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This paper presents a complex ray-tracing tool for the calculation of high-frequency
Green’s functions in 3D mean field jet flows. For a generic problem, the ray solution
suffers from three main deficiencies: multiplicity of solutions, singularities at caustics, and
the determining of complex solutions. The purpose of this paper is to generalize, combine
and apply existing stationary media methods to moving media scenarios. Multiplicities are
dealt with using an equivalent two-point boundary-value problem, whilst non-uniformities
at caustics are corrected using diffraction catastrophes. Complex rays are found using a
combination of imaginary perturbations, an assumption of caustic stability, and analytic
continuation of the receiver curve. To demonstrate this method, the ray tool is compared
against a high-frequency modal solution of Lilley’s equation for an off-axis point source.
This solution is representative of high-frequency source positions in real jets and is rich in
caustic structures. A full utilization of the ray tool is shown to provide excellent results.

I. Introduction

As industrial design continues to look at less conventional jet engine nozzles that produce typically
asymmetric mean flows, there is now a need for completely 3D noise prediction schemes. To date,

most prediction schemes have been based on extensions of the acoustic analogy given by Lighthill:1,2 for in-
stance Lilley3 for a parallel shear flow, and more recently the generalized acoustic analogy due to Goldstein4

for arbitrary flows. The acoustic analogy procedure starts from the nonlinear fluid dynamic equations as-
suming that one can decompose the field variables into the sum of mean and fluctuating parts for small
disturbances. The equations are then linearized about a representative base flow retaining the non-linear
terms as part of prescribed source term. Since the non-linear source term in the analogy is either known
a priori or can be modelled statistically, the problem may be reduced to the determination of the mean-field
Green’s function.

It is well known that the Green’s function for a generic moving media problem has no closed form solution
and only in the cases of constant flow and parallel shear flow can one form a wave equation in one variable
without recourse to perturbation methods. However, since the noise produced in many aeroacoustic problems
is dominated by high-frequency sources, it is expedient to look for a form of solution that exploits the small
wavelength nature of the acoustic field. Such a form is offered by geometrical acoustics, where a WKB
(see for e.g. Brekhovskikh5) type series is formally introduced into the governing equations and an infinite
system of simpler equations generated. The method of characteristics can then be used to solve the leading
equations of phase and amplitude in terms of an initial value problem (IVP), the integral curves of which
are known as rays.

Real ray theory as a method of computing high-frequency flow-interaction effects in jets is not new,
having been used by Candel6 for mean fields and Freund et al.7 for turbulent fields. However, there is yet
to be an efficient framework for dealing with a fully complexified ray problem in moving media that takes
account of deficiencies that would be expected in a free-field scenario.
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In this paper we seek to provide a framework that takes account of these deficiencies, utilizing methods
that exist in other branches of high-frequency theory. The deficiencies we are concerned with are the
following: the arrival of multiple ray trajectories at a given receiver location, the determination and tracking
of complex solutions, and the divergence of ray amplitudes at caustics.

The first two deficiencies are addressed in Section II. Defining the general problem as a point source
solution to the linearized acoustic equations, we use the time-harmonic matched ray method due to Avila
& Keller8 and Durbin9 to express a generic ray contribution to the field, recasting the resulting ray IVP
as a nonlinear boundary value problem (BVP) that explicitly represents the receiver. The roots of the
BVP correspond to rays that propagate to the desired receiver point and their determination is non-trivial.
The simplest scheme for approximating these roots is through an equivalent functional iteration effected
by Newton’s method. If we traverse a receiver curve natural parameter continuation can then be used to
generate a series of solution curves or branches. At caustics several of these curves will bifurcate generating
a set of new, possibly complex, solution branches. This makes a caustic ideal for transitioning from real rays
to complex rays, and one we take advantage of by introducing a simple complex continuation method that
generates a nearly complete set of solutions.

In Section III we correct the divergences shown at caustics by employing a classification program known
as catastrophe theory (Gilmore10). We determine all coalescing ray contributions at a caustic, thus allowing
us to identify an appropriate uniform solution, known as a diffraction catastrophe, that remains bounded
at the caustic. An expansion of the field locally using this method leads to an ordered asymptotic sequence
in the diffraction catastrophe and its derivatives. In this paper we consider only cuspoid catastrophes, the
simplest, and most familiar is the Airy function used by Ludwig11 to describe the high-frequency field in the
vicinity of a fold caustic.

The final part of this paper, presented in Section IV, is devoted to validating the ray tool. We consider
an isothermal parallel shear flow whereby the governing acoustic equations can be manipulated into Lilley’s
equation. Using a high-frequency modal solution of Lilley’s equation due to Wundrow & Khavaran12 we
show that the complex ray-tracing tool developed in Sections II and III can achieve excellent accuracy,
particularly in the shadow zone known as the cone of silence. The authors believe that this is the first
numerical realization of complex rays using ray trajectories for this flow regime.

II. Theoretical basis.

A. High-frequency ray solution.

As the starting point for our ray solution we consider the inviscid, inhomogeneous continuity and momentum
equations linearized about a mean flow. For a time harmonic field proportional to e−iωt these are

−iωρ′ +∇ · (uρ′ + u′ρ) = ρq,

−iωu′ + u · ∇u′ + u′ · ∇u+∇
(
c2ρ′/ρ

)
= f/ρ, (1)

where ρ′ and u′ are the acoustic density and particle velocity; ρ, u, and c are the density, velocity, and
sound speed of the mean field; and ω is the frequency. The quantities q and f are externally applied volume
sources that, for the construction of a Green’s function, are replaced by an appropriate point source.

The high-frequency Green’s function for the acoustic density in Eqs. (1) that we now derive is due to
Durbin.9 The full details can be found therein, however for the purposes of this paper it is expedient to
outline the bare bones of the ray matching method.

The matching method consists of two parts, summarized in Figure 1: we derive a ray solution away from
the point source (shown in red) in the outer region, so that we only deal with the homogeneous system of
Eqs. (1); we then calculate the near source solution, or “inner” solution by introducing an inner variable
that captures the rapid variation of the point source. Assuming the existence of a transition region where
the two solutions overlap, the method of matched asymptotic expansions (see for e.g. Van Dyke13) assures
a match.

1. Near source solution.

In the vicinity of the point source the mean field quantities assume constant values (denoted by subscript
s) so that all derivatives of these terms appearing in Eqs. (1) may be discarded. Close to the source it is
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appropriate to use an inner variable y = k0(x − xs), where xs is the source location, k0 = ω/c∞ is the
characteristic wavenumber of the field, and c∞ is a reference sound speeda.

