
1

Hibernus: Sustaining Computation during
Intermittent Supply for Energy-Harvesting Systems

Domenico Balsamo, Alex S. Weddell, Member, IEEE, Geoff V. Merrett, Member, IEEE,
Bashir M. Al-Hashimi, Fellow, IEEE, Davide Brunelli, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—A key challenge to the future of energy-harvesting
systems is the discontinuous power supply that is often generated.
We propose a new approach, Hibernus, which enables computa-
tion to be sustained during intermittent supply. The approach has
a low energy and time overhead which is achieved by reactively
hibernating: saving system state only once, when power is about
to be lost, and then sleeping until the supply recovers. We validate
the approach experimentally on a processor with FRAM non-
volatile memory, allowing it to reactively hibernate using only
energy stored in its decoupling capacitance. When compared to
a recently proposed technique, the approach reduces processor
time and energy overheads by 76-100% and 49-79% respectively.

Index Terms—energy harvesting, checkpointing, embedded
software

I. INTRODUCTION

Energy-harvesting systems power themselves by extract-
ing energy from the environment [1]. However, the energy
provided is often highly temporally dynamic, providing an
intermittent supply that is incapable of sustaining computation.
This is because processors switch off when the supply drops
below their minimum operating voltage and, when power is
available again, restart computation from the beginning.

To manage an intermittent supply, one approach is to use a
battery or supercapacitor to buffer energy. However, the level
of miniaturisation required to realise medical implants [2]
or visions of ‘smart dust’ [3] causes energy storage to be
minimised, constraining the computational ability of systems.
Recently, a different approach (Mementos [4]) was proposed,
which uses the well-known concept of checkpoints [5] placed
at compile-time. Mementos saves periodic snapshots of system
state to non-volatile memory (NVM), which enable it to return
to a previous checkpoint after a power failure. A number of
checkpoint placement heuristics are proposed, including at the
beginning of every function-call or before any loop. At run-
time, when these checkpoints are reached, the supply voltage
(VCC) of the processor is inspected using the an analog-to-
digital converter (ADC). If it is deemed to be failing (VCC <
a threshold VM), a snapshot of the system state is saved to
NVM. This requires regular polling of the supply voltage,
and can result in multiple snapshots being saved when the

D. Balsamo, A. S. Weddell, G. V. Merrett and B. M. Al-Hashimi are with
the Pervasive Systems Centre, Electronics and Computer Science, University
of Southampton, UK.

D. Brunelli is with the Department of Industrial Engineering, University of
Trento, Italy.

D. Balsamo and L. Benini are with the Department of Electrical, Electronic
and Information Engineering “Guglielmo Marconi” (DEI), University of
Bologna, Italy.

Time

S
u

p
p

ly
 V

o
lt

ag
e

(V
cc

)Vmax

Vmin

VR
VH

Restore

Hibernate

Hibernating Active Hiber.Active Hibernating Active Active

Hibernate

Restore

Hibernate

Restore

Fig. 1. Operation of Hibernus in response to intermittent supply voltage.

supply voltage is close to the threshold; both introduce time
and energy overheads.

This brief proposes Hibernus1, a new approach which
automatically saves a snapshot only once (without the need for
checkpoint placement heuristics), immediately before power
failure, then sleeps. Hibernus saves the system’s complete
volatile memory; this is enabled in part by developments in
Ferroelectric RAM (FRAM), a NVM technology that is more
efficient than flash, and is now being monolithically integrated
into low-power microcontrollers [6]. The speed and efficiency
of integrated FRAM means we can react to power loss and
save a snapshot using only the energy stored in a system’s
decoupling capacitance.

II. HIBERNUS

The Hibernus approach has two states: active and hi-
bernating. It moves between these states when the supply
voltage (VCC) passes thresholds (Fig. 1). It uses a hardware
interrupt to detect when VCC drops below VH, then prompts a
reactive hibernation – saving an immediate snapshot of volatile
memory, then entering deep sleep. The snapshot is restored by
another interrupt, when the supply voltage rises above VR. The
approach is illustrated in Fig. 2 and differs from Mementos,
whose checkpoint locations are set in advance. Due to this,
our approach is more energy- and time-efficient than existing
approaches (experimentally demonstrated in Sec. III), and does
not depend on checkpoint placement heuristics.

