Order>; rel="POST"
Link: <http://bookstore.com/Customer>; rel=""POST"

Although this issue seems different than point two in Section 5.2.1.4, they are
actually similar. In both cases the client would be allowed to create the related or
required individual when creating the main one. So in the previous point, point 2,
the client would send the author’s information when creating a Book, and in this
point, it would send the customer’s information when creating the Order. As
explained in point 2 these would be sent as bNodes: then the server would create
them and send back their URIs. So what if the server would not allow the client to
create an Order without having a Customer. How would that be conveyed to the

client? This could be conveyed using OWL restrictions, as in point 2. For example:
Order T 3 orderedBy.Customer

As explained before, restrictions are not enforced in OWL, because its standard
semantics adhere to OWA, and potential solutions for this are discussed in future

work in Section 8.4.

5.2.5 Synchronisation

Synchronisation is discussed in Chapter 4, and while there is no native support
for notification in HTTP, polling can be achieved by implementing clients that
interpret the HTTP code Accepted (202). This means that, in the resource
implementation, if the response to the client would not be immediate (i.e. it needs
processing) the server should return Accepted (202), and this would tell the client
to try again later. In a case of a POST, when the resource needs processing before
being created, the URI of this new resource would be returned in the location
header. The client should be designed to poll this new URI at intervals using GET
until it gets a Created (201) response from the server, with a representation of the
newly created resource. This supports polling, but not pushing which is a one of
the limitations in HTTP and consequently of EXPRESS.

91

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.2.6 Roles

EXPRESS enables simple yet fine-grained, Role-Based Access Control (RBACQC).
Service providers can specify which client roles are permitted to apply to which
HTTP methods on which resource. In the bookstore example, a delivery service,
(which is a bookstore client) was permitted to update the status of an order, so it

was permitted to apply PUT to the following URI pattern
http://bookstore.com/Order/{Orderi1D}/hasStatus

However a customer was only permitted to apply a GET. In Section 5.3, the

implementation of this requirement is discussed.

EXPRESS Design Principles

EXPRESS aims to take intuitive prevalent familiar conventions and map them into

semantic structures. The design decisions aim to:

1. Minimise roundtrips to the server

2. Control granularity

3. Give resources cool URIs

4. Actively avoid adding interaction vocabularies, or ontologies, that either

describe the resources or services.

5.3 EXPRESS Online Demonstrator

This section discusses the design and implementation of the EXPRESS deployment
system. The deployment system aids in the creation of Semantic and RESTful Web

services. The following figure illustrates the steps involved:

1. An OWL file describing entities in the existing system is given.

2. The deployment engine extracts resources from the OWL file and assigns
URIs.

3. The roles and access control are specified on URIs and stubs are
generated.

4. Stubs are connected to existing business logic, coded, or the code is
generated.

5. Clients can access the Web service.

92

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Web Service Clients

]
of

‘ ‘Web Server) ‘ @ EXPRESS @

RESTful Semantic Web Services Deployment
<::| Engine

o O S S

i e

Existing System

L

Figure 10 Steps for Deploying Web services in EXPRESS
We can envision the use of EXPRESS in three cases, depending on the type of the
existing system:
1. To provide a RESTful interface for Semantic datasets;

2. To make existing Web services RESTful and Semantic;

3. To provide legacy systems with Semantic and RESTful Web services;

Table 13 describes what EXPRESS offers for these systems and the tasks required.

Table 13 Uses of EXPRESS

Existing System What EXPRESS offers Tasks Required
Semantic datasets = Data manipulation through | OWL file exists
(Linked Data) a RESTful interface EXPRESS : Generates Stubs
= Access Control Developer : Specifies Access Control

EXPRESS : Generates the code in the stubs because
it is direct data manipulation

Web service = Makes the Web service Developer : Creates OWL file

RESTful and Semantic Developer : Specifies Access Control

EXPRESS : Generates Stubs

Developer : Links the generated stubs to business
logic in existing Web services

Legacy System = A RESTful and Semantic Developer : Creates OWL file

No Web service Web service Developer : Specifies Access Control

EXPRESS : Generates Stubs

Developer : Links the generated stubs to business
logic or codes it in the stubs

A prototype EXPRESS deployment engine was developed. The aim was to assess
the applicability of EXPRESS and identify potential problems. The engine parses
the OWL file then assigns for each class, property or individual a URI or a URI
pattern. It then enables the user to specify which URIs can be accessed, by which
type of clients, and which methods (GET, PUT, POST, or DELETE) the clients can
apply to those URIs. After that the stubs that respond to the HTTP methods for

these URIs are created.

93

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

Jena was used for parsing the OWL files and generating the URIs and the URI
patterns. To generate the stubs Restlet'* was used. Restlet is a REST framework
in Java. Using the Restlet API it enables the creation of stubs called restlets that
respond to HTTP methods. These restlets represent resources or classes of
resources. It also provides a routing mechanism to forward requests, based on
the URI structure, to appropriate restlets. In terms of security, it offers several
authentication and authorisation methods. The stubs generated by the EXPRESS
deployment engine are restlets. The routing and authorisation code is generated
based on the information about the types of clients and the methods they are
authorised to perform on the URIs. The type of authorisation needed in EXPRESS
is a fine-grained RBAC. For instance, in the Bookstore example, the Customer can

only perform a GET on this type of URI

http://bookstore.com/Order/{OrderID}/hasStatus

At the same time a delivery service can perform GET and PUT. This kind of fine-
grained access control is not directly supported by Restlet, so its authorisation
mechanisms were extended to implement it. The following figure shows the steps

a developer should follow to deploy Web services in EXPRESS.

. Run Stub
N Generator

URlIs:
/AClass
/AClass/Alndividual

Specify HTTP

methods L~
Start.java m}
RoleMethods.java N Resource Stubs

RoleMethodsAuthorizer.java “ A Q EXPRSSApplication.java

7
fmiom
‘

EIZ]

Creatg Java ’ 7 EXPRESSComponent.java
< Project

Add Business
Logic to Stubs

A
Add Authorised
users’ credentials

Add Links to

Conversational
Resource Stubs

Run Web Service

Figure 11 Steps to deploy a Web service using the stub generator

'2 Jena, Semantic Web Framework for Java, http://jena.sourceforge.net/
'* Restlet, Lightweight REST framework, http://www.restlet.org/

94

http://jena.sourceforge.net/
http://www.restlet.org/

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

The EXPRESS Prototype is also available online at
(http://express.ecs.soton.ac.uk/), a user can upload an ontology, and configure
the Web stubs through a webpage; as a result the online engine will generate the
stubs. The generated stubs can be downloaded, or deployed temporarily at the
server (run in a sandbox). If they are deployed at the server, they can be tested
them using either using a browser for GET requests, developing a client that
performs the calls, or more conveniently test them using tools such as Poster', a
Firefox plug-in developer tool to facilitate interacting with Web services, by

constructing HTTP requests from within the browser.

ROO () Welcome to EXPRESS

E 2 C | @ helloworld.ecs.soton.ac.uk:8080/EXPRESSOnlineMVC/initialinfo.html

B BBC - Podcasts - A] The History of Matl -'l Google Reader (18) -Z:::Z- Academic Phraseba @ |

EXPRESS Home About Contact

Step 1: The OWL file and user roles

Now please upload the OWL file, if you don't have one you can select an existing one
Also, if yvou have user roles you need to provide their names

Please Upload the OWL file representing the domain ontology
(Choose File) EC2 short.owl
Or select one of these

Book

Enter the user roles (if any), one on each line
Admin
User

Next

Figure 12 Online EXPRESS, the 1st step providing an OWL file and the roles

Figure 12 shows the webpage where the user can upload the ontology and
provide the user roles for the EXPRESSive service; this is the first step. Based on
the information provided in Step 1, the second webpage, shown in Figure 13,
shows the resource URIs obtained from the uploaded ontology, and enables the
user to specify, the interaction requirements, access control and allowed HTTP

methods on each one of them.

'4 Poster Firefox Extension https://code.google.com/p/poster-extension/

95

https://code.google.com/p/poster-extension/

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

800 /| stub Configuration x

C' | [} http://helloworld.ecs.soton.ac.uk:8080/EXPRESSOnlineMVC/SetupController @ m =

EXPRESS Home About

Step 2: Configure the stubs

Now please provide the stub configurations, for each resource select the allowed methods

Allowed Methods for Admin Allowed Methods for User
Resource URI GET PUT DELETE POST GET PUT DELETE POST
/nstance [m] (@] =] (@] (=] =] =] (=]
/nstance/{Instance} (@] =] (@] =) =) =) =] o
Anstance/{InstancelD}/instanceOf =] [=] =] =] =] =] =) o
sAMI o o o o o o o o
/AMI/TAMI} o s IS o o o o o
JAMI/AMIIDYName =] =] (=] =] =] O O =]
JAMI/{AMIIDYManifest [m] (@] =] =] =] =] 8 O
Allowed Methods for Admin Allowed Methods for User
Set the URI structure for informational resources GET PUT DELETE POST GET PUT DELETE POST
& / 9 & & a =] a =] =] =] =] o
Add ancther

Figure 13 Online EXPRESS, the 2" step configuring the stubs

(@) chrome://poster - Poster - Morilla Firefox [=|[=|E3] Response ==
Request GET on hitp://localnost 8080/163631b6-1871-4101-6460-732ede52e 27 /Instance
URL: calhost 8080/163631b6-1611-4107-8460-T32ede52ef27/nstance | StalUs” 200 OK

GET Works on the EXPRESSive Stub
User Auth: Admin e '
Timeout (s 30 n

Actions

[GET] l POST I I PUT ‘ \DELETE .I ® [&

Content to Send | Headers | Parameters|

File: Browse. .

Content Type:

Content Options: I Baseb4 Encode I I Body from Parameters I

Headers:

Server Apache-Coyote/1.1. Noelios-Restlet-Engine/1.2m2

Date Thu, 13 Sep 2012 17:28:00 GMT

Vary Accept-Charset, Accept-Encoding, Accept-Language, Accep

Accept-Ranges bytes
Conteni-Type text/plain;charset=1S0-8859-1

Content-Length 7
Close

=

Figure 14 Using Poster to interact with the generated Stubs

After the stubs are generated and deployed at the server, they are given a
temporary URL In the example in Figure 13 it was in the path /163631b6-f8f1-
419f-8460-732ede52ef27/ at the server. The stubs deployed there can be
accessed via Poster. Figure 14 shows a GET request on a protected resource
/163631b6-f8f1-419f-8460-732ede52ef27/Instance -in which a username and

password were provided- and the server’s response.

96

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

5.4 EXPRESS and SWS approaches

Section 3.5 compared the 27 SWS approaches that were reviewed in Chapter 3 in

terms of the capabilities they offered, and Section 4.3 compared them according

to the interaction requirements they fulfilled. This section compares EXPRESS to

these SWS approaches. Table 14 is the combination of Table 1 and Table 8 with

the addition of EXPRESS in the last row, which shows the capabilities it supports

and interaction requirements it fulfils.

Table 14 Comparison of SWS including EXPRESS

Publication

Capabilities

Requirements

Discovery

Composition

Orchestration

Auto. Composition

Choreography

Conversational

Data Integration

Resource Rep.

Mutability

Plurality

Atomicity

Synchronisation

Roles

OWL-S (Martin et al., 2004)

*

WSMO (Bruijn et al., 2005a)

SAWSDL (Farrell and Lausen, 2007)

WSDL-S (Akkiraju et al., 2005)

SWSF (Battle et al., 2005)

DSD (Klein et al., 2005)

SA-REST (Lathem et al., 2007)

NNENENENENENEN

ANENENENENENEN

hRESTS (Kopecky et al., 2008)

*

*

MicroWSMO (Kopecky et al., 2008)

*

*

NS> [x| x| x| x [x

WSMO-Lite (Vitvar et al., 2007)

* X [X | X

RESTfulGrounding (Filho and Ferreira, 2009)

x

ReLL (Alarcon and Wilde, 2010)

AN P S S N - N RN

X [>x > |>x|x|x|x|[x|[x|[x]|x

ANRNES

QN[X > [x > |x|S|x|[x|x|X

SBWS (Battle and Benson, 2008)

QN[> > |x | x| x[x|[x|[x|x]|x|x

SPARQL descriptions (Sbodio et al., 2010)

*

LIDS (Speiser and Harth, 2011)

LOS (Krummenacher et al., 2010)

NNENENENENENEN

AN SR

*

Semantic REST (Battle and Benson, 2008)

Zhao and Doshi (2009)

AN N SR

Hernandez and Garcia (2010)

N x| x

ESRANEREIEIRANANEIANEN

X [x x> |x|x[x|[x[x]|x|[x|x|x]|X[x|[x]|]x

¥ [X | X [X [X |X [X |[X

¥ X | X [X [X |X [X [|X

TSC (Riemer et al., 2006)

*

*

AN R RN

NNENENEN

*

ANENEEE R

X [> [>x > [|>x[>x|x[>x]|x|[>x]|x|[x]|x|[Xx|[x|x|x]|X

RESTdesc (Verborgh et al., 2011)

AN

*

<\

x

iServe (Pedrinaci et al., 2010b)

*

*

SADI (Wilkinson et al., 2009)

NNENENENER PR

AN

HyperData (Kopecky et al., 2011)

Q<[> | <

Hypermedia RDF (Kjernsmo, 2012)

X

RDF-REST (Champin, 2013)

AN RN ERNENE

v

ANV

SSWAP (Gessler et al., 2009)

X [X [X | X [X [X |X

AN E RS NI NN

X | X [X | X [X [X |X

N RN NI N E S B

x

NENAR

NNENENANENENENENENENENAN R R

X

x| <] << [x |x

X

EXPRESS

AN

<

v

X

X

X

v

v

v

AN

v

QX [x > |x|x|x|[x

v': addressed by the approach x: not addressed by the approach *: assumed existing & addressed by other layers

97

Chapter 5 EXPRESS: EXPressing REstful Semantic Services

As the table shows EXPRESS fulfils the six interaction requirements, which was
shown in Section 5.2, the closest approach to EXPRESS in terms of interaction
requirements is RDF-REST, which fulfils them all except roles. As for capabilities,
EXPRESS addresses discovery, which is demonstrated in the next chapter. It also
supports data integration, because it consumes and produces RDF, which makes
it suitable for providing interfaces for datasets. Conversational services are a goal
for EXPRESS, which it supports by using Link Headers, the practicality of this

solution is left for future work, and discussed in Section 8.4.

5.5 Conclusions

This chapter presented EXPRESS, a RESTful Semantic Web service approach which
aims to eliminate explicit service descriptions for describing services. EXPRESS
works by providing a straightforward mapping between resources (described in
an ontology) and URIs that respond to HTTP requests. This chapter also shows
how such mapping can facilitate stub generation in the aim to reduce

implementation effort.

The design of EXPRESS is based on the argument that the Web’s infrastructure has
more to offer than mere data retrieval, and achieving extended functionality does
not mean that extra layers of definitions are required, or a new infrastructure.
Instead, EXPRESS suggests that what is needed is a different conceptualisation of
the problem, and although this conceptualisation may in itself impose something
of an overhead, this is outweighed by the simpler relationship between ontology,
service and protocol that we have achieved with EXPRESS. This method allows
ontologies to be transformed into SWS without the need for additional meta-

models or vocabularies.

The next two chapters present evaluations of EXPRESS: in Chapter 6 the
discoverability of EXPRESS’s semantic description is evaluated, and in Chapter 7 it

is evaluated in terms of development effort and practicality.

98

929

semantic Services

Chapter 6 Semantic Matchmaking in EXPRESS

Chapter 6: Semantic Matchmaking in
EXPRESS

Chapter 5 presented EXPRESS and demonstrated how it provides and semantically
describes Web services. This chapter assesses the discoverability of the semantic
descriptions, using a standardised test-collection and evaluation environment.
This chapter will discuss service matchmaking in EXPRESS, the methodology for
evaluation and the results. It addresses the third research question: Can EXPRESS

provide a similar level of semantic expressivity to existing approaches?

Section 6.1 provides an overview of semantic service matchmaking, Section 6.2
discusses semantic service matchmaking in EXPRESS. The experimental design is
explained in Section 6.3, Section 6.4 presents and discusses the results and 6.5

concludes this chapter.

6.1 Semantic Service Matchmaking

This section provides a brief overview of semantic service matchmaking.
According to Klusch (2008a), semantic service discovery is: “the process of
locating existing Web services based on the description of their functional and

non-functional semantics.”

Dong et al. (2012) identify six dimensions for analysing SWS matchmakers. These

are

1. The languages used for describing the semantics of Web services.
These differ among the SWS approaches, for example OWL and RDF are used in
OWL-S, WSML is used in WSMO and N3 in RESTdesc.

2. The SWS matching parts or parameters.

100

Chapter 6 Semantic Matchmaking in EXPRESS

Different parts/parameters of service description are used for matchmaking.
These can be: the service profile, i.e. inputs, outputs and/or preconditions and
effects (IOPE), the service process, and non-functional properties.

3. Matching approaches and matching degrees.
The matching approaches can be logic-based, non-logic-based (e.g. text
similarity or graph matching) or a hybrid of both. The mechanism is
considered adaptive if it involves learning (Klusch, 2008a).
As for matching degrees or degrees of logical relevance, these are usually
specified for logic-based matching. These differ slightly from one approach to
another, but in general are: exact, plug-in, subsume, intersection and fail.
(Paolucci et al., 2002; Dong et al., 2012; Klusch, 2008a).

4. The testing platforms and collections.
The two main evaluation platforms for SWS are SWS Challenge and Semantic
Service Selection (S3) contest: their goals are mentioned in Chapter 3. The
approach used in S3 is adopted in the evaluation of EXPRESS and is further
discussed in this chapter.

5. The SWS discovery mechanisms.
This concerns where and how information such as service descriptions,
ontologies and registries are stored, published and discovered.

6. The SWS discovery architecture.

The architecture can be centralised or decentralised, as in P2P.

The SWS discovery mechanism and architecture (the fifth and sixth dimension) are
of less concern in the scope of this thesis, as the matchmaking process is bound
to happen, regardless of where the service descriptions are assumed to reside, as
even in the case where there is no dedicated architecture for discovery, the
service consumer (or client) would be performing some form of matchmaking,

locally.

6.2 Matchmaking in EXPRESS

Starting with the first dimension mentioned above, the language used in EXPRESS
is OWL, as explained in Chapter 5. The second and third dimension, the matching
parts and the potential matching approaches, are discussed below.

A service in EXPRESS is mainly described by two elements:

1. The URI of the endpoint, that maps to a resource or several resources in the

domain ontology provides three main aspects:

101

Chapter 6 Semantic Matchmaking in EXPRESS

a. As discussed in Chapter 5, the URI templates correspond to graph
patterns, hence, graph matching methods can be applied, such as the
approach by Stadtmiiller and Norton (201 3).

b. In cases where a URI refers to a class, the monolithic DL matching
techniques can be applied. In monolithic DL services, the whole service
is defined as a concept. Examples of such definitions, from (Grimm,
2007) are:

S = Flight NV from.USCity

R = Flight NV from.UKCity
S and R represent service and request definitions, respectively. Few
matchmakers assume this way of defining services, only four out of the
27 classified by Klusch (2008a).

c. From the filtering resources’ URIs, inputs and outputs can be extracted.
Hence profile-matching techniques can be applied, which is the method
adopted in this evaluation.

2. The HTTP method allowed on the endpoint.

An effect or postcondition in EXPRESS is a direct function of the HTTP method
and the resource represented by the endpoint, and hence, there is no need to
explicitly state the postconditions. This is one of the ways EXPRESS reduces
the complexity of service descriptions. However, as a consequence EXPRESS is
less flexible than OWL-S in defining postconditions, because, in OWL-S,
postconditions are logical expressions and the number and type of variables
are not restricted.

The advantage EXPRESS has over OWL-S is its utilisation of the HTTP methods’
semantics in the semantic service description. In OWL-S, the semantic service
description builds on the basic description of inputs and outputs only, and as
result, there is a need for other means to describe what the service does with
those inputs and outputs: that is why explicit preconditions and effects
needed to be introduced, to describe the state of the world required before

and resulting after the service is executed.

The approach that EXPRESS takes is that a service request will be formulated in a
similar fashion to the service offer. Hence, the matchmaking between service
request and the service offer is a matching based on the two elements mentioned

above.

As for the fourth dimension, the testing platforms and collections are discussed

in the following section, the Experimental Design.

102

Chapter 6 Semantic Matchmaking in EXPRESS

6.3 Experimental Design

This experiment is designed to test whether the semantic elements exposed by
EXPRESSive service descriptions are sufficient to be consumed/utilised by well-
performing matchmaker algorithms, and hence enable similar matching quality to
other semantic service approaches, while minimising the required semantic

descriptions. The approach we take is similar to (Sbodio et al., 2010).
Three main components were required to perform this experiment:

1. A well-performing matchmaker, adapted to be used with EXPRESSive
descriptions.

2. A test collection of EXPRESSive services and an equivalent test collection in
another SWS approach (OWL-S is chosen for this experiment) to compare
the effect of the service descriptions on the performance of the
matchmaker.

3. An evaluation environment (which serves as a benchmarking platform),
used to run the matchmaker on both test collections, and calculate results.
The Semantic Web service Matchmaking Evaluation Environment SME? is
used in this experiment. It is designed so that matchmakers and test-
collections can be plugged in, and provides a platform for evaluating the

matchmakers’ performances.

These components are discussed in further detail in the following subsections.

6.3.1 Adapting the iSeM Matchmaker

The iSeM (Klusch and Kapahnke, 2010a) matchmaker was chosen, because it

fulfils the following requirements:

1. Has a good performance on OWL-S and SAWSDL descriptions.
Implements an interface for SME>.
Access to source code, and hence can be adapted to EXPRESSive service

descriptions.

It was developed by experts in the field, and it has a better performance than
other matchmakers, according to the S3 2010 and 2012 competitions'®, and since
the aim of the experiment is to compare the expressiveness of the semantic

descriptions, having a fixed matchmaker algorithm is more objective.

'S Annual International Contest S3 on Semantic Service Selection
2010 http://www-ags.dfki.uni-sb.de/~klusch/s3/html/2010.html
2012 http://www-ags.dfki.uni-sb.de/~klusch/s3/html/2012.html

103

http://www-ags.dfki.uni-sb.de/%7Eklusch/s3/html/2010.html
http://www-ags.dfki.uni-sb.de/%7Eklusch/s3/html/2012.html

Chapter 6 Semantic Matchmaking in EXPRESS

The iSeM matchmaker is a hybrid and adaptive matchmaker for both OWL-S and
SAWSDL descriptions. It matches service functional descriptions and has the
following features (Klusch and Kapahnke, 2010a):

1. Signature Matching (10).

iSeM deploys several matching methods for the services’ inputs and outputs.
These matching methods are: strict-logical, approximated-logical, structural and
textual. Approximate-logical, structural and textual matching methods aim to

compensate for the strict-logical-matching false negatives.

The strict-logical matching performs subsumption checks on input and output
classes: this causes some matches to fail. Approximate logical matching assumes
that the parts of class definitions causing the match failure are unnecessary, and
matches concepts accordingly. This approximation also enables the ranking of
services according to the resulting information gain and loss in the redefined
concepts. The structural and textual matching methods are non-logical ones. The
structural match is calculated according to the typology of the ontology
containing the defining concepts. The textual match, on the other hand, is
calculated according to the weighted keyword vectors containing the concepts’

unfolding (i.e. their primitive concept definitions).

2. Specification Postconditions and Effects (PE) matching.

This matches postconditions and effects written in PDDL. It checks if a service
plugs in a request, i.e. that the preconditions of the request entail the
preconditions of the service and the effects of the service entail the effects of the

request.

3. SVM (support vector machine)-based semantic relevance learning.
The SVM learns the weighted aggregation of the matching methods mentioned

above. It uses 5% of the test collection as a training set.

Both the source code and the binary version of the iSeM v1.1'® are implemented to
work on OWL-S. iSeM vl1.1 contains several variants (matchmaking methods)
implemented as modularised filters. The variants and their types are presented in
the following table.

Table 15 iSeM matchmaker variants

The iSeM matchmaker variant 10 PE SVM
Logic-based v
Approximate logic-based v
Structure v

's Adaptive, hybrid semantic service profile (IOPE) matchmaker iSeM V1.1 (OWL-S)
http://www.semwebcentral.org/projects/isem/

104

http://www.semwebcentral.org/projects/isem/

Chapter 6 Semantic Matchmaking in EXPRESS

Text similarity v
SVM logic-based, text-similarity, structure v
SVM logic-based, text-similarity, structure, specification v v
v v v

SVM logic-based, text-similarity, structure, approx. logic-based, specification

The iSeM source code was used to develop an EXPRESSive version by modifying
the service manipulation package to extract the service signature concepts from a
service written in EXPRESS instead of OWL-S. To distinguish between the
EXPRESSive version of iSeM and the original one throughout this chapter, they will
be referred to as iSeM EXPRESS and iSeM OWL-S respectively.

6.3.2 Creating the EXPRESSive Test Collection (EXPRESS-TC)

OWLS-TC (Klusch and Kapahnke, 2010b) is a test collection for semantic
matchmaking evaluations. It has been used in the S3 contests and is widely
accepted by the SWS community. Version 4.0 contains 1083 services, 42 queries
(service requests), and 48 ontologies. The relevance of services with respect to
queries is also provided as binary and graded judgements. These judgements are
not complete, as only 10% of the request-service combination has been judged,
using a pooling strategy adopted by Text Retrieval Conference (TREC). The
judgments are derived from the top 100 results from matchmakers in the 2008 S3
contest (Klusch et al., 2010Db).

The services are grounded in WSDL 1.1, and the test collection includes the WSDL
files as well. 160 services and 18 requests out of the total have been modified to
include preconditions and effects expressed in the Planning Domain Definition
Language (PDDL) 2.1.

The OWLS-TC was chosen for the experiment because in addition to it being
widely accepted by the community, the source code available for the iSeM

matchmaker is developed for OWL-S services.

There are two methods to create an EXPRESSive test collection, and a decision had
to be made between:
1. Manual Conversion
Selecting a subset of the OWL-S test collection services to be converted
manually into EXPRESSive descriptions and performing the experiment on
a subset of the test collection.

2. Automatic Conversion

105

Chapter 6 Semantic Matchmaking in EXPRESS

Finding an approach to automatically convert the whole OWL-S test
collection to an EXPRESSive test collection, both the 42 requests and the

1083 services.

Manual
Conversion

Abstract Problem

Automatic
Service description in Conversion Service description in
OWL-S EXPRESS

Y

iSeM Matchmaker

Figure 15 The manual and automatic approaches to generate the test collection
Figure 15 illustrates the two approaches. They both have advantages and risks,

which are discussed next.

Advantages and Risks of the Manual Conversion

The manual conversion is achieved by reading the OWL-S description, reverting to
the actual problem it aims to solve and then using that abstract problem to create
a description in EXPRESS.

This ensures that the EXPRESSive description is not influenced by another
approach’s conceptualization of the problem, in this case OWL-S, hence the
semantic elements exposed by EXPRESS truly reflect what would be reached if

there was no OWL-S description, However there are two risks, with this approach:

1. The size of the test collection will be considerably smaller, and as a result
the reliability of the experiment will be weaker.

2. There is more chance of bias when converting the queries and services.
The bias could occur by making the services closer to matching the
queries; however this could be overcome by asking impartial/neutral
participants to perform the semantic description of both queries and

services.

Advantages and Risks of the Automatic Conversion

The advantages of the automatic conversion approach over the manual one is that
it results in a considerably larger test collection, which increases the reliability of
the results. The automatic conversion however also introduces a risk that could

weaken the argument for the experiment.

106

Chapter 6 Semantic Matchmaking in EXPRESS

In the automatic approach, the risk is that the automatic conversion may render
an EXPRESSive description that would not occur as a natural process of
conceptualising the problem in EXPRESS, and will only be an OWL-S description
coerced into an EXPRESSive representation. Hence the semantic elements
exposed by the EXPRESSive version would be the same as the ones exposed by
the OWL-S ones, and this may not have occurred if we started with the abstract
problem, and took a manual approach to the conversion instead of an automatic
one. The reason this is a risk, is that the matchmaking capabilities of EXPRESS,
would not be a result of following the approach itself, instead they would exist

because of the conversion from OWL-S.

However, there are multiple ways to design either an OWL-S or EXPRESSive
representation of the same service. A reasonable assumption to make, is that at
least one OWL-S representation and one EXPRESSive one would expose the same

inputs and outputs.

The discussion above has raised issues with both the automatic and the manual
conversion from OWL-S service descriptions to EXPRESSive ones. The automatic
conversion was preferred, because it would render a considerably larger test

collection, and was achieved by the following methods:

1. For each OWL-S description, whether a request or a service, extracting the
semantic elements, in this case the inputs and outputs.
2. Providing an EXPRESSive semantic description template, where those

elements could be plugged in.

To minimise the risk of the automatic conversion (i.e. the EXPRESSive descriptions
not occurring naturally), a subset of the services were converted manually to
inform the design of the automatic conversion method. The 42 queries from the
OWLS-TC were chosen to be converted manually, as they can be considered a

representative subset of the test collection they will be matched against.

The 42 queries have inputs and outputs, 37 of the queries are read-only
(informational) services, and 5 of them are updating queries. The read-only
services in EXPRESS, are modelled by applying a GET method to a resource and, as
discussed in Chapter 5, these resources represent either a class, an individual, a
property of a named individual, or a filter on a collection. With class, individual
and property, resource types, the client does not provide any inputs. So to
represent the read-only queries in the test collection, we needed to represent

them as filters on a collection.

107

Chapter 6 Semantic Matchmaking in EXPRESS

The method was to take each one of the queries and to conceptualise the
problems they represent as EXPRESSive services, then analyse how they relate to
the OWL-S service. This resulted in the realisation of several approximations

required for automatic conversion:

1. An issue that causes a mismatch between EXPRESSive and OWL-S descriptions
is a design decision of EXPRESS, discussed in Chapter 5, which restricts the
representation of multiple outputs. This means if an OWL-S service has
multiple outputs, EXPRESS will represent them as one output, which is the
union of those outputs.

2. In some cases, such as when a service returns a price of merchandise, the
intuitive conceptualisation is to have the price as a property of the
merchandise (for example the query named “2For 1 DVD/MP3 player price
service”). However, it is also possible to reverse the relationship and to have
the merchandise as properties of the price.

3. The preconditions and effects (PE) in the OWL-S service are ignored because,
in EXPRESS, preconditions are not specified, and as for effects, the semantics
are described by the method and the type of resource. However, as discussed
by Klusch and Kapahnke (2010a), the effect on the results is minor because
only 17% of the services in the OWL-S test collection have PE.

4. As discussed in Chapter 5, the HTTP method is a part of the service definition
in EXPRESS; in Section 6.2, the method can also be used for matchmaking.
However in the OWL-S test collection, 37 out of 42 of the queries were read-
only services and the others were updating services. As for the services, only
47 out of the 1083 services are judged to be relevant to these queries. Since
these form only a very small percentage of services, we assumed that all the

services, after transforming them into EXPRESS, are to be retrieved with a GET.

In addition to undertaking this manual process to guide the automatic conversion,
in Chapter 7 (Expert Reviews), experts are asked to compare two versions of an
EXPRESSive service, a manually created one, and another which is automatically

converted from an OWL-S service. Results are discussed in Section 7.3.1.3.

Taking into consideration the approximations above, the following steps were

taken to transform an OWL-S service into an EXPRESSive one:

1. Create an ontology containing the inputs and outputs of the OWL-S service.

2. If more than one output exists, a new class is created which is the union of
all the outputs.

3. Create Properties, where the domains of the properties is the OWL-S

output, and their ranges are the OWL-S inputs.

108

Chapter 6 Semantic Matchmaking in EXPRESS

4. Create the URI of the endpoint in the following form
Output?hasinputl={}&haslnput2={}&..

The following is the conversion of the “2 For 1 DVD/MP3 player price service”,
which is described by “This service returns prices of a given pair MP3 Player
brand and DVD Player brand”. It has the following inputs: MP3PLAYER and
DVDPLAYER, and this output: PRICE. The full OWL-S service is in Appendix D.

The EXPRESSive version of this service is below

The endpoint is
Price?hasMP3player={}&hasDVDplayer{}

and the following ontology represents the EXPRESSive interface
MP3player a owl:Class;
owl:equivalentClass
<http://127.0.0.1/ontology/my ontology.owl#MP3player> .
:DVDplayer a owl:Class;
owl:equivalentClass
<http://127.0.0.1/ontology/my_ontology.owl#DVDplayer> .

:Price a owl:Class;
owl :equivalentClass
<http://127.0.0.1/ontology/concept.owl#Price> .
-hasDVDplayer a owl:ObjectProperty;
rdfs:domain :Price;
rdfs:range :DVDplayer .
hasMP3player a owl:ObjectProperty;
rdfs:domain :Price;
rdfs:range :MP3player .
The restrictions EXPRESS imposes on ontology design are shown in the example
above: for example, the domain and range have had to be stated for each
property.

6.3.3 Evaluation Environment

The matchmaking experiment is conducted using the Semantic Web service
Matchmaking Evaluation Environment'’ SME% This environment is used in the
annual Semantic Service Selection (S3) contest. SME® provides an extensible

framework for testing different matchmaking approaches (algorithms). It enables

'” The Semantic Web Service Matchmaker Evaluation Environment (SME2)
http://projects.semwebcentral.org/projects/sme2/

109

http://projects.semwebcentral.org/projects/sme2/

Chapter 6 Semantic Matchmaking in EXPRESS

developers of matchmaking approaches to plug-in their matchmakers and run
them against the provided test collections of services. A service test collection is
made up of service requests (called queries), service offers, referenced
ontologies, and the result set, i.e. the correct answers. Two test collections are
shipped with SME?, the OWLS-TC mentioned above, and SAWSDL-TC (Klusch and
Kapahnke, 2010c), a SAWSDL version of almost all of the services in the OWLS-TC.
In addition, new test collections can be plugged in.

—Q IMatchmaker
SME?
—O ITestCollection
OWL-S
Test Collection

OWL-S
Matchmaker

SAWSDL

EXPRESSive
Test Collection

Test Collection

EXPRESS

SAWSDL Matcmaker

Matchmaker

- SAWSDL OWL-S EXPRESS

Figure 16 Architecture of SME?
SME? calculates several information retrieval (IR) measures, for binary relevance,

graded relevance and time consumption. The main measures presented in S3 are:

1. For binary relevance:
a. Macro-averaging for Precision/Recall measures.
Precision and recall in IR are defined as follows, where A is a set of
relevant documents in the dataset, and B is the set of retrieved results.

Precision = |A N B|/|B|
Recall = |An B|/|A|

A method for averaging these values is called macro-averaging, and it

is calculated for precision as follows (Klusch et al., 2010a):

Precisiongero (i) = Z maX{Po|R0 > Recall; A (Ry,Py) € Oq}

1 .
ol &
where 0 <i < 4 in SME? 1 = 20,
0, is the set of observed precision/recall values for true positives
and
Q is the set queries

110

Chapter 6 Semantic Matchmaking in EXPRESS

For each query, the maximum precision at an i level of recall is taken
(i.e. after a certain percentage of documents have been retrieved),
summed then averaged over the total number of queries. This means
each query will have an equal weight. An alternative method for
averaging is called micro-averaging, where each document (service) has
an equal weight; however, since it is not presented in the results, it is
not discussed here. The results of macro-averaging are usually
presented as a graph such as in Figure 17.
b. Average Precision (AP)
AP involves precision, recall, and ranking in the measure of

performance.

N

1
ap =2 z rel(d,)

n=1

where rel(d,) = 1 if the document at rank n is relevant and O if it is not.

n

R is the total number of relevant documents.

AP is the average of the precision value after each relevant document
is retrieved. After AP is calculated for each query the mean for all

queries is calculated, to obtain a single score for the matchmaker.

