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Abstract We present unique observations and measurements of a dilute turbidity current made with a
remotely operated vehicle in 400m water depth near the head of Mendocino Canyon, California. The flow
had a two-layer structure with a thin (0.5 to 30m), relatively dense (<0.04 vol %) and fast (up to ~1.7m/s)
wedge-shaped lower layer overlain by a thicker (up to 89m) more dilute and slower current. The fast moving
lower layer lagged the slow moving, dilute flow front by 14min, which we infer resulted from the interaction of
two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was
characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the
complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event.

1. Introduction

Turbidity currents are sediment-laden flows that travel downslope, under the action of gravity, because they
are denser than the surrounding ambient fluid. There are few direct measurements of turbidity currents
when compared to other major sediment transport processes [Talling et al., 2013; Puig et al., 2014]; this is
largely because of difficulties in predicting when a turbidity current will occur and a lack of techniques that
can withstand and measure these flows. As a result, long term deployments of monitoring equipment are
required in order to capture an event [Xu, 2011; Xu et al., 2014]. Thus, the resolution of instrumentally
recorded flow measurements is constrained by limitations of battery power and storage. For example,
measurements are commonly collected on an hourly basis, and even then, they must be averaged over many
minutes [e.g., Xu, 2010; Xu et al., 2014; Cooper et al., 2013]. Furthermore, due to signal attenuation and
absorption, existing acoustic technologies for measuring flow velocity can only penetrate dilute flows and as
a result of sidelobe reflections from the seafloor are incapable of measuring within ~6% of their height above
the seabed [RDI Instruments, 2014]. Concentration measurements in ocean turbidity currents comprise
(i) point measurements from transmissometers calibrated with grain-size samples [Xu, 2010; Xu et al., 2014],
(ii) profiles of acoustic backscatter that are a function of sediment concentration and grain size [Xu, 2010;
Hughes Clarke et al., 2014], and (iii) estimates of depth-averaged concentration calculated using flow
parameters including flow depth, flow velocity, and seafloor gradient [Xu, 2010; Xu et al., 2014]. Nevertheless,
measurements of submarine turbidity currents are extraordinarily valuable in improving understanding of
the nature of these enigmatic flows.

Fundamental questions remain about the nature of turbidity currents, including howwell conceptual models,
based on experimental analogues and inferences made from ancient deposits, represent the real world.
Turbidity currents are often viewed as simple surges; however, the duration of flows, nature of triggering, and
character of deposits all imply complexity in the evolution of turbidity currents [e.g., Piper et al., 1999]. Here
we present novel observations collected using a remotely operated vehicle (ROV) that got entrained in a
turbidity current; they reveal the complex structure of the flow from the initial passage of the head through
the main body. This data set provides direct evidence from a turbidity current that can be used to ground
truth hypotheses of flow complexity that have previously been based on indirect evidence from experiments,
numerical models, and ancient deposits.

2. Regional Setting

Mendocino Canyon is located offshore Cape Mendocino in Northern California (Figures 1a and 1b). The
canyon head is located 4 km from the shoreline in an area characterized by a narrow (<15 km) continental
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shelf. Mendocino Canyon is bounded to the south by the Mendocino Escarpment, which is the surface
expression of the triple junction separating the North American, Pacific, and Gorda tectonic plates.

Mendocino Canyon has received little scientific attention; indeed, no detailed bathymetric map could be
found for the canyon head. Two piston cores and a box core have been collected in Mendocino Channel
~70 km downstream of the canyon head [Goldfinger et al., 2007]. These cores contained turbidity current
deposits (turbidites) with an average recurrence interval of 34 years during the past 800 years. This suggests
that Mendocino Canyon is the most active canyon on the Cascadia Margin, which extends from the
Mendocino Escarpment 850 km north to Vancouver Island (Figure 1a). This high frequency of events is
attributed to the location of the canyon, close to the triple junction, and the proximity of the canyon head to
the shoreline, enabling capture of shelfal sediments [Goldfinger et al., 2007].

