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Abstract 16 

 Polychaetes are frequented in toxicological studies, one reason being that some members 17 

occupy shallow burrows in sediments and are maximally exposed to the contaminants that 18 

accumulate within them. We have been studying one population of the polychaete Nereis 19 

(Hediste) diversicolor exhibiting inheritable tolerance to extreme copper contamination in 20 

estuarine sediment. Using transcriptome sequencing data we have identified a suite of genes with 21 

putative roles in metal detoxification and tolerance, and measured their regulation. Copper 22 

tolerant individuals display significantly different gene expression profiles compared to animals 23 

from a nearby population living without remarkable copper levels. Gene transcripts encoding 24 

principle copper homeostasis proteins including membrane copper ion transporters, copper ion 25 

chaperones and putative metallothionein-like proteins were significantly more abundant in 26 

tolerant animals occupying contaminated sediment. In contrast, those encoding antioxidants and 27 

cellular repair pathways were unchanged. Non-tolerant animals living in contaminated sediment 28 

showed no difference in copper homeostasis-related gene expression but did have significantly 29 

elevated levels of mRNAs encoding Glutathione Peroxidase enzymes. This study represents the 30 

first use of functional genomics to investigate the copper tolerance trait in this species and 31 

provides insight into the mechanism used by these individuals to survive and flourish in 32 

conditions which are lethal to their conspecifics.    33 

  34 



 3 

Introduction  35 

 It is widely accepted that the release of anthropogenic waste into natural waters can, 36 

through natural selection, effect fundamental changes on species whose habitat preferences leave 37 

them vulnerable to exposure. Waste metals released from mining and quarrying frequently enter 38 

aquatic systems through drainage and run-off, and are deposited into the sediment of rivers beds 39 

and estuaries during transit to the sea 1. Species that occupy these sediments are, therefore, 40 

highly exposed and in many cases develop an evolutionary tolerance 2. These ecological traits 41 

offer a unique opportunity to study the methods used by organisms to adapt to extreme 42 

conditions of metal excess when normal metal homeostasis is overwhelmed.  43 

 In some cases the magnitude of contamination events can instigate changes to a 44 

population on an evolutionarily short time-scale (e.g. a few hundred years). In this study we refer 45 

specifically to the infaunal Polychaete Nereis (Hediste) diversicolor (Harbour Ragworm). The 46 

life history traits of this species may enhance its ability to quickly adapt to inhospitable 47 

conditions, for example, its occupation of the intertidal zone make it naturally tolerant of 48 

fluctuating environmental conditions, and its distribution within relatively isolated populations 49 

with restricted gene flow may prolong the existence of specific adaptations even after the 50 

selective forces have been removed 3.  51 

One population, found within Restronguet Creek, a branch of the Fal Estuary, Cornwall, UK 52 

occupies sediment that contains extraordinary concentrations of copper and to a lesser extent 53 

arsenic, tin and zinc 4-6; a product of the local mining heritage dating back to the 1700’s. Copper 54 

(Cu), at 5073 parts per million (ppm) 4, is an order of magnitude more concentrated than in other 55 

measured estuarine sediments in the south west of England and other contaminated areas world-56 

wide 7, 8. Accordingly, the sediment is demonstrably toxic to macro-fauna 4, 9, with the exception 57 
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that a population of N. diversicolor has flourished 4. The individuals are tolerant to the acute 58 

toxic effects of copper, zinc and cadmium4, 10-12, but generally have a smaller size and a reduced 59 

fecundity as a trade off towards the metabolic cost of tolerance 13. The trait is not readily lost or 60 

gained in the laboratory 4, 12, 14 and is heritable in the absence of metal 11 indicating an underlying 61 

genetic adaptation.  62 

 Hypotheses for the molecular basis of the Cu tolerance include (1) the recruitment and 63 

enhancement of existing Cu handling pathways, leading to an increased rate of detoxification; (2) 64 

the enhancement of cellular repair pathways to repair copper-induced cell damage; and (3) 65 

physiological traits including an increase in mucus production by tolerant animals to reduce 66 

exposure 12. It has been shown that the tolerant individuals take up ambient Cu 15, 16 and produce 67 

insoluble detoxificatory deposits within their tegument 12, 17, 18, suggesting enhanced 68 

detoxification. Specimens collected from Restronguet Creek have up to 91% of the total body Cu 69 

concentration present in the insoluble fraction, compared with up to 30% in organisms collected 70 

from sites with unremarkable Cu levels 19. Pook 20 found a significant increase in the reduced 71 

glutathione (GSH)  pool supporting a model in which copper is associated with GSH after 72 

entering the cell and Cu-thiol complexes are then metabolised in lysosomes, leading to the 73 

formation of the detoxificatory deposits. It is unclear whether this process might be sufficient to 74 

prevent copper toxicity or if additional adaptation to copper-induced cell damage might also be 75 

important; for example, the role of antioxidant systems and cellular repair pathways is unclear. 76 

