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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Sound and Vibration Studies 

Thesis for the degree of Doctor of Philosophy 

INVESTIGATION OF ULTRASONIC PROPERTIES OF MAGIC GELS FOR 

PULSE-ECHO GEL DOSIMETRY 

Timothy John Atkins 

 

This thesis describes investigations into the design and evaluation of novel ultrasonic methods 

for 3-dimensional ionising radiation dose verification. Pulse-echo ultrasound methods were 

investigated for the measurement and analysis of complex radiation therapy dose delivery. 

   The physical properties of MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by 

Copper) polymer gel dosimeters have been characterized. The variations of speed of sound, 

ultrasonic attenuation coefficient and density of MAGIC gel with radiation dose and 

temperature have been quantified.  This extends work that has previously been reported for the 

properties of this gel to the effect of measurement temperature on the results. The facilities to 

perform these measurements were specified, constructed and evaluated as part of the project.   

   The measurement of radiation dose using ultrasound back scatter from an interface between 

the polymer gel dosimeter and an inert reflector is demonstrated. To enable the measurement 

of radiation dose using pulse-echo ultrasound methods a novel inert material has been 

specified, manufactured and characterised. This material is matched to the acoustic impedance 

of MAGIC gel to produce the most dose-sensitive reflections. 

   The reflections from the interface between the inert reflector and dose-dependent MAGIC 

gel have been analysed using both a single element transducer and a commercial ultrasound 

scanner.  Both measurement systems demonstrate the same dose and temperature dependence 

of the ultrasonic reflection.  A methodology has been developed to relate pixel values from the 

ultrasound scanner to the amplitude of the reflected ultrasound signal.  A phantom consisting 

of an array of threads formed from the inert backscattering material has been designed and 

constructed and a method of extracting pixel data from images of the array acquired using a 

commercial ultrasound scanner has been developed, so that multiple imaging positions could 

be used to perform a 3-dimensional assessment of radiation dose distributions. 

   It has been demonstrated that a pulse-echo technique using a commercial ultrasound scanner 

shows promise for radiation gel dosimetry.  Further investigation and alternative polymer gel 

and inert reflector combinations may improve these techniques. 
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p  Complex sound pressure of a wave 
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p1(r, z1)  Complex sound pressure produced by transducer 1 at a radial distance r 
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p2(r, z2)  Complex sound pressure produced by transducer 2 at radial distance r in 
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prec(zT, s) Estimate of the sound pressure averaged over the active surface area of 

the receiver for transducer separation zT calculated by performing a 

restricted integration over the sample radius s 

p(r, z) Sound pressure of focusing source at radial distance r in a plane at a 

distance z from the source 

r  Radial distance in cylindrical coordinate system 
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stage) 
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CD  Increase in speed of sound with increasing dose at a temperature of 25°C 
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MRI Magnetic Resonance Imaging 

N Number of pulses in a pulse train 
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P0  Initial pressure amplitude of a wave 
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Rlim  The minimum integration limit required to ensure that the ratio of 
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T  Temperature 
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Z  Characteristic acoustic impedance of a material 

Z1  Characteristic acoustic impedance of material 1 
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1. Introduction   

1.1. Project outline 

Radiation therapy is an important form of treatment for cancer.  Successful 

radiation therapy depends on delivering accurate radiation dose to the tumour site with 

minimal exposure of the surrounding tissue.  As modern radiotherapy devices can 

produce complex radiation dose distributions it is important to have accurate methods 

of measuring the radiation dose distributions created to ensure that the delivered dose 

distribution matches that planned. 

Chemical dosimeters, in which radiation produces a chemical change, offer 

great potential to obtain three dimensional dosimetry information in Radiotherapy.  A 

significant drawback of current techniques relates to the readout procedure – current 

research utilises MRI or optical techniques requiring dedicated systems, which are 

often not readily available in radiotherapy centres.  In contrast, ultrasound is a very 

accessible medical imaging technique and the focus of this project is on utilising 

ultrasound imaging to obtain dose information from chemical dosimeters.  One class of 

chemical dosimeters is based on radiation induced polymerisation initiated by incident 

radiation.  The polymerisation that occurs creates changes to the structure of the 

dosimeter material, affecting its physical and mechanical properties, including 

ultrasonic relevant parameters such as speed of sound, density and attenuation 

coefficient.   

To create a dosimeter that can be used with available ultrasound scanners the 

dosimeter must produce dose dependent acoustic reflections or backscatter levels that 

can be imaged using a B-Mode scan.  To create these dose dependent acoustic 

reflections requires a contrast between a dose dependent and an inert material, or two 

differing dose dependent materials.  The geometrical arrangement of the dosimeter 

could take a number of forms.  Alternating layers of inert and dose dependent 

materials, or other geometric structures (threads, spheres) in known locations, would 

create specific dose dependent reflections throughout the material.  Alternatively, 

multiple small fragments of one material within another would create a dose dependent 

incoherent backscatter (grey level) within an image.  This project aims to develop 
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materials and methodologies based on MAGIC gels (Fong et al 2001) to produce dose 

dependent ultrasound images which can be developed into a three dimensional 

dosimetry technique. 

 

1.2. Project specification 

The aim of this project is to develop a clinically useful system for measuring 3D 

radiation dose distributions by utilising ultrasonic methods to analyse the 

polymerisation of MAGIC gels and hence measure radiation dose.  Initial work will 

develop measurement methods and investigate the fundamental ultrasonic properties of 

the MAGIC gels which are required to produce a usable dosimetry technique.  Building 

on the outcomes of these investigations of the ultrasonic properties of the MAGIC gels 

different dosimetry phantoms will be developed and tested. 

 

1.3. Radiation therapy 

 

In the UK in 2010 there were over 324,500 new cases of cancer diagnosed 

(Cancer Research UK 2013a), and cancer accounts for over a quarter of all deaths in 

the UK (Cancer Research UK 2013b).  The overall cancer death rate has fallen by 10% 

over the last decade although the incidence rate has risen slightly over the same time 

period, indicating better diagnosis and treatment of cancer.   

Radiation therapy is one of the three mainstream methods of treating cancer, 

alongside Chemotherapy and Surgery. The National Radiotherapy Implementation 

Group state that it is an essential treatment for the cure of cancer, being utilised in 40% 

of the cases that resulted in a cure of the cancer (National Cancer Action Team, 2009). 

The intention of radiation therapy treatment is to deliver a homogeneous high 

energy radiation dose to the tumour target (planning target volume – PTV) without 

irradiating a large volume of normal tissue.  Conventional techniques deliver a few 

rectangular or simply shaped fields to cover the planning target volume.  However, this 

often leads to the irradiation of significant volumes of normal tissue or radiosensitive 

organs (see Figure 1.2a). Intensity Modulated Radiation Therapy (IMRT), and other 
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modern treatment techniques, promise to provide improved treatments compared to 

standard radiotherapy techniques by conforming the dose distribution tightly to the 

intended target (Nutting et al., 2000) and subsequently reducing dose to adjacent 

normal tissue.  IMRT relies on the creation of high energy radiation exposures that 

have a non-uniform dose profile from each beam direction.  The most commonly 

implemented method of constructing these non-uniform dose profiles is via 

superposition of multiple radiation exposures (segments) from each beam direction to 

deliver the intended radiation dose to the patient (see Figure 1.2b).  These segments are 

usually shaped by multi-leaf collimators.  The modulation of the radiation beam caused 

by the superposition of the various segments allows tight conformation of the dose 

distribution to the target volume and can be utilised to ensure that minimal dose is 

delivered to radiation sensitive normal tissue.   

 

 

Figure 1.2.  (a) Conventional Radiotherapy where simply shaped fields overlay to produce the dose 

distribution. Here PTV is the planning target volume.    The green and blue lines indicate the high and 

low dose regions respectively. Adapted from Nutting et al. (2000). 
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Figure 1.2.  (b) IMRT where fields with varying intensity produce a highly shaped dose distribution.  The 

green and blue lines indicate the high and low dose regions respectively. Adapted from Nutting et al. 

(2000). 

 

The National Radiotherapy Implementation Group estimates that a third of all 

radiotherapy fractions in the UK should be delivered using IMRT as these patients 

would be likely to benefit from the use of IMRT in their treatment (National Cancer 

Action Team 2009, Williams et al. 2010) while the actual delivery of IMRT fractions is 

significantly below this, at about 12% (Jefferies et al. 2009).  In 2012, the Cancer 

Radiotherapy Innovations Fund was announced to increase the use of Intensity 

Modulated Radiotherapy and other advanced radiotherapy techniques by April 2013, 

aiming to treat 8,000 patients per annum with these techniques (Department of Health, 

2012) to achieve the level set out by the National Radiotherapy Implementation Group.  

A recent survey demonstrated a steady growth in the percentage of radical treatments 

treated with inverse-planned IMRT from 5.6% in 2010 to 15.3% in 2012 (Mayles et al. 

2012).    

Radiotherapy centres in the UK are well equipped to deliver IMRT treatments, 

with 97% of UK linear accelerators being equipped with multi-leaf collimators and 

capable of delivering IMRT (National Cancer Action Team, 2009).  The multiple small 
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exposures may not be intuitively related to the intended dose distribution, and may 

have unintended consequences such as increased dose due to leakage radiation and 

scatter.  Therefore accurate assessment of the 3-dimensional radiation dose 

distributions produced by these techniques is essential for their correct utilisation and 

implementation.  There has been slow implementation of these techniques beyond large 

research centres due to the lack of suitable techniques to verify that the radiation 

distributions are being produced correctly and the cost of training and staff time to 

outline, plan and quality assure the treatments. 

 

1.4. Established dosimetry techniques 

There are a number of techniques which are currently used to determine the 

dose delivered during radiation therapy.  These include the use of ionisation chambers, 

semi-conductor diode detectors, film (both radiographic and radiochromic), 

thermoluminescent detectors (TLDs) and electronic portal imaging devices (EPIDs). 

1.4.1. Ionisation chambers 

 

When ionising radiation passes through a gas filled chamber, if the radiation is 

energetic enough, it causes ionisation of the gas.  Applying a potential difference across 

the chamber between two electrodes causes the charges to separate and move towards 

the electrodes.  The charge created by the ionisation can be used to measure the 

radiation dose received by the chamber.   

Ionisation chambers are the gold-standard device for measuring radiation dose 

at a single position in a radiation field.  The amount of charge created in an ionisation 

chamber is relatively small, and therefore a large volume is required to produce a 

sensitive device.  This limits the positional accuracy of the device, and their suitability 

for measuring in regions of steep dose gradients due to the partial volume effect.  2D 

and 3D measurements are possible for time invariant radiation fields by translating a 

single chamber through the field, or through the use of multiple ionsiation chambers.  
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1.4.2. Semi-conductor diodes 

 

When certain semi-conductor junctions are irradiated, the radiation creates 

electron-hole pairs. The charge created in the junction can be used to measure the dose 

received by the diode, since the number of electron-hole pairs created is proportional to 

the dose of radiation received by the junction. 

The sensitivity of a semi-conductor diode junction to radiation is greater than an 

ionisation chamber, due to the density of Silicon and the low average energy required 

to form a carrier pair, and therefore small junctions of approximately 10
-2

 – 10
-1

 mm
-3

 

(AAPM, 2005) can be utilised in radiation dosimetry systems.  Diodes can be used to 

measure steep dose grandients due to their more accurate spatial positioning. Arrays of 

diodes are available for measuring static and dynamic fields, and in multiple positions 

could measure 3D dose distributions of static or repeated dynamic fields. 

1.4.3. Thermoluminescent dosimeters 

 

When energy is imparted to certain crystalline materials, some of the energy is 

stored by the material by trapping electrons in raised, metastable states.  When the 

material is gently heated, the electrons in these raised states are released.  The transition 

energy between the raised and ground states can be released as visible radiation.  The 

amount of light released is proportional to the energy stored in the crystal.  Energy 

from ionising radiation can be stored in this way, with the amount of light emitted on 

heating being related to the dose received by the crystal. 

Thermoluminescent materials are available in a variety of forms (chips, rods, 

powder) for use in radiation dosimetry.  A single TLD can be used to make a point 

measurement, or multiple TLDs can be arranged to provide a 2D or 3D array of 

measurement points. 

1.4.4. Radiographic film 

 

When silver bromide crystals are irradiated the crystals ionise, with silver ions 

being produced.  Producing a film with trapped silver bromide crystals, and after 

irradiation treating the film with appropriate chemical processes to atomise the silver 

ions and remove remaining bromine, reveals an image of the radiation distribution 
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made up of clusters of silver atoms.  The optical density of the film is a function of the 

radiation dose received by the film. 

Radiographic film provides two-dimensional dose information if scanned by an 

appropriate optical densitometer.  However, due to the move towards digital systems in 

x-ray imaging the use and availability of radiographic films and appropriate processors 

is declining. 

 

1.4.5. Chemical dosimeters 

 

When certain chemical compounds are irradiated, they undergo chemical 

reactions such as reduction or polymerisation which are initiated by the energy 

imparted to the system by the ionising radiation.  If the chemical changes that occur can 

be determined then this can be used as a method of dosimetry.  If such a chemical 

system can be supported in an environment which limits the diffusion of the chemicals 

then a system for measuring spatial dose information can be formed.  A number of 

different procedures exist for measuring the chemical changes that have occurred.  

Some chemical systems undergo a colour change when irradiated.  The most famous 

such system is the Fricke solution (Fricke and Morse, 1927), in which ferrous ions 

(Fe
2+

) are oxidised by the radiation into ferric ions (Fe
3+

).  Ferric ions strongly absorb 

ultraviolet radiation, with absorption peaks at 224 and 304 nm (Greening, 1981).  The 

optical density of the solution measured at one of these wavelengths can therefore be 

used to determine dose.  Other chemical systems undergo polymerisation, cross-linking 

or photo-reduction, and a variety of read-out methods exist. 

 

1.4.6. Radiochromic film 

 

When radiochromic materials are irradiated with ionising radiation a colour 

change occurs in the material.  If such a material can be trapped in between transparent 

laminar sheets, a colour change of the resultant film on irradiation can be observed.  A 

number of different processes can be utilised to form such radiochromic films 

(Niroomand-Rad et al., 1998).  Commercially available radiochromic films are 

replacing the usage of radiographic films in many radiation therapy centres. 
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1.4.7. Portal dosimetry 

 

The exiting radiation (port) from a radiotherapy treatment can be captured to 

produce an image of the treatment field.  Traditionally this has been performed to 

assess the geometric positioning of the patient in relation to the treatment field and can 

be captured using either film based systems or electronic devices.  For a review of 

electronic portal imaging devices see Kirby and Glendinning (2006).  A calibration of 

these systems is possible to transform the image data captured into the radiation fluence 

incident on the device.  The measured radiation fluence can be compare with predicted 

fluence maps (e.g. McCurdy et al. 2001) or by recalculating the fluence into a dose plan 

that can be compared with calculated dose from the treatment plan (e.g. Varatharaj et 

al. 2010).  Portal dosimetry relies on a additional calculations, either of the expected 

fluence or the transformation of measured fluence into dose, and is also particularly 

dependent on the day to day variation of the patient anatomy. 

 

1.4.8. Gel dosimeters 

 

When chemical dosimeters are trapped within a 3-dimensional gel matrix and 

irradiated, the chemical changes that occur can be trapped at the location of dose 

deposition.  If the readout method of the chemical changes is 3-dimensional, then the 

geometric location of the dose deposition can be determined.  Many gel formulations 

have been proposed using systems based either on radiation-induced polymerisation or 

radiochromic reactions and a number of readout procedures are available, with the most 

well documented being MRI and optical computed tomography.   

 

1.4.9. Comparison of established dosimetry techniques 

 

Izewska and Rajan (2005) compare the different types of radiation dosimeters.  

Their conclusions are summarised in Table 1.1.  Portal dosimetry is not discussed by 

Izewsk and Rajan and so comparable conclusions were taken from van Elmpt et al. 

(2008). 
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Dosimeter 

Type 

Advantages Disadvantages Accuracy Resolution 

Ionisation 

chamber 

Accurate 

Precise 

Instant reading 

Well-understood 

corrections 

High Voltage 

Connecting cables 

required 

Corrections required 

<1% ~1mm 

Semiconductor 

diodes 

Small size 

High sensitivity 

Instant readout 

Can be placed in 

arrays 

Requires connecting 

cable 

Variable sensitivity 

and calibration 

Changes sensitivity 

with accumulated 

dose 

~1% Sub-

millimeter 

Radiographic 

film 

High 2D spatial 

resolution 

Thin, non 

peturbing 

Processing required 

Not an absolute 

measurement 

Energy dependent 

Not necessarily linear 

with dose 

Requires 

absolute 

calibration 

by other 

method 

Sub-

millimeter 

TLD Point dose 

possible 

Can use multiple 

TLD to measure 

distribution 

Processing required 

Calibration of batch 

required 

~5% ~0.5mm 

Radiochromic 

film 

High 2D spatial 

resolution 

Thin, non 

peturbing 

Not an absolute 

measurement 

Energy dependent 

Not necessarily linear 

with dose 

Requires 

absolute 

calibration 

by other 

method 

Sub-

millimeter 

Portal 

dosimetry 

(van Elmpt et 

al. 2008) 

Pre-treatment or 

transmission 

dosimetry 

available 

Point calculation 

and distribution 

comparison 

available 

Imager 

characterisation 

required 

Image processing 

required 

Complex calculations 

to compare with dose 

distributions 

~2% ~1mm 

Gel dosimeters True 3D 

dosimeter 

Nearly water-

equivalent 

No dose-rate 

effects  

Absolute calibration 

required 

Read-out required 

Readout techniques 

still being developed 

Post-irradiation 

effects lead to 

distortion 

Requires 

absolute 

calibration 

~1mm 

depending 

on readout 

technique 

Table 1.1. Comparison of radiation dosimeters stating advantages and disadvantages and comparative 

accuracy and resolution.  Taken from Izewska and Rajan (2005) and van Elmpt et al. (2008). 



Chapter 1: Introduction 
 

 

 

27 

1.5. Introduction to 3D dosimetry 

 

 De Wagter (2004) has outlined the need for a 3D dosimeter and has reviewed 

the essential characteristics of such a dosimeter.  To summarise, the accurate 

measurement of IMRT doses requires an integrating 3D dosimeter to measure all the 

radiation exposures that compose an IMRT treatment.  The following aspects are 

outlined: 

 Absolute dose determination via a calibration curve 

 Full 3D volumetric data should be available 

 Tissue Equivalent so free from perturbation 

 Reliable and reproducible 

 Insensitive to energy spectrum and dose rate of radiation 

 Non-toxic 

 Reasonable in cost 

 

1.5.1.  Multiple 2D plane measurements 

 

A number of techniques exist where (multiple) 2D planes are used for 

evaluation of 3D dose distributions.  There are a number of commercially available 

devices and software products to provide 3D dose evaluation from 2D measurements.  

2D ionisation chamber arrays, such as the PTW seven29 (PTW-Freiburg, Freiburg, 

Germany) and IBA MatriXX (IBA Dosimetry GmbH, Schwarzenbruck, Germany) can 

be mounted in phantoms (Octavius and MultiCube respectively) and used to measure 

multiple 2D planes and provide comparisons with calculated dose distributions at 

various positions in the 3D volume.  Similarly, arrays of diodes are used in 

commercially available systems such as the Sun Nuclear MapCHECK series and 

ArcCHECK device (Sun Nuclear Corporation, Melbourne, FL) and the ScandiDos 

Delta4 (ScandiDos AB, Uppsala, Sweden).  The ArcCHECK device uses a cylindrical 

array of diodes, and the Delta4 uses two 2D arrays of diodes mounted at an angle to 

each other, to produce interpolated 3D images.  Software (for example FilmQA, 

3cognition LLC, Wayne, NJ) and phantoms (for example Cube Phantom, 

Computerized Imaging Reference Systems, Inc., Norfolk, VA) are available for 
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exposing and interpreting multiple film measurements of a 3D dose distribution.  

Electronic portal imaging devices can be used to measure the fluence delivered by the 

linear accelerator and compare this to either the predicted fluence map (for example in 

the Varian Portal Dosimetry system, Varian Medical Systems, Inc., Palo Alto, CA), or 

by calculating the local dose to water at a plane within the patient that can then be 

compared to the treatment planning system calculated dose at same plane as carried out 

by the EPIdose ™ software (Sun Nuclear Corp., Melbourne, FL), or by reprojecting the 

fluence through a CT dataset to create a prediction of the delivered dose as carried out 

by the Dosimetry Check ™ system (MathResolutions, LLC., Columbia, MD). 

These solutions are commercially available and in routine use in many 

radiotherapy centres.  However, they are reliant on 2D measurements of a 3D dose 

distribution and interpretation of the data to be able to compare to the true 3D 

distribution. 

1.5.2. 3D volumetric measurements 

 

3D volumetric methods of dosimetry that are currently available are based on 

3D chemical dosimeters.  Chemical dosimeters based on radiation-induced 

polymerisation have been integrated into gel structures which maintain the positional 

location of polymers that have been formed by radiation.  Alternatively, radiochromic 

materials have been integrated into gel structures, or more recently solid plastic 

materials.  A number of types of gel have been produced with current readout 

procedures focused on the use of MRI methods, although computed tomography (CT) 

and optical tomography methods have also been used.  Although significant progress in 

the formulations and readout methodologies has been made, and a number of 

commercial systems have been developed to produce 3D volumetric measurements, 

these methods have not been accepted into routine practice, with the main drawback 

being the type of readout methods on which these solutions are reliant. 

 

1.6. Gel and plastic dosimeters 

A number of different techniques exist for 3D dosimetry based on the 

constraining of a chemical dosimeter within a 3D structure so that the geometric 
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location of chemical changes generated by the irradiation is preserved.  Different 

chemical systems have been proposed, along with different methods of retaining the 

spatial distribution of the information.  The different chemical schemes utilised by the 

dosimeters can be interrogated by a number of different techniques to produce a 

measure of the 3D dose information. 

1.6.1. Polymer gel dosimeters 

 

Chemical dosimeters that undergo radiation-induced polymerisation have been 

incorporated into gel structures to produce a 3D dosimetry technique.  Maryanski et al. 

(1993) first introduced a 3D polymer gel dosimeter consisting of acrylamide and N,N’-

methylene-bisacrylamide monomers dispersed in an agarose gel.  These and subsequent 

variation, including those based on a gelatine gel, had to be produced in an oxygen-free 

atmosphere as oxygen inhibits any radiation-induced polymerisation. 

Fong et al. (2001) introduced a formulation that could be manufactured without 

the requirement of an oxygen-free atmosphere. This formulation, known as MAGIC 

gel, consists of methacrylic acid, ascorbic acid, hydroquinone and copper sulphate in a 

gelatine substrate. 

A number of different types of polymer gels suitable for radiation dosimetry 

have been proposed, investigated and compared (e.g. De Deene et al. 2002a, Senden et 

al. 2006, Lepage et al. 2001a). 

  

1.6.2. Radiochromic dosimeters 

 

Radiochromic chemical dosimeters have been incorporated both into gel 

systems and into solid plastic materials.  A number of different radiochromic systems 

have been investigated, from a system based on the standard Fricke solution (Gore et 

al. 1984a), to formulations with additional chelating agents such as xylenol-orange to 

reduce diffusion of Fe
3+

 ions and improve sensitivity (Kelly et al. 1998, Babic et al. 

2008).  Radiochromic plastic systems are available commercially as Presage® (Heuris 

Inc., Skillman, NJ.) and have been investigated by a number of authors (e.g. Guo et al. 

2006, Sakhalkar et al., 2009) 

 



Chapter 1: Introduction 
 

 

 

30 

1.6.3. Mechanical properties leading to alternative readout 
methods 

 

Radiation also results in changes in the mechanical properties of the gel.  As a 

result of irradiation of MAGIC gel it is conceivable that the real and imaginary parts of 

the dynamic bulk and shear moduli of the gel change.  These changes will in turn result 

in changes to the compressional and shear wave velocities (Vc and Vs) in the material 

and the corresponding wave attenuation coefficients (α). 

In order to resolve the dose distribution it will be necessary to resolve these 

changes on a small scale throughout a suitably sized gel sample (typically of 

dimensions 10 cm × 10 cm × 10 cm).  There are a large number of potential methods, 

but not all will be suitable, convenient or have the required resolution or sensitivity. 

 

For example the following might be considered for a uniform gel: 

 Slice the gel and measure the velocity or attenuation directly; 

 Ultrasonic velocity tomography; 

 Ultrasonic attenuation tomography. 

 

Alternatively it is possible to consider making the gel as a two phase material with 

interfaces or inhomogeneties.  In this case the changes can be inferred by: 

 Ultrasonic backscatter imaging of interfaces and inhomogeneities. 

 

Finally ultrasound imaging may be used to infer the elastic moduli at lower 

dynamic frequencies using: 

 Backscatter elastography to measure shear/Young’s modulus; 

 Shear wave elastography to measure shear modulus. 

 

Whichever readout procedure is adopted it will be necessary to initially develop and 

characterise suitable gel materials.  This will require accurate measurements of the 

desired readout property (modulus, velocity or attenuation) on uniform samples as a 

function of dose.  Given the small changes expected it will also be necessary to study 

other factors that may affect the parameters.  These include: 

 Frequency of ultrasound;  



Chapter 1: Introduction 
 

 

 

31 

 Temperature of measurement;  

 Aging of the gels; 

 Gel autopolymerisation by ambient light. 

 

1.6.4. Ultrasonic methods 

 

Although radiation results in changes in the mechanical properties of the gel 

including both density and elastic moduli, which in turn affect ultrasonic propagation 

through the gel, investigation of these changes has been sparse.  Mather et al. (2002), 

has investigated dose-dependence of ultrasound attenuation and sound speed in two gel 

formulations known as PAG (PolyAcrylamide Gel) and MAGIC (Methacrylic and 

Ascorbic acid in Gelatine Initiated by Copper), and obtained preliminary images of 

dose distributions using transmission methods.  Bamber et al. (2004) suggested using 

ultrasound elastography in the study of dose-dependent changes, and Crescenti (2009) 

has presented the results of elastographic measurements on MAGIC gels. 

 

1.7. Developing an ultrasonic backscatter method of gel 

dosimetry 

An ultrasonic pulse-echo dosimetry system will rely on the creation of a 

phantom that creates dose dependent reflections.  This implies that a two-phase 

material is required, one which has ultrasonic properties that are invariant with dose, 

and one which has ultrasonic properties which alter once irradiated. 

Large scale reflectors, such as layered plane surfaces or threads, would produce 

reflections that can be localised in an ultrasound image and the reflection amplitude 

measured.  The position of the reflectors could be determined in the design of the 

phantom to ensure sufficient geometric sampling of the irradiated volume.  However, 

the size and positioning of the reflectors would have to be carefully designed to ensure 

that they do not interfere with the propagation of the ultrasound field through the 

phantom and produce artefacts in the image and subsequent dose measurements. 

A distribution of small scale reflectors, for example microspheres or fragments, 

would produce a dose dependent change in backscatter of the ultrasound, producing a 
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change in the image grey level.  An appropriate proportion of reflectors to base material 

would need to be identified to ensure sufficient backscattered signal and observable 

dose dependent changes.  A reproducible change in grey level with dose throughout 

such a system would be dependent on creating a uniform distribution of the reflectors 

in the phantom without agglomerating or coalescing.  

To develop an ultrasonic method of gel dosimetry using backscatter or 

reflections from the gel dosimetry system entails the measurement of a number of 

ultrasonic and physical properties of the polymer gels, the development and 

characterisation of suitable ultrasonic reflectors and the development of a scanning 

system capable of acquiring 3-dimensional images and analysing the images to produce 

dose information. 

The ultrasonic and physical properties of the polymer gels that have been 

identified for characterisation are the ultrasonic speed of sound, ultrasonic attenuation 

and density of the gels.  Knowledge of the ultrasonic speed of sound and density is 

fundamental to the understanding of reflections from the interfaces between two 

materials, and so measurements of these two properties are important in the project to 

help identify and develop materials suitable for use as the backscattering medium.  The 

ultrasonic attenuation is important to understand as it affects the passage of ultrasound 

through the gel both before and after reflection, and so will change the ultrasonic signal 

received after reflection.   

The characterisation of suitable ultrasonic reflectors is an important aspect of 

the project.  The reflection level must be suitably tailored to produce enough reflected 

signal to be measured but also be sensitive to the changes in signal reflection caused by 

the irradiation of the sample. 

The development of a suitable measurement and analysis system is an important 

aspect of the project.  The system needs to be able to acquire images using an 

ultrasound scanner in a format which can then be imported into an analysis programme.  

The analysis programme should take the ultrasound images and analyse the backscatter 

information contained within it to characterise the dose that is deposited within the 

phantom.  This dose can then be related to the intended irradiation for further analysis. 
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1.8. Original contributions to science 

The work described in this thesis contains a number of novel contributions to 

science as outlined in the following sections. 

1.8.1. Measurement of radiation dose 

 

This thesis shows that it is possible to detect radiation dose using ultrasound 

back scatter from an interface between a polymer gel dosimeter and an inert reflector. 

Figure 6.12 shows the reflection coefficient with irradiated dose, with the reflection 

coefficient decreasing approximately linearly with irradiated dose.  Figure 6.13 shows 

the measurement of reflection amplitude across a dose profile.  The reflection 

amplitude decreases rapidly across the dose discontinuity.  To enable this measurement 

of radiation dose from ultrasound backscatter, the physical properties of the MAGIC 

gel were characterised, along with significant measurements of the properties with 

temperature and an inert reflector has been specified and characterised. 

1.8.1.1. Physical and ultrasonic properties of MAGIC gels 

 

A significantly enhanced knowledge of the physical properties of MAGIC gel 

and how these properties alter as a result of irradiation has been obtained.  Many of 

these properties have previously been measured and reported in the literature at only a 

single temperature.  This thesis has shown that these properties are significantly 

temperature dependent; the properties of MAGIC gel have been quantified at a number 

of temperatures to demonstrate the temperature dependence of these properties. 

The temperature dependence of ultrasound attenuation coefficient has been 

quantified in Chapter 3, indicating that the attenuation coefficient decreases as 

temperature of the MAGIC gel is increased. 

In Chapter 4 the temperature dependence of the speed of sound has been 

quantified, indicating that the speed of sound decreases as the temperature of the 

MAGIC gel decreases. 

The density of MAGIC gel has been quantified, including the temperature 

dependence, as demonstrated in Chapter 5.   These show how the density decreases 

with increasing temperature of the MAGIC gel. 
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1.8.1.2. Specification and characterisation of an inert 
reflector 

 

To produce an ultrasonic reflection with a suitable sensitivity to radiation dose a 

reflector was required which had invariant properties when exposed to radiation.  The 

specification for such a material has been determined, a supplier identified and the 

material produced.  The physical and ultrasonic properties, including temperature 

dependence, of the material have been quantified to characterise the material, as shown 

in Chapter 6. 

1.8.1.3. Investigations into reflection characteristics of 
MAGIC gel with inert reflector 

 

The ultrasonic reflection characteristics of a radiation sensitive interface 

between MAGIC gel and an inert reflector have been investigated for the first time as 

demonstrated in Chapter 6. 

A minimum in reflection coefficient as the temperature of the phantom was 

increased was predicted and this has been demonstrated by measurements of the 

reflection amplitude. 

The temperature at which this minimum occurred was found to increase with 

radiation dose. 

The variation of the reflection coefficient with radiation dose has been shown to 

be highly dependent on measurement temperature.  At low temperatures the reflection 

coefficient decreases with dose while at high temperatures the reflection coefficient 

increases with dose.  Near the temperature at which the minimum reflection occurs 

initially the reflection coefficient decreases with dose until it reaches a minimum, and 

then increases for further irradiation. 

The temperature dependence of the reflection characteristics of the system can 

be utilised to select the temperature of measurement to give the most sensitive 

measurement of radiation dose distribution. 
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1.8.2. Gel manufacture and stability 

 

It has been shown that there are significant challenges in the manufacture and 

use of gel dosimeters for ultrasound backscatter dosimetry purposes.  The properties of 

the MAGIC gel dosimeters that are fundamental to the usage in gel dosimetry purposes 

are dependent on the rate of cooling of the gel dosimeters, see Figure 7.1 and Table 7.1.  

The measurements reported in Chapters 4, 5 and 6 demonstrate that there were 

significant differences in measurements made using the same setup indicating there are 

significant batch to batch variations in gel manufacture.  The reproducibility and 

uniformity of the gel production has been a significant contributory factor to the 

uncertainties within the measurements made during this project and remains a 

significant challenge in developing this project further. 

 

1.8.3. Usage of a commercial ultrasound scanner 

 

In this thesis it is shown that it is possible to utilise an ultrasound backscatter 

imager to obtain quantitative backscatter information from the interface between 

MAGIC gel dosimeters and inert reflector material. Figures 10.10 – 10.13 show the 

measured pixel values compared to expected dose distribution across an image. Figures 

10.14-10.18 show the variation in pixel value with irradiated dose.  The backscatter 

information contained in ultrasonic images acquired by the scanner is altered by the 

image acquisition processes used by the scanner.  Therefore a system has been 

demonstrated that would make it possible to relate pixel information from different 

positions within the image and between images acquired using different scanner 

settings. 

1.8.3.1. Imaging reflection from interface between MAGIC 
gel and reflector 

 

A processing system has been developed to identify and quantify the reflections 

from interfaces between MAGIC gel and the inert reflector obtained using a standard 

ultrasound scanner.  Systems have been developed to identify the reflections from both 

an array of threads (Chapter 9) and a planar interface (Chapter 10).  The reflections 



Chapter 1: Introduction 
 

 

 

36 

from the planar interface analysed using the imaging system show the same changes 

with temperature and dose as previously identified.  Maps of the reflection from a 

planar interface within a phantom that has received a complex irradiation pattern has 

been created and compared to the delivered dose distribution, for example see Figures 

10.10 – 10.18. 

1.8.3.2. Development of system capable of quantitative 
backscatter imaging 

 

A system has been developed to identify the relationship between pixel values 

at different depths in an ultrasound image and between images acquired using different 

scanner settings as described in Chapter 11.  A full calibration of the system using these 

techniques would enable quantitative backscatter imaging.  The ability to relate pixel 

values in different positions and with different scanner settings is fundamental to the 

development of a dosimetry system based on a pulse echo ultrasound imaging system. 

