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Measurements of turbulent diffusion in
uniformly sheared flow
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The diffusion of a plume of dye in uniformly sheared turbulent flow in a water tunnel was
investigated using simultaneous stereoscopic particle image velocimetry and planar laser-
induced fluorescence. Maps of the mean concentration and the turbulent concentration
fluxes in planes normal to the plume axis were constructed, from which all components
of the second-order turbulent diffusivity tensor were determined for the first time. Good
agreement between the corresponding apparent and true diffusivities was observed. The
turbulent diffusivity tensor was found to have strong off-diagonal components, whereas
the streamwise component appeared to be counter-gradient. The different terms in the
advection-diffusion equation were estimated from the measurements and their relative
significances were discussed. All observed phenomena were explained by physical argu-
ments and the results were compared to previous ones.
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1. Introduction

Turbulent diffusion is the process of spreading and mixing of admixtures by turbulent
motions. It is the essential mechanism that drives dispersal of pollutants in the environ-
ment, mixing in industrial processes, and chemical reactions in diverse systems. Although
turbulent diffusion has been studied extensively for a long time, its analysis for engineer-
ing purposes is still based on crude models and is mostly concerned with the prediction
of the mean concentration of the admixture (Roberts & Webster 2002).

The exact governing equation for the mean concentration C of an admixture released
passively in a turbulent flow is the Reynolds-averaged advection-diffusion equation
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where Ui is the mean velocity vector, γ is the molecular diffusivity, and cui is the
concentration-velocity covariance or turbulent mass flux vector. Even if the mean ve-
locity field were specified, this equation would be open in C. One type of closure is
possible by the use of a model for the turbulent mass flux vector in terms of C. The most
commonly used model is the first-order gradient transport model (Arya 1999)

−cui =Dij
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, (1.2)
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where Dij is the turbulent, or “eddy”, diffusivity tensor, which has nine components,
the values of which depend on the turbulent field. The gradient transport model is based
on the assumptions that the macroscopic characteristic lengthscale of the scalar is much
greater than that of the transporting mechanism (i.e., the turbulence) and that the
flow properties are approximately homogeneous over the turbulence lengthscale (Corrsin
1974). Despite the fact that these assumptions are not satisfied in most cases of interest,
the gradient transport model is known to provide fairly accurate predictions in a variety
of situations (Sreenivasan et al. 1982). Application of (1.2) requires empirical knowl-
edge of all nine components of Dij . Nevertheless, measurements of these components are
quite scarce, due to the difficulty of measuring simultaneously the local magnitudes and
directions of both the mean concentration gradient and the turbulent mass flux vector.
Theoretical expressions relating Dij to turbulent characteristics have also been suggested;
these will be discussed in following sections. Some models simplify the turbulent diffu-
sivity tensor by assuming that it is diagonal or isotropic, but the use of such simplified
models in shear flows is known to introduce additional errors.

The objective of the present work is to study turbulent diffusion in a shear flow gen-
erated in the laboratory and specifically to measure all components of the turbulent
diffusivity tensor in this flow. The scalar property that has been measured is the concen-
tration of dye in a plume released nearly passively from a thin tube in uniformly sheared
flow (USF). The statistical properties of the velocity and scalar concentration fields were
measured simultaneously on cross-sectional planes using stereoscopic particle image ve-
locimetry (SPIV) and planar laser-induced fluorescence (PLIF). Thus, two-dimensional
maps of the turbulent velocities and scalar concentration were obtained, as well as maps
of the three concentration-velocity covariances; from these maps, the values of all compo-
nents of the turbulent diffusivity tensor were determined directly by fitting (1.2) to the
data. This is the first time all nine components of the turbulent diffusivity tensor have
been determined together experimentally. This article will also present comparisons of
the experimental results to theoretical estimates of the turbulent diffusivities.

2. Literature on turbulent diffusion

The study of turbulent diffusion originated with the work of Taylor (1921), who con-
sidered the one-dimensional motion of an individual fluid particle released from a fixed
point in stationary isotropic turbulent flow, neglecting molecular diffusion. He demon-
strated that the variance of an ensemble of particle displacements following time t from
their release should depend only on the turbulence properties as

X2(t) = 2v2 ∫
t

0
(t − ξ)R(ξ)dξ, (2.1)

where v represents the Lagrangian velocity fluctuations and R(ξ) is the Lagrangian
correlation coefficient. Taylor further identified two regimes of diffusion which would
occur in the limits of short t and long t, known as the turbulent convection and turbulent
diffusion regimes (Anand & Pope 1985). In these regimes, (2.1) would be simplified as,
respectively,