Furthermore, the mucus secreted by N. diversicolor only adsorbs small amounts of dissolved 77 

metal ions and may not represent a major defence mechanism 15.  78 

 Here we describe the first functional genomics-based study of the mechanism enabling N. 79 

diversicolor to survive under perpetually Cu stressed conditions. Contextual data, including 80 
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metal concentration and copper tolerance, was collected by analysing samples from Restronguet 81 

creek in tandem with those collected at nearby reference sites.  We report the first transcriptome 82 

sequence data for N. diversicolor, and the identification of a suite of gene transcripts orthologous 83 

to those encoding Cu homeostasis and general stress response proteins including antioxidants 84 

and DNA repair enzymes. Transcriptional regulation was measured using real-time PCR, 85 

enabling for the first time the regulation of Cu homeostasis to be described in Restronguet Creek. 86 

  87 
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Materials and Methods 88 

Animal Collection and Husbandry 89 

 N. diversicolor were collected by hand in April / May 2012 at 3 locations within the Fal 90 

estuary system; Restronguet Creek (+50° 12' 32.97", -5° 5' 21.13"), Mylor Bridge, which lies 91 

approximately 3.2 Km to the south (+50° 11' 1.05", -5° 4' 31.15") and Cowlands Creek, which 92 

lies approximately 3.5 Km to the east (+50° 13' 39.53", -5° 2' 36.47"). Specimens with a wet 93 

weight of 400-600 mg were used for experiments. Animals were either (1) snap-frozen in liquid 94 

nitrogen on site or (2) maintained in glass aquaria containing clean sediment (Specialist 95 

Aggregates; this material contained only trace amounts of metal) and artificial seawater (ASW; 96 

Tropic Marin; 16 PSU) at 11 oC with a 12 hour light:dark photoperiod. 97 

Transmission Electron Microscopy 98 

 The tegument was removed from anaesthetised animals (in 5 % ethanol / ASW) and fixed 99 

in 3 % glutaraldehyde (in 0.2 M phosphate buffer, pH 7.2) for 2 hours; stained with 1 % osmium 100 

tetroxide (aqueous) for 1 hour; dehydrated in alcohol; embedded in medium viscosity resin 101 

(TAAB Laboratories Equipment Ltd); and thin sections (80 nm) were collected on an ultra-102 

microtome. Sections were pre-stained with uranyl acetate and Reynold’s lead citrate (for 103 

conventional viewing) or collected on gold grids (unstained) for energy dispersive X-ray 104 

analysis. Stained sections were viewed with the JEOL 1400 TEM. Unstained sections for X-ray 105 

analysis were viewed on a Philips/FEI CM12 TEM operating at 80kV fitted with an X-ray 106 

microanalysis detector (EM-400 Detecting Unit, EDAX UK). Images were recorded using a SIS 107 

MegaView III digital camera. Analysis of metal containing granular deposits within the tissue 108 

was performed using ImageJ 21, using the sizing and densitometry functions.  109 

 110 
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Metal Measurements 111 

 Sediment cores were collected at each study site (2-5 cm depth), dehydrated in a vacuum 112 

oven and sieved with a 500 µm mesh. Then, 0.5 g was acid-digested in near-boiling Aqua Regia 113 

for 1 hour. A certified reference material (LGC 6137 Estuarine Sediment) was processed in 114 

parallel.  115 

 N. diversicolor (frozen) were ground into a fine powder and 0.5 g was acidified with 10 116 

% nitric acid and microwave digested at 200 oC for 10 minutes (ETHOS EZ, Milestone). A 117 

certified reference material (NRC TORT-2 Lobster hepatopancreas) was processed in parallel.   118 

 The concentration of As, Cu, Sn and Zn in the digests was measured using a Varian 725 119 