Hibernus is application-agnostic and transparent to the
programmer, because it can reactively hibernate at any time
during the execution of an application. Therefore, to save a
snapshot of system state, it copies all registers and volatile
memory to NVM. The energy consumed by this process, Eσ ,

1In computing, ‘hibernation’, from the Latin hı̄bernus, is the process of
saving state to allow power to be removed.

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

Interrupt

Interrupt

Hibernate

Restore

Y N

Normal Operation

Save snapshot to

non-volatile memory

Sleep
Set up hibernate interrupt

Supply failing?
(VCC VH)

Supply recovering?
(VCC VR)

Snapshot
saved OK?

Restore

state

Restart

application

Fig. 2. Flow-chart illustrating the Hibernus approach.

depends on the size of the volatile memory and the energy
consumption for copying each byte.

Eσ = nαEα + nβEβ (1)

Here, nα and nβ are the sizes of the RAM and registers
(in bytes). Eα and Eβ are the energy required to copy each
RAM and register byte to NVM (J/byte).

Hibernus requires sufficient NVM to save the contents of all
processor registers and RAM. This is the case with modern
microcontrollers, e.g. [6]. It also requires enough energy to
be stored in the capacitance between the supply rails to save
a full snapshot. Energy harvesting systems normally operate
across a range of voltages, from Vmin to Vmax. Below Vmin,
processors may operate unpredictably (brown-out), or shut
down completely. Given the total capacitance (

∑
C), the

energy Eδ stored between a given voltage V and Vmin is:

Eδ =
V 2 − V 2

min

2
·
∑

C (2)

To ensure stability, VH is set so that Eσ > Eδ , to enable
complete hibernation (even with a sudden loss of supply). VR
is set higher to add hysteresis, allowing the system to restore
without taking the Vcc below VH, even with sudden loss of
supply. For small embedded microcontrollers (with relatively
small nα) using fast-write NVM (therefore relatively low Eα),
it is possible to save a snapshot without additional C (using
only the system’s decoupling capacitance); this is explored in
Sec. III. However, if Eδ < Eσ with V = Vmax, it will not be
possible to guarantee that snapshots can be taken reliably, and
extra C must be added.

The total time, Thibernus, to execute a test algorithm with
Hibernus is given by (3), where Ta is the CPU time required
to execute the algorithm, nι is number of power interruptions
(where VCC < Vmin) per algorithm execution, Ts is the time
required to save a snapshot to NVM, Tr is the time required to
restore from NVM memory, and Tλ is the average time spent
sleeping (after a snapshot has been saved but before Vcc =
Vmin, and on power-up when Vmin < VCC < VR). The absolute
limit of supply interruption frequency, fι, is 1/(Ts + Tr).

Thibernus︸ ︷︷ ︸
Total execution

=

Algorithm︷︸︸︷
Ta + nι︸︷︷︸

No. interruptions

(

Save snapshot︷︸︸︷
Ts + Tr︸︷︷︸

Restore snapshot

+

Sleep︷︸︸︷
Tλ) (3)

Signal

Generator

R

R

Processor

VCC

S2/2

MSP430FR5739 Evaluation Board

S2S1

In-built

decoupling

capacitance

ΣC

Fig. 3. The test platform used to experimentally validate Hibernus.

The total time, Tmementos, to execute an algorithm with
Mementos is given by (4), where nm is the number of
checkpoints per complete execution of the algorithm, Tm is
the time taken for an ADC reading of VCC, and Ps is the
proportion of checkpoints resulting in a snapshot, taking Ts.