X2(t) ≈ v2t2, for t≪ T, (2.2)

X2(t) ≈ 2v2Tt, for T ≪ t, (2.3)
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where T is the Lagrangian integral timescale of the turbulence. It follows that the rate
of dispersion, defined as

1

2

dX2(t)
dt

= v2 ∫
t

0
R(ξ)dξ, (2.4)

has the following limits for the near- and far-field regimes

1

2

dX2(t)
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≈ v2t, for t≪ T, (2.5)

1

2

dX2(t)
dt

≈ v2T, for T ≪ t. (2.6)

This implies that the rate of dispersion would be zero at the moment of particle re-
lease, would initially increase linearly with dispersion time, and would eventually reach
an asymptote which would depend only on the Lagrangian integral timescale of the tur-
bulence and the variance of the Lagrangian velocity fluctuations.

The theoretical analysis of three-dimensional turbulent diffusion was first presented by
Batchelor (1949), who defined a three-dimensional diffusion coefficient tensor 1

2
dXiXj/dt

in terms of the mean Lagrangian displacement tensor XiXj(t) of a particle transported
by homogeneous turbulence. He further demonstrated that, in homogeneous, non-sheared
turbulence and for a Gaussian particle displacement distribution, 1

2
dXiXj/dt would be

equal to the turbulent diffusivity tensor Dij , as defined in (1.2). Batchelor also showed
that, in isotropic turbulence, Dij would be proportional to the identity tensor (Kro-
necker’s delta); as in Taylor’s theory, the magnitudes of the components of Dij would
increase with dispersion time and would eventually reach asymptotes that depend only
on the Lagrangian integral timescales of the turbulence Tij and the intensities of the
Lagrangian velocity fluctuations.

Riley & Corrsin (1974) expanded Batchelor’s analysis for homogeneous turbulent shear
flow and noted that the normal diffusivities were unequal and that some of the cross-
diffusivities were not zero. As with the theories of Taylor and Batchelor, the magnitudes
of the turbulent diffusivities were shown to depend on the Lagrangian integral timescales
of the turbulence Tij and the intensities of the Lagrangian velocity fluctuations. Corrsin
(1974) suggested that the asymptotic values of the turbulent diffusivities could be esti-
mated from Eulerian properties, as surrogates for their Lagrangian counterparts, for ex-
ample as D22 ≈ u′22 T11. Additional theoretical arguments have been made by Tavoularis
& Corrsin (1985), Rogers et al. (1989) and Younis et al. (2005) to derive asymptotic
expressions for the turbulent diffusivity tensor components in shear flows. These theories
will be revisited in a later section.

A classical approach for measuring turbulent diffusion in the laboratory or in the
environment is to relate the rate of growth of puffs and plumes generated in the turbulent
flow to an apparent turbulent diffusivity. The plume generated by a continuously emitting
source may be considered as the result of superposition of clouds emitted successively
by an instantaneous source. For a plume of particles emitted from a point source in
a turbulent flow with a uniform mean velocity U1 in the x1 direction, the apparent
diffusivities in the two normal directions x2 and x3 are defined as

K2 =
U1

2

dσ2
2

dx1
, K3 =

U1

2

dσ2
3

dx1
, (2.7)

where σ2 and σ3 are the corresponding characteristic plume widths. If, and only if, the
streamwise dispersion were negligible, the apparent plume diffusivities K2 and K3 would
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be equivalent to the diffusion coefficients 1
2
dX2

2 /dt and 1
2
dX2

3 /dt (Arya 1999), and thus
to D22 and D33.

Further assuming that the two apparent turbulent diffusivities are uniform in space
and equal to each other (K2 =K3 =K) leads to the well known Gaussian plume formula
(Arya 1999) for the mean concentration of a continuous plume in uniform mean flow

C = Q

4πKx1
exp [−U1 (x

2
2 + x2

3

4Kx1
)] . (2.8)

According to this solution, the maximum concentration of the plume would decay as x−1
1

and the plume width would grow as x0.5
1 .