 

1.9. Publications and presentations 

A number of publications and presentations have been prepared and delivered 

during the course of this research.  Other aspects of the work are undergoing 

preparation for publication and presentation.  Appendix A identifies the publications 

and presentations of this material that have been produced during the course of this 

research. 

 

1.10. Thesis structure 

Chapter 2 of the thesis reviews the existing literature on gel dosimeters and the 

work that has been performed on ultrasonic dosimeters.  The measurement of 

fundamental ultrasonic properties of MAGIC gel are then considered in Chapters 3, 4 

and 5 which consider in turn attenuation, speed of sound and density.  Chapter 6 

presents work on identifying and characterising a material to create dose dependent 

reflections, and Chapter 7 develops the measurement of gel properties at different 

temperatures.  Chapter 8 identifies different phantom configurations that could be 
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considered, and records the development of a phantom based on threads of inert 

reflectors.  Chapters 9 and 10 consider the imaging of phantoms based on threads or 

flat slabs of inert material using a commercial ultrasound scanner.  Chapter 11 

describes initial work performed on calibrating the scanner for quantitative backscatter 

imaging that could be used to determine reflection coefficient from pixel value. 
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2. Background 

2.1. Polymer gel dosimetry 

Considerable work on polymer gel dosimetry and the role of polymer gels in 

radiation therapy verification has been undertaken and reviewed by many authors, 

including McJury et al (2000) and Baldock et al (2010) and at the DosGel and 

IC3Ddose conferences, the proceedings of which are available in the Journal of Physics 

Conference series publications (Volumes 3, 56, 164 and 250). 

Baldock et al (2010) trace a three stage process in the usage of polymer gels for 

dosimtery. Firstly, the process of fabrication of the polymer gel and creation of the 

phantom and calibration vials.  Secondly, the irradiation of the phantom and calibration 

vials, and finally the scanning of the polymerised gel using an optimised imaging 

technique. 

A number of different formulations of polymer gels have been used for 

dosimetry.  Table 2.1 shows some of the formulations that have been used and 

references to their usage.  The table does not show a comprehensive literature search of 

all formulations that have been used but is indicative of some of the main formulations 

and components.  Many of these formulations have been used in other publications but 

for each formulation the first appearance in the literature has been selected as the 

reference where possible.  The remainder of the gel formulations are made up of 

deionised water. 
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 PAG  MAGIC MAGAS MAGAT PAGAS PAGAT nMAG nPAG 

Reference Maryanski et al 

1994 

Fong et al 

2001 

De Deene et al 

2002b 

Venning et al 2005 De Deene et al 

2002b 

Brindha et al 2004 De Deene et al 

2006 

De Deene et al 

2006 

Gelatine 5% 8% 8% 8% 8% 5% 4-12% 3-9% 

Acrylamide 3%    4.5% 4.5%  1-8% 

BIS 3%    4.5% 4.5% 0-6% 0-8% 

Methacrylic Acid  9% 9% 9%   2-8%  

Ascorbic Acid  2mM 5mM  5mM    

Copper Sulphate  0.08mM       

Hydroquinone  16mM    0.01mM   

THPC    10mM  5mM   

THP       2mM 5mM 

Table 2.1. Selected published formulations of Polymer Gel dosimetry systems including content quantities.  Where an absolute quantity is specified this is for a 1 

litre batch of gel.  BIS = N,N-methylene-bis-acrylamide, THPC = Tetrakis (hydroxymethyl) phosphonium chloride, THP = 

Bis[tetrakis(hydroxymethyl)phosphonium]sulphate. 
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There are a number of different classifications that can be applied to the 

polymer gel systems.  The first is dependent on the gelling agent, the second on the 

monomer/cross-linker type and the third on whether there are oxygen scavengers 

present. 

The first radiation sensitive gel systems were radiochromic systems based on 

the Fricke ferrous sulphate chemical system described by Gore et al. (1984a).  These 

were incorporated into gelatine (Gore et al. 1984b) and agarose based gel systems 

(Appleby et al., 1987). Further refinements were made to the systems, for example by 

Ollson et al. (1989) and Schulz et al. (1990).  When polymer systems were introduced 

these were initially based on agarose gels (Maryanski et al., 1993) and later developed 

with gelatine based systems (Maryanski et al., 1994).  A third gelling agent polyvinyl 

alcohol (PVA) has been used with the Fricke radiochromic system (Chu et al. 2000, 

Hill et al. 2002) but has not undergone much investigation. 

Two main monomer systems have been utilised within polymer gel dosimetry.  

Initial gel systems were based on Acrylamide monomers with some authors utilising 

N,N-methylene-bis-acrylamide (BIS) as a cross-linker.  Subsequently other authors 

have utilised methacrylic acid as a less-toxic monomer.  Data for the acute toxicity of 

acrylamide suggest an LD50 in rats of between 159mg/kg and 300mg/kg 

(http://www.epa.gov/chemfact/s_acryla.txt, downloaded 31 Oct 2012), for BIS is 

390mg/kg (www.sigmaaldrich.com, Materials Safety Data Sheet Product M7279, 

accessed 31 Oct 2012) and for Methacrylic Acid is between 1320-2260 mg/kg (UNEP 

Publications, http://www.inchem.org/documents/sids/sids/79414.pdf, downloaded 31 

Oct 2012).  Senden et al (2006) introduce a number of other possible monomers with 

similar chemical structures to Acrylamide but reduced toxicity, however they still use 

the cross-linker BIS in their dosimeters. 

Oxygen within polymer gel systems inhibits radiation induced polymerisation 

by the formation of peroxides.  Gel systems such as PAG are manufactured in an 

oxygen free environment (nitrogen glove box or sealed nitrogen-filled reaction vessels) 

and use de-oxygenated water for making the gel solution.  Other gel systems are 

‘normoxic’ gels and do not require such specialised manufacturing equipment because 

they include an oxygen scavenger within the formulation.  A number of different 

oxygen scavengers have been employed in an effort to optimise the ‘normoxic’ gels for 

http://www.epa.gov/chemfact/s_acryla.txt
http://www.sigmaaldrich.com/
http://www.inchem.org/documents/sids/sids/79414.pdf
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different readout procedures, such as Ascorbic Acid (with or without Copper Sulphate), 

Tetrakis (hydroxymethyl) phosphonium chloride (THPC) and 

Bis[tetrakis(hydroxymethyl)phosphonium]sulphate (THP). 

A number of authors discuss the radiation induced polymerisation reactions that 

occur in various formulations, including De Deene et al (2002a).  Baldock et al (2010) 

discuss the radiochemical yield of reactive intermediates from the radiolysis of pure 

water, and the reaction rate constants of various monomers and cross-linkers used in 

polymer gel formulations.  The polymers gel formulations undergo a standard polymer 

chain and cross-linking process of initiation, propagation and termination and a number 

of processes for each of these steps are discussed by De Deene et al (2002a) for both 

Acrylamide and Methacrylic Acid based gel systems. 

Baldock et al (2010) discuss in detail three methods of image acquisition and 

mention a fourth.  The three main methods discussed are: Magnetic Resonance Imaging 

(MRI), optical CT and x-ray CT. 

When considering the measurement of radiation dose by magnetic resonance 

imaging, three groups of proton pools can be considered, each of which affects 

magnetic resonance rate (Lepage 2001b).  These groups are: (1) free and quasi-free 

protons from free water and unreacted monomers, (2) protons associated with the 

polymer network and (3) protons associated with the gel matrix.  When a gel is 

irradiated, the number of protons in the first pool decreases and the number of protons 

in pool two increases.  The relaxation rates of protons within each pool and the 

exchange of protons between each pool determine the characteristics of the relaxation 

curve that the polymer gel exhibits.  Careful selection of imaging parameters and 

appropriate image processing enable the creation of quantitative R2 (transverse 

relaxation rate) maps which can then be converted into a dose image by appropriate 

calibration. 

The second imaging method discussed by Baldock et al. (2010) is optical CT.  

This method is based on the observation that the transparent unirradiated gel becomes 

increasingly opaque as it is irradiated due to scattering of light by the polymer particles.  

The measured light intensity along a ray-path is related to the line integral of the optical 

attenuation coefficient (μ) along that ray path.  Measurements of light intensity along 

different ray paths at different rotation angles through the sample can be recombined 
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through the process of filtered back-projection to reconstruct the spatial variation of the 

attenuation coefficient.  The attenuation coefficient map can be converted to dose by 

appropriate calibration.  Two basic types of optical CT systems are discussed by 

Baldock et al (2010).  The first is a scanning laser system first introduced by Gore et al 

(1996) where the laser is scanned across the sample to obtain a 1-D projection, and then 

the sample is rotated to sample another projection.  After a full set of projections are 

acquired another slice can be acquired by repositioning the sample or resetting the laser 

scan height.  The second type of device utilises broad beam light sources in either a 

fan-beam (Wolodzko et al 1999) or parallel beam (Doran et al 2001) configuration 

utilising CCD or CMOS detectors. This geometry enables faster image acquisition than 

a single laser beam, but due to the nature of the optical attenuation being caused by 

scattering rather than absorption they have limited use in polymer gel dosimetry.  When 

an area detector is used, scattered light is also collected by the detector and so straight 

ray-path geometry cannot be assumed from the source, and hence the reconstruction of 

the position at which the attenuation occurs cannot be calculated.  Other dosimeter 

types, which attenuate the light by absorption alone have been successfully imaged on 

these systems.  The optical systems suffer in particular from reflection and refraction of 

light from the walls of the dosimeter, and several correction and minimisation 

techniques are discussed by Baldock et al. (2010) and the references therin. 

The third imaging mechanism identified by Baldock et al. (2010) is X-ray CT, 

where small changes in linear attenuation coefficient can be observed in the CT number 

in the derived image.  It has been shown that the linear attenuation coefficient and CT 

number are directly proportional to mass density (Trapp et al 2001).  Measurements of 

mass density of various polymer gel systems indicate that density increases with 

radiation dose.  These changes in density with dose are small and therefore produce low 

contrast images when imaged using X-ray CT.  Various methods of increasing contrast-

to-noise ratio are discussed by Baldock et al. (2010) as well as the radiation 

polymerisation from the X-ray CT procedure itself. 

Ultrasound imaging is also mentioned by Baldock et al. (2010), based on 

Ultrasound tomography of transmission and time of flight measurements, although this 

is not described in detail. 
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Baldock et al. (2010) also discuss various aspects of Polymer Gel dosimetry 

affecting the accuracy and precision of measurements.  Each step in the gel dosimetry 

experiment is analysed for potential sources of error.  The response of the gel dosimeter 

is dependent on the gel composition and also on thermal effects during the 

manufacturing and storage process, as shown by De Deene (2006) and Dumas et al. 

(2006).  There are potential sources of error from the radiation output and positioning 

of the phantom and calibration phantoms during the irradiations.  The stochastic nature 

of the radiation induced chemical reactions will also introduce sources of error.  Errors 

in the scanning process may come from thermal noise in the imaging equipment, from 

processing of the data or from imaging artefacts.  Finally the conversion from measured 

data to dose involves a calibration pathway similar to that of the 3D phantom and will 

itself by subject to similar error sources. 

Baldock et al. (2010) review two parameters that can be used to analyse the 

results of polymer gel dosimetry.  The first is the gamma index introduced by Low et 

al. (1998) which gives an overall parameter at each measurement position of the 

dosimetric and spatial accuracy by combining a distance-to-agreement and dose 

difference between an experimental and reference dose distribution.  Baldock et al 

(2010) argue that gamma analysis must be applied in polymer gel dosimetry only where 

clinically appropriate and as an additional analysis alongside dose difference and 

distance-to-agreement maps.  They also review the concept of dose resolution (Baldock 

et al. 2001) which is defined as the minimum detectable dose difference for a given 

confidence level. 

Finally Baldock et al. (2010) discuss the areas to which polymer gel dosimetry 

has been applied.  They pay particular attention to the role of polymer gel dosimetry in 

external beam radiotherapy, both as a way of verifying the full 3D dose distributions 

from IMRT class solutions, in routine quality assurance of IMRT treatments where 1D 

or 2D detectors may not always be able to resolve machine failure or drifts, and in the 

assessment of set-up errors in the whole radiotherapy pathway.  They also discuss the 

applications and review the literature regarding the use of polymer gel dosimetry in the 

measurement of the dose distribution from brachytherapy sources, the measurement of 

proton and heavy ion beams, the dose from Boron-neutron capture therapy using a 

PAG gel doped with boron, and usage in radionuclide and diagnostic dosimetry. 
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2.2. Ultrasound gel dosimetry 

Two ultrasonic methods of imaging polymer gel dosimeters have been 

discussed in the literature.  The first method proposed and investigated by Mather and 

Baldock (2003) utilises ultrasound computed tomography, where transmission 

measurements through a cylindrical polymer gel phantom are made and back-

projection methods are used to reconstruct an image of attenuation or speed of sound at 

each voxel.  The second method utilises ultrasound elastographic methods to image 

elastic moduli of the gel (Crescenti 2009, Crescenti et al 2010). 

2.2.1. Ultrasound computed tomography 

 

Similarly to optical CT and X-ray CT, ultrasound computed tomography (UCT) 

is based on the measurement of the energy propagated through an object from a source.  

In UCT the slower speed of sound (compared to the electromagnetic radiation used in 

optical and x-ray systems) enables not only the attenuation but also the time of flight to 

be measured through the object.  Hence, using reconstruction techniques it is possible 

to map both the attenuation coefficient and refractive index of the object (Kak and 

Slaney, 1988).   

An ultrasound source is directed at the sample and measurements of the 

ultrasonic signal are made using a transducer located on the far side of the object.  

Beer’s Law states that the change in amplitude of a signal passing through an 

infinitesimally small length of attenuating material is accounted for by the attenuation 

coefficient α at that point.  Integrating Beer’s law along the signal path S from point z1 

to point z2 gives 

ln 
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where Ao is the initial amplitude at point z1 and A is the measured amplitude at 

point z2.  Here α(x, y) is the attenuation coefficient of the sample at coordinates (x, y). 

Similarly, following Kak and Slaney (1988), the time shift tdelay introduced by 

the presence of the sample is given by the line integral along the signal path L 
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where cref is the speed of sound in the reference medium (usually water) and 

n(x, y) is the refractive index of the sample at coordinates (x, y) compared to the 

reference material 
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),(

yxc

c
yxn

ref
.        (2.3) 

Here c(x, y) is the phase velocity of sound in the sample at coordinates (x, y).  

The amplitude A and phase shift tdelay can be measured for multiple ray paths 

through the object by translating and rotating the object and/or transducer and receiver.  

With data from sufficient numbers of ray paths then it is possible to reconstruct the data 

for attenuation or refractive index for all coordinates on plane (x, y).   

Two methods of reconstructing the data exist; filtered back-projection and 

iterative reconstruction.  Due to the effects of refraction, scattering and diffraction a 

straight ray path cannot be assumed in ultrasound CT, leading to errors when utilising a 

filtered back-projection reconstruction technique. However, Mather and Baldock 

(2003) state that for a non-scattering material with minimal changes in acoustic 

impedance then the errors in assuming straight ray propagation are small. 

Both the ultrasonic speed of sound (Mather et al. 2002) and the ultrasonic 

attenuation coefficient (Mather et al. 2002, Mather et al. 2003, Crescenti et al. 2007) 

have been shown to vary with radiation dose. Therefore the use of ultrasound computed 

tomography to measure attenuation and phase shift related data should result in an 

image that can be correlated to radiation dose. 

Mather and Baldock (2003) used ultrasound computed tomography to produce 

images of a square 4 cm x 4 cm irradiation of a PAG polymer gel dosimeter.  They 

collected 80 scan lines at 1mm spacing for 180 projections around a phantom using a 

single element transducer to produce an ultrasound pulse and collected data with a 

needle hydrophone.  They used a filtered back-projection method to produce two 

images, one of transmission properties and one of time of flight.  

2.2.2. Measurement of elasticity using ultrasound 

 

A number of techniques aimed at assess shear elastic modulus in a medium 

from ultrasound images exist.  When an external stress (S) is applied to a material it 

induces a strain (e).  The Young’s Modulus (E) of the tissue is defined as 
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e

S
E .        (2.4) 

If different parts of the imaged medium have different Young’s moduli, then 

they react to the applied stress in different ways.  For example, a stiff lesion within a 

softer surrounding will deform less (have a smaller strain) than the surrounding 

material.  Ophir et al. (1991) identify two techniques for producing maps of elastic 

properties from ultrasound images.  They identify “Sonoelasticity” as the measurement 

of the velocity of propagation of low frequency shear waves using Doppler velocity 

measurements and they define a second methodology based on cross-correlation 

between images to identify the displacement of tissues under stress.  

There are a number of ways of generating the force to generate the stress in the 

medium.  In discussion in-vivo imaging Ophir et al. (1996) identify internal excitation 

as motion generated in the subject for example by arterial motion.  Other methods 

involve the deformation of the tissue using the ultrasound transducer itself or with some 

other external mechanical stimulator.  A third method of applying force using 

ultrasonic radiation force has been described by Nightingale et al. (2000).  Unless the 

magnitude of the applied force is known, then the resultant images are qualitative only 

and the tissue elasticity cannot be determined. 

For a shear wave passing through a material the elasticity can be determined 

from the shear wave speed, since Young’s modulus 

2
)1(2 scE ,       (2.5)  

where υ is Poisson’s ratio, ρ is the material density and cs is the shear wave 

speed (Bayón et al. 2005).  This enables a direct measurement of the elasticity if the 

shear wave speed can be measured and Poisson’s ratio and the material density is 

known.  Shear waves propagate more slowly than compressional waves and therefore 

the measurement of the shear wave speed by ultrasonic imaging of the wave front is 

possible. 

Recently a commercially available scanner based on shear-wave propagation 

has been made available by Supersonic Imagine S.A (Aix en Provence, France).  This 

system utilises a ultrasonic pulse to generate a shear wave in the medium and then 

images at high frame rates (thousands of frames per second) to measure the propagation 

of the shear wave front and produce a map of elasticity in the medium (ShearWave
TM
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Elastography White Paper, Supersonic Imagine).  One fundamental assumption in the 

system is that the imaged material is approximately incompressible, having a Poisson’s 

ratio of 0.5, so that shear wave speed can be related directly to Young’s Modulus. 

Crescenti et al (2009a) demonstrated that Young’s Modulus was dose 

dependent by mechanically measuring the Young’s Modulus of irradiated polymer gels.   

Elastographic measurement based on statically applied external forces Crescenti 

(2009b, Crescenti 2009) and ShearWave
TM

 Elastography (Crescenti 2009) have been 

used to measure simple radiation dose distributions.  Crescenti et al. (2009b) 

demonstrate images of a 10 mm × 10 mm irradiation of a MAGIC polymer gel 

dosimeter using a statically applied force and an inverse reconstruction method was 

used to calculated Young’s modulus.  Crescenti (2009) uses the same image acquisition 

setup to produce images of more complex dose distributions, and also demonstrates the 

usage of the ShearWave
TM

 Elastography in the measurement of radiation sensitive 

polymer gels on the assumption that polymer gels are approximately incompressible.  

 

2.3. Criteria for analysing project outcomes 

De Wagter (2004) outlined the essential characteristics of a 3D dosimetry 

system, as summarised in Section 1.5.  The work reported in this thesis focuses on 

demonstrating a system that can determine the full 3D volumetric data in terms of both 

absolute dose and positional accuracy so that it can be compared to a calculated dose 

distribution.  It also discusses the reliability and reproducibility of such a dosimetry 

system.  The choice of ultrasonic readout method and the usage of MAGIC gel 

dosimeters aim to ensure that the system is reasonable in cost and low in toxicity 

compared to alternatives. 

To be able to use a dosimetry technique clinically it should be able to determine 

the magnitude and location of the radiation dose distribution.  This is so that an 

independent system (from the calculation and delivery system) can be used to identify 

errors in either or both the geometrical accuracy of the radiation delivery and the 

absolute dose level delivered.  There are two aspects of measurement of dose that are 

important in a dosimetry system, the ability to measure a known radiation dose 

accurately (absolute accuracy), and the ability to distinguish between different dose 
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levels in a distribution (precision). In radiation dosimetry gamma analysis (Low et al., 

1998) is often used to determine either the distance-to-agreement or the level of 

agreement between dose distributions (measurements or calculations).  The gamma 

value is calculated at each point within the dose distribution, where the distance-to-

agreement is the shortest distance between corresponding dose levels in the two 

distributions and the level of agreement is the dose difference between the two 

distributions at that point.  In this case a precise system is required to ensure that the 

different dose levels can be distinguished.  It is helpful if the system is also absolutely 

accurate otherwise a cross-calibration or alternative absolute measurement is also 

required.  When comparing dose distributions, gamma criteria of 3 mm and 3% 

respectively are often used to determine whether the two dose distributions are similar 

(Nelms and Simon, 2007), although many different criteria have been applied in 

different clinical situations (for example see James et al., 2008, Both et al., 2007) and 

the actual criteria that are used should be selected according to the clinical situation.  

For the purposes of this study since most clinical criteria will require 3% and 3 mm or 

better, an excellent outcome would be to produce a system that could determine 

radiation dose distributions to a precision of 3% and a distance of 3 mm or better.  A 

good outcome for this project would be to produce a system that would be to be able to 

determine dose distributions with a precision of 10% and a distance of 10 mm as this 

would show that the system, with further development, may be able to be clinically 

useful.  A system that falls short of the 10% and 10 mm level would require significant 

development to produce a system that may be clinically usable, and therefore 

consideration should be made as to whether other systems may be more worthy of the 

investigative effort. 
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3. Measurement of ultrasonic attenuation coefficient 

3.1. Introduction 

Ultrasonic backscatter imaging is based on reception of low amplitude 

ultrasound signals that are reflected from inhomogeneities in the sample from an initial 

ultrasound signal, usually produced by the same transducer.  The amplitude of the 

received signal is dependent on both the strength of the reflection and also losses to 

both the outgoing and reflected signal.  The losses of an ultrasound wave passing 

through a homogeneous medium are characterised by the attenuation coefficient of that 

medium. 

Therefore it is important to understand how the ultrasonic attenuation of 

MAGIC gels is affected by radiation dose if a pulse echo method is to be used for 

measuring radiation dose.  Any measurement system based on a pulse echo method will 

require signals to be corrected for any attenuation that they have been subjected to by 

their passage through the gel, otherwise the dose may be incorrectly calculated, 

especially if the attenuation is dose dependant. 

 

3.2. Theory 

For sound waves travelling through real materials the wave undergoes 

scattering and absorption processes.  For uniform media this means that the amplitude 

of a wave that has travelled a distance x through a material is reduced from its initial 

amplitude by a constant factor per unit path length.  For a wave with initial pressure 

amplitude P0 and pressure amplitude P after propagating a distance x cm the amplitude 

attenuation coefficient can be expressed as 

 

α = - 
x

20
 log10 

0P

P
       (3.1) 

 

with units of dB cm
-1

.  The relaxation processes that contribute to the absorption of the 

wave are frequency dependent, therefore α is also frequency dependent.
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A wave produced by a focusing transducer and passing through a water path 

and a sample, as used in our measurement for attenuation, also undergoes diffraction 

and interface losses.  Following the notation of Xu and Kaufman (1993), the amplitude 

spectrum of the received waveform after propagating through a distance z (the 

transducer separation) is given by 

 

AS(f, z) = Γ(f)Dd
S
(f, z)ΞT(f) ΞR(f)ΠI(f)V(f)    (3.2) 

 

where Γ(f) is the reduction in acoustic amplitude due to attenuation in the sample, 

Dd
S
(f, z) characterizes the reduction in amplitude of the ultrasound pulse as a result of 

diffraction for the water-sample-water path, ΞT(f) is the transmitter response function, 

ΞR(f) is the receiver response function, ΠI(f) is the transfer function due to interface 

losses and V(f) is the amplitude spectrum of the input signal. 

 

For a water path only the amplitude spectrum of the received waveform is given 

by 

 

AW(f, z) = Dd
W

(f, z)ΞT(f) ΞR(f)V(f)     (3.3) 

 

where Dd
W

(f, z) characterizes the diffraction of the ultrasound pulse by the water-only 

path. 

An estimation of Γ(f), the reduction in amplitude spectrum due to the sample 

attenuation, can be obtained from the ratio of AS(f, z) to AW(f, z) giving 
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The interface losses can be dealt with in two ways.  Either samples of differing 

thickness can be measured and Γ(f) calculated from the slope of a plot of the ratio of 

AS(f, z) to AW(f, z) against sample thickness, or by measuring AW(f, z) with a sample 

holder filled with water in the position of a sample.  In this project samples of differing 
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thickness were used as this also accounts for any surface effects of the samples in a 

similar way to the interface losses. 

The difference in the diffraction effects for the sample and water paths can also 

be dealt with in two ways.  Firstly, diffraction patterns can be modelled and theoretical 

corrections applied.  There are a number of reports of these methods in the literature 

(Xu & Kaufman, 1993; Seki et al., 1956; Zequiri, 1996).  Secondly, the change in 

diffraction can be minimized by minimizing the effect of the difference in path lengths 

for the reference and attenuated measurements using a buffered insertion technique.  

For fixed frequency systems this can be achieved by placing the two transducers at a 

position of diffraction maxima or minima, thereby reducing any change in diffraction 

loss (Bamber, 2004a; Penttinen & Luukkala, 1977).  This second method is the one 

selected in this project to reduce the diffraction errors associated with attenuation 

measurement due to its simplicity. 

To calculate Γ(f), the reduction in signal amplitude due to attenuation in the 

sample, either the Fourier transform of an impulse signal can be used, or multiple 

measurements using single frequency ‘tone bursts’ can be used.  In this project multiple 

measurements of single frequency ‘tone burst’ excitations were used as this enabled a 

larger frequency range to be investigated while maintaining adequate signal to noise 

ratio at frequencies other than the transducer resonance; this approach also enabled low 

amplitude signals to be used thus ensuring quasi-linear conditions were maintained 

through the entire path length between transducers. 

Finally, the frequency dependant attenuation coefficient α(f) of the sample 

media can be calculated from the measured reduction in signal amplitude and the 

sample thickness, x, according to equation 3.1. 

 

3.4. Materials and methods 

3.4.1. Gel manufacture 

 

Gels were manufactured as described by Fong et al. (2001).  To make a 1 litre 

batch of dosimetric gel, 80.0g of 300 bloom gelatine (Sigma Aldrich, Poole) was 

dissolved in 700ml distilled water.  The solution was heated to 50ºC using a 
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thermostatically controlled heater and a magnetic stir bar was used to continuously stir 

the solution.  The solution was kept at 50ºC until the gelatine had dissolved and the 

solution was clear.  Then 2.0g Hydroquinone (Sigma Aldrich, Poole) in 48ml distilled 

water was added.  The mixture was then allowed to cool to 37ºC, at which point 0.352g 

Ascorbic Acid (Sigma Aldrich, Poole) in 50ml distilled water, 0.020g Copper Sulphate 

pentahydrate (Sigma Aldrich, Poole) in 30ml distilled water and 90g Methacrylic Acid 

(Sigma Aldrich, Poole) were added.  The gels were manufactured in a fume cupboard. 

 

3.4.2. Gel holders 

 

The results reported in Appendix B were used guide the design of a 

measurement system to measure gel attenuation.  Sample holders of three different 

nominal thicknesses were designed and constructed.  The sample holders were made of 

3 perpex blocks as shown in Figure 3.1.  Each block had a hole of radius 19mm cut in 

the centre.  This size was selected so the small sample size estimate of the receiver 

response would be greater than 0.98. (In Appendix B this is calculated as ensuring the 

ratio |prec(zT, R)| / |prec(zT)| is greater than 0.98).   The centre blocks were manufactured 

in three different thicknesses to give the different nominal thickness of the samples and 

were to contain the gel itself.  A piece of 0.18mm thick Mylar film was used either side 

of the central block to create the outer surface of the mould and the two thin outer 

blocks held the films in place.  The elements were held together using Nylon nuts and 

bolts.  In the centre element a hole was drilled to enable the holders to be filled with the 

gel solution after the holders were assembled.  Once filled with gel the holes were 

covered with two layers of PVC insulation tape to seal the hole and to reduce the 

potential for oxygen contamination of the gels.  The filling hole had the additional 

benefit that any small gas bubbles in the gel rose to the top of the holder and into the 

filling hole prior to the gel setting and therefore did not cause any attenuation or 

scattering of the ultrasound signal.  The gel holders were designed in conjunction with, 

and constructed by, Dr Michael Hillman and Mr Martin Rouse of Designability (Bath 

Institute of Medical Engineering). 
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Figure 3.1. Diagram showing the construction of the gel holders.  The central element was filled with gel 

through the filling hole, with acoustic windows provided by Mylar film.  The film was held in place by 

the outer plates and the entire structure held together by two Nylon nuts and bolts. 

 

3.4.3. Gel handling and irradiations 

 

For each batch of MAGIC gels produced, once the gels had been poured into 

the containers they were cooled to room temperature and then refrigerated for 

approximately twenty-four hours.  The samples were then irradiated using a Siemens 

Primus 6MV linear accelerator (Siemens AG, Erlangen, Federal Republic of Germany).  

The gel samples were placed in turn in a water tank, which provided build up and 

scattering so that a uniform dose was received by each sample.  After irradiation the gel 

samples were returned to the refrigerator for approximately forty-eight hours prior to 

measurement. 

 

3.4.4. Measurement system 

 

Two weakly focused single element ultrasound transducers with a centre 

frequency of 3.5MHz were used with a temperature controlled water tank to measure 

attenuation.  One transducer was coupled to the outside of the tank at a fixed position 

on an acoustic window, with ultrasound coupling gel used to ensure good ultrasonic 

transmission into the tank (see Figure 3.2).  The second transducer, within the water 

tank, was attached to a micromanipulation stage so that the transducers could be 

correctly aligned and the separation adjusted to ensure that the transducers were at a 

diffraction maximum.  The temperature of the water tank was maintained at a constant 

temperature using a Grant GD100 digital immersion thermostat (Grant Instruments Ltd, 

Cambridge, UK).  All measurements were made at 25.0 ± 0.1°C, with the water tank 
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being filled with distilled water.  The gel samples were mounted in turn in a re-

locatable frame in the water tank.  The micromanipulation stage, transducer holders and 

sample mounting frame were designed in conjunction with, and constructed by, Dr 

Michael Hillman and Mr Martin Rouse of Designability (Bath Institute of Medical 

Engineering). 

A tone burst signal generated by an Agilent 33220A signal generator (Agilent 

Technologies, Inc., Santa Clara, CA) was amplified using an ENI 240L RF Power 

Amplifier (ENI, Inc., Rochester, NY) and applied to the transmitting transducer.  The 

received signal from the ultrasound attenuation measurement system was digitized 

using a PicoScope 3206 digital PC Oscilloscope (Pico Technology Ltd, St Neots, 

Cambridgeshire, UK).  The frequency of the tone burst was varied from 2 MHz to 

5.5 MHz with the length of pulse being varied with frequency as well.  Data from 100 

ultrasound pulses were recorded for each sample. 

The amplitude of each tone burst frequency was selected to ensure that quasi-

linear conditions still existed in accordance with the published recommendations 

(International Electrotechnical Commission (IEC), 2007; Duck, 2002).  Measurements 

of the transducer characteristics with different amplitude toneburst signals were made 

with an Ultrasound Beam Calibrator (Preston, 1998).  Measurements of acoustic 

pressure (peak rarefactional and peak-compressional) for different drive amplitudes, as 

well as acoustic working frequency and local area factor were made according to IEC 

2007 and used to calculate the local distortion parameter at the focus. The maximum 

drive amplitude consistent with a focal distortion parameter of less than 0.5 was then 

chosen as the drive amplitude for subsequent measurements. 

The signals were analysed in Matlab R12.1 (The Mathworks, Inc., Natick, MA), 

where a steady state region of the toneburst was selected and an FFT performed to 

compute the amplitude of the signal at the frequency of the tone burst.  An example of 

the Matlab code used for analysing the signals is contained in Appendix C1. 

Later, the PicoScope 3206 digital PC Oscilloscope was replaced by a National 

Instruments NI-5133 USB Oscilloscope (National Instruments Corporation, Austin, 

Texas) and analysis was also performed using National Instruments Labview Signal 

Express 3.0. 

A photograph of the experimental setup is shown in Figure 3.3. 
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Figure 3.2. Diagram of the measurement apparatus for attenuation measurements.  The transmitting 

transducer was clamped to the outside of the water tank and acoustically coupled using ultrasound gel.  

The samples were placed in turn in a re-locatable frame in the tank. The receiving transducer was 

mounted on a micromanipulation stage. 

 

 

 
Figure 3.3. Photo of the measurement apparatus for attenuation measurements.  The water tank 

containing the samples is shown on the right of the photograph.  The pulse generating system is in the 

centre, with the laptop used to store the received signals is shown on the left. 

 

3.4.5. Temperature dependence of attenuation coefficient 

 

As the project progressed, it became apparent that the physical properties of 

MAGIC gels exhibit significant temperature dependence.  Therefore measurements of 
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ultrasonic attenuation coefficient were made at different temperatures and doses.  

Temperature was controlled using a Grant GD 100 Immersion Thermostat (Grant 

Instruments Ltd, Cambridge, UK) and a Grant C1G Refrigerated Immersion Cooler 

attached to the water tank. 

 

3.5. Results 

Figures 3.4, 3.5 and 3.6 show the results of measurement of attenuation 

coefficient for 3 different batches of gels.  The attenuation coefficient appears to 

increase with both irradiated dose and ultrasound frequency.  The error bars shown are 

one standard error in the mean of the attenuation coefficient for each dose-frequency 

combination calculated from regression analysis of the results for the three thicknesses 

of gel sample that were irradiated to that dose. 