Tmementos︸ ︷︷ ︸
Total execution

=

Algorithm︷︸︸︷
Ta + nι︸︷︷︸

No. interruptions

(

Restore snapshot︷︸︸︷
Tr +

Ta
2nm︸ ︷︷ ︸

Backtrack

)+

Monitoring and save snapshot︷ ︸︸ ︷
nm(Tm + PsTs) (4)

Hence, Thibernus < Tmementos provided nι(Ta/2nm) +
nmTm + (nmPs − nι)Ts > nιTλ; that is, Hibernus spends
less time sleeping than Mementos spends on backtracks (re-
running code that was executed between a snapshot and a
power interruption), sampling Vcc, and redundant snapshot
saves. This is evaluated experimentally in the next section.

III. EXPERIMENTAL VALIDATION

Hibernus has been validated with an intermittent power sup-
ply and representative workload. Its energy and time overheads
have been evaluated, and compared against Mementos.

A. Implementing Hibernus

While most microcontrollers have flash NVM (and conse-
quently a high Eσ), processors are emerging that incorporate
fast, low-power FRAM (and hence have a lower Eσ). The test
platform (Fig. 3) uses a development board combining a Texas
Instruments MSP430 processor [6] with FRAM. This means
that its decoupling capacitance alone allows Eδ >> Eσ when
V = Vmax, requiring no additional energy storage (battery or
large capacitor) to support Hibernus. The approach will work
with platforms with flash memory rather than FRAM, but this
will significantly reduce the maximum supply interruption fre-
quency and increase the energy overhead, potentially requiring
additional capacitance on the supply.

The platform’s datasheet parameters were inspected, and
identified Eα as 4.2 nJ/byte and Eβ as 2.7 nJ/byte, with a
total RAM size of 1024 bytes and register size of 524 bytes.
The platform operates with a Vmax = 3.6 V and Vmin = 2.0 V .
Using (1), a complete operation copying all registers and RAM
to FRAM consumes 5.7 µJ. The decoupling capacitance on the
board totals

∑
C = 16 µF. Using (2), it was found that this

alone is sufficient for Hibernus and VH was set to 2.17 V.
It was verified experimentally that this and VR = 2.27 V
delivered stable operation, even with sudden loss of supply at

3

Fig. 4. Measured behavior of signals S1 and S2 (Fig. 3) with (a) 6 Hz square-
wave input; (b) 6 Hz sinusoidal input.

the beginning of a restore operation. The stability of the system
is therefore unaffected by the dynamics of the power source.
The test platform’s VCC input (S2) is connected to the output of
a signal generator (S1) through a diode, which prevents back-
flow of charge to the harvester (Fig. 3). The signal generator
was selected to mimic a voltage-dominant source such as a
typical RFID reader [4]. Traces (Fig. 4) with a peak amplitude
of 3.6V are presented as examples. The slower decay of S2
compared to S1 is due to the input diode; the slow decay on
the negative edge illustrates the discharge of the decoupling
capacitance by the current drawn by the processor.

Hibernus functionality is contained within the
hibernus.h library file; application developers need
only include this library and call the initialise(),
hibernate() and restore() routines, as illustrated
in Fig. 5. As shown in Fig. 2, the algorithm requires that
interrupts are generated when Vcc passes VH and VR; this is
facilitated by comparators and voltage references. The test
microcontroller has an on-chip comparator configured with
an on-chip variable reference voltage generator (these are
standard features on many microcontrollers), and an external
voltage divider (R = 200 kΩ) giving Vcc/2, as inputs. This
is set up in the initialise() routine. Dependent on
whether the system is hibernating or active, the interrupt is
set to trigger off either Vcc ≤ VH or Vcc ≥ VR. The handler
then calls hibernate() or restore().

When hibernate() (Fig. 2) is called, it first pushes the
core registers onto the FRAM memory. It then copies the entire
RAM contents (stack segment, local and global variables) into
the FRAM, followed by the general registers, and finally the
Stack Pointer (SP) and Program Counter (PC). It then sleeps in
a low-power mode. The system remains in sleep mode until
VCC > VR. The restore() routine is then called and the
complete previous system state is restored. The system phases
the restore of the memory locations to reinstate its operating
state reliably. The general registers are restored first, followed
by the RAM, and lastly the core registers including the SP and
PC. When the PC is restored from the snapshot, the system
implicitly transfers to the application and resumes operation.