ES ICP-OES (Agilent). A five point calibration curve was constructed using an appropriate 120 

series of multi-element calibration standards and quality assurance was provided for by the 121 

analysis of a second multi-element standard prepared from a different stock solution and by the 122 

analysis of the certified reference materials. 123 

Copper Toxicity Assay 124 

  Animals were placed individually into acid washed glass troughs (15 cm x 5 cm x 5 cm) 125 

containing 200 mL of ASW and a 10 cm length of 6 mm internal diameter polyvinylchloride 126 

tubing (refuge); 11oC; and 12 hour photo-period. After 24 hours the water was replaced with a 127 

solution of CuCl2, renewed every 24 hours. Animals were considered dead if their anterior 128 

segments didn’t respond to a mechanical stimulus.   129 

RNA Extraction 130 

  Animals were rinsed in 0.2 µm filtered ASW, snap-frozen and ground into a fine powder. 131 

Total RNA was extracted using Trizol (Ambion) and the RNeasy Mini Kit (Qiagen). Quality 132 

assurance was provided for by resolving the RNA on a non-denaturing agarose gel to visualise a 133 
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sharp ribosomal RNA band, and by measuring the absorbance of the sample using a Nanodrop 134 

spectrophotometer (Thermo Scientific). Residual genomic DNA was digested with RNase free 135 

DNase (RQ1, Promega) prior to clean-up using the RNeasy Mini Kit. Complete DNA digestion 136 

was confirmed by a null result from a Taq polymerase-based PCR amplification reaction using 137 

the digest sample as a template. 138 

454 Sequencing 139 

 RNA was collected from 12 animals; 6 from Restronguet Creek (copper tolerant) and 6 140 

from Cowlands Creek (copper sensitive). The samples were combined in equal proportions and a 141 

cDNA library was prepared from 2 µg using the MINT First Strand cDNA Synthesis Kit  with 142 

oligodT primers, followed by cDNA amplification and Duplex Specific Nuclease-based library 143 

normalisation using the TRIMMER and EncycloPCR kits (Evrogen). Normalised cDNA was 144 

fragmented by nebulisation followed by adapter sequence ligation and emulsion PCR, and the 145 

cDNA library was sequenced on full GS FLX and GS FLX+ Titanium series sequencing plates 146 

according to the standard protocol of Roche (Eurofins Genetic Services Ltd).  147 

 The raw 454 data reads were assembled de novo. Adapter sequence trimming, quality 148 

filtering and the initial assembly of sequence contigs were carried out using GS De Novo 149 

Assembler (version 2.3, Roche). Additional assemblies were generated using Mira 22 and Cap3 150 

23. For each unique contig open reading frames were filtered using DeconSeq 24 and annotated 151 

using the blastx programme conducted against the non-redundant protein sequence database 152 

(NCBI) with an E-value cut-off of 10-5.  153 

Gene Expression Analysis 154 

 Gene expression analysis was performed using real-time PCR (see below). For the in situ 155 

analysis we collected at least 20 undamaged individuals from each site and immediately snap-156 
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froze them in liquid nitrogen to stabilize the mRNA pool. For each site the frozen specimens 157 

were combined and homogenized for RNA isolation. This was repeated on 3 different days, 158 

sampling at low tide. For analysis in the absence of metal we placed individuals from each site 159 

into clean sediment (as described above) and removed at least 20 individuals every 7 days. 160 

Replicate measurements were taken from 3 different holding tanks.  161 

Real Time PCR 162 

 Complementary DNA was prepared by oligodT-primed reverse transcription using the 163 

Thermoscript RT-PCR System (Invitrogen). The relative abundance of gene transcripts between 164 

different individuals was determined by real-time PCR using the CFX96 Real-time PCR 165 

Detection System (Biorad) and SYBR green DNA detection chemistry. Transcript sequence-166 

specific primers (designed using Primer 3 25) amplify 150-250 bp within the 5’ region of the 167 

target sequence; see supporting information. All RT-PCR reactions were performed in triplicate, 168 

each reaction containing 12.5 μL of IQ SYBR supermix (Biorad), 7.5 μL of nuclease free water, 169 

2 μL of forward and reverse primers (10 pmol/μL) and 1 μL of template cDNA; the total reaction 170 

volume was 25 μL.  171 

 The thermal cycling program was 95oC for 5 minutes followed by 40 cycles of 95oC for 172 