For graded relevance:

In these measures the degree of relevance (ranking) of services is taken into
consideration. Unlike binary relevance, where a service is either relevant or
not, graded relevance assumes varied degrees of relevance. In the test
collections used with SME? there are four degrees of relevance: highly
relevant, relevant, partially relevant, and not relevant. The graded relevance

measured used are:

a. normalised Discounted Cumulative Gain (nDCG):
This is based on discounting the gains (value) according to the ranking
of documents. The cumulative gain (cg) is the sum of relevance weights
of retrieved documents. The discounted cg (DCG) takes the rank into
consideration and reduces the weight of lower ranked documents,
usually be dividing them by log,(rank). There is usually a cut-off rank p,
where DCGp is calculated. The normalised DCG, is obtained in order to
average the DCG values at a specific rank across a set of queries with
different numbers of relevant documents. nDCG is the result of
dividing the DCG value by the ideal DCG value; the nDCG values can
then be averaged for all queries.

b. Q-Measure:

111

Chapter 6 Semantic Matchmaking in EXPRESS

Q-measure is a generalisation of AP to accommodate graded relevance

and it is a modification of weighted average precision.

N

_12 Id chg
Q_R re(”)cg,+n

n=1
where cg,is the ideal cumulative gain at rank n

and chgis the cumulative-bonused gain

cbg is similar to cg: instead of just summing the weights of relevant

documents, it adds an extra reward for each relevant document.

For AP, nDCG and Q-Measure, SME? calculates two scores, for both complete and
incomplete judgements. The measures for incomplete judgments are the ones
reported in the S3 contest, and are named AP’, nDCG’ and Q’. These are calculated
using only the results that are rated in the judgement sets (as mentioned in
Section 6.3.2, these are incomplete). Zhou and Yao (2010) provide a detailed
explanation of these measures and a discussion of their effectiveness.

3. Time consumption: Average Query Response Time (AQRT)
AQRT is the average time a matchmaker takes to return results for a query, and it

is calculated in seconds.

6.4 Results and Analysis

The seven variants of iSeM EXPRESS, and iSeM OWL-S were run on their

corresponding test collections. Table 16 shows the results from the runs.

Table 16 Results of running iSeM OWL-S and iSeM EXPRESS on SME?

Matchmaker Variant (Filter) AQRT (s) AP’ Q' nDCG'

Logic-based 0.190 0.699 | 0.726 | 0.807

v | approx. Logic-based 0.702 0.696 | 0.701 | 0.748
S | structure 0303 | 0.747 | 0.734 | 0.783
g Text-similarity 1.517 0.800 | 0.804 | 0.891
.g SVM logic-based, text-similarity, structure 3.056 0.821 | 0.751 | 0.790
SVM logic-based, text-similarity, structure, specification 3.211 0.840 | 0.782 | 0.829
EZZ}J?E;ZE?]SCZ?{O?PSImllarlty’ structure, approx. logic- 3.942 0.839 | 0.783 | 0.820
Logic-based 0.153 0.700 | 0.724 | 0.815

s approx. Logic-based 0.592 0.681 | 0.690 | 0.739
& | Structure 0.290 0.717 | 0.712 | 0.755
| Text-similarity 0942 |0.811 |0.812 | 0.895
SVM logic-based, text-similarity, structure 1.398 0.411 | 0.463 | 0.519

112

Chapter 6 Semantic Matchmaking in EXPRESS

SVM logic-based, text-similarity, structure, specification 1.507 0.309 | 0.365 | 0.387
SVM logic-based, text-similarity, structure, approx. logic-
based, specification

2.211 0.309 | 0.381 | 0.400

The table shows the AQRT, AP, Q and nDCG for iSeM EXPRESS and iSeM OWL-S.
The values in bold indicate better performance. From the AQRT results it is clear
that the iSeM EXPRESS filters are faster than the iSeM OWL-S ones.

The values of AP, Q and nDCG for the first four variants (the non-SVM ones) are
very close for iSeM OWL-S and iSeM EXPRESS. For text similarity and logic based
iSeM, EXPRESS performs slightly better in terms of AP’, and slightly worse in
approximated logic-based and structure. The highest performing variant for iSeM
EXPRESS out of the seven variants, in terms of precision-recall, is text-similarity.
For iSeM OWL-S text similarity is the highest of the non-SVM ones.

On the other hand, for the SVM variants (the last three variants), iSeM EXPRESS
performs much worse. This is due to the SVM variants being trained on an OWL-S
sample of services rather than on EXPRESS sample, and hence tuned towards
OWL-S services. Figure 17 and Figure 18 show the macro-averaged precision-recall
curves. Figure 17 shows the non-SVM variant’s performance, and shows the very
close similarity between the iSeM OWL-S variants and the iSeM EXPRESS ones.
Figure 18 shows how iSeM EXPRESS variants perform considerably worse than the

iSeM OWL-S ones, due the SVM learning effect, as discussed above.

113

Chapter 6 Semantic Matchmaking in EXPRESS

0.9
0.8 N
0.7 \5‘ Nh Sl
c 06 - \'\F\
Z§ 0.5 e~ ‘\'l
g [l
a

0.4 ey & K \
%ﬁ " =
03 =
0.2
0.1
0 !
7 08 09 1

0 01 02 03 04 05 06 O
Recall

—o— OWL-S Logic based —— EXPRESS Logic based
—&— OWL-S approx. logic based =~ —¢— EXPRESS approx. logic based
—#— OWL-S Structure —@&— EXPRESS Structure

——t=— OWL-S Text Similarity ——— EXPRESS Text Similarity

Figure 17 Macro-averaged Precision-Recall Curve for non-SVM variants

0.9

08 FQ%:

0.6
0.4 \

NN
0.1 \.\%hi*

o

"
}
L=

Precision

0 01 02 03 04 05 06 07 08 09 1
Recall
—o— OWL-SSVM 1 —&— EXPRESS SVM 1
—&— OWL-S SVM 2 —— EXPRESS SVM 2
—%— OWL-SSVM 3 —@— EXPRESS SVM 3

Figure 18 Macro-averaged Precision-Recall Curve for SVM variants

114

Chapter 6 Semantic Matchmaking in EXPRESS

Figure 19 shows the AQRT differences between the approximated logic-based
iSeM EXPRESS and iSeM OWL-S. The approximated logic-based variant is used as a
representative of the other variants because, as shown in Figure 19 all the iSeM

EXPRESS variants outperform the OWL-S ones in terms of speed.

AQRT in ms
4000

3500

3000

2500

2000 -

1500 -

1000 -

500 A

0 -
12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Query
W iSeM OWL-S Approximate logic-based M iSeM EXPRESS Approximate logic-based

Figure 19 AQRT for iSeM OWL-S and iSeM EXPRESS (Approximate Logic-based)
The statistical significance of the results was measured for two variants, the
approximated logic-based, and the text similarity, by conducting the Friedman
test for the AP and AQRT for the variants, as shown in Table 17

Table 17 Friedman test for approximated logic-based and text similarity variants

Approximated logic-based Text similarity
AQRT AP’ AQRT AP’
iSeM OWL-S 0.701 0.696 1.517 0.800
iSeM EXPRESS 0.592 0.681 0.942 0.811
P= 0.000 0.028 0.000 0.317

The values of p in Table 17 show that the AQRT improvements in the EXPRESS
variants are statistically significant for p<0.05. However, this differs for the AP’,
the approximate logic-based variant, where iSeM EXPRESS performs slightly
worse, with a statistical significance p=0.028<0.05, meaning that this performance
is consistently worse, albeit the difference is small. In the text similarity variance,
although the performance of iSeM EXPRESS seems to be slightly better, it is not
statistically significant p=0.317>0.05.

The objective of this experiment was to show whether EXPRESSive descriptions
are as discoverable as other SWS descriptions such as OWL-S. This experiment

clearly shows very close performances in terms of precision and recall in the non-

115

Chapter 6 Semantic Matchmaking in EXPRESS

SVM variants and a slightly better performance in speed, ranging from 4% to 38%,

as shown in Table 18.

Table 18 % of Improvements of iSeM EXPRESS over OWL-S in terms of AQRT

iSeM OWL-S iSeM EXPRESS %
Logic-based 0.19 0.153 19%
Approximated logic-based 0.702 0.593 15%
Structure 0.303 0.29 4%
Text similarity 1.517 0.942 38%

The table does not list the SVM variants because, although EXPRESS performance
is better in terms of AQRT (around 50%), the SVM precision and recall values are
much worse, as discussed before, and speed alone is not a gain if those values
are not comparable. However, as mentioned before, this is due to the SVM training
effect.

Moreover EXPRESS considerably reduces the descriptions sizes, Table 19 shows
the means and medians for service descriptions (lines of code (LOC) and size in
bytes) in the test collections, it shows that EXPRESSive descriptions are %78-%79

smaller on average.

Table 19 Service description size in LOC and bytes

File size in Description approach Mean Median
OWL-S 117.89 116
LOC EXPRESS 25.23 24
% %79 %79
OWL-S 6653.71 6422
Bytes EXPRESS 1467.28 1354
% %78 %79

6.5 Conclusions

This chapter assessed the discoverability of EXPRESSive descriptions. It provided
an overview of SWS matchmaking and explained how to achieve it in EXPRESS,

then discussed the matchmaking experimental design and the results.

The results of the experiment show that EXPRESS descriptions offer very close
semantic expressivity to the OWL-S ones. This is indicated by the adapted iSeM
matchmaker performance, which yielded very close precision-recall measures with
an improvement in speed ranging from 4% to 38%, depending on the matchmaker
variant. However, the SVM variants did not work as well with EXPRESS, as they
have been trained with OWL-S. This is a promising result considering that
EXPRESS massively reduces the size of the service descriptions. However, it also
raises an important question: Having demonstrated EXPRESS’s competence for

semantic matchmaking, what are the trade-offs, i.e. how does this affect the ease

116

Chapter 6 Semantic Matchmaking in EXPRESS

of development, practicality, and semantic richness? This is further investigated

in the next chapter.

117

Chapter 7 Expert Reviews

Chapter 7: Expert Reviews

As a Semantic Web service approach EXPRESS aims to provide semantic
descriptions of services while minimising their development effort. Chapter 5 and
6 discussed the functional aspects of EXPRESS, in terms of description,
development and matchmaking; this chapter aims to discuss and provide
evidence on how EXPRESS reduces the development effort, compared to other

Semantic Web service approaches.

Development effort is a non-functional, subjective aspect. Moreover, EXPRESS and
the other approaches in the study (OWL-S and RESTdesc) are still research
prototypes, which have not been used yet in practice. Therefore, as there is no
user base in relation to which a questionnaire or observation can be used to
assess development effort, the research method that is applicable in this case is
to undertake an expert review. To achieve this, feedback was solicited on the
development effort and practicality from experts, by showing them the
development process in regard to a specific scenario in different approaches
including EXPRESS, and asking them open-ended questions on the development

effort required in these approaches.

As a follow-up to Chapter 6’s matchmaking experiment, the interviews also
explored the experts’ opinions on the representativeness of the results of the
automatic conversion that created the EXPRESS test collection (EXPRESS-TC) used

in the experiment.

In this chapter, the experimental design is explained in Section 7.1, Section 7.2
presents the results and analysis, Section 7.3 discusses the results and how they

relate to the research questions and 7.4 concludes the chapter.

119

Chapter 7 Expert Reviews

7.1 Experimental Design

Semi-structured interviews with six experts were conducted. Each participant was
presented with a scenario, which was shown in three Semantic Web service
approaches (EXPRESS, OWL-S and RESTdesc). This section explains the
methodology, the scenario and material design, the interview design and how the

interviews were analysed.

7.1.1 Method

The main aim of the expert reviews was to get the expert’s assessment of
EXPRESS in terms of development effort, a sense of how it compares to other
approaches, and where or if the intended simplicity of EXPRESS compromises its

functionality.

The other aim concerned the matchmaking experiment in Chapter 6. EXPRESS-TC
was generated from the OWL-S test collection (OWLS-TC) and used in an
experiment to evaluate the semantic expressiveness of the EXPRESS service
descriptions. Therefore, it is important to verify that the automatically generated
descriptions are one of the possible and plausible solutions that a developer

could come up with manually.

The interviews were designed in two parts. The first aim (i.e. assessing EXPRESS
in terms of development effort and practicality) was addressed in part one of the
interviews, while the second aim (i.e. verifying the plausibility of automatically

generated EXPRESS descriptions) was addressed in part two.

For the first part, two Semantic Web service approaches, OWL-S (Martin et al.,
2004) and RESTdesc (Verborgh et al., 2011), were selected to compare EXPRESS

against. The reasons for selecting these are listed below.
For OWL-S:

1. As explained in Chapter 3, it is one of the most actively researched Semantic
Web service approaches.
2. It is a W3C submission, which is indicative of a community investment and

higher maturity level.

The matchmaking experiment in Chapter 6 compared the descriptive power of
OWL-S and EXPRESS’s semantic descriptions, so comparing the development effort
provides a broader examination of the impacts of the design decisions in both

approaches.

120

Chapter 7 Expert Reviews

However, a difficulty arises in that OWL-S was not designed to work with RESTful
Web services, and although there is one paper introducing RESTful groundings for
OWL-S (Filho and Ferreira, 2009), WSDL groundings dominate the research
mainstream. Therefore we also selected a RESTful Semantic Web services

approach, RESTdesc. The reasons for selecting RESTdesc were:

1. Like EXPRESS it is a RESTful approach.

2. RESTdesc provides minimal descriptions and compared to other RESTful
Semantic Web service approaches, uses a smaller vocabulary.

3. The research on it is still active, indicating the potential for it to mature. For
example, a recent publication from the approach’s author about RESTdesc was
published in 2013 (Verborgh et al., 2013).

4. It is a general purpose approach, compared to other RESTful approaches like
LIDS (Speiser and Harth, 2011), which focus on integrating Web APIs with
Linked Data.

5. Unlike some RESTful approaches such as RESTler (Alarcon and Wilde, 2010),
which supports only the GET method, RESTdesc can support GET, PUT, POST and
DELETE.

Details of how the materials were designed for parts one and two are explained in

section 7.1.2.

Six experts in Semantic Web technologies were recruited from the School of
Electronics and Computer Science at the University of Southampton. These
experts are involved in the research and development of applications using
Semantic Web technologies. Hence they had both a theoretical and practical
background in semantic technologies. The experts included two PhD candidates,
two research staff, one senior developer and one senior academic. The following

table explains their range of expertise:

Table 20 Interviewed Experts’ Areas of Expertise

Expert Area of Expertise in Semantic Technologies
Expert one Distributed SPARQL queries
Expert two Ontologies for multimedia, semantic annotation

Expert three Linked Data, annotating multimedia, and media fragments
Expert four Publishing Linked Data, developing libraries for handling RDF and SPARQL

Expert five Social media, semantic annotation

Expert six Publishing and advocating Linked Open Data

The selection of experts aimed to focus on their familiarity with Semantic Web
technologies in general, while also deliberately avoiding people with a high level

of familiarity with any of the Semantic Web service approaches used in the

121

Chapter 7 Expert Reviews

interviews. This was to reduce the possibility of their bias towards an approach

they were more familiar with.

7.1.2 Scenario and Material Design

A bookstore scenario was designed; it involved retrieving a book by its ISBN, then
ordering the book. The aim was to make the scenario simple, so it would be easy
for the experts to focus on understanding the approaches and differences
between them, and then provide feedback in a reasonable amount of time (forty
to eighty minutes). Another consideration in the selection of the scenario was that

the scenario involved not only data retrieval but also updating.

Having both data retrieval and updating services corresponds to the mutability
requirement mentioned in Chapter 4. The atomicity requirement for RESTdesc and
EXPRESS is shown in the interaction phase of the scenario, and as a composite
service in OWL-S. Therefore the scenario covers two interaction requirements
from Chapter 4. With regard to the other requirements: synchronicity, plurality,
and roles, RESTdesc and OWL-S do not introduce mechanisms for expressing
them. In addition the chosen scenario is a typical one used in the literature see for
example the one used by Decker et al. (2008). The materials were presented to
the experts on paper. The interviews involved two parts, and developing the

materials for them are explained below.

7.1.2.1 Part One: Comparison of Semantic Web Service Approaches

The bookstore scenario was designed in the three Semantic Web service
approaches: EXPRESS, OWL-S and RESTdesc. Both RESTdesc and OWL-S do not
involve the steps in deploying the Web service, with both coming after the design
and deployment phase. Because we are comparing them to EXPRESS, and it is
involved in the design and deployment, it was necessary to discuss the tasks
RESTdesc and OWL-S assume are done. However, it was emphasised in the
material and when explaining the approaches to the experts that the service
design and deployment are not part of RESTdesc and OWL-S. Moreover, the first
page in each approach had a small activity diagram emphasising the different
steps involved and which steps are not part of the approach itself but are

assumed as being done. The figures below reproduce these activity diagrams.

122

EXPRESS
Domain
Ontology

Endpoints + Methods

< —— Design Domain Ontology

— — ﬁelect Endpoints and HTTP methods for Roleg

Generate and Deploy Stubs k.
~
RN

Grovide/lntegrate with Business Logg/

Chapter 7 Expert Reviews

Generated
Stubs

Figure 20 Activity Diagram for EXPRESS

WSDLfiles

Domain
Ontology

OWL-s
Services

Provide Business Logic

< — —(Generate WSDL and Deploy Serviceg

<—- Gptionalz Design Domain Ontolo@
K— — Gesign OWL-s Service Descriptio@

®

123

Development
Phase not part of
OWL-s

OWL-s

Figure 21 Activity Diagram for OWL-S

Chapter 7 Expert Reviews

N
Provide Business Logic
Development
Phase not part of
RESTdesc
Provide An API
_/
N
Domain < — — — [Optional: Design Domain Ontology
Ontology
> RESTdesc
RESTdesc . . -
Descriptions < —— Gesngn RESTdesc Service Descnpuo@

®

Figure 22 Activity Diagram for RESTdesc
For each approach, three main phases of the service life cycle were shown:

1. The service design and deployment.
2. The semantic description.

3. The interaction with the client.

The materials shown in each phase are described briefly in the following table.

Table 21 Summary of material presented to the experts

Approach | Design and Deployment Service Description Interaction
A domain ontology containing None, because the The retrieval of the
the classes and properties description is a by-product of | ontology, and the
EXPRESS relevant to this bookstore the deployment exchange of RDF

scenario, the endpoints, and a
brief explanation of how

EXPRESS works

A brief description of OWL-S Two OWL-S files (one for The retrieval of service

and two WSDL files, one for each service) and a domain descriptions, ontologies
OWL-S retrieving the book’s details by | ontology and the exchange of

its ISBN and the other for SOAP messages

ordering a book

A brief description of RESTdesc, | Two versions of the RESTdesc | The retrieval of service

and a human-readable descriptions in N3 rules descriptions, ontology
description of the API, as and the exchange of
A2 usually provided by Web APIs, JSON messages

including two JSON versions of
the same services

124

Chapter 7 Expert Reviews

The complete material examined by the experts is in Appendix E.

The OWL-S descriptions were generated from the WSDL files using the OWL-S
Protégé plug-in. This created the structure of the OWL-S files which were then

edited manually to link to the domain ontologies.

RESTdesc materials were developed by consulting its author and developer Ruben
Verborgh. | contacted Ruben with an initial draft of the RESTdesc material and he
suggested minor modifications. He also mentioned that there is a more recent
RESTdesc version, in which URI templates are deliberately avoided, he requested
that | show the scenario in the two versions of RESTdesc, | agreed because it
would provide a fairer comparison, and more insight into the experts’ opinions
about URI templates. Ruben also answered the interview questions, which

provided an initial verification of the interview questions.

The vocabularies used to describe the domain concepts such as book, author,
title, ISBN, are the same across the three approaches, this was to reduce the
variance between the scenario versions, making it easier for the experts to focus

on the actual differences in the approaches.

7.1.2.2 Part Two: Comparing an EXPRESS description generated from an
automatic conversion of an OWL-S version, to a manually written
EXPRESS description.

Considering the time limitation of the interviews, and to build on the familiarity
the experts gained by participating in part one, | chose to use the bookstore
scenario again in part two. The service retrieving the book by its ISBN was
selected, since it is a data retrieval service, and the services used in the

matchmaking experiment are all considered as data retrieval services.

The OWL-S service was run through the OWL-S to EXPRESS conversion program.
This provided one version; the other version was the EXPRESS version of the

‘retrieving the book by its ISBN’ service created for part one.

7.1.3 Interview Design

The process of the interview went as follows: | asked the participants to sign a
consent form, after they read the participant information sheet. The interviews
were conducted individually with each participant, and the interview was

recorded. They were between forty to eighty minutes long. In the first part of the

125

Chapter 7 Expert Reviews

interview, the experts were shown and walked through the materials of the three
Semantic Web service approaches that were discussed in the previous section.
They were given time to read them and enquire about issues they did not find
clear. They were then asked the three open-ended questions for part one,
discussed in the next paragraph. After that they were shown the material for part

two, and asked the last interview question.

To design the interview questions effectively, they are derived from the research
questions. The interview questions are listed below and their mapping to

research questions is shown in Figure 23.

Part One

Question One: Using EXPRESS means that the URIs of your services will be generated automatically,
how might that affect the flexibility and ease of deployment?

Question Two: You are required to provide a Semantic API for a bookstore, to provide information
about books and search for books by title or author. If you had to use one of these approaches, how
long would it take you?

Question Three: Imagine you were developing clients for those services, how would you describe
the descriptions in terms of

1. Practical quality: ease of use, development speed

2. Semantic quality: semantic richness, ability to infer over

Part Two

Question Four: Given these two EXPRESS descriptions how similar/different do they seem?

Question four is not linked directly to the research questions, and therefore is not
present in Figure 23. However it is related indirectly to the third research
question, because it aims to assess the representativeness of EXPRESS-TC used in
the matchmaking experiment, and the experiment was designed to answer the

third research question.

126

Chapter 7 Expert Reviews

Utilise Semantics in the Domain ontology and REST to:
Eliminate explicit service descriptions and interface vocabularies
Obtain semantic service descriptions as a by-product of provision

Can it provide a similar level
of semantic expressivity to

Does it reduce development .
P existing approaches?, and

effort? .
what are the trade-offsin
terms of practicality
Question Question Question Question Question
One Two Three One Two

Figure 23 Derivation of interview questions

Questions Two and Three were designed so that the experts would need to think
about using these approaches to design a specific service and a client,
respectively, and hence, make it easier for them to provide a fairly grounded

judgement.

The interviews were semi-structured, and the questions were open-ended
questions, so follow-up questions were asked. For example, in Question 4, after
the experts had tried to compare the two versions of the service and listed some
similarities or differences, they were asked the question, “If 1 explained how
EXPRESS works to a developer, which one of these two examples are they more

likely to come up with?”

7.14 Interview Analysis

The interviews were qualitatively analysed, involving the following steps:

1. Transcribing the interviews.

2. Reading the interviews and highlighting individual quotes that appeared
related to research questions. These individual quotes were numbered
sequentially for cross referencing: for example 5-12 indicated that it was
quote number 12 from the 5™ expert.

3. Deciding on preliminary codes, from highlighted text and research
questions.

4. Three transcripts were coded with preliminary codes, then used to code

the rest of the interviews, adding new codes when needed. The quotes

127

Chapter 7 Expert Reviews

were copied into a spreadsheet, and marked with a code and
corresponding theme.

Arranging the codes into themes.

Categorising the quotes according to the themes.

Summarising the arguments and opinions in each theme.

® N O @

Identifying agreements or disagreements between experts, and their
explanation for their opinions and unexpected and interesting comments.
9. Examining and analysing the issues identified in step 8, to draw out

results.

A sample of an expert review transcript is in Appendix F. Screenshots of the

coded transcript document and the spreadsheet are available in Appendix G.

7.2 Experimental Results

This section presents the results of the experiment, section 7.2.1 discusses the
different themes that emerged from the interviews, and section 7.2.2 provides a

description for each theme and overview of the experts’ responses.

7.2.1 Themes

Nine themes were elicited from the transcript analysis. The table below lists the
themes and the number of quotes about them; some quotes were categorised
under more than one theme. Some themes were discussed by all the experts, such
as Ease of Development, Flexibility, Manual vs. Automatic Descriptions, Semantic
Quality. An interesting theme that arose unexpectedly was, “The aim of SWS”: in
which experts questioned the practicality of SWS in general. In total there were
136 coded quotes, and since some discussed more than one theme, the total

number of quotes was 179.

Table 22 Themes and the number of quotes about them

of # of quotes about the theme from expert
Theme
s one two three four five six
Development Speed 25 3 8 7 - 3 4
Ease of Development 64 7 15 3 16 10 13
Flexibility 16 2 2 1 4 5 2
Linked Data 5 - 1 1 2 - 1
Man. vs. Automatic Descriptions 16 2 2 1 4 5 2
Semantic Quality 24 3 9 1 5 1 5
The aim of SWS 13 - - - 7 3 3
Underspecified 11 - 3 7 - -
Extra features 5 - - 2 2 - 1
Total 179 17 38 19 47 27 31
Total # of quotes from experts 136 11 26 15 36 21 27

128

Chapter 7 Expert Reviews

Utilise Semantics in the Domain ontology and REST to:
Eliminate explicit service descriptions and interface vocabularies
Obtain semantic service descriptions as a by-product of provision

Can it provide a similar level
of semantic expressivity to
existing approaches? And
what are the trade-offsin
terms of practicality?

Flexibility

Does it reduce development
effort?

Extra Features

Development Ease of Under- Semantic

e . Linked Dat
Speed Development specified Quality inked Data

The aim of
SWS

Figure 24 Themes related to research questions

Figure 23 is similar to Figure 24; however, instead of the interview questions, it
shows the themes. It also shows how they are related to the research questions;

this relationship is manifested in the discussions in section 7.3.

7.2.2 Summary of Experts’ Responses by Theme

7.2.2.1 Theme 1: Development Speed

Development Speed refers to what the experts thought about the time it would
take them to develop a Semantic APl and/or a client in the three approaches
presented to them. The focus of the question was on the first time they would

develop in these approaches, so it involves the learning time.

Expert one preferred RESTdesc because it uses N3 rules, and thought it would be
very fast to develop a Semantic APl or a client. He also thought that EXPRESS
would be very fast too, but felt it provided less semantic quality. As for OWL-S as
he thought it was “heavy duty”. Expert two thought that development times in
ascending order would be RESTdesc, EXPRESS and then OWL-S. He thought that
EXPRESS would be slower than RESTdesc, because you need EXPRESS in mind
when developing, and that OWL-S would be slowest because WSDL services are
more complex and need more debugging time. He also stated that developing
clients in OWL-s may be quicker because of WSDL/SOAP tool support, and the
exchange would be in SOAP messages not RDF.

129

Chapter 7 Expert Reviews

Expert three said, “OWL-S will take me a really long time”, and when comparing
EXPRESS and RESTdesc, he perceived that if a new service was added, a new
RESTdesc description would be needed. However, with EXPRESS, the same
ontology would be used. Expert four was enthusiastic in discussing the aim of
SWS in general (one of the themes that emerged from the analysis), and avoided

commenting on the development speed in particular.

Expert five mentioned that the OWL-S will take him the longest, and attributed
that to it being built on WSDL descriptions. Comparing EXPRESS to RESTdesc, he
said that, if the services were built from scratch, EXPRESS would be the fastest.
Expert six agreed with the other experts about OWL-S. He said starting from
scratch EXPRESS is much simpler. He also said that he would be able to
understand RESTdesc quickly, but in terms of typing, it would take him a long

time.
7.2.2.2 Theme 2: Ease of Development

Ease of development, encompasses aspects concerning the comprehensibility of

the approaches and the effort required to learn and develop solutions in them.

Expert one felt OWL-S required a lot of work to provide OWL-S descriptions. He
preferred RESTdesc, and described it as tidy, neat and very straightforward to
build on top of HTTP APIs. He mentioned that EXPRESS would be very convenient
in a small organization and a relatively simple service. However when things
scale, it wouldn’t be very convenient, because having all the possible links in the
header is a constraint. He concluded by saying that EXPRESS would be convenient
for a beginner to semantic technologies, but because he is not, he prefers
RESTdesc. Expert two also regarded OWL-S as more complex than EXPRESS and
REST. However, he also stated that it depends whether you are building a project
from scratch. In that case, both OWL-S and EXPRESS would be suitable, because
RESTdesc “doesn’t rely on the business logic so much, which | guess is good; it is
a lot simpler to work with”. He liked the way RESTdesc used the implies “=>" to
define the services, and thought it was “simpler and cleaner”. However, he
mentioned that one of downsides compared with OWL-S was dealing with the URI
templates. For EXPRESS he compared it to a schema: “So you've got it on top of the
schema, so once you’ve got the schema there, you can control it the way you
want”. However, in the order book example, he considered passing a URI as part
of the URL to be complex. In terms of creating clients, he mentioned that needing
an RDF handling library for EXPRESS adds extra complexity, whereas in RESTdesc
it would be easy, because there are many libraries that support JSON. He also

stated that it depends on the programming languages used. An issue with OWL-S

130

Chapter 7 Expert Reviews

he considered complex was translating the messages from XML to RDF, and OWL-

S provided more semantic information but it was less easy to explore.

Expert three viewed EXPRESS as a “very standard expression of the API”, and
thought it was very simple compared to OWL-S and RESTdesc. He felt there would
not be a problem implementing it. He liked that RESTdesc returned JSON and
suggested that EXPRESS provide content negotiation to provide JSON, too. Expert
four preferred EXPRESS because it is succinct and less verbose, meaning fewer
errors, and also because it uses CRUD. However, he noted that people will find
the equivalent classes hard to learn, and although he preferred EXPRESS to
RESTdesc and OWL-S it is still hard, and he added, “Why should | bother marking
up my endpoints with it?” This point of view is discussed in Theme 6: The aim of
SWS. He commented that OWL-S was very verbose, and he thought the XSLT
conversions for grounding were verbose, fragile and were neither readable nor
debuggable. As for RESTdesc, he was not familiar with the implies (=>) in N3 and
thought that the N3 descriptions were not clear enough to state that when a book

is retrieved that it was not actually created then retrieved.

When explaining EXPRESS in the beginning, Expert five asked about the stub
generation and commented that EXPRESS, compared to RESTdesc and OWL-S, is a
much simpler and nicer system and that EXPRESS is for building a service from
the ground up. He mentioned that OWL-S would be the hardest to deal with. He
summarised his opinion in the following quote: “What would | develop in, if | was
writing it from scratch? Yes, | would write in EXPRESS. But what would | expect to
be more useful in the real world? RESTdesc. And what | think is, we should never
ever use OWL-S, WSDL is such as waste of time”. Expert six highlighted several
issues with RESTdesc. One was the ambiguity of version two of the scenario,
where a POST on a book’s URI created an order; however, he preferred version two
because he thought that the templating in version one was challenging. This is
because it is encoded in strings and therefore, it is harder to debug, as a mistake
would not be picked up by an RDF parser. He commented, “What is the support
that is going to help me get that right and not get bugs in it? On a very pragmatic
level, what happens when | make a syntax error?” When comparing EXPRESS to
RESTdesc, he mentioned that version two of RESTdesc (which has no URI
templates) looked easier and is probably comparable to EXPRESS.

7.2.2.3 Theme 3: Flexibility

This includes the experts’ opinion on the flexibility of the approaches: whether
EXPRESS was less practical than the other approaches because of the way it

controls the structure of the URIs.

131

Chapter 7 Expert Reviews

Expert one preferred RESTdesc in terms of flexibility, and for EXPRESS, he
regarded having all the possible links in the header a constraint. Expert two
pointed out that RESTdesc does not rely on the business logic, compared to
EXPRESS, and regarding the URIs being controlled by EXPRESS, he said, “It is nice
to have some control on the URIs”, indicating that EXPRESS was restrictive and
that makes it less application-specific. Expert three suggested adding content
negotiation and returning JSON. Expert four talked about adding sub-objects and
reverse properties to the specification, to make EXPRESS more flexible, and when
asked about the way EXPRESS controls the URI structure, and whether or not it
was a limitation, he said, “Definitely yes, limitations are how you survive,

limitations are fine if people can see them for what they are”.

Expert five, in the beginning of the interview, said, “It is clear that RESTdesc is
more flexible, but as | was saying earlier on, being flexible doesn’t give you that
much help”. This was because he was comparing it to the generation of stubs that
EXPRESS offers. Commenting on EXPRESS’s control of URIs, he said, “At least it will
be semi-standard, at least folks will start to understand what they could expect
from your Web service [...] in a way, it will be more predictable”. However when |
explained that the N3 RESTdesc file does not need to be in a specific location, he
picked up on the fact that both RESTdesc and OWL-S can be used to describe
third-party services. “So that is what is interesting about this, because | could
write a set of N3 rules for a third party API like Twitter, for example, and it will
describe what the Twitter APl means in the semantic sense, OK, which is quite
cool”. He also pointed out that EXPRESS is different because it develops Web
services from scratch: “Well, clearly EXPRESS is for building services from the
ground up, to be in some sense semantically aware. Obviously, if you had a
handful of EXPRESS services, that would be remarkably useful”. Expert six did not
regard EXPRESS’s control over the URI structure as limiting, and commented, “So,
as a service provider, you are going to provide a system where | can just throw
this [the OWL file] at it, and it generates this [the services]. Sounds great to me.
[..] So essentially | just edit an RDF description of my service, which is nice and
flexible. If | want to change my service | edit the RDF, and press the button again,
so that is very flexible, isn’t it?” When | explained that EXPRESS imposes a certain
URI structure that cannot be changed, he said, “Oh, | don’t want to do that [change
the URI structure], why do | want to do that? That is the last thing | want to do,
I've got customers who care about my URI structure. As a Linked Data person, one
of the things | know is the first thing you need is to work out your URI structure
[...] you need to get them right first time”. He further explained that URI structure

is good because it becomes a language that users can learn and have

132

Chapter 7 Expert Reviews

expectations about, and added, “If you give the service provider complete

freedom, then it is harder for the user”.
7.2.2.4 Theme 4: Linked Data

The Linked Data theme includes what the experts said about the relationship

between Linked Data and the presented approaches.

Expert two regarded RESTdesc as a way to layer Linked Data on top of an API.
Expert three asked whether all the URIs returned by EXPRESS were resolvable and
followed Linked Data Principles. He further explained the question by asking
about the implementation details, and how the URI structure that EXPRESS
imposes can be propagated to the backend storage systems. He drew parallels to
the D2R'® server and how to provide the correct URI structure on the fly. Expert
four saw similarities between EXPRESS and the Linked Data API'. The Linked Data
API provided an RDF configuration file to specify the APl and the endpoints to
retrieve and format Linked Data. Expert six compared the way EXPRESS controls

the URI structure to the process of minting URIs for Linked Data.
7.2.2.5 Theme 5: Semantic Quality

This includes the experts’ opinions about whether the descriptions were

unambiguous, and the ability to infer over them.

Expert one regarded EXPRESS as a more structured way of providing HTTP URIs;
however, he said “it doesn’t provide much semantics”. On the other hand, for
RESTdesc, he said, “You can see the potential of providing semantics here”. Expert
two initially regarded RESTdesc as not as semantically rich as the other two and
said that compared to EXPRESS it requires more work to investigate its richness
and to handle the logic. However, he later stated that the three approaches
provide similar information about inputs and outputs, and that RESTdesc is
simpler and cleaner, and while OWL-S would probably provide more semantic
information, it is less easy to explore. As for EXPRESS, he liked the URI structure
and that it provided fine-grained access, and he also appreciated retrieving the
RDF data: “I guess EXPRESS is good because you get the raw RDF back, so you can
actually put into a reasoner, you have access to the domain ontology on top of
that”. However, he thought the lack of explicit process definitions was a
downside. Expert three discussed tool support for parsing semantic information

and how it depended on the programming language used. If it was PHP or Java,

*D2R Server http://d2rg.org/d2r-server
' Linked Data API https://code.google.com/p/linked-data-api/

133

http://d2rq.org/d2r-server
https://code.google.com/p/linked-data-api/

Chapter 7 Expert Reviews

there would not be a problem. He also highlighted as a factor the developer’s

familiarity with semantic technologies.