An inner wave equation for ρ′ is then formed to give,

(ρ′/a2
s) + 2i(M s · ∇yρ′/as) +∇y · T s · ∇yρ′ = −δ(y)k0, (2)

where a = c/c∞ and M = u/c are the dimensionless sound speed and local Mach number, respectively. The
matrix T and its inverse are defined, using index notation and the kronicker delta δij , as,

Tij = δij −MiMj , T−1
ij = δij −MiMj/β

2, β2 = 1−MiMi. (3)

In the derivation of Eq. (2) the source distribution ρs/c
2
s(iω − us · ∇)q +∇(f/c2s) has been replaced by the

scaled delta function −δ(y)k0 to form the Green’s function for ρ′. Equation (2) is soluble in terms of Hankel
functions under a suitable transformation so the inner solution according to Durbin9 is,

ρ′ ∼ ieiy·MsH
(1)
1/2(η/βsas)k0/4βs(2πηasβs)

1/2, η2 = y · T−1
s · y. (4)

2. Outer source solution

Figure 1. Illustrating the matching
procedure. The inner region (blue)
surrounding the point source (red)
must have an overlap/transition region
(orange) with the outer region.

The outer ray solution is found by formally substituting the following
asymptotic series for the acoustic density and particle velocity into
the homogeneous system of Eqs. (1).

ρ′ ∼ eik0S(x)
∞∑
n=0

An(x)

(ik0)n
, u′ ∼ eik0S(x)

∞∑
n=0

An(x)

(ik0)n
. (5)

Equating all terms that are premultiplied by the same power of k0

leads to an infinite system of recurrence relations in S, An, and
An.5,6 The “asymptoticness” of the ray ansatz assures that for
quantitative purposes we need only calculate the phase S and leading
amplitude terms A0 and A0.

The phase S satisfies the eikonal equation,

1

2
(∇S · T · ∇S) + (M · ∇S)/a− 1/2a2 = 0, (6)

which can be solved by introducing rays that are the characteristics
of Eq. (6) (see for e.g. Bleistein14). The phase of the field may be
determined by propagating rays x(τ) from the source according to
the initial value problem (IVP),

ẋi = Tij(x)pj +
Mi(x)

a(x)
, ṗi = −1

2
pj
∂Tjk(x)

∂xi
pk − pj

∂

∂xi

(
Mj(x)

a(x)

)
+

1

2

∂a−2(x)

∂xi
,

Ṡ = piẋi, (7)

where p = ∇S, and ˙≡ d/dτ . Only in the simplest cases (e.g. homogeneous media) can Eqs. (7) be solved
analytically, so the standard procedure is to integrate, or “fire off”, x(τ) numerically.

Firing off a ray from a point source in 3D requires two angular parameters µ̃ = {µ, λ} along with
one integration parameter τ . The initial firing normal ν̃s = (cosµ, sinµ cosλ, sinµ sinλ) is chosen to be
proportional to the ray group velocity ẋi = σsν̃s, where the constant of proportionality σ is the ray speed
defined by σ =

√
ẋiẋi. Thus the IVP has initial conditions:

xi(0) = xis , pi(0) = T−1
sij

(
σsν̃sj −

Msj

as

)
, σ−2

s =
(
ν̃siT

−1
sij ν̃sj

)
a2
sβ

2
s , S(0) = 0. (8)

aWe take this as the sound speed in a quiescent medium. c∞ = 340 m/s when required.
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3. Amplitude, amplitude match & derived ray equations.

The amplitude term of interest A0(x) for calculating the acoustic density can be shown to satisfy a conser-
vation law along the rays,5

∇ ·

(
A2

0ẋ

ρ
[

1
a −M · p

]2
)

= 0, so that,
A2

0σJ

ρ
[

1
a −M · p

]2 = const., (9)

using the standard argument of a ray tube (Whitham15), and using the Jacobian, J , the determinant of the
Jacobian matrix,

Jmat =

∂x1/∂µ ∂x2/∂µ ∂x3/∂µ

∂x1/∂λ ∂x2/∂λ ∂x3/∂λ

∂x1/∂τ ∂x2/∂τ ∂x3/∂τ

 . (10)

The constant in Eq. (9) is then found using the matching technique of Ref. 13 i.e. taking the limit |y| → ∞
in Eq. (4) and the limit x→ xs in leading term for density in Eq. (5) (using A0 in Eq. (9)), and then equating
in the transition zone shown in Figure 1. The constant is given as,9

const. = σ3
sa

2
s sinµ/4(2π)2ρs

[
1

as
−M s · ps

]2

. (11)

The expression for a generic ray contribution is then,

ρ′ = A0eik0S =

(
1
a −M · p

1
as
−Ms · ps

)(
ρ̄ sinµa2

sσ
3
s

ρ̄sσJ

)1/2
eik0S

4π
. (12)

The only difficulty with calculating this expression now is the Jacobian appearing in Eq. (10). Here we use
the derived ray equation (DRE) method due to Hayes.16 Although, this method has been used previously
by Candel,6 the ray integration parameter and initial conditions (firing proportional to group velocity rather
than p) used here leads to both differences in the form of the DREs and in the numerical calculations.

The DRE method is simple: differentiate (using a partial derivative) the ray equations for xi and pi in
Eq. (7) w.r.t the firing parameters to produce o.d.es for the elements ∂xi/∂µ̃ in the Jacobian. There is no
extra effort required to produce the elements ∂x/∂τ as these are interpreted as ordinary derivatives along
the ray, and are calculated using ẋi in Eq. (7).

Differentiating w.r.t the parameters µ̃ leads to the following coupled o.d.es,

dyik
dτ

=

[
(∂nTij) pj + ∂n

(
Mi

a

)]
ynk + Tijzjk,

dzik
dτ

=

[
−1

2
pj (∂n∂iTjl) pl − pj∂n∂i

(
Mj

a

)
+

1

2
∂n∂i

(
a−2

)]
ynk +

[
− (∂iTjl) pl − ∂i

(
Mj

a

)]
zjk. (13)

where the yik = ∂xi/∂µ̃k are the geodesic elements, and zik = ∂pi/∂µ̃k the conjugate elements. The
initial conditions for Eqs. (13) are derived by taking the same partial derivatives w.r.t the initial conditions
in Eq. (8),

yij(0) = 0, ∀i, j. (14)

zik(0) =
∂σs
∂µ̃k

T−1
sij ν̃sj + σsT

−1
sij

∂ν̃sj
∂µ̃k

, with,
∂σs
∂µ̃k

= −σ3
sa

2
s (Msn ν̃sn)

(
Msj

∂ν̃sj
∂µ̃k

)
,

so that, zik(0) = σ3
sa

2
s

(
Msn

∂ν̃sn
∂µ̃k

)
(Msi − (Msn ν̃sn) ν̃si) + σs

∂ν̃si
∂µ̃k

, (15)

These equations form an extended IVP along with the ray IVP in Eqs. (7) and can be integrated numerically
in the same way.
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4. Complex Integration.