Figures 3.7, 3.8 and 3.9 show the measured variation of attenuation coefficient 

with temperature for gels irradiated to 3 different dose levels.  The attenuation 

coefficient decreases with increasing temperature.  The increase in attenuation 

coefficient with ultrasound frequency is also demonstrated at each temperature. 
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Figure 3.4.  Attenuation coefficient measured at discrete frequencies (see key) for Batch 1 MAGIC gel 

irradiated to different doses at 25°C.  Error bars are one standard error on the mean attenuation 

coefficient from three gel samples. 
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Figure 3.5.  Attenuation coefficient measured at discrete frequencies (see key) for Batch 2 MAGIC gel 

irradiated to different doses at 25°C.  Error bars are one standard error on the mean attenuation 

coefficient from three gel samples. 
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Figure 3.6.  Attenuation coefficient measured at discrete frequencies (see key) for Batch 3 MAGIC gel 

irradiated to different doses at 25°C.  Error bars are one standard error on the mean attenuation 

coefficient from three gel samples. 

 

 



Chapter 3: Measurement of Ultrasonic Attenuation Coefficient 
 

 

 

59 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25

Temperature / 
o
C

A
tt

e
n

u
a

ti
o

n
 c

o
e

ff
ic

ie
n

t 
/ 

d
B

 c
m

-1

2.5 MHz

3 MHz

3.5 MHz

4 MHz

4.5 MHz

5 MHz

 

Figure 3.7. Variation in attenuation coefficient with temperature for selected frequencies (see key) for 

unirradiated MAGIC gel. 
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Figure 3.8. Variation in attenuation coefficient with temperature for selected frequencies (see key) for 

MAGIC gel irradiated to 10 Gy. 

 



Chapter 3: Measurement of Ultrasonic Attenuation Coefficient 
 

 

 

60 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

Temperature / 
o
C

A
tt

e
n

u
a

ti
o

n
 c

o
e

ff
ic

ie
n

t 
/ 

d
B

 c
m

-1

2.5 MHz

3 MHz

3.5 MHz

4 MHz

4.5 MHz

5 MHz

 

Figure 3.9. Variation in attenuation coefficient with temperature for selected frequencies (see key) for 

MAGIC gel irradiated to 30 Gy. 

 

3.6. Discussion 

Following Mather et al. (2002, 2003) and Crescenti et al. (2007) a linear fit has 

been applied to the graphs of attenuation coefficient as a function of dose.   

Mather et al. (2002, 2003) found the attenuation coefficient of unirradiated gels 

to be 0.6 dB cm
−1

 and 1.25 dB cm
−1

 at 4MHz in their two papers respectively, while 

Crescenti et al. (2007) showed the attenuation coefficient of unirradiated gels to be 

between 1.0 and 1.4 dB cm
−1

 at 4.1 MHz.  The three batches of gels here show an 

attenuation coefficient of unirradiated samples to be between 0.49 dB cm
−1

 and 1.12 dB 

cm
−1

 at 4MHz.   

Slopes of 0.047 ± 0.003 dB cm
−1

 Gy
−1

 and 0.042 ± 0.003 dB cm
−1

 Gy
−1

 were 

reported by Mather et al. (2002, 2003) at 4MHz respectively.  Crescenti et al. (2007) 

demonstrated a slope of between 0.045 dB cm
−1

 Gy
−1

 and 0.061 dB cm
−1

 Gy
−1

 at 4.1 

MHz.  Data collected in these experiments show a slope of between 0.028 dB cm
−1

 

Gy
−1

 and 0.038 dB cm
−1

 Gy
−1

 at 4 MHz.  The data from the three groups discussed here 

are summarised in Table 3.1. 
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Reference Batch Attenuation Coefficient 

Dose sensitivity / dB cm
-1

 

Gy
-1 

Error on Attenuation 

Coefficient Dose 

Sensitivity / dB cm
-1

 Gy
-1 

Mather 2002  0.047 0.003 

Mather 2003  0.042 0.003 

Crescenti 2007 1 0.0530  

 2 0.0454  

 3 0.0608  

 4 0.0447  

This work 1 0.037 0.006 

 2 0.038 0.008 

 3 0.028 0.006 

Table 3.1.  Comparison of the dose sensitivity of attenuation coefficient for MAGIC gels measured at 

4 MHz in literature and in the current work 

 

It is observed that a linear fit may not be the most suitable for this data, or the 

data presented in the literature.  At doses below 10 Gy the attenuation is low and does 

not change significantly with dose.  Initially this was thought to be a problem with the 

measurement system and a number of possible sources of error were investigated.  A 

potential problem with the PICOScope PC Oscilloscope was thought to be a cause of 

error, and so as a replacement the National Instruments NI-5133 was obtained and used 

on an independent set of measurements (Batch 3) which gave similar results to the 

previous two batches.  

Further consideration of the data presented by Crescenti et al in the literature 

shows that only one Batch (Batch 1) of his data shows a significant change to the 

attenuation below 10 Gy.  The other three batches presented show little change with 

attenuation at low dose.  Such a non-linear behaviour of attenuation could be explained 

by the existence of two independent attenuation mechanisms, one of which is invariant 

with dose and the other being dose dependent. 

If the attenuation of ultrasound by the MAGIC gels below 10 Gy can be 

characterized by a non dose-dependent parameter then this will significantly simplify 

the processing of the measurement of backscattered ultrasound data for dose 

dependence. 

The results presented here show considerable batch variability, both in the 

attenuation of the unirradiated gel and the dose sensitivity of the attenuation.  As part of 
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future development of ultrasonic gel dosimeters this will have to be considered and 

potentially a more stable and reproducible formulation for the dose dependent gel will 

have to be formulated.   

For each dose level, it was observed that the attenuation coefficient decreased 

with increasing temperature.  Combined with the observation that the attenuation 

increases with increasing frequency, this indicates that in the temperature and 

frequency range considered here the frequencies being used are below the relaxation 

frequency for the relaxation process dominating the absorption and attenuation in this 

temperature and frequency range. 

There are a number of possible factors affecting the dose sensitivity of 

attenuation measurements reported here.  These include the presence of bubbles in 

some samples, the thermal cycle undergone by the samples and the presence of oxygen 

within the samples. 

If the samples contained small bubbles within the MAGIC gel, the presence of 

the bubbles will create additional scattering centres compared to a homogeneous 

sample.  The additional scattering centres will increase attenuation compared to the 

expected attenuation from a homogenous sample.  During the filling of each container, 

the elimination of bubbles from the sample was attempted, but may not have been 

completely successful.  The presence of bubbles in some samples and not others will 

have contributed to random errors in the measured attenuation. 

The thermal cycle undergone by the samples may have affected the measured 

attenuation.  As each holder was filled with MAGIC gel, the gel in the holder will have 

started to cool at a higher rate than the bulk gel remaining in the manufacturing 

container.  The three different thicknesses of sample holders will also have different 

thermal capacities, and therefore will also have affected the cooling rates.  The ambient 

temperature of the room during the process of filling the holders will have affected the 

cooling rates as well.  The temperature of the gels during the irradiation will be 

dependent on the ambient temperature at the time of irradiation.  It is well known that 

temperature affects reaction rates, and the thermal cycle affects the physical properties 

of gelatine (for example, te Nijenhuis, 1981).  Therefore the thermal cycle that the 

samples will have undergone will affect the attenuation of the samples due to the 

physical properties of the gelatine framework and the reaction rates during the 
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polymerisation process.  Differences in the thermal cycle can introduce both systematic 

and random errors into the measured attenuation. 

The presence of oxygen within the samples is know to inhibit polymerisation.  

Although the use of oxygen scavengers within the MAGIC gel preparation is made to 

reduce the affect of oxygen contamination, it is observable that significant surface 

effects still remain, where the available oxygen scavengers are overwhelmed by the 

amount of oxygen present in the sample.  Therefore it is important to remove the 

oxygen from the sample.  Although this was attempted by fully filling the samples and 

sealing them with multiple layers of tape, it was not always successful, and some 

oxygen contamination may have occurred in some samples.  This will have contributed 

to random errors in the measured attenuation. 

 

3.7. Conclusion 

There is a wide variation in measured attenuation coefficients for MAGIC gel 

samples.  Both measurements reported here and in the literature present wide inter-

batch variability.  The measurements presented here suggest that the attenuation 

coefficient may change non-linearly with dose and also has a strong temperature 

dependence.  This suggests that when using large 3D phantoms that the attenuation of 

the ultrasound by the phantom itself will need to be carefully considered in the analysis.  

More investigation into the dose and temperature dependence of the MAGIC gel may 

need to be performed to ensure that corrections for ultrasound attenuation by the gel 

can be applied. 
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4. Measurement of ultrasonic speed of sound 

4.1. Introduction 

The sound power reflection coefficient for the reflection of ultrasound from an 

interface between two fluid materials is dependent on the characteristic acoustic 

impedences of the two materials.  For a plane wave incident normally on a planar 

surface the Sound Power reflection coefficient is given by Kinsler and Frey (1962) as  

Sound power reflection = 

2

12

12

ZZ

ZZ
    (4.1) 

where Z1 is the characteristic acoustic impedance of the material through which the 

ultrasound is passing and Z2 is the characteristic acoustic impedance of the reflecting  

material. 

The characteristic acoustic impedance of a material is the product of the density 

and the speed of sound of the material.  Therefore, to be able to understand the 

reflections between MAGIC gel and another material it is important to understand how 

the speed of sound and density of the MAGIC gel is affected by radiation dose and 

other environmental properties. 

A convenient way for measuring the speed of sound of a material is to use the 

time of flight of a sound pulse.  This simplification ignores the complexities of 

dispersive effects which give rise to the need to consider both group and phase speeds.  

The complexities in such measurements arise from the difficulty of defining the pulse 

arrival time.  If the pulse shape changes due to dispersion in the measurement medium, 

due to frequency dependence of speed of sound or attenuation, then the definition of a 

single point of reference is difficult.  The definition of first arrival as the time that the 

signal can be distinguished from the background noise, and the time of the first zero 

crossing have both been utilized (Bamber, 2004b).  In this work the first zero crossing 

was used as the definition of first arrival time as this was more reproducible when 

considering the different signal attenuation from the various samples.  Different sample 

doses and thicknesses would cause different attenuation of the signal, and therefore the 

time at which the signal becomes distinguishable from background would be dependent 

on the attenuation of the signal.  To illustrate this, in Figure 4.1, two signals are shown 
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based on a single sinusoidal pulse of duration 225 time units, one with amplitude of 1, 

and the other with amplitude 0.4.  Randomly generated noise of amplitude 0.05 has 

been superimposed on the signals, and is shown in the figure.  If the time of flight is 

based on the time that the signal is first distinguishable from the noise then the 

difference between the two arrival times is 2.5 time units compared to no difference 

using the first zero crossing. 
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Figure 4.1. Illustration of the effect of noise and signal amplitude on the estimation of pulse arrival time.  

Maximum noise level is shown in black. 
 

Diffraction effects also are important in measurement of ultrasonic speed, 

however when insertion measurements are carried out in biological tissues with the 

reference medium being water then diffraction effects are so small they can safely be 

ignored (Kaufman et al., 1995).  A similar argument can be utilised for the small 

samples used in this project. 

 

4.2. Theory 

Measurements of sound velocity on gel samples are potentially sensitive to 

bowing of the gel windows and resulting uncertainty in the sample thickness.  The first 

reverberation (multiple reflection) from within the gel sample can be used, along with 
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the direct path time of flight, to obtain a measurement of the speed of sound 

independent of the thickness of the sample. 

Figure 4.2 shows a schematic diagram of the insertion method arrangement with 

two transducers immersed in a fluid bath and illustrates the quantities used in this note. 

The time taken for the ultrasound to travel from the source to receiver through the fluid 

alone, tf  is given by 

ref

f
c

x
t         (4.2) 

where x is the distance between the transducers and cref is the speed of sound in the 

reference fluid. 
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Figure 4.2. Definition of quantities used in the determination of sample thickness from first internal 

reverberation. Transducer separation (zT), sample thickness (x), time of flight through fluid path (tf), 

direct time of flight through sample (td) and first reverberant echo (tr) are as described in the text.  Tx is 

the transmitting transducer and Rx is the receiving transducer. 

 

When a sample of thickness x is introduced the arrival time of both the directly 

transmitted wave, td, and the first multiple reflection within the sample, tr,can be 

measured.   These times of flight are given by 
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sampleref

d
c

x

c

xz
t        (4.3) 

and 

sampleref

r

3

c

x

c

xz
t ,       (4.4) 

 

where csample is the speed of sound in the sample. 

Eliminating z and x and writing cs in terms of the arrival times gives 

 

dr

dfr
refsample

32

tt

ttt
cc .      (4.5) 

 

The sample thickness can be calculated by writing x in terms of the arrival times 

and cf and eliminating csample and z: 

 

2

32 dfr
ref

ttt
cx .      (4.6) 

 

These calculations require knowledge of the speed of sound in the fluid 

medium.  This can either be calculated from an accurate measurement of the transducer 

separation or from published data relating to the chosen fluid medium. 

Bamber (2004b) notes that a number of choices of pulse arrival time are 

possible, the choice of which may give rise to uncertainties in the measurement of time 

of flight due to non-linear propagation and pulse stretching from ultrasonic attenuation.  

The uncertainties introduced by these factors will affect the sound velocity and sample 

thickness estimated by these methods. 

These formulae apply to the case of a sample without any window material to 

contain the sample.  Clearly the presence of a widow will have an influence on the 

arrival times.  The transmission effects can be allowed for by adding a term 

refw

11
2

cc
h  to both td and tr, where h is the window thickness and cw is the speed of 

sound in the window material.  This assumes the reflection comes from the interface 
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between the sample and the window, not the window and fluid medium.  The resulting 

formulae become 

dr

refw

dfr

refsample

11
432

tt

cc
httt

cc      (4.7) 

and 

 
2

11
432

refw

dfr

ref

cc
httt

cx .     (4.8) 

This method requires the unique identification of the arrival of the first internal 

reflection.  This is an important consideration when designing the experimental setup. 

Three aspects are identified here. Firstly, there should be no surfaces close to the direct 

path which could produce reflections at the receiving transducer which could be 

misinterpreted as the first internal reflection.  Any unwanted reflections can be 

identified by observing the received pulse on an extended timebase without the sample 

present.    Secondly, the attenuation in the sample and the strength of the reflection at 

the interface between the fluid and sample should be considered to ensure that the 

amplitude of the first internal reflection is sufficient to be detected by the signal 

acquisition system.  Thirdly, the samples should be carefully prepared and aligned with 

the beam path so that all surfaces are normal to the beam path.  This will provide the 

largest signal amplitude for the internal reflection. 

All of the calculations require knowledge of the speed of sound in water.  Speed 

of sound in water was calculated according to Marczak (1997) based on the measured 

temperature of the water. 

 

4.3. Materials and methods 

Two unfocused single element ultrasound transducers with a centre frequency 

of 10MHz were used in a temperature controlled water tank.  The higher frequency 

transducers were selected to improve temporal resolution of measurements.  The 
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transducers were mounted opposite each other in a custom designed frame as shown in 

Figure 4.3.  The frame was designed in conjunction with, and constructed by, Mr Peter 

Laidler of the Department of Medical Physics and Bioengineering at the Royal United 

Hospital NHS Trust, Bath.  Adjustable positioning of the transducers was not 

considered to be important as for the attenuation measurements.  The frame ensured 

that the transducers were held with their radiating surfaces parallel.  All measurements 

were made at 25.0 ± 0.1°C, with the water tank being filled with distilled water.   

 

Figure 4.3.  Measurement setup for Speed of Sound measurements. 

 

 

A signal was generated by an Agilent 33220A signal generator (Agilent 

Technologies, Inc., Santa Clara, CA) and amplified using an ENI 240L RF Power 

Amplifier (ENI, Inc., Rochester, NY).  The signal was then passed through the 

ultrasound speed of sound measurement system and digitized using a PicoScope 3206 

digital PC Oscilloscope (Pico Technology Ltd, St Neots, Cambridgeshire, UK).  The 

signals were analysed in Matlab R12.1 (The Mathworks, Inc., Natick, MA), for time of 

arrival.  An example of the Matlab code used for analysing the signals is contained in 

Appendix C1.  Later, the PicoScope 3206 digital PC Oscilloscope was replaced by a 

National Instruments NI-5133 USB Oscilloscope (National Instruments Corporation, 

Austin, Texas) and analysis was also performed using National Instruments Labview 

Signal Express 3.0.  Data from 100 ultrasound pulses were recorded for each sample. 

A pulse of 30ns duration was utilised as an impulse to drive the transducers and 

enabled the determination of the first rise time and first zero crossing of the resulting 
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received signal.  This enabled the calculation of both speed of sound and sample 

thickness.  For batch 3 and 4 a tone burst signal of frequency 8 MHz was also used to 

determine the phase of the signal and, when compared to the phase of a direct water 

path and the calculated sample thickness, to calculate the speed of sound from phase 

information.  To measure the phase velocity a time window within the toneburst section 

of the received signal was selected. A fast fourier transform of the received signal was 

used to calculate the phase of the signal within the selected time window.  The 

difference between the measured phase of a direct water path and through the sample 

was used to calculate the phase velocity within the sample.  

To measure the speed of sound the same gel samples were used as were 

prepared for the attenuation measurements (see sections 3.3.1 and 3.3.3). 

According to Kaye and Laby (http://www.kayelaby.npl.co.uk/, v1.0, accessed 25
th

 

October 2007) the speed of sound in Mylar is 2400 ms
-1

. This was used along with the 

average thickness of the Mylar windows (0.108mm) measured using a micrometer from 

20 readings to correct for the effects of the windows.  

 

4.3.1. Temperature dependence of speed of sound 

 

As the project progressed, it became apparent that the physical properties of 

MAGIC gels exhibit significant temperature dependence.  Therefore measurements of 

speed of sound were made at different temperatures and doses. Temperature was 

controlled using a Grant GD 100 Immersion Thermostat (Grant Instruments Ltd, 

Cambridge, UK) and a Grant C1G Refrigerated Immersion Cooler attached to the water 

tank. 

 

4.4. Results 

It was found that to calculate the thickness of the sample that the best definition 

for the time of flight (t) came from the first zero crossing.  This was the most 

reproducible quantity that could be determined for both the direct path through the gel 

and the first reverberation.   

http://www.kayelaby.npl.co.uk/
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Figures 4.4, 4.5 and 4.6 show the speed of sound measured for 3 different gel 

batches calculated from the time of first zero crossing.  The speed of sound appears to 

increase approximately linearly with dose. Error bars are standard deviations on the 

value of the speed of sound calculated from estimates of the error in determining the 

three time periods used in the calculation (td, tr and tf).  Estimates of the error in 

determining the time period were calculated from the standard deviation of the first 

zero crossing calculated for the 100 pulse sequences acquired.  Figure 4.7 shows the 

phase speed calculated for Batch 3 gel. The speed of sound appears to increase 

approximately linearly with dose.  Error bars are standard deviations on the value of the 

speed of sound calculated from estimates of the error in determining the phase of the 

signal and estimates of the error on the calculated sample thickness.  Estimates of the 

error in determining the time period were calculated from the standard deviation of the 

phase of the 100 pulse sequences acquired.  Estimates of the error in the sample 

thickness were calculated from the standard deviation of the first zero crossing 

calculated for the 100 pulse sequences acquired.   
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Figure 4.4.  Variation in speed of sound measured using time of flight for batch 1 MAGIC gels of 

different thicknesses (see key). Error bars are standard deviations on the value of the speed of sound 

calculated from the error in determining the three time periods used in the calculation from 100 repeated 

measurements. Temperature of measurement was 25°C. 
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Figure 4.5.  Variation in speed of sound measured using time of flight for batch 2 MAGIC gels of 

different thicknesses (see key). Error bars are standard deviations on the value of the speed of sound 

calculated from the error in determining the three time periods used in the calculation from 100 repeated 

measurements. Temperature of measurement was 25°C. 
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Figure 4.6.  Variation in speed of sound measured using time of flight for batch 3 MAGIC gels of 

different thicknesses (see key). Error bars are standard deviations on the value of the speed of sound 

calculated from the error in determining the three time periods used in the calculation from 100 repeated 

measurements. Temperature of measurement was 25°C. 
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Figure 4.7.  Variation in speed of sound measured using phase speed for batch 3 MAGIC gels of 

different thicknesses (see key) at 8 MHz. Error bars are standard deviations on the value of the phase 

speed calculated from the error in determining the phase speed from 100 repeated measurements. 

Temperature of measurement was 25°C. 

 

Figures 4.8 and 4.9 show the speed of sound variation with temperature.  The 

speed of sound appears to increase approximately linearly with dose at 20°C but 

decreases with dose at lower temperatures.  Error bars are standard deviations on the 

value of the speed of sound calculated from three different samples at each dose level.  

Figure 4.8 shows the speed of sound from a time of flight calculation and Figure 4.9 

shows the speed of sound from the phase method. 
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Figure 4.8.  Variation in speed of sound measured using time of flight for batch 4 MAGIC gels at 

different temperatures (see key). Error bars are the standard deviation of the speed of sound for the three 

samples of gel thickness 1cm, 2cm and 3cm at each dose level. 
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Figure 4.9.  Variation in speed of sound measured using phase speed for batch 4 MAGIC gels at different 

temperatures (see key) at 8 MHz.  Error bars are the standard deviation of the phase speed for the three 

samples of gel thickness 1cm, 2cm and 3cm  at each dose level. 
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4.5. Discussion 

For the selection of the time of flight (t) to use to calculate the sample thickness 

the use of the first zero crossing is the most logical selection. The other two options, the 

time that the signal can be distinguished from background, and the phase of the signal, 

both have disadvantages for determining the first reverberation time. The time that the 

signal can be first distinguished from background can be used successfully for the 

determination of tf and td as the signal amplitudes are similar and so the signal arises 

out of the background at similar positions in the signal.  However, due to the weakness 

of the reverberation signal, the background noise is comparatively greater, and 

therefore the position within the signal that it can be distinguished from the background 

is different.  The phase of the signal, depending on the strength of the reverberant 

signal, can only sometimes be determined and it is possible that this is a factor of 2π 

different from what is required, due to it being difficult to determine accurately the 

beginning and end of the signal. 

When determining the speed of sound in the sample, cs, it is important to 

accurately know the sample thickness.  Since the sample holders were deliberately 

made with thin windows to provide low attenuation from the window itself, the 

inherent flexibility provided a means by which each sample could be a different 

thickness from the nominal size defined by the holder dimensions.  The irradiation and 

subsequent polymerization of the gel samples increases the density of the gel, implying 

the gel shrinks with increasing radiation dose.  The flexibility of the sample holder 

windows will cause the path length of the ultrasound through the gel to decrease with 

dose.  Therefore it is important to determine the actual path length through which the 

ultrasound passes. Therefore the calculation shown above of cs from the first 

reverberation is a more robust method of determining the speed of sound in this case. 

For the fixed temperature (25°C) experiments, each set of measurements of 

speed of sound through the samples shows an increase in speed of sound with radiation 

dose.  There is some variability in the speed of sound of unirradiated gel, and some 

evidence of batch variability in the speed of sound. 

Mather et al. (2002) showed the ultrasonic speed of unirradiated gels to be 

approximately 1540 m s
-1

 with a dose sensitivity of 0.178±0.006 m s
-1

 Gy
-1

.  The data 

from the three batches of gels reported here show a similar speed of sound in 
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unirradiated gel and similar dose sensitivity, although there is batch variability in the 

determined speed of sound. 

The measured speed of sound varied significantly with temperature.  As the 

temperature was reduced the speed of sound for unirradiated gel was found to be 

slower.  Also, the speed of sound of the irradiated gel was seen to decrease with dose at 

lower temperatures, rather than the increase in speed of sound with dose initially 

observed and also reported by Mather et al. (2002). 
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5. Density of MAGIC gel 

5.1. Introduction 

The density of a material affects its ultrasonic properties and interfaces between 

materials of different density will cause reflection and refraction of the ultrasound.  The 

characteristic acoustic impedance of a material is the product of the density and speed 

of sound of the material, and is fundamental to calculating the reflection coefficient 

between two materials.  It is therefore important to understand how density of the gels 

is affected by the radiation dose as this may provide a dose dependent reflection which 

can subsequently be measured by ultrasound. 

Work has been carried out to develop a system capable of measuring the density 

of gels.  A calculation of the density of a sample requires measurement of its mass and 

volume.  Measurement of mass is easily and accurately performed using an analytical 

balance.  Three possible methods of volume measurement have been identified.   

One technique is based on the filling of a known volume with the material and 

then measuring its’ mass.  This would not work in our case as it will not tell us the 

volume change that will occur upon irradiation.   

Another method is to use gas pycnometry, which uses gas pressures to measure 

volumes accurately, based on Boyle’s law.  However, this method requires access to 

specialised equipment.  Also, if the gels are not sealed they will exchange moisture 

content with the gas used in the pycnometer, so the properties of the gels will be 

continuously changing during the measurement process. 

A third method was investigated, based on the Archimedean principle.  A 

balance is used to weigh the sample in air.  Then the material is submerged in a fluid, 

which displaces an amount of fluid equal to the volume of the material.  This subjects 

the material to a buoyancy force, which can be measured as a change in weight.  If the 

density of the fluid is known, the volume of fluid displaced can be calculated from the 

measured buoyancy force. 
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5.2. Theory 

Initially the sample is weighed in air (Wair).  Then a sample holder is placed on 

the balance and the fluid bath is put in place. When the sample is placed on the holder, 

the weight of the sample in fluid (Wfl) will be the weight in air reduced by the buoyancy 

(G), so 

Wfl = Wair – G.         (5.1) 

The weight of a sample in different fluid mediums can be calculated from the 

sample density, the fluid medium density and the sample volume, Vol..  Calculations of 

weight from density and volume measurements with a fluid medium of air often 

assume that the density of air has a negligible effect on the weight of the sample.  It is 

however correct to write 

Wair=Vol.(ρsample – ρair)        (5.2) 

Where ρsample is the density of the sample and ρair is the density of air. 

The buoyancy G is the weight of fluid displaced, and similarly can be written as 

G=Vol.(ρfl – ρair)        (5.3) 

Where ρfl is the density of the fluid. 

Hence by eliminating the sample volume Vol., the density of the sample can be 

calculated as  

air

flair

flair

sample
WW

W
       (5.4) 

if the density of the fluid is known.  This assumes that the sample does not float in the 

fluid.  This can be achieved either by using a fluid that is less dense than the sample or 

if the fluid is more dense than the sample, by securing the sample to the holder, in 

which case the weight of the sample in fluid (Wfl) will be negative.  Mather et. al. 

(2002) suggest that the density of MAGIC gels ranges from 1047 – 1054 kg m
-3

 and 

therefore MAGIC gel is more dense than water, so water would be a suitable choice of 

fluid medium. 

When the sample is introduced into the water there is a change in buoyancy of 

the sample holder caused by the increased water height.  The change in sample holder 

buoyancy requires a correction factor K to be applied to the measurement of buoyancy 
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unless the balance is tared when the sample is in the water tank but not on the sample 

holder.  The full calculation is then 

air

flair

airflair

sample
KWW

W

)(

)(
     (5.5) 

where K is given by 1 - 
bath

sh

Area

Area  where Areash is the area of the sample holder at the 

surface of the fluid and Areabath is the area of the fluid bath at the surface of the fluid.  

A value of K = 1 is used when the balance is tared with the sample in the water bath but 

not on the sample holder. 

Figure 5.1 illustrates the process.  In stage 1 sample is placed on the balance.  

This provides the measurement of Wair. In stage 2 the frame and the fluid bath is 

introduced.  This bath is held independently of the balance by a stand and the hanging 

part of the frame should be free to move within the bath.  At this stage the balance is 

tared.  In stage 3 the sample is placed on the frame and all air bubbles are removed 

from the sample surface.  This provides the measurement of the sample in fluid Wfl.   

 

 

Figure 5.1. Stages of measurement of sample density. See text for details. 

 

5.3. Analysis of uncertainty and an estimation of 

requirements 

Since essentially a ratio of the weight of the sample to the weight of fluid 

displaced by the sample is being used in the calculation, an estimate of the uncertainty 
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in the calculation of density can be obtained from standard application of error 

tracking, assuming that the fluid used is well characterised. 

For known densities ρfl and ρair with a fixed value of K, then calculation is 

fl

air
sample

W

W
 and uncertainties ΔWfl and ΔWair lead to uncertainties in ρ which can be 

written as  

22

fl

fl

air

air

W

W

W

W
 .      (5.6) 

Mather et. al. (2002) suggest that the density of MAGIC gels ranges from 1047 

– 1054 kg m
-3

 as a function of dose from 0 – 50 Gy (from Figure 2 of the paper). 

Therefore density measurements with a precision of ±0.5 kg m
-3

 would be required to 

determine the density change caused by the irradiation of MAGIC gels. 

The balance available for these measurements is a Mettler-Toledo AT 400 

Electronic Analytical Balance (Leicester, UK).  This has a maximum weight of 400g 

and reads to 0.0001g.   

The maximum allowed weight and the geometry of the balance dictates that the 

sample will be of the order of 50ml size.  This should translate to a weight of both 

sample and fluid displacement of ~50g since density of MAGIC gels are ~1g cm
-3

.  If 

reproducible measurements are made to within 0.001g then the fractional error on the 

density will be 0.00003.  This is a precision about an order of magnitude greater than 

the requirement suggested above.  An increase in the weight/volume of the sample, and 

a decrease in the uncertainty of the measurement of weight/volume will increase the 

precision of the measurement.  A set of measurements were performed on a sample to 

calculate the measurement reproducibility of this system.  From five repeated 

measurements of a single sample it was determined that it was possible to measure 

sample weight to within a standard deviation of 0.001g.  The measurement of sample 

volume was found to be less reproducible, giving a standard deviation of 0.02g from a 

sample of eight repeated measurements.  This gives a measurement uncertainty for this 

method of measuring density to be 0.4 kg m
-3

 assuming 50g samples with a density of 

1, which is sufficiently small to be able to resolve the expected density variation. 
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5.4. Materials and methods 

5.4.1. Gel manufacture and irradiation 

 

Gels were manufactured as described by Fong et. al. (2001) and summarized in 

Chapter 3.4.3.  Once manufactured, the gel was used to fill small plastic bags which 

were then sealed.  The plastic bags were chosen as sample containers as the gel had to 

be sealed because they are hydroscopic, but flexible containers were required to allow 

the volume of the samples to change without restriction.  The use of bags to contain the 

Gel will introduce uncertainties into the measured gel densities.  14 bags were used in 

this experiment.  Once manufactured the gels were allowed to cool for 6 hours until the 

gels had set.  The density of the gels was then measured to obtain their ‘unirradiated’ 

density.  The gels were then refrigerated for approximately twenty-four hours. 

Subsequently the gels were irradiated.  A 6 MV photon beam from a calibrated 

Primus linear accelerator (Siemens Medical Solutions, Concorde, CA) was used to 

irradiate the gels.  The gels were irradiated in pairs to the following doses – 0, 2, 5, 10, 

15, 20 and 30 Gy.  After irradiation the gels were refrigerated prior to density 

measurements. 

5.4.2. Density measurement 

 

The density of the gels was measured 18 hours and 4 days post-irradiation.  For 

measurements “A” the balance was tared with the sample in the water bath but not on 

the holder so a correction factor of K = 1 was used. For measurements “B” the balance 

was tared before the sample was introduced into the water bath.  Distilled water was 

used in the water bath and the temperature of the water was measured so that the water 

density could be calculated.  Water density was calculated using the formula of Bigg 

(1967), a fifth-order polynomial based on the temperature of the water. 

Further measurements were obtained with the samples held in a temperature 

controlled environment.  To do this, a second water bath was used held at the same 

temperature as the fluid bath.  The temperature of the two baths was maintained at 14.5, 

21 and 26 °C for each set of experiments.  Therefore measurements using the “A” 

procedure, where the balance was tared with the sample in the water bath but not on the 

frame, was used to ensure that the samples were at thermal equilibrium with the water 
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bath at all times.  The samples were left in the temperature controlled water bath for 2 

hours prior to measurement of their density.  In this second set of experiments the 

density measurements were made 18 hours post-irradiation. 

 

5.5. Results 

Figure 5.2 shows how the density varied with dose.  The density of the gel 

samples appears to increase linearly with dose within the range measured, from 0 to 30 

Gy.  The density increases by 0.19 ± 0.007 kg m
-3 

/ Gy.  The increasing density with 

radiation dose is consistent with the gels undergoing radiation induced polymerisation.  

The error bars on the measurements are the standard deviation of observed density 

calculated from repeated measurements of the same gel sample used to estimate the 

uncertainties ΔWfl and ΔWair.  Regression analysis was performed on the four sets of 

measurements.  The measured gradients (density increase with dose) all fell within ±2 

standard errors of the mean gradient.  This suggests that the measurements of the 

increase in density with dose are the same, within the measurement uncertainty, for 

both the different methods of measurement and the different time at which the 

measurements were made.  The intercepts show greater variation and the calculated 

intercept from the measurement set 4 days post-irradiation method B is greater than 2 

standard errors smaller than the other 3 measurements.  This indicates that there are 

either systematic differences between the two methods of volume measurement or 

physical changes that have occurred in the gels between the sets of measurements or a 

combination of both. 
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Figure 5.2. Variation in density of gel with irradiated dose, 18 hours (triangle and circle) and 4 days 

(square and diamond) post-irradiation (PI).  Error bars are standard deviations for five measurements of 

density for each sample. 
 

Figure 5.3 shows the measured variation of density of MAGIC gels with 

temperature.  Error bars are the standard deviation of 8 repeated measurements on each 

sample.  The density of MAGIC gel increased from 1028.9 ± 0.3 kg m
-3

 at 26 °C to 

1033.3 ± 0.3 kg m
-3

 at 14.5 °C. The density appears to increase linearly with dose over 

the range measured with a dose sensitivity of 0.178 ± 0.004 kg m
-3

 Gy
-1

. 
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Figure 5.3.  Variation of density of MAGIC gels with dose at selected temperatures (see key) measured 

using method ‘A’.  Error bars are standard deviations for five measurements of density for each sample. 
 

 

5.6. Discussion 

The change in density with dose is similar to that measured by Mather et. al. 

(2005), although the absolute measurement of density is different.  The measurements 

reported here are more comprehensive than in Mather’s paper, and no other reports of 

the change in density with dose are believed to have been published.  There are a 

number of systematic errors that may be found both in Mather’s technique and in the 

technique described here, which may account for the differences in absolute density 

reported. 

Approximate comparisons can be made with data from x-ray CT based 

measurements of polymer gel dosimeters.  The CT numbers (HU) from a calibrated CT 

scanner are related to the linear attenuation coefficient of the material being scanned.  