Expert four said that RESTdesc does not state whether a service has a side effect
or whether it is merely a query. He stated that EXPRESS was missing a human-
readable description, and also, as mentioned before, he thought EXPRESS was
missing reverse properties and sub-objects as well as the ability to describe
complex data structures. Expert five thought that these approaches were similar
in terms of the semantic descriptions they provide, as they all described the
inputs and the outputs and how to interact with the service. Expert six stated that
three approaches describe how to interact with the service, but not what the
service actually does, he suggested using Good Relations® to describe the type of
business the Web service represents. With RESTdesc he regarded the way version
2 works as ambiguous, because it meant POSTing to a book’s URI to create an
order. He also noted that RESTdesc was enforcing the use of their template
ontology, which might not work for him and that he required something simpler.
As for EXPRESS, he said, “I have a suspicion if | was to gather descriptions from a
number of places and put them in a store and then try and do clever reasoning,
this will be the hardest, this has the least information [..] normally when people
write clients they don’t do that, there is nobody doing that, everybody just wants
this information so they can write their PHP or Python to use it, and that is
probably why this [EXPRESS] appeals to me more because that tends to be what |

do”.
7.2.2.6 Theme 6: The aim of Semantic Web services

This includes comments about what experts thought of the viability of Semantic
Web services in general. This is an interesting theme as it shows that some
experts value practicality over semantic richness, and that the advantages of SWS

are not of value to them.

Expert four was discussing the aim of Semantic Web services (SWS) and was
sceptical of their value. He said, “The problem is, my gut says that this starts with
a solution rather than starting with a problem, and this feels very academic, this
doesn’t feel like someone who has got a problem and is trying to solve it, it feels
like somebody is writing a paper”. He went on to say, “Well all these are solving a
question that | didn’t think anyone asked. That is the problem. It seems a long
way ahead from where the actual real-world problems are”. When | explained that
SWS aimed to offer automatic discovery and composition, he said, “No one has

ever asked for one of these, no programmer has ever said: Why don’t you have an

2 Good Relations http://www.heppnetz.de/projects/goodrelations/

134

http://www.heppnetz.de/projects/goodrelations/

Chapter 7 Expert Reviews

auto-discovery mechanism for your APIs?” and “When you say discover a service,
and who would want to discover a service, why would you? | mean | wouldn’t trust
something that said it could do something, | am much more interested in knowing
about the people who wrote it, is this John Smith’s third-year project or is it
Amazon or the British Library? If it is the British library | am probably going to be

more interested in using their API”.

Expert five initially doubted the usefulness of Semantic Web services. He said,
“Like in reality that is not how you would interact with these Web services, right
[...] you are not building like this robot and you are telling the robot, ‘Hey | want to
order a book and that’s it’, and it goes, ‘OK, | know what a book is, | know what it
means to order a book, here is my list of my Web services, can you do this? Can
you? Oh you can do it OK™. However as he tried to think of applications, he
seemed to realise the benefits of semi-automation: “Practically speaking, you are
going to be writing a client that can interact with a particular service, or a set of
services, and to tell the client how to interact with them individually, so that is
where the richness comes in, that is where the benefit comes in, so here you have
a generic behaviour which works across a set of services, and as long as the
services tell you how to interact with them potentially your client can make sense
of that and interact with it in a way that is useful for its task”. He went further by
providing a use case from his experience, where he saw that RESTdesc provided a
better solution. “Say you are doing social media analysis, say you are interacting
with these five or six different social media platforms and under the platform
they all have users and the users will have geolocations, and if somehow you
could interact with a semantic layer of these services and these services tell you
[...] this is the information we provide and then your client can go through [..] so
if | want a service that provides geolocation this is what | have to do for
Facebook, this what |1 have to do for Flickr and this is what | have to do for
Twitter, and then that means that you can write a client that sits there and churns
through user geolocations, but exactly how it gets it from each service is done
automatically. That is quite cool, you can imagine that saving a load of work.
Again, that is if they all provided that semantic information, but | suppose this is
what RESTdesc gives, the ability to describe that semantic information for

services you didn’t write”.

Expert six believed SWS described how to interact with the service. He was
sceptical they captured the actual semantics. For example, in creating an order, he
asked, “The other thing that is missing from all this, | don’t actually know what
the service is doing, nobody attempts to tell me what the service does, in some

sense what is an order? Does an order buy me a chicken or does it sell something,

135

Chapter 7 Expert Reviews

or give me a description of something?” | explained that this is resolved by
agreeing on vocabularies or ontologies to describe shared concepts. However, he
still continued to consider SWS as an interaction layer, and suggested adding a
Good Relations description for what the service does, and a mechanism to

advertise trust.
7.2.2.7 Theme 7: Underspecified

Experts’ opinions about aspects that were missing from EXPRESS are included in

this theme.

Expert two asked if EXPRESS gave any other filtering options, such as searching
for a keyword within the text, and also asked about sorting options. Expert three,
when discussing EXPRESS, questioned the lack of complex data structures in the
examples and asked how they will be encoded and transferred. He also thought
that the author should be a data property, not an on object property. He asked
about whether there were guidelines for writing the ontology. Regarding EXPRESS,
expert four asked about error handling and what will happen if someone tried to
add arbitrary triples. He discussed the lack of explicit support for sequences,
containers, sub-objects, and reverse properties. With regards to RESTdesc, he
asked if there was a mapping between the returned JSON and the N3, and said,
“Well if the client can’t tell that the ISBN here [the N3 description] is the ISBN here
[in the JSON response], then it is useless, you know you are not getting anything
semantic you are only getting JSON, you might as well have done a GET query for.

| don’t see how this will work”.
7.2.2.8 Theme 8: Extra features

Any extra features that were suggested by the experts are included here.

Expert three was interested in how EXPRESS would interact with a conventional
database and asked if there was an association between the database design and
the interface design. He suggested the option of creating the ontology from the
database schema; he also discussed methods for generating the URIs for the
entities in the database and suggested looking at the D2R server and integrating
it with EXPRESS. He also suggested versioning for the endpoint and URIs to
maintain backward compatibility. Expert four suggested adding mechanisms to
query for reverse properties, and also emphasised the importance of trusting a
service. Expert six also suggested adding a mechanism to convey the trust level
of the service, “and then you might have something like this is my trust service

where you can find something about my trust”.

136

Chapter 7 Expert Reviews

7.2.2.9 Theme 9: Manual vs. Automatic Descriptions

This includes the experts’ opinions about the differences between the manual and

automatically generated version of EXPRESS.

Expert one thought both descriptions were equally possible, and that it depends
on the publisher’s preference. He also thought both have the same semantic
power. Expert two highlighted the syntactic differences such as the underscore
and the different namespaces. He also noted the existence of extra properties the
manual description. However, he was not very decisive, and seemed to agree on

the semantic similarities, and remarked that the automatic one takes more work.

Expert three highlighted the syntactic differences and different properties. He
thought that the automated one was more flexible and the manual one was easier
for implementation, and when asked which one a developer is more likely to come
up with he said it depends on the complexity of the problem; in example two [the
automatic one], it just returns the book, whereas in example one [the manual one],
it returns its attributes, too. Expert four thought the underscore was ugly, and
said about the automatically converted version, “The ontology in example two
[the automated one] looks like it describes a single lookup. This seems slightly
more verbose for a worst result”, and “This second layer of stuff has its strength
and weaknesses, the strength being separating your ontology from your markup,
as they are two different things.” However when asked which one a developer is
more likely to come up with, he said, “Well, I don’t know from the information

available. To be honest I've only seen fairly small amount”.

Expert five also highlighted the syntactic differences and the difference in
properties, and when asked which one a developer is more likely to come up with,
he said, “I think this really depends on what the developer understands the
application to be, so if the developer says ‘OK, all we want you to give you back is
a unique URI of the book’, then | understand most applications don’t care about
the author, they don’t care about the title, they just want to know they can get a
unique URI of a book, so I'll just tell them that [..] Alternatively, if a developer
knows that, OK, the reason most of the time people ask for a book is they want a
title, to put on a website somewhere then | should tell them”. However, he later
said, “It is interesting that these descriptions are technically both valid, you can
then go off and resolve that book URI and get the extra information if you wanted,
it is interesting how different they are”. Like the other experts, Expert six
highlighted the syntactic differences and the difference in properties, and when
asked about which one a developer is more likely to come up with, he said, “If

they are very keen on ontologies, this one [the automatically converted one], but

137

Chapter 7 Expert Reviews

the standard developer will understand this better [the manual one]”. However,
as he spent more time examining them, he said, “Ah sorry, this just looks so nice
and clean [the manual one], | can’t see why anyone would do that [the

automatically converted one] if they can do that”.

7.3 Discussion

In this section the results of the interviews are presented and discussed, Section
7.3.1 uses the interview results to answer the research questions and Section

7.3.2 discusses the link between the expert’s expertise and their views.

7.3.1 Research Questions

The research questions are answered by synthesising the results from its
associated themes, in addition to analysing the experts views on the
representativeness of EXPRESSive descriptions that are automatically converted

from OWL-S versions.

7.3.1.1 Does EXPRESS reduce the development effort?

The themes associated to this question are: Theme 1: Development Speed and
Theme 2: Ease of Development. The experts agreed that developing in EXPRESS or
RESTdesc is both faster and easier than OWL-S; they considered OWL-S verbose,
complex, and harder to debug. Moreover, being built on WSDL descriptions
increases the complexity. However, their opinions differed when comparing
EXPRESS to RESTdesc. Half of the experts preferred RESTdesc (Experts one, two
and five) and the other half favoured EXPRESS (Experts three, four and six). Below
| present the experts’ opinions on the pros and cons of RESTdesc and EXPRESS in

terms of development effort.

Table 23 Expert opinions on development effort

Expert Opinions
PROS CONS
o Follows N3 which is a widely accepted format e A new RESTdesc description has to be added each
(Expert 1) time a new service is added (Expert 3)
e Would be very fast for providing a building on top | ¢ Dealing with URI templates is difficult (Expert 2, 6)
of HTTP APIs (Expert 1) e Typing the descriptions will take a long time
g | Tidy, neat and straightforward (Expert 1) (Expert 6)
& | o Itwould be the fastest for developing semantic e Use of N3 implies symbol (=>) to define the
E APIs (Expert 2) services is intimidating (Expert 4)
& | e Use of N3 implies symbol (=>) makes service e Inversion 2 of RESTdesc, creating an order by
definitions simpler & cleaner (Expert 2) POSTing to a book URI is unexpected (Experts 4,
e Easier if you have an existing API (Experts 3, 5) 6)
e Less work than OWL-S and EXPRESS, just hosting | ® String encoding of the URI templates, makes it
an N3 file (Expert 5) harder to debug (Expert 6)

138

Chapter 7 Expert Reviews

e Convenient in a small organisation (Expert 1) e When it scales, it is not convenient to have all the
e Convenient for a beginner in semantic possible links in the header (Expert 1)
technologies (Expert 1) e You have to have EXPRESS in mind when
e Faster and easier for building an APl from scratch developing for it (Expert 2)
(Experts 1,2,5,6) e Passing URIs as part of the URL is complex (Expert
e Simple compared to RESTdesc and EXPRESS 2)
" (Expert 3) e An RDF handling library would be needed to parse
& | e Onlyan endpoint has to be added each time a the results (Expert 2)
; new service is added (Expert 3) e EXPRESS has equivalent classes in the ontology
w e Succinct and achieves goals with less verbosity which people will find hard to learn (Expert 4)
(Experts 4,6) e The use of query strings complicates EXPRESS
e Easier to debug (Experts 4,6) (Expert 6)
e |t can be completely automated, simpler and nicer
(Expert 5)
e Easier to understand: less cognitive models
required (Expert 6)

To answer the question, EXPRESS was clearly perceived to reduce the
development effort compared to OWL-S; however, compared to RESTdesc, there is
a consensus from the interviewed experts that EXPRESS only reduces the
development effort for developing an API from scratch, and this is evident from
the number of experts who have mentioned this explicitly, even if they preferred
RESTdesc.

7.3.1.2 Can it provide a similar level of semantic expressivity to existing

approaches? And what are the trade-offs in terms of practicality?

Referring back to Figure 24, the related themes to this question are Theme 3:
flexibility, Theme 4: Linked Data, Theme 5: semantic quality, Theme 7:
underspecified, and Theme 9: extra features. Starting with OWL-S, in terms of
semantic quality, Expert two said that although the three approaches provide
similar content about the service, OWL-S would probably provide more semantic
information, but it is less easy to explore. In terms of flexibility Expert five noted
that the service descriptions could be written by third parties, which makes it
useful for Semantic Web experts interacting with existing APIs. In general the
experts found OWL-S overwhelming and mostly dismissed OWL-S from the
comparison, by providing short comments on its complexity. As for RESTdesc and
EXPRESS, expert opinions were divided, as they were about development effort.
Experts one, two and five preferred RESTdesc and Experts three, four and six

preferred EXPRESS. Table 18 summarises their opinions.

Table 24 Expert opinions on semantic expressivity and practicality

Expert Opinions
PROS | CONS

139

Chapter 7 Expert Reviews

Experts would prefer RESTdesc to write service There is ambiguity in determining if a service has a
descriptions (Expert 1) side-effect (Expert 4)
It has a better potential for providing semantics It is not clear how RESTdesc will deal with objects
(Expert 1) such as lists and containers (Expert 4)
Q Does not rely on the business logic (Expert 2) No mapping between the JSON responses and the
§ A good way of layering Linked Data on top of your N3 descriptions, hence less useful (Expert 4)
7 service (Expert 2) RESTdesc V2.0 POSTing to a book’s URI to create
o JSON is better supported (Expert 3) an order is ambiguous (Experts 4,6)
Useful for writing descriptions for third party APIs Enforces ontologies for service descriptions, (HTTP
(Expert 5) and HTTP template vocabulary) (Expert 6)
RESTdesc has more semantic information about Although it provides more semantic information,
the service (Expert 6) that information is not useful (Expert 6)
Raw RDF is returned, so it can put in the reasoner Does not provide much semantics (Expert 1)
with the ontology (Expert 2) Would be hard to scale if all the URIs are in the
It is more predictable, you know what to expect header (Expert 1)
from a service (Experts 3,4,5,6) Not having control over the URI structure would
Having the URI structure controlled is a limitation, be restrictive (Expert 2)
a but a good one (Expert 4) Does not provide definitions for the services
g It could become a semi-standard (Expert 5) (Expert 2)
5 It is flexible, all is needed is editing the ontology Does not support sequences and containers
(Expert 6) (Experts 3,4)
Once the URI structure is right it should not be No human readable description (Expert 4)
changed (Expert6) Does not support sub-objects or reverse
The information EXPRESS provides is more useful properties (Expert 4)
for writing clients (Expert 6) Cannot be used for 3rd party services (Expert 5)

Most of the interviewed experts agreed that RESTdesc in general provided more

semantic information than EXPRESS. However, they considered differences

between the semantic information offered minimal. Experts who preferred

EXPRESS saw that any more semantic information provided was unnecessary.

In terms of flexibility, in general, they also considered RESTdesc more flexible.
Expert two appreciated that it did not rely on the business logic, and Expert five
was particularly keen on its potential for describing APIs of third parties. The
experts who preferred EXPRESS did not see the flexibility of RESTdesc as useful,
and appreciated the predictability of EXPRESS.

Experts also discussed areas where EXPRESS was underspecified, such as in

providing sequences, containers, sub-objects, reverse properties and error

handling.

Extra features suggested by the experts included aspects such as advance
filtering, content negotiation, trust, versioning, and the association between the

database design and the interface design.

140

Chapter 7 Expert Reviews

7.3.1.3 Is an EXPRESSive service description that is automatically
converted from an OWL-S version comparable to a EXPRESSive

service description designed manually?

The experts agreed that there were syntactic differences between the two
versions, like the underscore and the different namespaces, which were a result

of how the conversion was implemented and could have been changed easily.

In terms of semantic differences, they also agreed that the results would be
similar. They highlighted the fact that the manual one specified the return of
extra information (properties), but that the automatically generated one could

also do this.

As for the likeliness of a programmer to come up with the automatic version,
there were mixed responses. Experts attributed the differences between the two
versions to differences in the developers’ style. These experts described a
developer who would come up with the automated version, as someone who is
keen on ontologies, lazy, reflecting their understanding of the problem

complexity, or attempting to separate the ontology from the markup.

As for individual responses, Expert one thought both versions were equally
possible, Experts three and Expert five said it depended on the developer’s
understanding of the application: whether only the book was required or its
attributes (title and author) were required too, and that either way the former
leads to the latter, so once the book’s URI is retrieved, other attributes can be
retrieved too. Their responses indicate that they believed it is plausible that a

developer could have written the automatically converted version.

Experts two and four were uncertain. After discussing the syntactic and semantic
aspects of the two versions, Expert four explicitly said, “Well, I don’t know from
the information available. To be honest I've only seen fairly small amount”. Expert

two kept repeating the syntactic differences and was hesitant to give a verdict.

Expert six, began by entertaining the plausibility of a developer producing the
automatically converted version. However he ended his observation by saying,
“Ah sorry this just looks so nice and clean [the manual one], | can’t see why

anyone would do that [the automatically converted one], if they can do that”

In general, the experts found the fourth question difficult to answer, and seemed
to seek guidance and approval for their answers. They also asked questions such
as, “So what am | looking for?”, and “Is that correct?” However | emphasised that

their opinion is what matters, and gave neutral responses.

141

Chapter 7 Expert Reviews

The experts did find it plausible that a human developer would have created
something similar to the automated description, but that there was less certainty

over whether this was likely.

7.3.2 Area of Expertise Influence on Results

As mentioned in section 7.3.1 half of the experts preferred RESTdesc (Experts one,
two and five) and the other half favoured EXPRESS (Experts three, four and six). In
this section, | reflect on how their area of expertise influenced their preferences.

Expert one is researching effective methods for distributed SPARQL queries. This
involves intensive study of graph patterns. Service descriptions in RESTdesc are
in N3 rules; an N3 rule constitutes two graph patterns, one for the rule head and
the other for the body. Expert one described RESTdesc as tidy and neat, and said
if he was a beginner in Semantic Web technologies he would have preferred

EXPRESS. However, since he is an expert, he prefers RESTdesc.

Experts two and five are involved in researching effective methods for multimedia
retrieval. They have both worked on designing ontologies for multimedia, and
providing mechanisms for annotating its data. Expert five, who also researches
social media retrieval, appreciated that RESTdesc descriptions can be written by

3" parties.

Experts four and six, who preferred EXPRESS, are both heavily involved with
Linked Data, developing systems and discussing standards. They expressed their
familiarity with the concepts EXPRESS incorporates, such as minting URIs and
RESTful interaction. They discussed projects they worked on which had similar
concepts to EXPRESS. Expert three, who preferred EXPRESS too, works on using
Linked Data to publish information about media fragments.

Therefore, it seems that the interviewed experts who had worked on publishing

Linked Data preferred EXPRESS, and appreciated its applicability.

A possible extrapolation from the results would be that experts who tended to
develop APIs for Linked Data preferred EXPRESS, and those who used existing
APIs preferred RESTdesc.

7.3.3 Related Results

A research paper by Bachlechner and Fink (2008) involved surveying experts’
opinions on Semantic Web services. The main aim of the research was to collect

opinions from both practitioners and researchers about the potential of Semantic

142

Chapter 7 Expert Reviews

Web services as integration architectures. The authors conducted a Delphi study
with experts from industry and academia. The study involved providing the
experts with two questionnaires, in two stages. The first questionnaire contained
open-ended questions to gain experts’ views on Semantic Web services in general.
In the second stage, the results from the first were used to design a second

questionnaire, where experts were asked to rate statements on a scale from 1-5.

Amongst the challenges that the experts agreed on, was the grounding of the
research in reality, and the proof of cost-effectiveness. The author suggested that

the industry is not yet convinced of the potential of Semantic Web services.

This finding is in line with some of the comments from the study conducted here.
Experts four, five and six were sceptical about the practicality of Semantic Web

services in general.

Expert four, for example, said: “The problem is, my gut says that this starts with a
solution rather than starting with a problem, and this feels very academic, this
doesn’t feel like someone who has got a problem and is trying to solve it, it feels
like somebody is writing a paper”. He went on to say, “Well all these are solving a
question that | didn’t think anyone asked. That is the problem. It seems a long

way ahead from where the actual real-world problems are”.

Another similar finding from the paper, in explaining the lack of industrial
adoption, respondents mentioned “the lack of skilled developers and effective
tools”. Expert four from the interviews also provided the following comment:
“making the Semantic Web more accessible for programmers who don’t have
PhDs. So one in 50 computer science graduates may know about this stuff, or
even one in 10: it is not enough, it is not enough to make this technology stable,
so we have to make it as easy as possible to do it badly and until the people who

knock up WordPress sites can make bad RDF links, we are not there”.

“High complexity” was one of the challenges that both academics and
practitioners in the paper ranked high. This coincides with the experts’ view of
OWL-S as they preferred RESTdesc and EXPRESS because OWL-S was too complex.

7.4 Conclusions

This chapter discussed the Expert Review experiment: the methodology and
results. The aim was to evaluate EXPRESS as a Semantic Web service approach in
comparison to two other approaches: OWL-S and RESTdesc. Six experts in
Semantic Web technologies were recruited and presented with a scenario of

providing a Semantic Web service designed in each one of the approaches.

143

Chapter 7 Expert Reviews

The experts’ preferences were divided between EXPRESS and RESTdesc. The
experts who preferred EXPRESS have expertise in publishing Linked Data, and
they discussed similarities to Linked Data, this suggests that their familiarity with

concepts of Linked Data has influenced their preference.

However, all the experts agreed that EXPRESS is a more suitable solution for
providing SWS from scratch, and for that purpose they considered it is easier than
both RESTdesc and OWL-S.

They also noted that there were some areas in which EXPRESS was underspecified,

such as dealing with lists, sequences and complex filtering mechanisms.

An interesting insight was some of the experts’ scepticism about the viability of

Semantic Web services in practice.

As for the representativeness of the EXPRESS-TC in the matchmaking experiment,
the experts did find it plausible that a human developer would have created
something similar to the automated description, but that there was less certainty
over whether this was likely. This validates the choice to use the automatically

created test, as the experts viewed this as plausible (if inelegant) approach.

144

Chapter 8 Conclusions and Future Work

Chapter 8: Conclusions and Future Work

The complexity of Semantic Web services is one of the main obstacles to their
adoption in the industry. This thesis demonstrated that an alternative approach is
possible which does not require additional meta-models about services. This was
achieved by the development and validation of EXPRESS - a SWS approach where
the semantics are derived from the domain ontology and the standard interface
offered by REST. The goal has been to see to what extent this approach is
feasible, what compromises need to be made to make it work in practice, and to
explore how successful it is in terms of reducing development effort while
providing semantic richness. This chapter summarises the work done, discusses
the explicit contributions made, and suggests areas for future work.

8.1 Summary

EXPRESS utilises the similarities between REST and the Semantic Web, such as
resource realisation, self-describing representations, and uniform interfaces. The
semantics of a service is elicited from a resource’s semantic description in the
domain ontology and the semantics of the uniform interface, hence eliminating
the need for semantically describing services. Moreover stub-generation is a by-

product of the mapping between entities in the domain ontology and resources.

Chapter 2 provided a background on middleware, the Web, Web services, REST
and the Semantic Web. It highlighted the influence of middleware approaches on
Web services and SWS, and the similarities between the Web, REST and the
Semantic Web. Chapter 3 analysed existing SWS approaches, both in the way they
describe services and in the research strategies that they have adopted. The aim
of Chapter 4 was to avoid over-engineering the approach, by grounding the
design decisions on the analysis of real scenarios to see if and how an approach
could describe them, and what interaction requirements would need to be
described. Chapter 5 discussed and demonstrated the development of EXPRESS,

and provided a detailed description of it and the online deployment engine.

145

Chapter 8 Conclusions and Future Work

Chapter 6 assessed the discoverability of EXPRESSive descriptions. The results of
the experiment show that EXPRESS descriptions offer very close semantic
expressivity to the OWL-S ones: this is indicated by the adapted iSeM matchmaker
performance, which yielded very close precision-recall measures, with an
improvement in speed ranging from 4% to 38%, depending on the matchmaker
variant. Chapter 7 presented the methodology and results of an Expert Review
experiment, in which EXPRESS was compared to two other SWS approaches: OWL-S
and RESTdesc, by providing the experts with the same scenario designed in the
three approaches. The results show that experts’ preferences were divided
between EXPRESS and RESTdesc. Moreover, experts who tended to develop APIs
for Linked Data preferred EXPRESS, while those who used existing APIs preferred
RESTdesc. However, all the interviewed experts agreed that EXPRESS is a more
suitable solution for providing SWS from scratch, and for that purpose they
considered it easier than both RESTdesc and OWL-S.

8.2 Contributions

The work described in this thesis has made the following contributions to the

field of Semantic Web services:

1. A new approach called EXPRESS, for offering Semantic RESTful Web services
from domain ontologies, which eliminates service descriptions and interface
vocabularies; an online demonstrator of an EXPRESS deployment engine shows
how the semantic descriptions are a result of the service provision.

2. An analysis of 20 real scenarios in five Web service communities of interest,
resulting in the identification of interaction requirements that guide the
design of EXPRESS.

3. A Resource-Oriented Modelling approach based on UML collaboration
diagrams.

4. A mapping between EXPRESSive descriptions and OWL-S descriptions.

The evaluation of EXPRESS in both a matchmaker experiment, which required
the creation of an EXPRESSive service test collection (EXPRESS-TC) and the
adaptation of a semantic matchmaker, and in an expert review, in which
experts were asked to compare EXPRESS to two other SWS approaches in terms

of development effort and practicality.
The research hypothesis was as follows:

Utilising the semantics in the domain ontology and REST can provide a RESTful
SWS approach that (1) eliminates service ontologies/vocabularies and explicit

descriptions of interfaces, and (2) generates semantic descriptions as a by-

146

Chapter 8 Conclusions and Future Work

product of its provision, and can simplify the development of SWS while

preserving a similar level of semantic expressivity to existing SWS approaches.
The hypothesis led to the following research questions:

1. Is it possible to eliminate explicit service descriptions and service
ontologies/vocabularies while their semantic descriptions become a by-
product of their provision?

An online demonstrator for EXPRESS that generates and deploys Semantic RESTful
Web was explained in Chapter 5. It showed how EXPRESS requires no explicit
service descriptions or service vocabularies. Moreover, Chapter 5 showed how
EXPRESS fulfils the six interaction requirements derived from the scenario
analysis in Chapter 4, in which twenty representative scenarios from five Web
service communities of interest were selected and analysed (aided by the RO

models).

This shows the feasibility of EXPRESS as a SWS approach, as it provides a
semantic description and at the same time fulfils the interaction requirements

required by representative Web service scenarios.

However, as a result of the expert review, it is apparent that there are still some
aspects that were underspecified: this included lack of explicit support for
sequences, sorting, containers, sub-objects, and reverse properties. Future work

(Section 8.4) discusses research activities to address these issues.

2. Can it provide a similar level of semantic expressivity to existing approaches,

and what are the trade-offs in terms of practicality?

This question was answered by conducting a matchmaking experiment to
compare the effect of the SWS description approach in EXPRESS and OWL-S. The
results of the experiment show that EXPRESS descriptions offer very close
semantic expressivity, in terms of discoverability, to the OWL-S ones. This is
indicated by the adapted iSeM matchmaker performance which yielded very close
precision-recall measures, with an improvement in speed ranging from 4% to 38%,
depending on the matchmaker variant, while massively reducing the size of the

service descriptions.

Moreover, the expert reviews provided feedback on the semantic quality of
EXPRESS compared to the other approaches, RESTdesc and OWL-S. In general the
experts found OWL-S overwhelmingly complex and this complexity outweighed
the semantic richness it offered. Comparing RESTdesc and EXPRESS, most of the

interviewed experts agreed that RESTdesc provided more semantic information

147

Chapter 8 Conclusions and Future Work

than EXPRESS; however, they considered the differences minimal. Experts who
preferred EXPRESS stated the view that to provide any more semantic information

was unnecessary.

Nevertheless, more work could be undertaken to evaluate EXPRESS’s practicality.
One of the directions for future work would to perform a case study were
EXPRESS would be applied to develop a full application, and to study developers’
feedback on both the practically and their opinions of the role of semantic

descriptions; this is explained in further detail in Section 8.4.
3. Does it simplify the process of providing SWS services?

The expert review in Chapter 7 addresses this question. A scenario designed in
EXPRESS was compared to the same scenario designed in two other SWS
approaches, OWL-S and RESTdesc. The results show that in terms of simplicity
experts’ preferences were divided between EXPRESS and RESTdesc. The experts
who preferred EXPRESS have expertise in publishing Linked Data, and they
discussed similarities to Linked Data. This suggests that their familiarity with the
concepts of Linked Data has influenced their preference. Moreover, experts who
tended to develop APIs for Linked Data preferred EXPRESS, and those who used
existing APIs preferred RESTdesc. However, all the experts agreed that EXPRESS is
a more suitable solution for providing SWS from scratch, and for that purpose
they considered it is easier than both RESTdesc and OWL-S.

8.3 Publications

The following publications were a result of this thesis.

1. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2011). Resource-
Oriented Modelling: Describing Restful Web services Using Collaboration
Diagrams. In, The 8th International Joint Conference on e-Business and
Telecommunications, Seville, Spain, 18 - 21 Jul 2011.

2. Alowisheq, Areeb and Millard, David (2009) EXPRESS: EXPressing REstful
Semantic Services. In, 2009 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology, Doctoral Workshop, Milan,
Italy, 15 - 18 Sep 2009., 453-456.

3. Alowisheq, Areeb, Millard, David and Tiropanis, Thanassis (2009) EXPRESS:
EXPressing REstful Semantic Services Using Domain Ontologies. In, 8th
International Semantic Web Conference (ISWC 2009), Doctoral Consortium,
Chantilly, VA, USA, 25 - 29 Oct 2009. Springer Berlin/Heidelberg, 941-948.

148

Chapter 8 Conclusions and Future Work

8.4 Future Work

The work done in this thesis explored EXPRESS’s significance as a contribution to
SWS research, as it successfully proposed and developed an approach for both
describing and deploying RESTful SWS that reduced development effort and
provided evidence of its practicality and semantic richness. This section describes
the future work which is explained in the four subsections which address two
main venues for exploring and improving EXPRESS: semantic richness and

practicality, as shown in Figure 25.

Semantic Richness Practicality

4) J) J y

8.4.1 Automated Lo . 8.4.4 Evaluation of
Choreography and 8.4.2 Matchmaking in 8.4.3 Alternatives to URI EXPRESS through a

EXPRESS Aware Clients EXPRESS Templates Case Study

Figure 25 Future Work

8.4.1 EXPRESS Aware Clients and Automated Conversational

Services

Chapter 5 of this thesis described the design and development of EXPRESS
services. It explained the implementation of the server and how for
conversational services the server provides the next states as URIs with allowed
methods. The current implementation of EXPRESS provides deployment stubs and
describes how a developer creates the code within those stubs. Chapter 5 also
demonstrated the use of POSTer as a client, showing that any HTTP client can

interact with those deployed stubs.

However that interaction is not automated. The ultimate aim is to design
semantically intelligent clients that can interact with EXPRESSive services
automatically in order to achieve goals, so the server provides the next states as
URIs with allowed methods, and the client would then reason about them by

converting them to rules and adding them to its knowledge base (KB).

A client’s goal, specified as a rule, will be triggered, and the client will submit a
request, if an appropriate URI rule is available and triggered. The next example
sheds some light on the approach:

Client’s goal as a rule

149

Chapter 8 Conclusions and Future Work

Client(?c) ANURI(?u) A Book(?b) A hasTitle(?b,"Sem Web") A hasPrice (?b,7p) A
Accepts(?u,"Sem Web") A Returns(?u,?p) A canGET (?c,?u) A NoOfInputs(?u,1) —
GETS (?7¢c,?7u)

The service URI and the method:
Link: </Book/hasPrice?hasTitle={}>; rel="GET"

This can be directly mapped to a rule and added to the KB:
Client(?c) AURI(_: URI_1) A Book(? b) A hasTitle(? b,?t) A hasPrice (?b,?p) —
canGET (?c, :URI_1) A Accepts(_:URI_1,?t) A Returns(_:URI_1,?p)

If the client’s KB has sufficient assertions to trigger the URI rule, and the URI rule
matches the goal rule, then the goal rule is triggered initiates action on the client.

This would enable automated conversational services.

Other requirements on the client regardless of the type of interaction
(conversational or atomic) would be automatically constructing messages from
the client’s KB, which means the client automatically constructing and responding

to HTTP headers, and responding to HTTP codes.

In addition the clients would to be designed to interpret OWL restrictions as
constraints, an issue discussed in Section 5.4. There are two potential ways
around this issue, one is to use the syntax of OWL not its semantics (which has
been the assumption in EXPRESS in Chapter 5) and programmatically deal with
restrictions accordingly, rather than depending on a reasoner to trigger constraint
violations. The other is to utilise approaches for local closed world reasoning
(LCWR), which combines open world ontology languages like OWL with closed
world assumptions. Tao et al. (2010) shows the use of LCWR for checking
integrity constraints and several approaches have been proposed that add axioms
to the ontology to enable closed world reasoning, such as the DBox approach
(Seylan et al., 2009) and NBox (Ren et al., 2010). Moreover in the context of
Semantic Web services Grimm and Hitlzer (Grimm and Hitzler, 2007) discuss the
importance of LCWR for resource matching and approaches for achieving it.
Further work is required to select and implement an appropriate approach for
EXPRESS.

8.4.2 Matchmaking in EXPRESS

The plan for the short term is to participate in the S3 contest, by submitting both
EXPRESS-TC (test collection) and iSeM EXPRESS (matchmaker) which where
explained in Chapter 6. This has been encouraged by organisers of the S3

contests when contacted for enquiries about SME?. Participating in the experiment

150

Chapter 8 Conclusions and Future Work

would offer a platform where other researches could use the EXPRESS-TC and

hence provide more feedback to the community about EXPRESS.

Moreover results of the matchmaking experiment in Chapter 6 showed that SVM
variants of iSeM EXPRESS perform much worse than their OWL-S counterparts, this
is due to the SVM variants being trained on an OWL-S sample of services, so

further work is needed to train them on an EXPRESS sample of services.

The long term plan would be to develop a matchmaker designed for EXPRESS. In
the matchmaking experiment in Chapter 6, the iSeM matchmaker, designed for
OWL-S and SAWSDL was adapted to EXPRESS and used on an EXPRESSive test
collection. However further research needs to be undertaken to see whether a

matchmaker designed specifically for EXPRESSive services can outperform iSeM.

Section 6.2 explained the two elements in EXPRESSive descriptions that can be
used for matchmaking. These are the URI of the endpoint (this maps to a resource
or several resources in the domain ontology) and the HTTP method allowed on
that URI. For the endpoint URI there are three main ways to utilise it for
matchmaking. This thesis chose to explore one of them, which was extracting
input and output concepts from filtering resources URI. The two other aspects

provide different methods for matchmaking (explained in Section 6.2), these are:

1. graph matching (using graphs that correspond to the URI
templates),

2. and monolithic DL matching, where URIs refer to classes.

An interesting venue to explore is which of these methods is more effective, and
whether a hybrid approach that combines them would improve the performance.
Moreover an adaptive method could be designed for the hybrid approach, using

SVM that is trained to learn the appropriate weights for the combined methods.

Another method of matchmaking in EXPRESS, that could be explored, is to make
use of ontology matching approaches such as (Doan et al., 2004), where a client
would specify the required concepts in an ontology and EXPRESSive ontologies

would be retrieved and compared.