When we deal with complex rays we must allow every quantity we have dealt with so far to be complex. We
have chosen dot products and square roots in the ray and derived ray equations so that it is straightforward
to generalize these quantities to complex variables. Complex ray-tracing may proceed by directly integrating
Eqs. (7) and (13) using a complex step as in Egorchenkov & Kravtsov,17 however it is not so straightforward
to generalize this method to arbitrary complex paths in practice. Instead we prefer to split the equations
into their real and imaginary parts using a real parameterization of the complex path.

According to Eqs. (7) and (13) a generic ray quantity χi is propagated along a ray via the first order
o.d.e,

dχi
dτ

= f(χi,χ, τ), with initial condition, χi(0) = χis , (16)

where χ represents all other dependent ray quantities that may appear in the l.h.s of Eqs. (7) and (13).
Identifying that whenever τ ∈ C we may use a real monotonically increasing variable sτ = [0, 1], to represent
the path as,

τ = f1(sτ ) + if2(sτ ), (17)

where f1, f2 ∈ R. The variable χi is then split into real and imaginary parts i.e. χi = χiRe + iχiRe so that
coupled with Eq. (17), Eq. (16) may be expressed as the real o.d.e system,

dχiRe

dsτ
= f ′1(sτ )<(f(χi,χ, sτ ))− f ′2(sτ )=(f(χi,χ, sτ )), χiRe

(0) = <(χis),

dχiIm
dsτ

= f ′2(sτ )<(f(χi,χ, sτ )) + f ′1(sτ )=(f(χi,χ, sτ )), χiIm(0) = =(χis), (18)

where a prime denotes differentiation w.r.t sτ . The only equation that does not have this form is the
complex phase S, since the dτ/dsτ term cancels out in the last of Eqs. (7). The complex phase equation can
be expressed as,

dSRe

dsτ
= <(f(S,χ, sτ )), SRe(0) = 0,

dSIm

dsτ
= =(f(S,χ, sτ )), SIm(0) = 0. (19)

In this paper we will use the simplest parameterization possible i.e. a straight line between τ = 0 and τ = τR,
so that f ′1,2 are constant. It is, however, possible to integrate along any piecewise smooth path joining the
integration endpoints given that there no singularities obstructing path deformation.

B. Two-point boundary problem and continuation methods.

1. Conversion to a boundary value problem (BVP).

As it remains the ray problem is a function of the ray parameters s = {µ̃, τR} and not of the receiver
coordinates xR. In general the relationship between these two is nontrivial. In order to represent the
receiver explicitly we define the following function as in Sambridge & Kennett,18

F (xR, s) ≡ x(τ)− xR, (20)

so that rays arriving at the receiver point satisfy F = 0. We can solve Eq. (20) in terms of the ray parameters
s by forming an iterative system of equations equivalent to it (see e.g. Keller19). The most effective procedure
is a multidimensional Newton method applied to Eq. (20),

s(k+1) = s(k) −DF−1(s(k);xR)F (s(k);xR), (21)

where DF is the transpose of the Jacobian matrix Eq. (10), and k is an iteration counter. Utilization of
Eq. (21) starts by firing a distribution of real test rays s(0) for a receiver point and iterating the system
until convergence, discarding all non-unique s’s. Convergence is determined when user defined tolerances
are met |xiR − xi(τR)| < xiTol such that F ≈ 0. It is preferable to start with real rays in this way because
the domains of convergence of Eq. (21) for complex rays means an inaccurate guess will quickly lead to
divergence. Complex solutions can be found using the methods discussed below.
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2. Continuation at caustics.

For most calculations we are not just interested in the solution at just one point, but along a receiver curve
generated by some monotonic scalar parameter within xR, α say. The simplest method of obtaining solutions
is by using a natural parameter continuation whereby the solutions at xR(α) are used as the starting values
for Eq. (21) at a nearby point xR(α + δα) = xR + δxR. Whenever det(DF ) 6= 0 the implicit function
theorem guarantees that a sequence of smooth curves Γs(α) are generated in all ray parameters, s, for each
unique ray solution.18 However, when det(DF ) = 0 (i.e. J = 0) the receiver curve hits a caustic and several
of the paths Γs will coalesce and then bifurcate upon increase of α. The coalescence of the bifurcation paths
corresponds to the tangency of the ray trajectories (pertaining to the coalescing s) of Eq. (7).

At a caustic Eq. (21) ceases to be effective for tracking all solutions that coalesce. Rather than recourse
to elements of bifurcation theory to provide the local curve tangents at the bifurcation, we use a complex
continuation method. The main advantage here is that the bifurcation formulae, which become increasingly
complicated with increasing numbers of coalescing rays, may be avoided. We proceed by identifying all rays
satisfying Eq. (20) that coalesce at the caustic point αC in α-space. It is assumed that the caustic appears
as a point in α-space, i.e xR doesn’t cut a caustic surface tangentially, and that other caustics aren’t densely
packed so that coalescences of bifurcation curves have some finite separation in α.

Starting at a point α1 near the caustic, each coalescing ray solution can be analytically continued to the
other side of the caustic α2 by taking a path in complex α-space around αC , so that xR ∈ C in Eq. (20).
An example of two such paths is shown in Figure 2. The most straightforward paths are half-loops such as
Path 1 and Path 2, although the exact path is arbitrary given sufficient distance from αC .

ΑCΑ2 Α1

Path 1

Path 2

Α Î C

Figure 2. Continuation of rays from α1

around the caustic αC to α2. Where
α2 < αC < α1.

The continuation method has the further advantage in that
returning to the starting point α1 (e.g Path 1 followed by the
reverse of Path 2 in Figure 2) we may have passed smoothly onto
another branch of the ray solution that wasn’t picked up in the
initial searches. In fact if a new solution is recorded then this
branch should be continued around the caustic multiple times to
generate the maximum number of new ray solutions at both α1 and
α2. Doing so increases our chances of providing the appropriate
local form to correct divergence at a caustic (see Section III), since
this relies upon identifying all coalescing ray contributions at αC .