Examples of investigations of turbulent diffusion in the environment include early
observations of anti-aircraft shell-bursts (Roberts 1923; Sutton 1932) and plumes of ly-
copodium spores released in the atmosphere (Hay & Pasquill 1959) and dyes released in
a lake (Csanady 1963). Examples of relevant laboratory studies include investigations of
diffusion behind a line source in grid turbulence (Warhaft 1984; Anand & Pope 1985; Sta-
pountzis et al. 1986), a line source in uniformly sheared flow (Tavoularis & Corrsin 1981;
Karnik & Tavoularis 1989), a line source in channel flow (Lepore & Mydlarski 2011), a
point source in uniformly sheared flow (Nakamura et al. 1986), and a point source in
channel flows (Webster et al. 2003; Rahman & Webster 2005). In these actual turbulent
flows, the turbulent kinetic energy and lengthscale would generally evolve downstream
and so would the diffusivities of superimposed scalar plumes. As a result, (2.8) would not
be applicable and the plume growth rate would be expected to deviate from the previ-
ously mentioned power law. Experimental studies of plumes in grid turbulence and shear
flows have found that the plume widths followed power laws but with powers different
from the theoretical value of 0.5. This discrepancy between the simplified solutions and
actual turbulent flows highlights the need for further studies of turbulent diffusion and
refined turbulent diffusion models.

Individual components of the turbulent diffusivity tensor, as defined by (1.2), can
be calculated from measurements of corresponding mean scalar derivatives and velocity-
scalar covariances. Most experimental studies that reported such results have taken them
at locations where the scalar gradient was nearly aligned with one of the physical mean
flow axes. Tavoularis & Corrsin (1981) examined a case in which a uniform mean scalar
gradient was superimposed on USF, with both gradients in the x2 direction, and measured
D12/D22 ≈ −2.2. Tavoularis & Corrsin (1985) examined a variant of this case, in which
the mean scalar gradient was in the x3 direction, and found D33/D22 ≈ 1.6. Karnik &
Tavoularis (1989) studied the plume of a line source in USF, where the mean scalar
gradient was nearly aligned with the x2 direction and reported that D12/D22 ≈ −2.0 and
D22/(u′2L11,1) ≈ 0.1.

The literature includes several measurements of scalar turbulent diffusivities in various
inhomogeneous shear flows, as for example in turbulent jets (Lemoine et al. 1996; Borg
et al. 2001; Chang & Cowen 2002). In general, such diffusivities were determined from
mean scalar and turbulent scalar flux profiles in a single direction, with no consideration
given to the possible three-dimensionality of the mean scalar field and the turbulence
inhomogeneity. In consequence, it seems plausible that such scalar diffusivities would
depend on the orientation, as well as location, of the data profiles used and, indeed, Borg
et al. (2001) found drastically different diffusivity values in the radial and axial directions
in a jet. Consequently, scalar diffusivity measurements in inhomogeneous shear flows are
deemed to be specific to particular flow geometries and experimental conditions and
should not be considered for general use in other turbulent flows.
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Figure 1: Sketch of the experimental apparatus and main instrumentation in the water
tunnel test section.

A review of past literature has identified no measurements of all components of the
turbulent diffusivity tensor that were taken at once in the same flow. The present study
aims at filling this gap in the literature.

3. Apparatus and experimental procedures

The experiments were conducted in a free-surface, recirculating water tunnel, having
a test section with a width of 0.53 m, a length of about 4 m, and filled to a depth of
0.46 m (figure 1). USF was generated by a perforated plate of varying solidity (“shear
generator”), inserted at the entrance to the test section and followed by an array of
parallel plates spaced by a distance L = 25.4 mm (“flow separator”).

A neutrally buoyant aqueous solution of Rhodamine 6G fluorescent dye with a con-
centration CS = 0.3 mg/` was injected into the flow through a fine tube having a tip
with an inner diameter of 1.83 mm and a wall thickness of 0.15 mm. To minimize its
disturbance to the flow, the tube was inserted in the stream through the flow separa-
tor and was aligned with the flow section centreline so that the dye was discharged at
approximately 2 m downstream of the flow separator, where the turbulence structure
of the USF was fully developed. The injection tube was tethered by 50 µm thick guide
wires, and was free of any movement or vibrations. The dye solution was contained in a
reservoir that was pressurized by compressed air through a pressure regulator. The dye
solution flow rate through the injection tube was measured by a rotameter and adjusted
with a built-in needle valve so that injection created the least possible flow disturbance.
The optimal flow rate was found to be Q = 0.97 ± 0.05 m`/s (see appendix A). The dye
molecular diffusivity was taken to be γ = (4.0± 0.3)× 10−4 mm2/s (Gendron et al. 2008),
which corresponds to a Schmidt number Sc ≡ ν/γ = 2500 ± 300. Rhodamine 6G has an
absorption peak at 525 nm, which is close to the emission wavelength of the Nd:YAG
laser (532 nm); it also has an emission peak at 554 nm (Würth et al. 2012), which is
sufficiently different from the laser emission peak for this substance to be well suited for
PLIF measurements. The camera used to measure the fluorescence was fitted with an
optical longpass filter with a sharp cutoff at 540 nm, so as to be sensitive only to the
fluorescence emitted by the dye and to block essentially all incident light produced by the
laser and ambient light. Dye solutions were prepared by mixing Rhodamine 6G powder
(A&C American Chemicals Ltd., CAS: 989-38-8, Montreal, Canada) with distilled water.