8.4.3 Alternatives to URI Templates

One of the potential criticisms of EXPRESS is dependency on URI templates. The
argument against using URI templates is that introduces coupling between the
server and the client, because from a purist viewpoint the URI should be opaque,

and yet the client could infer information from the URI structure. It is interesting

151

Chapter 8 Conclusions and Future Work

that despite this argument the reviews from the interviewed experts seem to

prefer URI templates, and view them as a practical solution.

Nevertheless, EXPRESS could be designed differently. There are two other possible
alternatives that could be further investigated and developed: One is to have a
mechanism to represent the resource type in the headers of exchanged messages,
as an extra attribute in the Link elements. Another alternative that would provide
more flexibility, would be to define a machine-readable media type specification.

For a start, it would have the following features:

1. The type of a resource linked to an ontology or vocabulary
2. Effects of a certain method, or the value of rel attribute, expressed as a
rule or SPARQL CONSTRUCT.

Media type specifications are written as human readable documents, developers
read them then design the servers or clients accordingly. An interesting area of
research would be studying the feasibility of machine-readable media type
specifications. An excellent explanation of designing media-types is by Amundsen
(2011a).

8.4.4 Evaluation of EXPRESS through a Case Study

The work described in this thesis uses exemplars, demonstrators and expert
reviews to explore the practical issues around EXPRESS, as Section 3.5 pointed out
this is in line with existing work (and in fact using expert reviews goes beyond
the efforts made with most proposed approaches). However, in Section 3.5, Table
2 from Shaw (2002) referred to other validation techniques, such as experience,
which can be achieved using longitudinal case studies, typically applied
elsewhere in the Software Engineering world, where developers use and then
reflect on a given approach as part of a longer term project.

For EXPRESS this would mean a study where developers would use EXPRESS in a
real project. This would provide comprehensive qualitative feedback about the
hands-on application of EXPRESS.

Moreover, applying EXPRESS to a real application would ground solutions to
underspecified issues in EXPRESS, such as in providing sequences, containers,
sorting sub-objects, reverse properties and error handling. It would also enable
extra features suggested by the experts to be addressed, including aspects such

as advanced filtering, content negotiation, trust, and versioning.

152

Chapter 8 Conclusions and Future Work

An area for future investigation is the association between the database design
and the interface design, which was suggested by one of the experts, in which the
ontology is derived from the database schema. This provides further opportunity
for automation, as the SPARQL mappings (described in Section 5.2.2 and Appendix
C) are not only specifications, but could become the actual implementation of the

Web service.

8.5 Final Conclusions

This research aimed to study the potential of pragmatic solutions that can lower
the entry barrier for Semantic Web services, and to develop an effective Semantic
Web service approach that offers rich discovery by harnessing the strengths of

semantic technologies while being accessible to every day Web developers.

The underlying assumption behind the approach is that an implicit, intuitive meta-
model would be more likely to be adopted than an explicit, complex one.
Therefore, in designing EXPRESS, interaction service descriptions and service
ontologies or vocabularies were deliberately avoided, the aim was to investigate
to what extent does using only the domain ontology and REST provide a viable

substitute.

The demonstrator, evaluation and expert review that have been conducted show
that compared to OWL-S, EXPRESS has succeeded in massively reducing the size of
semantic descriptions, and improving the speed of semantic matchmaking, while
providing similar accuracy. However, EXPRESS requires a different
conceptualisation of the problem, leading the interviewed experts to voice mixed
opinions about its practicality, although all of them appreciated its simplicity for
building Web services from scratch. This is the area in which EXPRESS seems to
hold the most promise, as a way of creating SWS from the ground up, driven by
ontology design, and supported where possible by automated deployment. It is an
approach that may have a lot of resonance with the Linked Data community who
prioritise practical solutions, and are experienced with developing around

existing Web standards.

It seems that, although much research has been done in SWS, the issue of their
practicality in real world applications still remains in question. Above all the work
undertaken with EXPRESS shows that we need to start from real problems and
conduct a careful analysis of whether these are practical solutions, through

engagement with practitioners, and not only Semantic Web enthusiasts.

153

Chapter 8 Conclusions and Future Work

154

References

References

Adida, B., Birbeck, M., McCarron, S. & Pemberton, S. (2008). RDFa in XHTML: Syntax
and Processing. W3C Recommendation, World Wide Web Consortium (W3C)
[Online]. Available: http://www.w3.0rg/TR/2013/REC-rdfa-core-20130822/
[Accessed 14/10/2010].

Akkiraju, R, Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A. P. & Verma,
K. (2005). Web Service Semantics - WSDL-S. W3C Member Submission, World
Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/ [Accessed
14/9/20111.

Alarcon, R. & Wilde, E. (2010) Linking Data from RESTful Services. In: Proceedings
of the WWW2010 Workshop on Linked Data on the Web (LDOW 2010), April
27, Raleigh, North Carolina. volume 628.

Alexander, K., Cyganiak, R., Hausenblas, M. & Zhao, J. (2009) Describing Linked
Datasets, On the Design and Usage of voiD, the "Vocabulary of Interlinked
Datasets". In: Proceedings of the WWW2009 Workshop Linked Data on the
Web (LDOWZ2009) April 20, Madrid, Spain. CEUR Workshop Proceedings,
CEUR-WS.org, volume 583.

Allamaraju, S. (2010). RESTful Web Services Cookbook, O'Reilly.

Allemang, D. & Hendler, J. (2011). Semantic Web for the Working Ontologist:
Effective Modeling in RDFS and OWL 2" ed., Morgan Kaufmann.

Alonso, G., Casati, F.,, Kuno, H. & Machiraju, V. (2004). Web services, Berlin
Heidelberg, Springer.

Alowisheq, A. & Millard, D. E. (2009) EXPRESS: EXPressing REstful Semantic
Services. In: Proceedings of the 2009 IEEE/WIC/ACM International
Conference on Web Intelligence and International Conference on Intelligent
Agent Technology - Workshops | 2™ Doctoral Workshop (DOCW 2009),
September 15-18, Milan, Italy. IEEE, pages 453-456.

Alowisheq, A. Millard, D. E. & Tiropanis, T. (2009) EXPRESS: EXPressing REstful
Semantic Services Using Domain Ontologies. In: Proceedings of the 8th
International Semantic Web Conference (ISWC 2009) | Doctoral Consortium
October 25-29, Chantilly, VA, USA. Lecture Notes in Computer Science,
Springer, volume 5823, pages 941-948.

Alowisheq, A., Millard, D. E. & Tiropanis, T. (2011) Resource-Oriented Modelling:
Describing Restful Web Services Using Collaboration Diagrams. In:
Proceedings of the 8th International Joint Conference on e-Business and
Telecommunications (ICE-B 2011), July 18-21, Seville, Spain. SciTePress,
pages 113-118.

Alves, A., Arkin, A, Askary, S., Barreto, C, Bloch, B., Curbera, F., Ford, M., Goland, Y.,
Guizar, A, Kartha, N., Liu, C. K., Khalaf, R., Kdnig, D., Marin, M., Mehta, V.,
Thatte, S., Rijn, D. v. d., Yendluri, P. & Yiu, A. (2007). Web Services Business
Process Execution Language Version (WSBPEL) OASIS Standard, OASIS

Committee [Online]. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel [Accessed
21/07/2013l.

Amundsen, M. (2011a). Building Hypermedia APIs With HTML 5 and Node, O'Reilly
Media, USA

Amundsen, M. (2011b). Hypermedia Types. In: WILDE, E. & PAUTASSO, C. (eds.)
REST: From Research to Practice. New York: Springer.

Ankolekar, A., Burstein, M., Hobbs, J. R,, Lassila, O., Martin, D. L., Mcllraith, S. A,
Narayanan, S., Paolucci, M., Payne, T. & Sycara, K. (2001) DAML-S: Semantic
Markup for Web Services. In: Proceedings of the International Semantic

155

http://www.w3.org/TR/2013/REC-rdfa-core-20130822/
http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

References

Web Working Symposium (SWWS), July 30 - August 1, Stanford University,
California, USA. pages 411-430.

Armbrust, M., Fox, A, Griffith, R,, Joseph, A. D, Randy Katz, Konwinski, A,, Lee, G.,
Patterson, D., Rabkin, A., Stoica, I. & Zaharia, M. (2009). Above the Clouds: A
Berkeley View of Cloud Computing. UC Berkeley Reliable Adaptive
Distributed Systems Laboratory. UCB/EECS-2009-28.

Austin,)., Davis, R., Fletcher, M., Jackson, T., Jessop, M., Liang, B. & Pasley, A.
(2005). DAME: Searching Large Data Sets within a Grid-enabled Engineering
Application. Proceedings of the IEEE, 93(3):496-509.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D. & Patel-Schneider, P. F. (2003).
The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, New York.

Bachlechner, D. & Fink, K. (2008). Semantic Web Service Research: Current
Challenges and Proximate Achievements. International Journal of
Computer Science & Applications (IJCSA), 5(3b):117-140.

Battle, R. & Benson, E. (2008). Bridging the semantic Web and Web 2.0 with
Representational State Transfer (REST). Journal of Web Semantics, 6(1):61-
69.

Battle, S., Bernstein, A., Boley, H., Gruninger, M., Hull, R, Kifer, M., Martin, D.,
McLlraith, S., McGuinness, D., Su, J. & Tabet, S. (2005). Semantic Web
Services Framework (SWSF) Overview. W3C Member Submission, World

Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/Submission/2005/SUBM-SWSF-20050909/ [Accessed
9/10/2012].

Beckett, D. & McBride, B. (eds.) (2004). Resource Description Framework (RDF):
Concepts and Abstract Syntax W3C Recommendation, World Wide Web
Consortium (W3C) [Online]. Available: http://www.w3.0rg/TR/2004/REC-
rdf-syntax-grammar-20040210/ [Accessed 17/7/2012].

Bellwood, T., Clément, L., Ehnebuske, D. Hately, A, Hondo, M., Husband, Y.,
Januszewski, K., Lee, S., McKee, B. & Munter, J. (2002). The Universal
Description, Discovery and Integration (UDDI) Specification. Technical
Report, OASIS Committee [Online]. Available: https://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm [Accessed 22/06/2012].

Berners-Lee, T. (1991). The Original HTTP as defined in 1991 [Online]. Available:
http://www.w3.org/Protocols/HTTP/Asimplemented.html [Accessed
13/7/2013].

Berners-Lee, T. (1994). RFC 1630: Universal Resource Identifiers in WWW: A
Unifying Syntax for the Expression of Names and Addresses of Objects on
the Network as used in the World-Wide Web. IETF [Online]. Available:
http://www.ietf.org/rfc/rfc1630.txt [Accessed 22/6/2012].

Berners-Lee, T. (1998). Semantic Web Roadmap [Online]l. World Wide Web
Consortium (W3Q). Available:
http://www.w3.0org/Designlssues/Semantic.html [Accessed 3/6/2013].

Berners-Lee, T. (2006). Linked Data - Design Issues [Online]. Available:
http://www.w3.0org/Designlssues/LinkedData.html [Accessed 3/7/2013].

Berners-Lee, T., Cailliau, R., Groff, J.-F. & Pollermann, B. (1992). World-Wide Web:
The Information Universe. Internet Research, 2(1):52-58.

Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer,
A. & Sheets, D. (2006) Tabulator: Exploring and Analyzing Linked Data on
the Semantic Web. In: Proceedings of the 3rd International Semantic Web
User Interaction Workshop, November 6, Athens, Georgia, USA.
SemanticWeb.org.

Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y. & Hendler, J. (2008). N3Logic: A
logical framework for the World Wide Web. Theory and Practice of Logic
Programming, 8(3):249-269.

Berners-Lee, T., Fielding, R. & Masinter, L. (2005). RFC 3986: Uniform Resource
Identifier (URD): Generic Syntax. IETF [Online]. Available:
http://www.ietf.org/rfc/rfc3986.txt.

156

http://www.w3.org/Submission/2005/SUBM-SWSF-20050909/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://www.ietf.org/rfc/rfc1630.txt
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.ietf.org/rfc/rfc3986.txt

References

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific
American, 284(5):28-37.

Bernstein, P. A. (1996). Middleware: a Model for Distributed System Services.
Communications of the ACM, 39(2):86-98.

Biornstad, B. & Pautasso, C. (2009) Let It Flow: Building Mashups with Data
Processing Pipelines. In: Proceedings of Service-Oriented Computing -
ICSOC 2007 Workshops, September 17, Vienna, Austria. Lecture Notes in
Computer Science, Springer, volume 4907, pages 15-28.

Birrell, A. D. & Nelson, B. J. (1984). Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(1):39-59.

Bizer, C., Heath, T. & Berners-Lee, T. (2009). Linked Data - The Story So Far.
International Journal on Semantic Web and Information Systems, 5(3):1-22.

Blum, A. & Furst, M. (1997). Fast planning through planning graph analysis.
Artificial Intelligence, 90(1):281-300.

Booch, G., Rumbaugh, J. & Jacobson, I. (1999). Unified Modeling Language User
Guide, Reading, MA, Addison-Wesley

Booth, D., Haas, H., McCabe, F., Necomer, E., Champion, M., Ferris, C. & Orchard, D.
(2004). Web Services Architecture. W3C Working Group Note, World Wide
Web Consortium (W30) [Online]. Available:
http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/.

Bournez, C. (2005). Team Comment on Web Service Modeling Ontology (WSMO)
Submission. World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/Submission/2005/06/Comment.

Box, D. (2001). A Brief History of SOAP [Online]. Available:
http://www.xml.com/Ipt/a/759 [Accessed 13/7/2013].

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S. & Winer, D. (2000). Simple Object Access Protocol (SOAP) 1.1. W3C
Note, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/.

Bray, T., Paoli, J. & Sperberg-McQueen, C. M. (1998). Extensible Markup Language
(XML) 1.0. W3C Recommendation, World Wide Web Consortium (W3C)
[Onlinel. Available: http://www.w3.0org/TR/1998/REC-xmI-19980210
[Accessed 14/10/2010].

Bray, T., Paoli, J.,, Sperberg-McQueen, C. M., Maler, E. & Yergeau, F. (2008).
Extensible Markup Language (XML) 1.0. W3C Recommendation, World Wide
Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/TR/2008/REC-xmI-20081126/ [Accessed 13/12/2012].

Brickley, D. & Guha, R. V. (2004). RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, World Wide Web Consortium (W3C)
[Onlinel. Available: http://www.w3.0org/TR/2004/REC-rdf-schema-
20040210/ [Accessed 10/10/2012].

Brodie, M. L. (2000). The B2B e-commerce Revolution: Convergence, Chaos, and
Holistic Computing. Information Systems Engineering, 15-36.

Bruijn, J. d., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,
Konig-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman,
D., Scicluna, J. & Stollberg, M. (2005a). Web Service Modeling Ontology
(WSMO). W3C Member Submission, World Wide Web Consortium (W3C)
[Online]. Available: http://www.w3.0rg/Submission/2005/SUBM-WSMO-
20050603/ [Accessed 12/12/2010].

Bruijn, J. d., Fensel, D., Keller, U, Kifer, M., Lausen, H., Krummenacher, R., Polleres,
A. & Predoiu, L. (2005b). Web Service Modeling Language (WSML). W3C
Member Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.org/Submission/2005/SUBM-WSML-20050603/ [Accessed
12/12/2010].

Bush, V. (1945). As we may think. Atlantic Monthly, 176(1):101-108.

Cabral, L., Domingue, J., Motta, E., Payne, T. R. & Hakimpour, F. (2004) Approaches
to Semantic Web Services: An Overview and Comparison. In: Proceedings
of 1st European Semantic Web Symposium,The Semantic Web: Research

157

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/Submission/2005/06/Comment
http://www.xml.com/lpt/a/759
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/
http://www.w3.org/Submission/2005/SUBM-WSML-20050603/

References

and Applications (ESWS 2004), May 10-12, Heraklion, Crete, Greece. Lecture
Notes in Computer Science, Springer, volume 3053, pages 225-239.

Cabral, L., Ning, L. & Kopecky, J. (2012) Building the WSMO-Lite Test Collection on
the SEALS Platform. In: Proceedings of the ESWC2012 2nd International
Workshop on Evaluation of Semantic Technologies (IWEST 2012), May 28,
Heraklion, Greece. CEUR Workshop Proceedings, CEUR-WS.org, volume 843.

Calladine, J. (2004). Giving Legs to the Legacy - Web Services Integration within
the Enterprise. BT Technology Journal, 22(1):87-98.

Champin, P-A. (2013) RDF-REST: A Unifying Framework for Web APIs and Linked
Data. In: Proceedings of the ESWC2013 1st Workshop on Services and
Applications over Linked APIs and Data (SALAD 201 3), May 26, Montpellier,
France. CEUR Workshop Proceedings, CEUR-WS.org, volume 1056.

Cheng, G. & Qu, Y. Z. (2009). Searching Linked Objects with Falcons: Approach,
Implementation and Evaluation. International Journal on Semantic Web and
Information Systems, 5(3):49-70.

Chien, A., Calder, B., Elbert, S. & Bhatia, K. (2003). Entropia: Architecture and
Performance of an Enterprise Desktop Grid System. Journal of Parallel and
Distributed Computing, 63(5):597-610.

Christensen, E., Curbera, F., Meredith, G. & Weerawarana, S. (2001). Web Services
Description Language (WSDL) 1.1. W3C Note, World Wide Web Consortium
(W3C) [Online]. Available: http://www.w3.0rg/TR/2001/NOTE-wsdI-
20010315 [Accessed 10/10/2012].

City University. (2008). Going For Gold, Introducing SOA at City University London.

Connolly, D. (1997). A draft of the editorial of the Mar/Apr 1997 issue of Web

Apps Magazine [Onlinel. Available:
http://www.w3.0org/People/Connolly/9703-web-apps-essay.html [Accessed
12/12/2013].

Connolly, D. & Hickson, I. (1999). An Entity Header for Linked Resources. Draft,
World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0org/Protocols/9707-link-header.html.

Decker, G, Liders, A., Overdick, H., Schlichting, K. & Weske, M. (2008) RESTful Petri
Net Execution. In: Proceedings of the 5th International Workshop on Web
Services and Formal Methods, September 4-5, Milan, Italy. Lecture Notes in
Computer Science, Springer, volume 5387.

Decker, G. & Weske, M. (2007) Behavioral Consistency for B2B Process Integration.
In: Proceedings of the 19th International Conference on Advanced
Information Systems Engineering (CAIiSE 2007), June 11-15, Trondheim,
Norway. Lecture Notes in Computer Science, Springer, volume 4495, pages
81-95.

DeLeon, A. & Dumontier, M. (2008) Publishing OWL Ontologies with Presto. In:
Proceedings of the OWLED 2008 OWL: Experiences and Directions, April 1-
2, Washington, DC. CEUR Workshop Proceedings, CEUR-WS.org, volume 496.

Doan, A., Madhavan, J., A Domingos, P. & Halevy, A. (2004). Ontology Matching: A
Machine Learning Approach. In: STAAB, S. & STUDER, R. (eds.) Handbook on
Ontologies. Springer Berlin Heidelberg.

Dong, H., Hussain, F. K. & Chang, E. (2012). Semantic Web Service matchmakers:
state of the art and Gvedilewgasy and Computation: Practice
and Experience, 25(7):961-988.

Donnelly, P. (2010). Yahoo Finance Stock Quote Watch List Feed [Online]. Yahoo.
Available: http://pipes.yahoo.com/31337/watchlist [Accessed 26/02/2010].

Emmerich, W.,, Aoyama, M. & Sventek, J. (2007). The Impact of Research on
Middleware Technology. ACM SIGOPS Operating Systems Review, 41(1):89-
112.

Engelbart, D. C. (1963). Conceptual Framework for the Augmentation of Man's
Intellect. In: HOWERTON, P. W. (ed.) Vistas in Information Handling.
Washington, D.C.: Spartan Books.

Ennals, R., Brewer, E., Garofalakis, M., Shadle, M. & Gandhi, P. (2007). Intel Mash
Maker: Join the Web. SIGMOD Record, 36(4):27-33.

158

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/People/Connolly/9703-web-apps-essay.html
http://www.w3.org/Protocols/9707-link-header.html
http://pipes.yahoo.com/31337/watchlist

References

Ennals, R. J. & Garofalakis, M. N. (2007) MashMaker: Mashups for the Masses. In:
Proceedings of the ACM SIGMOD International Conference on Management
of Data, June 12-14, Beijing, China. 1247626: ACM, pages 1116-1118.

Erl, T. (2008). SOA: Principles of Service Design, Upper Saddle River, Prentice Hall

Falou, M. E., Bouzid, M., Mouaddib, A.-l. & Vidal, T. (2009) Automated Web Service
Composition: A Decentralised Multi-agent Approach. In: Proceedings of the
2009 IEEE/WIC/ACM International Conference on Web Intelligence and
International Conference on Intelligent Agent Technology, September 15-
18, Milan, Italy. IEEE, pages 387-394.

Farnaghi, M. & Mansourian, A. (2013). Automatic Composition of WSMO based
Geospatial Semantic Web Services Using Artificial Intelligence Planning.
Journal of Spatial Science, 58(2):235-250.

Farrell, J. & Lausen, H. (2007). Semantic Annotations for WSDL and XML Schema.
W3C Recommendation, World Wide Web Consortium (W3C) [Online].
Available: http://www.w3.0rg/TR/2007/REC-sawsdl-20070828/ [Accessed

14/10/2010].
Fensel, D. (2004) Triple-Space Computing: Semantic Web Services Based on
Persistent Publication of Information. In: Proceedings of the IFIP

International Conference Intelligence in Communication Systems
(INTELLCOMM 2004), November 23-26, Bangkok, Thailand. Lecture Notes in
Computer Science, Springer, volume 3283, pages 43-53.

Fensel, D., Krummenacher, R., Shafiq, O., Kiihn, E., Riemer, J., Ding, Y. & Draxler, B.
(2007). TSC - Triple Space Computing. e & i Elektrotechnik und
Informationstechnik, 124(1):31-38.

Fensel, D. & van Harmelen, F. (2007). Unifying Reasoning and Search to Web Scale.
IEEE Internet Computing, 11(2):94-96.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H. & Berners-Lee, T. (1997). RFC 2068:
Hypertext Transfer Protocol-HTTP/1.1 IETF [Online]. Available:
http://www.ietf.org/rfc/rfc2068.txt [Accessed 22/6/2012].

Fielding, R,, Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. & Berners-Lee, T.
(1999). RFC 2616: Hypertext Transfer Protocol-HTTP/1.1 IETF [Onlinel].
Available: http://www.ietf.org/rfc/rfc2616.txt [Accessed 22/6/2012].

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based
Software Architectures. Doctoral Dissertation, University of California.

Fielding, R. T. (2007). A Little REST and Relaxation. Presented at: The International
Conference on Java Technology (JAZOONO7), June 24-28 Zurich,
Switzerland.

Fielding, R. T. (2008a). On Software Architecture [Online]. Untagled. Available:
http://roy.gbiv.com/untangled/2008/on-software-architecture = [Accessed

23/22/2010].
Fielding, R. T. (2008b). REST APIs Must Be Hypertext-driven [Online]. Untangled.
Available: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-

hypertext-driven [Accessed 23/22/2010].

Fielding, R. T., Berners-Lee, T. & Frystyk, H. (1996). RFC 1945: Hypertext Transfer
Protocol-HTTP/1.0. IETF [Online]. Available:
https://www.ietf.org/rfc/rfc1945.txt [Accessed 22/6/2012].

Fikes, R. E. & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2(3):189-208.

Filho, O. F. F. & Ferreira, M. A. G. V. (2009) Semantic Web Services: A RESTful
Approach. In: Proceedings of the IADIS International Conference on
WWW/Internet 2009, November 19 - 22, Rome, Italy. IADIS Press.

Foster, I, Kesselman, C., Nick, J. M. & Tuecke, S. (2002). Grid Services for
Distributed System Integration. Computer, 35(6):37-46.

Foster, l., Parastatidis, S., Watson, P. & McKeown, M. (2008). How Do | Model State?
Let Me Count the Ways. Communications of the ACM, 51(9):34-41.

Francisco, D. d., Nixon, L. & Valle, G. T. d. (2008) Towards a Multimedia Content
Marketplace Implementation Based on Triplespaces. In: Proceedings of the
7th International Semantic Web Conference (ISWC 2008), October 26-30,

159

http://www.w3.org/TR/2007/REC-sawsdl-20070828/
http://www.ietf.org/rfc/rfc2068.txt
http://www.ietf.org/rfc/rfc2616.txt
http://roy.gbiv.com/untangled/2008/on-software-architecture
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.ietf.org/rfc/rfc1945.txt

References

Karlsruhe, Germany. Lecture Notes in Computer Science, Springer, volume
5318, pages 875-888.

Fremantle, P, Weerawarana, S. & Khalaf, R. (2002). Enterprise Services.
Communications of the ACM, 45(10):77-82.

Frey, J., De Roure, D., Taylor, K., Essex, J., Mills, H. & Zaluska, E. (2006) CombeChem:
A Case Study in Provenance and Annotation Using the Semantic Web. In:
Proceedings of the International Provenance and Annotation Workshop
(IPAW 2006), May 3-5, Chicago, IL, USA. Lecture Notes in Computer Science,
Springer, volume 4145, pages 270-277.

Frey, J. G., Bradley, M., Essex, J., Hursthouse, M. B., Lewis, S. M., Luck, M., Moreau, L.,
De Roure, D.,, M., S. & Welsh, A. (2003). Combinatorial Chemistry and the
Grid. In: FBERMAN, G.FOX & T.HEY (eds.) Grid Computing: Making the
Global Infrastructure a Reality. John Wiley & Sons Ltd.

Gearon, P., Passant, A. & Polleres, A. (2013). SPARQL 1.1 Update. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/TR/2013/REC-sparqll1-update-20130321/ [Accessed
10/12/2013].

Gessler, D. D., Schiltz, G. S., May, G. D., Avraham, S., Town, C. D., Grant, D. & Nelson,
R. T. (2009). SSWAP: A Simple Semantic Web Architecture and Protocol for
Semantic Web Services. BMC Bioinformatics [Online], 10(1).

Glaser, H., Jaffri, A. & Millard, I. (2009) Managing Co-reference on the Semantic
Web. In: Proceedings of the WWW2009 Workshop Linked Data on the Web
(LDOWZ2009) April 20, Madrid, Spain.. CEUR Workshop Proceedings, CEUR-
WS.org, volume 583.

Gregorio, J. & de hOra, B. (eds.) (2007). RFC:5023 The Atom Publishing Protocol.
IETF [Online]. Available: http://www.ietf.org/rfc/rfc5023.txt [Accessed
23/6/2012].

Grimm, S. (2007). Discovery - Identifying Relevant Services In: STUDER, R., GRIMM,
S. & ABECKER, A. (eds.) Semantic Web Services. Springer.

Grimm, S. & Hitzler, P. (2007). Semantic Matchmaking of Web Resources with Local
Closed-World Reasoning. International Journal of Electronic Commerce,
12(2):89-126.

Gudgin, M., Hadley, M. & Rogers, T. (2006). Web Services Addressing 1.0 - Core.
W3C Recommendation, World Wide Web Consortium (W3C) [Onlinel.
Available: http://www.w3.0rg/TR/2006/REC-ws-addr-core-20060509/
[Accessed 13/12/2012].

Gullapalli, S., Dyke, S., Hubbard, P., Marcusiu, D., Pearlman, L. & Severance, C.
(2004) Showcasing the Features and Capabilities of NEESgrid: A Grid-based
System for the Earthquake Engineering Domain. In: Proceedings of the
13th IEEE International Symposium on High Performance Distributed
Computing (HPDC-13 2004), June 4-6, Honolulu, Hawaii USA. IEEE, pages
268-269.

Hadley, M. (2009). Web Application Description Language (WADL). W3C Member
Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0org/Submission/2009/SUBM-wad|-20090831/ [Accessed
31/8/2012].

Halpin, H. & Davis, I. (2007). Gleaning Resource Descriptions from Dialects of
Languages (GRDDL). W3C Recommendation, World Wide Web Consortium
(W30) [Online]. Available: http://www.w3.0rg/TR/2007/REC-grddl-
20070911/ [Accessed 11/9/2012].

Harris, S. & Seaborne, A. (2013). SPARQL 1.1 Query Language, Section 9: Property
Paths. W3C Recommendation, World Wide Web Consortium (W3C) [Onlinel.
Available: http://www.w3.org/TR/sparqgll 1-query/#propertypaths
[Accessed 15/9/2014].

Heath, T. & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data
Space. Synthesis Lectures on the Semantic web: Theory and Technology,
1(1):1-136. Morgan & Claypool.

Hench, G., Simperl, E., Wahler, A. & Fensel, D. (2008) A Conceptual Roadmap for
Scalable Semantic Computing. In: Proceedings of the 2th IEEE International

160

http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://www.ietf.org/rfc/rfc5023.txt
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/Submission/2009/SUBM-wadl-20090831/
http://www.w3.org/TR/2007/REC-grddl-20070911/
http://www.w3.org/TR/2007/REC-grddl-20070911/
http://www.w3.org/TR/sparql11-query/%23propertypaths

References

Conference on Semantic Computing (ICSC 2008), August 4-7, Santa Clara,
CA, USA. IEEE, pages 562-568.

Henning, M. (2006). The Rise and Fall of CORBA. Queue, 4(5):28-34.

Hernandez, A. G. & Garcia, M. N. M. (2010) A Formal Definition of RESTful Semantic
Web Services. In: Proceedings of the First International Workshop on
RESTful Design (WS-REST 2010), Raleigh, North Carolina, USA. ACM, pages
39-45.

Herrick, D. R. (2009) Google this!: Using Google Apps for Collaboration and
Productivity. In: Proceedings of the ACM SIGUCCS Fall Conference on User
Services 2009, October 11-14, St. Louis, Missouri, USA. 1629513: ACM,
pages 55-64.

Hitzler, P., Krotzsch, M., Parisa, B., Patel-Schneider, P. F. & Rudolph, S. (2012). OWL 2
Web Ontology Language Primer W3C Recommendation, World Wide Web
Consortium (W3C) [Online]. Available: http://www.w3.0orq/TR/2012/REC-
owl2-primer-20121211/ [Accessed 2/9/2013].

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B. & Dean, M. (2004).
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C
Member Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/Submission/2004/SUBM-SWRL-20040521/ [Accessed
21/2/2011].

International Organization for Standardization (1986). ISO 8879:1986 Information
Processing — Text and Office Systems — Standard Generalized Markup
Language (SGML).

International Organization for Standardization (2004). ISO 18629:2004 Industrial
automation systems and integration -- Process specification language (PSL).

Jackson, T., Austin, J., Fletcher, M. & Jessop, M. (2003) Delivering a Grid-enabled
Distributed Aircraft Maintenance Environment (DAME). In: Proceedings of
the UK e-Science All Hands Meeting, September 2-4, Nottingham, UK. pages
420-427.

Jackson, T, Austin, J., Fletcher, M., Jessop, M., Liang, B., Pasley, A, Ong, M., Ren, X,
Allan, G., Kadirkamanathan, V., Thompson, H. & Fleming, P. (2005)
Distributed Health Monitoring for Aero-engines on the GRID: DAME. In:
Proceedings of the IEEE Aerospace Conference, March 5-12, Big Sky,
Montana. IEEE pages 3738-3747.

Jackson, T, Jessop, M., Fletcher, M. & Austin, J. (2006) A Virtual Organisation
Deployed on a Service Orientated Architecture for Distributed Data Mining
Applications. In: Proceedings of the IFIP TC2/ WG 2.5 Working Conference
on Grid-Based Problem Solving Environments: Implications for Development
and Deployment of Numerical Software, July 17-21, Prescott, Arizona, USA.
Lecture Notes in Computer Science, Springer, volume 239, pages 155-170.

Jhingran, A. (2006) Enterprise Information Mashups: Integrating Information,
Simply. In: Proceedings of the 32nd International Conference on Very
Large Data Bases (VLDB 2006), September 12-15, Seoul, Korea. 1164128:
ACM, pages 3-4.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y. & Barreto, C. (2005).
Web Services Choreography Description Language Version 1.0. W3C
Candidate Recommendation, World Wide Web Consortium (W3C) [Onlinel.
Available: http://www.w3.0rg/TR/2005/CR-ws-cdl-10-20051109/ [Accessed
12/12/2013].

Kjernsmo, K. (2012). The Necessity of Hypermedia RDF and an Approach to
Achieve it. Presented at: The Ist Linked APIs Workshop (LAPIS) at
ESWC2012, May 27-31 Heraklon, Crete.

Klein, M., Konig-Ries, B. & Mussig, M. (2005). What is Needed for Semantic Service
Descriptions? A Proposal for Suitable Language Constructs. International
Journal of Web and Grid Services, 1(3/4):328-364.

Klems, M., Nimis, J. & Tai, S. (2008) Do Clouds Compute? A Framework for
Estimating the Value of Cloud Computing. In: Proceedings of the
(WEB2008) 7th Workshop on E-Business, December 13, Paris, France.

161

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/

References

Lecture Notes in Business Information Processing, Springer, volume 22,
pages 110-123.

Klensin, J. (ed.) (2001). RFC 2821: Simple Mail Transfer Protocol. IETF [Online].
Available: https://www.ietf.org/rfc/rfc2821.txt [Accessed 21/7/2014].
Klusch, M. (2008a). Semantic Web Service Coordination. In: SCHUMACHER, M,
HELIN, H. & SCHULDT, H. (eds.) CASCOM: Intelligent Service Coordination in

the Semantic Web. Birkhauser Verlag.

Klusch, M. (2008b). Semantic Web Service Description. In: SCHUMACHER, M., HELIN,
H. & SCHULDT, H. (eds.) CASCOM: Intelligent Service Coordination in the
Semantic Web. Birkhauser Verlag.

Klusch, M., Dudev, M., Misutka, J., Kapahnke, P. & Vasileski, M. (2010a). Semantic
Web Service Matchmaker Evaluation Environment User Manual. DFKI.
Klusch, M. & Kapahnke, P. (2010a) iSem: Approximated Reasoning for Adaptive
Hybrid Selection of Semantic Services. In: Proceedings of the 4th IEEE
International Conference on Semantic Computing (ICSC 2010), Pittsburgh,
PA, USA. IEEE, pages 184-191.

Klusch, M. & Kapahnke, P. (2010b). OWL-S Service Retrieval Test Collection version

4.0 (OWLS-TC) [Online]. Available:
http://projects.semwebcentral.org/projects/owls-tc/ [Accessed
22/2/2012].

Klusch, M. & Kapahnke, P. (2010c). SAWSDL Service Retrieval Test Collection
version 3.0 (SAWSDL-TC) [Online]. Available:
http://projects.semwebcentral.org/projects/sawsdI-tc/ [Accessed
22/2/2012].

Klusch, M., Khalid, M. A., Kapahnke, P., Fries, B. & Vasileski, M. (2010b). OWL-S
Service Retrieval Test Collection User Manual. DFKI.

Kopecky, J. (2012). Web Service Automation Supported by Lightweight Semantic
Annotations. Doctoral Dissertation, Semantic Technology Institute
Innsbruck.

Kopecky, J.,, Gomadam, K. & Vitvar, T. (2008) hRESTS: An HTML Microformat for
Describing RESTful Web Services. In: Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and
International Conference on Intelligent Agent Technology, December 9-12,
Sydney, Australia. IEEE, pages 619-625.

Kopecky, J., Pedrinaci, C. & Duke, A. (2011) RESTful Write-oriented APl for
Hyperdata in Custom RDF Knowledge Bases. In: Proceedings of the 7th
IEEE International Conference on Next Generation Web Services Practices
(NWeSP2011), October 19-21, Salamanca, Spain. IEEE, pages 199 - 204.

Kozierok, C. (2005). The TCP/IP-Guide: A Comprehensive, Illustrated Internet
Protocols Reference, No Starch Press.