Armed with this continuation method we can now recommend
that complex rays are picked up using the continuation method
whenever xR encounters a caustic. The natural parameter contin-
uation for rays looping around the caustic is much smoother than
a bifurcation analysis across the caustic and thus proves suitable
for connecting to complex branches where only a small sign-independent imaginary perturbation is required
when leaving α1.

As a final note in this section it is worth mentioning for consistency with the next section that in pos-
tulating the continuation method we have assumed implicitly that the caustics encountered are structurally
stable (see for e.g. Berry & Upstill20). This means that each coalescing ray solution is behaving locally as
the root of a polynomial and so smoothly continuing α means that we are effectively continuing the roots
of this polynomial. This also ties in with another property of structural stability known as the conservation
rays. Put simply this means that whenever a caustic is crossed the number of bifurcation paths, or roots of
the polynomial, leading into the caustic must equal those coming out, even if they are complex. Complex
bifurcation curves, if they exist, must then have a conjugate path so that the disappearance of real ray
solutions across the caustic will always be in multiples of 2. When such complex cases arise we will always
neglect exponentially growing rays pertaining to the conjugate branch in favor of exponentially decaying
rays, on physical grounds. On this basis each of the N unique and physical ray contributions arriving at xR
may be summed as,

ρ′ ∼
N∑
n=1

A
(n)
0 eik0S

(n)

, (22)

where any phase discontinuities that arise due to propagation through caustics are implicit in the amplitudes

A
(n)
0 . For real rays these discontinuities must equal −π/220 so that numerical codes calculating Eq. (22)

must have the correct square-root chosen in Eq. (12).
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III. Uniform solutions and catastrophe theory.

In the previous section we took advantage of caustics for continuing rays, finding new branches, and
perhaps most importantly as a means for tracking complex rays. The downside is that coalescing rays fail on
caustics completely by predicting unphysical intensity divergences. Not only do these rays fail at the caustic,
but they diverge from the true field in a region around the caustic of O(k−γ0 ), where γ > 0 is a constant
dependent on the type of caustic. Even though this region shrinks as k0 →∞ it is still necessary to provide
a correction at a caustic point. There are multiple ways of supplying uniformity at caustic, a good example
being Maslov theory.21 Here we choose to employ elements of catastrophe theory.10

Catastrophe theory allows us to replace coalescing ray contributions by a finite set of so-called diffraction
catastrophes. These are local forms that remain uniform at caustic, but still exploit the k0 →∞ properties
of the acoustic field. They also exhibit an important mathematical property, and one we have already
exploited, known as structural stability that requires the caustic to persist under perturbations of the initial
field conditions (e.g. perturbations to the source position). There are two sets of stable caustics: the cuspoids
and the umbilics;20 in the following uniform derivation, analysis is restricted to the former.

In order to express the field in terms of diffraction catastrophes a hypothetical Kirchhoff integral, I, is
postulated for the coalescing contributions. Away from the caustic, I, has the same asymptotic value as the
ray contributions it represents. Using this theoretical device to represent K + 1 rays coalescing at the same
caustic, Eq. (22) is rewritten as,

ρ′ ∼
(
k0

2πi

)1/2 ∫
D

a(ζ;x)eik0Φ(ζ;x) dζ︸ ︷︷ ︸
=I

+

N∑
n=nK+1

A
(n)
0 eik0S

(n)

︸ ︷︷ ︸
Rays not involved in caustic.

, D ∈ R, (23)

where a(ζ;x) is a slowly varying amplitude term, Φ(ζ;x) is a generating function, and nK ≤ K + 1 is the
number of rays from Eq. (22) that are involved in the caustic. The great advantage of catastrophe theory is
that we can write down this form without knowing the precise details of the system, only the local behavior
matters, which is particularly useful since the most generic flow regimes don’t allow us to write down a closed
form integral for the acoustic field in the first place. It should be noted that Eq. (23) is easily generalizable
to multiple groups of rays coalescing at different caustics.

Before the integral I in Eq. (23) is written in a form more convenient for our use, we define the cuspoids
and diffraction catastrophes upon which the method is based. The cuspoids ΨK(ξ) are defined as the
following,

ΨK(ξ) =

∫ ∞
−∞

eiψK(t;ξ) dt, where, ψK = tK+2 +

K∑
m=1

ξmt
m, (24)

and ξ = {ξ1, ξ2, ..., ξK} are control variables. The diffraction catastrophes Ψ̃K(ξ; k0) are then given by,

Ψ̃K(ξ; k0) =

∫ ∞
−∞

eik0ψK(t;ξ) dt = k
− 1
K+2

0 ΨK(ξ̃), ξ̃ = {ξmk
1− m

K+2

0 }. (25)

The cuspoids form a hierarchy of functions in K different to the familiar functions of analysis. The cus-
poid Ψ1 is perhaps the most familiar as it is related to the Airy function via scalings i.e. Ψ1(ξ1) =
(2π/31/3)Ai(ξ1/3

1/3) and has been used previously by Ludwig11 to describe the field at a fold caustic.
Aside from Ψ1, a cuspoid we will make use of later in the paper is Ψ2 which defines the Pearcey function

P (ξ1, ξ2) = Ψ2(ξ1, ξ2).22 As an example of the highly-oscilltory nature of the Ψ̃K ’s and ΨK ’s, Figure 3 shows
the Airy function and its derivative along with |Ψ̃2(ξ)| in terms of the Pearcey function, and the modulus
of the Pearcey function and its ξ2 derivative on the line ξ1 = 0.