The CT number can be converted to relative electron density or physical density by 

scanning phantoms containing section of known radiological parameters (Saw et al., 

2005).  Dose responses measured using x-ray CT usually only report CT number to 

dose comparison and do not contain a calibration of CT number to density (e.g. Hill et 
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al., 2005).  As Saw et al. (2005) note, the CT number to density conversion curve is 

dependent on individual scanner parameters such as kV/p, filtration and reconstruction 

algorithm therefore a detailed comparison cannot be made.  Hill et al. (2005) measured 

a CT number-dose sensitivity of 0.37 HU Gy
-1

 and the CT number of unirradiated gel 

to be 22 HU.  This approximately equates to a density of 1031 kg m
-3

 and a dose 

sensitivity of  0.23 kg m
-3

 Gy
-1

 based on the CT number to density conversion used 

locally at the Royal United Hospital in Bath.  These values for density and dose 

sensitivity are similar to the values measured in this research. 

There are systematic differences between method “A” and method “B” of 

measuring density.  The main difference between the two methods may come from the 

correction factor K, which has been calculated as 0.991 for the equipment used in the 

experiments, but has not been verified.  Also, differences between the two techniques 

could be caused by splashing or removal of water from the water bath as the gel 

samples are manipulated.  Also, in these initial experiments, the gels were not 

maintained at a known temperature, and although the temperature of the water bath was 

known, no effort was made to control the temperature of the gels. 

There are also differences between the density measured 18 hours 

post-irradiation and that measured at 4 days post-irradiation. These differences could be 

due to aging of the gel or the temperature of the gels at the time of measurement.  

Insufficient data is presented here to conclude whether there is a difference in the 

results obtained using the different measurement methodologies or whether a longer 

period post-irradiation affects the measured density. 

Another source of uncertainty in these results was due to the containment of the 

gels in polythene bags.  The gels had to be sealed during the experiment as if left open 

in room atmosphere they evaporated water, or if left unsealed in water they absorb 

water.  Each polythene bag weighed approximately 0.6g prior to being filled with gel.  

Polythene has a density of between 940 and 965 kg m
-3

 (http://www.kayelaby.npl.co.uk/).  

This will affect the measurements made here as the density calculated in these 

experiments is that of the whole sample, including the polythene bag used as an 

enclosure.  This will have the effect of systematically reducing the measured gel 

density from the actual gel density.  To estimate the effect of the polythene bag on the 

measured density the reduction in density due to a bag of weight 0.6g and an assumed 

http://www.kayelaby.npl.co.uk/
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density of either 940 or 965 kg m
-3

 was calculated for 14 samples.  The average 

decrease in sample density due to the effect of the bag was 0.38 kg m
-3

 or 0.13 kg m
-3

 

respectively dependent on the assumed density of the bag. 

Another source of uncertainty in these measurements is the presence of air 

bubbles in the samples.  Small air bubbles were introduced in the manufacturing 

process due to the continuous stirring of the mixture.  Care was taken to remove any air 

bubbles prior to sealing the bags, although from observation this was not completely 

successful.  The presence of air bubbles in the bags will have the effect of reducing the 

observed gel density from the actual gel density, but will depend on the amount of air 

in each individual bag.  

The absolute density may also change between different batches of gels due to 

small variations in the manufacturing procedure. 

The measurements reported of the variation of density with temperature show 

that the gel density decreases as the temperature increases.  The change in density with 

dose was shown to be independent of the measurement temperature over the range of 

temperatures investigated.  

 

5.7. Conclusion 

 The density of the gel appeared to increase linearly with radiation dose over the 

range measured, consistent with the gels undergoing radiation-induced polymerisation.  

There are a number of uncertainties in the method used to measure gel density which 

have been identified.  The density change with radiation dose is consistent with the 

previous report of changing density with radiation dose (Mather, 2005), although it 

appears that the study performed here is more comprehensive than anything that 

appears in the literature, including the change in density with temperature, which has 

not been previously reported. 
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6. Acoustically matched reflector – reflection from 

planar interface 

6.1. Introduction 

To be successful, ultrasound pulse-echo methods will depend on the dose-

sensitivity of echoes from interfaces between two materials. This depends in turn on 

changes in characteristic acoustic impedance, and hence on density and sound speed, 

both of which have been shown to be dose-dependent in dosimetric gels (Chapters 4 

and 5). A simple dose-dependent system could be designed using, for example, material 

1 being dose-dependent and material 2 not. The acoustic properties of potential inert 

reflectors can be compared to the acoustic properties of the MAGIC gel and the dose 

sensitivity of these properties, to determine if the inert reflector will be suitable.  Once 

some suitable reflective materials have been determined, a series of measurements of 

the dose dependency of reflections from a plane interface between MAGIC gel and the 

reflector will be made using a single element transducer.  Different areas of the system 

will be irradiated to different doses so that a comparison of reflection amplitude with 

dose can be made.  The material producing a reproducible and significant the change in 

reflection amplitude with dose will show the most promise for further investigation into 

its use in producing an pulse-echo ultrasonic dosimetry system. 

 

6.2. Theory 

Reflection of ultrasound from the interface of two materials is dependent on the 

differences in characteristic acoustic impedance of the two materials.  Using the 

properties of MAGIC gels determined from the mean of the measurements detailed 

above, the characteristic acoustic impedance (given by Z = ρc) is 

Z ≈ 1.598 × 10
6
 kg m

2
 s

-1
 at 0 Gy and 25 °C 

Z ≈ 1.613 × 10
6
 kg m

2
 s

-1
 at 30 Gy and 25 °C. 
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The sound power reflection coefficient for the reflection at the interface 

between two fluid materials is given by Kinsler and Frey (1962) as  

Sound power reflection = 

2

12

12

ZZ

ZZ
    (6.1) 

where Z1 is the characteristic acoustic impedance of the material through which the 

ultrasound is passing and Z2 is the characteristic acoustic impedance of the reflecting  

material. 

The dose sensitivity of the acoustic impedance is small and appears to be linear 

with dose over the range measured (approximately 500 kg m
-2

 s
-1

 Gy
-1

). Therefore to 

achieve a sensitive system, with a significant change in reflection amplitude, requires a 

reflector that has a similar acoustic impedance to the dose dependant gel, since the 

reflection amplitude is dependent on the difference between the acoustic impedances of 

the two materials. 

 

Material c / m s
-1 

ρ / kg m
-3

 Z / 

kg m
-2

 s
-1 

Sound power reflection 

at 30 Gy (relative to 0 

Gy) 

Polyethylene 2100-2400 940-965 2.15×10
6 

0.94 

Polystyrene 2350 1040-1090 2.50 ×10
6
 0.96 

Natural Rubber 1600 906-913 1.45 ×10
6
 0.82 

Hard Rubber 1680 1130-1180 1.94 × 10
6 

0.90 

Neopene 1510 1240 1.87 ×10
6
 0.88 

Castor Oil 1490 950 1.42 × 10
6 

0.86 

Table 6.1.  Speed of sound and density of materials with potential for use as a matched reflector to 

MAGIC gel. Source: http://www.kayelaby.npl.co.uk/ 

 

According to the data presented in Table 6.1, the most suitable materials to 

produce a reflection of the ultrasound are Natural Rubber, Neoprene or Castor Oil.  A 

simple gelatine solution, which will have very similar properties to MAGIC gels, could 

also be used.  These all have similar acoustic impedances to MAGIC gels, and 

therefore the reflected sound power will be small. The change in reflected sound power 

as the gels are irradiated will be greater with these materials.   
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Other materials that were identified as being suitable for investigation are solid 

polymers based on anechoic acoustic tank lining materials.  These materials are 

designed to have a minimal reflection of ultrasound, and will therefore be of similar 

acoustic impedance to water (and hence MAGIC gels).  They may also be designed as 

acoustic absorbers, and this property may make them unsuitable to use as a 

backscattering material.  However, the surface of these materials is flat and so may be 

useful in creating a uniform reflecting surface. 

After some initial investigation into some of the materials identified in Table 

6.1, a bespoke matched material was specified and a supplier was identified and three 

samples were ordered.  The material was specified to have a characteristic impedance 

of 1.58 × 10
6
 kg m

2
 s

-1
.  This characteristic acoustic impedance was chosen to be just 

below that of unirradiated MAGIC gel, and any irradiation of the MAGIC gel would 

further increase the difference between the inert reflector and the MAGIC gel.  The 

material was produced by Acoustic Polymers Ltd (Mitcheldean, Gloucestershire, UK) 

from a polymeric material with a known speed of sound (1535 ± 3 ms
-1

).  The required 

acoustic impedance was created by introducing a filler material into the polymer to 

increase the density.  Barium Sulphate, with a density of 4500 kg m
-3

 

(http://www.kayelaby.npl.co.uk/), was used as the filler.  This high density filler was chosen 

so that the volumetric addition will be low. 

Formula 6.1 describes reflection that occurs at normal incidence.  At other 

angles of incidence, the angle of reflection equals the angle of incidence.  Therefore, if 

the angle of incidence changes, either because the surface is not flat, and so the angle of 

incidence changes, or the mechanical mounting of the transducer means that the beam 

direction changes, this can have a significant impact on the measurement of reflected 

sound power.  Also, if the ultrasound beam is refracted before it reaches the reflector, 

then this will change the angle of incidence.  Therefore it is important to ensure that the 

reflective surface is flat and that the mechanical mounting of the transducer means that 

no change to the angle of incidence occurs.   

An alternative method would be to use spheres of reflective material embedded 

in the MAGIC gel, where normal incidence will occur at the position of maximum 

reflection.  This would cause its own difficulties in positioning the spheres and 

http://www.kayelaby.npl.co.uk/
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ensuring that the position of maximum reflection was accurately and consistently 

located. 

 

6.3. Materials and methods 

6.3.1. Reflections from plane interfaces 

 

MAGIC gel samples were made using according to Fong et al. (2001) and 

combined with a number of different inert materials to produce interfaces from which 

ultrasound reflections could be obtained.  A number of standard materials were 

identified and tested, including vegetable oil, 5% w/w gelatine, rubber, polyethylene, 

and some specialist materials including Precision Acoustics Aptflex F28 acoustic 

absorber tile (Precision Acoustics Ltd, Dorchester, UK) and a bespoke solid polymer 

from Acoustic Polymers (Acoustic Polymers Ltd, Mitcheldean, Gloucestershire, UK) 

were used as reflectors that has similar acoustic impedances to MAGIC gel. 

The method for layering the inert material with MAGIC gel depended on the 

properties of the material.  Figure 6.1 shows the various geometrical arrangements that 

were used. For inert materials in liquid form, such as vegetable oil or weak gelatine 

solution, MAGIC gels layers were created and then a layer of inert material was formed 

on top of the MAGIC gel.  For inert materials in solid form, such as rubber or acoustic 

absorber tile, the inert material was placed at the bottom of a container and the MAGIC 

gel poured over the top.  To ensure that the surface of the MAGIC gel was not subject 

to oxygen contamination and to provide a method of consistent acoustic coupling, a 

layer of vegetable oil was poured over the top of the MAGIC gel as soon as the gel 

layer had been created.  Vegetable oil was chosen as it has a low density and therefore 

floated above the MAGIC gel, and if another material needed to be poured in to create 

a layer, such as a weak gelatine solution, then the oil would float above this layer 

without mixing with the layer.  A lipid based product was chosen for this layer so that it 

would not mix with the MAGIC gel solution while it solidified. 
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Figure 6.1.  Geometries used in measurement of dose dependent reflection from the interface between 

MAGIC gel and various inert materials. 

 

Once formed the gels were irradiated using a Siemens Primus 6MV linear 

accelerator (Siemens AG, Erlangen, Federal Republic of Germany).  Three quadrants 

were irradiated to increasing dose levels (10, 20 and 30 Gy) with the fourth quadrant 

being unirradiated. 

A single element transducer of centre frequency 3.5 MHz was used in pulse-

echo mode to measure reflections from interfaces.  The transducer had a -6dB width of 

3mm at the focal depth of 55mm, measured using an NPL Beam Calibrator (Preston, 

1988).   A Panametrics 5077PR pulser-receiver (Olympus-NDT, Waltham, MA) was 

used to apply a square-wave pulse to the transducer which was clamped in a 

micromanipulator above the sample.  The Panametrics 5077PR then amplified the 

reflected waveform produced by the transducer which was digitized using a National 

Instruments NI-5133 USB Oscilloscope (National Instruments Corporation, Austin, 

Texas).  The received signal was analysed using National Instruments Labview Signal 

Express 3.0 and Matlab R12.1 (The MathWorks, Inc., Natick, MA).  An example of the 

Matlab code used for analysing the signals is contained in Appendix C2. 

The most promising material tested was the custom made solid polymer from 

Acoustic Polymers Ltd.  This custom made polymer had a customised density so that 

its acoustic impedance was closely matched to that of MAGIC gel.  

Initially the variation in reflected amplitude from the interface between the 

MAGIC gel and the inert material with temperature was measured at a single position 
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in the sample.  A sample consisting of unirradiated MAGIC gel with an inert reflector 

was cooled to 5 °C.  The sample was then placed in a water bath and the temperature 

was slowly increased.  The temperature of the gel/inert material interface was measured 

with a digital thermometer.  As the temperature increased repeated measurements of the 

reflection amplitude were made. The average reflected ultrasound signal from 100 

transmitted pulses was recorded at each temperature and analysed for RMS amplitude 

and an FFT was taken and the phase of the fundamental mode was recorded. 

The reflection amplitude from the interface between the MAGIC gel and inert 

material was mapped over a 15 x 15 square grid of 4mm spacing for a number of 

batches of MAGIC gel, which were irradiated in different geometrical arrangements.  

Gels were manufactured as described by Fong et. al. (2001) and summarized in Chapter 

3.4.3.  Once manufactured, the gel was poured onto the top of the inert reflector, taking 

care not to introduce any bubbles into the mixture.  Once the MAGIC gel was poured 

into the phantom, a vacuum system (Island Scientific cylindrical chamber (Island 

scientific Ltd, Isle of Wight, UK) with Edwards E2M8 vacuum pump (Edwards High 

Vacuum International, Crawley, UK)) was used to ensure any bubbles introduced 

during the creation of the phantom were removed.  Once all the bubbles in the gel had 

been removed a layer of vegetable oil was poured over the MAGIC gel to provide 

ultrasonic coupling between the transducer and the gel, and to seal the MAGIC gel and 

to help prevent oxygen contamination.  The gels were then left for 6 hours to cool 

before being placed into a refrigerator for approximately 24 hours prior to irradiation.  

After irradiation the phantoms were returned to the refrigerator for approximately 48 

hours prior to measurement, 

The mapping of reflected amplitude was performed at a number of temperatures 

and 1 ½ hours was left between changing temperature of the water bath for the gel 

material to reach thermal equilibrium.  At each position the reflected ultrasound signal 

from 100 transmitted pulses was recorded and the RMS amplitude was calculated. 

Two batches of MAGIC gel were made and used to create an interface with the 

acoustic polymers material.  They were irradiated using a 6 MV photon beam from a 

calibrated Primus linear accelerator (Siemens Medical Solutions, Concorde, CA) to 

create four different dose levels. One quadrant remained unirradiated while the other 

three received 10 Gy, 20 Gy and 30 Gy respectively.  For the second batch an estimate 
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of the reflection coefficient and an estimate of the noise floor were made. The 

reflection coefficient was estimated by comparing the RMS reflection amplitude 

received from the acoustic polymer material with the RMS reflection amplitude 

received when the acoustic polymer material was replaced by a pure reflector.  To do 

this, another set of measurements were performed with the acoustic polymer reflector 

material being replaced by a material of very high acoustic impedance (stainless steel), 

to simulate pure reflection at this interface.  All other geometrical aspects of the 

experiment remained the same.  To assess the noise floor, a second measurement 

window was created immediately prior to the reflected pulse being received and the 

maximum RMS amplitude was measured. 

A third batch of gel was made and used to create an interface with the acoustic 

polymers material.  A 6 MV photon beam from a calibrated Primus linear accelerator 

(Siemens Medical Solutions, Concorde, CA) was used to irradiate one half of the 

phantom to 30Gy, with the other half remaining unirradiated. 

For each of the irradiation patterns the delivered dose was calculated in 

Nucletron Oncentra MasterPlan (Nucletron B.V., Veenendaal, The Netherlands).  The 

sample geometry was entered into the treatment planning system and the commissioned 

beam model of the Siemens Linear Accelerator was used to calculated the delivered 

dose distribution. 

 

6.3.2. Temperature dependence of properties 

 

During the process of measuring reflections from various materials it was 

determined that the temperature at which measurements were made significantly 

affected the results.  To aid understanding of the temperature and dose dependence of 

the reflection coefficient 
12

12

ZZ

ZZ
, a parameterisation of Z1 and Z2 in terms of the 

temperature and dose dependence of density and speed of sound was used to create a 

model of the reflection coefficient.  Measurements of the temperature and dose 

dependent acoustic properties of the MAGIC gel described in previous chapters, and 

similar measurements of the temperature dependence of acoustic properties of the inert 

reflectors were used in the parameterisation.  The parameterisation was coded in 
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Matlab R12.1 where the reflected pressure amplitude was calculated for the interface 

between MAGIC gels and selected inert materials at different doses and temperatures.  

The speed of sound of unirradiated MAGIC gel is temperature dependent, and 

the dose dependency of the speed of sound also varies with temperature.  Therefore 

taking 25°C as our baseline temperature, the speed of sound of MAGIC gel can be 

parameterised by  

cMAGIC(T, D) = c25 + CT(T-25) + (CD + CDT(T-25))D   (6.2) 

where c25 is the speed of sound of MAGIC gel at 25°C. CT is the rate of increase of 

speed of sound with increasing temperature above 25°C.  CD is the increase in speed of 

sound with increasing dose at a temperature of 25°C.  CDT is the increase in the dose 

dependent increase of the speed of sound with increasing temperature above 25°C.   

Similarly the density of MAGIC gel can be parameterised by 

ρMAGIC(T, D) = ρ25 + ρT(T-25) + (ρD)D    (6.3) 

where ρ25 is the density of MAGIC gel at 25°C.   ρT is the rate of density increase of 

MAGIC gel with increasing temperature above 25°C.   ρD is the rate of increase of 

density with dose. 

 Similar equations (without the dose dependency) can be formed for the speed of 

sound and density of the acoustic polymer material, cAP(T) and ρAP(T).  These 

parameterised values for density and speed of sound of the two materials can be used in 

the formula to calculate reflection coefficient from the acoustic impedances of the two 

materials. 

This parameterisation of the reflection coefficient is a simplification due to the 

use of a real number as the speed of sound.  Speed of sound is a complex property in a 

dispersive medium.  Following Kinsler and Frey (1962) it is possible to introduce 

dissipation into the wave equation by replacing the real velocity c with a complex 

velocity c.  The complex velocity c can be written in terms of the complex wavenumber 

k.   The angular frequency ω remains real and therefore 

k
c .         (6.4) 

 The complex wavenumber can be written as 

k = k + iα.         (6.5) 

where k is the wavenumber derived from the real part of the speed of sound (as 

measured in the previous sections) and α is the attenuation coefficient. 
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 An extension to the parametric model to include the complex speed of sound 

was created using measured data of attenuation coefficient.  Due to the uncertainties in 

the measurement of the attenuation coefficient the robustness of this extension to the 

model is unknown. 

Measurements of the temperature dependence of the speed of sound of the 

acoustic polymer material was performed in a similar method to the measurements of 

the speed of sound of MAGIC gel (Section 3), but without the need for Mylar sheets to 

provide the outer surface of the mould.  The temperature dependence of the density of 

the acoustic polymer material was determined in a similar way to that of MAGIC gel 

(Section 4), but without the need for the polythene bags to hold the gel material in. 

 

6.4. Results 

6.4.1. Temperature dependence of properties of acoustic 
polymers inert reflector 

 

The speed of sound of the acoustic polymer material was measured at four 

different temperatures.  It was found that the speed of sound decreased with 

temperature by approximately 3.5 ms
-1

 °C
-1

.  The results are plotted in Figure 6.2.  

Error bars shown are the standard deviations of the measured speed of sound through 3 

different samples at each temperature. 
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Figure 6.2. Temperature dependence of the speed of sound of the acoustic polymer reflector.  Error bars 

are the standard deviations for three different samples of material. 

 

 The density of the acoustic polymer reflector was observed to change with 

temperature by -0.63 kg m
-3

 °C
-1

.   This change in density with temperature is shown in 

Figure 6.3. 

1.01

1.015

1.02

1.025

1.03

15 17 19 21 23 25 27

Temperature / 
o
C

D
e

n
s

it
y

 /
 g

 c
m

-3

 

Figure 6.3. Temperature dependence of the density of the acoustic polymer reflector. Error bars are the 

standard deviations for three different samples of material. 
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6.4.2. Parametric model of temperature dependence of 
reflection from plane surface 

 

The parametric model of the temperature and dose dependence of the reflection 

amplitude from the interface between MAGIC gel and acoustic polymers plane 

reflector is exemplified in Figure 6.4.  The model contains the measured dependence of 

density and speed of sound of MAGIC gel with dose and temperature.  It includes the 

temperature dependence of density for the acoustic polymer reflector.   For unirradiated 

gel this shows an expected decrease in reflection coefficient as temperature increases, 

reaching zero reflection coefficient at a temperature of 21°C, above which the 

reflection coefficient increases with temperature.  For irradiated gel this shows a 

steeper change in reflection coefficient with temperature following a similar pattern, 

with the zero occurring at 19°C.  The extension of the model to utilise the complex 

speed of sound is shown in Figure 6.5.  This shows a similar pattern to Figure 6.4, 

although the reflection coefficient does not reach zero, but instead goes through a 

minimum at approximately 22°C for unirradiated gel and 20°C for gel irradiated to 

30 Gy.   

 

Figure 6.4.  Model of temperature dependence of reflection from interface between MAGIC gel and 

acoustic polymers plane reflector for unirradiated ( ) and irradiated (─)regions using real speed of 

sound. 
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Figure 6.5.  Model of temperature dependence of reflection from interface between MAGIC gel and 

acoustic polymers plane reflector for unirradiated ( ) and irradiated (─) regions using estimates of 

the complex speed of sound. 

6.4.3. Measurement of temperature dependence of 
reflections from a plane surface 

 

For an unirradiated sample, the temperature dependence of the reflection 

amplitude at a single position is shown in Figure 6.6.  The RMS amplitude of the signal 

initially decreases with increasing temperature.  The RMS amplitude reaches a 

minimum at approximately 11 °C, above which the RMS amplitude increases. The FFT 

of the reflected signal was used to analyse the phase at each temperature, as shown in 

Figure 6.7.  The phase decreases slowly with increasing temperature until a phase 

change of approximately π occurs at approximately 11°C. 
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Figure 6.6. Reflection amplitude as a function of temperature for unirradiated gel sample 
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Figure 6.7. Phase of reflected signal as a function of temperature for unirradiated gel sample 

 

For each of the four quadrants the average RMS amplitude from a 6 × 6 region 

in the quadrant was calculated.  This average RMS amplitude for each quadrant is 

plotted against temperature in Figures 6.8 and 6.9.  For Batch 2 (Figure 6.9) the 

reflection coefficient was calculated by comparison to the RMS amplitude from a pure 
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reflector and the noise floor (cyan) is indicated as the maximum RMS amplitude 

received in a time gate immediately prior to the receiver window.  The error bars 

plotted are the standard errors of the received signals in the 6 × 6 region – 36 data 

points.  Both figures show a similar pattern with the RMS amplitude/reflection 

coefficient decreasing as temperature increased to a minimum, after which the RMS 

amplitude/reflection coefficient increases.  The temperature at which the minimum in 

RMS amplitude/reflection coefficient occurs increases with irradiated dose. Figure 6.10 

shows the data reconfigured to show how the reflection amplitude varies with dose for 

three selected temperatures, one of which (13.4 °C) is below the temperature at which 

the minimum reflection occurs, one (17 °C) around the temperature of minimum 

reflection and one (23 °C) above the temperature of minimum reflection.  At the lowest 

temperature the reflection coefficient increases with nominal dose, whereas at the 

highest temperature the reflection coefficient decreases with dose. 

Figure 6.11 shows the data for Batch 2 where the RMS amplitude was averaged 

over a 2 × 2 region from each quadrant rather than using the whole quadrant.  The error 

bars plotted are the standard errors of the received signals from the 4 data points from 

each quadrant.  The variation in reflection coefficient with temperature and dose is the 

same as the plots for the 6 × 6 regions. 

Figure 6.12 shows the data for Batch 2 where the RMS amplitude was averaged 

for each 2 × 2 region over the sample at 27 °C.  The dose was calculated as the average 

dose received by the same region of the sample as calculated by the Nucletron 

Oncentra treatment planning system.  The reflection coefficient decreases 

approximately linearly with irradiated dose, although there is significant variation 

around this general trend. 
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Figure 6.8. Batch 1 averaged reflection amplitude as a function of temperature for the different quadrants 

of the gel samples.  The dose levels are the nominal dose received by each quadrant. 
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Figure 6.9. Batch 2 averaged reflection ceofficient as a function of temperature for the different 

quadrants of the gel samples. The dose levels are the nominal dose received by each quadrant. Noise 

floor is indicated in cyan. 
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Figure 6.10. Batch 2 averaged reflection coefficient as a function of nominal dose for the different 

quadrants of the gel samples at 3 selected temperatures. 
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Figure 6.11. Batch 2 averaged reflection coefficient as a function of temperature for a 2 x 2 square in 

each quadrant. The dose levels are the nominal dose received by each quadrant. Noise floor is indicated 

in cyan. 
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Figure 6.12. Batch 2 averaged reflection coefficient as a function of dose for all 2 x 2 squares in the 

sample irradiated as a quadrant.  The temperature at which the measurements were made was 27 °C. 

 

 

 

6.4.4. Measurement of profiles across a dose discontinuity 

 

Figure 6.13 shows the RMS amplitude of the reflected signal across the sample.  

Five rows of data from the grid are displayed.  The left hand side of the sample was 

unirradiated while the right hand side was irradiated to 30 Gy.  The measurements were 

made at a temperature of 21°C.  The average dose profile created by the irradiation is 

represented by the solid line.  This demonstrates that the reflection amplitude decreases 

as the dose increases.  The change in signal amplitude occurs within four measurement 

positions (approximately 12 mm), similar to the change in irradiated dose which occurs 

over approximately 10 mm.  Figure 6.14 shows the RMS amplitude of the reflected 

signal against dose, showing the reduced signal amplitude for the irradiated region. 
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Figure 6.13. RMS amplitude of reflected signal with position across the sample.  The left hand side was 

unirradiated while the right hand side was irradiated to 30 Gy.  The solid line represents the dose profile 

created by the irradiation.  The different series represent different longitudinal positions. 
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Figure 6.14. RMS amplitude of reflected signal with dose for a sample with half irradiated to 

approximately 30 Gy. 
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6.5. Discussion 

The reflection of an ultrasound pulse from a plane interface between the dose 

dependent MAGIC gel and an inert reflector has shown that dose dependent reflections 

can be measured. 

A novel material has been developed that matches the acoustic impedance of 

unirradiated MAGIC gel.  This material is a polymer, manufactured by Acoustic 

Polymers Ltd (Mitcheldean, Gloucestershire, UK) and along with the MAGIC gel itself 

shows thermal variation of its physical and ultrasonic properties.  The acoustic 

polymers material shows a reduction in its speed of sound and density as temperature 

increases.  Over the range of temperatures tested the changes in speed of sound (Figure 

6.2) and density (Figure 6.3) appear to be linear with temperature. 

The parameterised model of the temperature variation of reflection for an 

unirradiated plane interface (──) shows an approximately linear decrease with 

temperature until zero reflection is reached (Figure 6.4).  Then the reflection amplitude 

increases again approximately linearly.  The temperature changes the characteristic 

acoustic impedance of the two materials.  As temperature increases, the speed of sound 

of the MAGIC gel increases, indicating that the characteristic acoustic impedance will 

increase.  As temperature increases, the speed of sound of the acoustic polymers 

material decreases, indicating that its characteristic acoustic impedance decreases.  

Therefore, at low temperatures (below 22°C) the parameterisation suggests that the 

characteristic acoustic impedance of MAGIC gel is lower than that of the acoustic 

polymers material.  As the temperature increases, the difference in the acoustic 

impedances reduces, until they are exactly matched and no reflection occurs.  Then as 

the temperature increases further, the acoustic impedance of the MAGIC gel now 

becomes higher than that of the acoustic polymers material, and the difference 

increases as the temperature rises.  The change between which material has the 

higher/lower characteristic acoustic impedance will be associated in a change in sign of 

the reflected signal, associated with a change in phase of the frequency components. 

For the irradiated region ( ), the irradiation increases the characteristic 

acoustic impedance of the MAGIC gel and therefore the temperature at which the zero 

reflection amplitude occurs changes.  The parameterisation suggests that the 

temperature at which the zero occurs is lower for irradiated gel than for unirradiated 
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gel.  It also suggests that the gradient of change in reflection coefficient with 

temperature is greater for irradiated regions than for unirradiated regions, because of 

the change in speed of sound variation with temperature for irradiated MAGIC gel. 

The extension of the parameterised model to include the complex speed of 

sound due to the dispersive medium shows that the reflection coefficient does not go to 

zero, but goes through a minimum.  This is due to the characteristic acoustic 

impedances of the two materials now not exactly matching at any temperature due to 

the differences in the complex velocity.  It also shows that the value of the reflection 

coefficient at the minimum is smaller in the irradiated region than in the unirradiated 

region.  This is due to the increased attenuation of the irradiated MAGIC gel more 

closely matching that of the higher attenuating acoustic polymers material.    

Measurement from a plane unirradiated interface shows  that, starting at the 

lowest temperature, the amplitude falls as the temperature increases, until a minima is 

reached at approximately 11°C, at which point the amplitude begins to increase again 

(Figure 6.6).  Figure 6.7 shows the phase changes slowly until close to the temperature 

at which the minima in amplitude occurred, at which point (approx 10.5°C) the phase 

changes rapidly by approximately π.  Thereafter the phase changes slowly as the 

temperature increases further.  The change from decreasing to increasing amplitude of 

reflection coefficient, along with the π change in phase at the same temperature, are 

both consistent with the change in acoustic impedance predicted for the two materials.  

The temperature at which the change in reflection coefficient  goes from negative to 

positive with increasing temperature and the π change in phase will occur at the 

temperature where the real parts of the acoustic impedances for the two materials are 

the same. 

Figures 6.8 and 6.9 show the averaged amplitude of reflection from each of the 

four quadrants of the samples with variation in temperature.  Each quadrant was 

irriadiated to a different dose level. For each dose level, the averaged amplitude falls as 

the temperature increases, until a minima is reached, at which point the amplitude 

begins to increase again. The overall shape of each individual curve is similar to that 

predicted by the parameterise model. The temperatures at which these minima occur 

increases with dose, which is the opposite of what the model predicted.  The model 

predicts that due to the unirradiated MAGIC gel being less dense than the irradiated 
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MAGIC gel the unirradiated MAGIC gel has an acoustic impedance that is more 

different to the acoustic polymers material than the irradiated MAGIC gel.  Therefore a 

higher temperature is required to match the acoustic impedance of the unirradiated gel 

to that of the acoustic polymers material than that required for the irradiated gel due to 

the known changes in acoustic impedance with temperature.  However, the 

measurements indicate that the match occurs at a higher temperature for irradiated 

materials than unirradiated materials, in contradiction to the model.  A number of 

reasons for the discrepancy between the model and the measurements can be 

postulated.  The first is that the model is based on the measurements of speed of sound 

and density, and experimental errors during the course of these measurements could 

cause inconsistencies between the model and the way in which the actual materials 

behave.  The second is that these measurements have been made of bulk properties of 

the materials, whereas the reflection occurs at the interface of the materials.  Any 

change in the surface properties will cause the physical properties of the surface to be 

different from the bulk properties of the materials, again causing inconsistencies in the 

model.  Thirdly, the model is based on a simple parameterisation of the acoustic 

properties based on the observations made and known parameters that affect the 

acoustic properties.  Any other parameters, or a more complex relationship between the 

parameters and the acoustic properties of the material will also cause there to be 

inconsistencies between the model and the way in which the actual materials behave. 

The value of the reflection coefficient at the minimum is smaller in the 

irradiated region than in the unirradiated region, as predicted by the extension of the 

model to include the dispersive effects of the materials.  The model predicts that the 

increase in attenuation that occurs as the MAGIC gel is irradiated makes the imaginary 

(dispersive) part of the complex impedance of the MAGIC gel closer to that of the 

acoustic polymers material.  Hence the imaginary parts of the acoustic impedance are 

more closely matched when the real parts of the acoustic impedances are the same, and 

so the reflection coefficient is closer to zero. 

Figure 6.9 also has a noise floor indicated, calculated from the RMS noise in the 

time window immediately prior to the received signal.  This shows that the minimum 

reflection amplitude is approximately four times the background noise signal. 
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Figure 6.10 shows the data for three selected temperatures.  For the series at 

13.4 °C the temperature is below that for which the minimum reflection occurs for 

unirradiated gel, and irradiating the MAGIC gel increases the reflection amplitude, 

indicating that the irradiation changes the acoustic impedance of the gel so that it is less 

closely matched to the acoustic polymers reflector.  The series at 17 °C is at a 

temperature around the minimum reflection coefficient.  An irradiation of 10 Gy 

decreases the reflection coefficient, indicating at this dose that the MAGIC gel and 

acoustic polymers reflector are more closely matched, whereas for the sections of the 

gel irradiated to higher doses the reflection coefficient increased again, indicating that 

at these higher doses the match in acoustic impedance between the acoustic polymers 

material was less close.  For the highest temperature, the irradiation of the gel 

decreased the reflection coefficient, indicating that the irradiation of the MAGIC gel 

made the acoustic impedances of the two materials become more closely matched. 

Figure 6.11 shows that the same shape and trends are visible when a 2 × 2 

region in each quadrant is used for the analysis as Figure 6.9. A 2 × 2 region equates to 

data spacing of 8 mm, which is below the 10 mm suggested in Section 2.3 as producing 

a good outcome for the project, as this suggests that future developments may enable a 

clinically usable system to be produced.   