Kreger, H. (2003). Fulfilling the Web Services Promise. Communications of the
ACM, 46(6):29-34.

Krummenacher, R., Norton, B. & Marte, A. (2010) Towards Linked Open Services
and Processes. In: Proceedings of the 3rd Future Internet Symposium
(FIS2010), September 20-22, Berlin, Germany. Lecture Notes in Computer
Science, Springer, volume 6369, pages 68-77.

Kiister, U., Konig-Ries, B., Stern, M. & Klein, M. (2007) DIANE: an Integrated
Approach to Automated Service Discovery, Matchmaking and Composition.
In: Proceedings of the 16th International World Wide Web Conference
(WWW2007), 8-12 May, Banff, Alberta, Canada. ACM, pages 1033-1042.

Lassila, O. & Swick, R. R. (1997). Resource Description Framework (RDF) Model and
Syntax. W3C Working Draft, World Wide Web Consortium (W3C) [Onlinel].
Available: http://www.w3.org/TR/WD-rdf-syntax-971002/ [Accessed
10/10/2012].

Lathem, J., Gomadam, K. & Sheth, A. P. (2007) SA-REST and (S)mashups: Adding
Semantics to RESTful Services. In: Proceedings of the First IEEE
International Conference on Semantic Computing (ICSC2007), September
17-19, Irvine, California. IEEE, pages 469-476.

162

http://www.ietf.org/rfc/rfc2821.txt
http://projects.semwebcentral.org/projects/owls-tc/
http://projects.semwebcentral.org/projects/sawsdl-tc/
http://www.w3.org/TR/WD-rdf-syntax-971002/

References

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McLlraith, S.,
Narayanan, S., Paulocci, M., Parsia, B., Payne, T. R,, Sirin, E., Srinivasan, N. &
Sycara, K. (2004). OWL-S: Semantic Markup for Web Services. W3C Member
Submission, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/Submission/2004/SUBM-OWL-S-20041122/ [Accessed
10/10/2012].

McGuinness, D. & Harmelen, F. v. (2004). OWL Web Ontology Language Overview.
W3C Recommendation, World Wide Web Consortium (W3C) [Onlinel.
Available: http://www.w3.0rg/TR/2004/REC-owl-features-20040210/
[Accessed 12/2/2013].

Mcllraith, S. A, Son, T. C. & Zeng, H. L. (2001). Semantic Web services. IEEE
Intelligent Systems & Their Applications, 16(2):46-53.

Moreau, J.-J., Chinnici, R, Ryman, A. & Weerawarana, S. (2007). Web Services
Description Language (WSDL) Version 2.0 Part 1: Core language. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rg/TR/2007/REC-wsdl20-20070626/ [Accessed
14/2/2012].

Nadalin, A., Kaler, C.,, Monzillo, R. & Hallam-Baker, P. (eds.) (2006). Web Services
Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS Standard

[Onlinel. Available: https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss [Accessed
10/12/2013].

Nally, M., Speicher, S., Arwe, J. & Hors, A. L. (2012a). Linked Data Basic Profile 1.0.
W3C Member Submission, World Wide Web Consortium (W3C) [Onlinel.
Available: http://www.w3.org/Submission/2012/SUBM-Idbp-20120326/
[Accessed 12/2/2013].

Nally, M., Speicher, S., Arwe, J. & Hors, A. L. (2012b). Linked Data Basic Profile 1.0 -
Use Cases and Requirements. W3C Member Submission, World Wide Web

Consortium (W3C) [Online]. Available:
http://www.w3.0org/Submission/2012/SUBM-Idbpucr-20120326/ [Accessed
12/2/2013].

Natis, Y. V. (2003). Service-Oriented Architecture Scenario. AV-19-6751, Gartner
Research [Onlinel. Available:
http://www.gartner.com/resources/114300/114358/114358.pdf [Accessed
9/10/2012].

Nelson, T. H. (1980) Replacing the Printed Word: A Complete Literary System. In:
Proceedings of IFIP Congress 80, October 14-17, North Holland. 1013-1023.

Nottingham, M. (2010). RFC 5988: Web Linking. IETF [Online]. Available:
http://tools.ietf.org/html/rfc5988 [Accessed 22/6/2012].

Nottingham, M. & Sayre, R. (2005). The Atom Syndication Format. RFC 4287.

O'reilly, T. (2005). What is Web 2.0: Design Patterns and Business Models for the
Next Generation of Software [Online]. Available:
http://oreilly.com/web2/archive/what-is-web-20.html [Accessed
21/12/2011].

Object Management Group (1995). The Common Object Request Broker:
Architecture and Specification.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T,
Glover, K., Pocock, M., Wipat, A. & Li, P. (2004). Taverna: a Tool for the
Composition and Enactment of Bioinformatics Workflows. Bioinformatics,
20(17):3045-3054.

Paolucci, M., Kawamura, T., Payne, T. R. & Sycara, K. P. (2002) Semantic Matching of
Web Services Capabilities. In: Proceedings of the 1st International
Semantic Web Conference (ISWC 2002), Chia, Sardinia, Italy. Lecture Notes
in Computer Science, Springer, volume 2342, pages 333-347.

Pautasso, C. (2009). RESTful Web Service Composition with BPEL for REST. Data &
Knowledge Engineering, 68(9):851-866.

Pautasso, C., Zimmermann, O. & Leymann, F. (2008) RESTful Web Services vs. "Big"
Web Services: Making the Right Architectural Decision. In: Proceedings of

163

http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.w3.org/Submission/2012/SUBM-ldbp-20120326/
http://www.w3.org/Submission/2012/SUBM-ldbpucr-20120326/
http://www.gartner.com/resources/114300/114358/114358.pdf
http://tools.ietf.org/html/rfc5988
http://oreilly.com/web2/archive/what-is-web-20.html

References

WWW 2008 the 17th International Conference on World Wide Web, April 21-
25, Beijing, China. ACM, pages 805-814.

Pearlman, L., Kesselman, C, Gullapalli, S., Spencer, B. F., Futrelle, J., Ricker, K,
Foster, I, Hubbard, P. & Severance, C. (2004) Distributed Hybrid Earthquake
Engineering Experiments: Experiences with a Ground-shaking Grid
Application. In: Proceedings of the 13th IEEE International Symposium on
High Performance Distributed Computing, June 4-6, Honolulu, Hawaii, USA.
IEEE, pages 14-23.

Pedrinaci, C,, Domingue, J. & Krummenacher, R. (2010a) Services and the Web of
Data: An Unexploited Symbiosis. In: Proceedings of the AAAl Spring
Symposium 2010 Workshop Linked Data Meets Artificial Intelligence, March
22-24, Palo Alto, California, USA. pages 99-100.

Pedrinaci, C,, Liu, D., Maleshkova,, M., L., D., Kopecky, J. & Domingue, J. (2010b)
iServe: a Linked Services Publishing Platform. In: Proceedings of the
ESWC2010 Workshop on Ontology Repositories and Editors for the
Semantic Web, May 30th - June 2nd, Heraklion, Greece. CEUR Workshop
Proceedings, CEUR-WS.org, volume 596.

Petrie, C.,, Margaria, T., Lausen, H. & Zaremba, M. (2009). Semantic Web Services
Challenge: Results from the First Year, Springer.

Preist, C,, Esplugas-Cuadrado, J., Battle, S. A, Grimm, S. & Williams, S. K. (2005)
Automated Business-to-Business Integration of a Logistics Supply Chain
Using Semantic Web Services Technology. In: Proceedings of the 4th
International Semantic Web Conference (ISWC 2005), Galway, Ireland.
Lecture Notes in Computer Science, Springer, volume 3729, pages 987-
1001.

Prescod, P. (2002) Roots of the REST/SOAP Debate. In: Proceeding of the Extreme
Markup Languages®, August 4-9, Montréal, Quebec, Canada.

Prud’Hommeaux, E. & Seaborne, A. (2008). SPARQL Query Language for RDF. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0org/TR/2008/REC-rdf-spargl-query-20080115/ [Accessed
12/2/2012].

Raggett, D., Le Hors, A. & Jacobs, I. (1999). HTML 4.01 Specification. W3C
Recommendation, World Wide Web Consortium (W3C) [Online]. [Accessed
10/1/2012].

Reisig, W. (1985). Petri nets: An Introduction, New York, Springer-Verlag.

Ren, Y., Pan, J. Z. & Zhao, Y. (2010). Closed World Reasoning for OWL2 with NBox.
Tsinghua Science & Technology, 15(6):692-701.

Richardson, L. (2008). Act Three: The Maturity Heuristic. Slides for QCon 2008
Talk [Online]. Available: http://www.crummy.com/writing/speaking/2008-
QCon/act3.html [Accessed 13/7/2013].

Richardson, L. & Ruby, S. (2007). RESTful Web Services, O'Reilly Media.

Riemer, J., Martin-Recuerda, F., Ding, Y., Murth, M., Sapkota, B., Krummenacher, R,
Shafiq, O., Fensel, D. & Kiihn, E. (2006) Triple Space Computing: Adding
Semantics to Space-Based Computing. In: Proceedings of the 1st Asian
Semantic Web Conference (ASWC 2006), September 3-7, Beijing, China.
Lecture Notes in Computer Science, Springer, volume 4185, pages 300-306.

Sauermann, L., Cyganiak, R. & Volkel, M. (2008). Cool URIs for the Semantic Web.
W3C Interest Group Note, World Wide Web Consortium (W3C) [Onlinel.
Available: http://www.w3.0rg/TR/2008/NOTE-cooluris-20081203/
[Accessed 11/2/2012].

Sbodio, M. & Moulin, C. (2007) SPARQL as an Expression Language for OWL-S. In:
Proceedings of ESWC2007 Workshop on OWL-S: Experiences and Future
Developments, June 3-7th, Innsbruck, Austria.

Shodio, M. L., Martin, D. & Moulin, C. (2010). Discovering Semantic Web Services
Using SPARQL and Intelligent Agents. Journal of Web Semantics, 8(4):310-

328.
Schenk, S. & Gearon, P. (2009). SPARQL 1.1 Update. W3C Working Draft, World
Wide Web Consortium (W3C) [Online]. Available:

164

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.crummy.com/writing/speaking/2008-QCon/act3.html
http://www.crummy.com/writing/speaking/2008-QCon/act3.html
http://www.w3.org/TR/2008/NOTE-cooluris-20081203/

References

http://www.w3.0rg/TR/2009/WD-sparqgl11-update-20091022/ [Accessed
14/2/2012].

Seylan, I, Franconi, E. & Bruijn, J. D. (2009) Effective Query Rewriting with
Ontologies over DBoxes. In: Proceedings of the 21st International Jjoint
Conference on Artificial Intelligence (IJCAI2009), July 11-17, Pasadena, CA,
USA. pages 923-925.

Shaw, M. (2002). What Makes Good Research in Software Engineering?
International Journal on Software Tools for Technology Transfer, 4(1):1-7.

Speicher, S., Arwe, J. & Malhotra, A. (2014). Linked Data Platform 1.0. W3C Last Call
Working Draft, World Wide Web Consortium (W3C) [Online]. Available:
http://www.w3.0rqg/TR/2014/WD-Idp-20140916/ [Accessed 17/9/2014].

Speiser, S. & Harth, A. (2011) Integrating Linked Data and Services with Linked
Data Services. In: Proceedings of the 8th Extended Semantic Web
Conference (ESWC 2011), May 29-June 2, Heraklion, Crete, Greece. Lecture
Notes in Computer Science, Springer, volume 6643, pages 170-184.

Stadtmiiller, S. & Norton, B. (2013). Scalable Discovery of Linked APls. International
Journal of Metadata, Semantics and Ontologies, 8(2):95-105.

Tabatabaei, S. G. H., Kadir, W. M. N. W. & lbrahim, S. (2009). Automatic Discovery
and Composition of Semantic Web Services Using Al Planning and WSMO.
International Journal of Web Services Practices 4(1):1-10.

Tao, J., Sirin, E., Bao, J. & McGuinness, D. L. (2010) Integrity Constraints in OWL. In:
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI
2010), July 11-15, Atlanta, Georgia, USA. AAAI Press.

Taylor, K. R,, Essex, J. W,, Frey, J. G., Mills, H. R,, Hughes, G. & Zaluska, E. J. (2006).
The Semantic Grid and chemistry: Experiences with CombeChem. Journal
of Web Semantics, 4(2):84-101.

Tummarello, G., Delbru, R. & Oren, E. (2007) Sindice.com: Weaving the Open Linked
Data. In: Proceedings of the 6th International Semantic Web Conference
(ISWC 2007), November 11-15, Busan, Korea. Lecture Notes in Computer
Science, Springer, volume 4825, pages 552-565.

Vandervalk, B., McCarthy, L. & Wilkinson, M. (2009) SHARE: A Semantic Web Query
Engine for Bioinformatics. In: Proceedings of the 4th Asian Semantic Web
Conference (ASWC 2009), December 6-9, Shanghai, China. Lecture Notes in
Computer Science, Springer, volume 5926, pages 367-369.

Verborgh, R., Steiner, T., Deursen, D. V., Roo, J. D., Walle, R. V. d. & Vallés, J. G.
(2013). Capturing the Functionality of Web services with Functional
Descriptions. Multimedia Tools and Applications, 64(2):365-387.

Verborgh, R, Steiner, T., Van Deursen, D., R,, V. d. W. & Gabarré Vallés, J. (2011)
Efficient Runtime Service Discovery and Consumption with Hyperlinked
RESTdesc. In: Proceedings of the 7th IEEE International Conference on Next
Generation Web Services Practices (NWeSP201 1), October 19-21, Salamanca,
Spain. IEEE, pages 373 - 379.

Vinoski, S. (2008a). RESTful Web Services Development Checklist. Internet
Computing, IEEE, 12(6):96-95.

Vinoski, S. (2008b). Serendipitous Reuse. Internet Computing, IEEE, 12(1):84-87.

Vitvar, T., Kopecky, J., Zaremba, M. & Fensel, D. (2007) WSMO-lite: Lightweight
Semantic Descriptions for Services on the Web. In: Proceeding of the 5th
IEEE European Conference on Web Services (ECOWS 2007), November 26-
28, Halle (Saale), Germany. IEEE, pages 77-86.

Webber, J., Parastatidis, S. & Robinson, I. (2010). REST in Practice, O'Reilly Media.

Wilkinson, M. D,, Vandervalk, B. & McCarthy, L. (2009) SADI Semantic Web Services,
Cause You Can't Always GET What You Want! In: Proceedings of the Asia-
Pacific Services Computing Conference (APSCC 2009), December 7-11,
Singapore. IEEE, pages 113-18.

Zhao, H. & Doshi, P. (2009) Towards Automated RESTful Web Service Composition.
In: Proceedings of the 2009 IEEE International Conference on Web Services
(ICWS 2009), July 6-10, Los Angeles, CA, USA. 1586928: IEEE, pages 189-196.

165

http://www.w3.org/TR/2009/WD-sparql11-update-20091022/
http://www.w3.org/TR/2014/WD-ldp-20140916/

References

Zhou, B. & Yao, Y. (2010). Evaluating information retrieval system performance
based on user preference. Journal of Intelligent Information Systems (JIIS),
34(3):227-248.

Zimmermann, O., Doubrovski, V., Grundler, J. & Hogg, K. (2005) Service-Oriented
Architecture and Business Process Choreography in an Order Management
Scenario: Rationale, Concepts, Lessons Learned. In: Proceedings of Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA
2005) Companion to the 20th Annual ACM SIGPLAN Conference, October
16-20, San Diego, CA, USA. 1094965: ACM, pages 301-312.

166

Appendices

Appendices

167

Appendix A

Appendix A: Research Strategies in SWS Approaches

169

Appendix A

Table 25 Analysis of research strategies in SWS

Publication Description Result Validation
OWL-S Presents the service ontology for [Specific Solution] [Examples]
(Martin et marking up services semantically to | ¢ OWL-S ontology [Persuasion]
al., 2004) provide automated Web service
discovery, execution and
composition.
WSMO Presents the WSMO service | [Specific Solution] [Examples]
(Bruijn et al., | ontology, part of the Web Service | ¢ WSMO ontology [Persuasion]
2005a) Modelling Framework (WSMF).
SAWSDL Defines SASWDL, a mechanism for | [Specific Solution] [Examples]
(Farrell and extending WSDL documents for | e SAWSDL Semantic [Persuasion]
Lausen, semantic annotation. Annotation Extension
2007) Mechanism
SWS Presents a survey of matchmakers | [Specific Solution: Result | [Analysis: Experiment with
Coordination | and composition planners for SWS | of an evaluation] statistically significant results]
(Klusch, description approaches (mainly | ¢ Matchmaking or o The efficiency of a
2008a) OWL-S, WSMO and SAWSDL). composition matchmaker or planner is
Experiment typically measured on a test
collection of Web service
descriptions, and can be
compared to the
performance of similar
matchmakers or planners.
These indirectly provide
evidence for the
discoverability and
composability of the
approaches.
SWS Devised a conceptual model of SWS | [Specific Solution: Result | [Persuasion]
Comparison | dimensions and used it to compare | of specific analysis] e Discussion of approaches
(Cabral et OWL-S, WSMO and other | ¢ Analysis of the according to the proposed
al., 2004) approaches. approaches according model
to the model
WSDL-S Defines WSDL-S, a mechanism for | [Specific Solution] [Examples]
(Akkiraju et | extending WSDL documents for | ¢ WSDL-S Semantic [Persuasion]
al., 2005) semantic annotation. Annotation Extension
Mechanism
SWSF (Battle | Defines the Semantic Web Service | [Specific Solution] [Examples]
etal., 2005) | Framework (SWSF,) which includes | ¢ SWSO Ontology [Persuasion]
Semantic Web Service Ontology | ¢ SWSL
(SWSO) and Semantic Web Service | ¢ SWSF
Language (SWSL).
DSD (Klein | Introduces DIANE Elements (DE), a | [Specific Solution] [Examples]
etal., 2005) | language for defining ontologies, | ¢ DIANE Elements (DE) | [Persuasion]
and DIANE Service Description | ¢ DSD
(DSD), and a process for creating | ¢ Service Description
service descriptions. Process
SA-REST Defines SA-REST, a mechanism for [Specific Solution] [Examples]
(Lathem et | semantic annotation of RESTful Web | e SA-REST annotation [Persuasion]
al., 2007) Services. mechanism
hRESTS Introduces hRESTS, a microformat [Specific Solution] [Examples]
(Kopecky et | for semantic annotation of RESTful e hRESTS microformat | [Persuasion]
al., 2008) Web services.
MicroWSMO | Introduces MicrowSMO an [Specific Solution] [Examples]
(Kopecky et | extension of hRESTS the for e MicroWSMO [Persuasion]
al., 2008) semantic annotation of RESTful Web microformat
services.

170

Appendix A

Publication

Description

Result

Validation

WSMO-Lite
(Vitvar et al.,
2007)

Introduces WSMO-Lite, a lightweight
service ontology.

[Specific Solution]
e WSMO-Lite Ontology

[Examples]
[Persuasion]

Kopecky
(2012)

Introduces WSMO-Lite, MircoWSMO
and hRESTS

[Specific Solution]

e WSMO-Lite Ontology

e hRESTS Mircroformat

o MicroWSMO
microformat

e Matchmaking
Experiment

[Examples]

[Persuasion]

[Analysis: Experiment with

statistically significant results]

e To demonstrate the viability
of WSMO-Lite, in several
SWS automation algorithms
for discovery, ranking and
composition have been
adapted to WSMO-Lite and
their performance
compared to their original
versions for SAWSDL and
OWL-S.

RESTfulGrou

Introduces RESTfulGrounding

[Specific Solution]

[Examples]

nding (Filho | ontology to map WADL to OWL-S. e RESTfulGrounding [Persuasion]

and Ferreira, Ontology.

2009)

RelLL Introduces Rell, a vocabulary for | [Specific Solution] [Examples]

(Alarcon and | describing Web pages and Web APIs. | e ReLL vocabulary [Persuasion]

Wilde, 2010) e Proof of concept

implementation of a use
case

SBWS (Battle
and Benson,
2008)

Introduces SBWS, a method for
integrating existing Web services by
annotating WSDL and WADL
documents so that these services
can be used as if they were SPARQL
endpoints.

[Specific Solution]

e SBWS annotation
method and
implementation

[Examples]

[Persuasion]

e Implementation of the
wrappers for Amazon
RESTful Web services and
using the descriptions for
resolving SPARQL queries.

SPARQL
descriptions
(Sbodio et
al., 2010)

Introduces a method for
representing preconditions and
effects of Web services as graph
patterns, and a method for their
discovery using SPARQL queries

[Specific Solution]

e A description method
using graph patterns

e Adiscovery method

e Matchmaking
experiment

[Examples]

[Persuasion]

[Analysis: Experiment with

statistically significant results]

e To demonstrate the
efficiency of the discovery
(matchmaking) method
and descriptions a standard
OWL-S test collection was
transformed to SPAQL
descriptions and the
performance compared to
the original version for
OWL-S and associated
matchmaker.

LIDS (Speiser
and Harth,
2011)

Introduces LIDS, an approach for
integrating data services with Linked
Data

[Specific Solution]

e LIDS approach

e service description
formalism

e access mechanism for
LIDS interfaces

e LIDS wrapper

[Examples]

[Persuasion]

e Implementation of LIDS
wrappers for GeoNames
and Twitter, and used those
to interlink with the Billion
Triple Challenge dataset
(BTC), and measured the
time and added links as a
result.

171

Appendix A

and Benson,
2008)

REST-based websites the

Semantic Web.

into

implementation
method

Publication Description Result Validation

LOS Introduces Linked Open Services | [Specific Solution] [Examples]

(Krummenac | (LOS) as a method for describing | ¢ LOS method. [Persuasion]

her et al, | both RESTful and non-RESTful e A proof of concept

2010) Services as consumers and implementation
producers of RDF, and using SPARQL demonstrated with a use
constructs for composing services case.
exposing LOS descriptions.

Semantic Introduces Semantic REST, an | [Specific Solution] [Examples]

REST (Battle | implementation method to integrate | ¢ Semantic REST [Persuasion]

e Implementation of a
RESTful interface for a
SPARQL endpoint for
SemWebCentral.org mock
semantic dataset.

Zhao and
Doshi (2009)

Introduces a lightweight ontology
for describing RESTful services as
either sets of resources, instances or
transitional services. It also
introduces a conceptual model for
representing the composition of

[Specific Solution]

e Lightweight ontology

e Sijtuation Calculus
based STS

Examples]
[Persuasion]

etal., 2006)

(TSC) as a method for providing
Semantic Web services.

e Architecture of TSC
e TSC API design

services using situation calculus
based state transition system.
Hernandez Introduces a formal model for | [Specific Solution] [Examples]
and Garcia | RESTful Web services using a | e A formal modelfor [Persuasion]
(2010) combination of process calculus and RESTful Semantic e Implementation of a
triple space computing. Web services RESTful interface for a
SPARQL endpoint for
SemWebCentral.org mock
semantic dataset.
TSC (Riemer | Introduces Triple Space Computing | [Specific Solution] [Persuasion]

e Architecture and
functionality specification

for bioinformatics by
imposing constraints
on how I/0O are
defined in domain
ontolgoy

e A method for
discovering services

e A method for
composing them
using SPARQL queries

RESTdesc Introduces RESTdesc an approach to | [Specific Solution] [Examples]
(Verborgh et | describe Web APIs as N3 rules, in | ¢ RESTdesc description [Persuasion]
al., 2011) addition to a method for discovering approach e Online demonstrator
and composing them. e Method for discovery
and composition
iServe Introduces the iServe architecture | [Specific Solution] [Examples]
(Pedrinaci et | and model that enables publishing | ¢ iServe Architecture [Persuasion]
al., 2010b) service descriptions as Linked Data | e Publishing platform, e Online demonstrator
and supports annotating services | ¢ annotation tools
with a Minimal Service Model | ¢ MSM Service
(MSM). description
vocabulary
SADI Introduces SADI, a framework to | [Specific Solution] [Examples]
(Wilkinson et | facilitate automatic integration of | ¢ A method for [Persuasion]
al., 2009) bioinformatics data and services. conceptualising SWS | e Code available online

e Online demonstrator

e Implementation of two use
cases, one in SHARE, and
the other as a Taverna plug-
in

172

Appendix A

Publication Description Result Validation

HyperData Description mechanism for RDF APIs | [Specific Solution] [Examples]

(Kopecky et |and the integration of those | e A method forthe data | [Persuasion]

al., 2011) descriptions as triples stored with to describe how it can | @ proof-of-concept triple-
the data, so that RDF data self- be updated store wrapper
describes how it is updated. e Avocabulary to demonstrated in a use case

describe the
resources as graphs
and the relationships
between them

Hypermedia | Vocabulary for making RDF a | [Specific Solution] [Persuasion]

RDF hypermedia type that not only | ¢ Avocabulary for e Argument

(Kjernsmo, describes data but what actions are describing what

2012) applicable to it. actions are applicable

to a certain RDF
resource

RDF-REST Design of an RDF-REST approach to | [Specific Solution] [Examples]

(Champin, bridge the gap between RESTful | ¢ RDF-REST [Persuasion]

2013) Web services and Linked Data, by Architecture e |s part of a real application,
building conventional ~ RESTful | e Implementation of kernel for Trace-Based
services on top of Linked Data. RDF-REST Systems, kTBS

SSWAP Introduces the design of SSWAP | [Specific Solution] [Examples]

(Gessler et | Protocol Architecture and | ¢ SSWAP Protocol [Persuasion]

al., 2009) implementation for creating | ¢ SSWAP Architecture e Code online
describing publishing and discovery | ¢« SSWAP e Pipeline discovery platform
Web services to design RESTful Implementation o Online directory of services
Semantic Web services by describing where more services can
a mapping between its inputs and published
outputs, using an RDF graph
template.

SWS The aim of the challenge is to | [Specific Solution] [Evaluation]

Challenge explore the trade-offs among | e Scenarios e Qualitative evaluation of

(Petrie et al., | existing Semantic Web service | e Evaluation Framework how well each approach

2009) approaches. achieves the scenarios

S3 Contest

S3 Contest on Semantic Service
Selection, the reference contest for

[Specific Solution]
e Test Collections

[Analysis:

Experiment with

statistically significant results]

evaluating semantic service | ¢ Evaluation Framework
matchmakers. e Matchmaking
Experiment
(Bachlechner | Study involved surveying and | [Specific solution: answer | [Evaluation]
and Fink, | analysing opinions from both | or judgement] e Expert interviews and
2008) practitioners and researchers to | ¢ Expert opinionson questionnaires

evaluate the potential of Semantic
Web services as integration
architectures.

the potential of
Semantic Web
services as integration
architectures.

173

Appendix B

Appendix B: Web Service Scenarios and RO Models

175

Appendix B

Mashups

M1: Yahoo Pipes (Mashups)

The scenario is an example of creating a mashup using Yahoo Pipes. Yahoo Pipes
is an interactive Web application which enables the creation and execution of
mashups. It offers a workspace in which a user can add widgets such as data
sources, filters, and functions to refine and merge the data.

A user has built a stock quote watch mashup using Yahoo Pipes (Donnelly, 2010),
this displays the last quote and chart for the stocks. In this example, he uses the
widgets provided to retrieve the original stock data from a .csv file stored at the
Yahoo Finance downloads. He then uses a filter widget to filter the stock file for
certain stock quotes. To loop through the obtained data he uses a loop widget

that displays the results as a chart.

Infrastructural and Functional Requirements

1. Proprietary Workflows - The workflows description is not in an open format; it
is specific to the platform executing it.

2. Workflows are controlled by and executed on one machine - There is no need
for a participation of multiple machines or a their coordination.

3. Server/Service provider ownership of data - The data accessed by the client
belongs to the service provider.

4. Open Accessibility to the Data - The data is accessible; there are no security
restrictions.

5. Creation of the workflows is done by the end user with a GUI - Mashup
Creator’s level of expertise is minimal; the filtering and programming is through
GUI, no coding is required from the end user, EU.

Non-functional Requirements

Tolerance of failure - In this scenario, and many other mashup scenarios,
mashups are used by end users for providing specialised data for non-critical
tasks, so the failure of mashups does not have a large impact on other tasks.
Scenario Breakdown

The generic scenario of building mashups using Yahoo Pipes (Donnelly, 2010) is
broken down into the following steps:

(1.) The client creates a mashup;

(2.) It creates widgets that read inputs from other widgets or external resources;
(3.) The widget produces the results;

(4.) The client reads the results.

176

Appendix B

Resource-Oriented Model

1 1.1: 10
L [Mashup |~ [M1 Mashug
I

= 5B

=1) 200401 - - .

I n2 c* | Widget _.,'”\" ' WY Widaet | 2_...':-'}1 r|E'1:EK[EIIT|E|| Hasoun::a|
I
L]
']
W

3
Results +
l I
4y -

Figure 26 RO Model of M1

-
0T W1, Widget

In this scenario, step 2, (creating widgets) is iterative. We used the *[j:= 1..n]
UML convention to indicate this. The Has links show the structural relationships

between the mashup, its widgets, and the results.

M2: The MashMaker Scenario, Desktop Mashups

(Ennals and Garofalakis, 2007) describe MashMaker, an interactive browser plug-
in for creating mashups from Intel. The scenario provided explains how a user,
who is planning to rent a house, uses MashMaker.

A user is interested in houses that have the best restaurants around. The user
visits a housing website and adds it to MashMaker by clicking an icon in the
browser. The houses are displayed in MashMaker as a tree where each house is a
node, when a node is clicked, MashMaker suggests appropriate queries like
“things nearby”. The user searches for food nearby, then applies a filter widget to
include only those within 0.5 a mile and having a rating of 3 or more. He adds a
count widget to count how many restaurants match these criteria, and then copies
this widget to the other houses, saves it, and publishes it.

The interaction occurs between the different Web servers where the data resides
and MashMaker on the client. The actual processing and aggregation of the data
happens on the client. However, in case of overlaying information on maps,
Google Maps is utilised and some of the processing happens on the Google Maps
Server. Then the results are transferred to the client.

Infrastructural and Functional Requirements

Similar to the requirements discussed in M1

Non-functional Requirements

Similar to the requirements discussed in M1

Technical Notes

177

Appendix B

1. Client/Intermediary Data processing, filtering and aggregation
The processing of the data is performed on the client or partially, on an
intermediary server like Google Maps.

2. Data aggregating compositions
The compositions involved in creating mashups are based on joining data
providing services, where the composition depends on matching elements or
attributes of the data.

3. Standards of data resources
The formats of the data sources vary, from HTML (Web pages), RSS, JSON to
RDF.

4. Scalability issue
Although the mashup is executed on the client there is a point that could
affect the scalability of the architecture: this is the MashMaker server that
hosts a database of extractors (Ennals et al., 2007). Extractors describe how to
extract structured information from HTML pages. The creation and
maintenance of extractors is done in a wiki collaborative manner. The
scalability issue is minor if the extraction is executed on the client, which
seems to be the case, although is not explicitly stated.

5. Architecture
1. Multiple Servers for Data Sources
2. An intermediary server for maintaining extractors and mashup reuse
3. An application on the client to create mashups

Scenario Breakdown

(1.) The user creates a mashup

(2.) The user creates two Web resources that link two websites to mashup
(3.) The user updates the mashup to mash the two Web resources

(4.) The user runs the mashup

(5.) The mashup returns the results

Resource-Oriented Model

178

Appendix B

_tec Mashup |

l

< sawnsuo)

i
3.u N §
4.u M1: Mashup §
Vv
3.1r ;ﬁ
2.¢C o
\4

Results
W1: Web Resource W2: Web Resource

e
Web Resource
N N
[s
v

'TTY

5r
—— » | R1:Results

Figure 27 RO Model of M2

M3: Displaying the time and location of a Website’s visitors using a
layered mashup architecture

(Biornstad and Pautasso, 2009) Proposed a layered architecture for creating
mashups from streaming data. Their approach is similar to Yahoo Pipes, where
the mashup architecture executes the mashup and the results are sent to the
client. They provide an example of a mashup that combines a Web server’s log file
with a geolocation service.

In this scenario a user wants to display the geographic locations of a website’s
visitors on a map. This map is constantly updated. He or she does that by using
the system built on this architecture to access the Web server’s log, through a
secure shell socket (SSH). This provides real-time updates through a streaming
push mechanism, in contrast to a request/response mechanism using HTTP, which
increases the latency and network traffic. The user then uses the system to create
components to extract the IPs from the log, resolving the DNS, looking up the
coordinates and overlaying them on a map, which is the sent to the client.

The requirements are similar to the ones in scenario M2. However, there are some
additional ones:

Infrastructural and Functional Requirements

1. Accepts Streaming Data pushed by servers
Unlike other approaches it accepts data pushed to the mashup engine over
open ports;

Non-functional Requirements

1. Secure Access
In this scenario, access is enabled to access secure files on remote Web

servers using SSH;

179

Appendix B

Technical Notes

1. Standards of data resources
Web logs, RSS, JSON, accesses data from Web services using SOAP.

Scenario Breakdown

(1.) The application reads a Web log.

(2.) A local copy of the Web log is created.

(3.) The client reads the local copy. (The search is discussed in the modelling
issues.)

(4.) IPs are extracted from the Web log.

(5.) The IPs are read to be sent to the DNS.

(6.) Resolve the IPs at the DNS.

(7.) Create a resource representing the DNS coordinates
(8.) Getting the Coordinates from the DNS.

(9.) Creates a Map.

(10.) Overlay the Map with the coordinates.

Resource-Oriented Model

Z'C—b Web Log Local

L
Nl

e Wi: Web Log Copy
—

|

U=

|
E— DNE Coordinates P — 4

1

_— O: DNS Coordinates | 4
9c

. .
10.r

—_— M1 Map —

Figure 28 RO Model of M3

180

Appendix B

M4: Creating situational applications using the enterprise information
mashup fabric

In (Jhingran, 2006), the author discusses the enterprise’s need for Situational
Applications. The author describes these as “applications that come together for
solving some immediate business problems”. The paper describes two scenarios
to illustrate where it would be useful.

M4A: In the first example a salesperson needs information on a client before
making a call on prospect. The information needed is how much was sold to the
customer during the last quarter, and did the customer have problems with sales.
M4B: A CFO that has a meeting with his CEO. The CFO wants to present a
summary of the financial picture. This summary needs to be assembled from
emails by finance personnel including presentations that contain embedded
spreadsheets about the financial picture.

Infrastructural and Functional Requirements

1. Information Assembly

In M4A there is no merging done on the data on information assembly.
Non-functional Requirements

1. Closed

The system is to be used inside an enterprise.

Technical Notes

1. Standards of data sources

The data depends on the applications that the enterprise uses; the more the
mashup engine understands the formats of enterprise data, the more useful it
would be.

Scenario Breakdown

(1.) Query the Customer info.
(2.) Reading the results of the query,

Resource-Oriented Model

C1: Customer Info ™|

1'C—p | Customer Query Results ’7

-

JR— |E‘.Q1: Customer Query Resul1s|
Figure 29 RO Model of M4

J0 SINSEY YEss =

181

Appendix B

Enterprise Services
E1: SSPD (City University) (Enterprise Services)

The scenarios chosen were two integration projects from City University (City
University, 2008). The first project was Single Sourcing of Programme Data (SSPD).
The university uses information about the study programmes in different
processes, like producing student handbooks, publishing programme information
on the website, producing prospectus and quality and approval processes for
development of new programmes. These processes are using the same
information but they were operating independently. This led to inconsistencies in
data and effort duplication.

SSPD is concerned with how programme information is created, updated and used
enabling the processes mentioned above to be facilitated and any inconsistencies
resolved. It enables academic and administrative staff to define and maintain
module and programme specifications and submit them for approval.

Infrastructural and functional requirements

1. Complete control over the service providers and service consumers - The
university systems are the service providers and the service consumers. There are
no external entities involved.