Now we have defined the diffraction catastrophes - the essential building blocks of the method - we then
use a generalization of Bleistein’s technique23,24 to expand the integral I in terms of ΨK(ξ̃; k0) and its
derivatives. We map from the ζ-plane to the t-plane using,

Φ(ζ;x) = ψK(t; ξ) +A, A = constant, (26)

and expand the amplitude function as,

a(x)
dζ

dt
=

K∑
k=0

ck,0(x)tk +
dψK
dt

H0(t;x), H0 ∈ C∞, (27)
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AiHΞ1L
Ai'HΞ1L

O

Ξ1

Ξ2

(a) (b)

 PH0, Ξ2L¤
¶P

¶Ξ2

H0, Ξ2L

O

Ξ2

Ξ2

(c)

Figure 3. Example of functions found in uniform asymptotics. Figure 3(a) shows the Airy function and its

first derivative; Figure 3(b) shows the amplitude of |Ψ̃2(ξ; k0)| =
∣∣∣k−1/4

0 P (ξ̃1, ξ̃2)
∣∣∣ (a value of k0 = 20 is used);

Figure 3(c) shows |P (0, ξ2)| and |∂P (0, ξ2)/∂ξ2| .

where dζ/dt is the Jacobian of the mapping Eq. (26). Substitution of Eqs. (26) and (27) into I leads to the
following,

I ∼ (k0/2πi)
1/2

eik0A

k− 1
K+2

0

(
c0,0 +

K∑
n=1

ck,0
ik0

∂

∂ξk

)
ΨK(ξ̃)− 1

ik0

∫
D

dH0

dt
ei0k0ψKdt︸ ︷︷ ︸
R0

 . (28)

The first terms in Eq. (28) contain ΨK and a finite number of its derivatives, and represent the beginnings
of an ordered asymptotic sequence; the second term R0 is a remainder term of O(1). To generate the full
asymptotic sequence we define the following C∞ smooth functions,

dHm(t;x)/dt =

K∑
k=0

ck,m+1(x)tk + (dψK/dt)Hm+1(t;x), m ≥ 0, (29)

which, applied to the remainder integral R0 and subsequent remainder integrals Rm,

Rm =

∫
D

dHm

dt
eik0ψK dt, (30)

leads to the full ordered asymptotic expansion for the Kirchhoff integral,

I ∼ (k0/2πi)1/2eik0A

[ ∞∑
m=0

eimπ/2k
−(m+ 1

K+2 )

0

(
c0,m +

K∑
k=1

ck,me−iπ/2k
−k/(K+2)
0

∂

∂ξ̃k

)
ΨK(ξ̃)

]
. (31)

For future reference it is worth noting that the ordered asymptotic sequence exhibited here allows us to
consider only the m = 0 layer for future computations.

Clearly (given we can calculate the ΨK ’s and their first K derivs.) a uniform calculation of the field requires
only the calculation of the coefficients ck,m and variables {ξ, A}. In order to make tangible evaluations of
these variables we can compare the Kirchhoff integral with the coalescing ray contributions off-caustic.

Expanding I in Eq. (23) (post t-plane mapping) using the saddle-point method23 about all the K + 1
saddles we then equate these contributions with the nK coalescing contributions from Eq. (22), in addition
to those rays that coalesce but are excluded on physical grounds. Though the correspondence between the
saddles and the rays is not yet fixed, symbolically we have,(

a(t?n)
dζ

dt

∣∣∣∣
t?n

)(
d2ψK
dt2

∣∣∣∣
t?n

)−1/2

eik0(ψK(t?n)+A) = A
(n)
0 eik0S

(n)

, (32)
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from which we deduce that,

a(t?n)
dζ

dt

∣∣∣∣
t?n

=

(
d2ψK
dt2

)1/2

A
(n)
0 , and, ψK(t?n) +A = S(n), (33)

where t?n is one of K + 1 saddles such that dψK(t?n)/dt = 0 (referred to henceforth as the saddlepoint
condition). It is the existence of this correspondence near the caustic that was used as motivation for the
continuation method in Section II.B.2. The rays are behaving as the roots t?n of an order K+1 polynomialb,
thus our complex continuation method corresponds to varying these roots smoothly as functions of ξ, which
are in turn functions of x (see below).

We note that a saddle point comparison such as this seemingly remains valid only well away from the
caustic. At a caustic saddles t?n coalesce so that d2ψK(t?n)/dt2 = 0, and the corresponding rays have a
singularity as J vanishes in Eq. (12). So then it may seem paradoxical, but in order to calculate the uniform
expansions where they are required the most, we must rely on ray-tracing data and saddle point expansions
in regions where they are known to fail (or least begin to diverge). In particular, the numerics must cope
with the integrable singularity that occurs when,(

d2ψK
dt2

∣∣∣∣
t?n

)1/2

/
(
J (n)

)1/2

, as
d2ψK
dt2

∣∣∣∣
t?n

, J (n) → 0, (34)

at a caustic (using the expression for A0 in Eq. (12)) so that Eq. (32) remains meaningful. By this we
mean that a(ζ(t)) contains no singularities and that the Jacobian of the map dζ/dt is conformal. It is worth
mentioning that if we had a closed form integral expression for the field, the integrable singularity would be
tackled using a limiting device such as l’Hospital’s rule (see for e.g. Bleistein & Handelsman23).

Returning to Eq. (33), we can fix the correspondence between saddles and rays by determining the
variables {ξ, A}, which was incidentally, our original goal. Unfortunately, as K increases so does the degree
of difficulty in inverting these equations. In fact only for K = 1, 2c is there a closed form solution to this
mapping, so we resort to the iterative method proposed by Connors & Curtis25 to compute {ξ, A} and the
m = 0 layer of coefficients {ck,0}. This consists of making an initial guess {ξi, Ai} ∈ Rd, computing the
saddlepoints t?ni using the saddlepoint condition, and then calculating the updated {ξi+1, Ai+1} by inverting
the closed system,

K∑
k=1

δξki(t
?
ni)

k + δAi = S(n) − ψK(t?ni ; ξi)−Ai, for n = 1, 2, ...,K. (35)

where,
δξi = ξi+1 − ξi, δAi = Ai+1 −Ai, (36)

iterating this procedure until convergence is detected i.e. δξi → 0, δAi → 0. To calculate the first layer
{ck,0} we we use the expansion in Eq. (27) given that the second term on the r.h.s disappears when evaluated
at the saddles points (due to the saddle point condition) and that the l.h.s is given by the first expression in
Eq. (33) under the same evaluation. Thus we invert the matrix,(

d2ψK
dt2

∣∣∣∣
t?n

)1/2

A
(n)
0 =

K∑
k=0

ck,0(x)(t?n)k. (37)

From a computational perspective it is worth noting that t?n, {ξ, A}, and {ck,m} are all functions of
position, and so this algorithm (Eqs. (35) to (37)) has to be repeated every time the receiver position
changes. However, as we move position we can use the solutions {ξ, A} from a nearby point as initial guesses
for the algorithm in a similar manner to the generation of ray bifurcation curves in Section II.B.2. These
iterations and inversions may appear cumbersome but as post-processing corrections to the ray field there
isn’t a significant increase in computational burden.

bK + 1 is the order of the polynomial ψ′K .
cEven though we may only require these cases, it is still useful to prepare a method capable of K > 2 maps.
dFor real receivers this promotes convergence.
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IV. Application to an isothermal parallel-shear flow.