3. Methods

A dive (DR510) of the remotely operated vehicle (ROV) Doc Ricketts was conducted on 3 August 2013 in the
head of Mendocino Canyon. The Doc Ricketts is operated from the ship R/V Western Flyer, which is a
dynamically positioned (DP) vessel. The position of the ROV is continuously tracked using an ultrashort
baseline system. The ROV was equipped with a high-definition camera that provides continuous video
observations, a conductivity-temperature-depth (CTD) sensor (SBE 19plus), and a transmissometer (Wet Labs
C-Star) located 1.25m, 2.34m, and 2.44m above the base of the ROV, respectively. Depth adjustments were

Figure 1. (a) Location of Mendocino Canyon (MC). (b) Location of the ROV dive sites and weather buoys. (c) Map showing the flight path of the ROV. (d) Timeline
of events with the depth of the ROV and turbidity (BAC) shown. The colored letters refer to the key events shown in Figure 1d, and the yellow stars show points
at which the thickness of the lower layer was measured.
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made that accounted for the relative positions of different instruments. The video observations were
recorded continuously, and the CTD and transmissometer data were recorded at 1 s intervals. The ROV was
fitted with a vibracorer and could also take short push cores using its manipulator arm.

The transmissometer measures the transmission of light (A) through a fixed volume of water; these values
were converted to a beam attenuation coefficient (BAC), using BAC=� 1

z ln A , where z is the transmissometer

path length (0.25m) [Sea-Bird Electronics, 2011]. BAC is linearly proportional to concentration for a wide range of
grain sizes and types including clays [Guillén et al., 2000; Xu et al., 2014], and measurements of BAC from
different depths were used to construct vertical profiles. BAC was not routinely converted to concentration
because this requires knowledge of the grain-size distribution. In order to enable comparisonwith other studies,
we calculated a range of potential concentrations for the maximum measured value of BAC using Xu et al.’s
[2014] calibration curves and assuming a range of grain sizes.

4. Results
4.1. Observations During Doc Ricketts Dive 510

The original plan for 3 August was to dive on Eel Fan, 40 km to the northwest of Mendocino Canyon
(Figure 1b); however, this plan was abandoned because wind and sea conditions precluded ROV operations
at this site. National Buoy Data Center stations 46022 and 46213 (see Figure 1b for locations) show that winds
were up to 11m/s with wave heights of up to 2.6m (20min average of the highest one third of waves
recorded) both from the north. These are not unusual wave conditions for this area; waves of this height and
larger were experienced several times per month throughout 2013. Mendocino Canyon Head was chosen as
an alternative dive site because it is in the lee of Cape Mendocino and proved adequately sheltered to
conduct a dive. The plan was to collect a transect of vibracores across the axis of the canyon that would
complement an existing data set for this margin. We did not have a detailed navigational chart to use during
the dive; therefore, prior to launching the ROV, the R/VWestern Flyer collected an echosounder profile along a
transect across the dive site, thus enabling us to locate the thalweg. A series of annotated video clips can
be found at https://www.youtube.com/watch?v=43Hp2ETgIXM.

The ROV landed on the seafloor in 372m water depth on the canyon flank at site 1 (Figures 1c and 1d) at
17:01 universal time meridian (UTM). Visibility was excellent, and the pilots noted a gentle current flowing
west down the canyon with water temperature of 6.31°C and salinity of 34.14 practical salinity unit (psu);
based on our experience, gentle down-canyon currents are common during quiescent periods in submarine
canyons. During the following 2.5 h, a series of push cores and vibracores were collected on a sampling
transect moving toward the canyon thalweg. The thalweg was precisely located by flying the ROV along a
cross-channel transect in order to locate the deepest point. At 19:20 UTM, the transmissometer first recorded
an enhanced turbidity during a period that we were not coring and thus stirring up seafloor sediment
(Figures 1c and 1d, event a). However, these turbidity levels were too subtle to be recognized in the video
data, and there was no perceivable increase in the velocity or turbulence of the down-canyon current.
The deepest point on the transect was reached at 19:30 UTM when the ROV landed on the seafloor in 405m
water depth facing up the canyon in order to take a series of cores directly from the canyon thalweg. At this
time, visibility was still good, and the position of the R/V Western Flyer was fixed in DP. The down-canyon
current was sufficient to transport particles over seafloor ripples (see annotated video - clip #2). At the onset
of coring, the water temperature had increased to 6.94°C, and salinity had decreased to 34.07 psu despite an
increase in water depth.