Velocity and concentration measurements were taken simultaneously in cross-sections
of the flow normal to the streamwise direction, that were illuminated by a light sheet cre-
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ated from the output of a Nd:YAG pulsed laser. Velocity measurements were performed
using a two-camera SPIV system (LaVision GmbH, FlowMaster Stereo-PIV, Göttingen,
Germany). Concentration measurements were obtained using a third camera (PCO AG,
pco.edge, Kelheim, Germany), which had a capacity of 5.5 MP, a pixel depth of 16 bits,
and was synchronized with the SPIV system and the laser pulse triggering circuit. All
cameras were fitted with Scheimpflug adapters, so that the entire measurement plane
would be in focus, although viewed by the camera at an inclination. Liquid prisms were
used to eliminate horizontal astigmatism that would have been introduced in the images
if the cameras had viewed the flow at an inclination of 45○ with respect to the glass
wall (Prasad & Jensen 1995; Adrian & Westerweel 2011). The field of view of the mea-
surements was rectangular with an approximately 120 mm vertical side and a 200 mm
horizontal side. The fields of view of the three cameras were carefully aligned using a two-
sided calibration target (LaVision GmbH, calibration plate #22), which was mounted in
the image plane before the experiment. Images of the calibration plate taken with each
camera were then processed by the software provided by the manufacturer (LaVision
GmbH, DaVis 7.2) to create image mapping functions that ensured that the three im-
ages were coincident. The mapping functions were then fine-tuned using a self-calibration
process applied to images of particles illuminated by the laser sheet taken with each cam-
era, in order to correct for any misalignment between the laser sheet and the calibration
target. Following this calibration, the average misalignment of the cameras was estimated
to be 3.4 pixels, which corresponds to approximately 0.2 mm in the field of view.

Measurements were obtained in five cross-sectional planes, located at dimensionless
distances from the source equal to x1/L = 5, 12, 20, 28, and 35. The in-plane spatial res-
olutions of the measured velocity and concentration fields were, respectively, one vector
per 1.15 mm × 1.15 mm flow area and one scalar sample per 0.05 mm × 0.05 mm area.
The cross-sectional profile of the laser intensity had approximately the shape of a Gaus-
sian distribution with a standard deviation of 1 mm, which, considering the 45○ viewing
angle, corresponds to a resolution along the line of sight of the camera of approximately
2.8 mm. The time delay between pulses for each SPIV measurement was 1500 µs. During
the interval between the two pulses, a particle travelling with the centreline flow velocity
of 0.18 m/s would be displaced by a streamwise distance of 0.27 mm, which satisfies
well the SPIV requirement of being much smaller than the laser sheet thickness. Pulse-
to-pulse laser power fluctuations had a standard deviation of approximately 3%, which
was deemed to be acceptable for PLIF measurements. Concentration and velocity mea-
surements were sampled at a rate of 2 Hz. Ensemble averages were calculated from 500
samples acquired at each of the positions x1/L = 5, 12, and 20, and from 1000 samples at
x1/L = 28 and 35. Differences between plume widths computed by averaging 500 samples
at x1/L = 28 and 35 and those computed by averaging 1000 samples had a standard
deviation of 3%, which is deemed to be sufficiently small for considering averages of 500
samples to be essentially convergent.

The concentration C of dye measured by each diode (i.e., each pixel) of the camera was
determined as a linear function of the radiant power flux emitted by the dye (“the fluores-
cence”) in the plane of the laser sheet. The coefficients in this function were determined
independently for each pixel of the camera from a calibration measurement in a small
calibration tank, placed in situ and filled with a dye solution having a uniform concen-
tration Ccal = 0.075 mg/L. Pixel-by-pixel calibration accounted for the effects of spatial
variation in the laser sheet and optical components, lens vignette, and any pixel-to-pixel
offsets or gain variations in the camera.