To the illustrate the method we have developed in this paper, we will consider an isothermal parallel
shear flow such that a = 1, ρ = const., and M = δi1u/c∞ = δi1M . It is well known that Eqs. (1) can be
manipulated into a single wave equation governing the acoustic density, and that this is the time harmonic
solution to Lilley’s equation for a point source,26

LωGω = Dω

(
D2
ω − c2∞∇2

)
Gω + 2c2∞∇u · ∇

∂

∂x
Gω = Dωc

2
∞δ(x− xs), (38)

where Gω is the Green’s function, and Dω = (−iω+u ∂/∂x). Even though it is Gω that matches with ρ′ for
a point source solution, we will express our results in terms of Gω which solves Eq. (38) with r.h.s equal to
c2∞δ(x− xs). The two are related via,

Gω = −
(

iω + us
∂

∂xs

)
Gω. (39)

In the above a Cartesian coordinate system {x, y, z} has been chosen so that x is in line with the direction
of flow, so the shear flow is a function of y, z only. In the following it is convenient to convert to a cylindrical
coordinate system {x, r, ϕ}, giving M = M(r) and xs = (xs, rs cosϕs, rs sinϕs), and further use spherical
polars for the receiver position xR = R(cos θ, sin θ cosϕ, sin θ sinϕ) as shown in Figure 4. The coordinates
are related via,

R =
√
x2 + r2, r =

√
y2 + z2, θ = arccos

( x
R

)
, ϕ = arccos

(y
r

)
. (40)

A. Modal solution.

A high-frequency far-field modal solution to Eq. (38) was constructed by Wundrow & Khavaran,12 and this
will serve as the benchmark for the ray-solution. It is given by,

Gω ∼
i Gω

c∞k0(1−Ms cos θ)2

∞∑
n=−∞

(
2

k0

√
−ηn(rs)

rsQn(rs)

)1/2

Ai(ηn(rs))e
in∆ϕ+ik0(ζn−R sin2 θ), (41)

where Gω ≡ eik0R/4πR is the Helmholtz Green’s function and,

ηn(r) ≡ −
(

3

2
k0ζn(r)

)2/3

, ζn(r) ≡
∫ r

rδ

Qn(r) dr, Q2
n(rδ) = 0, (42)

rQn(r) ≡
√
r2q2 − (n/k0)2, q(r) ≡

√
(1−M(r) cos θ)2 − cos2 θ. (43)

O

x

y

z

Flow
Direction

j

Θ

R r

xR

xs

Figure 4. Coordinate system used to
specify flow regime and receiver posi-
tion.

There are a few of points worth mentioning that concern Eq. (41).
Firstly, and most importantly, it contains some high-frequency ap-
paratus itself and therefore would require benchmarking. This has
been undertaken in Ref. 12 where it was shown that good agreement
was reached against an exact numerical computation for Strouhal
numbers as low as 1/2. Secondly, the high-frequency modelling
restricts the receiver ranges in θ such that dQ2

n(rδ)/dr 6= 0, also
known as a first order turning-point criterion. The presence of the
Airy function is indicative of this requirement, providing uniformity
in the modes when rs = rδ, and is not an indication of a caustic in
the 3D ray field as in Eq. (31). Lastly, this solution is also asymp-
totic in the sense that it is valid in the far-field i.e. R → ∞, and
ultimately independent of the x-coordinate due to translational in-
variance of the flow in x. Numerical realizations of Eq. (41) will
reflect this if the source point satisfies |xR| � |xs|.
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(a) (b) (c)

Figure 5. Example fields produced by Eq. (41). Plots show 104 × |Gω/Gω | for a) xs = 0, rs = 0, St = 2; b) xs = 0,
rs = 0.75, St = 2; c) xs = 0, rs = 0.75, St = 5.

As an example of the fields we can expect from Eq. (41), Figure 5 shows 104 × |Gω/Gω|
computed with R = 200, for both an on-axis (xs = 0, rs = 0, ϕs = 90◦)e and off-axis “shear-layer”
(xs = 0, rs = 0.75, ϕs = 90◦) source for Strouhal numbers St = 2 and 5. Here we have used the Strouhal
number St = k0rJ/πMJ , with rJ = 1/2 the effective jet radius, MJ = 0.9 the jet centerline Mach no.,
and flow profile M(r) = MJsech 2(2r). This gives wavenumbers of k0 = 11.3 and k0 = 28.27 for St = 2, 5
respectively. Note that first order turning-point assumption has limited the calculation to θ ≤ 150◦, and
that the fields are expressed in terms of the asymmetry variable ∆ϕ = ϕ−ϕs, 0 ≤ ∆ϕ ≤ 360◦, since for the
same rs, different ϕs fields are simply translations of each other in ϕ. It should be clear from Eq. (41) and
Figure 4 that both ϕ and ∆ϕ have a period equal to 360◦.

It may appear that we have chosen to compute Gω/Gω rather than Gω for numerical reasons, however the
former is more significant than the latter as a measure of flow-interaction. It describes the change in acoustic
field directivity due to the presence of a flow as opposed to a field without it. It is clear from these plots
that the off-axis source solution contains a richer flow-interaction structure - its interference patterns are
enough to demonstrate this - and coupled with the fact that rs 6= 0 is more representative of high-frequency
jet noise sources, qualifies it for further analysis here.

B. Results

1. Ray calculations.

Ray calculations are made using the theory contained in Section II. Using the same flow profile and off-axis
source position used to calculate the modal solution in Figure 5, we set the observer variable α of Section 2
to the spherical polar angle θ, keeping ∆ϕ constant. Varying θ in this way generates cross sections of
the Green’s function shown in Figure 5. To illustrate typical ray solutions that we encounter under this
parameterization, Figures 6(a) and 6(b) show <(x(τ)) trajectories for a receiver curve in the forward arc,
θ < 90◦, ∆ϕ = 300◦, and in the rear arc, 101◦ < θ < 150◦, ∆ϕ = 180◦, with a receiver radius R = 7.