B. Experimental Setup

The evaluation test case represents a common long-running
task for energy harvesting systems: a Fast Fourier Transform
(FFT) analysis of three arrays, each holding 128 8-bit samples
of tri-axial accelerometer data. The FFT algorithm was chosen

#include "hibernus.h"

int main (void) {
if (flag) restore(); //restore system state

else initialise(); //initialise hibernus
// application code goes here

}

__interrupt void COMP_D_ISR(void) {
hibernate(); //save system state & sleep

}

Fig. 5. Example code used for evaluation of Hibernus.

as an illustration: Hibernus is application-agnostic and will
provide the same functionality to any embedded program, with
minimal impact on the application developer (see Fig. 5). Sup-
ply interruption frequencies fι (of 2, 4, 6, 8, 10 Hz, and DC)
were chosen to represent the intermittent power output that
may be expected from an energy harvester (e.g. micro wind
turbine or RFID inductive power transfer). This has allowed
Hibernus’ overheads to be compared against Mementos. Due
to the low output impedance of the signal generator, which
allows the target voltage to be attained very quickly (figs. 3
and 4), and low current draw of the microcontroller, fι > 10Hz
results in the system being continuously powered.

Our implementation of Mementos places static checkpoints
after function calls or before loops, referred to as ‘function’
and ‘loop’. ADC (Vcc) measurements are taken and compared
to a threshold (Vm = 2.5V), chosen for each scheme to ensure
that a snapshot can be saved at least once before power failure.
At each checkpoint, Vcc < Vm indicates imminent power
failure, and a snapshot is saved. Mementos consumes energy
for multiple checkpoints, both for ADC readings and saving
snapshots. In contrast, Hibernus consumes energy for a single
hibernation per power-outage, plus the quiescent consumption
of the voltage reference and comparator.

The power consumption at mid-range between Vmax and
Vmin of the FFT algorithm (without Hibernus or Mementos
running), ADC, voltage reference, and comparator were mea-
sured as 2.7 mW, 310 µW, 17 µW and 130 µW respectively.
These values are used to estimate the energy consumption
of the different approaches. For each of the three schemes,
and at each frequency fι, we evaluated: (1) the number of
system restores required to complete the computation of the
FFT algorithm, (2) the number of times snapshots were stored,
or checkpoints were called, (3) the energy overhead, and (4)
the processor time overhead. The results were averaged over
three complete executions of the test program. The overheads
are evaluated with reference to the time and energy for the
processor to complete the FFT algorithm with a steady supply:
without Mementos or Hibernus, it completed in 100 ms.

C. Results

Fig. 6(a) shows how many checkpoints were made by
Hibernus and Mementos during a single execution of the FFT.
As can be seen, Hibernus reduces the number of times that
checkpoints are taken. This can also be seen from Fig. 7, which

4

0

10

20

30
N

o
.
C

h
ec

k
p
o
in

ts

Hibernus

Mementos (function)

Mementos (loop)

(a)

0

5

10

N
o
.

S
y

s.
 R

es
to

re
s

(b)

0

50

100

E
n

er
g

y
 O

/h
ea

d
 (

%
)

(c)

0

50

100

0 2 4 6 8 10

T
im

e
O

/h
ea

d
 (

%
)

fι Supply Interruption Frequency (Hz)

(d)

Fig. 6. Comparison of Hibernus against Mementos, showing performance
when running the FFT text program (averaged over 3 executions): (a) number
of checkpoints/snapshot saves, (b) number of times snapshots were restored,
(c) energy overhead, (d) time overhead.

0

2

4

V
C

C
 (

V
)

0.00 0.10 0.20 0.30 0.40 0.50

Time (s)

M
em

.

(f
u
n

ct
io

n
) C'point

Restore

1 FFT

M
em

.

(l
o

o
p

)

C'point

Restore

1 FFT

H
ib

er
n

u
s Hibern.