15 seconds, 55-60oC for 30 seconds and 72oC for 1 minute. At the end of the programme product 173 

specificity was analysed from a dissociation curve (55oC to 95oC at 1oC increments for 5 seconds 174 

each). Threshold cycle (Ct) values were determined within the exponential potion of the reaction 175 

curves. Relative transcript abundance was calculated by normalising the Ct values for the target 176 

to the Ct values for a panel of endogenous reference transcript sequences. A panel of 7 177 

endogenous reference sequences were tested, and those that gave consistent results were selected 178 

for the analysis of the real-time PCR data; the data presented represents the mean value obtained 179 
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using each valid reference. The relative transcript abundance was calculated from 𝐸𝑛, where n 180 

was the difference between the Ct values obtained and E is the efficiency of the primer set used 181 

for the amplification reaction. Primer efficiency was derived as 𝐸 = 10
−1
−𝑚 where m is the slope 182 

of a linear fit for Ct values obtained from a 10-fold dilution series of cDNA template in Real 183 

Time PCR reactions. 184 

185 
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Results and Discussion 186 

Heavy metal contamination in the Fal Estuary System and Copper Tolerance in Nereis 187 

diversicolor 188 

 We sampled 3 estuarine locations in the south west of England, which contained a rich 189 

population of Nereis diversicolor (more than 1,000 burrows / m2). These were Restronguet Creek 190 

(RC), where metal contamination is famously high 4, Mylor Bridge (MB) and Cowlands Creek 191 

(CC). The concentration of Arsenic (As), Copper (Cu), Tin (Sn) and Zinc (Zn) in sediment 192 

samples was determined by ICP-OES to be in the order Cu>Zn>As>Sn and RC>MB>CC, as 193 

shown Figure 1A. At the time of sampling RC sediment contained more Cu than in any 194 

previously measured estuarine location within south west England 6, the Rio Tinto  in Peru 7 and 195 

the Aznalcollar Tailings  in the USA 8. We use the Kelly Indices (former GLC guidelines) for 196 

contaminated soil (IRCL 59/83) to describe the extent of Cu contamination at each site; RC 197 

being unusually heavily contaminated; MB being heavily contaminated; and CC being 198 

uncontaminated and therefore used as a reference site for the gene expression experiments. To 199 

ascertain the effect of the metal pollution on the ecological diversity of the sediment the benthic 200 

macro-fauna was measured according to the method of Simpson 26. Biodiversity at RC was 201 

significantly reduced in line with previous determinations 4, specifically in the upper reaches 202 

where we only found N. diversicolor (data not shown).  203 

 In N. diversicolor tissue As, Cu and Sn were accumulated to the same order as the 204 

ambient concentration, however tissue Zn concentration showed no significant difference 205 

between the populations (t-test, p = > 0.05) despite clear differences in the sediment Zn 206 

concentration at each site, Figure 1B.  Historical comparison with measurements made by Bryan 207 

and Gibbs in 1983 4 (for sediment) and Berthet et al in 2003 12 (for tissue), wherein the same 208 
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sampling locations were accessed, indicate that despite a modest increase in the sediment Cu 209 

concentration the tissue Cu concentration has decreased by more than an order of magnitude. 210 

Recent work  by Rainbow et al 15, 16 to quantify the kinetics of Cu uptake by N. diversicolor 211 

indicates that Cu accumulation rate is proportional to the biologically available copper in their 212 

immediate environment, and therefore we conclude that the bioavailable portion of the Cu in RC 213 

may have decreased dramatically in the last few decades.  Historical data for As, Sn and Zn was 214 

unavailable for comparison. Possible mechanisms for the decline in sediment Cu include tidal 215 

“flushing” together with reduced inputs after cessation of local mining operations, or changes to 216 

the sediment chemistry (e.g. the concentration of dissolved organic matter).  217 

 218 
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219 

 220 

Figure 1. Results of the ICP-OES determination of metal concentration in (A) the sediment and 221 

(B) the tissue of N. diversicolor in Restronguet Creek (grey bars), Mylor Bridge (white bars) and 222 

Cowlands Creek (shaded bars). The error bars represent the standard error on the mean from ≥ 223 

25 sediment samples or ≥ 10 individuals.  224 
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 The fate of the bio-accumulated copper can be investigated using transmission electron 225 

microscopy and energy dispersive X-ray spectroscopy, which shows that copper co-localises 226 

with sulphur in granular deposits close to the tegument epiculticle 12, 18, as shown in Figure 2.  In 227 

similar work carried out in 2003 Mourneyrac et al 12 found that Cu tolerant animals from RC 228 

presented with an increase in the number and density of the Cu-containing granules indicating a 229 

role as detoxificatory Cu stores and a potential role in Cu tolerance. In this study, however, 230 

image analysis showed no difference in the number of granules, their size or their density 231 

between the populations tested. This corresponds to our comparison of the tissue concentration 232 

measured in this study compared to another study carried out using the sane sampling location in 233 