In Figure 6(a) there exists a multiplicity of real solutions as both rays that propagate directly towards
the receiver and rays that are refracted indirectly, i.e. a bent towards the receiver by the flow, reach the same
points. As θ is increased this region of real multiplicities terminates as the flow cannot continue to refract
these rays upwards indefinitely, and instead they propagate into regions for which z < 0. If θ is decreased
these two rays coalesce at a caustic and continuation across the caustic produces one physical complex ray
(shown in red). Locally, this behavior is governed by the fold bifurcation, as demonstrated in Figure 6(c)
using the bifurcation curve Γλ for the ray parameter, λ. To incorporate the complex branches we have shown
Γλ(θ) when Γλ ∈ R, and <(Γλ(θ)) +=(Γλ(θ)) when Γλ ∈ C. The colors of the bifurcation curves correspond
to the rays shown in Figure 6(a), where the black branch is excluded on physical grounds.

eTaking appropriate limits in Eq. (41) for rs → 0.
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(a) (b)

(c) (d)

Figure 6. Real part ray trajectories <(x(τ)) (a,b), and bifurcation curves (c,d). Rays: (a) receiver curve
∆ϕ = 300◦, R = 7, blue - real rays, red - complex rays; (b) a triplet of real rays reaching ∆ϕ = 180◦, R = 7, red
rays leave the ∆ϕ = 180◦ plane. Bifurcation curves, solid lines Γλ, dashed <(Γλ) + =(Γλ): (c) fold bifurcation,
θf , solid blue line - real rays, dashed red - physical complex ray, dashed black - unphysical complex ray; (d)
cusp bifurcation, θf , solid blue/green - real ray contributions, dashed black - no contribution.

The second ray trajectory plot shown in Figure 6(b) has a receiver curve located directly underneath the
source w.r.t the jet axis. Here, a triplet of real rays reach the receiver curve where two of the contributions
(shown in green), both physical and carrying the same numeric contribution to the field, propagate outside
of the ∆ϕ = 180◦ plane. The interference and coalescence of a 3 ray system generates a cusp caustic, which
upon its symmetry line (such as that shown in Figure 6(b)) is governed by a pitchfork bifurcation as shown
in Figure 6(d), again using Γλ. The triplet of real rays in Figure 6(b) correspond to the color-coded branches
for θ ≥ θc in Figure 6(d), where θc ≈ 101◦ in Figure 6(b). For θ < θc only one contribution is made to the
ray field, though this is not shown in the Figure 6(b) in order to distinguish between the coalescing triplet.

The ray trajectories we have shown in Figure 6 suggest that there is more than one caustic structure in
the off-axis Green’s function. Although these multiplicities and caustics pertain to R = 7, they still persist
in the far-field evaluation R = 200, albeit with different fold and cusp positions in θ,∆ϕ-space. To aid the
following discussion of ray computations, Figure 7 shows Figure 5(c) as a 2D directivity map overlaid by
caustic structures for R = 200. This figure shows the existence of a fold caustic θf , and cusp caustic θc
(notably extending beyond the range of the modal solution), both of which are symmetric about the line
∆ϕ = 180◦, and are functions of ∆ϕ so that θc,f = θc,f (∆ϕ) = θc,f (360◦ − ∆ϕ). Figure 7 also shows a
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Figure 7. The caustic structures found in the ray solution of Eq. (41) for xs = 0, rs = 0.75, ϕs = 90◦, R = 200,
St = 5. Blue solid line, fold caustic, θf ; red solid line, cusp caustic, θc; green dashed line, non-canonical
structure, θd.

non-canonical feature, θd, mapped out by the green dashed line. Its union, between ∆ϕ ≈ {103◦, 257◦},
with θf delineates a region exclusive to complex rays known as the cone of silence. This region exists for low
angles θ, and is shaded dark blue in Figure 7.

The effect of these caustics on the magnitude of the ray solution can be seen in Figure 8, where cross
sections of |Gω/Gω| have been plotted against the modal solution for ∆ϕ = {0◦, 60◦, 150◦, 180◦} with St = 5.
Where necessary the plot range is extended to 160◦ to include all singularities due to the cusp.

As expected the ray solution provides excellent agreement with the modal solution for all cross sections
except in the region of these caustics where the divergence is marked. A particularly satisfactory aspect
of the ray solution is that within the cone of silence the exponentially decaying behavior is captured well,
indicating the success of the natural parameter continuation (Section II.B) at tracking complex branches.

Before we discuss the corrections to the divergences, it is worth addressing the features of the ray solution
that pertain to the non-canonical points θd, as this structure will have a say on how we apply the uniform
solutions. Physically, the crossing of θd can be explained in relation to the effectiveness of the flow-profile
at refracting indirect rays to the observer, just as in Figure 6(a). For example, at point (a) in Figure 7
(corresponding to ∆ϕ = 60◦) an increase of θ sees the loss of an indirect ray, that instead of being refracted
to the receiver, propagates away from the receiver curve to make a contribution at ∆ϕ + 180◦ (shown as
point (b) in Figure 7), directly on the opposite side of the jet (w.r.t jet axis) from the receiver curve. For
∆ϕ < 103◦,∆ϕ > 257◦ this disappearance limits the interference we see in the vicinity of the fold and thus
explains the restricted oscillation between θf and θd in Figures 8(a) and 8(b).

The change in the number of real rays (i.e. not in multiples of 2) crossing θd seemingly contravenes the
conservation of rays that we have relied upon up until now. This will limit the range of θ to which we can
apply the diffraction catastrophes in Section III, as the number of rays, and thus roots, must be conserved
in order to apply ΨK .

A further consequence of this non-canonic structure is that it delineates part of the cone of silence, namely
103◦ < ∆ϕ < 257◦ without singularity. This is unusual for two reasons: first, the fold that delineates the
cone of silence for ∆ϕ < 103◦,∆ϕ > 257◦ appears to terminate in real space and; secondly, the transition
into the cone of silence has no bifurcation and therefore rays cannot be continued into the cone of silence
using the methods of Section II.B.2. For instance, continuing the point (b) in Figure 7 into the cone silence
sees the real ray contribution terminate with a finite amplitude; rotation about θd into the cone of silence
leads to rapid divergence of the Newton method Eq. (21). Hence the required complex ray to compute field
must be continued from a ∆ϕ position for which the cone of silence is delineated by a fold caustic.