During 3min (from 19:34 to 19:37 UTM), the video data show that the water gradually became more turbid
until it was no longer possible to see the seafloor (Figures 1c and 1d, start of event b); these visual
observations correlate with a gradual increase in BAC over the same time period. During the following 18min
(Figures 1c and 1d, event b), the ROV maintained its position on the seafloor, while pulses of more and less
turbid water passed through the area with an average periodicity between complete “blackouts” of 5min
(based on the first four peaks in the transmissometer data: Figure 1d, event b). Visual observations show that
the pulses correlate with changes in the thickness of the thin turbid near-bed flow. At its thinnest, the flow
was seen to be billowing through the rack of push core tubes located on the front of the ROV; this constrains
its thickness to ~0.5m (see annotated video - clip #3). The top of this near-bed turbid flowwas observed to be
a sharp and billowing interface.
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During the 18min period that the ROV was on the bottom within the flowing turbid waters (Figures 1c and 1d,
event b), the pilots noted that the lowermost section of the umbilical connecting the ROV to the ship was
streaming out to the west, down canyon, even though the ship remained positioned to the east of the ROV.
The pilots also noted that the current velocity was rapidly fluctuating about a mean down-canyon
direction. Ultimately, the current spun the ROV around, and the pilots were forced to lift the vehicle off the
seafloor in order to regain control of the vehicle. At the point that the ROV left the canyon floor, the water
temperature had increased to 7.31°C, and salinity had decreased to 34.04 psu.

In the following 2min, the ROV was transported ~14m down canyon, despite efforts to fly at full speed in
the opposite direction (Figures 1c and 1d, event c). The velocity of the ROV depends on its position relative
to the ship and the length of the umbilical attaching it to the ship. The ROV was in a favorable position
(flying toward the ship) to achieve its maximum velocity of 2 knots (~1m/s), which has been measured on
previous dives using a Doppler velocity log. In order to try to regain control, the ROV ascended 83m to a
water depth of 316m. However, a strong turbulent current was experienced throughout this depth, and
the ROV was swept 98m farther down canyon before control was regained (Figures 1c and 1d, event d).
While ascending, an abrupt billowing interface between the turbid and dilute flow was observed at a water
depth of 402m, which was 3m above the thalweg. Thus, at this time, the flow comprised a thin turbid
near-bed layer observed to increase from 0.5 to 3m in thickness with a sharp billowing top overlain by a
dilute ≥80m thick turbulent layer.

Having regained control of the ROV after ascending to 316m water depth, a return to the seafloor at site 2
was attempted. During the descent, the ROV was pushed 75m southwest down the canyon (Figures 1c
and 1d, event e). The descent was abandoned at 399m water depth (Figures 1c and 1d, event f), which was
10m above the seafloor according to the altimeter on the ROV (Figure 1c; site 3). At this depth, visibility was
poor, and the current velocity made it unsafe to attempt to land the ROV on the seafloor; thus, the ROV
again ascended to 316m water depth in order to regain control.

The ROV proceeded to fly up canyon (with difficulty) at 347m water depth (Figures 1c and 1d, event g),
where a final attempt was made to land the ROV on the seafloor at a site 100m east and therefore
upstream of site 2 (Figures 1c and 1d, event h). At 20:43 UTM, the ROV landed on the seafloor in 388m of water;
the water was turbid, but the visibility was sufficient to see ripples on the seafloor. The ROV proceeded to
locate and land within the thalweg (398m) (Figures 1c and 1d, event i), where visibility was diminished
due to a turbid flow that was observed to roll clumps of kelp over the bottom (Figures 1c and 1d, event j).
Four minutes after landing in the thalweg, visibility increased sufficiently to see particles travelling as
bed load across the seafloor. Visibility remained sufficient to see the seafloor for 7min, after which, there
was another pulse of more turbid water carrying clumps of kelp. At 21:04 UTM, deteriorating weather
conditions on the surface required that the ROV be recovered. During the ascent (Figures 1c and 1d, event k),
a sharp billowing interface with “clear water” was observed at 368m water depth (see annotated
video - clip #4), which was 30m above the thalweg. On leaving the bottom for the final time, the water
temperature had risen to 7.54°C, and salinity had reduced to 34.00 psu.