Concentration measurement errors and uncertainties in slender plume using PLIF have
been the subject of a separate manuscript (Vanderwel & Tavoularis 2014a). In this work
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we quantified several hitherto disregarded sources of error, which may potentially con-
taminate significantly fluorescent dye concentration measurements by PLIF. One source
of error is secondary fluorescence, which is the result of the absorption and re-emission
of primary fluorescence by dye both within and outside the laser sheet. Secondary fluo-
rescence was at least one, and mostly two or more, orders of magnitude weaker than the
primary fluorescence emitted by the dye excited by the laser sheet, but its contributions
to the recorded radiation power flux were sufficient to bias both the calibration and the
instantaneous concentration maps, if they had remained unaccounted for. We derived and
applied novel methods to remove the effects of secondary fluorescence from the camera
calibration results and the instantaneous concentration maps and also devised an effec-
tive procedure to identify the boundaries of the in-sheet dye regions in the instantaneous
concentration maps. We further demonstrated that secondary fluorescence had a very
weak effect on the measurement of concentration fluctuations and so we are confident
that the bulk of results presented in this article are insensitive to this undesirable input.
Another source of uncertainty, which applies to PLIF measurements in all flows but is
exacerbated in very slender plumes, is the fact that dye concentration is not uniform
along the entire thickness of the laser sheet, but a part of the fluid across this sheet
may sometimes contain little or no dye. This effect would bias negatively instantaneous
concentration measurements that were based on calibration of the camera in a fluid with
a uniform concentration. We have analyzed this effect and demonstrated that such bias
would be negligible for distances from the source beyond x1/L ≈ 20. We also found that
both secondary fluorescence and dye-non-uniformity had negligible effects on the values
of the plume width, lengthscales and turbulent diffusivities reported in this article.

4. Results

4.1. The velocity field

The USF and its turbulence structure in the same facility have been documented pre-
viously by Vanderwel & Tavoularis (2011), to be referred to as VT in the remainder
of this article. New velocity measurements were taken on transverse planes at several
streamwise locations in the plume. The origin of coordinates is set at the centre of the
injection tube exit face (figure 1), and the term “centreline” refers to the x1 axis. The
mean centreline velocity Uc and the mean velocity gradient dU1/dx2 in the undisturbed
flow were essentially constant. Vertical profiles of the mean velocity and the velocity
standard deviation in the (x1, x2) plane are presented in figure 2. Near the exit of the
dye injector, the mean and turbulent velocities were slightly disturbed, however, further
downstream the mean velocity profile became nearly linear and the turbulence became
nearly transversely homogeneous, in agreement with the VT results and those in other
USF studies. Specifically, for x1/L = 20, 28, and 35, measurements of the mean velocity
deviated from the fitted lines by less than 2.5% in the field of view and measurements of
the r.m.s. turbulent velocity components had a standard deviation of approximately 5%;
these deviations are in line with the observations of VT in fully developed USF and are
sufficiently small for the flow to be considered as nearly homogeneous. The streamwise
evolutions of the normalized r.m.s. turbulent velocities are plotted in figure 3, together
with those reported by VT at a slightly lower water tunnel speed. It is noted that the
uncertainty of the VT measurements was measurably lower than the present one, be-
cause VT took averages over long time histories of laser Doppler velocimetry signals.
Near the exit of the dye injector, the turbulent velocities appear to be slightly stronger
than the VT values, however, at the other locations the corresponding measurements
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Figure 2: Transverse profiles of (a) the mean streamwise velocity in the plume (solid
line), together with the linear function Uc + x2dU1/dx2 (dashed line) and (b) the r.m.s.
turbulent velocity components in the plume (u′1/UC : solid line, u′2/UC : dotted line, and
u′3/UC : dashed line); x3/L = 0.

Uc = 0.18 m/s dU1/dx2 = 0.59 s−1

k = 86 mm2s−2 ε = 7.6 mm2s−3

m11 = 0.12 m22 = −0.12
m33 = −0.01 m12 = −0.11
L11,1 = 30.5 mm λ11 = 17 mm

η = 0.60 mm ηB = 0.012 mm
S∗ = 13.4 Rλ11 = 150
νT = 58 mm2s−1

Table 1: Measured or estimated mean and turbulence parameters at x1/L = 35.