Figure 6.12 shows the data for the average reflection coefficient for each 2 × 2 

region in the sample as a function of dose received by that region at 27 °C.  The data 

shows correlation between the irradiated dose and the reflection coefficient, even in the 

regions between the quadrants where the dose gradient is steep.  However the level of 

scatter on the plot would indicate that the dose resolution of the system is not sufficient 

to resolve dose difference of less than 10% of the total irradiated dose. 

Figure 6.13 shows the amplitude profile across a change in the irradiated dose.  

In each of the dose regions the reflected amplitude is approximately constant.  The 

change in reflected amplitude occurs over a distance of about 12mm, consistent with 

the penumbra width of the radiation field creating the dose change, as shown by the 

dose profile.  Figure 6.14 shows the reflection amplitude compared to the calculated 

dose at each measurement position. 

There are a number of possible causes for the difference between the model and 

the measured reflections from a plane surface.  The cause of the observation of the 
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temperature of minimum reflection increasing for an irradiated region could be due to a 

difference between the properties of the bulk material which have been entered into the 

model, and the surface of the material which creates the reflection.  A difference 

between bulk and surface properties could be caused by oxidation of the polymer by 

the MAGIC gel at the interface, causing the polymer to become harder and more brittle.  

This will potentially change both the speed of sound and density of the surface material 

and how these properties vary with temperature.  Due to the superficial nature of these 

changes, measurements of these properties is likely to be difficult and contain 

significant errors.  A second possible cause of differences between the parametric 

model and the observed behaviour of the materials could be due to inaccuracies in the 

parameteristaion that was used in the model.  Any uncertainties in the measurements of 

the acoustic properties will lead to uncertainties in the behaviour of the parametric 

model.  Systematic errors in the measurements could also lead to significant differences 

in the model behaviour. If the parametric model of the acoustic properties is to simple 

or misses out some important factors then the model will be incorrect. Another possible 

cause of the difference between the parametric model of the reflection coefficient and 

the measured reflection coefficient is that the parametric model assumes a single 

frequency is being used, whereas the measurements were made using a broadband 

source.  The reason for using the broadband source in these measurements was that the 

Panametrics 5077PR pulser-receiver was the only available instrument for driving a 

single element transducer in pulse-echo mode available, and only had a broadband 

pulse setting and not a tone-burst setting. 
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7. Investigation into effect of cooling rates on acoustic 

properties 

7.1. Introduction 

After attendance of the 6
th

 International Conference on 3D Radiation 

Dosimetry, at which material on the current work on the ultrasonic properties of 

MAGIC gels for pulse-echo gel dosimetry (Atkins et al., 2010)  was presented, 

discussions with other conference attendees indicated that different cooling rates 

affected gel properties.  It was therefore postulated that some of the inconsistencies in 

the temperature dependence of the reflection from a plane surface, and also the 

measurements of attenuation, speed of sound and density, may be due to the cooling 

rate of the material. In the original experiments in Chapters 3, 4, 5 and 6 the MAGIC 

gel was poured when at a temperature of approximately 35°C.  The phantoms (acoustic 

polymer material, base plate and container) or containers into which the MAGIC gel 

was poured were at room temperature (approximately 20°C). It is postulated that the 

resulting temperature difference between the MAGIC gel and the reflector surface 

created different cooling rates within the MAGIC gel depending on the proximity to the 

acoustic polymer reflector material.  The MAGIC gel closest to the acoustic polymer 

reflector will have cooled quickest, whereas material at the centre of the gel will have 

cooled slowest.  If the different cooling rates cause the MAGIC gel to have different 

acoustic properties at different areas of the gel, then the varying acoustic properties 

within the MAGIC gel could cause the minimum in the temperature variation of the 

reflection amplitude from a plane interface to be non-zero.  The effect of cooling rates 

on material properties could also explain the batch-to-batch variations observed in other 

measurements (particularly attenuation and speed of sound), as during these 

measurements the cooling rate was not controlled, and certainly would be different for 

the different sample thicknesses that were used in the experiment. 
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7.2. Literature review 

A number of authors have discussed thermal issues regarding polymer gel 

dosimeters.  

De Deene et al. (2006) suggest that for some types of polymer gel dosimeters 

the dose sensitivity is dependent on the temperature of irradiation, and demonstrate a 

clear dependence of dose sensitivity of a number of types of polymer gel dosimeters on 

temperature during scanning.   

Salomons et al. (2002) showed that the exothermic polymerisation reaction in 

polymer gels could lead to a temperature rise of up to 12°C under their experimental 

conditions, with the temperature rise being dependent on thermal boundary conditions 

and irradiated dose.  They suggest that such temperature rises could have a significant 

effect on the polymerisation process as they will affect reaction rates, thermal motion 

of radicals and monomers and resulting gel structure.   

Dumas et al. (2006) observed that normoxic PAG dosimeters in containers 

fabricated from the same Plexiglas plates but with different cross-sectional areas but 

irradiated to the same dose had different MR responses (larger T2 and hence less 

polymer for larger cross-sectional areas).  They suggest the difference is due to the 

different cross-sectional areas of their samples changing the thermal boundary 

conditions causing different temperature rises in the different samples.  

Crescenti (2009) argues that the responses of the gels in the containers can be 

alternatively explained by the different cooling and setting rates of the gels in the 

different containers due to their different total heat capacities, and therefore the 

different responses are due to the differences in the gel prior to irradiation. 

Another aspect of thermal effects that is not covered specifically in the literature 

on polymer gel dosimeters is the effect the thermal cycle has on the physical properties 

of gelatine (te Nijenhuis, 1981).  The mechanical properties of the gelatine matrix are 

highly dependent on the thermal cycle which it has experienced.  Since MAGIC gels 

are essentially gelatine gels, the physical properties of the gelatine matrix will have a 

significant effect on the properties of the full gel.   
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7.3. Materials and methods 

To identify whether the cooling rates is affecting the acoustic impedance of the 

MAGIC gel, a measurement was made of the temperature dependence of the acoustic 

reflection amplitude from a plane interface.  Two phantoms were created from the same 

batch of gel, one had a controlled cooling rate and the second was handled as 

previously.  To manage the cooling rate, the plane surface was warmed prior to pouring 

the MAGIC gel and the cooling rate was controlled by inserting the phantom into a 

temperature controlled water bath and slowly letting the temperature decrease from the 

pouring temperature (35°C) to room temperature, at which point the gel had solidified. 

This management of the cooling rate should mean that the temperature within the 

phantom should have been as uniform as possible during the cooling process.  The 

second phantom was not warmed and the cooling rate was not controlled in any way, so 

that a comparison could be made between the two methods.  After 6 hours both 

phantoms were at room temperature and they were placed in the refrigerator for 

approximately 48 hours prior to measurement. 

The variation in reflection coefficient with temperature was measured at a 

single position in both phantoms, along with a measurement of the variation in 

reflection coefficient with position at a fixed temperature (close to the temperature of 

minimum reflection coefficient).  A single element transducer was used in pulse-echo 

mode to measure reflections from interfaces.  A Panametrics 5077PR pulser-receiver 

(Olympus-NDT, Waltham, MA) was used to apply a square-wave pulse to the 

transducer which was clamped in a micromanipulator above the sample.  The received 

waveform of the transducer was digitized using a National Instruments NI-5133 USB 

Oscilloscope (National Instruments Corporation, Austin, Texas) and analysis of the 

signal was performed using National Instruments Labview Signal Express 3.0 and 

Matlab R12.1 (The MathWorks, Inc., Natick, MA).  An example of the Matlab code 

used for analysing the signals is contained in Appendix C2. 
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7.4. Results 

Figure 7.1 shows the temperature variation of the reflection coefficient between 

MAGIC gel and acoustic polymers reflector for an unirradiated sample with 

uncontrolled cooling conditions compared to controlled cooling conditions. The 

samples were made from the same batch of gel but with different cooling conditions.  

In the uncontrolled cooling conditions the gel was poured onto the reflector and left to 

cool at ambient conditions.  For the controlled cooling samples after pouring the gel 

onto the reflector and the container was placed into a water bath where the temperature 

was slowly reduced from the pouring temperature of the gels (35 °C) to room 

temperature, by which time the gel had set.  This shows that controlled cooling with a 

slower cooling rate results in both a lower minimum reflection coefficient and a lower 

temperature at which this minimum occurs. 
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Figure 7.1. Variation in reflection coefficient with temperature between MAGIC gel and acoustic 

polymer reflector for standard and controlled cooling conditions. 
 

Table 7.1 shows the results of the measurement of the variation in reflection 

coefficient with position for the two samples at a fixed temperature close to the 

temperature at which minimum reflection amplitude was observed.  The original data 
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from an unirradiated sample is also show to compare the reflection coefficients of two 

batches of gels to show the batch to batch variation. 

 

Sample No. of measurement 

positions 

Temperature of 

measurement / 

°C 

Mean reflection 

coefficient 

Controlled cooling 15 6.0 0.0056 ± 0.0008 

Uncontrolled cooling 11 11.2 0.0097 ± 0.0014 

Original unirradiated 

data 

45 13.4 0.0098 ± 0.0005 

Table 7.1. Measured reflection coefficient between MAGIC gel and acoustic polymer reflector for a 

number of measurement conditions comparing different cooling conditions. 

 

7.5. Discussion 

There are two differences to note between the two temperature profiles shown 

in Figures 7.1 comparing the temperature dependence of the reflection coefficient 

between MAGIC gel and acoustic polymer reflector for different cooling regimes.   

The first difference between the two cooling regimes is that the temperature at 

which the minimum reflection coefficient is observed is lower for the controlled 

cooling conditions compared to the uncontrolled cooling conditions. The temperature at 

which the minimum reflection coefficient is observed is approximately 6°C for the 

controlled cooling conditions while it is approximately 12°C for the uncontrolled 

cooling conditions. 

The second difference between the two cooling regimes is the minimum 

reflection coefficient itself.  For the uncontrolled cooling regime the minimum 

reflection coefficient was observed to be approximately 0.0095, while for the controlled 

cooling conditions this was observed to be approximately 0.006. 

Table 7.1 summarises the measurements of the reflection coefficient at different 

positions for the two cooling regimes.  Measurements were acquired at 6°C for the 

controlled cooling conditions and 11.2°C for the uncontrolled cooling conditions.  The 

mean reflection coefficient was observed to be 0.0097 ± 0.0014 from 11 measurement 

positions for the uncontrolled cooling conditions and 0.0056 ± 0.0008 from 15 

measurement positions for the controlled cooling conditions.  Using this data the 

hypothesis that there is a difference in the reflection coefficient between these two 
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samples can be tested. The difference between the means is significant at the 0.5% 

level when using a one tailed paired t-test, indicating that the minimum reflection 

coefficient for this measurement of controlled cooling conditions is significantly lower 

than the minimum reflection coefficient for this measurement of uncontrolled cooling 

conditions.  To prove that controlling the cooling rate results in a statistically 

significant difference in measured reflection coefficient, further measurements of the 

reflection coefficients with different batches of gel are required to determine the 

population variation in the measured reflection coefficients for controlled and 

uncontrolled cooling. 

The reduction in temperature at which the minimum reflection amplitude is 

observed between the uncontrolled and controlled cooling regimes respectively 

indicates that the physical properties (speed of sound, density) of the MAGIC gel are 

altered by the change in cooling conditions.  The dependence of the physical properties 

of MAGIC gel on cooling rate could be a contributory factor in the batch variation 

observed in previous experiments, and also could contribute to difference between 

measurements on different thickness samples, since in all previous experiments cooling 

rates will have been uncontrolled and will have depended on ambient temperature at the 

time of MAGIC gel formulation, and size/volume of container into which the gel was 

placed. 

The reduction in the observed minimum reflection coefficient between the 

uncontrolled and controlled cooling regimes respectively indicates that the impedance 

match between the MAGIC gel and acoustic polymer reflector is better with the 

controlled cooling rate.  This will be due to the acoustic properties of the MAGIC gel 

being more uniform near the interface with the acoustic polymer material for the 

controlled cooling rate than for the uncontrolled cooling rate. 

Crescenti (2009) discusses temperature effects on polymer gel dosimeters, but 

concentrates on minimising any effects that temperature will have on results by trying 

to control the thermal conditions and make them reproducible between experiments.  In 

contrast this thesis aims to characterise the thermal effects and utilises the thermal 

conditions to produce more favourable results. 
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8. Acoustically matched reflector – reflection from an 

array of threads 

8.1. Introduction 

Gel dosimetry is unique in being able to measure the entire three-dimensional 

dose distribution of a radiotherapy treatment delivery, therefore it is important to 

determine if it is possible to design a phantom that would introduce the possibility of 

measuring 3 dimensional dose dependent reflections.  In Chapter 6 it has been shown 

that it was possible to measure dose dependent reflections across a plane surface, and 

so different methods of producing 3 dimensional dose dependent reflections were 

considered. Three possibilities were considered: interleaved layers of dose dependent 

material and inert reflectors, threads of inert reflectors in a dose dependent gel and 

fragments of inert reflectors in a dose dependent gel. 

8.2. Gedankenexperiment 

8.2.1. Layered phantoms 

 

One method of producing a 3 dimensional phantom would involve the layering 

of dose dependent and inert materials.  There are two problems with this design that led 

to it being dismissed.  The first is the introduction of multiple reverberations between 

parallel reflectors, and the second is the attenuation caused by the acoustic polymers 

reflector being used in the design. 

To produce the same reflection conditions at different depths, a layered 

phantom would need to consist of parallel layers of the inert reflector and dose 

dependent material, otherwise the angular dependency of reflection would cause 

different proportions of the reflected beam to be intercepted by the transducer.  

However, multiple parallel layers would produce multiple reverberations in the 

phantom, preventing suitable time gating of signals to produce depth determination of 

echo position. 

The attenuation coefficient of the acoustic polymers material is approximately 

18 dB cm
-1

.  Even thin layers of the material would therefore cause significant 
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attenuation in a layered phantom, leading to only small depths being able to be 

investigated. 

 

8.2.2. Fragments of inert reflector 

 

If the inert reflector could be fragmented and mixed homogeneously throughout 

the dose dependent gel, then the multiple small reflections from the fragments would be 

seen as grey level on a conventional ultrasound scanner.  The dose dependency of grey 

level of such a phantom could then be investigated.  However, after discussion with 

Acoustic Polymers, Ltd, it was decided not to pursue this line of investigation since 

efforts to produce granules or fragments of the material that could be subsequently 

incorporated into such a phantom would be hampered by agglomeration of the 

fragments without the addition of an additive to prevent this occurring.  Such an 

additive would then be present when mixing the fragments with the dose dependent gel, 

and would alter the properties of the phantom in an unknown manner. 

 

8.2.3. Matrix of inert threads 

 

The third method to be considered was a matrix of inert threads in a dose 

dependent gel.  Although the threads will cause shadowing behind them, the matrix can 

be designed in such a way to prevent the shadows affecting other threads.  Cylindrical 

threads will not cause multiple reflections and will reduce the angular dependence of 

reflection amplitude.   

 

8.3. Thread phantom 

A set of 150 mm long, 1 mm diameter threads was manufactured by Acoustic 

Polymers, Ltd. with a target density of 1030 kg m
-3

.  The diameter of the threads was 

specified as 1 mm so that they were thin with respect to the wavelength of the 

ultrasound (approximately 0.5mm at 3 MHz), but strong enough to withstand handling. 

A frame was constructed from which the threads were suspended.  The frame 

consisted of 2 pieces of veroboard with 4 fixing spacers to maintain the geometry.  An 
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array of 23 holes was drilled in the board in four rows.  Each row was 10 mm apart, and 

the holes were 10 mm apart in each row.  The holes in consecutive rows were displaced 

by 2.5mm laterally.  There were five holes on the top row and six in each of the 

subsequent three rows. The diameter of the holes in the veroboard were 1mm, through 

which the threads could be passed.  The holes were positioned so that when imaged 

from a direction perpendicular to the rows each thread should not interfere with the 

ultrasound path to threads in the rows below, and is shown in Figure 8.1.  The overall 

width of the thread array was 57.5mm, which fits within the 60mm imaging width of 

the Ultrasonix MDP ultrasound scanner (Ultrasonix Medical Corporation, Richmond, 

BC, Canada) used in this thesis.  Each thread was held in place by glue before being 

encased in an epoxy housing. The threads were placed under slight tension between the 

frame to reduce any sag that occurred.  The tension was created by hanging a weight 

from each thread as it was glued in place.   Figure 8.2 shows a diagram of the 

construction of the thread holder.  Figure 8.3 and 8.4 show the partly constructed and 

completed thread phantom respectively.  The array of threads was designed in 

conjunction with, and manufactured by, Dr Sui Man Lee and Mr Peter Laidler of the 

Department of Medical Physics and Bioengineering, Royal United Hospital NHS Trust, 

Bath. 
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Figure 8.1. Schematic diagram showing the positioning of the threads (open circles) in the array.  The 

filled circles indicate the positions of the spacers.   

 

 

Figure 8.2. Diagram showing the construction of the thread holders.  The plates are spaced by four Nylon 

spacers held in place by Nylon bolts. The acoustic polymers threads are pushed through the matrix of 

holes in the plates and secured each side by glue and an epoxy moulding (not shown). 

 

 

 

Figure 8.3. Photo showing the construction of the thread holders.  The plates are spaced by four Nylon 

spacers held in place by Nylon bolts. The acoustic polymers threads are pushed through the matrix of 

holes in the plates and secured each side by glue and an epoxy moulding on the right hand side.  The 

threads on the left hand side are free prior to them being glued and set in epoxy. 
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Figure 8.4. Photo showing the completed thread holder with both ends of the threads glued and encased 

in epoxy. 
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9. Imaging of thread phantom 

9.1. Introduction 

The use of an ultrasound scanner to acquire the ultrasonic data is an important 

part of this project.  Using an ultrasound scanner to acquire the data will provide faster 

data acquisition compared to the use of the single element transducer in Chapter 6 and 

should lead to the applicability of this system to many hospitals beyond teaching and 

research institutes which currently use gel dosimetry for radiotherapy verification.  

Experiments were performed to identify if the ultrasound scanner could be used to 

acquire images of the thread phantom proposed and developed in Chapter 8. 

 

9.2. Materials and methods 

9.2.1. Image acquisition 

 

An Ultrasonix MDP scanner (Ultrasonix Medical Corporation, Richmond, BC, 

Canada) with Research Package was used to scan the phantom, using a 60mm linear 

transducer operating in the range 5-14 MHz.  Images were acquired in Portable 

Network Graphics (PNG) format, with lossless compression, utilising the print 

functionality of the scanner.  These images were transferred from the scanner to a 

computer for subsequent image analysis using Matlab R12.1 (The Mathworks, Inc., 

Natick, MA).  The ultrasound transducer was held in a custom frame with 

micromanipulator controls of positioning.  Images were acquired either at a static 

position while the other properties such as temperature and salinity were varied, or 

were acquired at 4mm intervals across the entire phantom at fixed temperature settings.  

While images were acquired the temperature of the phantom was controlled using a 

Grant GD 100 Immersion Thermostat (Grant Instruments Ltd, Cambridge, UK) and a 

Grant C1G Refrigerated Immersion Cooler attached to the water tank. 

The scanner configuration will be adjusted to ensure that the most suitable 

settings were used in the image acquisition.  Settings such as swept gain, dynamic 
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range and focussing were all adjusted.  From section 2, the measured attenuation 

coefficient of MAGIC gels is in the range 0.5 – 3.5 dB cm
-1

 (Figures 3.4 – 3.6), 

compared to 0.54 dB cm
-1

 MHz
-1

 as the average soft tissue attenuation (Culjat et al. 

2010).  Therefore, the swept gain was reduced to ensure a greater dynamic range was 

available.  For the rho-c matched polymer the reflection amplitude will be small, 

although the relative change in reflection coefficient (unirradiated to irradiated) will be 

significant.  Therefore the overall gain was set high, with an appropriate selection of 

the dynamic range made to ensure the expected changes were observed within the 

available dynamic range while reducing any quantisation that may occur due to 

digitisation into the 8-bit images produced by the system. 

The image acquisition system of the Ultrasonix MDP Scanner includes a 

pre-image formation logarithmic gain compression.  This logarithmic compression aids 

the display of the ultrasound images but no user control of this gain compression is 

available.  When performing quantitative image analysis this pre-display logarithmic 

compression needs to be accounted for in subsequent analysis and image comparison. 

 

9.2.2. Temperature and dose dependence of reflections 
from simple thread phantom 

 

A simple three-thread phantom was utilised to measure the temperature and 

dose dependence of reflection from the threads when the phantom was placed into 

MAGIC gel.  The thread phantom was placed in a Polyethylene box and held in place 

using silicone.  MAGIC gel was manufactured and poured into the container, taking 

care not to introduce any bubbles into the mixture.  Once the MAGIC gel was poured a 

vacuum system (Island Scientific cylindrical chamber (Island scientific Ltd, Isle of 

Wight, UK) with Edwards E2M8 vacuum pump (Edwards High Vacuum International, 

Crawley, UK)) was used to ensure any bubbles introduced during the creation of the 

phantom were removed.  Once all the bubbles in the gel had been removed a layer of 

vegetable oil was poured over the MAGIC gel to provide ultrasonic coupling between 

the transducer and the gel, and to seal the MAGIC gel and to help prevent oxygen 

contamination.  Then the entire system was allowed to cool slowly until the MAGIC 
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gel had set.  Once the MAGIC gel had set the system was placed into a refrigerator 

prior for approximately 24 hours.  

Ultrasonic images of the thread phantom were acquired at four positions across 

the phantom as the temperature of the phantom was increased up to room temperature.  

Each image was acquired using a single focal zone on the scanner set at 31mm deep, 

with a Power Setting of -10, Gain of 65% and Dynamic Range of 80dB. 

The images acquired by the scanner were exported to a PC running Matlab 

R12.1 (The Mathworks, Inc., Natick, MA).  The PNG format images were imported 

into Matlab and pixel data for the scan area was selected.  The approximate location of 

the acoustic polymers threads was known and the analysis routine searched a 20 by 30 

pixel region around the initialisation position for each thread to identify the strongest 

echo for each thread. The average value of a 61 pixel region was also calculated as a 

surrogate for the reflected power from the thread, taking the greatest value from a 

search of a 20 by 30 pixel region centred on the initialisation position. The 61 pixel 

mask used to calculate the average pixel value was an oval eleven pixels wide and 

seven pixels deep. Seven pixels is approximately 1 mm and equates to the thread 

diameter in the scan direction.  The mask was larger across the thread width as the 

lateral resolution of the ultrasound image is governed by the image focusing.  An 

example of the Matlab code used for analysing the signals is contained in Appendix C3. 

Then the phantom was irradiated using a Siemens Primus linear accelerator 

(Siemens AG, Erlangen, Federal Republic of Germany).  A dose of 10 Gy was 

delivered to half of the phantom.  Two of the measurement positions were therefore 

irradiated and two of the measurement positions remained unirradiated.  After returning 

the phantom to the refrigerator for approximately 48 hours, ultrasound images were 

acquired of the irradiated phantom at each of the four measurement positions at two 

temperatures, 5°C and 16.5°C, the minimum and maximum temperatures at which the 

unirradiated phantom was imaged.  One and a half hours was left between temperature 

changes to allow the phantom to thermally equilibrate.  The same imaging parameters 

were used as the pre-irradiation images.  Two sets of images were acquired post-

irradiation with independent positioning of the scan plane. 

The pixel values measured from the scans acquired post-irradiation were 

normalised to the pre-irradiation values by subtracting the pre-irradiation values.  This 
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subtraction of pre-irradiation images was used to correct for variation in imager 

performance, the variation in the interface itself and inhomogeneities in the acoustic 

path between the scanner and the interface.  The use of subtraction rather than division 

for this method is based on the scanner performing logarithmic gain compression on the 

ultrasound images prior to any subsequent processing.   

 

9.2.3. Measurement of acoustic impedance 

 

A measurement of the acoustic impedance of the acoustic polymers material 

was made both as a verification of the process of using the Ultrasonix scanner for 

image acquisition of the thread phantom and to verify that the formation of the acoustic 

polymers material into threads had not affected the acoustic impedance of the material. 

A phantom consisting of three acoustic polymers threads was immersed in 

saline solution.  The images acquired by the scanner were exported to a PC running 

Matlab R12.1 (The Mathworks, Inc., Natick, MA).  The PNG format images were 

imported into Matlab and pixel data for the scan area was selected.  The approximate 

location of the acoustic polymers threads was known and the analysis routine searched 

a 20 by 30 pixel region around the initialisation position for each thread to identify the 

strongest echo for each thread. The average value of a 61 pixel region was also 

calculated as a surrogate for the reflected power from the thread, taking the greatest 

value from a search of a 20 by 30 pixel region centred on the initialisation position.  

The 61 pixel mask used to calculate the average pixel value was an oval eleven pixels 

wide and seven pixels deep. Seven pixels is approximately 1 mm and equates to the 

thread diameter in the scan direction.  The mask was larger across the thread width as 

the lateral resolution of the ultrasound image is governed by the image focusing.  An 

example of the Matlab code used for analysing the signals is contained in Appendix C3. 

Initially the three thread phantom was immersed in a strong saline solution.  

The saline solution was gradually diluted, changing the acoustic impedance of the 

saline solution.  At each dilution five images of the threads were acquired and the pixel 

value for each thread was determined for each image.  Each image was acquired using 

a single focal zone on the scanner set at 21mm deep, with a Power Setting of -14, Gain 

of 55% and Dynamic Range of 40dB. 
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As the saline solution was diluted the reflection amplitude from the threads was 

altered and the pixel value associated with each thread changed.  A minimum in 

reflection amplitude or pixel value would indicate the position at which the real part of 

the acoustic impedance was matched between the acoustic polymers material and the 

saline solution. 

The speed of sound in saline solution was calculated from the corrections Wong 

and Zhu (1995) made to the equations of Del Grosso (1974).  The density of the saline 

solution was calculated from the UNESCO report of Fofonoff and Millard (1983).  

Knowledge of the speed of sound and density of the saline solution allowed calculation 

of the acoustic impedance of the solution at each salinity level where images of the 

thread phantom were acquired. 

To extend the range of acoustic impedances that could be measured further a 

similar experiment was performed using an ethanol and water mixture instead of a 

saline solution.  The thread phantom was initially immersed in a strong ethanol/water 

solution which had a low acoustic impedance.  The solution was gradually diluted, 

increasing the acoustic impedance of the solution.  The speed of sound and density of 

the ethanol-water mixture was calculated from 6
th

 and 4
th

 order polynomial fits 

respectively to the data from D'Arrigo and Paparelli (1988) at the measurement 

temperature of 20°C. The mixing of ethanol and water is an endothermic reaction 

(Boyne and Williamson, 1967) and the temperature of the mixture decreased at each 

dilution and gas bubbles were released.  Any gas bubbles that attached to the threads or 

the transducer surface were released by gentle brushing and the temperature of the 

solution was allowed to return to 20 °C before the images were acquired.  To try and 

reduce the potential for errors due to the presence of gas bubbles, two sets of five 

images were acquired, with the threads and transducer surface being brushed in 

between each set of five images.  Each image was acquired using a single focal zone on 

the scanner set at 21mm deep, with a Power Setting of -10, Gain of 65% and Dynamic 

Range of 40dB. 

9.2.4. Image analysis of thread phantom 

 

Work was also performed on code to identify all twenty-three threads in the 

phantom designed in Chapter 8.  This work was performed using images acquired of 
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the phantom immersed in water.  The images acquired by the scanner were exported to 

a PC running Matlab R12.1 (The Mathworks, Inc., Natick, MA).  The PNG format 

images were imported into Matlab and pixel data for the scan area was selected.  The 

location of the acoustic polymers threads were identified by the user on the first image 

in any analysis series by locating the positions of the bottom left and top right thread in 

the image.  A mask was then formed to show the user an array of twenty-four points 

consisting of four rows of six points.  Twenty-four points were used as the phantom 

could be imaged from either the top or the bottom, with one of the array points falling 

outside the area imaged by the scanner.  Once accepted by the user these locations were 

used as seed locations to identify the maximum pixel value produced by the reflection 

from each thread in each image in the image series.  The twenty-fourth position 

returned a value of zero.  The average value of a 61 pixel region close to the maximum 

pixel value was also calculated as a surrogate for the reflected power from the thread.  

The seed locations from the first image were stored by the analysis routine and used for 

subsequent images loaded by the user without requiring the input of the thread 

positions to speed up subsequent analysis.  An example of the Matlab code used for 

analysing the signals is contained in Appendix C4. 

 

9.3. Results 

9.3.1. Measurement of temperature and dose dependence 
of reflections 

 

Figure 9.1 shows a typical image acquired of the three acoustic polymers 

threads in the MAGIC gel phantom.  The red circles indicate the position of maximum 

pixel value for the three threads as identified by the Matlab routine, and the threads are 

numbered to aid identification in further analysis.   
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Figure 9.1  Example of image of threads in MAGIC gel phantom.  The red circle indicates the 

thread positions as identified by the Matlab analysis routine, and the threads are numbered to aid 

identification in further analysis 
 

Figures 9.2, 9.3 and 9.4 show the average pixel value for a 61 pixel region for 

four imaging positions across the thread phantom with temperature for threads 1, 2 and 

3 respectively.  Each imaging position is shown as a separate plot on each figure, and 

shows a small increase in pixel value with temperature for each thread at each of the 

four imaging positions. 
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Figure 9.2  Variation of average pixel value for a 61 pixel region for four imaging positions across the 

thread phantom with temperature for thread 1.  Each imaging position is shown as a separate plot.  Lines 

are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 9.3  Variation of average pixel value for a 61 pixel region for four imaging positions across the 

thread phantom with temperature for thread 2.  Each imaging position is shown as a separate plot.  Lines 

are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 9.4  Variation of average pixel value for a 61 pixel region for four imaging positions across the 

thread phantom with temperature for thread 3.  Each imaging position is shown as a separate plot. Lines 

are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
 

 

Figures 9.5, 9.6 and 9.7 show the post-irradiation normalised pixel values for a 

61 pixel region for four imaging positions across thread phantom with temperature for 

threads 1, 2 and 3 respectively.  Error bars are one standard deviation calculated from 

the repeated imaging series.  The threads at 30mm and 40mm were irradiated to 

approximately 10 Gy.  Figures 9.5 and 9.7 show that the pixel value for the irradaiated 

threads decreased as the temperature was changed from 5°C to 16.5°C.  Figure 9.6 

shows this decrease for the thread at 40mm but the thread at 30mm shows an increase 

in pixel value with temperature. Figures 9.5 and 9.7 also show that the pixel value for 

the irradaiated threads increased as the temperature was changed from 5°C to 16.5°C.  

Figure 9.6 shows this increase for the thread at 50mm but the thread at 60mm shows a 

decrease in pixel value with temperature.   
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Figure 9.5  Normalised average pixel value for a 61 pixel region for four imaging positions across thread 

phantom at two selected temperatures for thread 1.  Each imaging position is shown as a separate plot. 

Lines are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 9.6  Normalised average pixel value for a 61 pixel region for four imaging positions across thread 

phantom at two selected temperatures for thread 2.  Each imaging position is shown as a separate plot. 

Lines are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 9.7  Normalised average pixel value for a 61 pixel region for four imaging positions across thread 

phantom at two selected temperatures for thread 3.  Each imaging position is shown as a separate plot. 

Lines are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
 

 

9.3.2. Measurement of acoustic impedance  

 

Figure 9.8 shows a typical image acquired of the three acoustic polymers 

threads in the saline solution.  The red circles indicate the position of maximum pixel 

value for the three threads as identified by the Matlab routine, and the threads are 

numbered to aid identification in further analysis.   

Figure 9.9 shows the average pixel value for a 61 pixel region around each 

acoustic polymers threads with the calculated acoustic impedance of the saline solution.  

Each thread is displayed as a separate plot and the average for all three threads is also 

displayed.  Error bars are standard deviations on pixel value calculated from the 5 

images acquired at each dilution.  The pixel value for each thread appears to increase 

with increasing salinity.  Figure 9.10 shows the pixel value for a 61 pixel region around 

each acoustic polymers threads with the calculated acoustic impedance of the 

ethanol/water mixture.  Each thread is displayed as a separate plot. Error bars are 

standard deviations on pixel value calculated from the 10 images acquired at each 

dilution. 

 



Chapter 9: Imaging of thread phantom 
 

 

 

135 

 

Figure 9.8  Example of image of threads in saline solution.  The red circle indicates the thread positions 

as identified by the Matlab analysis routine, and the threads are numbered to aid identification in further 

analysis. 
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Figure 9.9  Variation of average pixel value for a 61 pixel region for three threads with acoustic 

impedance of saline solution.  Temperature of measurement 20 °C.  
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Figure 9.10  Variation of average pixel value for a 61 pixel region for three threads with acoustic 

impedance of ethanol-water mixture.  Temperature of measurement 20 °C.   

 

 

 

9.3.3. Image acquisition from 24 thread phantom  

 

Figure 9.11 shows a typical image from the development of the analysis routine 

for images of the 24 thread phantom.  The red circles indicate the position of maximum 

pixel value for the twenty three threads as identified by the Matlab routine.  The top 

right red circle is outside the imaging area and is required if the phantom is imaged 

from the other direction.  This returned a value of zero from the analysis routine. 
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Figure 9.11  Example of image of 23 thread array in water.  The red circles indicates the 

maximum pixel value at each thread positions as identified by the Matlab analysis routine. 
 

9.4. Discussion 

The measurement of the temperature dependence of the reflection of ultrasound 

from threads of acoustic polymers in MAGIC gel material did not produce a definitive 

minimum.  Figures 9.2, 9.3 and 9.4 show an increase in the pixel value with increasing 

temperature in MAGIC gel.  However, Figures 9.2, 9.3 and 9.4 do not show the 

minimum in reflection amplitude that is expected.  However, if the temperature range 

had been extended below 5°C a definitive minimum may have been observed. 

Figures 9.5 and 9.7 show the expected variation in pixel value with dose and 

temperature.  The unirradiated threads (at 50 and 60mm) show the same increase in 

pixel value with temperature as was observed pre-irradiation.  The irradiated threads 

(30 and 40mm) show a decrease in pixel value with temperature consistent with earlier 

observations implying that the temperature at which the minimum reflection coefficient 

occurs has been increased by the irradiation of the MAGIC gel. 