4.2. Turbidity and Velocity Profiles
4.2.1. Turbidity
Four BAC profiles, herein referred to as turbidity profiles, were reconstructed from the ROV transmissometer
data: one background profile from site 1 prior to and during the earliest very dilute stages of the current
(Figure 2a), one profile from site 2 where the current was first encountered (Figure 2b), and two profiles from
site 4, the final location where the current was encountered (Figures 2c and 2d). The background turbidity
profile is nearly vertical but increases slightly within 50m of the seafloor (Figure 2a); this profile is typical
of profiles from other submarine canyons during quiescent periods. The depth-averaged BAC of this
“background” profile is 0.9m�1 after removing the surface peak.

The final turbidity profile (Figure 2d) clearly demonstrates the two-layered anatomy of the flow. A 30m thick
lower layer with a depth-averaged turbidity of 1.9m�1 is overlain by an 89m thick dilute layer with a depth
averaged turbidity of 1.0m�1 that returns to a background turbidity of 0.9m�1 at 278m water depth.
For reference, the maximummeasured BAC of 5.17m�1 in profile 2 represents a volume concentration in the
range of 0.004–0.04%, assuming a grain size range of 63–150μm. Thus, while we refer to the basal layer as
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dense relative to the overlying layer, its absolute concentration is very dilute and of insufficient concentration
for granular interactions to be important [Amy et al., 2006].

The three turbidity profiles from sites 2 and 4 corroborate the visual observation that through time, the
thickness of the turbid lower layer increased. The turbidity of the lower layer is 1.4m�1 in profiles 2 and 3
(Figures 2b and 2c) and increases to 1.9m�1 in profile 4 (Figure 2d). Given that BAC is linearly proportional
to concentration, this represents a 36% increase in concentration. In contrast, the depth-averaged turbidity of
the upper dilute layer fluctuates from 1.1m�1 in profile 2 (Figure 2b) to 1.0m�1 in profile 4a (Figure 2c)
and then back to 1.1m�1 in profile 4b (Figure 2d); this represents a 10% increase in concentration between
the final two profiles. The BACmeasurements demonstrate that the upper layer contained sediment in excess
of background values; however, the video recordings are too insensitive to reliably detect such low
concentrations of sediment.

Figure 2. Profiles of depth versus beam attenuation coefficient (turbidity) (a) Profile 1 collected at site 1 prior to and during the earliest dilute stages of the
turbidity current. The green dots show data used to calculate the background depth-averaged BAC. (b) Profile 2 at site 2. The blue and red dots show data
used to calculate the depth-averaged BAC of dilute and turbid layers, respectively; the pale green hashed line shows the background profile from Figure 2a.
(c) Profile 3 collected at site 4. (d) Profile 4 collected at site 4. (e) The idealized model of a turbidity current redrawn using data from Baas et al. [2005] and
Leeder [2011]. (f ) Model summarizing the key features of the turbidity current. The turbidity profiles are all to the same scale. The double headed arrows show
the time range over which the profiles were collected. The coloration of the ROV track corresponds with the coloration of events a to k in Figure 1. Video clips
are available at https://www.youtube.com/watch?v=43Hp2ETgIXM.
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4.2.2. Velocity
The velocity of the current was estimated from the sum of the velocity that the ROV was swept down canyon
and the speed at which the ROV was flying against the current; the forward speed of the ROV at full thrust
was ~1m/s. Using this method, a velocity of ~1.7m/s was measured 3.5m altitude above the thalweg,
while the ROVwas being swept down canyon between sites 2 and 3. The thickness of the lower turbid layer at
sites 2 and 3 varied between 0.5m and 10m; thus, the highest velocities occurred within the turbid lower layer.
Velocities of ~1m/s were also estimated for the upper dilute layer on the basis that the ROV struggled to fly
up the canyon against the current.