were comparable. The average turbulent kinetic energy k was essentially the same as
that measured by VT, which justifies the use of the kinetic energy dissipation rate ε
values reported by VT for the present flow as well. In USF, the turbulent kinetic energy
grows exponentially from an effective origin far upstream of the plume origin. Table 1
summarizes parameters of interest at x1/L = 35. In this table, the turbulence anisotropies
are defined as mij = uiuj/2k − δij/3; L11,1 is the streamwise integral length scale; λ11 is
the streamwise Taylor microscale, estimated as λ11 ≃ (24νk/ε)1/2 (De Souza et al. 1995);

η = (ν3/ε)1/4 is the Kolmogorov microscale; ηB = η/Sc1/2 is the Batchelor microscale;
S∗ ≡ (2k/ε)(dU1/dx2) is the shear rate parameter; Reλ11 = u′1λ11/ν is the turbulence
Reynolds number; and νT ≡ −u1u2/(dU1/dx2) is the turbulent viscosity, which grew to
the reported value from a value that was 41% lower at x1 = 0.

4.2. Velocity integral lengthscales

Theoretical models of turbulent diffusion make use of various integral lengthscales of the
turbulent fluctuations. Previous measurements in USF have been mainly limited to the
streamwise lengthscales of different velocity components, obtained from single-point laser
Doppler or hot-wire time histories with the use of Taylor’s approximation (e.g., Tavoularis
& Corrsin 1981; Vanderwel & Tavoularis 2011). However, it is the transverse lengthscale
of the transverse velocity, and the corresponding spanwise scale, that are relevant to
transport and diffusion, and these scales are not easily measurable by laser Doppler and
hot-wire anemometries. The current SPIV measurements provide an excellent opportu-
nity to measure directly the transverse and spanwise velocity autocorrelation functions
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Figure 3: Streamwise development of the r.m.s. velocity fluctuations compared to LDV
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L11,2

L11,1

L11,3

L11,1

L22,1

L11,1

L22,2

L11,1

L22,3

L11,1

L33,1

L11,1

L33,2

L11,1

L33,3

L11,1

SPIV 0.54 0.39 - 0.55 0.31 - 0.30 0.49
PPIV 0.51 - 0.58 0.60 - - - -

Table 2: Average ratios of the integral lengthscales.

and integral lengthscales. The measured components of the autocorrelation function ten-
sor, defined as

Rαα,β(r) =
uα(xβ)uα(xβ + r)

u2
α(xβ)

. (4.1)

are presented in figure 4. These were computed from SPIV images on the (x2, x3) plane.
The corresponding integral lengthscales were calculated by integrating the corresponding
autocorrelation functions up to their first zero-crossing (O’Neill et al. 2004). Additional
lengthscales were calculated from planar PIV (PPIV) measurements in the (x1, x2) plane.
The integral lengthscales were found to grow downstream, however, within the reported
range of the plume, they only changed by about 5-10%. The average value of L11,1 was
about 1.2L, in agreement with the LDV measurements of VT. The average ratios of
the measured integral lengthscales are summarised in table 2. The values of these scales
demonstrate a strong anisotropy of the turbulence in the energy containing range.
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4.3. The concentration field

Two representative instantaneous concentration maps are presented in figure 5a,b; in one
case, the blown-up part also shows the in-plane velocity vector map, which, as mentioned
previously, had a spatial resolution that was much lower than that of the concentration.
The maps clearly show the presence of mushroom-type patterns, which are evidence of
horseshoe vortices in the USF (Vanderwel & Tavoularis 2011). The plume was observed
to meander significantly within the field of view (Vanderwel & Tavoularis 2014b), with
the result that large portions of the instantaneous maps had zero concentration, whereas
the areas coincident with the dye plume had relatively high concentrations that often
exceeded the peak time-averaged concentration on that plane by a factor of 20. The
intermittency of the local concentration can be measured by the intermittency factor γc,
which is defined as the fraction of time during which the concentration was non-zero
(Wilson et al. 1985). Close to the plume source, at x1/L = 5, the intermittency on the
plume axis was moderate, as the peak value of γc was approximately 0.4. However, for
x1/L > 12, the peak γc remained low, at approximately 0.23; in this range, the transverse
profile of the intermittency factor was self-similar and had an essentially Gaussian shape
(see figure 6a). Strong scalar intermittency is specific to the present plume, which is
relatively slender and also contains a dye with an extremely small molecular diffusivity.
These specific conditions differentiate the present configuration from thermal plumes
in wind tunnels (e.g., Tavoularis & Corrsin 1981; Karnik & Tavoularis 1989; Lepore &
Mydlarski 2011).