2. Actions are triggered as a result of service invocation, so it is not a read only
situation - The state of resources can be altered because of the service invocation.
3. The ability to deal with multiple systems and data formats - The services deal
with legacy systems that use different technologies and formats to represent the
data.

Scenario Breakdown

The SSPD scenario from City University (City University, 2008) can be decomposed
into the following steps:

(1.) Academic staff read the program info.

(2.) Creates a modification.

(3.) Can update it, when it is finished.

(4.) It is approved by the administrative staff.

(5.) The program info is updated.

(6.) It can be read by interested processes.

Resource-Oriented Model

182

Appendix B

Academic Stafl- 1.r P 1L
.‘—
Academic Staff 2 c > | FPragram Info Change | L
=

|

|F'EE1' Program "EEUQEEE| —

Academic Staff: 3. u
Adminigtrative Staff: 4: u

P
L

L J

Figure 30 RO Model of E1
With step (3.), an update can also change the status of the modification to indicate
it is ready to be submitted. Figure 30 shows how roles are modelled, with the

name of the role associated with the action on the messages.

E2: MLE (City University) (Enterprise Services)

The other integration project from City University is called the Managed Learning
Environment (MLE)

The University uses both the SITS:Vision student information management
system, and a Virtual Learning Environment (WebCT Vista). The transfer of
student information from SITS:Vision to WebCT Vista took place using a nightly
scripting process, this was slow and had errors. MLE aims to have the SITS system
trigger the updating process so that new information is added to WebCT directly.

Infrastructural and functional requirements

Similar to the requirements discussed in E1

Scenario Breakdown

The other integration project from City (MLE) is modelled below. The steps
involved in MLE are

(1.) The SITS system creates updates,

(2.) The SITS system notifies WebCT,

(3.) WebCT reads the changes and gets updated.

Resource-Oriented Model

1 Updates | 44— WeabhCT

Figure 31 RO Model of E2
WebCT and SITS are active resources, indicated by the heavy lines (a UML

convention). This means they initiate control activity.

183

Appendix B

E3: BT.com (Integrating BT's OSS)
BT used Web services to integrate core operational support systems (OSS) which
are legacy subsystems to enhance existing services or provide new ones. The

following scenario mentioned in (Calladine, 2004) illustrates this.

BT.com Online website

BT.com offers many customer services such as ‘View my bill’, ‘Friends and
Family’, etc. BT would like its customers to use the website because it reduces the
cost of operator-assisted services. BT.com needs access to core services from
multiple internal heterogonous sub-systems.

Infrastructural and Functional Requirements

Complete control over the service providers and service consumers.

BT systems are the service providers and the service consumers; there are no
external entities involved.

Actions are triggered as a result of service invocation, so it is not a read only
situation.

The state of resources can be altered because of the service invocation.

The ability to deal with multiple systems and data formats.

The services deal with legacy systems that use different technologies and formats
to represent the data.

Scenario Breakdown

The customer can read the bill, this will invoke reads to the subsystems.
The customer can update and read Family and Friends options, this will also
invoke update and read requests to the system.

Resource-Oriented Model

BT. com
r r
R SN
T LI
u " Family and Friands u
— —

Figure 32 RO Model of E3

E4: SCORe (Integrating BT's OSS)
Another BT project for the integration of operational support systems (OSS) is the
SCORe scenario (Calladine, 2004).

Project SCORe (Service Consolidation and Operational Revitalisation)

184

Appendix B

A problem that was identified with the call-centres is the complexity of retrieving
the data relative to a customer’s contact. SCORe aims at reducing costs and
increasing customer satisfaction. Because the data is held in multiple databases
and controlled by several systems, this means that several calls to these systems
were needed, using different technologies.

Infrastructural and Functional Requirements

Similar to the requirements discussed in E3.

Scenario Breakdown

The operator can retrieve customer information, which then retrieves it from the
subsystems.

Resource-Oriented Model

Score

— 5 | f _I'.-

¥

Figure 33 RO Model of E4

185

Appendix B

B2B

B1: Reverse Auctioning (B2B)

The scenario modelled here is a reverse auctioning scenario mentioned in (Decker
and Weske, 2007):

“A buyer (e.g., car manufacturer) uses reverse auctioning for procuring specially
designed components. In order to get help with selecting the right suppliers and
organizing and managing the auction, the buyer outsources these activities to an
auctioning service. The auctioning service advertises the auction, and beforehand,
different suppliers can request permission to participate in it. The suppliers
determine the shipper that would deliver the components to the buyer or provide
a list of shippers with different transport costs and quality levels, which the buyer
can choose from. Once the auction has started, the suppliers can bid for the
lowest price. At the end, the buyer selects the supplier according to the lowest bid.
After the auction is over, the auctioning service is paid.”

Infrastructural and functional requirements

1. Registration - The auctioning service deals with many participants/clients that
need to register before using the service. This implies the need for authentication
and authorisation

2. Support for different client roles - There are two different roles for users of this
service: buyers and suppliers.

3. The service provider and the service consumers are different entities

The service provider is the auctioning service, and the consumers are the buyer
and the suppliers.

Non-functional requirements

1. Security

This involves authentication and authorisation for service consumers and
encryption of payment transactions.

Scenario Breakdown

The reverse auctioning scenario mentioned in (Decker and Weske, 2007) can be
broken down into these steps:

(1.) The buyer creates an auction.

(2.) The buyer starts the auction.

(3.) The suppliers place their bids.

(4.) The buyer selects a bid.

(5.) The buyer pays for the service.

(6.) The buyer deletes the auction.

186

Appendix B

Resource-Oriented Model

< For
g Supplier: 3. c

= v 3410 1l —

= li Bid

a "
Buyer 2:u Supgplier: 3: ¢

- i B1: Bid
Buyer; G d Al Auclion ' ta

Buyer: 5: ¢ Payment |—

Buyer: 4, u E
b []
=

1 men

Figure 34 RO Model of B1

B2: Telecommunications Wholesaler

In (Zimmermann et al., 2005), the authors discuss an IBM project that aims to
enable a large telecommunications wholesaler to supply services to more than
150 customers. The wholesaler owns the physical network. The customers are
either telecommunications companies extending their own network
infrastructure, or companies that want to bundle telecommunication services with
their products. These customers will use the order management services of the
wholesaler to connect, configure, or disconnect telephone services for end users.
The order management application should offer two main processes:

1. Provide a new Public Switched Telephone Network (PSTN) telephone
service.

2. Move a PSTN telephone service to a new address.

A customer needs to follow the next steps, summarvised from (Zimmermann et al.,
2005), in order to perform the aforementioned processes:

1. Identify the service to be moved and its current location or site address.

2. lIdentify the new address for the service. This has to be the address as
recognized by the systems that record telecommunications plant and
service information. Hence search aids are required.

3. When a recognized address is identified, the next step is to search for a
transmission cable plant which exists at the target address and could be

reused for provisioning this service.

187

Appendix B

4.

Having identified a particular copper transmission path, this result has to

be recorded.

Determine the features of the service at the new address, which depends
on a complex set of factors. Some features may already exist from a
previous service at this address, some transferred from the old address,
and some may be requested.

Next, determine a phone number for the service at the new address and
reserve it. The old number maybe kept, if the network at the new address
permits, otherwise a list of numbers available must be supplied.

If a visit is required, then a time must be negotiated which suits both the
customer and the field staff to be assigned to the task.

The request to move and the reservation is confirmed, allowing the

commercial transaction to proceed.

Infrastructural and Functional Requirements

1. Negotiation

The service infrastructure should support conventions that enable the service

provider and service consumers to negotiate.

2. Workflow support

The processes needed involve the invocation of several services in a certain

order.

3. Conversational services

The service infrastructure should enable execution of services where the all

inputs cannot be known upfront.

Non-functional Requirements

4. Security

This involves authentication and authorisation for service consumers.

Scenario Breakdown

(1.) The client creates a service request.

(2.) Adds the new address of the service.

(3.) Determines the features of this service.

(4.) A number is created:

(4.A) A list of new numbers,
(4.B) The old number is kept.

(5.) Choose a number:

(5.A) The client chooses a number,
(5.B) The old number is read.

(6.) [Optional] A visit is arranged.

(7.) The client pays for the service.

188

Resource-Oriented Model

-I'c—p Saervice Request |——

|

S1: Senvice Request

2.c - Mew Address [

*
=]
—y

Al: New Address
e
e
o

Oid Number: Humber
-~
o =]
@

= BEY

< SEH

P1: Payment
Figure 35 RO Model of B2

B3: E-Procurement
(Brodie, 2000) presents an e-procurement general scenario

189

Appendix B

Appendix B

“E-procurement has a buy side, a sell side, and the connection of the two.
On the buy side, a customer such as a company purchasing agent needs
to access information on all relevant products, including product
specifications, comparisons with all competitive products, pricing
including discounts, delivery arrangements, and promises. The seller
must have all relevant information on the buyer, including company,
finance, credit, contact, logistics, preferences, and legal. On the sell side,
the vendor must provide all relevant, up-to-date catalogue information
from hundreds or thousands of suppliers, together with vreal-time
inventories and pricing. For a sale, transaction details must be irrefutably
committed on both sides, and reflected in the inventory and financial
systems.”

Infrastructural and Functional Requirements

The characteristics are identical to the ones in scenario B2.

Non-functional Requirements

Security
This involves authentication of buyers and sellers and the encryption of payment
transactions.

Scenario Breakdown

(1.) The buyer reads the catalogue.

(2.) The buyer places the order.

(3.) The seller provides the pricing for that order.
(4.) The buyer reads the pricing.

(5.) The buyer provides the payment.
Resource-Oriented Model

190

Appendix B

1r o |Product Catalog

g =

=4
4.1

—_— Pri: Pricing

|

P1: Paymant

Figure 36 RO Model of B3

B4: Supply Chain Management

A scenario mentioned in (Preist et al., 2005) illustrates an example of a supply
chain and the different entities and interactions involved:

“We consider a manufacturing company in Bristol, UK, which needs to distribute
its goods internationally. It does not maintain its own transportation capability,
but instead outsources this to other companies, which we refer to as Freight
Forwarders. These companies provide a service to the manufacturing company -
they transport crates on its behalf. However, the manufacturing company still
needs to manage relationships with these service providers. One role within this
company, which we refer to as the Logistics Coordinator, is responsible for doing
this. Specifically, it carries out the following tasks;

1. Commissioning new service providers, and agreeing the nature of the service
they will provide (e.g. locating a new freight forwarder in Poland, and
agreeing that it will regularly transport crates from Gdansk to Warsaw).

2. Communicating with service providers to initiate, monitor and control
shipments (e.g. informing the Polish freight forwarder that a crate is about

to arrive at Gdansk; receiving a message from them that it has been

191

Appendix B

delivered in Warsaw, and they want payment). This is done using one of the
messaging standards, EDIFACT.

3. Coordinating the activity of service providers to ensure that they link
seamlessly to provide an end-to-end service (e.g. making sure the shipping
company plans to deliver the crate to Gdansk when the Polish transport
company is expecting it; informing the Polish company when the shipping
company is about to drop it off).

4. Communicating with other roles in the company to coordinate logistics with
other corporate functions (e.g. sales, to know what to dispatch; financial, to
ensure payment of freight forwarders).

In our scenario, we consider a specific logistics supply chain from Bristol, UK, to
Warsaw, Poland. It consists of three freight forwarders. The first is a trucking
company, responsible for transporting crates from the manufacturing plant in
Bristol to the port of Portsmouth, UK. The second is a shipping company,
responsible for shipping crates from Portsmouth to the Polish port of Gdansk. The
third is another trucking company, which transports crates to the distribution
warehouse in Warsaw. We assume that the Logistics Provider communicates with
the Freight Forwarders using the EDIFACT standard, and is already successfully
using this logistics chain.”

Infrastructural and Functional Requirements

The requirements are identical to scenarios B2 and B3. However, there are others:
1. Maediating between different standards
In this example, EDIFACT and RosettaNet, and this involves both the mediation
of data and the mediation of protocols used.
2. Discovery of services
In this example, EDIFACT and RosettaNet, and this involves both the mediation
of data and the mediation of protocols used.

Non-functional Requirements

Similar to B1’s requirements

Scenario Breakdown

(1.) Logistics coordinator creates a supply chain.

(2.) Read the offered services from the shipping company.

(3.) Logistics coordinator creates a service request.

(4.) The shipping company creates an offer.

(5.) Logistics coordinator agrees to that offer.

(6.) The shipping company starts a shipment.

(7.) Logistics coordinator updates the supply chain with info from the agreement
(8.) Logistics coordinator updates the shipping monitor with info from the
shipment.

(9.) The shipping monitor monitors the shipment.

192

Appendix B

Resource-Oriented Model

—
2 l

51: Service Reguest
-
[+]

'4:—.. S01: Service Offer
H

1c!
—!—P Supply Chain
1
i
| =]
i -
T.uj

—r » |SP1: Supply Chain

8c

R] e

|

SA1: Service Agreament

Shipging Monitor

> SH1: Shipment
Shipping Company

.

Figure 37 RO Model of B4

Cloud Computing

C1: NYT TimesMachine

The cloud computing scenario we chose is the New York Times project called
TimesMachine, which is discussed in (Klems et al., 2008). It aims to provide
access to issues dating back to 1851, adding up to 11 million articles.

The technical team wanted to generate the PDF files from TIFF images. The
generation was done based on request. However, this solution would not work for
high traffic. The team decided to generate all the PDF files and serve them on
request. The size of the TIFF files was 4 Terabytes. So they used Amazon's Elastic
Compute Cloud (EC2) and Simple Storage Service (53). The TIFF files were
uploaded to S3 and they started a Hadoop cluster of 100 customized EC2 Amazon
Machine Images. They transferred the conversion application. That resulted in the
conversion to PDFs and storing the results to S3 taking only 36 hours.

Infrastructural and functional requirements

193

Appendix B

1. Configuration of Virtual Machines - In this scenario, the Amazon Machine
Images (AMI) were configured to form a Hadoop cluster. This can be done through
a Web-based control panel or through Web services. EC2 offers a SOAP interface
and a query interface.

2. Transferring large amounts of data to and from the servers - This implies the
need for reliable, efficient and secure data transfer. This is explained discussed in
the following 3 points.

3. The data is owned and manipulated by the client - In contrast to mashups
where the client requests the data, here clients request resources to manipulate
their data.

4. The client transfers the job/application to the servers - In this scenario the
client uploads to the cloud the application that manipulates the data.

5. Multitenancy - This means that the services and resources are used by multiple
clients other than the New York Times and this implies a stronger need for
security and for resource virtualisation.

6. Batch processing - Interaction with the server does not need to happen during
the processing.

Non-functional requirements

1. Service Level Agreements - There is no formal specification for the agreement,
as the SLA is a webpage. Therefore, the negotiation of SLA is not automated.

2. Reliability - This should be based on the SLA and include:

The availability of services;

The recoverability of data and applications.

Since it is built on a business model, what are the penalties in the case the

reliability criteria are not met?

3. Security - The security involves:

The authentication and authorisation of the service consumer, in this case the
technical team at The New York Times:

The encryption of the communication to guarantee confidentiality

The encryption of the data and applications on the client which are owned by the
clients, to ensure that no one else can access them.

4. Monitoring - Amazon offers a Web console, command line tools, and a Web API
(Web service) to monitor the instances.

Scenario Breakdown

The New York Times project scenario TimesMachine (Klems et al., 2008) is
decomposed into the following steps:

(1.) Create the data items, upload the images;

(2.) Create a Hadoop Cluster;

(3.) Create an application and upload the converter;

194

Appendix B

(4.) The application returns the results;
(5.) The client reads the results.

Resource-Oriented Model

L Data Items

| Images: Data ltems | R

Be s
2
H1i: HCluster

b

U SUny

yLe

dc
=
x|
,:.'j —_—
3
@ I'!EEI‘IE!E[' &Mig1gn| —
=
2 . i
v a
[]
=y
5r _

Figure 38 RO Model of C1
The client sends the representation of the resource when creating or updating it,

the client receives a resource representation when it reads a resource.
C2: Major League Baseball MLB Website’s Chat System

Another scenario mentioned in (Klems et al., 2008), the MLB Advanced Media a
company that develops and maintains the MLB websites wanted to add a chat
service.

The technical team faced the problem that this chat service has to be up and
running at a very short notice, there was no time to buy and set up new
equipment. So they decided to use machines from Joynet, a cloud computing
provider. The machines acquired were used to test and launch the new product.
At the development stage they needed 10 virtual machines and 20 for the chat
clusters. When they launched the chat system they needed extra RAM for the
machines; when the playoff and World Series started they needed extra machines
with extra RAM and processing power. When the season ended they could scale
down on the resources required.

Infrastructural and Functional Requirements

195

Appendix B

The requirements are similar to Cl1. However, they differ in some technical
issues.
1. Flexible Scalability
The resources are utilised efficiently, acquired when needed or released
otherwise.
2. Standards used
There is no Web API (Web service) interface to Joynet services.
3. Used as hosting server
The scenario described here is more like a hosting server than cloud
computing.

Non-functional Requirements

Identical to Cl1s requirements

Scenario Breakdown

(1.) Create Machine instances.

(2.) Increase the number of machines and increase their RAM.
(3.) Install “Create” the chat system.

(4.) Run the Chat system.

(5.) Increase the RAM in the machines.

(6.) Scale down the machines.

Resource-Oriented Model

1. -
L s [e]

2.u - l
A
50 > 2
o —* 3
lc
e Application

Pl
4.u

——» |Chat Senvice: Application |
Figure 39 RO Model of C2
C3: Colorado State University using Google Apps
In (Herrick, 2009), the author discusses Colorado State University’s use of Google

Apps, including Google Mail, Google Calendar, and Google Talk, Google Docs,

Google Sites and Google Video.

In 2009, Colorado State University (CSU) used Google Apps as an e-mail hosting
solution for its undergraduate students. Google Apps Education Edition, is free for
colleges and universities. CSU wanted to replace their old system with an
outsourced e-mail and collaboration solution. The important issues were cost,

reliability and the scope of services. Google Apps was selected mainly because it

196

Appendix B

offered e-mail, calendar and personal website services for students. Moreover. the
interoperability between these applications was a also plus. This increased
students’ collaboration and communication. The faculty and move their accounts
to use the suite because of its potential.

Infrastructural and Functional Requirements

The requirements are similar to C2. However it differs in the following

1. Itis a Software as a service

2. Instead of acquiring software solutions, the university used Google Apps.
3. The client does not transfer applications to the server.

4. The client uses the services as applications existing on their systems.

Non-functional Requirements

Identical to Cl1s requirements.
Scenario Breakdown

(1.) Create a user account.
(2.) Pay for the service.
(3.) The Apps are created for this account.

Resource-Oriented Model

104 =

Figure 40 RO Model of C3

C4: LingoSpot, a business built using Google App Engine
LingoSpot is one of the case studies mentioned in Google App Engine’s
documentation?®'. Lingospot provides services for online publishers to help
readers discover more of their content, including virally-distributed widgets for
related videos and articles, as well as smart discovery links within context.

“We use the App Engine to scale our services to Web audiences limitlessly,

ranging from a million+ users in 30 minutes at large sites, to supporting

2 Google App Engine, App Engine Developer Profiles,
http://code.google.com/appengine/casestudies.html

197

http://code.google.com/appengine/casestudies.html

Appendix B

hundreds of smaller sites that have installed our viral widgets, without
worrying an iota about provisioning capacity for the traffic and growth.
Google App Engine enables users to run programs written in Python or
Java, it also offers APIs to access datastore, Google Accounts, URL fetch,
Google Maps, and email services. It offers a Web-based Administration
Console to manage applications.”

Infrastructural and Functional Requirements

1. Platform as a service

2. LingoSpot used Google Apps Engine as a development and hosting platform
3. Dynamic Scalability

4. The system autonomously responds to the peaks on demand.

Non-functional Requirements

Identical to C1s requirements.

Scenario Breakdown

(1.) Create a user account.
(2.) Read the SDK.

(3.) Upload the application.
(4.) Run the application.

Resource-Oriented Model

1
K

|

104 =

3 —
—_— Application E—

1

. A Application

Figure 41 RO Model of C4

198

Appendix B

Grid Computing

G1: NEESgrid (Grid Computing)

NEES is an NSF funded project to build a virtual laboratory for earthquake
engineers. Using grid technologies it enables remote access and control to
observational sensors, experimental data, computational resources, and
earthquake engineering control systems such as shake tables, reaction walls, and
robots. NEESgrid also enables access to collaboration tools (Gullapalli et al.,
2004).

Earthquake engineers wanted to study the effect of an earthquake on different
types of substances and structures. These different structures and their shake
tables are distributed across a number of labs. The aim was to coordinate these
experiments with computer simulations. So the Multi-site Online Simulation Test,
MOST, was devised to test and illustrate this capability using the NEESgrid
system. MOST combined physical experiments testing the effect of an earthquake
on the interior of a multi-story building at three different sites, each testing a
part of the structure. MOST linked the physical experiments at the University of
lllinois at Urbana-Champaign (UIUC) and at the University of Colorado, Boulder
(CU) with a numerical simulation at National Centre for Supercomputing
Applications (NCSA). A simulation coordinator coordinates the overall experiment
(Pearlman et al., 2004).

Infrastructural and functional requirements

1. Remote access to instruments - Services can be interfaces to instruments, in
this case lab instruments such as shake tables.

2. Notifications - Running services send notifications to the clients or to the
service/job scheduler.

3. Batch Processing - When a service or job is run, there is no need for the client to
interact and results are delivered when it stops.

4. Coordination between running services - The services communicate to ensure
correct synchronisation.

5. Negotiation - It involves interactions between the client and the server to
ensure compliance between the client’s requirement and the server’s policies.

6. Support of sending and receiving large volumes of data - Large volumes of data
are being transferred between different services, requiring reliable, efficient, and
secure transfer.

7. Service Scheduling - Services are invoked and controlled by schedulers, in this
case the Experiment Coordinator is controlling several experiment executions.

Non-functional requirements

1. Security - The security involves:

199

Appendix B

e The authentication and authorisation of the researchers and scientists to
protect sensitive data and applications;

e The encryption of the messages and transferred data to guarantee
confidentiality.

2. Monitoring - This is needed to ensure that the different components are

functioning.

3. Reliability - Reliable data transfer and service execution, no delays,

interruptions or outages.

Scenario Breakdown

The NEESgrid scenario consists of the following steps:
(1.) Create experiments and the simulation.

(2.) Create an experiment coordinator.

(3.) The coordinator starts the experiments.

(4.) The coordinator retrieves experiment results.

(5.) The coordinator reads the results.

(6.) The coordinator aggregates the results

(7.) The results are read.

Resource-Oriented Model

200

Appendix B

T I Physical Experiment | |}

I |
:
2]

.
Sir
A R1: Resulls
1Y
.

1

|

1

1

!

1

i |E§] Experiment Coordina grl —

! : - l

1 [=r] 1 =

| oy | — -

i Aggregated Rasulis L iI- R1: Resultz

| O] '\,___ _____________________________ -

| = i

| 1 ;‘________'___________ _______ _ ______ “
nr, | |A1 Aggregated Resuits i et > Physical Experiment

1]

[
1
1
1
£ 1
R A — !
1
1

“y
du

(39, [Exi:Physical Experments]
1

Figure 42 RO Model of G1
Due to the complex nature of the NEESgrid scenario and the limited space,

structural links between resources were not modelled.

G2: Distributed Aircraft Maintenance Environment

The DAME (Distributed Aircraft Maintenance Environment) project (Jackson et al.,
2003), is a Grid enabled system for aeroengine fault diagnosis and prognosis. The
aim of the project is to use Grid technology to manage and analyse the vast
amounts of data to diagnose existing anomalies and predict potential problems in
aircraft engines. (Jackson et al., 2005) state the challenges for DAME, which are:
the huge amount of data captured by the monitoring tool; the need for advanced
pattern matching and data mining of the captured and historical data; the
requirement of collaboration from diverse actors, and the heterogeneity and
distributiveness of the data assets and tools.

Work on DAME was further researched in BROADEN (Business Resource

Optimisation for Aftermarket and Design Engineering on Networks) (Jackson et

201

Appendix B

al., 2006) which investigated the use of SOA techniques to achieve their goals.
The main usage scenarios for DAME are:
There is a QUICK monitoring service installed on the aircraft. This service
captures the engine’s monitoring data. QUICK can produce up to 1 Gigabyte of
data for each engine. An aircraft can have two or more engines; this can scale to
many Terabytes each year, for a fleet. Downloading and storing this amount of
data efficiently requires a huge number of distributed repositories at different
airports and these repositories must be available for the health monitoring of the
engines. DAME’s Engine Data Service is responsible for the downloading and
storage of that data. The scenario mentioned in (Austin et al., 2005) illustrates
the challenge.
“Heathrow, with its two runways, is authorized to handle a maximum of
36 landings per hour. Let us assume that on average half of the aircraft
landing at Heathrow have four engines and the remaining half have two
engines. In future, if each engine downloads around 1 GB of data per
flight, the system at Heathrow must be capable of dealing with a typical
throughput of around 100 GB of raw engine data per hour, all of which
must be processed and stored. The data storage requirement alone for an
operational day is, therefore, around 1 TB, with subsequent processing
generating yet more data.”
Due to the vast amounts of data, the choice for DAME was to be highly
distributed, having the airports as the units of distribution. The monitoring data
from an aeroplane arriving at an airport is stored at that airport. Therefore, the
search queries are distributed across airport nodes, where each node deals with
the data it stores. This means that data relating to one engine is found in the
different airports it landed in. To make DAME work, each airport node has a data
repository, pattern matching service, and a data catalogue.
An engine specialist wants to analyse a particular engine’s data. The specialist
provides the engine’s identifiers; the system submits it to a global catalogue,
which returns a handle to the data in the repository and also provides access to a
pattern matching control (PMC) service, which can distribute the search process
across different nodes. The specialist searches for a feature in the engine data;
the PMC becomes the master node and distributes the query to the other nodes.
The search is performed in parallel; the PMC collects the results and returns them
to the specialist.
The requirements are similar to G1. However, it differs in the following issues:

Infrastructural and Functional Requirements

1. Clients and Servers are controlled and managed by the same entity.
Although DAME is implemented on a grid infrastructure, all the different
components belong to the same entity.

202

Appendix B

2. Service Brokering
There is a service broker which forwards services to different machines
(servers/nodes), in this scenario, the PMC.

Non-functional Requirements

1. Support of sending and receiving large volumes of data
Large volumes of data are being transferred between different services
requiring reliable, efficient, and secure transfer.

Scenario Breakdown

(1.) Downloading the engine monitoring data.

(2.) Copying it to the nodes.

(3.) A client reads the Global Catalogue.

(4.) Sends a query to the node, the node distributes the query.
(4.1) The query is run on the data.
(4.2) Reads the results.
(4.3) Aggregates the results.

(5.) The client reads the results.

Resource-Oriented Model

203

Appendix B

..

1] ’ kY ’ y
1] 1 1 1
Monitoring Data | | | [Menitoring Data| 4 i [Monitering Data i
1 1 1 1
[1 [1
LY Engina 1 ,: \ Engine 2 ! . Engina 1 '

§ i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
1 [i
H : :
H M1: Manitoring Data \ 11 Monitering Data i M1: Monitaring Drata
o= : = .
[i - i -
- 412c = ; - 41zc — - a12e
H asults [esulls 1 asulis
! — - : l_" ! —
i N i * ' &
V| ot Query i l i 1: Quer i | 1: Quar i
H - | = i -
1 - i i =
1 [1
Pos RiBosuhs | | =1 ezt i
H - | - | =
. T P42 427 Pz T
H ; i
: : | | Lo
H . '
o] ; Gomry . | (o
[[i
1] k!

r

3
\ﬂ, Global Results

al

: l

w
Global Catalog -

— -
e bl o
- o =

Figure 43 RO Model of G2

T B e T T

G3: Virtual Screening with Desktop Grids

Entropia, (Chien et al., 2003) is an architecture for desktop grids. Desktop grids
utilise the idle commodity computing resources (desktops) to perform highly
distributed and computing intensive tasks. A binary virtual machine is installed
on each desktop. These communicate with a job manager and resource scheduler
to receive jobs, execute them, and return results. Desktop grids are effective
when there is high need for parallel processing power and there is no need for
communication between nodes during processing or the communication is
minimal. (Chien et al., 2003) describe “Virtual Screening” as one of the scenarios
that make use of desktop grids:

In virtual screening, for drug discovery, a vast number of potential drug
molecules are tested, ranging from hundreds of thousands to millions. The aim is
to discover if these drugs affect the activity of a studied protein. Testing involves
a process called docking that assesses the binding affinity of the test molecule to
a specific place on a protein. Each potential molecule can be evaluated
independently making the process suitable for desktop grids. The results are

binding scores.

204

Appendix B

So a scenario based on that would be: an end-user submits a computation to the
Job Manager, for example evaluating 50000 potential molecules. The Job
Manager divides the computation into independent subjobs: in this scenario
evaluating every five molecules together results in 10000 subjobs. The subjobs
are submitted to the Subjob Scheduler. Any available resources are periodically
reported to the Node Manager that informs the Subjob Scheduler. Results of the
subjobs are sent to the Job Manager then handed back to the end-user.

Infrastructural and Functional Requirements

1. Virtual Machines installed on clients/participants
For the desktop grid to work, virtual machines need to be installed on the
nodes or desktops forming the grid computational resources.

2. Job Management
Managing breaking down the jobs into independent sub-jobs that are assigned
to nodes, then assembling the results and returning them to the client.

3. Job Scheduling
The scheduling involves having knowledge of the numbers and sizes of
tasks/jobs and the availability of resources. The VMs on the nodes inform the
scheduler of the availability.

4. There are three entities in this scenario
Desktop grid service provider: in this scenario Entropia;
Nodes/participants: the desktops, which become grid resources after
installing the VMs;
Client: who has a computationally intensive task to run.

Non-functional Requirements

1. Security

In addition to the security issues mentioned in G1, another security measure is

unobtrusiveness, meaning that the virtual machines and any jobs running on

them do not harm or access unauthorised data or applications on the nodes they

are executed on.

2. Tolerance of failure

3. In this scenario, tasks are being submitted to desktops, which are volatile, and
it is likely that they could be switched off or cut off the network.

Scenario Breakdown

(1.) Create VMs on nodes.

(2.) Create the job.

(3.) Submit the job to the Job Manager.

(4.) The Job Manager splits the job into subjobs.
(5.) The Job Scheduler reads the subjobs.

(6.) The Job Scheduler sends them to the nodes.
(7.) The subjobs have results.

205

Appendix B

(8.) The Job Manager reads the results.

(9.) Aggregates the results.

(10.) The client reads the results.

Resource-Oriented Model

beoy T —
T

-

.I
1
1
]
]
i
]
—_— :
| | 2 3
[X] i -
| = i .
i ! | sisubiov | [Resuts |
] '
Y J1: Job ! r T.c :‘4‘*
P |] b
- fa T] v
; E': - i 8.1 R1: Results
i ———
i [b Manager | :
! ;
| - g.r i ' .
i a l i ___________________________________
L - N P "
i —1 Subjob] | Apgregated Results | i .‘r
1 1
i - ¢ 2} ! | /M1 Viriual Machine
: = = - -
|] |
. B.ct :
A1: Agaregated Results ’
i o |.P.1 Agaregated Result5| i i Subjob -
i S1: Subjoh ' = &
| | '_‘L v
h i
10,71 4 T i
T i ' | 51:5ubjos | [Resuls |
! '
| Job Scheduler i i
; !
1 1
! ;

B r R1: Results

[}
1
i
1
Bl
L Subjob
| T
| o @
H = v
' =
i
¢ | S1_Subjob | [Results |
1
—
i T T.r j#
|] -
1 v
i ar N R1: Resuits
| >
1
1

Figure 44 RO Model of G3

206

Appendix B

G4: CombeChem testbed on the Grid
The CombeChem project (Frey et al., 2003) developed a testbed to combine

structure data sources and property data sources, using the grid technologies to
create a knowledge-sharing environment. The grid infrastructure enriches
laboratory devices and supports provenance and automation techniques.

As part of the CombeChem project, Smart Lab was developed. It is intended to aid
chemists during the different stages of an experiment, ie. planning the
experiment, performing the experiment, and analysing the results. The following
scenario of using Smart Lab is built upon the description of the Smart Lab in
(Taylor et al., 2006).

A chemist uses the tablet PC to plan an experiment, gets it authorised by his/her
supervisor. After the plan is authorised, the chemist follows it through to perform
the experiment; during the experiment the chemist can observe and make notes
that will be stored with the experimental process. Moreover, sensors and devices
in the lab will store observations related to the experiment while it is being
executed. After the experiment is performed, results are recorded.

The requirements are identical to scenario G1 and G2. However, there are others:

Infrastructural and Functional Requirements

1. Workflow support

The different processes that are executed can be coordinated and saved as
workflows, so new workflows can be generated from them by changing processes
or parameters.

2. Provenance Maintenance

The workflows provide means to link results to the steps they were generated
from, thus providing a trial record and a method to reproduce the results.

Scenario Breakdown

(1.) The chemist creates the plan.

(2.) The chemist creates the experiment process that is based on the plan.

(3.) The process is updated by sensors and the chemist’s observations.

(4.) Chemist can retrieve the process containing all the information about the
process.

Resource-Oriented Model

207

Appendix B

JO UNDSXE U 5] =

Figure 45 RO Model of G4

Table 26 Interaction requirements across scenarios

Mutability Atomicity| Synchronisation Plurality
Info Conversa- Notifica- Filtered | Roles
Retrieval | Updating tional Polling tion Collection [Collection
Mashups
M1: Yahoo Pipes
(Donnelly, 2010) 3 3 Y 0 0 ! ! 0
M2: MashMaker
(Ennals and Garofalakis, 2007) ! 6 Y ! 0 ! 0 0
M3: Layered Mashup Architecture]
(Biornstad and Pautasso, 2009) 7 4 Y ! ! 2 ! 0
M4: Mashup Fabric Customer Infol
(Jhingran, 2006) ! 0 N ! 0 0 0 0
Total 12 13 3 3 1 4 2 0
Enterprise Services
E1: SSPD (City University)
(City University, 2008) ! 4 Y 0 0 0 0 !
E2:MLE (City University)
(City University, 2008) ! ! Y 0 ! 0 0 0
E3: BT.com (Integrating BT's OSS)
(Calladine, 2004) 2 ! N 0 0 0 0 !
E4: SCORe (Integrating BT's OSS)
(Calladine, 2004) 2 0 N 0 0 ! 0 0
Total 6 6 2 0 1 1 0 2
B2B
B1: Reverse Auctioning
(Decker and Weske, 2007) 2 6 Y 0 0 ! 0 !
B2: Telecommunications Wholesale]
(Zimmermann et al., 2005) 2 ? Y ! 0 ! 0 0
B3: E-Procurement
(Brodie, 2000) 2 3 Y 1 0 1 1 0
B4: Supply Chain Management
(Preist et al., 2005) 2 7 Y 0 0 2 0 0
Total 8 25 4 2 0 5 1 1
Cloud Computing
C1: NYT Times Machine
(Klems et al., 2008) ! > Y 3 0 2 0 0
C2: MLB Website Chat System
(Klems et al., 2008) 0 6 Y 3 0 0 0 0
C3: Colorado State University
(Herrick, 2009) 0 3 Y ! 0 ! 0 0
C4: LingoSpot 1 4 Y 2 0 0 0 0
Total 2 18 4 9 0 3 0 0
Grid Computing

22 Google App Engine, App Engine Developer Profiles,
http://code.google.com/appengine/casestudies.html

208

Appendix B

G1: NEESGrid

(Pearlman et al., 2004) 2 7 Y 0 2 0 !

G2: Dist. Aircraft Maintenance Env,

(Jackson et al., 2005) > 6 Y 4 2 ! 0

G3: Virtual Screening on Desktop|

Grids(Chien et al., 2003) 4 9 Y 4 2 ! !