However, only imaging Thread 2 at 40mm and 50mm follow the same trend, as 

shown in Figure 9.6.  For the others two imaging positions the trend is reversed, where 
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the 60mm thread which was unirradiated shows an increase in pixel value with 

temperature, and the irradiated 30mm threads shows a decrease in pixel value with 

temperature. 

The measurement of the acoustic impedance of the threads of acoustic polymers 

material did not produce a definitive minimum.  Figure 9.9 shows a decrease in the 

pixel value when in the saline solution.  Figure 9.9 also does not show a minimum in 

reflection amplitude that is expected.   

One explanation for the absence of a minimum is that the formation of the 

acoustic polymers material into threads has caused the acoustic impedance to be 

different to the expected value, and hence the measurements may have been completed 

at too high an acoustic impedance.  The change in acoustic impedance could potentially 

be due to the size of the threads (making them effectively all ‘surface’ and no ‘bulk’ 

material) or by the different batch having slightly different properties. 

The attempt to extend the range of acoustic impedances of the fluid medium for 

the experiment by using and ethanol-water mixture did not produce the expected result.  

Figure 9.10 shows no discernable change in pixel value for all ethanol-water mixtures.  

This implies that either the reflection coefficient is not changing in the region of the 

acoustic impedances measured, or the errors in the experiment mean that any changes 

in reflection coefficient that may have been observed as a change in pixel value are not 

visible.   

The size of the uncertainty at each data point in Figure 9.10 indicate that there 

were significant differences between the images that were acquired.  This will either 

have been due to the presence of gas bubbles in one set of images or the brushing of the 

threads and transducer surfaces affecting the images that were acquired in some other 

way.   

The endothermic reaction between ethanol and water caused some 

complications with the measurements of the pixel value in the ethanol-water mixture.  

The gas bubbles released at each successive dilution sometimes attached to either the 

transducer surface or the acoustic polymers threads.  Any visible gas bubbles were 

dispersed using a fine brush, however it is not certain that every gas bubble was 

removed at each dilution from all threads or the transducer surface.  Additionally, the 

endothermic reaction between ethanol and water caused the temperature of the solution 
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to drop at each dilution.  Although the images were acquired when the temperature of 

the solution had returned to the measurement temperature of 20°C a measurement of 

the temperature of the acoustic polymer threads was not possible and the threads could 

have been at a lower temperature and not returned to the expected temperature.  Since it 

has previously been determined that the acoustic impedance of the acoustic polymers 

material is strongly dependent on the temperature, any uncertainties in the temperature 

of the material may cause the reflection coefficient to be very different from expected. 

Another potential explanation for not seeing the expected variation in pixel 

value of threads is that the change in acoustic impedance is not dominating the 

reflection from the threads.  It has been assumed that the relationship between the 

acoustic impedance of the materials and the reflection coefficient (or its surrogate, pixel 

value of threads) is similar to that of a plane surface.  The reflection coefficient of a 

rod-like structure will not be the same as an (infinite) planar surface due to the different 

geometries and the ability to induce surface waves around the rod.  Another cause of 

differences from the planar slab situation is irregularities in the structure of the threads.  

Any small irregularities such as moulding lines from the way in which the threads were 

produced will cause different reflections of the ultrasonic waves to occur which would 

not necessarily have the same characteristics as other reflections.  If these reflections 

dominate the reflection from the threads then any changes from the changing acoustic 

impedance may not be observable.  Modelling of the reflection characteristics of these 

geometries may lead to further insights into why the pixel values did not vary as 

expected with changing acoustic impedance of the fluid. 

Another source of error in the measurements reported in this chapter is the 

assumption of logarithmic gain compression within the scanner.  This assumption was 

significant in the implementation of subtracting the pre-irradiation pixel values within 

the analysis routines.  This assumption of logarithmic gain compression was taken from 

the scanner technical manual, however this was not independently verified.  Any 

deviation from logarithmic gain compression will introduce non-linearities into the 

measured reflection coefficients.  A method of characterising the gain compression 

applied to the images by the scanner would be needed to verify the validity of this 

analysis method.  
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Figure 9.11 shows that the analysis routine could be used to successfully apply 

a mask and identify the twenty four positions at which threads may be located and 

determine the maximum and average pixel value for the threads.  The missing thread in 

the array returned a pixel value of zero. 
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10. Slab phantom imaged using the Ultrasonix Scanner 

10.1. Introduction 

The integration of a commercial ultrasound scanner into the data acquisition 

system is an important aspect of this project, as it will enable the applicability of the 

system to a larger set of radiotherapy centres than currently employ gel dosimetry 

techniques due to the lack of available analysis methods. 

In Chapter 9 a description of the methodology for acquiring images of the 

thread phantom was described.  Measurements of the acoustic properties of the threads 

and dose and temperature related changes in polymer gels was inconclusive using the 

system.  Therefore images of phantoms based on a planar interface were acquired and 

used to measure and characterise the response from the system in comparison to the 

single element pulse-echo system used in Chapter 6. 

 

10.2. Materials and methods 

10.2.1. Image acquisition and analysis  

 

Images were acquired using the Ultrasonix MDP scanner (Ultrasonix Medical 

Corporation, Richmond, BC, Canada) as described previously.  The images acquired by 

the scanner were exported to a PC running Matlab R12.1 (The Mathworks, Inc., Natick, 

MA).  The PNG format images were imported into Matlab and pixel data for the scan 

area was selected.  The location of the upper surface of the acoustic polymers material 

was identified in each column of the image.  Three values for the pixel value at the 

interface were produced.  The first two values were indicative of the maximum pixel 

intensity at the interface for each column of the image. Both the point maximum and 

the value produced by averaging the three pixels in each image column closest to the 

interface were recorded.  The third value was chosen to be indicative of the total 

reflected power in reflection from the interface.  This value was produced by averaging 

the seven pixels closest to the interface, since this was found in most cases to include 

all of the pixels that had grey levels greater than the background image level. An 
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example of the Matlab code used for analysing the signals is contained in Appendix C5.  

Once the scan line in each image was analysed the data for each image set (which 

included repeated images taken in the same position and at the same temperature) was 

combined to produce average and standard deviations for the pixel value at the 

interface for each image position and temperature were produced.  Further image 

analysis, such as spatial averaging across scan lines, was performed as required. 

The image acquisition system of the Ultrasonix MDP Scanner includes a 

pre-image formation logarithmic gain compression.  This logarithmic compression aids 

the display of the ultrasound images but no user control of this gain compression is 

available.  When performing quantitative image analysis this pre-display logarithmic 

compression needs to be accounted for in subsequent analysis and image comparison. 

 

10.2.2. Measurement of acoustic impedance 

 

A measurement of the acoustic impedance of the acoustic polymers material 

was made both as a verification of the process of using the Ultrasonix scanner for 

image acquisition and analysis and to verify the measurement of the acoustic 

impedance of the material.   

The acoustic polymers material was immersed in saline solution and the 

interface between the acoustic polymers material and the saline solution was imaged 

using the Ultrasonix scanner.  At each salinity two images of the interface were 

acquired.  Each image was acquired using a single focal zone on the scanner set at 

21mm deep, with a Power Setting of -14, Gain of 30% and Dynamic Range of 45dB.  

The reflection amplitude was calculated by averaging the pixel value at the interface 

across each scan line in the image. 

  The saline solution was gradually diluted, changing the acoustic impedance of 

the saline solution.  Therefore the reflection amplitude was altered.  The minimum in 

reflection amplitude indicated the position at which the real part of the acoustic 

impedance was matched between the acoustic polymers material and the saline 

solution.  The acoustic impedance of the saline solution at each dilution was calculated, 

and therefore the real part of the acoustic impedance of the acoustic polymers material 

could be inferred.  
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The speed of sound in saline solution was calculated from the corrections Wong 

and Zhu (1995) made to the equations of Del Grosso (1974).  The density of the saline 

solution was calculated from the UNESCO report of Fofonoff and Millard (1983).  

Knowledge of the speed of sound and density of the saline solution allowed calculation 

of the acoustic impedance of the solution at each salinity level where images of the 

interface were acquired. 

 

10.2.3. Phantom manufacture and irradiation  

 

Pieces of the acoustic polymers inert reflector of approximately 8 cm × 8 cm 

were used to make the phantoms.  The material was placed into a polyethylene 

container and held in place using silicone.  MAGIC gel was manufactured and poured 

onto the acoustic polymer reflector, taking care not to introduce any bubbles into the 

mixture.  The acoustic polymers reflector and container were held at 35 °C in a water 

bath as the MAGIC gel was poured.  Once the MAGIC gel was poured a vacuum 

system (Island Scientific cylindrical chamber (Island scientific Ltd, Isle of Wight, UK) 

with Edwards E2M8 vacuum pump (Edwards High Vacuum International, Crawley, 

UK)) was used to ensure any bubbles introduced during the creation of the phantom 

were removed.  Once all the bubbles in the gel had been removed a layer of vegetable 

oil was poured over the MAGIC gel to provide ultrasonic coupling between the 

transducer and the gel, and to seal the MAGIC gel and to help prevent oxygen 

contamination.  Then the entire system was allowed to cool slowly until the MAGIC 

gel had set.  The system was then refrigerated for approximately 24 hours prior to 

irradiation. 

The phantoms were irradiated using a Siemens Primus linear accelerator 

(Siemens AG, Erlangen, Federal Republic of Germany).  Two phantoms were created 

and irradiated on two separate occasions.  The first phantom (Phantom A) left one side 

of the phantom unirradiated whereas the other side was irradiated to approximately 20 

Gy, as shown in Figure 10.1.  The second phantom (Phantom B) had a more complex 

dose distribution.  The right hand side of the phantom was irradiated to a dose of 

approximately 20 Gy, with a 4 cm × 4 cm square in the centre of the phantom being 

irradiated to an additional dose of approximately 10 Gy, as shown in Figure 10.2.  After 
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irradiation the phantoms were refrigerated for approximately 48 hours prior to 

ultrasound image acquisition. 
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Figure 10.1  Plan view of the irradiation of Phantom A.  The right hand side was irradiated to 20 

Gy.  The blue line indicates the scan plane. 
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Figure 10.2  Plan view of the irradiation of Phantom B.  The right hand side was irradiated to 20 

Gy and the central 4 cm × 4 cm was irradiated to an additional 10 Gy. 
 

For Phantom A no pre-irradiation images were acquired of the phantom.  

Post-irradiation the phantom was placed in a water bath at an initial temperature of 

11°C.  The temperature on the water bath was slowly increased while images of the 
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interface between the acoustic polymers material and the MAGIC gel were acquired at 

regular intervals.  Each image acquired the reflection from the interface in the x-

direction, as shown in Figure 10.1.  As each image was acquired the temperature of the 

interface was measured and recorded.  Each image was acquired using a single focal 

zone on the scanner set at 31mm deep, with a Power Setting of -14, Gain of 75% and 

Dynamic Range of 40dB. 

For Phantom B, a set of images were acquired at temperatures of 10, 15, 20 and 

25 °C prior to irradiation.  Images were acquired at 3mm intervals in the z-direction (as 

shown in Figure 10.2) across the phantom surface.  Each image acquired a 60mm scan 

of the phantom surface in the x-direction, so that a 60 × 60 mm area was imaged at each 

temperature.  At each imaging position two sets of 5 images were acquired and 

averaged, with the position being reset between each set of images to correct for 

positioning uncertainties.  The same imaging protocol was applied post-irradiation. 

The ten images at each location were analysed to identify the averaged pixel 

value at the interface across each image.  A seven pixel mask was used to measure the 

average pixel value at each scan line.  Seven pixels corresponds to approximately 1mm.  

The pre-irradiation value at each location was subtracted from the post-irradiation value 

at each location to produce a 'normalised' pixel value.  This subtraction of pre-

irradiation images was used to correct for variation in imager performance, the 

variation in the interface itself and inhomogeneities in the acoustic path between the 

scanner and the interface.  The use of subtraction rather than division for this method is 

based on the scanner performing logarithmic gain compression on the ultrasound 

images prior to any subsequent processing.  Within each image the scan lines were 

averaged to produce data points at 3.5mm intervals.  Pairs of scan planes were averaged 

to produce profiles at 6 mm intervals across the phantom.  

 

10.3. Results 

10.3.1. Measurement of acoustic impedance  

 

Figure 10.3 shows the variation of averaged pixel value at the interface of 

between the saline solution and the acoustic polymers material with the calculated 
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acoustic impedance of the saline solution. Error bars show the standard deviation of 

pixel values along the interface for each image acquired. The pixel value decreases 

with decreasing salinity until the salinity of 0.036 g cm
-3

 was reached, which gives a 

calculated acoustic impedance of 1.57 × 10
6
 kg m

-2
 s

-1
.  As this point the minimum 

pixel value is observed and then the pixel value increases as the salinity decreases 

further.  Measurements were made at 22 °C. 
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Figure 10.3  Variation of averaged pixel value across interface between saline solution and acoustic 

polymers material.  The acoustic impedance was calculated from the temperature and salinity of the 

saline solution.  Lines are displayed to guide the reader and are not necessarily indicative of actual 

behaviour. 
 

10.3.2. Measurement of a temperature variation of pixel 
value (Phantom A) 

 

Figure 10.4 shows and example of the image acquired using the Ultrasonix 

scanner of Phantom A.  The interface between the MAGIC gel and the acoustic 

polymers inert reflector is close to the focal zone set on the scanner at 31 mm deep 

(indicated by the light blue arrow).  The bright reflection at approximately 20mm deep 

is from the interface between the oil used as an acoustic coupler and the MAGIC gel 

layer.  Figure 10.5 shows the left hand side of the interface zoomed to show the 

individual pixels.  The brightest pixels are the second and third pixels in the scan line 
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across the interface, although non-zero pixel values can be observed from deeper within 

the acoustic polymers reflector material. 

 

 

Figure 10.4  Example of image of acoustic polymer inert reflector in MAGIC gel phantom A.  The 

interface between MAGIC gel and acoustic polymer inert reflector is at the level of the focal depth 

(31mm) as indicated by the blue arrow. 
 

 

Figure 10.5  Example of image of acoustic polymer inert reflector in MAGIC gel phantom A 

zoomed on the interface between the MAGIC and acoustic polymer inert reflector. 
 

Figure 10.6 shows how the pixel value varies across the image of Phantom A in 

the x-direction for two selected temperatures, 14.4°C and 23.5°C.  At a temperature of 

14.4°C the left hand side of the image (unirradiated) shows a lower pixel value than the 
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right hand side of the image.  Conversely, at 23.5°C the left hand side is higher than the 

right hand side of the image. 

Figure 10.7 shows how the averaged pixel value for each side of the phantom 

varies with temperature. Error bars are standard deviation across the selected region of 

image for each temperature.  The blue diamonds are the averaged pixel values for the 

unirradiated region and the red squares are the averaged pixel values for the irradiated 

region.  The irradiated region was irradiated to 20 Gy.  The error bars show the 

standard deviation of pixel value for the 50 pixels within the region used for averaging.  

The pixel values show similar variation with temperature as observed with the single 

element transducer in Chapter 6.  A minimum in pixel value is observed at 

approximately 19°C for the irradiated region and at approximately 16°C for the 

unirradiated region. 
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Figure 10.6  Variation of pixel value at interface of MAGIC gel and acoustic polymers inert reflector for 

Phantom A acquired using Ultrasonix scanner at selected temperatures with position across image in x-

direction. Lines are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 10.7  Variation of averaged pixel value for irradiated and unirradiated polymer gel acquired using 

Ultrasonix scanner as temperature is varied.  Lines are displayed to guide the reader and are not 

necessarily indicative of actual behaviour. 
 

 

10.3.3. Measurement of pixel value for complex radiation 
dose distribution (Phantom B) 

 

Figure 10.8 shows the variation in pixel value that is observed across the image 

in the x-direction at the interface between the MAGIC gel and the acoustic polymer 

material in Phantom B prior to the irradiation for the different scan planes used.  There 

seems to be some systematic variation across each image that is reproduced for each 

imaging position (z). Figure 10.9 shows the variation in pixel value that is observed 

across the scan planes (z-direction) at different positions across the image at the 

interface between the MAGIC gel and the acoustic polymer material prior to the 

irradiation.  18 positions at 3.5mm intervals across each image were selected to create 

representative profiles. 
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Figure 10.8  Example of pixel value variation across images in x-direction prior to irradiation.  The 

eleven series correspond to the imaging planes (z) used.  Temperature of measurement 15 °C. Lines are 

displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 10.9  Example of pixel value variation across scan planes in z-direction prior to irradiation.  The 

eighteen series correspond to selected positions across the images in the x-direction.  Temperature of 

measurement 15 °C. Lines are displayed to guide the reader and are not necessarily indicative of actual 

behaviour. 
 

Figure 10.10 shows the averaged ‘normalised’ pixel value data for four imaging 

positions (post-irradiation pixel value minus pre-irradiation pixel value) within the 
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peripheral region that contained dose levels of approximately 0 Gy and 20 Gy, with the 

corresponding dose distribution.  Figure 10.11 shows the averaged ‘normalised’ pixel 

value data for five imaging positions within the central region with the complex profile 

showing irradiation levels of approximately 0, 10, 30 and 20 Gy across the figure from 

left to right.  Both Figure 10.10 and 10.11 are from data acquired at 15°C.  Figure 10.12 

and 10.13 show the same data acquired at 25°C.  Figures 10.10 to 10.13 all show the 

relationship where pixel value decreases as the irradiated dose increases. 
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Figure 10.10  Variation of normalised pixel value across image in the x-direction for four scan positions 

(z-direction) within simple irraidation area of Phantom B acquired using Ultrasonix scanner.  Calculated 

dose profile across the scan positions is also shown.  Temperature of measurement was 15 °C. Lines are 

displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 10.11  Variation of normalised pixel value across image in the x-direction for five scan positions 

(z-direction) within complex irraidation area of Phantom B acquired using Ultrasonix scanner.  

Calculated dose profile across the scan positions is also shown.  Temperature of measurement was 15 °C. 

Lines are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 10.12  Variation of normalised pixel value across image in the x-direction for four scan positions 

(z-direction) within simple irraidation area acquired using Ultrasonix scanner.  Calculated dose profile 

across the scan positions is also shown.  Temperature of measurement was 25 °C. Lines are displayed to 

guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 10.13  Variation of normalised pixel value across image in x-direction for five scan positions (z-

direction) within complex irraidation area acquired using Ultrasonix scanner.  Calculated dose profile 

across the scan positions is also shown.  Temperature of measurement was 25 °C. Lines are displayed to 

guide the reader and are not necessarily indicative of actual behaviour. 
 

Four areas from the total scan set were selected from the calculated dose 

distribution for having received a uniform irraidated dose.  The ‘normalised’ pixel 

value for the positions within each area were then averaged. Figure 10.14 to 10.17 

show the averaged ‘normalised’ pixel value for the four areas with the dose that the 

area received for the temperature of measurement of 10, 15, 20 and 25 °C respectively. 

Error bars are standard errors on pixel value within the selected region.  For the 

nominal irradiation of 0 and 20 Gy areas of 35 (5x7) data points were selected and for 

the 10 and 30 Gy irradiations areas of 28 (4x7) data points were selected.  Figure 10.4 

shows an reduction in pixel value between the unirradiated region and the region 

irradiated to approx 10 Gy, and then the pixel value increases as the dose is increased 

further.  This implies that the temperature of measurement is just above the temperature 

at which minimum reflection occurs for unirradiated MAGIC gel, but below the 

temperature at which minimum reflection occurs for the higher doses.  Figures 10.15 to 

10.17 show an approximately linear decrease in pixel value with dose with irradiated 

dose, in which case the measurement temperature is above the temperature at which 

minimum reflection occurs for the range of irradiated doses. 
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Figure 10.14  Average normalised pixel value for four uniform dose areas within the total scan set with 

dose.  Temperature of measurement 10 °C.  Lines are displayed to guide the reader and are not 

necessarily indicative of actual behaviour. 
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Figure 10.15  Average normalised pixel value for four uniform dose areas within the total scan set with 

dose.  Temperature of measurement 15 °C. Lines are displayed to guide the reader and are not 

necessarily indicative of actual behaviour. 
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Figure 10.16  Average normalised pixel value for four uniform dose areas within the total scan set with 

dose.  Temperature of measurement 20 °C. Lines are displayed to guide the reader and are not 

necessarily indicative of actual behaviour. 
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Figure 10.17  Average normalised pixel value for four uniform dose areas within the total scan set with 

dose.  Temperature of measurement 25 °C. Lines are displayed to guide the reader and are not 

necessarily indicative of actual behaviour. 
 

Figure 10.18 shows the averaged ‘normalised’ pixel value data for localised 

areas within the uniformly irradiated sections. Error bars are standard errors on pixel 
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value within the selected region.  12 areas of 6 data points were selected and averaged 

and presented against dose calculated for those 6 data points.  The 6 data points relate 

to an area of 8mm by 10.5mm.  This figure shows an approximately linear decrease in 

pixel value with dose. 
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Figure 10.18 Average normalised pixel value for twelve areas within the total scan set with dose.  Each 

area contained 6 data points and relates to 8mm by 10.5mm.  Temperature of measurement 15 °C.  
 

10.4. Discussion 

The acoustic impedance of the acoustic polymers tile was measured by 

identifying the minimum in the reflection coefficient between the tile and a saline 

solution of varying salinity.  The minimum in the reflection coefficient will coincide 

with the best match between the real parts of the Acoustic Impedance of the tile and the 

saline solution.  As shown in Figure 10.3 the minimum in the reflection coefficient 

occurs when the salinity was 0.036 g cm
-3

, which gives a calculated acoustic impedance 

of 1.57 × 10
6
 kg m

-2
 s

-1
 at 22 °C.  This value of the acoustic impedance of the acoustic 

polymers tile corresponds well with the value from the parametric model of 1.59 × 10
6
 

kg m
-2

 s
-1

 at 22 °C.  This serves both to provide an independent measurement of 

acoustic impedance of the acoustic polymers material compared to the values 

calculated from measurements of the speed of sound and density of the material, as 
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well as providing an initial validation that images from the Ultrasonix scanner can be 

acquired and analysed. 

Figure 10.5 shows a typical image of the pixel values from the interface.  The 

brightest pixels are the second and third pixels in the interface region, however 

structure can be observered from deeper in the reflector.   

The simple irraidation of a MAGIC gel and acoustic polymer material phantom 

imaged using the Ultrasonix scanner utilised a step irradiation where one side was 

irradiated to 20 Gy and the other side left unirraidated.  As shown in Figure 10.7 the 

two sides of the phantom produce very different reflections, as shown by the observed 

pixel values. The pixel value shows similar variation with temperature as was observed 

of the RMS amplitude with the single element transducer.  A minimum in pixel value is 

observed at approximately 19°C for the irradiated region and at approximately 16°C for 

the unirradiated region.  It was observed during these measurements that significant 

variation within the scan images was occurring even for the nominally uniformly 

irradiated regions.  Subsequent measurements of the complex irradiation regime 

included pre-irradiation images to try and correct for some of these variations. 

Figure 10.8 shows the pixel variation across the image prior to irradiation for 

the eleven scan planes.  For each scan plane there is a systematic variation across the 

image.  The reason for this variation is not known, although a number of possible 

causes have been identified.  The variation across the images could be caused by 

variation on the surface of the interface between the acoustic polymer reflector and the 

MAGIC gel, variation at the interface between the MAGIC gel and the oil used as the 

transducer coupling agent, acoustic variation within the MAGIC gel or by the 

ultrasonic pulse formation/reception/image formation on the scanner itself.  Further 

testing is required to identify which of these causes are contributory factors to the 

image variation across the unirradiated surface.  Figure 10.9 shows corresponding data 

for each scan plan and how the pixel varies with position on the image.  There is less 

systematic variation in this plane, indicating that the variation displayed in Figure 10.8 

may be more likely to be caused by some property of the scanner or image formation 

rather than the MAGIC gel and acoustic polymer reflector phantom. 

Figures 10.10 and 10.11 show the variation in pixel value at the interface 

between the acoustic polymers material and MAGIC gel for the complex irradiation 
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scheme at 15 °C.  In both Figures 10.10 and 10.11 the central portion of the scan planes 

show the expected variation of the pixel value with irradiated dose.  Towards the left 

hand edge of Figure 10.10 the pixel value increases as was expected for an unirradiated 

region.  Towards the right-hand edge of Figure 10.11 it was expected that the pixel 

values should increase as the irradiation at the far right was to approximately 20 Gy 

rather than 30 Gy in the central right region.  However, this is not clearly evident in the 

observed pixel values.  Similar variations are observed for the 25 °C scans shown in 

Figures 10.12 and 10.13.   There are a number of potential reasons for the pixel values 

not corresponding to the expected variation at the edges as observed in Figure 10.11 

and 10.13. At these positions it was observed when removing the MAGIC gel from the 

phantom that during the manufacture and irradiation process the edges of the acoustic 

polymer material had become raised.  This change in surface geometry, maybe caused 

by some absorption by the acoustic polymers material, may have affected the angle of 

reflection from the interface and altered the pixel value that is observed at the edges of 

the images.  Alternatively, the number of elements that the transducer can use to form 

the beam and receive the signal is lower at the edges of the field than at the centre of 

the field, and so beam and image quality at the edges of the field may be poorer, 

leading to more noise and uncertainty in the pixel values produced.  Additionally, small 

changes in phantom position between the pre- and post-irradiation images may cause 

these problems to be magnified. 

 In Figures 10.10, 10.11, 10.12 and 10.13 the ‘normalised’ pixel values still 

show significant variation across the uniform sections of irradiation, similar to Figure 

10.7, and so the process of subtracting pre-irradiation pixel values has improved data 

quality but further work is required in this area to improve performance of the system. 

The assumption that the scanner applies logarithmic gain compression to the 

images was significant in the implementation of subtracting the pre-irradiation pixel 

values within the analysis routines.  This assumption of logarithmic gain compression 

was not independently verified.  Any deviation from logarithmic gain compression will 

introduce non-linearities into the measured reflection coefficients.  A method of 

characterising the gain compression applied to the images by the scanner would be 

needed to verify the validity of this analysis method.  
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By performing further averaging as shown in Figures 10.14 to 10.17 the data 

from the scanner is seen to resemble the data acquired using the single element 

transducer.  At the lowest temperature measured (10 °C in Figure 10.14) as the 

irradiation dose is increased the pixel value decreases initially and then increases as the 

dose increases further.  This corresponds to the temperature in Figure 6.10 where 

around the temperature of minimum reflection coefficient (17°C) the reflection 

coefficient first decreases and then increases with increasing dose.  For the higher 

temperatures (Figures 10.15, 10.16 and 10.17) the trend is for the increasing dose to 

decrease the pixel value, as seen for the highest temperature in Figure 6.10, where the 

reflection coefficient decreased with increasing dose. 

Figure 10.18 shows the data for 15°C averaging over a smaller spatial area.  The 

relationship between the averaged ‘normalised’ pixel value and dose is still visible, but 

there is more scatter on the points.  However, the spatial averaging over an area 

representing 8 mm by 10.5 mm indicates that dose can be resolved on the scale of 

10mm as discussed previously.  However the distinction between dose levels of 10% 

for an adequate system is still some way from being realised, as identified in Chapter 

2.3 as having potential for development into a clinically usable dosimetry system. 
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11. Ultrasonix system characterisation  

11.1. Introduction 

In Chapter 10 it has been shown that quantitative information on the effect of 

radiation dose on reflections can be obtained with an ultrasonic scanner.  In order to 

maximise the ability to acquire the best possible images for further analysis, a full 

calibration of the scanner would be required.  Manufacturers do not provide a method 

of calibrating the scanner settings.  This chapter considers this issue of scanner 

calibration.  Image acquisition is subject to swept gain so that ultrasound signals from 

deeper in the image are amplified by a greater amount to compensate for signal 

attenuation as the ultrasound pulse passes through tissue.  Also, each change in image 

acquisition setting, such as Gain, Power, Dynamic Range and Focal depth setting will 

cause the displayed and captured pixel value to vary.  Therefore a method was 

developed to calibrate the scanner so that pixel values can be compared between 

different depths in an image and between images.  This characterisation would 

ultimately enable the conversion of a measured pixel value in the image into a change 

in reflection amplitude in dB.  On the Ultrasonix MDP scanner (Ultrasonix Medical 

Corporation, Richmond, BC, Canada) used in this thesis, scanner settings can be stored 

as imaging ‘templates’ in the scanner, and so can be recalled when required for system 

characterisation. 

 

11.2. Materials and methods 

To characterise the pixel value a system was available to produce a rapid series 

of uniform amplitude ultrasound pulses incident upon the image transducer face for 

each scan line produced.  This is known as an Impulse Triggering System and was 

developed by Mr Michael Perkins at the Department of Medical Physics and 

Bioengineering at the Royal United Hospital NHS Trust, Bath.  A single element 

transducer was coupled to the face of the imaging transducer using ultrasound gel and 

held in place using a clamp.  The ultrasound imaging field produced by the imaging 

transducer is received by the single element transducer.  The system receives this as an 
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input signal and once the amplitude reaches the trigger level of the system it initiates 

the production of a series of impulses that are applied back to the single element 

transducer.  These are converted by the transducer into a series of ultrasound pulses 

which are interpreted by the ultrasound imager as a series of planes in the image.  A 

diagram of the system functionality and the controllable parameters are shown in 

Figure 11.1.  The number of pulses, N, the delay between reception of the imaging  and 

the first output impulse, td, the period between impulses τ, and the amplitude of each 

impulse A0 can all be varied.  By varying the amplitude of the impulses, a comparison 

between the pixel value in the image and the impulse amplitude can be made.  The 

settings on the scanner such as overall gain can also be characterised by using this 

system to quantify the variation in pixel value with scanner settings for the same 

amplitude received signal.   

A single element transducer of diameter 12mm and centre frequency 3.5MHz 

was connected to the Impulse Triggering System.  A transducer with a large diameter 

was selected to ensure that the impulses generated by the Impulse Triggering System 

were converted into ultrasound pulses that were wide compared to the width of the 

elements in the imaging transducer selected to form the image lines.  

The images produced by the system were saved as described previously.  

Images were analysed using Matlab R12.1 (The Mathworks, Inc., Natick, MA).  The 

analysis routine selected the same scan line in each image and identified the depth in 

the image that each reinjected pulse was received and identified the maximum pixel 

value associated with each pulse for a 5 pixel width scan line.  An example of the 

Matlab code used for analysing the signals is contained in Appendix C6. 

 



Chapter 11: Ultrasonix system characterisation 
 

 

 

164 

 

Figure 11.1  Schematic diagram of the Impulse Triggering System showing the Input and Output pulse 

sequences.  Each output has a variable number of impulses.  Each impulse is of the same amplitude A0, 

which can be varied, as can the delay between the pulse train starting (td) and the period between 

impulses (τ). 

 

11.3. Results 

An example of the image produced by the Ultrasonix scanner when connected 

to the Impulse Triggering System is shown in Figure 11.2.  The scan line analysed in 

each image is shown as a red line superimposed on the image. 
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Figure 11.2  Image from the Ultrasonix scanner of the pulse train produced by Impulse Triggering 

System, showing lines of received pulses down the centre of the image.  The red line on the image 

indicates the pixel line used for analysis 
 

Figure 11.3 shows how the pixel values vary with depth as the Power on the 

scanner was varied.  Error bars are the standard deviation of pixel values computed for 

each pulse from five separate images.  A system gain of 55%, focal depth of 38mm and 

dynamic range of 76dB was used when acquiring these images.  The pixel value 

increases with depth from 1.5 cm to 4 cm, showing the swept gain of the system.  

Beyond 4 cm the variation of pixel value with depth shows no systematic variation, 

although a drop in pixel value at approximately 4.5 cm is observed.  There appears to 

be no change in pixel value for the four different acoustic power settings used. 
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Figure 11.3  Variation of Pixel Value with imaging depth as the acoustic Power (see key) setting on the 

scanner was varied, generated using the Impulse Triggering System.  Each Power setting is shown as a 

separate plot.  Lines are displayed to guide the reader and are not necessarily indicative of actual 

behaviour. 

 

  Figure 11.4 shows the variation in pixel value with depth as the focal depth on 

the imager was varied. Error bars are the standard deviation of pixel values computed 

for each pulse from five separate images.  A power of 0, system gain of 67%, and 

dynamic range of 76dB was used when acquiring these images.  The pixel value 

increases with depth from 1 cm to 4 cm.  Beyond 4 cm the variation of pixel value with 

depth shows no systematic variation, although a drop in pixel value at approximately 

4.5 cm is observed.  There appears to be no change in pixel value for the seven 

different focal depths used. 
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Figure 11.4  Pixel value with depth in the Ultrasonix image as the focal depth (see key) was varied, 

generated using the Impulse Triggering System.  Each focal depth is shown as a separate plot.  Lines are 

displayed to guide the reader and are not necessarily indicative of actual behaviour. 

 

 Figures 11.5 and 11.6 shows how the pixel value in the image varies with 

amplitude (A) of the triggered impulses. Error bars are the standard deviation of pixel 

values computed for each pulse from five separate images.  The amplitude of the 

triggered impulses is modified from its nominal value (0dB) by applying attenuation to 

the output.  The actual attenuation applied was calculated from measurements of the 

pulse amplitude made using a LeCroy 9310A oscilloscope (LeCroy, Teledyne LeCroy, 

Chestnut Ridge, NY).  A power of 0, system gain of 67%, focal depth of 38mm and 

dynamic range of 76dB was used when acquiring these images.  Figure 11.5 shows the 

same pattern of increasing pixel value with depth is observed up to 4 cm, with a drop in 

pixel value at approximately 4.5 cm.  Figure 11.6 shows that the pixel value is 

approximately linear with applied attenuation at all depths. 
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Figure 11.5  Pixel value on the Ultrasonix scanner with depth in image as the impulse amplitude 

(attenuation – see key) of the Impulse Triggering System was varied.  Each pulse amplitude is shown as 

a separate plot.  Lines are displayed to guide the reader and are not necessarily indicative of actual 

behaviour. 
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Figure 11.6  Pixel value on the Ultrasonix with attenuation applied to the impluses of the Impulse 

Triggering System at selected depths (see key).  Each depth is shown as a separate plot.  Lines are 

displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figures 11.7 shows how the pixel value varies as the system gain of the Ultrasonix 

scanner is varied. The variation in pixel value with depth is as observed for the other 

settings.  There appears to be compression of the pixel value range at the higher gain 

settings.  Error bars are the standard deviation of pixel values computed for each pulse 

from five separate images.  The system gain had two values, an internal system setting 

accessed by in the research setup and a value displayed on screen.  The internal system 

value had more resolution than the on screen display.  The internal system value is used 

here and varied from 0 (on screen value of 50%) to 2000 (on screen value of 83%). A 

power of 0, focal depth of 38mm and dynamic range of 76dB was used when acquiring 

these images.  Figure 11.8 shows the difference in pixel value at each depth between 

pairs of gain settings.  Combined standard deviations of the pixel value computed for 

each pair of gain images were calculated and an example of the combined error is 

shown on the plot of 250-0 gain settings.   
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Figure 11.7  Pixel value with depth on the Ultrasonix scanner as the internal system gain (see key) was 

varied generated using the Impulse Triggering System.  Each gain setting is shown as a separate plot.  