The values at each pixel of all recorded instantaneous concentration maps were aver-
aged to produce the corresponding mean concentration maps. It was found that, away
from regions containing dyed water, the measured concentration was approximately
2.5 × 10−4 CS , which was deemed to be the background concentration “noise” level.
Each mean concentration map was fitted by a two-dimensional Gaussian function

C

CS
= A exp [−(x2 − µ2)2

2σ2
2

− (x3 − µ3)2

2σ2
3

] , (4.2)

where A is a dimensionless amplitude, µ2 and µ3 are the transverse and spanwise coor-
dinates of the mean plume axis, and σ2

2 and σ2
3 are the corresponding second central mo-

ments of the concentration distribution; all these parameters are functions of streamwise
location x1. The parameters A, µ2, µ3, σ2 and σ3 were determined using the MATLAB
Curve Fitting Toolbox (MathWorks, Natick, MA, USA) as those that resulted in the best
fit to the mean concentrations measured at each pixel. The curve fitting used an itera-
tive least-squares algorithm (Trust-Region Reflective Newton) starting from the initial
guesses A = 0.01, σ2 = 10, σ3 = 10, µ2 = 0, and µ3 = 0 and restricting the parameters A,
σ2, and σ3 to positive values. A representative mean concentration map C/CS is provided
in figure 5c, together with isocontours of the fitted two-dimensional Gaussian function.
Figure 6b shows normalized transverse profiles of the mean concentration. This figure
clearly shows that the concentration noise was very small compared to the peak mean
value. Moreover, it is evident that the mean concentration distribution could be fitted
fairly well by Gaussian functions at all measurement planes, with the possible exception
of the case at x1/L = 5, where the measured concentration peak slightly exceeded the
Gaussian value, presumably due to persistence of injection effects.

The standard deviations c′ of the concentration values at each pixel of all maps recorded
on each plane were also calculated and fitted by Gaussian functions as

c′

CS
= A′ exp [−(x2 − µ′2)2

2σ′22
− (x3 − µ′3)2

2σ′23
] , (4.3)
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tration maps and the half-widths σ′2 and σ′3 of the corresponding standard deviation
maps; all widths have been normalized by L; a dashed line indicates the power law
0.072 [(x1 − x0) /L]0.75

and a dotted line indicates the power law 0.098 [(x1 − x0) /L]0.75
;

(b) streamwise evolutions of A and A′, which are, respectively, the dimensionless am-
plitudes of the Gaussian fits to the mean concentration maps and the correspond-
ing standard deviation maps; a dashed line indicates the fitted power law A =
0.18 [(x1 − x0) /L]−1.4

and a dashed line indicates A′ = 0.15 [(x1 − x0) /L]−1.0
; in all cases

the virtual origin was x0 = 2.0L.

where the parameters A′, µ′2, µ′3, σ′2 and σ′3 were determined as those that created the best
fits to the measured c′ at every pixel, using the same least-squares algorithm as for the
mean concentration maps and starting with the same initial guesses. Transverse profiles
of the normalized c′ are presented in figure 6c, which makes it evident that Gaussian fits
were fairly good at all locations.

In the following, σ2 and σ3 will be referred to, respectively, as the transverse and
spanwise half-widths of the mean concentration map. Similarly, σ′2 and σ′3 will be re-
ferred to, respectively, as the transverse and spanwise half-widths of the concentration
fluctuation map (i.e., of c′). The streamwise evolutions of the various plume half-widths
are shown in figure 7a. The half-widths of the fluctuation maps were greater than those
of the corresponding mean maps. All half-widths grew monotonically downstream and
could be fitted by power laws, with powers equal to 0.75. The spanwise half-widths were
consistently larger than the transverse ones, with σ3/σ2 and σ′3/σ′2 ≈ 1.25. This difference
is attributed to the fact that u′3 > u′2 in USF.

The fitted amplitudes A and A′ are plotted in figure 7b. Both amplitudes decreased
as the plume spread, following the power laws A = 0.18 [(x1 − x0) /L]−1.4

and A′ =
0.15 [(x1 − x0) /L]−1.0

, with the same virtual origin of x0 = 2.0L. The decrease in the mean
concentration indicates that the plume is being mixed with freestream fluid, whereas the
decrease in the standard deviation indicates that the plume tends to become more homo-
geneous (Webster et al. 2003). The variation of the ratio A′/A depends on the evolution
of the intermittency factor, as can be demonstrated by the following idealized analysis.
Consider a binary signal with values 0 and 1, as an idealized model of the concentration
variation in the present plume. The probability distribution of such a signal, known as
the Bernoulli distribution, has a mean equal to γc and a standard deviation equal to√
γc(1 − γc). For γc < 0.5, the standard deviation of the binary random variable would

always exceed its mean, in conformity with our observation in the plume. Furthermore,
as the intermittency factor decreases, the mean of the binary random variable would
decrease at a faster rate than its standard deviation, which is also consistent with the
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increasing ratio A′/A along the axis of the plume, where the peak γc decreased from 0.4
to 0.23 between x1/L = 5 and 12.