G4: CombeChem testbed on the Grid

(Frey et al., 2006) 0 > Y 4 0 0 !
Total 11 27 4 12 6 2 3
Total 39 89 17 26 19 5 6

209

Appendix C

Appendix C: Mappings to SPARQL Queries

211

Appendix C

Class

URI Pattern
/AClass
Graph Pattern

?X a AClass;
?X ?y ?z.

And in the case of a specific class, Book this would be:

URI
http://bookstore.com/Book
RDF Graph

<http://bookstore.com/Book/DBSys> a :Book;

sisbn ""0123735564"Mxsd:string;
stitle "Database Systems"/~xsd:string;
tauthor <http://bookstore.com/Person/JSmith>.

<http://bookstore.com/Book/SemWeb> a :Book;

sisbn "'2266776375"Mxsd:string;
title "Semantic Web"Mxsd:string;
author <http://bookstore.com/Person/TBL>.

Table 27 HTTP methods as SPARQL queries for the class book

GET

Description Retrieves information about all books

?2s ?p ?
Corresponding CONSTRUCT { ?s ?p ?0}

SPARQL Query WHERE { ZS 2 <http://bookstore.com/Book>;
’p 70 }
<http://bookstore.com/Book/DBSys> a :Book;
sisbn ""0123735564"Mxsd:string;
stitle "Database Systems"/~xsd:string;
Result tauthor <http://bookstore.com/Person/JSmith>.
<http://bookstore.com/Book/SemWeb> a :Book;
sisbn "'2266776375"Mxsd:string;
“title "Semantic Web"~xsd:string;
tauthor <http://bookstore.com/Person/TBL>.
The triples returned by the CONSTRUCT query are formatted according to the graph pattern
Explanation associated with the class resource type. Every individual of class book is returned, with triples
where this individual is the subject.
PUT
Description Creates a named individual
<http://bookstore.com/Book/DBSys> a :Book;
Payload sisbn ""0123735564"Mxsd:string;
stitle "Database Systems"/~xsd:string;
tauthor <http://bookstore.com/Person/JSmith>.

INSERT
{GRAPH <Server> { ?s ?p ?0}}
WHERE {GRAPH <Payload> { ?s ?p ?0}}

Corresponding
SPARQL Query

<http://bookstore.com/Book/DBSys> a :Book;
sisbn "'1334340005"Mxsd:string;
stitle "Database Systems"/~xsd:string;
author <http://bookstore.com/Person/JSmith>.

Result

Explanation

The INSERT operation adds triples to the server, these triples will match triples in the payload,
in this case it is a book individual together with associated triples. Of course there needs to be
checks on the payload to ensure it adheres to the structure accepted by this resource type,
which is denoted by the associated graph pattern, and that the subject of these triples is a
named individual.

212

Appendix C

POST
Description Creates an individual
_1a232324 a :Book;
pavload sisbn ""0123735564"Mxsd:string;
ayloa stitle "Database Systems"/~xsd:string;

tauthor <http://bookstore.com/Person/JSmith>.

INSERT {GRAPH <Server>

Corresponding { ?s ?p ?0}}
SPARQL Query | WHERE {GRAPH <Payload>
{ ?s ?p ?0}}
<http://bookstore.com/Book/DBSys> a :Book;
Result sisbn ""1334340005"Mxsd:string;
esu “title "Database Systems"/Mxsd:string;
author <http://bookstore.com/Person/JSmith>.
Similar to the PUT method above, the only difference is that the subject of these triples in the
Explanation payload is a blank node which also needs to be checked, and replaced by the server with a
named individual of class book in this case.
DELETE
Description Delete all individuals of this class

Corresponding

DELETE {
GRAPH <Server> {

SPARQL Query ?s a <http://bookstore.com/Book>;
?p ?0. }}
WHERE
{ ?s a <http://bookstore.com/Book>;
?p ?0.}
Explanation The DELETE operation would delete all the individuals of this class, and their associated

properties: i.e. triples which have these individuals as their subjects.

213

Appendix C

Individual
URI Pattern
/AClass/Individual
Graph Pattern
Individual a AClass;

Individual ?x ?y.

And in the case of a specific book, DBSys, this would be:

URI

http://bookstore.com/Book/DBSys

RDF Graph

<http://bookstore.com/Book/DBSys> a :Book;

sisbhn

""0123735564"Mxsd:string;

“title "Database Systems"/Mxsd:string;
sauthor <http://bookstore.com/Person/JSmith>.

Table 28 HTTP methods as SPARQL queries for a book individual

GET

Description

Retrieves information about DBSys at this URI
http://bookstore.com/Book/DBSys

Corresponding
SPARQL Query

CONSTRUCT {
<http://bookstore.com/Book/DBSys> ?p ?0 }
WHERE {
<http://bookstore.com/Book/DBSys> ?p ?0 }

Result

<http://bookstore.com/Book/DBSys> a :Book;
sisbn "'0123735564"Mxsd:string;
“title "Database Systems"/Mxsd:string;
author <http://bookstore.com/Person/JSmith>.

Explanation

The CONSTRCUT query returns triples in the format specified by the graph pattern
associated with the individual resource type (see Table 10), which returns the values of
the associated triples.

PUT

Description

Updating the ISBN of the book at this URI
http://bookstore.com/Book/DBSys

Payload

<http://bookstore.com/Book/DBSys>
sisbn "'1334340005"Mxsd:string-

Corresponding
SPARQL Query

WITH <Server>
DELETE
{ <http://bookstore.com/Book/DBSys> ?p ?001d}
INSERT
{ <http://bookstore.com/Book/DBSys> ?p ?oNew}
WHERE
{ GRAPH <Payload> {
<http://bookstore.com/Book/DBSys> ?p “?oNew }
GRAPH <Server> {
<http://bookstore.com/Book/DBSys> ?p ?001d }}

Result

<http://bookstore.com/Book/DBSys> a :Book;
s isbn "'1334340005"Mxsd:string;
ctitle "Database Systems"xsd:string;
author <http://bookstore.com/Person/JSmith>.

Explanation

To update an individual, this is mapped to a DELETE/INSERT operation, the payload
contains the triples that specify the properties that will be updated and their new values.
The DELETE/INSERT operation deletes from the server the triples that match the pattern :
Individual ?p ?old

But since there is a WHERE clause, this pattern has to also match the triples provided in
the payload. Therefore only triples containing properties provided in the payload will be
affected in the server, and replaced by the triples provided in the payload which is the
effect of the INSERT clause.

214

http://bookstore.com/Book/DBSys
http://bookstore.com/Book/DBSys

Appendix C

DELETE
Description Deletes the individual and associated properties.
Corresponding DELETE {
SPARQL Query GRAPH <Server> {
<http://bookstore.com/Book/DBSys> ?p ?0. }}
WHERE

{ <http://bookstore.com/Book/DBSys> ?p 70. }

Explanation The triple

<http://bookstore.com/Book/DBSys> ?p ?o.

Matches the individual and its properties at the server, and the DELETE operation
removes those triples.

215

Appendix C

Property

The Individual’s property URI Pattern

/AClass/Individual/Property

Corresponding Graph Pattern for an Object Property

Individual Property ?x

?X ?p ?0
This applies to GET. However, for PUT and DELETE the corresponding Graph Pattern is either the one
above or

Individual Property ?x
meaning, when the author of a book is deleted, only the link between the author and this specific article
is deleted, the author’s information is not, the decision whether the value is deleted is left to the
implementation. Moreover the latter pattern is also the corresponding graph pattern for Data Properties.

Table 29 HTTP methods as SPARQL queries for a book's author

GET

Retrieving information about the author of the book DBSys at this URI

DERETIE http://bookstore.com/Book/DBSys/author

CONSTRUCT {
<http://bookstore.com/Book/DBSys> :author ?x.

Corresponding 2x ?p ?0. }

SPARQLQuery | yERE {<http://bookstore.com/Book/DBSys> :author ?x.
?X ?p ?0. }
<http://bookstore.com/Book/DBSys> tauthor
Result <http://bookstore.com/Person/JSmith>.
esy <http://bookstore.com/Person/JSmith> a :Person;
>name "John Smith"~xsd:string.
The CONSTRUCT query returns a triple containing the author as the subject, replacing the
Explanation variable ?x, moreover it returns properties and their values where the author is the
P subject. If this was a data property instead of an object property the ?x ?p ?0 triple
pattern will be omitted.
PUT
Descrintion Changing the author of the book at this URI
P http://bookstore.com/Book/DBSys/author
Pavioad <http://bookstore.com/Book/DBSys> a :Book;
ayloa author <http://bookstore.com/Person/TBL>.
WITH <Server>
DELETE
{ <http://bookstore.com/Book/DBSys> :author ?001d}
INSERT
Corresponding { <http://bookstore.com/Book/DBSys> :author 7?oNew}

SPARQL Query WHERE
{ GRAPH <Payload> {
<http://bookstore.com/Book/DBSys> :author ?oNew }
GRAPH <Server> {
<http://bookstore.com/Book/DBSys> :author ?00ld }}

<http://bookstore.com/Book/DBSys> a :Book;

s isbn "'1334340005"Mxsd:string;
ctitle "Database Systems"~xsd:string;
Result rauthor <http://bookstore.com/Person/TBL>.

If the server had multiple values for author, they would all be deleted and replaced with
author(s) in the payload.

The PUT method updates the value of the author. The DELETE/INSERT operation replaces
triples, so to update the author in this case, the triples in the payload replace the ones in
the server. This is also the case for data properties. However assuming that the property is
Explanation a dependent one, for it to be completely replaced, not only for the triple that connects it
to the book, the following triple pattern would be added to the DELETE clause, and the
server clause: ?00Id ?p ?0, and this triple pattern oNew ?p ?0 to the INSERT clause and
the payload clause, hence replacing triples associated with the replaced property value.

216

Appendix C

DELETE

Description

Deletes the author of the book at this URI

Corresponding
SPARQL Query

DELETE {
GRAPH <Server> {
<http://bookstore.com/Book/DBSys> author ?x. }}

WHERE
{ <http://bookstore.com/Book/DBSys> author 2?x. }
<http://bookstore.com/Book/DBSys> a :Book;
Result zisbn "'1334340005"Mxsd:string;
ctitle "Database Systems"xsd:string.
As explained above the table, this depends on the implementation, either the association
X between the book an author is deleted, as shown in the operation above, or the triples
Explanation

who have the author as the subject are deleted too, and in that case the triple pattern
?Xx ?p ?0, would exist in both clauses.

217

Appendix C

Filtered Individuals

URI Pattern

/AClass?DataProperty={valuel}&ObjectProperty={value2}

Corresponding Graph Pattern

?X
?X
?X
?X

a AClass
DataProperty valuel
ObjectProperty value2
?y ?z

Table 30 HTTP methods as SPARQL queries a book with specified properties

GET

Description

Retrieves information about all books who have “Database Systems” as their title and
JSmith as their author.

/Book?title="Database Systems"
&author="http://bookstore.com/Person/JSmith"

Corresponding
SPARQL Query

CONSTRUCT {
?s ?p ?0.

b

WHERE {
?s :title "Database Systems™.
?s :rauthor <http://bookstore.com/Person/JSmith>.
?s ?p ?0.}

Result

<http://bookstore.com/Book/DBSys> a :Book;
s isbn "'0123735564""Mxsd:string;
ctitle "Database Systems"xsd:string;
author <http://bookstore.com/Person/JSmith>.

Explanation

This is similar to the GET method in Table 27, however the CONSTRUCT query differs in
the WHERE clause as it specifies values for given properties.

PUT

Description

Updates individuals who have “Database Systems” as their title and JSmith as their
authors, by changing their ISBN.

/Book?title="Database Systems"
&author="http://bookstore.com/Person/JSmith"

Payload

_:b a :Book;
sisbn 1234567890 Mxsd:string.

WITH <Server>

DELETE
{?s 7?p 7o0ld}
INSERT
? ? ?
Corresponding WﬁEF'QE ?p 7oNew}
SPARQL Query { GRAPH <Payload> { ?x ?p ?oNew }
GRAPH <Server> {
?s 7?p ?00ld.
?s :title "Database Systems".
?s :tauthor <http://bookstore.com/Person/JSmith>. }}
<http://bookstore.com/Book/DBSys> a :Book;
Result sisbn "1234567890"Mxsd:string;
esu ctitle "Database Systems"xsd:string;
author <http://bookstore.com/Person/JSmith>.
The DELETE/INSERT operation above means: for book individuals, (?s) which match the
two triple patterns i.e. have the title “Database Systems” and the author JSmith, delete
Explanation the old triples at the server, replace them with new ones, where the subject would remain
the same as it was (i.e. the same book (?s)) but the replaced properties matches the ones
provided in the payload (?p).
POST
Creates an individual which has “Database Systems” as its title and JSmith as its author.
Description /Book?title=""Database Systems"

&author=<http://bookstore.com/Person/JSmith>

218

Appendix C

INSERT DATA
{GRAPH <Server>
Corresponding { <http://bookstore.com/Book/NewBook> a :Book;
SPARQL Query stitle "Database Systems';
sauthor <http://bookstore.com/Person/JSmith>_}}
The book URI is provided by the server for the newly created book.

<http://bookstore.com/Book/DBSys> a :Book;
Result ttitle "Database Systems"/Mxsd:string;
author <http://bookstore.com/Person/JSmith>.

Similar to the POST operation in Table 27, however the property values are specified in

Eipinatoy the query string rather than the payload.
DELETE
Description Delete all individuals of this class who have “Database Systems” as their title and JSmith as
their author.
DELETE {

GRAPH <Server> {

? 2 2,
Corresponding WHERE ’s ?p ?0. }}

SPARQL Query { 7s ?p ?0;

:title "Database Systems";
sauthor <http://bookstore.com/Person/JSmith>_}

Also similar to the DELETE operation in Table 27, however the graph pattern specifies

Epicperl individuals who have these values for the specified properties.

219

Appendix C

Properties of Filtered Individuals

URI Pattern

/AClass/TheProperty?Propertyl={valueA}&Property2={valueB}

Corresponding Graph pattern

?X
?X
?X
?X
?y

a AClass
TheProperty ?y
Propertyl valueA
Property2 valueB
?p ?0

Table 31 HTTP methods as SPARQL queries for properties of filtered individuals

GET

Description

Retrieves information about authors of books with the title “Database Systems”.
Book/author?title="Database Systems"

Corresponding

CONSTRUCT {
?b :author ?x.
?X ?p 7?0 }
WHERE {

SPARQL Query ?b :title "Database Systems".
?b :author ?x.
?X ?p 7?0 }
<http://bookstore.com/Book/DBSys> :-author :
el <http://bookstore.com/Person/JSmith>.
co <http://bookstore._com/Person/JSmith> :name
"John Smith"~xsd:string.
Exolanation The CONSTRUCT query returns triples about the author (?x) of the book, which has been
P specified to have the title “Database Systems” in the WHERE clause.
PUT
Descrintion Updates the authors of books who have “Database Systems” as their title
P /Book/author?title=""Database Systems"
’) - -
payload ?X a :Book;

zauthor <http://bookstore.com/Person/TBL>.

Corresponding
SPARQL Query

WITH <Server>
DELETE {
?book :author ?oldAuthor.
?oldAuthor ?oldp ?oldo. }
INSERT {
?book :author ?newAuthor.
?newAuthor ?newp ?newo. }
WHERE
{ GRAPH <Payload> {
?somebook :author ?newAuthor.
?newAuthor ?newp ?newo. }
GRAPH <Server> {
?book :author ?oldAuthor.
?o0ldAuthor ?oldp ?oldo.
?book :title "Database Systems'_}}

Result

<http://bookstore.com/Book/DBSys> a :Book;
stitle "Database Systems"/Mxsd:string;
author <http://bookstore.com/Person/TBL>.

Explanation

This is similar to the PUT operation in Filtered individuals in Table 30, the
difference however, is in that operation, the replaced properties can be many, in
this case it is specified :author.

220

Appendix C

DELETE

Description

Delete the author property of books which have “Database Systems” as their title.

Corresponding

DELETE {
GRAPH <Server> {
?book tauthor ?author.
?author ?p ?0. }}

SPARQLQuery | wurpr 7book :author ?author.
?author ?p ?0.
?book :title "Database Systems'.}
i The association between the author and the book, would be deleted, and also details of
Explanation

the author, for books who have “Database Systems” as their title.

221

Appendix D

Appendix D: DVD/MP3 Player OWL-S Service

223

Appendix D

<?xml version="1.0" encoding="WINDOWS-1252"7?>

<rdf:RDF xmlns:owl = "http://www.w3.0rg/2002/07/owl#"

xmIns:rdfs "http://www.w3.0rg/2000/01/rdf-schema#"

xmIns:rdf “http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmIns:service "http://www.daml .org/services/owl-s/1.1/Service.owl#"
xmlns:process "http://www.daml .org/services/owl-s/1_1/Process.owl#"

xmlns:profile = "http://www._daml .org/services/owl-s/1.1/Profile.owl#"
xmIns:grounding = "http://www.daml.org/services/owl-s/1.1/Grounding.owl#"
xml:base =

"http://127.0.0.1/services/1.1/dvdplayermp3player_price_service.owls">

<owl:Ontology rdf:about=""">

<owl : imports rdf:resource="http://127.0.0.1/ontology/Service.owl" />
<owl :imports rdf:resource="http://127.0.0.1/ontology/Process.owl" />
<owl : imports rdf:resource="http://127.0.0.1/ontology/Profile.owl" />
<owl :imports rdf:resource="http://127.0.0.1/ontology/Grounding.owl* />
<owl : imports rdf:resource="http://127.0.0.1/ontology/my_ontology.owl" />
<owl :imports rdf:resource="http://127.0.0.1/ontology/concept.owl* />
</owl :Ontology>

<service:Service rdf:1D="DVDPLAYERMP3PLAYER_PRICE_SERVICE">
<service:presents rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROFILE"/>
<service:describedBy rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROCESS"/>
<service:supports rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_GROUNDING"/>
</service:Service>

<profile:Profile rdf:1D="DVDPLAYERMP3PLAYER_PRICE_PROFILE">
<service:isPresentedBy rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<profile:serviceName xml:lang="en">

2For 1 Price service

</profile:serviceName>

<profile:textDescription xml:lang="en">

This service returns prices of a given pair MP3 Player brand and
DVD Player brand.

</profile:textDescription>

<profile:haslnput rdf:resource="#_MP3PLAYER"/>
<profile:hasOutput rdf:resource="#_PRICE"/>

<profile:haslnput rdf:resource="#_DVDPLAYER"/>

<profile:has_process rdf:resource="DVDPLAYERMP3PLAYER_PRICE_PROCESS" />
</profile:Profile>

<I--<process:ProcessModel rdf:ID="DVDPLAYERMP3PLAYER_PRICE_PROCESS_MODEL'">
<service:describes rdf:resource="#DVDPLAYERMP3PLAYER PRICE_SERVICE"/>
<process:hasProcess rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROCESS"/>
</process:ProcessModel>-->

<process:AtomicProcess rdf:I1D="DVDPLAYERMP3PLAYER_PRICE_PROCESS">
<service:describes rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<process:haslnput rdf:resource="#_MP3PLAYER"/>

<process:hasOutput rdf:resource="#_PRICE"/>

<process:haslnput rdf:resource="#_DVDPLAYER"/>
</process:AtomicProcess>

<process: Input rdf:ID="_MP3PLAYER">

<process:parameterType
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#anyURI">http://127.0.0.1/ontolo
gy/my_ontology.owl#MP3Player</process:parameterType>

<rdfs:label></rdfs:label>

</process: Input>

<process:Output rdf:1D="_PRICE">

<process:parameterType rdf:datatype="http://www.w3.0rg/2001/XMLSchema#anyURI"">
http://127.0.0.1/ontology/concept.owl#Price</process:parameterType>
<rdfs:label></rdfs: label>

</process:Output>

224

Appendix D

<process: Input rdf:ID="_DVDPLAYER">

<process:parameterType
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#anyURI1">http://127.0.0.1/ontolo
gy/my_ontology.owl#DVDPlayer</process:parameterType>

<rdfs:label></rdfs: label>

</process: Input>

<grounding:WsdIGrounding rdf: ID="DVDPLAYERMP3PLAYER_PRICE_GROUNDING">
<service:supportedBy rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_SERVICE"/>
<grounding:hasAtomicProcessGrounding>
<grounding:WsdlAtomicProcessGrounding
rd¥: ID=""DVDPLAYERMP3PLAYER_PRICE_AtomicProcessGrounding"/>
</grounding:hasAtomicProcessGrounding>
</grounding:WsdIGrounding>

<grounding:WsdlAtomicProcessGrounding
rdf:about="#DVDPLAYERMP3PLAYER_PRICE_AtomicProcessGrounding'>
<grounding:wsdlDocument
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#anyURI1" ">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel._wsdl</grounding:wsdlDocument>
<grounding:owlsProcess rdf:resource="#DVDPLAYERMP3PLAYER_PRICE_PROCESS"/>
<grounding:wsdlOperation>
<grounding:WsdlOperationRef>
<grounding:operation rdf:datatype=
"http://www.w3.0rg/2001/XMLSchema#anyURI1"">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel/get_PRICE
</grounding:operation>
<grounding:portType
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#anyURI"">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel/Dvdplayermp3playerPri
ceSoap
</grounding:portType>
</grounding:WsdlOperationRef>
</grounding:wsdlOperation>
<grounding:wsdl InputMessage
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#anyURI"">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel/get PRICERequest
</grounding:wsdl InputMessage>
<grounding:wsdlOutputMessage
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#anyURI"">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel/get_PRICEResponse
</grounding:wsdlOutputMessage>
<grounding:wsdl Input>
<grounding:Wsdl InputMessageMap>
<grounding:owlsParameter rdf:resource="# MP3PLAYER"/>
<grounding:wsdIMessagePart rdf:datatype=
“http://www._w3.0rg/2001/XMLSchema#anyURI1 ">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel/_MP3PLAYER
</grounding:wsdlMessagePart>
<grounding:xsltTransformationString>None(XSL)
</grounding:xsltTransformationString>
</grounding:Wsdl InputMessageMap>
</grounding:wsdl Input>
<grounding:wsdl Input>
<grounding:Wsdl InputMessageMap>
<grounding:owlsParameter rdf:resource="# DVDPLAYER"/>
<grounding:wsdIMessagePart
rdf:datatype=""http://www.w3.0rg/2001/XMLSchema#anyURI"">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel/_DVDPLAYER
</grounding:wsdIMessagePart>
<grounding:xsltTransformationString>None(XSL)
</grounding:xsltTransformationString>
</grounding:Wsdl InputMessageMap>
</grounding:wsdl Input>
<grounding:wsdlOutput>
<grounding:WsdlOutputMessageMap>
<grounding:owlsParameter rdf:resource="# PRICE"/>
<grounding:wsdlIMessagePart

225

Appendix D

rdf:datatype="http://www.w3.0rg/2001/XMLSchema#anyURI1"">
http://127.0.0.1/wsdl/Dvdplayermp3playerPricel/_PRICE
</grounding:wsdlIMessagePart>

<grounding:xsltTransformationString>None (XSL)

</grounding:xsltTransformationString>

</grounding:WsdlOutputMessageMap>
</grounding:wsdlOutput>
</grounding:WsdlAtomicProcessGrounding>
</rdf:RDF>

226

Appendix E

Appendix E: Expert Review Materials

227

Appendix E

PART ONE

EXPRESS
Cromeain
Ontology

EXPRESS

— — Gasign Dhomiain DntnIDgD

Endpoints + Methods — A@I&ct Endpoints and HTTP methods for RDIE9

@narate and Deplay Stuba\
=
=T

Provide/Integrate with Business Logic

228

Generated
Stubs

Appendix E

EXPRESS - Service Design and Deployment

1. A developer provides an ontology representing entities in the Web service interface they
would like to expose.

2. The EXPRESS deployment engine extracts resources from the OWL file and assigns URIs.

3. The developer chooses URIs for endpoints and permitted HTTP methods and optionally
roles and access control.

4. Stubs are connected to existing business logic, coded, or the code is generated.

The semantics of interacting with the endpoints is implicitly expressed by two things:

1. The resource type the endpoint represents: this is indicated by way EXPRESS provides
endpoints.

2. The HTTP method.

Resource Type URI Template Graph Pattern
Class /Class ?X a Class
Individual /Class/Individual Individual ?x ?y
ivi ?
Property /Class/Individual/Property ;)r:dlwdual 2;operty ,)g
?2X a Class
Filter Individuals /Class?Property={a} ?X Property al
al ?p ?0
?
e ’.?i gro ertyl glass
Individuals” /Class/Propertyl?Property2={b} - perty Yy
p - ?X Property2 b
roperties >
?y ?p ?0

Bookstore EXPRESS Ontology
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.0rg/2002/07/owl#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix dc: <http://purl._org/dc/terms/>.
@prefix : <http://bookstore.com/EXPRESS/>.
<http://bookstore.com/EXPRESS> a owl:Ontology.
:Book a owl:Class;
owl:equivalentClass dbpedia:Book.
title a owl :DatatypeProperty;

owl :equivalentProperty dc:title;
rdfs:domain :Book;
rdfs:range xsd:string.

sauthor a owl :DatatypeProperty;
owl:equivalentProperty dc:author;
rdfs:domain :Book;
rdfs:range xsd:string.
sisbn a owl :DatatypeProperty;
owl zequivalentProperty dbpedia:isbn;
rdfs:domain :Book;
rdfs:range xsd:string.
:Order a owl:Class.
containsltem a owl:ObjectProperty;
rdfs:domain :Order;
rdfs:range :Book.
Some possible endpoints
GET http://bookstore.com/EXPRESS/Book/DBSys
PUT http://bookstore.com/EXPRESS/Book/DBsys/title
DELETE http://bookstore.com/EXPRESS/0rder/1231324

The Endpoints for this example
GET http://bookstore.com/EXPRESS/Book?isbn={}
POST http://bookstore.com/EXPRESS/0rder?containsltem={}

229

Appendix E

EXPRESS - Interaction

Client Server
GET /EXPRESS HTTP/1.1
Host: bookstore.com
HTTP/1.1 200 OK
Link: </EXPRESS/Book?isbn={}>;

rel="GET"

Bookstore
EXPRESS
Ontology

GET /EXPRESS/Books?isbn={0123735564}
HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK
Link: </EXPRESS/Order?containsltem={}>;
rel="POST"

@prefix xsd:
<http://www.w3.0rg/2001/XMLSchema#>.
@prefix :
<http://bookstore.com/EXPRESS/>.

<http://bookstore.com/EXPRESS/Book/Sem>
a :Book;
tisbn 0123735564 Mxsd:string;

“title "Semantic Web for the
Working Ontologist"xsd:string;
sauthor "Allemang and

Hendler"~Mxsd:string.

POST /EXPRESS/Order?containsltem=
http://bookstore.com/EXPRESS/Book/Sem
HTTP/1.1

Host: bookstore.com

HTTP 201 Created
Location:
http://bookstore.com/EXPRESS/Order_1

@prefix :

<http://bookstore.com/EXPRESS/>.

:0Order_1 a :Order;
containsltem

<http://bookstore.com/EXPRESS/Book/Sem>

230

OWL-S

vaide Business Logic

WSDLfiles

\

_ (Genemte WSDL and Deploy Ser\-ice9

Damain
Ontology

- — Optional: Dasign Damain GntolngD

OWl-s
Servicas

/
= — @esign OWL-5 Service Descriptiuna

\

®

231

Development
Phase not part of
OWL-s

OWL-s

Appendix E

Appendix E

OWL-S Service Design and Deployment
OWL-S does not involve the steps in deploying the Web service, as it comes after the development
phase. However, because we are comparing it with EXPRESS and it is involved in the development
phase, it is necessary to discuss the tasks OWL-S assumes are done.
Deploying a service can be done by generating a WSDL file from the business logic, which can be
written either in Java, PHP, .NET. The underlying framework used also takes care of translating the
exchange messages into SOAP.
The Bookstore WSDL files

1. Get a Book by its ISBN
<?xml version="1.0" encoding="UTF-8"7?>
<wsdl :definitions
xmIns="http://bookstore.com/wsdl/bookbyisbn.wsdl"
xmIns:wsdl=""http://schemas.xmlsoap.org/wsdl/*
xmIns:tns="http://bookstore.com/wsdl/bookbyisbn.wsdl"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace=""http://bookstore.com/wsdl/bookbyisbn.wsdl'" name=""book">
<wsdl :types>
<xsd:schema targetNamespace=""http://bookstore.com/wsdl/bookbyisbn._wsdl"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema'*>
<xsd:complexType name="book">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="author" type=""xsd:string"/>
<xsd:element name="isbn" type=""xsd:string'/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</wsdl :types>
<wsdl :message name="‘getBookByIlSBNRequest''>

<wsdl :part name="isbn" type="'xsd:string'>

</wsdl :part>
</wsdl :message>

<wsdl :message name="'getBookByISBNResponse"'>
<wsdl :part name="book" type=""tns:book'>
</wsdl :part>
</wsdl :message>
<wsdl :portType name=""BookBylSBNSoap"''>
<wsdl :operation name="getBookBylSBN">
<wsdl:input message=""tns:getBookBylSBNRequest'>
</wsdl:input>
<wsdl :output message=""tns:getBookBylSBNResponse'>
</wsdl :output>
</wsdl :operation>
</wsdl :portType>
<wsdl :binding name="BookBylSBNSoapBinding" type=""BookBylSBNSoap">
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl :operation name="getBookBylSBN">
<wsdlsoap:operation soapAction=""getBookByISBN"/>
<wsdl : input>
<wsdlsoap:body use="encoded"™ encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
namespace=""http://bookstore.com/wsdl/bookbyisbn"/>
</wsdl:input>
<wsdl :output>
<wsdlsoap:body use="encoded" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://bookstore.com/wsdl/bookbyisbn'/>
</wsdl :output>
</wsdl :operation>
</wsdl:binding>
<wsdl:service name="‘getBookByIlSBNService">
<wsdl :port name="BookByISBNSoap" binding=""BookBylSBNSoapBinding">

232

Appendix E

<wsdlsoap:address location="http://bookstore.com/BookService"/>
</wsdl :port>
</wsdl :service></wsdl :definitions>

2. Order a Book

<?xml version="1.0" encoding="UTF-8"7?>

<wsdl :definitions

xmIns="http://bookstore.com/wsdl/bookorder.wsdl"
xmIns:wsdl=""http://schemas.xmlsoap.org/wsdl/*
xmIns:tns="http://bookstore.com/wsdl/bookorder.wsdl"
xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace=""http://bookstore.com/wsdl/bookorder._.wsdl" name='"bookorder'>

<wsdl : types>
<xsd:schema targetNamespace=""http://bookstore.com/wsdl/bookorder_wsdl"
xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema'">
<xsd:complexType name="book">
<xsd:sequence>
<xsd:element name="title" type='"xsd:string'/>
<xsd:element name="author" type=""xsd:string"/>
<xsd:element name="ISBN" type='"xsd:string'/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="order">
<xsd:element name="book" maxOccurs=""unbounded"
type=""bookType'/>
</xsd:complexType>
</xsd:schema>
</wsdl :types>
<wsdl :message name="'‘BookOrderServiceRequest'>
<wsdl :part name="book" type=""tns:book'>
</wsdl :part>
</wsdl :message>
<wsdl :message name="'‘BookOrderServiceResponse’>
<wsdl :part name="order" type='tns:order'>
</wsdl :part>
</wsdl :message>

<wsdl :portType name=""BookOrderServiceSoap">
<wsdl zoperation name="BookOrderService'>
<wsdl:input message=""tns:BookOrderServiceRequest'>
</wsdl:input>
<wsdl :output message="tns:BookOrderServiceResponse'>
</wsdl :output>
</wsdl :operation>
</wsdl :portType>
<wsdl :binding name="BookOrderServiceSoapBinding" type="BookOrderServiceSoap'>
<wsdlsoap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl zoperation name="BookOrderService">
<wsdlsoap:operation soapAction=""BookOrderService"/>
<wsdl : input>
<wsdlsoap:body use="encoded™ encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"
namespace=""http://bookstore.com/wsdl/bookorder* />
</wsdl:input>
<wsdl :output>
<wsdlsoap:body use="encoded" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/*
namespace="http://bookstore.com/wsdl/bookorder"/>
</wsdl :output>
</wsdl :operation>
</wsdl:binding>
<wsdl :service name="BookOrderService'>
<wsdl :port name="BookOrderServiceSoap" binding="BookOrderServiceSoapBinding'>
<wsdlsoap:address location="http://bookstore.com/BookService"/>
</wsdl :port>
</wsdl:service></wsdl :definitions>

233

Appendix E

OWL-S Semantic Description
The Bookstore OWL-S files

1. Get a book by its ISBN

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.0rg/2002/07/owl#>.

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

@prefix service: <http://www.daml.org/services/OWL-S/1.1/Service.owl#>.
@prefix profile: <http://www.daml.org/services/OWL-S/1_1/Profile.owl#>.
@prefix process: <http://www.daml.org/services/OWL-S/1.1/Process.owl#>.
@prefix grounding: <http://www._daml.org/services/OWL-S/1.1/Grounding.owl#>.
@prefix swrl: <http://www.w3.0rg/2003/11/swrl#>.

@prefix expr: <http://www.daml_.org/services/OWL-
S/1.1/generic/Expression.owl#>.

@prefix swrlb: <http://www.w3.0rg/2003/11/swrlb#>.

@prefix dbpedia: <http://dbpedia.org/ontology/>.

@prefix domOnt: <http://bookstore.com/DomainOntology#>.

@prefix groundingWSDL: <http://bookstore.com/wsdl/getBookByISBN. wsdl#>.
@prefix : <http://bookstore.com/owls/getBookByISBN.owls#>.

<http://bookstore.com/owls/getBookByISBN.owls> a owl:Ontology;
owl :imports <http://bookstore.com/DomainOntology.owl>,
<http://dbpedia.org/ontology/>,
<http://www.daml .org/services/OWL-S/1.1/Grounding.owl>,
<http://www.daml .org/services/OWL-S/1.1/Process.owl>,
<http://www.daml .org/services/OWL-S/1_1/Profile.owl>,
<http://www.daml .org/services/OWL-S/1.1/Service.owl>,
<http://www._.w3.0rg/2003/11/swrl>,
<http://www._.daml _.org/services/OWL-S/1.1/generic/Expression.owl>.

:getBookByISBNService a service:Service;
service:presents :getBookBylSBNProfile;
service:describedBy :getBookByIlSBNProcess;
service:supports :getBookByIlSBNGrounding.
sgetBookByISBNProfile a profile:Profile;
profile:haslnput :1SBN;
profile:hasOutput :Book;
service:presentedBy :getBookByISBNService;
profile:serviceName "‘getBookByISBN"xsd:string.
:getBookBy I SBNProcess a process:AtomicProcess;
process:haslnput :I1SBN;
process:hasOutput :Book;
process:hasPrecondition :ValidlSBN;
process:hasResult :BookhaslSBN;
service:describes :getBookBylSBNService;
rdfs:label '""getBookBylSBNProcess"Mxsd:string.
:ISBN a process:Input;
process:parameterType
"http://bookstore.com/DomainOntology#ISBN""xsd:anyURI ;
rdfs:label "ISBN"~xsd:string.
:Book a process:Output;
process:parameterType "http://dbpedia.org/ontology/Book"xsd:anyURI;
rdfs:label ""Book""xsd:string.
:ValidISBN a expr:SWRL-Condition;
expr:expressionLanguage expr:SWRL;
expr:expressionBody "<swrl:AtomList
xmIns:swri=\"http://www.w3.0rg/2003/11/swr 1#\'">
<rdf:first xmlns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"'>
<swrl:ClassAtom>
<swrl:classPredicate
rdf:resource=\"http://bookstore.com/DomainOntology#Valid\" />
<swrl:argumentl rdf:resource=\"#ISBN\" />
</swrl:ClassAtom>
</rdf:first>
<rdf:rest rdf:resource=\"http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#niI\" xmlns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#\''>
</swrl:AtomList>""rdf:XMLLiteral.