2003 19. 234 

  235 
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 236 

 237 

Figure 2. A Transmission Electron Micrograph of a thin sectioned N. diversicolor Tegument, 238 

excised from a specimen collected at Restronguet Creek, showing the Epicuticle Layer (A) and 239 

the underlying tissue with Cu / S containing granules (B). Sections were analysed unstained by 240 

energy dispersive X-ray spectroscopy to measure the elemental composition of the granular 241 

structures, which were predominantly copper and sulphur (data provided in the supplementary 242 

information). A typical image is shown. Bar = 2 µm. 243 

  244 

 The Cu contamination in RC has driven the selection of a Cu tolerance phenotype that 245 

was first reported over 30 years ago 4. To confirm that this adaptation was still present we 246 

compared the Cu tolerance of animals from the differentially contaminated sediments by placing 247 

individuals into a solution of CuCl2 and measuring their survival over several days. At a Cu 248 
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concentration of 2 µg/mL the individuals found at RC were significantly (two-way ANOVA P ≤ 249 

0.05) more tolerant to the CuCl2 than those found at either MB or CC, as shown in Figure 3, 250 

despite the decrease in the tissue burden of Cu indicating that the selective pressure may have 251 

diminished. Crucially, the RC model for the study of rapid adaptation and tolerance was still 252 

available for gene expression studies.  253 

 254 

Figure 3. N. diversicolor from the different sites (n ≥ 12) were placed individually into solutions 255 

of CuCl2. The survival of individuals from Restronguet Creek (unusually heavy Cu 256 

contamination; grey bars), Mylor Bridge (heavy Cu contamination; white bars) and Cowlands 257 

Creek (uncontaminated; shaded bars) was measured every 12 hours. The data is presented as a 258 

Box-Whiskers plot. 259 

 260 

 261 

 262 
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 Sequencing and Transcriptome Assembly 263 

 To enable a functional genomics-based investigation of the mechanisms underlying the 264 

Cu tolerance trait we generated transcriptome sequence datasets using the 454 pyrosequencing 265 

technology. A normalised cDNA library was prepared from a pool of the Cu tolerant and Cu 266 

sensitive N. diversicolor found in RC and CC respectively. The library was  sequenced using two 267 

sequencing plates (GS FLX Titanium Series, Roche), generating 2,151,516 sequence reads with 268 

an average read length of 440 bp and 307 bp of which 1,923,224 (89.4 %) were used for de novo 269 

assembly of the N. diversicolor transcriptome. Read assembly was carried out using multiple 270 

assembly algorithms (Newbler, Mira and Cap3; 22, 23, 27) to maximise the potential coverage 28. 271 

All sequence data underwent post-assembly filtering using DeconSeq 24 and unique transcript 272 

sequences of greater than 300 bp in length were queried against the non-redundant protein 273 

database using blastx with an E-value cut-off of 10-5. Manual annotation, where necessary, was 274 

carried out using local tblastn searches of the transcriptome assembly data with query sequences 275 

corresponding to target genes or proteins. Transcriptome coverage was assessed using Transrate 276 

29 against a set of “eukaryotic conserved” proteins (CEGMA 30).  The assembly statistics, blast 277 

results for each assembly and transcriptome coverage are summarised in Table 1 (additional 278 

information is available in the supplementary material, Table S2). The annotated sequence 279 

assemblies were used to identify orthologues to copper homeostasis systems and associated 280 

detoxificatory and repair pathways including glutathione metabolism, antioxidants and DNA 281 

repair proteins. 282 

 283 

 284 

 285 
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Table 2. Transcriptome Assembly and Annotation Statistics. 

Assembly Statistics    

Assembler Mira Newbler Cap3 

Unique Contigs (< 300 bp) 60,335 31,770 59,769 

Largest (bp) 6801 6996 12,565 

Number > 1 Kbp 11,873 14,720 18,343 

Mean Contig Length 751 1,065 887 

N50 837 1,195 1,018 

Number with ORF 16,151  15,442  20,690  

Annotation Results    

Blast Database uniprot_sprot uniprot_sprot uniprot_sprot 

Blast Program BlaxtX BlaxtX BlaxtX 

E<10-5 23964 15318 25426 

E<10-10 20496 13555 21954 

E<10-30 10339 8301 11897 

Transcriptome Coverage    

RBH* (as % of Reference) 0.21 % 0.33 % 0.47 % 

Reference Coverage 0.26 % 0.34 % 0.39 % 

Number of Chimeras 0 0 0 

  *Reciprocal Blast Hits 286 

 287 

Copper Genes  288 

 We identified transcript sequences with orthology to copper transporters CTR1 (solute 289 

carrier family 31 protein) and ATP7A (P-Type ATPase family protein), which function to move 290 

copper across the plasma membrane, into or out of the cell respectively 31. The ATP7A protein 291 

has an additional role in directing intracellular copper into the trans-Golgi network for 292 