5. Discussion

We interpret the event described above to have been a turbidity current on the basis that it was a sediment-
laden, turbulent flow that moved downslope within the canyon. The turbidity current was up to 119m thick,
had an estimated maximum velocity of ~1.7m/s, and concentration of <0.04 vol %; thus, it is comparable in
scale to subannual turbidity currents measured in Monterey Canyon [Xu et al., 2004, 2014; Talling et al., 2013,
Table 1] that dissipate within the canyon. It is likely that this flow left behind atmost millimeter-scale deposits on
the canyon floor; thus, it was a very small flow in comparison to the flows that laid down the decimeter- and
meter-thick sand-rich turbidites that are common in the geological record.

5.1. Structure of the Turbidity Current

An important feature of this turbidity current is that it had two distinct layers: a thin and relatively dense basal
layer overlain by a thick and dilute cloud. This is the first data showing distinct layers within a field-scale turbidity
current and how those layers evolved through time. A simple model of the turbidity current based upon the
above observations and measurements is shown in Figure 2f. This model assumes that sites 1 to 3 were
sufficiently closely located to be considered as approximately the same location; this is justified because the
maximum distance between the sites is <180m, whereas the turbidity current is likely to have traveled
for many kilometers.

The observations show that the turbidity current comprised two layers that we infer resulted from the
interaction of two initial flow pulses. This inference is based on the structure of the flow front, which did not
resemble the simple abrupt interface often depicted in textbook models. First, the front of the flowwas not the
fastestmoving part of the flow; the faster moving basal layer lagged the flow front by 14min. Experimental data
suggest that the downslope advance of the head of a turbidity current is slower than the current velocities
measured within their bodies [e.g., Kneller and Buckee, 2000]. However, the observed time lag of 14min for a
body estimated to move at 1.7m/s requires the head of the flow to be ~1.4 km long, which is difficult to
reconcile with classical conceptual models [e.g., Allen, 1985]. Second, the dilute layer, that included the flow
front, was only observed to be turbulent when it occurred on top of the fast, turbulent, and relatively dense
basal layer. This suggests a strong and rapidly acquired coupling between the two layers. Furthermore, the
wedge shape of the lower relatively dense layer and the lack of a bulbous head are characteristics of a fast dense
gravity current intruding into a slower less dense gravity current [Fernandez and Imberger, 2008].

Experiments suggest two possible fates for this turbidity current: either the two layers mix to form one layer
or the lower relatively dense layer overtakes the front of the original flow with little or no mixing and
becomes the new flow front [Gladstone et al., 2004; Amy et al., 2005; Fernandez and Imberger, 2008]. Which
fate occurs is determined by the density difference between the two layers. Fernandez and Imberger [2008]
define a density difference ratio (Δ*): Δ* = (ρ1� ρa)/(ρ2� ρa), where ρ1 is the density of the initial dilute
gravity current, ρ2 is the density of the latter dense gravity current, and ρa is the density of ambient fluid:
Δ*> 0.5 leads to mixing, whereas Δ*< 0.4 leads to the dense layer becoming the new flow front. The
turbidity current in Mendocino Canyon had Δ*~0.26 making it likely that the dense layer overtook the dilute
layer and ultimately became the new flow front.

The lower dense layer was characterized by rhythmic oscillations in turbidity that were observed to correlate
with changes in the thickness of the lower layer. These oscillations had a much longer length scale than
the billows visually observed at the interface between the layers. Instabilities at the interface between
moving fluids of different densities are widely recognized, including in some laboratory-scale gravity current
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[Amy et al., 2005] and turbidity current [Cartigny et al., 2013] experiments. Such features have been attributed
to Kelvin–Helmholtz instabilities or roll waves [Cartigny et al., 2013].

5.2. Triggering

The turbidity current was not triggered by the ROV because the flow came down canyon from the east,
whereas the ROV had been operating to the north (Figure 1c). No earthquakes shortly predated or correlated
with the onset of the turbidity current [United States Geological Survey and California Geological Survey, 2014].
Given the weather conditions during the dive, the turbidity current may have been triggered by storm-wave
loading of shelfal sediments during rough seas. Storm-wave loading does not necessarily represent an
instantaneous turbidity current trigger, but instead, sediment may be periodically swept into the canyon
head throughout the duration of the storm. We also observed relatively warm freshwater entering the
canyon head prior to the onset of the turbidity current as has been observed on other margins [Ulses et al.,
2008]. Buoyant downwelling can result from water piling up at the coast during storms, thus creating a
hydraulic head [Ulses et al., 2008], or advection of a relatively buoyant oceanographic water mass over the
canyon head. This water movement may have disturbed the bottom sediments and triggered the turbidity
current. Ultimately, we are uncertain how the turbidity current was triggered.