234

Appendix E

:BookhasISBN a process:Result;
process:hasEffect [a expr:SWRL-Expression;
expr:expressionLanguage expr:SWRL;
expr:expressionBody "'<swrl:AtomList
xmIns:swri=\""http://www.w3.0rg/2003/11/swr 1#\">
<rdf:first xmlns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"'>
<swrl:ClassAtom>
<swrl:classPredicate
rdf:resource=\"http://bookstore.com/DomainOntology#hasISBN\"" />
<swrl:argumentl rdf:resource=\"#Book\" />
<swrl:argument2 rdf:resource=\"#ISBN\" />
</swrl:ClassAtom>
</rdf:first>
<rdf:rest rdf:resource=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#niI\"
xmIns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\" />
</swrl:AtomList>""rdf:XMLLiteral.].
:getBookByISBNGrounding a grounding:WsdIGrounding;
grounding:hasAtomicProcessGrounding :getBookBylSBNAtomicProcessGrounding;
service:supportedBy :getBookByIlSBNService.

-getBookByISBNAtomicProcessGrounding a grounding:WsdlAtomicProcessGrounding;
grounding:owlsProcess :getBookBylSBNProcess;
grounding:wsdlDocument
"http://bookstore.com/wsdl/bookbyisbn._wsdl" xsd:anyURI ;
grounding:wsdlOperation [a grounding:WsdlOperationRef;
grounding:operation "groundingWSDL :getBookByISBN"xsd:anyURI ;
grounding:portType "‘groundingWSDL :BookBylSBNSoap"~xsd:anyURI.];

grounding:wsdl InputMessage "groundingWSDL :getBookBylSBNRequest ' M<xsd:anyURI>;
grounding:wsdlOutputMessage
""groundingWsDL : getBookBy I SBNResponse"'M<xsd:anyURI>;
grounding:wsdlInput [a grounding:WsdlInputMessageMap;
grounding:owlsParameter :ISBN;
grounding:wsdIMessagePart "'groundingWSDL: ISBN"~xsd:anyURI ;
grounding:xsltTransformationString "<?xml version=\""1_0\"?>
<xsl:stylesheet version=\"1.0\"
xmIns:xsI=\"http://www.w3.0rg/1999/XSL/Transform\"
xmIns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"
xmIns:domOnt=\""http://bookstore.com/DomainOntology#\">
<xsl:template match=\"/ \'">
<xsl:value-of select=\"rdf:RDF/domOnt: ISBN/domOnt:haslISBNValue\"/>
</xsl:template></xsl:stylesheet>""xsd:string.];
grounding:wsdlOutput [a grounding:WsdlOutputMessageMap;
grounding:owlsParameter :Book;
grounding:wsdlIMessagePart '"'groundingWSDL:book"~xsd:anyURI ;
grounding:xsltTransformationString "<xsl:stylesheet version=\"1_0\"
xmIns:xsI=\"http://www.w3.0rg/1999/XSL/Transform\"'>
<xsl:template match=\""/\">
<rdf:RDF xmlIns:rdfs=\""http://www.w3.0rg/2000/01/rdf-schema#\"
xmIns:dbpedia=\"http://dbpedia.org/ontology/\"
xmIns:xsd=\"http://www.w3.0rg/2001/XMLSchema#\""
xmIns:owl=\"http://www.w3.0rg/2002/07/owl#\"
xmIns:rdf=\"http://www._w3.0rg/1999/02/22-rdf-syntax-ns#\"
xmIns:dc=\"http://purl.org/dc/terms/\''>
<dbpedia:Book>
<dc:title rdf:datatype=\""xsd:string\'>
<xsl:value-of select=\"book/title\"/>
</dc:title>
<dc:author rdf:datatype=\"xsd:string\'">
<xsl:value-of select=\"book/author\"/>
</dc:author>
</dbpedia:Book>
</rdf:RDF>
</xsl:template>
</xsl:stylesheet>""xsd:string.].

235

Appendix E

2. Order a Book
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.0rg/2002/07/owl#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.
@prefix service: <http://www.daml.org/services/OWL-S/1.1/Service.owl#>.
@prefix profile: <http://www.daml.org/services/OWL-S/1_1/Profile.owl#>.
@prefix process: <http://www.daml.org/services/OWL-S/1.1/Process.owl#>.
@prefix grounding: <http://www.daml.org/services/OWL-S/1.1/Grounding.owl#>.
@prefix swrl: <http://www.w3.0rg/2003/11/swrl#>.
@prefix expr: <http://www.daml_org/services/OWL-
S/1.1/generic/Expression.owl#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix domOnt: <http://bookstore.com/DomainOntology#>.
@prefix groundingWSDL: <http://bookstore.com/wsdl/bookorder _wsdl#>.
@prefix : <http://bookstore.com/owls/BookOrderService.owls#>.
<http://bookstore.com/owls/BookOrderService.owls> a owl:Ontology;
owl :imports <http://bookstore.com/DomainOntology.owl>,
<http://dbpedia.org/ontology/>,
<http://www.daml .org/services/OWL-S/1.1/Grounding.owl>,
<http://www.daml .org/services/OWL-S/1.1/Process.owl>,
<http://www.daml .org/services/OWL-S/1_1/Profile.owl>,
<http://www.daml .org/services/OWL-S/1.1/Service.owl>,
<http://www._.w3.0rg/2003/11/swrl>,
<http://www.daml .org/services/OWL-S/1.1/generic/Expression.owl>.
:BookOrderServiceService a service:Service;
service:describedBy :BookOrderServiceProcess;
service:presents :BookOrderServiceProfile;
service:supports :BookOrderServiceGrounding.

:BookOrderServiceProfile a profile:Profile;
profile:haslnput :Book;
profile:hasOutput :Order;
profile:hasResult :0OrderedBook;
profile:serviceName ""BookOrderService';
service:presentedBy :BookOrderServiceService.

:BookOrderServiceProcess a process:AtomicProcess;
process:haslnput :Book;
process:hasOutput :Order;
process:hasResult :OrderedBook;
service:describes :BookOrderServiceService;
rdfs: label "BookOrderServiceProcess".

:Book a process:Input;
process:parameterType "http://dbpedia.org/ontology/Book"~xsd:anyURI ;
rdfs:label "Book'.

:Order a process:Output;
process:parameterType "http://bookstore.com/DomainOntology#0rder " xsd:anyURI;
rdfs:label "Order™.

:OrderedBook a process:Result;
process:haskEffect [a expr:SWRL-Expression;
expr:expressionLanguage expr:SWRL;
expr:expressionBody
"<swrl:AtomList xmIns:swri=\"http://www.w3.0rg/72003/11/swrI#\">
<rdf:first xmlns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"'>
<swrl:ClassAtom>
<swrl:classPredicate
rdf:resource=\"http://bookstore.com/DomainOntology#containsltem\" />
<swrl:argumentl rdf:resource=\"#0rder\" />
<swrl:argument2 rdf:resource=\"#Book\" />
</swrl:ClassAtom>
</rdf:first>
<rdf:rest rdf:resource=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#niI\"
xmIns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\" />
</swrl:AtomList>""rdf:XMLLiteral.].

236

Appendix E

:BookOrderServiceGrounding a grounding:WsdIGrounding;
service:supportedBy :BookOrderServiceService;
grounding:hasAtomicProcessGrounding

:BookOrderServiceAtomicProcessGrounding.

:BookOrderServiceAtomicProcessGrounding a
grounding:WsdlAtomicProcessGrounding;
grounding:owlsProcess :BookOrderServiceProcess;
grounding:wsdlDocument "http://bookstore.com/wsdl/bookorder _wsdl"~xsd:anyURI ;
grounding:wsdlOperation [a grounding:WsdlOperationRef;
grounding:operation "groundingWSDL:BookOrderService'"xsd:anyURI ;
grounding:portType "‘groundingWSDL:BookOrderServiceSoap'xsd:anyURI.];
grounding:wsdl InputMessage groundingWSDL:BookOrderServiceRequest'xsd:anyURI ;
grounding:wsdlOutputMessage ''groundingWSDL :BookOrderServiceResponse ~xsd:anyURI ;
grounding:wsdlInput [a grounding:Wsdl InputMessageMap;
grounding:owlsParameter :Book;
grounding:wsdIMessagePart '"'groundingWSDL :book"~xsd:anyURI ;
grounding:xsltTransformationString
"<xsl:stylesheet version=\""1.0\"
xmIns:xsI=\"http://www.w3.0rg/1999/XSL/Transform\"
xmIns:rdf=\"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"
xmIns:domOnt=\""http://bookstore.com/DomainOntology#\"
xmIns:tns=\"http://bookstore.com/wsdl/bookorder .wsdI\'>
<xsl:template match=\""/\">
<xsl:for-each select=\"rdf:RDF/domOnt:Book/\">

<book>

<ISBN><xsl:value-of select=\"dbpedia:isbn\"/></1SBN>
<title><xsl:value-of select=\"dc:title\'"/></title>
<author><xsl:value-of select=\"dc:author\"/></author>

</book>
</xsl:template>

</xsl:stylesheet>""xsd:string.

1:

grounding:wsdlOutput [a grounding:WsdlOutputMessageMap;
grounding:owlsParameter :Order;
grounding:wsdIMessagePart "groundingWSDL:order"~xsd:anyURI ;
grounding:xsltTransformationString “<xsl:stylesheet version=\"1.0\"
xmIns:xsI=\"http://www.w3.0rg/1999/XSL/Transform\"'>
<xsl:template match=\"/\"">
<rdf:RDF xmIns:rdfs=\"http://www.w3.0rg/2000/01/rdf-schema#\"

xmlns
xmlns

:dbpedia=\"http://dbpedia.org/ontology/\"

:xsd=\"http://www.w3.0rg/2001/XMLSchema#\""
xmlns:
xmlns:
xmlns:
xmlns:

owl=\"http://www.w3.0rg/2002/07/owl#\"
rdf=\""http://www.w3.0rg/1999/02/22-rdf-syntax-ns#\"
dc=\"http://purl.org/dc/terms/\"
domOnt=\"http://bookstore.com/DomainOntology#\'>

<domOnt:Order>

<domOnt:containsltem>

<dbpedia:Book>

<dbpedia:isbn>

<xsl:value-of select=\""Order/Book/ISBN\'"/>
</dbpedia:isbn>

</dbpedia:Book>

</domOnt:containsltem>

<domOnt:Order1D>

<xsl:value-of select=\"Order/@orderld\"/>

</domOnt:OrderiD>
</domOnt:Order>

</rdf:RDF>
</xsl:template>
</xsl:stylesheet>""xsd:string.]-

237

Appendix E

Composite Service
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.
@prefix owl: <http://www.w3.0rg/2002/07/owl#>.
@prefix list: <http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#>.
@prefix grounding: <http://www._daml._org/services/owl-s/1.1/Grounding.owl#>.
@prefix profile: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>.
@prefix process: <http://www.daml_.org/services/owl-s/1_1/Process.owl#>.
@prefix service: <http://www.daml.org/services/owl-s/1.1/Service.owl#>.
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
<http://bookstore.com/owls/OrderBookByl1SBNService.owls> a owl:Ontology;
owl :imports <http://bookstore.com/DomainOntology.owl>,
<http://dbpedia.org/ontology/>,
<http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl>,
<http://www.daml .org/services/owl-s/1._.1/Grounding.owl>,
<http://www.daml .org/services/owl-s/1.1/Process.owl>,
<http://www.daml .org/services/owl-s/1._1/Profile.owl>,
<http://www.daml .org/services/owl-s/1_1/Service.owl>,
<http://www.w3.0rg/2003/11/swrl>.
:OrderBookBylISBNService a service:Service;
service:describedBy :0OrderBookBylSBNProcess;
service:presents :OrderBookByIlSBNProfile;
service:supports :0rderBookBylSBNGrounding.
:OrderBookByl1SBNProfile a profile:Profile;
profile:haslnput :Book, :ISBN;
profile:hasOutput :Order;
profile:serviceName "Order Book By ISBN'";
service:presentedBy :OrderBookBylSBNService.
:Book a process:Input;
process:parameterType "http://dbpedia.org/ontology/Book"Mxsd:anyURI .
:ISBN a process:Input;
process:parameterType "http://bookstore.com/DomainOntology#1SBN" xsd:anyURI .
:Order a process:Output;
process:parameterType "http://bookstore.com/DomainOntology#0rder'Mxsd:anyURI .
:OrderBookBylISBNProcess a process:CompositeProcess;
process:composedOf [a process:Sequence;
process:components [a process:ControlConstructList;
list:first :Performl;
list:rest [list:first :Perform2;
list:rest list:nil_.].]-];
process:haslnput :Book,:1SBN;
process:hasOutput :Order;
process:hasResult [a process:Result;
process:withOutput [a process:OutputBinding;
process:toParam :Order;
process:valueSource [a process:ValueOf;
process:fromProcess :Perform2;
process:thevVar :Order.]; 1: 1:
service:describes :OrderBookByISBNService.
:Performl a process:Perform;
process:hasDataFrom [a process:InputBinding;
process:toParam <http://bookstore.com/owls/getBookByISBN.owls#1SBN>;
process:valueSource [a process:ValueOf;
process:fromProcess process:TheParentPerform;
process:thevVar :ISBN.]; 1:
process:process <http://bookstore.com/owls/getBookByISBN.owls#getBookBylISBNProcess>.
:Perform2 process:hasDataFrom [a process:InputBinding;
process:toParam <http://bookstore.com/owls/BookOrderService.owls#Book>;
process:valueSource [a process:ValueOf;
process:fromProcess :Performl;
process:theVar <http://bookstore.com/owls/getBookByISBN.owls#Book>;]-];
Process:Iprocess <http://bookstore.com/owls/BookOrderService.owls#BookOrderServiceProcess>;
a process:Perform.
:OrderBookByISBNGrounding a grounding:WsdlGrounding;
grounding:hasAtomicProcessGrounding
<http://bookstore.com/owls/BookOrderService.owls#BookOrderServiceGrounding>,
<http://bookstore.com/owls/getBookByISBN.owls#getBookBy 1 SBNGrounding>;
service:supportedBy :OrderBookByIlSBNService.

238

The bookstore domain ontology

@prefix
@prefix
@prefix
@prefix
@prefix
@prefix

@prefix :

rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
dbpedia: <http://dbpedia.org/ontology/>.

xsd: <http://www.w3.0rg/2001/XMLSchema#>.

owl: <http://www.w3.0rg/2002/07/owl#>.

rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

dc: <http://purl.org/dc/terms/>.
<http://bookstore.com/DomainOntology#>.

<http://bookstore.com/DomainOntology> a owl:Ontology.

Valid

- 1SBN

-hasISBN

a owl:Class.

a owl:Class.

a owl:ObjectProperty;
rdfs:domain dbpedia:Book;
rdfs:range - 1SBN.

-has1SBNValue a owl :DatatypeProperty;

rdfs:domain :I1SBN;
rdfs:range xsd:string.

:Order a owl:Class.

containsltem a owl:ObjectProperty;

rdfs:domain :Order;
rdfs:range :Book.

torderlID a owl :DatatypeProperty;

rdfs:domain :Order;
rdfs:range xsd:string.

239

Appendix E

Appendix E

OWL-S Interaction

Client

Server

GET /owls/getBookByISBN.owls HTTP/1.1
Host: bookstore.com

HTTP/1.1 20

Get Book
by its
ISBN OWL-
S File

GET /DomainOntology HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK

Bookstore
Domain
Ontology

GET /wsdl/getBookByISBN.wsdl HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK

GET Book
by its
I1SBN WSDL
File

POST /BookService HTTP/1.1
Host: bookstore.com

<soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soa
p/envelope/"
xmIns:soapenc="http://schemas.xmlsoap.org/soa
p/encoding/"'>
<soapenv:Body
xmlIns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmIns:wns="http://bookstore.com/wsdl/bookbyis
bn.wsdl">

<wns: getBookByISBN>

<wns :getBookBy I SBNRequest>

0123735564
<wns:getBookBylSBNRequest>

</wns: getBookByISBN>

</soapenv:Body>
</soapenv:Envelope>

HTTP/1.1 200 OK
Content-Type: application/soap+xml

<?xml version="1.0"7?>
<soap:Envelope
xmIns:soap="http://www._.w3.0rg/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12
/soap-encoding''>
<soap:Body xmlIns:wsn="
http://bookstore.com/wsdl/bookbyisbn._wsdl'>
<wns:getBookBy I SBN>
<wns:getBookBy I SBNResponse>
<wns :book>
<wns:title>Semantic Web for the Working
</wns:title>
<wns:author>Allemang and Hendler
</wns:author>
<wns: isbn>0123735564</wns: isbn>
</wns:book>
</wns: getBookBylSBNResponse>
<wns :getBookBy I SBN>

240

Appendix E

</soap:Body>
</soap:Envelope>

GET /owls/BookOrderService.owls HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK

Order
Book

OwWL-S
File

GET /wsdl/getBookByISBN.wsdl HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK

Order
Book
WSDL
File

POST /BookService HTTP/1.1
Host: bookstore.com

<soapenv:Envelope
xmIns:soapenv="http://schemas.xmlsoap.org/soa
p/envelope/™
xmIns:soapenc="http://schemas.xmlsoap.org/soa
p/encoding/"'>

<soapenv:Body
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmIns:wns=""http://bookstore.com/wsdl/bookorde
r.wsdl'>
<wns: BookOrder>
<wns :BookOrderRequest>
<wns:book>
<wns:title>Semantic Web for the Working
Ontologist
</wns:title>
<wns:author>Allemang and
Hendler</wns:author>
<wns: isbn>0123735564</wns: isbn>
</wns:Book>
</wns:BookOrderRequest>
</wns: BookOrder>
</soapenv:Body>
</soapenv:Envelope>

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12
/soap-encoding'>
<soap:Body xmlIns:wsn="
http://bookstore.com/wsdl/bookorder.wsdl*>
<wns :BookOrder>
<wns :BookOrderResponse>
<wns:order ordered="12345">
<wns:book>
<wns:title>Semantic Web for the Working
</wns:title>
<wns:author>Allemang and Hendler
</wns:author>
<wns: isbn>0123735564</wns: isbn>
</wns:book>
</wns:order>
</wns:BookOrderResponse>
<wns:BookOrder>
</soap:Body>
</soap:Envelope>

241

Appendix E

RESTdesc

Ty
vaida Business Lngla
Development
Phase not part of
RESTdesc
I: Provide An API
—
Ty
Domain — — | Optional: Design Domain Ontology
Ontology { (
>- RESTdesc
RESTdesc .
Descriptions — — @glgn RESTdesc Service Descnptln@

®

242

Appendix E

RESTdesc - Service Design and Deployment

RESTdesc does not involve the steps regarding deploying the API, because it assumes the APIs have
already been developed and deployed. However because we are comparing it with EXPRESS, and
this is involved in the development phase, it is necessary to discuss the tasks RESTdesc assumes are
there.

In developing the API, several factors come into place, like the programming language and
framework, their support of HTTP (RESTful concepts), the existence of legacy software, involved or
a Web Application.

However, process usually is the same across RESTful Web service frameworks:

1. Map the data into resources.

2. Specify their URIs.

3. Decide which HTTP methods can be performed on the resource.

4. Design the representations sent and accepted to and from the client, decide on the media
types, and link the resources.

The Existing Web API

Resource Description
1. GET /Books?isbn={ISBN} Returns a book with the given ISBN
2. POST /Order Given a book, this creates an order for a book, returns order ID

1. GET /Books?isbn={ISBN}

Sample Request

GET /Books?isbn={1585425524} HTTP/1.1
Host: www.bookstore.com

Accept: application/json;

Sample Response

HTTP/1.1 200 OK

{"book": {
"isbn": "0123735564",
“title”: "Semantic Web for the Working Ontologist”,
"author': "Allemang and Hendler™

b3

2. POST /Order

Sample Request

POST /Order HTTP/1.1
Content-type: application/json;
Accept: application/json;

{"book": {
"ISBN': ''0123735564",
"title”: "Semantic Web for the Working Ontologist”,
"author': "Allemang and Hendler™

3}

Sample Response

HTTP/1.1 201 Created
Location: http://www.bookstore.com/Order/123242

{"order": {
"id': ""123242",
""contains'':

[{"book": {"isbn": "0123735564",
“title”: "Semantic Web for the Working Ontologist”,
"author': "Allemang and Hendler"

b3

243

Appendix E

RESTdesc - Semantic Description
RESTdesc v.1

1 GET /Books?isbn={ISBN}

@prefix http: <http://www.w3.0rg/2011/http#>.

@prefix dbpedia: <http://dbpedia.org/ontology/>.

@prefix tmpl: <http://purl.org/restdesc/http-template#>.
@prefix dc: <http://purl._org/dc/terms/>.

{
?book a dbpedia:Book;
dbpedia:isbn ?isbn.

}

=>

{

_irequest http:methodName “"GET";
http:requestURI (*'/books?isbn=" ?isbn);
http:resp [http:body ?book].

?book dc:title _:title;
dc:-author _tauthor.}.

2 POST /Order V.1

@prefix ord: <http://bookstore.com/bookorder#>.

@prefix http: <http://www.w3.0rg/2011/http#>.

@prefix tmpl: <http://purl._org/restdesc/http-template#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.

?book a dbpedia:Book;
}
=>
{
_Irequest http:methodName "POST™;
http:requestURI “"/order";
http:body [tmpl:formData (“'book=" ?book)];
http:resp [tmpl:location (“order/" ?orderlD);
http:body ?order]J.
?order a ord:Order;
ord:orderlD ?orderld;
ord:containsltem ?book.}.

RESTdesc v2.0

1 GET (BookURI)

@prefix http: <http://www.w3.0rg/2011/http#>.

@prefix dbpedia: <http://dbpedia.org/ontology/>.

@prefix tmpl: <http://purl._org/restdesc/http-template#>.
@prefix dc: <http://purl.org/dc/terms/>.

{
?book a dbpedia:Book;
}
=>
{
_irequest http:methodName "“"GET";
http:requestURI ?book ;
http:resp [http:body ?book].
?book dc:title _:title.
?book dc:author _rtauthor.}.

2 POST (BookURI)

@prefix ord: <http://bookstore.com/bookorder#>.
@prefix http: <http://www.w3.0rg/2011/http#>.

?book a dbpedia:Book;
}

244

Appendix E

=>
{
_:request http:methodName "POST";
http:requestURI ?book;
http:resp [http:body ?order].
?order a ord:Order;
ord:orderlD _Iid;
ord:containsltem ?book.}.

The bookstore domain ontology for the RESTdesc Service

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.0rg/2002/07/owl#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix : <http://bookstore.com/bookorder#>.

<http://bookstore.com/bookorder> a owl:Ontology.

:Order a owl:Class.

containsltem a owl:ObjectProperty;
rdfs:domain :Order;
rdfs:range dbpedia:Book.

torderlID a owl :DatatypeProperty;

rdfs:domain :Order;
rdfs:range xsd:string.

245

Appendix E

RESTdesc - Interaction

Client Server
OPTIONS /AP1
HTTP/1.1
Host: bookstore.com
HTTP/1.1 200 OK
Allow: GET,HEAD,OPTIONS
Content-Type: text/n3
RESTdesc API
Descriptions
GET /bookorder
HTTP/1.1
Host: bookstore.com

HTTP/1.1 200 OK
Content-Type: text/n3

RESTdesc
Domain
Ontology

GET /book?isbn={0123735564}
HTTP/1.1

Host: bookstore.com
HTTP/1.1 200 OK
{"book": {
"isbn': "0123735564",
"title": "Semantic Web for the
Working Ontologist",
"author': "Allemang and Hendler™,
uri':
"http://bookstore.com/books/0123735564"
b
POST /order
HTTP/1.1
Host: bookstore.com
{"book": {

"isbn': "0123735564",
"title": "Semantic Web for the
Working Ontologist',

i34

"author': "Allemang and Hendler™

HTTP 201 Created
Location:
http://bookstore.com/Order/12345

246

PART TWO

EXPRESS Example 1:
Endpoint:
GET http://bookstore.com/EXPRESS/Book?isbn={}

Ontology:
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

@prefix owl: <http://www.w3.0rg/2002/07/owl#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.
@prefix dc: <http://purl.org/dc/terms/>.

@prefix : <http://bookstore.com/EXPRESS/>.
<http://bookstore.com/EXPRESS> a owl:Ontology.-

:Book a owl:Class;
owl:equivalentClass dbpedia:Book.

:title a owl:DatatypeProperty;
owl:equivalentProperty dc:title;
rdfs:domain :Book;
rdfs:range xsd:string.

author a owl:DatatypeProperty;
owl:equivalentProperty dc:author;
rdfs:domain :Book;
rdfs:range xsd:string.

sisbn a owl:DatatypeProperty;
owl:equivalentProperty dbpedia:isbn;
rdfs:domain :Book;
rdfs:range xsd:string.

247

Appendix E

Appendix E

EXPRESS Example 2:

Endpoint:
GET http://bookstore.com/getBookBylSBN/Book?_isbn={}

Ontology:

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

@prefix owl: <http://www.w3.0rg/2002/07/owl#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix domOnt: <http://bookstore.com/DomainOntology#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.

@prefix : <http://bookstore.com/getBookByISBN/>.

<http://bookstore.com/getBookBy I SBNEXPRESS.owl> a owl:Ontology;
owl :imports <http://bookstore.com/DomainOntology>,
<http://dbpedia.org/ontology>.

:Book a owl:Class;
owl:equivalentClass dbpedia:Book.

:ISBN a owl:Class;
owl:equivalentClass domOnt:1SBN.

:_isbn a owl:ObjectProperty;
rdfs:domain dbpedia:Book;
rdfs:range domOnt: 1SBN.

domOnt : http://bookstore.com/DomainOntology

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix dbpedia: <http://dbpedia.org/ontology/>.

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.

@prefix owl: <http://www.w3.0rg/2002/07/owl#>.

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
@prefix : <http://bookstore.com/DomainOntology#>.

<http://bookstore.com/DomainOntology> a owl:Ontology.
:ISBN a owl:Class.
-hasISBN a owl:ObjectProperty;
rdfs:domain dbpedia:Book;
rdfs:range :1SBN.
has1SBNValue a owl:DatatypeProperty;

rdfs:domain :I1SBN;
rdfs:range xsd:string.

248

Appendix E
Participant Information Sheet

Study Title: Towards RESTful and Resource-Oriented Semantic Web Services
Researcher: Areeb Alowisheq
Ethics number: 6324

Please read this information carefully before deciding to take part
in this research. If you are happy to participate you will be asked to

sign a consent form.
What is the research about?

This research investigates an approach for simplifying the development of Semantic
Web services (SWS) by reducing their semantic descriptions. This study aims to
compare three Semantic Web service approaches in terms of their required development
effort. These are OWL-S, RESTdesc and EXPRESS.

Why have I been chosen to participate?

You invited to participate in this study because you are an expert in Semantic Web
Technologies. Your opinion and expertise will help in assessing and comparing aspects

of different Semantic Web service approaches.
What will happen to me if I take part?

I will ask you to sign a consent form, and then the study will begin. I will conduct an
interview with you, with open-ended questions, and | will record your voice during the

interview.
Are there any benefits in my taking part?

This research is not designed to help you personally, but your feedback will help me

gather expert opinions on the development efforts
Will my participation be confidential?

Yes. Any data will be stored will not be linked to your name. Your data and that of
other participants will be stored and used on secure systems.

249

Appendix E

Are there any risks involved?

No.

What happen if I change my mind?

You have the right to terminate your participation in the research, at any stage, you do
not need to give any reasons, and without your legal rights being affected. Any data
collected form you will be immediately destroyed.

Where I can get more information?

For further details, please contact either myself or my study supervisor, Dr.David

E. Millard.

Areeb Alowisheq: aaa08r@ecs.soton.ac.uk

Dr.David E. Millard: dem@ecs.soton.ac.uk

250

mailto:aaa08r@ecs.soton.ac.uk
mailto:dem@ecs.soton.ac.uk

Appendix E

CONSENT FORM (Version 1)

Study title: Towards Resource-oriented RESTful Semantic Web services
Researcher name: Areeb Alowisheq

Study reference: Towards Resource-oriented RESTful Semantic Web

services
Ethics reference: 6324

Please initial the box(es) if you agree with the statement(s):

| have read and understood the information sheet and have

had the opportunity to ask questions about the study

| agree to take part in this research project and agree for my

data to be used for the purpose of this study

I understand my participation is voluntary and | may

withdraw at any time without consequence and my data will

be deleted if | withdraw at any time

| agree to record my voice during my participation in this

study
Data Protection

I understand that information collected about me during my participation in this
study will be stored on a password protected computer and that this information
will only be used for the purpose of this study. All files containing any personal

data will be made anonymous.

Name of participant (print
(1111 1 1)
Signature of participant.................... e

Name of Researcher (print name): Areeb Alowisheq

Signature of

RESEANCRNEY oo e e

251

Appendix F

Appendix F: Sample Expert Review Transcript

The transcript below is from the interview with second expert, answering the question about

development speed.

Time

29:18

29:36

29:37

29:40

Speaker

Researcher

Participant

Researcher

Participant

Discussion

If you were required to provide a semantic API for a
bookstore, if you had to use one of these approaches how

long do you think it will take you?

For each approach?

Yes.

I think so in order of time, sort of ascending I imagine, it will
go like, I guess RESTdesc, EXPRESS and then OWL-S. But it
does depend I think on, if you are building it with that in
mind I suppose, than if you are building it, a service, from
scratch, from the start, then I guess OWL-S is rigorous way
of building it, but I think for development time so I guess
RESTdesc would be the quickest way, just because of
simplicity, then I guess EXPRESS after that coz it’s a, I guess,
you have to bear it more in mind while you are developing it,
I guess as soon as you get into WSDL Web services that will
get more complex so it needs more debugging time and
testing and um.. yeah it is a lot harder. I think it will bind you
a bit more to which languages you developing it as well, so
some languages have better support than other languages,
so I guess for SOAP services java obviously is really good, if
you go to python or PHP it gets more sort of unreliable, I can
imagine RESTdesc and EXPRESS are a bit more lighter
weight, and it is less reliant on what language you use, so

you can probably be a bit more agnostic for language, yeah

253

Appendix G

Appendix G: Expert Review Analysis Screenshots

o I guess for is the actual process from OWL-s going back from something in

good because you getthe raw RDF back, so u can actually putinto a reasoner,

have to do a bit more leg work to be able to investigate how rich it is and handle
the logid

[ButI guess this (OWL-s) is good in that you do have actually, you do map it onto

a SOAP/WSDL etc_by using RDF so you can actually sortof dig back into the
process and say this process was sort of derived by this , so I guess it is more like
thoroughly described I suppose, so even the service is described as RDF, so you
actually have like and end to end thing so that is a service relies upon these
classes theseobjeecty
[Whereas these ones are less so perhaps, but then I guess (RESTdesc) you have

the implies, so that is defined quite nicely there, so that is actually sortof, [mean
they are both define the services what inputs, outputs they accept, so this one is

gotthe URI templates to deal with as well whereas owls you don'treally have to
think about the URLs is it all handled internally in thatwayj __________________________
[They all pass backI guess similar semantic content aboutkhe order and the

books itis just the semantic of processes themselves and the actual thing
providing you with the data so you probably get more semantic information

from owl-s, but it is less easy to explorﬁ_

oo -{Comment [a25]: 2-12

.-{ Comment [a26]: 2-15
B '{Comment [@27]: z2-1&

--{ Comment [a28]: 2-17

--{Comment [@29]: 2-18

--{ Comment [a30]: 2-13

.-{ comment [a31]: 2-20

.-{ Comment [a32]: 2-21

- —{Comment [a33]: 2-22

Figure 46 Interview analysis document, text is annotated with identifiers

255

Appendix G

A B c D E F
2l 2
2 = : .
5l ® Quote Sub-theme Theme Interview Question
1 E| &
"and the owl-s approach is heavy duty 02. Froviding Semantic AFI,
2| 112 Not quite structured as RESTdasc,” OWL-s Cons Development Speed [How Long?
"RESTdecs should be very straightforward to build on top of the existing HTTF 03. Providing Clients,
APIs, just follows the n3 format which is widely accepted. | think it even describe intermsof - 1-
providing the necessary ontologies and the full pattern of the HTTP APl it can ease of use, devspeed 2-
3 | 1|15 be even done by automatic process it should be really fast” RESTdesc Pros Development Speed [semantic quality
"It can be really fast even for EXPRESS, | cannot see the true difference 03 Providing Clisnts,
between the EXPRESS approach and HTTP APl approach, certainly it is mare describe interms of : 1-
structured but in terms of semantic quality, it doesn’t provide much ease of use, dev speed 2-
q 1(1-6 semantics” EXPRESS Pros Development Speed |semantic quality
obviously OWL-s you are doing SOAF so it may actually be quicker so there 03. Providing Clients,
are 3 few lines you could say grab the WSDL file and form my request and it is describe intermsof - 1-
good that clients don't need to know actually that it is linked data behind the ease of use, devspeed 2-
5 2|2-13 |scenes, not having to worry about what the underlying technology is OWL-s Pros Development Speed [semantic quality
"It iz amazing how much verbose it iz
6 | 2|26 It amazing the different in size compared to the other twa" OWL-s Cons Development Speed |Before during explanation
so inorder of time, sort of ascending | imagine, it will go like, REST
EXPRESS and then OWL-s, But | guess it depends on if you are building it with
that in mind, than ifyou are building it from scratch, from the start, then |
suess OWL-s is rigorous way of building it, so | suess RESTdesc would be the
quickest, just becausa of simplicity, than | = EXPRESS sftarthat cozit's 3
you have to have it in mind while you are developing it, | guess as soonasyou
getinto WSDL web services that will get more complex so it needs more Q2. Providing Semantic AFI,
7 2|28 debugging time and testing and.. yeah it is a lot harder. RESTdesc Pros Development Speed |How Long?
<o inorder oftime, sort of ascending | imagine, it will go like, RESTdesc,
EXFRESS and then OWL-s, But| guess it depends on if you are building it with
thatin mind, than if you are building it from scratch, from the start, then |
guess OWLs is rigorous way of building it, so | guess RESTdesc would be the
quickest, just because of simplicity, then | guzss EXPRESS sfter that cozit'sa
you have to have it in mind while you are developing it, | guess as soon as you
getinto WSDL web services that will get more complex se it needs more Q2. Providing Ssmantic API,
8 | 2|zs debugging time and testing and.. yeah it is a lot harder. OWL-5 Cons Development Speed [How Long?
so inorder of time, sort of ascending | imagine, it will go like, RESTdesc,
EXPRESS and then OWL-z, But| guess it depends on if you are building it with
that in mind, than ifyou are building it from scratch, from the start, then |
guess OWL-sis rigorous way of building it, so | guess RESTdesc would be the
quickest, just because of simplicity, then | guess EXPRESS after that cozit'za
you have to have it in mind while you are developing it, | guess as soonasyou
zet into WSDL web services that will zet more complex so it needs more 02. Providing Semantic AF1,
9 2|23 debuggingtima and testing and.. yesh it iz 3 lot harder. EXPRESS Pros Development Speed |How Long?
Q3. Providing Clisnts,
I think EXPRESS and RESTdesc would be fairly similar for development speed, describe interms of : 1-
there are fairly standard POSTing GETtingto 3 URL so there is nothing thoze sase of use, dev speed 2-
10 | 2{211 [languagescan'tdoalreadysoit isfairly straightforward RESTdesc Pros Development Speed [semantic quality
Q3. Providing Clients,
I think EXPRESS and RESTdesc would be fairly similar for development speed, describe interms of : 1-
there are fairly standard POSTing GETting to a URL so there is nothing those ease of use, devspeed 2-

Figure 47 Interview analysis spreadsheet, Quote ID are the identifiers

256

in Figure 46