 19 

incorporation into newly synthesised cuproproteins and may relocate to eliminate copper from 293 

the cell under conditions of copper excess 32. The ATP7 protein in humans has 2 isoforms, 294 

ATP7A and ATP7B, but is represented by a single homolog in lower organisms including insects 295 

33; and in our polychaete sequences we found evidence for a single ATP7 gene, which had more 296 

similarity to the ATP7A isoform. Any free Cu+ in the cell is highly toxic, so Cu trafficking is 297 

mediated by specialised chaperone proteins 34. We identified Nereid orthologues to the protein 298 

CCS (Copper Chaperone to Superoxide dismutase 35), which delivers Cu+ cofactor ions to SOD1 299 

(Superoxide dismutase), and ATOX1 (Antioxidant protein 1), which interacts with ATP7 36 to 300 

support copper export or compartmentalisation. 301 

  Additional systems augment copper homeostasis. Cellular thiols including those 302 

presented on glutathione and metallothionein / metallothionein-like proteins (MTLPs) sequester 303 

excess Cu+ away from the metabolism and contribute to the formation of detoxificatory stores 37, 304 

38. In addition to the identification of the principle components of glutathione metabolism we 305 

found evidence for 2 MTLP genes, encoding a typical (< 200 amino acids) and atypically large 306 

predicted protein. To our knowledge MTLPs in this species have, until this data, been 307 

unconfirmed. Interestingly, the discovery of 2 putative MTLP genes encoding different sized 308 

proteins sheds light on the work by Poirier et al who found a bi-modal distribution of Cu within 309 

heat stable, size fractionated N. diversicolor cytosol 18. Additional analysis of the large MTLP 310 

sequence reveals a 404 amino acid protein (confirmed proteomically; data not shown) containing 311 

5 repeats each comprising 10 cysteine residues with the consensus GCGC-X5-G-XX-CC-X-G-312 

XX-C-X11-G-XX-G-XX-C-XX-CX7CX5CX7CX5GX4K; the total cysteine composition was 13 313 

%.  We also looked for the major antioxidant proteins, which neutralise the effect of Cu+-314 

catalysed formation of reactive oxygen species. In addition to Catalase, N. diversicolor has at 315 
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least 2 isoforms of superoxide dismutase which are identical, or nearly identical to those found in 316 

other polychaete species including Perinereis nuntia. Finally, we looked for DNA repair 317 

pathway proteins for which we found a complement of candidate sequences. The sequences 318 

described in this study are summarised in Table 2.    319 

 320 

 321 

  322 
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Table 2. Transcript sequences used in this study. 
 

Name1 Protein Description %ID2 Organism3 Genbank  E4  

Copper Transporters  

ATP7A Wilsons disease protein; ATPase 
family 68 Daphnia pulex EFX90405.1 10-39 

CTR1 High affinity copper uptake 
transporter; Solute carrier family  36 Harpegnathos saltator EFN85594.1 3x10-24 

Copper Chaperones  

ATOX1 Copper transport protein 51 Crassostrea ariakensis AEJ08756.1  

CCS Copper chaperone for superoxide 
dismutase 51 Salmo salar NP_001133786.1  

Metallothionein-like proteins  

- Cd/Se Metallothionein 55 Schistosoma mansoni XP_002575981.1 10-13 

- Atypical Metallothionein-like protein 26 Trichomonas vaginalis XP_001321197.1 9x10-09 