Lines are displayed to guide the reader and are not necessarily indicative of actual behaviour. 
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Figure 11.8  Change in pixel value between gain settings with depth for the pulse reinjection system as 

the internal system gain (see key) was varied.  Each pair of gain setting is shown as a separate plot. Lines 

are displayed to guide the reader and are not necessarily indicative of actual behaviour. 

 

 

11.4. Discussion 

A small subset of the imaging parameters on the Ultrasonix scanner have been 

analysed using the Impulse Triggering System to develop an understanding of the 

performance of the scanner and how various settings affect the pixel value in the image.   

Figure 11.3 shows that the pixel level in the image is not dependent on the 

output power set on the imager over the range measured and with the selected scanner 

settings.  This implies that whatever output power is selected the same acquisition 

parameters are used.  However, the Impulse Triggering System could only reliably pick 

up the imaging pulses for power settings of 0, -1, -2 and -3.  For imaging the gel 

phantoms used in this project lower power setting of -15 to -10 have been used.  

Therefore to extend the use of the system the input to the Impulse Triggering System 

needs redesigning to enable the use of the system on lower power fields and the 

analysis repeated at these lower output powers. 

Figure 11.4 shows pixel value is independent of the focal depth over the range 

measured and with the selected scanner settings.  This implies that the focus is applied 
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by varying the output pulse waveform and not the receive function within the scanner, 

and that other imaging parameters are also independent of the focal depth.   

The Impulse Triggering System was only able to function with acquisitions 

using a single focus.  When multiple foci were used, the image produced by the 

impulses became unstable.  The Impulse Triggering System produced a series of 

impulses whenever the imaging pulse reached the trigger level.  The scanner produces 

separate image pulses for each focal depth with different phasing to produce the depth 

focus, and hence the point within the imaging cycle at which the trigger level was 

reached was different for each focal depth.  This caused the depth at which the 

impulses appeared on the image to become unstable.  A development of the system 

would be required to enable the analysis of imaging fields employing multiple foci.  

Such a development would require a complex control system to distinguish between the 

different image pulses used for each of the multiple focal depths.  

Figures 11.5 and 11.6 show how the pixel values vary with the pulse amplitude 

of the impulses produced by the system.  The pixel value appears to be approximately 

linear with impulse amplitude (measured by the attenuation applied to the impulses 

generated in dB) over the range measured and with the selected scanner settings. This 

implies that a logarithmic gain compression is applied to the input pulses.  A slight sub-

linearity at pulse amplitudes with an attenuation of 28dB is observable and may affect 

the measurements of very weak reflections in images.   

Figures 11.7 and 11.8 show the variation of pixel value with gain setting on the 

scanner.  At shallow depths (1-2cm) it appears that the pixel value is approximately 

linear with gain setting for the gains of 1250 (71%) or below with the selected scanner 

settings.  At depths of 2-3cm it appears that the pixel value is approximately linear with 

gain settings of 1000 (67%) or below with the selected scanner settings.  The gain 

settings of 750 (63%) and below appear to produce a linear change in pixel value with 

gain setting at all depths, although there is a step change in pixel value that occurs at 

approximately 4.6cm deep.  At gain settings of 1500 (75%) and greater it appears that 

no change in pixel value with gain setting occurs at any depth with the selected scanner 

settings.  These results imply that at high gain settings (>75%) on the scanner the 

combination of time-gain compensation and system gain  implies that the gain is 

saturated for the amplitude of signals produced by the Impulse Triggering System and 
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so no change in pixel amplitude occurs for a change in gain.  At small depths and 

reduced system gain, the linear change in pixel value with gain setting implies that the 

combination of time-gain compensation and overall gain is not saturated, but that the 

gain set relates to a linear, as opposed to logarithmic, amplification of the received 

signal.  It also suggests that to avoid signal saturation a low gain setting should be 

utilised.  However the measurements of pixel value with system gain were made with 

only one the highest amplitude impulses (0 dB attenuation) from the Impulse 

Triggering System, and the system may behave differently for lower amplitude signals. 

Figures 11.3, 11.4, 11.5 and 11.7 show the same basic variation of pixel value 

with depth.  Since the Impulse Triggering System is inputting the same pulse amplitude 

for all times after the imaging pulse, this behaviour is indicative of the swept gain 

(time-gain compensation) of the system.  Between 1cm and 3cm deep the pixel value 

increases with depth.   At 3cm to 4.5 cm the pixel value is approximately constant with 

depth.  At approximately 4.6cm there is a drop in the pixel value, beyond which the 

pixel value is again approximately constant with depth.  However, using a single 

element transducer to transmit the impulses to the imager implies that all the impulse 

signals received by the imager are of the same phase relationship.  The imager will be 

compensating for the depth from which echos are likely to be generated by changing 

the phase association between transducer elements, based on the time after the imaging 

pulse was transmitted.  This conflict between the phase-compensated imaging system 

and the single phase ultrasonic field generated by the single element transducer will 

interfere with the results obtained here, so the shape of pixel value with depth seen in 

Figures 11.3, 11.4, 11.5 and 11.7 is not only due to the swept gain of the system. 

Only a limited subset of each imaging parameter available on the Ultrasonix 

scanner has been assessed, and other parameters such as dynamic range, Time Gain 

Compensation maps, image depth and reject levels have not been assessed.  However, 

from the results of this initial investigation it would seem possible to identify a subset 

of parameter settings to be used in image acquisition for the analysis of dosimetric gels 

that could then be fully characterised using this system so that an absolute measure of 

reflection coefficient could be produced from pixel values at each point in the image. 
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This image characterisation has only been performed for a single scan line of 

the image.  Repeated acquisition at different positions across the image are required to 

fully characterise the response of the system at all points within the image. 

The Impluse Triggering System presented here is a simple system which has 

only limited functionality and limitations.  Significant development of the system is 

required to enable a full characterisation of a complex imaging system. The limitations 

of the Impulse Triggering System include the inability of the system to respond to low 

amplitude imaging signals, the use of a single element transducer to receive the 

imaging signal and to transmit the impulses to the imaging transducer and the simple 

electronic controls used in the system. 

The system input is set up so that only high amplitude imaging pulses trigger 

the production of an impulse train.  This is useful in that the system only responds to 

the imaging fields of scan lines near where the single element transducer is located on 

the imaging transducer.  This ensures that images produced on the scanner by the 

system are clean and stable.  However, it does mean that the low power settings on the 

scanner used in the project were unable to be characterised using this system. 

The use of a large single element transducer to receive and transmit signals to 

the system ensures that the array aperture used for imaging is smaller than the size of 

the transducer.  Using a single element transducer implies that all the impulse signals 

received by the imager are of the same phase relationship.  The conflict between the 

phase-compensated imaging system and the single phase ultrasonic field generated by 

the single element transducer will introduce errors into all the results obtained with the 

system.  

The only large diameter transducers available were of centre frequency 3.5 

MHz, much lower than the imaging frequency of 10 MHz.  The mis-match between the 

imager frequency and the frequency of the single element transducer will affect the 

results obtained by the system as the signal processing chain on the imager will not be 

optimised for the lower frequency ultrasound produced by the single element 

transducer when it receives an impulse as generated by the Impulse Triggering System. 

The simple electronic controls in the system meant that only imaging fields with 

a single focal depth could be characterised using the system, and only a few different 

controls of the impulse train were available.  This affects the ability to fully 
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characterise the system by limiting, for example, the number of available amplitude 

impulses (5) or by limiting the system to use with only single focal depth imaging 

fields.  A more sophisticated control system would enable a more detailed 

characterisation to be performed using this system. 

This work will enable the development of a fully characterised ultrasonic back 

scatter imager.  No manufacturer currently provides a method of characterising a 

system in this way.  The only ultrasound systems currently capable of producing 

calibrated images are those which produce calibrated elastographic images such as 

those used by Crescenti (2009) to produce dose dependent elastograms. 
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12. Conclusions and further work  

12.1. Introduction 

This chapter summarises the main achievements of the research described in 

this thesis and introduces work which could be performed to further the research and 

optimise the solutions which have been developed in measuring radiation dose using 

backscatter ultrasound techniques. 

 

12.2. Measurement of physical and ultrasonic properties of 

MAGIC gels 

Techniques for the measurement of physical and ultrasonic properties of 

MAGIC gels have been developed and demonstrated within this thesis.  The 

measurements reported in this thesis have developed the understanding of the physical 

and ultrasonic properties of MAGIC gels and how these properties vary with radiation 

dose.  The temperature dependent variation of attenuation coefficient, speed of sound 

and density of MAGIC gel, have been demonstrated for the first time in this thesis.  

The dose dependent properties of MAGIC gels reported in this thesis have been used to 

determine the appropriate properties of materials that can be utilised to produce dose 

dependent backscatter reflections.  The techniques demonstrated for measuring the 

physical and ultrasonic properties of MAGIC gel could be utilised to measure the same 

properties of alternative dosimetric gel formulations. 

 

12.3. Measurement of dose dependent reflections 

The ability to measure radiation dose dependent reflections from planar 

interfaces using ultrasonic pulse echo techniques has been demonstrated in this thesis.  

Non-uniform dose distributions have been imaged with changes in reflection amplitude 

corresponding to different dose levels being identified with a resolution of less than 

10 mm.  However the ability to resolve changes in dose remains at greater than 10%.  

To measure these dose dependent reflections an inert reflector material has been 
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specified, manufactured and characterised.  The properties of this inert reflector 

material were matched to the measured properties of the MAGIC gel to ensure the 

greatest sensitivity to dose dependent changes in MAGIC gel properties could be 

observed.  Further developments using alternative gel formulations or different inert 

reflector materials could increase the sensitivity of dose dependent reflections and 

enable better spatial and dosimetric resolution to be achieved. 

 

12.4. Measurement reproducibility and repeatability 

One of the major issues that has become apparent during the course of this 

research is the consistency and uniformity of the polymer gel which has led to 

uncertainties in the results of measurements of gel properties and the dose dependent 

reflections.  Throughout the research efforts were made to improve the batch variation 

by introducing controlled cooling conditions and the usage of evacuation techniques to 

reduce the amount of air bubbles in the polymer gel.  Work to improve the batch-to-

batch reproducibility and sample uniformity of the MAGIC gels could be performed, as 

appears to be developed by Liney et al (2003, and personal communication) for MRI 

based measurement of MAGIC gels.  Both batch-to-batch variability and sample 

uniformity may be improved by utilising a chemical batch reactor or other chemical 

engineering techniques.  Reducing the batch-to-batch would require a more consistent 

preparation technique for the gel and improving on the cooling techniques to result in 

more consistent cooling conditions for all samples.  Reduced batch-to-batch variability 

would result in more consistent reflection coefficient versus temperature profiles.  

Improving the sample uniformity would reduce the variation across images and the 

uncertainty in measurements at each position.  This would reduce the variation in 

reflection coefficient with dose making the reflection coefficient a better measure of 

dose, and improve the dosimetric and positional accuracy of measurements.   

A variety of techniques could be used to study the reproducibility and 

repeatability of improved gel production and ultrasound measurements on the gels.  

From repeated image acquisitions suitable error analysis techniques could be employed 

to determine reproducibility of measurements for the thread and the same batch of gel.  



Chapter 12: Conclusions and further work 
 

 

 

178 

Measurements of the same irradiated dose but for different gel batches could be taken 

to produce an estimation of repeatability of the measurements. 

 

12.5. Use of a commercial ultrasound scanner usage and 

scanner  characterisation 

Within this thesis it has been demonstrated that it is possible to utilise a 

commercial ultrasound scanner to obtain quantitative backscatter information from an 

interface between MAGIC gel and an inert reflector.  Measurements of dose dependent 

reflections from planar interfaces obtained using a commercial ultrasound scanner are 

similar to those obtained using single element ultrasound transducers.   

The scanner configuration could be further optimised to ensure that the most 

suitable settings are used in the image acquisition.  Settings such as swept gain, 

dynamic range and focussing could all be optimised.  The swept gain could be reduced 

to ensure the greatest dynamic range is available due to the low attenuation coefficient 

of MAGIC gel compared to soft tissue.  The reflection amplitude is expected to be 

small, although the relative change in reflection coefficient (unirradiated to irradiated) 

would still be significant.  Therefore the overall gain could be set high, with an 

appropriate selection of the dynamic range made to ensure the expected changes can be 

observed within the available dynamic range while reducing any quantisation that may 

occur due to digitisation into the 8-bit images produced by the system.   

The Impulse Triggering System used in this research has demonstrated an 

ability to characterise the response of the ultrasound scanner.  Improvements in the 

measurements of dose dependent reflections could be made by full characterisation of 

the scanner to enable greater utilisation of its capabilities. The Impulse Triggering 

System to characterise the scanner could be performed to enable the calculation of 

reflection coefficient from pixel value at each position in the image. 

 

12.6. Investigation into thread phantom 

A phantom consisting of threads of inert reflector material has been developed 

as part of this research.  Further work is required to characterise the thread phantom as 
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the acoustic impedance of the threads could not be verified by the initial measurements 

of the acoustic polymers threads.  Additional work is required, including modelling of 

thread materials, to determine why the initial investigations did not produce the 

expected output.  Results of these investigations could then be used to develop an 

understanding of the way in which the thread phantom could be used to measure 

changes in reflection and how these can be related to the irradiated dose of a phantom 

containing MAGIC gel.  

 

12.7. Alternative designs for pulse-echo ultrasound systems 

A number of potential pulse-echo ultrasound systems have been identified and 

discussed in this thesis.  These include the planar reflector and the thread phantom.  

Alternative designs of systems could be investigated, some of which may prove to be 

successful dosimetry systems.  Two potential geometrical arrangements which could be 

investigated is the use of spheres of backscattering material and micro-spheres of 

MAGIC gel within an inert matrix. 

The acoustic polymers material could potentially be manufactured not as slabs 

or threads, but as small spheres.  Insertion of these spheres into a MAGIC gel dosimeter 

may produce a backscatter phantom from which changes in grey-level could be 

correlated with radiation dose.  Challenges with such a system lie in the creation of 

individual spheres that can be dispersed uniformly throughout a MAGIC gel dosimeter 

without accumulation or agglomeration.  The reflections from the spheres would need 

to be characterised to understand the relationship between the change in reflection 

amplitude and irradiated dose. 

The work and discussion within this thesis has focused on the use of MAGIC 

gel as the prime ingredient to a dosimetry system, with inert materials added to create 

the reflection of the ultrasound.  This was purposefully chosen as the MAGIC gel is 

nearly water-equivalent, and other materials may not be be water equivalent and would 

significantly perturb the radiation field.  Alternatively, if an inert material that was 

water-equivalent were chosen, then the prime ingredient could be made inert, with 

small amounts of dose-dependent material added to create dose-dependent echos.  In 

such a system the inert material would need to be able to retain the geometric 
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positioning of the dose-dependent reflectors, and hence would need to be a material 

that solidifies during the preparation process.  Gelling materials such as gelatine, agar 

or poly-vinyl alcohol would be possibilities for the inert matrix.  Methods would need 

to be developed to enable the creation of dose-dependent insertions into the inert matrix 

without mixing between the inert and dose-dependent materials.  The inclusion of 

MAGIC gel within microspheres is a possibility for this, however, this introduces the 

possibility that the material of the microsphere itself would significantly affect the 

reflection of ultrasound, and would therefore need to be carefully developed and 

investigated. 
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Appendix B. The effects of focused transducer 

geometry and sample size on the measurement of 

ultrasonic transmission properties 

 

Work was performed concentrating on the development of a system to measure 

acoustic properties using coaxially aligned focused transducers.  Confidence in the 

estimation of acoustic properties from such measurements is dependent on the 

geometrical positioning of transducers and homogeneous samples to reduce errors in 

the measurement.  Geometry and sample size issues related to measurement of sample 

properties using coaxially aligned spherically focused transducers (with weak focusing) 

have been explored by measuring and modelling the interaction of three specific 

transducers. 

  

B1. Theoretical expression for receiver response 

 Consider a spherically concave source with radius a1 and radius of curvature F1 

producing sound at angular frequency ω in cylindrical coordinate system (z, r, φ) as 

shown in Figure B1.  The radiation is generated by uniform radial motion of the 

transducer surface with velocity amplitude U0. 

 

Figure B1. Cross section view of two coaxially aligned spherically symmetric concave transducers, 

showing coordinates and symbols used in the analysis. 
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 Following Gavrilov et. al. (1988), a second transducer is located coaxially with 

the source at a separation zT = z1 + z2. Application of the Huygens-Fresnel principle and 

reciprocity principle allows the sound pressure averaged over the active surface area of 

the receiver, prec(zT), to be given by the surface integral over an infinite plane between 

the two transducers 

dzrpzrp
aP

zp Trec ),(),(
1

)( 22112

22

 (B1) 

where p1(r, z1) is the complex sound pressure produced by the radiator at a distance r 

from the z axis in a plane at a distance z1 from the source. Likewise p2(r, z2) is the 

complex sound pressure produced by the second transducer operating in transmit mode 

at radial coordinate r in a plane at a distance z2 from the source when P2 is the average 

pressure amplitude across the surface of the second transducer. Here a2 and F2 are the 

radius and radius of curvature of the second transducer.  For such a system the 

measured receiver response is assumed to be proportional to the calculated value 

prec(zT). 

 This solution is invariant over the choice of integration plane.  For a given 

transducer separation zT, z1 and z2 may be varied within the restriction that zT = z1 + z2 

without affecting the received sound pressure. 

 The use of cylindrical coordinates allows the transformation of the surface 

integration into a radial integral with σ = πr
2
.  The receiver response can be estimated 

by 
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where prec(zT, R) = prec(zT) when R = ∞. 

 Restricting the integration to a finite radial distance R introduces an error into 

the calculation of the prec(zT), and hence a measured receiver response.  This allows the 

investigation of the effect of using finite size samples on the received sound pressure 

by analysis of the size of the restricted integral region required to accurately estimate 

the receiver response.  It also allows investigation of the positioning of the sample by 

varying z1 and z2 for a fixed separation and determining the required integration limit to 

ensure an accurate estimate of the receiver response. 
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Gavrilov et. al.
 
(1988), give a solution for the sound pressure of a focusing 

source of radius a and focal length F in the focal plane as 

)()( 10
F

kar
Je

r

a
iPrp ikF  (B3) 

where k is the wavenumber and P0 is the average pressure amplitude at the surface of 

the transducer.  

Lucas and Muir (1982) provide a more general solution for the sound pressure 

of a focusing source at a distance z from a source as 

p(r, z) = 
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which can be used in Equation (2) to estimate the receiver response prec(zT,R). 

 A significant feature of the model in Equation (B4) is the presence of the phase 

term z

ikr

e 2

2

.  This phase term indicates that the phase is not constant across the field in 

the focal plane z = F.  The phase term is not important when considering point 

measurements in a field, however, as a subsequent integration over r of the product of 

two of these functions is to be performed the phase needs to be carefully considered.  It 

is omitted from (B3) as this is an approximation based on the geometrical optics work 

of Debye (1909).  An alternative solution from O’Neil (1949) has the coordinate origin 

at the centre of the transducer.  The distance of the field point from the co-ordinate 

origin is defined as y = √(z
2
 + r

2
),  and this solution includes a phase term ikye .  Using 

an Taylor series expansion around r = 0 this solution also contains a phase term z

ikr

e 2

2

 

in agreement with Equation B4.  

Introducing a sample into the measurement system during immersion 

measurements can be considered to split the integration used in this paper to calculate 

the receiver response, prec(zT), into two parts. The first part consists of an integration 

from the axis up to the sample radius s, for which there will be an attenuation 

introduced, and an integration beyond the sample radius s.  The introduction of the 

sample may change the phase of the ultrasonic wave through the sample area.   

Let the average receiver pressure without the sample be prec(zT) and the sample 

have a transmission coefficient Λ (allowing for attenuation and transmission at the 
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sample interfaces).  The average receiver pressure with the sample is given by prec,s(zT)  

which can be approximated by  

prec,s(zT) = Λ prec(zT,s) + [prec(zT, ) - prec(zT,s)] 

 = Λ prec(zT,s) + [(prec(zT, ) - prec(zT,s)] +Λ[prec(zT, ) - prec(zT,s)]  

  - Λ[prec(zT, ) - prec(zT,s)] 

 = Λprec(zT, ) + (1 – Λ).[prec(zT, ) - prec(zT,s)]. (B5) 

Hence the measured transmission coefficient Λ  is given by  

Λ  = prec,s(zT, ) / prec(zT, ) 

 = Λ+ (1 – Λ) . [prec(zT, ) - prec(zT,s)]/ prec(zT, )  (B6) 

and the error in estimating Λ by Λ’ is 

Λ -Λ = (1 – Λ) .[1 - prec(zT,s)/ prec(zT, )]. (B7)  

The magnitude of the error in estimating Λ by Λ’ is therefore minimised by 

ensuring prec(zT,s) / prec(zT, ) is close to unity. When comparing the solutions it is 

therefore necessary to consider how close prec(zT, R) is to the infinite value prec(zT).  

Ratios prec(zT, R) / prec(zT), for situation with no phase variation, and |prec(zT, R)| / |prec(zT)|, 

for situations with phase variation, are used to illustrate how close prec (zT, R) is to the 

infinite value prec(zT).  To assist in the analysis Rlim is defined as the minimum 

integration limit required to ensure that the ratio of |prec(zT, R)| / |prec(zT)| is greater than 

the specified value for all R > Rlim.  Similar analysis is performed and integration limits 

used for the phase variation of prec(zT, R) / prec(zT). 

The maximum error that will be introduced by using a finite sized sample can 

be calculated from the ratio of prec(zT, R) / prec(zT) and the sample transmission 

coefficient; alternatively the minimum sample size required to ensure that the 

diffraction errors are below a specified level can be calculated.  This does not include 

errors from other effects such as higher diffraction effects due to the sample presence 

or sample inhomogeneity. 

Three weakly-focused transducers of approximate centre frequency 3.5 MHz 

were selected for this investigation; Table B1 shows the properties of the transducers 

used. The properties are estimates of the actual values for three transducers calculated 

from measurements performed using an NPL Ultrasound Beam Calibrator (Preston, 

1988).  Each transducer was modelled using equation (B3) or by numerically 
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integrating equation (B4).  The models for p(z, r) were then used in equation (B2) to 

calculate the receiver response prec(zT) and the estimate for a restricted integration plane 

prec(zT, R). 

 

Transducer 

Radius of 

curvature (F) / 

cm 

Transducer 

radius (a) / cm 

Acoustic focal 

depth / cm 

Beam width at 

acoustic focus / 

cm 

A 7.6 0.608 5.0 0.27 

B 11.6 0.621 6.0 0.39 

C 13.5 0.914 9.5 0.35 

Table B1.  Measured transducer characteristics used in theoretical model. 

 

B2. Results 

B2.1 Debye approximation – identical transducers 

 Firstly consider a pair of matched transducers such that a = a1 = a2 and F = F1 = 

F2   If the integration plane in Equation B2 is chosen to be midway between the two 

transducers and they are separated by the sum of their radii of curvature, then using the 

Debye approximation (Equation B3) and a substitution 
F

karX it can be shown that 

Equation B2 becomes  

IePRFp kFi
rec

2
02),2(  (B8) 

where 
2

1

0
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X R
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J X
I dX

X
. (B9) 

The integrand and the integral I are plotted as a function of R in Figure B2.   
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Figure B2. Plot of the functions 
X

XJ )(
2

1
 and X

XJ )(2
1

used in the calculation of the receiver 

response for coaxially aligned transducers (X is dimensionless) 

 

The integral is a monotonically increasing function which reaches a value of 0.5 

when integrated over an infinite range. This implies that  

kFi
rec ePFp 2

02),2(  

which can be shown by integration of equation B8.  However this result neglects the 

phase term z

ikr

e 2

2

. 

B2.2  Debye approximation –non-identical transducers 

The Debye solution can also be used to consider the case when the transducers 

are not matched, so 
2

2

1

1

F

a

F

a
.  If the transmitter and receiver have a different geometry 

but the transducers are still separated by the sum of the two radii of curvature, then the 

substitution 
F

karX  has to be modified to account for the different geometry.  If we 

define 
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 The integral 
X

X

dX
X

XJXJ

0

11 )()(
 has a value of β/2 for 0 < β < 1 and 1/2β for 

β > 1.  An example is shown in Figure B3.  

 

Figure B3. Plot of the functions X

XJXJ )()( 11

 and X

XJXJ )()( 11

used in the calculation of the 

receiver response for coaxially aligned transducers with β = 0.669 (X is dimensionless) 

 

It is to be noted that the received signal is less than that for matched 

transducers, however the received signal approaches the value for infinite R faster than 

for identical transducers.  This comparison between identical and non- identical 

transducers is illustrated in Figure A4 which shows the radial integration limit Rlim for 

selected ratios of prec(zT, R) / prec(zT), which has no phase variation.  Again this result 

neglects the phase term z

ikr

e 2

2

. 
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Figure B4. Plot showing the minimum integration limit Rlim required for selected ratios of prec (zT, R) / 

prec (zT) for matched transducer pairs (AA, BB, CC) and transducer pairs of different geometry (AB, AC 

and BC) using the Debye approximation (Equation 3) 

 

B2.3  Full expression for identical and non-identical 

transducers 

 Figures B5 and B6 show the effect of using the full Lucas and Muir (1982) 

expression (Equation B4), including the additional transverse phase term, for identical 

and non-identical transducers respectively.  These figures clearly shows that the phase 

term decreases the minimum integration limit required for the same specified ratio of 

|prec(zT, R)| / | prec(zT)|.  However, the phase term also introduces the possibility that the 

phase of prec(zT, R) / prec(zT) is non-zero.  Figure B7 shows minimum integration limits 

required for specified differences in phase between prec(zT, R) and prec(zT) for paired and 

unpaired transducers. 
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Figure B5. Plot showing the minimum integration limit Rlim required for selected ratios of | prec (zT, R)| / | 

prec (zT)| for matched transducer pairs (AA, BB, CC) obtained using the Debye approximation (unfilled 

points, Equation 3) and Lucas and Muir solution (filled points, Equation 4)  

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.88 0.9 0.92 0.94 0.96 0.98 1

|p rec(z T , R )| / |p rec(z T )|

M
in

im
u

m
 I
n

te
g

ra
ti

o
n

 l
im

it
  
 R

li
m

 /
 c

m

AB (Debye)

AC (Debye)

BC (Debye)

AB (Lucas Muir)

AC (Lucas Muir)

BC (Lucas Muir)

 
Figure B6. Plot showing the minimum integration limit Rlim required for selected ratios of | prec (zT, R)| / | 

prec (zT)| for transducer pairs of different geometry (AB, AC, BC) obtained using the Debye 

approximation (unfilled points, Equation 3) and Lucas and Muir solution (filled points, Equation 4) 
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Figure B7. Plot showing the minimum integration limit Rlim required for selected phase differences 

between prec (zT, R) and prec (zT) for transducer pairs of different geometry (AB, AC, BC) and identical 

geometry (AA, BB and CC) obtained using the Lucas and Muir solution (filled points, Equation 4) 

 

B2.4  Location of diffraction peak 

 To reduce the effect of diffraction error on measurements the transducers should 

be located at a position of diffraction maxima or minima (Bamber, 2004a).  This 

ensures that the diffraction changes caused by the introduction of a medium of different 

sound speed are minimized when a sample is placed between the transducers.  For 

coaxially aligned strongly focused transducers this has conventionally been accepted as 

requiring a transducer separation of the sum of the geometric foci (Bamber, 2004a, 

Penttinen and Luukkala, 1977), as we have considered so far. For weakly focused 

transducers, however, the location of the diffraction peak is not at a transducers 

separation of the sum of the geometric foci since the geometric and acoustic foci do not 

coincide for the individual transducers.  Using the model given in Equation B4 the 

response for different separations can be calculated; example results are shown in 

Figure B8 for how the integrated response varies with separation for transducers A and 

C.  The sum of the geometric foci is shown as a dotted vertical line on the figure.  The 

transducer separation has to be reduced from the sum of the geometric foci to reach the 

position of the diffraction maximum.  This agrees with measurements of the receiver 
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output obtained using the coaxial transducers A and C, shown in Figure B9.  The sum 

of geometric foci is indicated at 21 cm and the sum of acoustic foci at 14.5 cm.  This 

demonstrates that the position of the diffraction peak occurs at a positioned between the 

sum of acoustic foci and the sum of the geometric foci.  This effect was seen for all 

three transducer pairings. 
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Figure B8. Example of the modelled variation in the received response prec, normalized to the pressure 

produced by the transmitting transducer p1, as a function of the separation between the transducers A and 

C.  The sum of geometric foci is shown at 21 cm separation. 
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Figure B9. Example of the measured variation in the received response prec, normalized to the pressure 

produced by the transmitting transducer, as a function of separation between the transducers A and C.  

The sum of geometric foci is shown at 21cm and the sum of acoustic foci shown at 14.5cm 

 

B2.5  Effect of choice of integration plane 

 One of the properties of Equation B1 is that for integration to infinity the 

average pressure prec(zT) (and hence receiver output) is not affected by the integration 

plane that is chosen.  A test of the model was to perform the integration over a number 

of planes by varying z1 and z2 for a fixed separation zT.  Figure B10 shows how 

magnitude of prec(zT, R) varies with R for transducers A and C for different distances of 

the integration plane from the receiver.  When the integration limit is greater than 

approximately 2.0 cm, the magnitude of prec(zT, R) is the same for all integration planes. 
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Figure B10. Plot showing the variation in received pressure prec(R) with integration limit R for different 

distances of integration plane from the receiving transducer for transducer pairing AC 

 

 Figure B11 also demonstrates that there are differences between the integration 

planes when the integration is performed over a restricted part of the plane.  It shows 

the differences between integration planes for transducers A and C for selected ratios of 

|prec(zT, R)| / |prec(zT)|.  This demonstrates that if prec(zT, R) and the infinite value prec(zT) 

differ greatly the required integration limit is relatively small and most integration 

planes in the range displayed will provide similar results.  However, if a more accurate 

estimation of the value of prec(zT) is required, then Rlim increases significantly.  Across 

the range of ratios of |prec(zT, R)| / |prec(zT)| calculated there is no choice of integration 

plane which will consistently result in a small integration limit Rlim.  Similar results (not 

shown) are obtained for the phase difference between prec(zT, R) and prec(zT). 
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Figure B11. Example of the variation in the minimum integration limit Rlim required for selected ratios of 

|prec(zT, R)| / |prec(zT)| for different distances of the integration plane from the receiving transducer for 

transducer pairing AC 

 

 Figure B12 demonstrates the effect of the integration radius on the solution at 

the diffraction peak when the Lucas and Muir
 
Equation, with the additional phase term, 

is used in the model.  It should be noted that there are no longer significant differences 

between using matched or unmatched transducers.  For different ratios of |prec(zT, R)| / 

|prec(zT)| there are different transducer combinations which would give the smallest 

value of Rlim.  For each transducer separation, the choice of integration plane affects the 

value of Rlim, and the displayed standard deviations quantify the spread obtained if the 

integration plane is varied over a 4 cm range.  Figure B13 shows similar data for the 

phase difference between the restricted and infinite integration. 
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Figure B12. Plot showing the minimum integration limit Rlim required for selected ratios of |prec(zT, R)| / 

|prec(zT)| for matched transducer pairs (AA, BB, CC) and transducers of different geometry (AB, AC, 

BC) at the position of diffraction loss peak, calculated using the Lucas and Muir result (Equation 4) for a 

focused field 
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Figure B13. Plot showing the minimum integration limit Rlim required for selected phase differences 

between prec(zT, R) and prec(zT) for matched transducer pairs (AA, BB, CC) and transducers of different 

geometry (AB, AC, BC) at the position of diffraction loss peak, calculated using the Lucas and Muir 

result (Equation 4) for a focused field 
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B3. Discussion 

 The results obtained highlight the fact that the Debye solution used by Gavrilov 

et al. (1988) is an approximation obtained in the geometric optics limit.  It agrees with 

fuller formulations in terms of the focal plane amplitudes but not phases.  The results 

presented here show that is important to include the additional transverse phase term 

z

ikr

e 2

2

 in applications such as this, as the calculation of the receiver response involves 

an integration of the two transducer complex sound pressure distribution functions over 

the radial coordinate r.  If the phase term is omitted then the calculation, and therefore 

model, gives inaccurate results.  Analysis of the two solutions used in this paper, and 

comparison with other solutions available, indicates that the phase term reduces the size 

of the integration limit Rlim required to ensure an accurate estimation of prec by a 

restricted integration.  However, is does introduce a phase difference between the 

restricted integral prec(zT, R) and the infinite integral prec(zT).  However, the phase 

differences are small and should not significantly affect results (Figure B7, B13). 

 The difference between the integration results for a limited radius and infinite 

radius gives an indication of the error that is likely to be obtained by using a coaxial 

circular sample of a given radius in immersion measurements of acoustic attenuation.  

Essentially the difference gives an estimate of the likely diffraction magnitude.  The 

results obtained here can be used to estimate the minimum size of sample required to 

measure a given attenuation to a given precision. 