Restore

1 FFT

VH

VM
VR

Fig. 7. Results comparing when Hibernus and Mementos hibernate, check-
point, and restore. Results shown were measured over a complete execution
of the test FFT algorithm, powered by a sinusoidal supply with fι = 6 Hz.

shows when Hibernus and Mementos checkpoint (for the case
when fι = 6 Hz), whereas Hibernus snapshots (hibernates)
only once per interruption (twice in total), Mementos executes
a static number of checkpoints (12 and 27 times), although
some are repeated when VCC < Vmin during a snapshot.

Fig. 6(b) shows that, at higher fι values, Hibernus com-
pletes execution of the FFT over fewer power interruptions
(3, instead of 5). This is because the mean processor time
overheads (Fig. 6(d)) of Hibernus are 80-100% shorter than

TABLE I
EXPERIMENTALLY MEASURED PARAMETERS (SEE EQUATIONS (3), (4)).

Mementos (function), and 76-100% shorter than Mementos
(loop); this leaves more time to execute the application (also
shown in Fig. 7, where the arrows denote the total execution
time). Furthermore, Fig. 6(c) shows that the energy overheads
of running Hibernus are 65-79% lower than Mementos (func-
tion) and 49-76% lower than Mementos (loop).

The benefits of Hibernus are most noticeable at fι = 0 Hz
(i.e. DC, when Vcc is uninterrupted), where negligible time and
energy overheads are imposed (see Fig. 6(c) and (d)), while
Mementos still requires the same number of checkpoints. This
increases the required processor active time and energy by at
least 10% and 11% respectively. Table I shows experimentally
obtained values for the parameters of (3) and (4). Evaluating
these equations support our measured results, and confirm that
Hibernus spends less time sleeping than Mementos spends on
redundant snapshot saves, backtracks, and sampling Vcc.

IV. CONCLUSIONS

A new approach for sustaining computation during inter-
mittent supply, Hibernus, has been proposed. This allows a
system to sustain computation through power outages which
are common in energy-harvesting systems. It has a lower
energy and time overhead than a recently proposed scheme,
as demonstrated experimentally. This contributes to the devel-
opment of future energy harvesting systems. Our continuing
work is investigating performance with real energy harvesters,
rather than the voltage-dominant sources evaluated here.

ACKNOWLEDGMENT

This work is part of the PRiME programme: EPSRC grant
EP/K034448/1 (www.prime-project.org). It was also supported
by a Telecom Italia s.p.a. PhD grant, and PHIDIAS, an EU
7th Framework Programme project (CA 318013).

REFERENCES

[1] P. D. Mitcheson et al., “Energy Harvesting From Human and Machine
Motion for Wireless Electronic Devices,” Proc. IEEE, vol. 96, no. 9, pp.
1457-1486, Sept. 2008.

[2] M. R. Mhetre et al., “Micro energy harvesting for biomedical applications:
A review,” Proc. ICECT 2011, vol. 3, pp. 1-5, 8-10 April 2011.

[3] B. A. Warneke and K. S. J. Pister, “An ultra-low energy microcontroller
for Smart Dust wireless sensor networks,” Proc. IEEE ISSCC 2004, pp.
316-317, vol. 1, Feb. 2004.

[4] B. Ransford et al., “Mementos: System Support for Long-Running
Computation on RFID-Scale Devices,” ASPLOS11, Newport Beach, CA,
USA, Mar. 5-11, 2011.

[5] P. A. Bernstein et al., “Concurrency Control and Recovery in Database
Systems,” Addison-Wesley Longman Publishing, Boston, USA 1987.

[6] M. Zwerg et al., “An 82µA/MHz microcontroller with embedded FeRAM
for energy-harvesting applications,” Proc. IEEE ISSCC 2011, pp.334-336,
20-24 Feb. 2011.

www.prime-project.org

	Introduction
	Hibernus
	Experimental Validation
	Implementing Hibernus
	Experimental Setup
	Results

	Conclusions
	References