Antioxidants  

SOD1 Cu/Zn Superoxide Dismutase 100 Perinereis nuntia ADM64420.1 3x10-10 

SOD2 Mn Superoxide Dismutase 80 Perinereis nuntia ADM64421.1 10-99 

CAT Catalase 78 S. kowalevskii XP_002738841.1 10-99 

Glutathione metabolism  

GCL Glutamate cysteine ligase 92 Laeonereis acuta AAV48595.2 10-122 

GSS Glutathione synthetase 40 Tribolium castaneum XP_968070.1 2x10-72 

GPX1 Glutathione peroxidase 68 Hyriopsis cumingii ACY72387.1 4x10-41 

GSTM1 Glutathione S-transferase (Mu)  56 Reishia clavigera ACD13785.1 3x10-35 

GSTT1 Glutathione S-transferase (Theta)  84 Neanthes succinea ABQ82132.1 10-111 

GSTO1 Glutathione S-transferase (Omega)  46 Neanthes succinea ABR24228.1 2x10-48 

DNA Repair  

DDB1 Damage DNA binding protein 1 78 Aedes aegypti XP_001655231.1 5x10-46 

XRCC3 DNA excision repair protein 39 Bos taurus NP_001071585.1 10-11 

ABH6 DNA alkylation repair protein 58 Danio rerio NP_001005390.1 10-67 

ERCC3 DNA repair helicase 74 Ixodes scapularis XP_002399857.1 7x10-99 

1Name in Homo sapiens; 2% Identity with top blast result; 3Top blast result; 4E-value. 323 



 22 

Expression in situ 324 

 The expression of these principle copper homeostasis genes was measured in situ (snap-325 

freezing the animals at site to stabilise the mRNA pool), by comparing the abundance of mRNA 326 

transcripts using real-time PCR. We compared representatives (n ≥ 20) of the 2 Cu-exposed 327 

populations, at RC and MB, with the unexposed reference population at CC on 3 different days 328 

during 2011. The results are compiled into a single figure for clarity, as shown in Figure 4. 329 

Unsurprisingly, N. diversicolor found in RC had significantly increased (one way ANOVA, p < 330 

0.05) levels of gene transcripts corresponding to the copper transporters ATP7 and CTR1 and 331 

copper chaperones ATOX1 and CCS. These genes have an established role in protecting the cell 332 

from excess copper and their up-regulation in RC probably reflects the elevated sediment copper 333 

as shown in Figure 1A. Up-regulation of CTR1, which encodes a copper uptake transporter, is 334 

consistent with previous data indicating that the animals living in RC have increased Cu uptake 335 

rates despite the Cu-contamination 15, 16. Our current theory is that the enhanced Cu uptake can 336 

protect the organism from Cu damage by increasing the rate of elimination of Cu in their 337 

immediate surroundings as it moves through detoxificatory pathways including the formation of 338 

the Cu / S containing granules 12, 18.  This process makes N. diversicolor a candidate for the 339 

bioremediation of contaminated sediments, as noted by others  39. 340 

 Putative MTLP transcripts were also significantly more abundant in RC; specifically the 341 

atypically large MTLP sequence showed up-regulation by up to 16-fold compared to individuals 342 

from the reference site. Conversely, we found no significant difference between RC and the 343 

reference site in the amount of mRNA transcripts corresponding to the antioxidant proteins and 344 

the DNA repair enzymes.  345 
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346 

 347 

Figure 4. The in situ abundance of transcripts in representatives of the Cu contaminated 348 

populations in comparison to the uncontaminated reference population. The analysis was 349 

performed on a pool of at least 20 individuals on 3 different days. The horizontal line shows the 350 

mean expression ratio versus the reference, the error bars are the SEM from 3 replicate 351 

measurements (days) and the symbols show the values obtained for each replicate.  Statistically 352 

significant differences (one way ANOVA, p < 0.05) are marked with a star. 353 
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 It is curious that the gene expression data gave no evidence for the activation of these 354 

systems which have an established and significant role in protecting the cell from the effects of 355 

heavy metals 40. Our previous biochemical assay data 20, comparing the activity of Superoxide 356 

dismutase and Catalase between animals in RC and the reference population, agreed with our 357 

genetic data that the exposed / tolerant individuals do not experience additional oxidative stress. 358 

In contrast, exposure of Laeonereis acuta (Nereididae), to Cu led to increased activities of 359 

Superoxide dismutase, Catalase, and Glutathione S-transferase 41, and enhanced antioxidant 360 

functions have been associated with copper exposure in a number of other annelid species (for 361 

example 42). In this instance it is possible that the hyper activation of the Cu detoxificatory 362 

pathways, conferring the tolerance trait, is sufficient to mitigate any Cu-catalysed radical 363 

formation. It then follows that DNA repair pathways are similarly unaffected by the high 364 

ambient Cu levels.  365 

 The population in MB had also been exposed to a high concentration of Cu in the 366 

sediment but this was far lower than the extreme concentration measured in RC, and these 367 

individuals did not display a significant increase in their ability to tolerate Cu indicating that the 368 

selective pressure posed by this contamination is lower (compared to RC). We found no 369 

significant differences in the expression of the aforementioned copper homeostasis genes 370 

between individuals collected from MB and the reference site. It is, however, noted that the 371 

abundance of some gene transcripts was highly variable on the different days with, for example, 372 

the putative ATOX1 gene transcript fluctuating between approximately 4-fold up- and down-373 

regulated compared to the reference population. In contrast to our data for RC, we found that the 374 

animals collected from MB displayed significant up-regulation of Glutathione S-transferase 375 