From a qualitative point of view the absence of a singularity when crossing θd into the cone of silence,
e.g. Figure 8(c), makes for interesting comparison with a field where θ crosses a fold, e.g. Figure 8(a), as the
amplitude of the former is significantly smaller. Clearly, the explanation for this lies in the significant rise
in amplitude of a field near a caustic.
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(a) (b)

(c) (d)

Figure 8. 104 × |Gω/Gω | cross sections for ∆ϕ = const. with xs = 0, rs = 0.75, St = 5. Non-canonic point, θd; fold
caustic, θf ; cusp caustic, θc. Black lines, modal solution; blue lines, ray solution. (a) ∆ϕ = 0◦; (b) ∆ϕ = 60◦;
(c) ∆ϕ = 150◦; (d) ∆ϕ = 180◦.

2. Uniform calculations.

To correct the divergences shown in Figure 8 we apply the machinery of Section III. Given that θd doesn’t
engender an amplitude singularity, all singularities in this problem are governed by the cuspoids. In particular
only the fold and cusp caustics governed by Ψ1 and Ψ2, respectively, are required. Using only the m = 0 layer
in Eq. (31) we compute uniform solutions using one term k = 0, and two term k = 0, 1 expansions. For the
special case ∆ϕ = 180◦, c1,0 = 0, ∀θ, and so a two term expansion uses k = 0, 2. Figure 9 shows the amplitude
and phase of the uniform expansions against the modal solution for the cross sections ∆ϕ = {0◦, 150◦, 180◦}.
In the cases where θd limits application of the uniform asymptotics due to its non-canonical nature, we have
either reverted to the ray expansion (away from θc,f ) or decreased the plot range.

It is clear that the amplitudes in Figure 9 show a great improvement in the region of the caustics where
the divergence is almost completely corrected. Perhaps the worst case is shown in Figure 9(a) where the first
term expansion erroneously predicts zeros on the oscillatory side of the fold caustic θf . The other notable
disparity is shown in Figure 9(e) where a small jump at θc is the product of the numerics coping with the
integrable singularity mentioned in Section III. In general as θ moves away from the caustic we see that
a one term expansion becomes less effective at matching the modal solution. The two term expansion on
the other hand maintains an excellent approximation. The reason the two term is superior to the one term
expansion as the receiver moves increasingly away from the caustic can be understood by expanding ΨK

and its derivatives (those that appear in Eq. (31)) to leading order about all of the nK contributing saddles
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Figure 9. Uniform asymptotic solutions. (a, c, e) pertain to 104 × |Gω/Gω |, black line - modal solution, blue
line - one term exp., red line - two term exp. (b, d, f) pertain to arg(Gω/Gω), black line - modal solution,
blue ◦ - one term exp., red ∗ - two term exp. θc,f,d as in Figure 8. (a,b) ∆ϕ = 0◦; (c,d) ∆ϕ = 150◦; (e,f)
∆ϕ = 180◦.
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using the saddle-point technique (using notation of Section III). Doing so we have,

ΨK(ξ̃) ∼
nK∑
n=1

(
2πi

k0ψ′′K(t?n)

)1/2

eik0ψK(t?n), e−iπ/2k
k+1
K+2

0

∂ΨK(ξ̃)

∂ξ̃k
∼

nK∑
n=1

(
2πi

k0ψ′′K(t?n)

)1/2

(t?n)keik0ψK(t?n), (44)

where ′′ ≡ d2/dt2. Substitution into Eq. (31), taking only the m = 0 layer, and collecting all t?n terms
together we have,

I ∼
nK∑
n=1

K∑
k=0

ck,0 (ψ′′K(t?n)))
−1/2

(t?n)keik0(ψK(t?n)+A)

︸ ︷︷ ︸
A

(n)
0 eik0S

(n)

, (45)

which is in fact just another statement of the matrix system given in Eq. (37). Equation (45) demonstrates
that far off caustic we need to incorporate more than just the k = 0 term (proportional to ΨK) to match up
with the ray field. Only in the region close to the caustic will the k = 0 term make a good approximation
on its own. As θ moves closer to the caustic the coalescing saddle points t?n tend to zero, since if we have
chosen the correct ψK , then at a caustic they are roots of ψ′K(t?n; 0). This allows us to neglect the k > 0
terms in Eq. (45) without diminishing accuracy.

So far we have made little mention of the phase computations. The phase of the ray field at caustics does
not diverge away infinitely from the true field in the way the amplitude does, in fact the phase propagated
along the ray has an integrable singularity at the caustic,16 which at most, manifests itself as a jump. If we
are interested in the phase we do not need to recourse to uniform computations, however we have done this
to further compare the one and two term expansions. Analyzing Figure (9) we reach a similar conclusion to
that of the uniform amplitude: the two term expansion provides a better match, than the one term, though
the difference is not considerable overall. The only major disparity is as before i.e. in the vicinity of the fold
(θf in Figure 9(b)). Here Ψ1 is not adequate for calculating the field, the zeros predicted using this function
alone leads to several jumps in the phase.

V. Conclusion

In this paper we have developed a complex ray-tracing tool for calculating high-frequency acoustic fields
in arbitrary homentropic mean flows due to a point source. Three of the most common problems that
arise in the application of ray theory: multiplicity of solutions, amplitude singularities at caustics and
determination of complex rays, have been tackled. Multiple solutions were found by formulating a ray
boundary value problem (BVP) that represented the receiver point explicitly, which in turn allowed us to
define an equivalent iterative system using a multi-dimensional Newton method. Supported by the implicit
function theorem we generated branches of solutions in the ray parameters via natural parameter continuation
in receiver space. We then used the concept of structural stability to analytically continue these branches
around caustics, with the dual intension of finding complex branches (when they existed) and maximizing our
ability to identify an appropriate diffraction catastrophe to correct the amplitude singularities at caustics.
After developing the basis of our ray tool, we applied it to an isothermal parallel shear flow problem whose
acoustic propagation is governed by Lilley’s equation; the first numerical realization of complex rays using
ray-tracing for this problem. Apart from the expected amplitude singularities engendered by the presence of
a fold and cusp caustic, the complex ray method showed good agreement with a modal solution, particularly
in the cone of silence. In the locality of these caustics a two term diffraction catastrophe expansion proved
effective at correcting the divergence, matching with the ray solution off-caustic. A combined effort of two
term expansion and ray solution provided excellent agreement in both amplitude and phase globally. We
also noted a non-canonical feature of the ray field related to the shear layer’s refractive properties. As a
mathematical phenomena this disappearance - which apparently contravenes the conservation of rays - is
unresolved: however, it does not undermine our method as a numerical tool. The results shown in this paper
have altogether proved encouraging and it is the conclusion of this paper that application of the ray tool to
more complicated flows than the one considered here would meet with similar success.
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