 The choice of transducers is affected by the inclusion of the phase term in the 

full model.  Without the transverse phase term included in the model, Figures B2, B3 

and B4 imply that geometrically different transducers will have advantages in terms of 

reducing the required integration limit Rlim when compared to geometrically identical 

transducers.  The correct analysis, including the phase term, not only reduces the 

required integration limit Rlim (see Figures B5 and B6) but also removes the significant 

differences between using identical and geometrically different transducers (Figure 

A12). 

 The criteria quoted in the literature (Bamber, 2004a; Penttinen & Luukkala, 

1977) to minimize errors in measurement due to diffraction losses is to place opposed 
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transducers at the diffraction peak.  Both the theoretical model and measurements of 

specific transducers indicate that for the transducers used in this paper, the separation 

between the transducers should be reduced from the position of the sum of the 

geometric foci (Figures B8 and B9).  This is due to the transducers being weakly 

focused as opposed to the strongly focused transducers used in the literature (Penttinen 

& Luukkala, 1977), where the geometric and acoustic foci would coincide.  Placing 

weakly focused transducers at the sum of their geometric foci would tend to lead to 

increased diffraction errors. 

When using coaxially aligned spherically focused transducers to measure 

ultrasonic attenuation properties of samples the measurement system needs to be 

designed to minimize any uncertainties in the measurement of the attenuation of the 

sample.  The analysis presented in this paper for the average receiver pressure prec(zT, 

R) shows that if R is small then prec(zT, R) is not an accurate estimate of prec(zT).  To 

provide an accurate estimate of prec (small error) the integration must be performed 

over a large distance (R > Rlim).  

 When measuring ultrasonic attenuation, it has been shown (Challis et. al, 2005; 

Kalashnikov et. al, 2005) from analysis of noise on signals, that the optimum 

attenuation for measurement is approximately 1 neper (8.68dB), with a useful range of 

0.1 Np to 5 Np (0.9dB to 43dB).  The errors introduced by sample size effects as 

calculated in this paper may have large effects on the measurement of attenuation.  

Therefore relatively large samples are required, especially for low attenuating samples, 

to ensure that sample size effects do not contribute a significant error to the sample 

attenuation measurement.  For the transducers used in this paper sample sizes of 

approximately 0.8cm radius are required to ensure the ratio of |prec(zT, R)| / |prec(zT)| is 

greater than 0.98 (Figure B12).  The actual effect this will have on the estimation of 

sample transmission is dependent on the transmission properties of the sample itself 

(see Equation B7).  The phase difference between prec(zT, R) and prec(zT) will be 

negligible with samples of this size. 

 When the difference between the estimated and actual value of the average 

receiver pressure is small (ratio |prec(zT, R)| / |prec(zT)| is close to one) there does not 

seem to be an obvious choice of integration plane to minimize the required sample size 

(Figure B11).  The choice of integration plane is analogous to the physical positioning 
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of the sample between the two transducers, indicating that for relatively large samples, 

the axial positioning of the sample is not critical. 

  

B4. Conclusions 

Two computation models have been used to calculate the average pressure on 

the receiver of a pair of coaxial focused transducers.  Results for three specific 

ultrasonic transducers operating at 3.5 MHz have been utilized to analyze the effects of 

sample size and geometry on the measurement of ultrasonic properties. 

A potential source of error in attenuation measurements due to finite sample 

size has been discussed.  This source may introduce significant errors into the 

measurement of attenuation and should be considered when designing attenuation 

measurement experiments. For the transducers used in this paper sample sizes of 

approximately 0.8cm radius are required to ensure an ratio |prec(zT, R)| / |prec(zT)| is 

greater than 0.98.  This will limit the errors due to sample size effects introduced into 

attenuation measurements.  

 Both the theoretical model and measurements of specific transducers indicate 

that for weakly focused transducers the optimum separation between the transducers 

should be reduced from the sum of the geometric focal lengths in order to minimise 

diffraction loss correction. 
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Appendix C. Matlab code used for data analysis 

A number of Matlab codes have been written to aid in the data and image 

analysis throughout this thesis. 

  

C1. Analysis of text output from oscilloscopes to calculate FFT 

data of through-transmission measurements 

function [out] = ni_fft(filename, foldername, T1, T2, n) 

%filename is start of the filename under which the stuff is saved.  Foldername is 

% the folder in which it is located, T1 is start position, T2 is finish, n is number 

% of spaces to do FFT over, usually (T2-T1)/10.  The programme assumes digitization 

% frequency is 100MHz. 

cd (foldername); 

%set timebase 

tint = [T1:(T2-T1)/n:T2]; 

%read in filenames of data and trigger files 

filename = [filename,'*.txt']; 

s = dir(filename); 

s2 = dir('trigger*.txt'); 

%set up empty matricies 

amp = []; 

ang = []; 

fmax = []; 

Posmax = []; 

TriggerTime = []; 

%read in data 

for i = 1:length(s) 

    DATA = textread(s(i).name,  '%f', 'headerlines', 1, 'delimiter', '\t'); 

    Time = (0:10:(length(DATA)-1)*10)'; 

%perform spline smoothing of data 

    intDATAspl = interp1(Time, DATA, tint, 'spline'); 

    intDATAspl(length(intDATAspl))=[]; 

    fintDATAspl = fftshift(fft(intDATAspl*10)); 

%Calculate data 

    [C,I] = max(fintDATAspl); 

    amp = [amp, abs(fintDATAspl(I))]; 

    ang = [ang, -angle(fintDATAspl(I))]; 

    fmax = [fmax, (500*n/(T2-T1))-((I-1)*1000/(T2-T1))]; 

    [c,i] = max(DATA(1:125)); 

    Posmax = [Posmax, i]; 

end 

%Calculate position of trigger pulse 

for i = 1:length(s2) 

    [TrigTime, TrigLevel] = textread(s2(i).name,  '%f %f', 'headerlines', 1, 'delimiter', '\t'); 

    y = find (0.05<TrigLevel); 

    if length (y) >0; 

        TriggerTime = [TriggerTime, TrigTime(y(1))]; 

    else 

        TriggerTime = [TriggerTime, 0]; 

    end 
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end 

 

%Save data to file 

out = [amp' ang' fmax' Posmax']; 

cd('..'); 

textfile = [foldername,'out2.csv']; 

 

fid = fopen(textfile,'w'); 

fprintf(fid,'filename,amp,ang,fmax,MaxPos\r'); 

for i = 1:length(s) 

    fprintf(fid, s(i).name); 

    fprintf(fid,','); 

    fprintf(fid,'%5.5d ,',out(i,1)); 

    fprintf(fid,'%5.5d ,',out(i,2)); 

    fprintf(fid,'%3.2d ,',out(i,3)); 

    fprintf(fid,'%3.2d ,',out(i,4)); 

    fprintf(fid, s2(i).name); 

    fprintf(fid,','); 

    fprintf(fid,'%6.5d ,',TriggerTime(i)); 

    fprintf(fid,'=C'); 

    fprintf(fid, '%g', i+1); 

    fprintf(fid, '/2/PI()/D'); 

    fprintf(fid, '%g', i+1); 

    fprintf(fid, '/1000000 ,'); 

    fprintf(fid, '=H'); 

    fprintf(fid, '%g', i+1); 

    fprintf(fid, '-G'); 

    fprintf(fid, '%g', i+1); 

    fprintf(fid,'\r'); 

end 

%Automatically write data to calculate in Excel spreadsheet 

fprintf(fid,'Average,'); 

fprintf(fid,'=average(b2:b'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=average(c2:c'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=average(d2:d'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=average(e2:e'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),,,,'); 

fprintf(fid,'=average(i2:i'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'\r'); 

fprintf(fid,'Standard Deviation,'); 

fprintf(fid,'=stdev(b2:b'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=stdev(c2:c'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=stdev(d2:d'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 
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fprintf(fid,'=stdev(e2:e'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),,,,'); 

fprintf(fid,'=stdev(i2:i'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'\r'); 

fprintf(fid,'Min,'); 

fprintf(fid,'=min(b2:b'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=min(c2:c'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=min(d2:d'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=min(e2:e'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),,,,'); 

fprintf(fid,'=min(i2:i'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'\r'); 

fprintf(fid,'Max,'); 

fprintf(fid,'=max(b2:b'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=max(c2:c'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=max(d2:d'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'=max(e2:e'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),,,,'); 

fprintf(fid,'=max(i2:i'); 

fprintf(fid,'%g',length(s)+1); 

fprintf(fid,'),'); 

fprintf(fid,'\r');fclose(fid); 

textfile = [foldername,'summary2.txt']; 

fid = fopen(textfile,'w'); 

fprintf(fid,'\t amp\t ang\t fmax\r MaxPos\r'); 

fprintf(fid,'Average\t'); 

fprintf(fid,'%4.4d \t', mean(out(:,1))); 

fprintf(fid,'%4.4d \t',mean(out(:,2))); 

fprintf(fid,'\t %3.2d \t', mean(out(:,4))); 

fprintf(fid,'\r'); 

fprintf(fid,'Standard Deviation\t'); 

fprintf(fid,'%4.4d \t', std(out(:,1))); 

fprintf(fid,'%4.4d \t',std(out(:,2))); 

fprintf(fid,'\r'); 

fprintf(fid,'Difference\t \t \t'); 

fprintf(fid,'%3.2d \t',max(out(:,3))-min(out(:,3))); 

fprintf(fid,'\r'); 

fclose(fid); 
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C2. Analysis of text output from oscilloscopes to calculate FFT 

data of pulse-echo measurements 

function [out] = AP_MAGIC(filename, L, Tstart, Gain) 

%Prepare a matrix 

Data = zeros([5000,1]); 

%read in data 

Data(1:L,1)= textread(filename,  '%f', L, 'headerlines', Tstart+1, 'delimiter', '\t'); 

% correct for gain setting 

Data = Data/10^((Gain-22)/20); 

%Filter (smooth) data 

Wp = .03; Ws = .015; 

Rp = 0.01; Rs = 50; 

%[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs); 

%[b,a] = cheby1(n,Rp,Wn,'high'); 

b = [0.76298855416044  -6.10390843328353  21.36367951649235 -42.72735903298469  

53.40919879123086 -42.72735903298469  21.36367951649235  -6.10390843328353  

0.76298855416044]; 

a = [1.00000000000000  -7.46133996201130  24.37397611047766 -45.53060622787615  

53.19342279833839 -39.79996754731171  18.62394531330514  -4.98312407864198  

0.58369362308481]; 

Data = filter(b,a,Data); 

Wp = .1; Ws = .15; 

Rp = 0.01; Rs = 50; 

%[n,Wn] = cheb1ord(Wp,Ws,Rp,Rs); 

%[b,a] = cheby1(n,Rp,Wn); 

b = [1.0e-007*0.00258901707202   1.0e-007*0.02589017072016   1.0e-007*0.11650576824073   1.0e-

007*0.31068204864196 1.0e-007*0.54369358512342   1.0e-007*0.65243230214811   1.0e-

007*0.54369358512342   1.0e-007*0.31068204864196  1.0e-007*0.11650576824073   1.0e-

007*0.02589017072016   1.0e-007*0.00258901707202]; 

a = [1.000000000000  -9.000823400587   36.704814087252  -89.285443487198  143.447967382250  -

159.028253087983   123.185495144657  -65.827701178815  23.222424177719  -4.883254174948   

0.464774803074]; 

Data = filter(b,a,Data); 

 

%Obtain FFT 

fData = (fft(Data)); 

 

fData(1001:5000,:) = []; 

 

%Plot FFT 

freq =  (0:0.02:19.98)'; 

subplot (2,1,1); plot (freq, abs(fData)); 

axis([0 10 0 10]); 

axis 'auto y'; 

subplot(2,1,2); plot (Data); 

axis([0 2*L 0 10]); 

axis 'auto y'; 

out = [freq abs(fData) angle(fData)]; 

 

%Write data to file 

 

[Amplitude, FmaxPos] = max(abs(fData)); 

Fmax = freq(FmaxPos,1); 

Phase = angle(fData(FmaxPos)); 

Max = max(Data); 

Min = min(Data); 
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PP = Max-Min; 

RMS = norm(Data(1:L)/sqrt(L)); 

out = [str2double(filename(5:8)), Fmax, Amplitude, Phase, Max, Min, PP, RMS]; 

 

 

C3. Data collection of pixel values from image of three thread 

phantom 

function [OutPut] = imageanalysis_v6(Pathname,ImageA,X_1,Y_1,X_2,Y_2,X_3,Y_3); 

FnameA=ImageA; 

close all; 

% Read in image 

[X,map] = imread([Pathname FnameA]); 

 

%   positions for figures 

    bdwidth = 5; 

    topbdwidth = 30; 

% Ensure root units are pixels and get the size of 

% the screen: 

    set(0,'Units','pixels')  

    scnsize = get(0,'ScreenSize'); 

%plot figure     

     figure('Position',[scnsize(3)/8 scnsize(4)/8 6*scnsize(3)/8 6*scnsize(4)/8]) 

     

    image(X(:,:,:)); 

 

 icount=0; 

            icount=icount+1; 

%Take seed position for first thread.             

            ycurrent=Y_1; 

            xcurrent=X_1;     

            temp=0; 

            temparea=0; 

 %search over a 31 by 21 pixel grid  

            for y2=-15:15; 

                for x2=-10:10; 

                    y_=ycurrent+y2; 

                    x_=xcurrent+x2; 

                    if X(y_,x_,1) > temp;   %if pixel value is greater than current max store value and 

coordinates 

                        temp= X(y_,x_,1); 

                        xpeak(icount)=x_; 

                        ypeak(icount)=y_; 

                        zpeak(icount)=temp; 

                    end 

                     

 %calculate average 61 pixel value for region  (5,9,11,11,11,9,5). 

                    ta=0; 

                    ta1=0; 

                    ta2=0; 

                    ta3=0; 

                    for kd=-2:2; 

                        ta1=(double(X(y_+3,x_+kd,1))+double(X(y_-3,x_+kd,1))); 

                    end 

                    for kd=-4:4; 
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                        ta2=(double(X(y_+2,x_+kd,1))+double(X(y_-2,x_+kd,1))); 

                    end 

                    for kd=-5:5; 

                        ta3=(double(X(y_+1,x_+kd,1))+double(X(y_,x_+kd,1))+double(X(y_-1,x_+kd,1))); 

                    end 

                    ta=(ta1+ta2+ta3)/61; 

                    if ta > temparea; %if average pixel value is greater than current max store value and 

coordinates 

                        temparea= ta; 

                        xpeakarea(icount)=x_; 

                        ypeakarea(icount)=y_; 

                        zpeakarea(icount)=temparea; 

                    end 

                end 

            end 

 %repeat above for 2nd thread 

            icount=icount+1; 

            ycurrent=Y_2; 

            xcurrent=X_2;     

            temp=0; 

            temparea=0; 

 

            for y2=-15:15; 

                for x2=-10:10; 

                    y_=ycurrent+y2; 

                    x_=xcurrent+x2; 

                    if X(y_,x_,1) > temp; 

                        temp= X(y_,x_,1); 

                        xpeak(icount)=x_; 

                        ypeak(icount)=y_; 

                        zpeak(icount)=temp; 

                    end 

                     

                    ta=0; 

                    ta1=0; 

                    ta2=0; 

                    ta3=0; 

                    for kd=-2:2; 

                        ta1=(double(X(y_+3,x_+kd,1))+double(X(y_-3,x_+kd,1))); 

                    end 

                    for kd=-4:4; 

                        ta2=(double(X(y_+2,x_+kd,1))+double(X(y_-2,x_+kd,1))); 

                    end 

                    for kd=-5:5; 

                        ta3=(double(X(y_+1,x_+kd,1))+double(X(y_,x_+kd,1))+double(X(y_-1,x_+kd,1))); 

                    end 

                    ta=(ta1+ta2+ta3)/61;                     

                    if ta > temparea; 

                        temparea= ta; 

                        xpeakarea(icount)=x_; 

                        ypeakarea(icount)=y_; 

                        zpeakarea(icount)=temparea; 

                    end 

                end 

            end 

%and for third thread             

            icount=icount+1; 

            ycurrent=Y_3; 
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            xcurrent=X_3;     

            temp=0; 

            temparea=0; 

            for y2=-10:10; 

                for x2=-10:10; 

                    y_=ycurrent+y2; 

                    x_=xcurrent+x2; 

                    if X(y_,x_,1) > temp; 

                        temp= X(y_,x_,1); 

                        xpeak(icount)=x_; 

                        ypeak(icount)=y_; 

                        zpeak(icount)=temp; 

                    end 

 

                    ta=0; 

                    ta1=0; 

                    ta2=0; 

                    ta3=0; 

                    for kd=-2:2; 

                        ta1=(double(X(y_+3,x_+kd,1))+double(X(y_-3,x_+kd,1))); 

                    end 

                    for kd=-4:4; 

                        ta2=(double(X(y_+2,x_+kd,1))+double(X(y_-2,x_+kd,1))); 

                    end 

                    for kd=-5:5; 

                        ta3=(double(X(y_+1,x_+kd,1))+double(X(y_,x_+kd,1))+double(X(y_-1,x_+kd,1))); 

                    end 

                    ta=(ta1+ta2+ta3)/61; 

                    if ta > temparea; 

                        temparea= ta; 

                        xpeakarea(icount)=x_; 

                        ypeakarea(icount)=y_; 

                        zpeakarea(icount)=temparea; 

                    end 

                end 

            end 

            %end 

            %end    

      

  %plot location of maximum pixel value   

  figure('Position',[scnsize(3)/8 scnsize(4)/8 6*scnsize(3)/8 6*scnsize(4)/8]) 

  image(X(:,:,:)); 

  hold on 

  plot( xpeak,ypeak,'or'); 

   

  hold off 

  [pathstr,name,ext,versn] = fileparts(ImageA); 

   

  %Produce output for further analysis 

  OutPut = [double(zpeak); xpeak; ypeak; zpeakarea; xpeakarea; ypeakarea]; 

      

  SaveFile = [Pathname,'Analysed',name,'10by10vA61.csv']; 

      

fid = fopen(SaveFile,'w'); 

fprintf(fid,'Position ,'); 

for i = 1:3 

    fprintf(fid,'%i ,',i);  

end 
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fprintf(fid,'\r'); 

fprintf(fid,'ZPeak ,'); 

fprintf(fid,'%i ,',(OutPut(1,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'XPeak ,'); 

fprintf(fid,'%i ,',(OutPut(2,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'YPeak ,'); 

fprintf(fid,'%i ,',(OutPut(3,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'ZPeakArea ,'); 

fprintf(fid,'%5.2f ,',(OutPut(4,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'XPeakArea ,'); 

fprintf(fid,'%i ,',(OutPut(5,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'YPeakArea ,'); 

fprintf(fid,'%i ,',(OutPut(6,:))); 

fprintf(fid,'\r'); 

 

fclose(fid); 

 

 

C4. Data collection of pixel values from image of full thread 

phantom 

function [OutPut] = imageanalysis_v4(Pathname,ImageA); 

 

FnameA=ImageA; 

 

close all; 

 

% read in image data 

 

[X,map] = imread([Pathname FnameA]); 

 

%   positions for figures 

    bdwidth = 5; 

    topbdwidth = 30; 

% Ensure root units are pixels and get the size of 

% the screen: 

    set(0,'Units','pixels')  

    scnsize = get(0,'ScreenSize'); 

     

     figure('Position',[scnsize(3)/8 scnsize(4)/8 6*scnsize(3)/8 6*scnsize(4)/8]) 

     

%     figure(1); 

    image(X(:,:,:)); 

%      

%         user_entry = input('Enter positon of bottom left thread'); 

    [x1,y1] = ginput(1); 

       

%     user_entry = input('Enter positon of top right thread'); 

    [x2,y2] = ginput(1); 
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    hold on 

 

%Calculate distaces between threads     

     

    xstep=round((x2-x1)/4.25); 

    ystep=round((y2-y1)/3); 

     

    x1=round(x1); 

    y1=round(y1); 

 

% Plot seed positions on image 

     

    for i=1:4; 

        for j=1:6; 

     

            ycurrent=y1 +(i-1)*ystep; 

            xcurrent=x1+(j-1)*xstep- round((i-1)*xstep/4);     

            plot( xcurrent,ycurrent,'xr'); 

             

        end 

    end 

             

  icount=0; 

  

 % For each seed position find the maximum pixel value 

   

  for i=1:4; 

        for j=1:6; 

            icount=icount+1; 

            ycurrent=y1 +(i-1)*ystep; 

            xcurrent=x1+(j-1)*xstep- round((i-1)*xstep/4);     

            temp=0; 

            temparea=0; 

            for y2=-10:10; 

                for x2=-10:10; 

                    if X(ycurrent+y2,xcurrent+x2,1) > temp; 

                        temp= X(ycurrent+y2,xcurrent+x2,1); 

                        xpeak(icount)=xcurrent+x2; 

                        ypeak(icount)=ycurrent+y2; 

                        zpeak(icount)=temp; 

                    end 

                                        

 %calculate average 61 pixel value for region  (5,9,11,11,11,9,5). 

  

                    ta=0; 

                    ta1=0; 

                    ta2=0; 

                    ta3=0; 

                    for kd=-2:2; 

                        ta1=(double(X(y_+3,x_+kd,1))+double(X(y_-3,x_+kd,1))); 

                    end 

                    for kd=-4:4; 

                        ta2=(double(X(y_+2,x_+kd,1))+double(X(y_-2,x_+kd,1))); 

                    end 

                    for kd=-5:5; 

                        ta3=(double(X(y_+1,x_+kd,1))+double(X(y_,x_+kd,1))+double(X(y_-1,x_+kd,1))); 

                    end 

                    ta=(ta1+ta2+ta3)/61; 
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                    if ta > temparea; 

                        temparea= ta; 

                        xpeakarea(icount)=x_; 

                        ypeakarea(icount)=y_; 

                        zpeakarea(icount)=temparea; 

                    end 

                end 

            end         

        end 

  end    

  

  figure('Position',[scnsize(3)/8 scnsize(4)/8 6*scnsize(3)/8 6*scnsize(4)/8]) 

  image(X(:,:,:)); 

  hold on 

  plot( xpeak,ypeak,'or'); 

   

  hold off 

   

  OutPut = [double(zpeak); xpeak; ypeak; zpeakarea; xpeakarea; ypeakarea]; 

   

  [pathstr,name,ext,versn] = fileparts(ImageA); 

   

  SaveFile = [Pathname,'Analysed',name,'Area.csv']; 

 

%save data 

    

fid = fopen(SaveFile,'w'); 

fprintf(fid,'Position ,'); 

for i = 1:24 

    fprintf(fid,'%i ,',i);  

end 

fprintf(fid,'\r'); 

fprintf(fid,'ZPeak ,'); 

fprintf(fid,'%i ,',(OutPut(1,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'XPeak ,'); 

fprintf(fid,'%i ,',(OutPut(2,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'YPeak ,'); 

fprintf(fid,'%i ,',(OutPut(3,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'ZPeakArea ,'); 

fprintf(fid,'%5.2f ,',(OutPut(4,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'XPeakArea ,'); 

fprintf(fid,'%i ,',(OutPut(5,:))); 

fprintf(fid,'\r'); 

fprintf(fid,'YPeakArea ,'); 

fprintf(fid,'%i ,',(OutPut(6,:))); 

fprintf(fid,'\r'); 

 

fclose(fid); 
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C5. Data collection of pixel values from image of slab phantom 

function [OutPut] = slabanalysis3v3(Pathname,ImageA); 

 

FnameA=ImageA; 

close all; 

 

% read in image information 

 

[X,map] = imread([Pathname FnameA]); 

 

% initialise variables 

  

icount = 0;  

Xd=double(X(:,:,1)); 

 

% ultrasound image from 164 to 558 pixels across.  Search over all pixel columns 

 

for i=164:558; 

    tempx=0; 

    tempy=0; 

    tempx3 = 0; 

    tempy3 = 0; 

    tempx7 = 0; 

    tempy7 = 0; 

    icount = icount+1; 

 

% interface between 280 and 340 pixel depth.  In each pixel column find maximum pixel value and store  

% value and location  

     

    for j=280:340; 

        if X(j,i,1) > tempx; 

            tempx = X(j,i,1); 

            tempy = j; 

        end 

    end 

    xpeak(icount)= tempx; 

    ypeak(icount)= tempy; 

 

% in each column find max of 3 pixels and store value and location 

     

    for j=280:340; 

        if (Xd(j-1,i)+Xd(j,i)+Xd(j+1,i)) > 3*tempx3; 

            tempx3 = (Xd(j-1,i)+Xd(j,i)+Xd(j+1,i))/3; 

            tempy3 = j; 

        end 

    end 

    xpeak3(icount)= tempx3; 

    ypeak3(icount)= tempy3; 

 

% in each column find max of 7 pixels and store value and location     

     

    for j=280:340; 

        if (Xd(j-3,i)+Xd(j-2,i)+Xd(j-1,i)+Xd(j,i)+Xd(j+1,i)+Xd(j+2,i)+Xd(j+3,i)) > 7*tempx7; 

            tempx7 = (Xd(j-3,i)+Xd(j-2,i)+Xd(j-1,i)+Xd(j,i)+Xd(j+1,i)+Xd(j+2,i)+Xd(j+3,i))/7; 

            tempy7 = j; 

        end 
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    end 

    xpeak7(icount)= tempx7; 

    ypeak7(icount)= tempy7; 

end 

 

% Save and output data      

   

  OutPut = [double(xpeak); ypeak; xpeak3; ypeak3; xpeak7; ypeak7]; 

   

  [pathstr,name,ext,versn] = fileparts(ImageA); 

   

  SaveFile = [Pathname,'Analysed',name,'.csv']; 

   

    

fid = fopen(SaveFile,'w'); 

fprintf(fid,'Position,XPeak,YPeak,XPeak3,YPeak3,XPeak7,XPeak7'); 

fprintf(fid,'\r'); 

for i = 1:395 

    fprintf(fid,'%i ,',i+163); 

    fprintf(fid,'%i ,',(OutPut(1,i))); 

    fprintf(fid,'%i ,',(OutPut(2,i))); 

    fprintf(fid,'%i ,',(OutPut(3,i))); 

    fprintf(fid,'%i ,',(OutPut(4,i))); 

    fprintf(fid,'%i ,',(OutPut(5,i))); 

    fprintf(fid,'%i ,',(OutPut(6,i))); 

    fprintf(fid,'\r'); 

end 

 

fclose(fid); 

 

 

C6. Data collection of pixel values from pulse re-injection 

system 

%clear all; 

close all; 

s=pwd; 

 

%Read in image 

FnameA=ImageA; 

 

[X,map] = imread([Pathname FnameA]); 

 

%   positions for figures 

    bdwidth = 5; 

    topbdwidth = 30; 

% Ensure root units are pixels and get the size of 

% the screen: 

    set(0,'Units','pixels')  

    scnsize = get(0,'ScreenSize'); 

     

    figure('Position',[scnsize(3)/8 scnsize(4)/8 6*scnsize(3)/8 6*scnsize(4)/8]) 

     

    image(X(:,:,:)); 

    pixval; 
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% Set up line for which analysis will be taken - user input could be used to create x1, y1, x2 and y2, or 

input 

% into file could be used for automated setup.  Rest of routine should still be valid. 

 

    x1 = 370; 

    y1 = 160; 

    x2 = 370; 

    y2 = 490; 

      

  

    %work out the centre of the line selected     

    avex = round ((x1+x2)/2); 

    avey = (y1+y2)/2; 

    y5 = ((abs(y2-y1))/2)+5; 

    y1 = round(avey-y5); 

    y2 = round(avey+y5); 

    n = y2-y1+1; 

%create profiles on the centre of the line selected, and two lines either side     

    [cx, cy, c] = improfile(X,[avex avex], [y1 y2],n); 

    cminus1 = improfile(X,[avex-1 avex-1], [y1 y2],n); 

    cminus2 = improfile(X,[avex-2 avex-2], [y1 y2],n); 

    cplus1 = improfile(X,[avex+1 avex+1], [y1 y2],n); 

    cplus2 = improfile(X,[avex+2 avex+2], [y1 y2],n); 

    c1 = [cminus2(:,:,1) cminus1(:,:,1) c(:,:,1) cplus1(:,:,1) cplus2(:,:,1)]; 

%display the figure of the line profiles     

    figure 

    plot(cy,cminus2(:,:,1),cy,cminus1(:,:,1),cy,c(:,:,1),cy,cplus1(:,:,1),cy,cplus2(:,:,1)); 

%calculate the number of pulses received (to 0.25 resolution) along central line profile, and the number 

of pixels  

%between each pulse     

    len4 = 4*n; 

    FFT = fft(c1(:,3),len4); 

    Freq = abs(FFT); 

    ang = angle(FFT); 

    [Max, Number] = max(FFT(6:round(n/2))); 

    Number = (Number+4)/4; 

    StepLength = n/Number; 

    RSL = round(StepLength); 

% search for maxima of each pulse, starting at end of profile (beginning may often be lost in noise due to  

% lower swept gain) 

    [LastMax Pos] = max(c1((n-RSL):n,3)); 

    LastPos=(n-RSL+Pos-1); 

    ValMax = 0; 

    PosMax = 0; 

    if LastPos+2<n 

        for j=1:5 

            [C, I]=max(c1(LastPos-3:LastPos+3,j)); 

            ValMax(j) = C; 

            PosMax(j) = LastPos-4+I; 

        end 

    else 

        for j=1:5 

            [C, I]=max(c1(LastPos-3:n,j)); 

            ValMax(j) = C; 

            PosMax(j) = LastPos-4+I; 

        end 

    end 
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% look at the end of the spectrum if the position of the max detected earlier indicates there may be a peak  

% right at the end     

    if Pos<0.18*StepLength 

        ValMax = [ValMax; 0 0 0 0 0]; 

        PosMax = [PosMax; 0 0 0 0 0]; 

        for j=1:5 

            if c1(n,j)<c1(n-1,j) 

                ValMax(2,j) = c1(n-1,j); 

                PosMax(2,j) = n-1; 

            else 

                ValMax(2,j) = c1(n,j); 

                PosMax(2,j) = n; 

            end 

        end 

    end 

% step through the peaks, identifying the peak values 

    Pos=(n-RSL+Pos-1); 

    for i=1:(fix(Number)-2) 

        ValMax = [0 0 0 0 0; ValMax]; 

        PosMax = [0 0 0 0 0; PosMax]; 

        for j=1:5 

            [C, I]=max(c1((round(Pos-i*StepLength)-3):(round(Pos-i*StepLength)+3),j)); 

            ValMax(1,j) = C; 

            PosMax(1,j) = round(Pos-i*StepLength)-4+I; 

        end 

    end     

%l ook at peak closest to front if possible, if not will be picked up by the next group... 

    if round(Pos-(fix(Number)-1)*StepLength)-2 > 1 

        ValMax = [0 0 0 0 0; ValMax]; 

        PosMax = [0 0 0 0 0; PosMax]; 

        for j=1:5 

            [C, I]=max(c1((round(Pos-(fix(Number)-1)*StepLength)-3):(round(Pos-(fix(Number)-

1)*StepLength)+3),j)); 

            ValMax(1,j) = C; 

            PosMax(1,j) = round(Pos-(fix(Number)-1)*StepLength)-4+I; 

        end 

    else 

        if round(Pos-(fix(Number)-1)*StepLength)+3 > 1 

            ValMax = [0 0 0 0 0; ValMax]; 

            PosMax = [0 0 0 0 0; PosMax]; 

            for j=1:5 

                [C, I]=max(c1(1:(round(Pos-(fix(Number)-1)*StepLength)+3),j)); 

                ValMax(1,j) = C; 

                PosMax(1,j) = I; 

            end 

        end 

    end 

% check that there is not one more very close to the beginning...     

    if abs(PosMax(1,3)-StepLength)<0.18*StepLength 

        ValMax = [0 0 0 0 0; ValMax]; 

        PosMax = [0 0 0 0 0; PosMax]; 

        for j=1:5 

            [C, I]=max(c1(1:round(0.18*StepLength)+1,j)); 

            ValMax(1,j) = C; 

            PosMax(1,j) = I; 

        end 

    end 

% Put the Position of the peaks into actual screen pixel positions...     
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    PosMax = PosMax+y1-1; 

     

% Print and save... 

 

  [pathstr,name,ext,versn] = fileparts(ImageA); 

   

  SaveFile = [Pathname,'AnaMax',name,'.csv']; 

   

    

fid = fopen(SaveFile,'w'); 

fprintf(fid,'PosMax'); 

fprintf(fid,'\r'); 

fprintf(fid,'-2, -1, 0, 1, 2, ,PosAve,ValAve,,PosSD,ValSD'); 

fprintf(fid,'\r'); 

for i = 1:size(PosMax,1) 

    fprintf(fid,'%i ,',PosMax(i,:)); 

    fprintf(fid,',=AVERAGE(A'); 

    fprintf(fid,'%i',i+2); 

    fprintf(fid,':E'); 

    fprintf(fid,'%i',i+2); 

    fprintf(fid,')'); 

    fprintf(fid,',=AVERAGE(A'); 

    fprintf(fid,'%i',i+size(PosMax,1)+5); 

    fprintf(fid,':E'); 

    fprintf(fid,'%i',i+size(PosMax,1)+5); 

    fprintf(fid,')'); 

    fprintf(fid,', ,=STDEV(A'); 

    fprintf(fid,'%i',i+2); 

    fprintf(fid,':E'); 

    fprintf(fid,'%i',i+2); 

    fprintf(fid,')'); 

    fprintf(fid,',=STDEV(A'); 

    fprintf(fid,'%i',i+size(PosMax,1)+5); 

    fprintf(fid,':E'); 

    fprintf(fid,'%i',i+size(PosMax,1)+5); 

    fprintf(fid,')'); 

    fprintf(fid,'\r'); 

end 

fprintf(fid,'\r'); 

fprintf(fid,'ValMax'); 

fprintf(fid,'\r'); 

fprintf(fid,'-2, -1, 0, 1, 2'); 

fprintf(fid,'\r'); 

for i = 1:size(ValMax,1) 

    fprintf(fid,'%i ,',ValMax(i,:)); 

    fprintf(fid,',=AVERAGE(A'); 

    fprintf(fid,'%i',i+size(PosMax,1)+5); 

    fprintf(fid,':E'); 

    fprintf(fid,'%i',i+size(PosMax,1)+5); 

    fprintf(fid,')'); 

    fprintf(fid,'\r'); 

end 

fclose(fid); 
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