(GST) enzymes, by up to approximately 128-fold, however other antioxidants including 376 
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Superoxide dismutase and Catalase were unchanged compared to the reference.   The GST 377 

enzymes have important roles in cellular detoxification and anti-lipid peroxidation processes and 378 

are frequented as biomarkers of environmental pollution. However, the response of GST 379 

expression to metals remains unclear; some studies reporting that they are induced by metal-380 

contamination 43 and others that they are repressed 44.   381 

Genetic Response to Cu depletion 382 

 We measured the stability over time of the observed differences in transcriptional 383 

regulation between the tolerant (RC) and non-tolerant (CC / reference) animals when in the 384 

absence of Cu. To achieve this, a second series of real-time PCR experiments were carried out 385 

wherein animals from each population were placed into tanks containing clean sediment and 386 

ASW for up to 3 weeks prior to RNA extraction. The relative abundance of mRNA transcripts 387 

matching the copper homeostasis genes (i.e. those showing significant regulation between the 388 

populations in situ) was measured every 7 days by sacrificing a random sample of the individuals 389 

within each tank. The observed in situ differences in transcript abundance were reduced after 7 390 

days in the clean sediment. There was no significant difference in the abundance of the 391 

transcripts after 14 days, with the exception that the transcript encoding CTR1 remained 392 

significantly more abundant in the Cu-tolerant animals from RC over the duration of the 393 

experiment.  The CTR1 gene encodes a Cu uptake membrane transporter and may supply Cu to 394 

sustain normal cellular processes in addition to detoxificatory pathways.   395 
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 396 

Figure 4. A comparison of the abundance of select transcripts in representatives of the Cu 397 

contaminated population from RC in comparison to the uncontaminated reference population. 398 

The analysis was performed on a pool of at least 20 individuals from 3 different holding tanks. 399 

The horizontal line shows the mean expression ratio versus the reference, the error bars are the 400 

SEM from 3 replicate measurements (tanks) and the symbols show the values obtained for each 401 

replicate.  Statistically significant differences (one way ANOVA, p < 0.05) are marked with a 402 

star. 403 
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 Interestingly, the copper toxicity assay, as described in Figure 3, was repeated using 404 

animals subjected to the 21 day experiment (see supplementary information Figure S2) wherein 405 

the animals from RC remained significantly more tolerant to CuCl2. This supports the hypothesis 406 

that the mechanism for Cu tolerance in the RC population can persist in the absence of Cu, and is 407 

encoded by an underlying genetic adaptation. 408 

 The use of next generation sequencing in environmental science has expanded rapidly, 409 

facilitating functional genomics-based investigations using non-model (i.e. non-sequenced) 410 

organisms. This study was intended as a primer to facilitate molecular understanding of the 411 

processes that enable a species to rapidly adapt to pressure from anthropogenic contaminants 412 

such as waste metals. In summary, we compared 3 populations of N. diversicolor, either living 413 

with or without prolonged Cu stress, and either with or without ecological tolerance. The results 414 

indicate that whilst the tolerant individuals display up-regulated expression of Cu homeostasis 415 

genes, they do not make a measurable response to the product of Cu toxicity; namely oxygen 416 

radicals and cellular (DNA) damage. This supports the hypothesis that the Cu tolerance trait is 417 

facilitated by the activity of a detoxificatory pathway as opposed to some enhanced cellular 418 

repair. There is mounting evidence for the role of the detoxificatory granules in metal tolerance 419 

in invertebrates, and further work should be carried out to identify the genes and proteins that 420 

function in their formation. The non-tolerant but heavily exposed individuals in MB did not 421 

display a measurable change in the expression of Cu homeostasis genes compared to individuals 422 

from the reference population, but did produce significantly greater quantities of gene transcripts 423 

corresponding to antioxidants; specifically Glutathione S-transferase enzymes. Whilst this 424 

response cannot be attributed to the metal contamination alone, the absence of the response to 425 
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Cu, as observed in the tolerant population, is good evidence that the Cu homeostasis systems in 426 

this species are central to the molecular basis for the tolerance.  427 

  428 
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