5.3. Measuring Turbidity Currents in the Oceans

Cable breaks provide the only measurements of the largest turbidity currents that reach the deep ocean and
deposit thick layers of sand on submarine fans [e.g., Piper et al., 1999; Carter et al., 2012]. Estimating flow
velocities from cable breaks is based on the assumption that the cable is broken by the front of the turbidity
current, and therefore, the timing of sequential cable breaks can be used to infer the frontal velocity of the
turbidity current. However, if the flow front is complex, which is most likely in proximal locations, then the
critical conditions to break the cable may be attained in the body rather than the head of the flow.
Furthermore, there is no reason to assume that the critical conditions required to break a cable may not
migrate spatially within the turbidity current as it evolves. While velocity estimates from cable breaks provide
rare insights into the nature of turbidity currents, our data suggest that some caution should be attached to
such estimates until the structure of turbidity currents is better understood.

This data set provides a new perspective on the character of turbidity currents in the ocean. The data pose
challenges not simply for understanding the dynamics of turbidity currents but also for how wemight measure
similar flows in the future. These unorthodox measurements were collected by fortuitous chance, and it is
sobering to consider what features of this flow would have been captured if there had been a conventional
mooring in Mendocino Canyon Head on 3 August 2013. A typical mooring comprises an acoustic Doppler
current profiler (ADCP) located ~70m above the seafloor and a selection of other equipment such as CTD
profilers, transmissometers, and sediment traps at fixed heights above the bed but rarely, if ever, within ~15m
of the seafloor due to the risk of damage to equipment [e.g., Xu et al., 2014]. First, we would have no visual
observations of the flow, which were important in interpreting the physical measurements. Second, we would
have no measurements from within ~4m of the seafloor, which we have demonstrated can contain relatively
concentrated near-bed layers. Third, given battery constraints (e.g., hourly sampling intervals), the ~1.5h of
observations described here would be averaged into a few data points or profiles for each instrument. For
example, Xu et al. [2013] had two ADCPs in Monterey Canyon spaced 14.5 km apart. One ADCP averaged
125 pings over a 40min period; the other ADCP averaged 60 pings over a 1min period at 10min intervals. On a
positive note, one or more moorings would have enabled measurement of profiles of velocity and backscatter
that spanned the full duration of the turbidity current, albeit it is questionable how well the ADCP would have
penetrated across the abrupt rheological interface and into the relatively dense lower layer. Moorings would
also have enabled collection of samples detailing flow composition. There is a clear need for the development
of innovative techniques to measure oceanographic turbidity currents, in particular with respect to penetrating
into dense near-bed layers and improving the temporal resolution of measurements.

6. Conclusions

In this paper we present novel observations of a turbidity current, which was fortuitously encountered during
an ROV dive in the head of Mendocino Canyon, California. We were able to observe the evolution of the
turbidity current over 1.5 h.
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The turbidity current had a total thickness of up to 119m and comprised two distinct layers: the upper layer
was thick (up to 89m) and very dilute, whereas the lower layer was thin (0.5–30m), fast (~1.7m/s), and much
denser than the upper layer, albeit its absolute density was still dilute (<0.04 vol %). The fast moving basal
layer lagged the slower moving dilute flow front by 14min. This observation combined with the wedge
shape of the lower layer and the lack of bulbous head leads us to infer that the turbidity current originated as
two separate pulses: an initial sluggish dilute flow that was intruded by a later faster higher density flow.
The interface between the two layers was characterized by a wave-like instability. The lower layer was highly
turbulent, whereas the upper layer was only observed to be turbulent once the lower dense layer had
intruded it. This suggests an important coupling between the dynamics of the two layers.

We present a novel set of observations of an ocean turbidity current that provide unique insight into the
complex structure of turbidity currents that should be considered in future experimental, numerical, and
conceptual models. In addition, these observations highlight the need to develop suitable technologies to
purposefully and systematically measure similar flows in the future.
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