The estimated displacements of the transverse plume axis position µ2 and µ′2 increased
gradually to a few millimetres above the x1 axis far downstream of the source. In view
of the slight streamline displacement due to boundary layer growth on the water tunnel
bottom, the uncertainty of alignment of the measurement planes at different downstream
positions and the effect of finite population of samples used for calculating these values,
it would be unwise to attach much significance to this observation. For this reason, we
will refrain from claiming that a systematic effect of the mean shear is to displace the
plume axis in the direction of the mean velocity gradient, even slightly so. It is noted
that Tavoularis & Corrsin (1981), Nakamura et al. (1986) and Karnik & Tavoularis
(1989) reported that their plume axes drifted towards the lower velocity region of their
USF; all these displacements were also relatively small. The estimated displacements of
the spanwise plume axis position µ3 and µ′3 were also found to reach values of a few
millimetres far downstream. In conformity with the previous discussion, we will also
attribute this to uncertainties and not to a systematic asymmetry in the flow.

4.4. Concentration-velocity correlations

The covariances of the concentration and the velocity components were calculated follow-
ing resampling of the SPIV measurements to the same grid as the PLIF ones. Interpolated
values in the velocity field were determined by cubic spline interpolation of the values at
neighbouring grid points, implemented using the scientific computation package MAT-
LAB. As the spatial resolution of the velocity field was comparable to the Kolmogorov
lengthscale of the flow, velocity changes between measurement points would be relatively
small, which justifies interpolation between grid points; moreover, we found that maps
of the concentration-velocity covariance were insensitive to the choice of interpolation
scheme.

Because of the extremely strong concentration intermittency in the current plume, all
correlation coefficients of the concentration had lower magnitudes compared with those
obtained in flows with more homogeneous scalar fields. Following Wilson et al. (1985), we
defined the mean conditional concentration CP as the average of only non-zero values.
This implies that the mean conditional concentration is related to the mean concentration
as

CP = 1

γc
C . (4.4)

By extending this relationship to concentration fluctuations, we may estimate a condi-
tional concentration-velocity correlation coefficient as

[ cuα
c′u′α

]
P

≈ 1

γc

cuα
c′u′α

. (4.5)

When comparing flows with vastly different scalar intermittencies, it seems more ap-
propriate to compare conditional rather than conventional values. Transverse profiles of
the correlation coefficients cuα/c′u′α, corrected by the local intermittency factor γc, are
presented in figure 8. For x1/L > 20, the profiles were self-similar, and appeared to be
essentially linear. Unlike conventional correlation coefficients, the conditional ones in the
present plume are in good agreement with measurements in a much less intermittent
thermal plume (Karnik & Tavoularis 1989), which were corrected assuming that their
plume had an intermittency factor of 1 on the plume centreline, approached zero at the
plume edges, and also followed a Gaussian profile. In general, cu1/c′u′1 and cu2/c′u′2 had
opposite signs, and reversed sign near the plume axis. Lastly, we note that while the
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profiles of cu2/c′u′2 were nearly symmetric, the profiles of cu1/c′u′1 all had slightly lower
magnitudes in the lower half of the plume than in the upper half; this difference is asso-
ciated with the presence of counter-gradient streamwise diffusion and will be discussed
in detail in section 5.5.

4.5. Estimates of turbulent diffusivities

In the present experiments, cross-sectional maps of all components of the turbulent mass
flux vector −cui were obtained following resampling and interpolation of the SPIV mea-
surements to the same grid as the PLIF ones. Cross-sectional maps of all components
of the mean concentration gradient ∂C/∂xi were also independently determined by an-
alytical differentiation of (4.2). This permitted the calculation of all nine components
of the turbulent diffusivity tensor Dij as those values that resulted in the best fit be-
tween the left- and right-hand sides of (1.2) over each set of corresponding maps. The
cross components D13, D23, D31 and D32 should vanish because of the symmetry of the
Reynolds stress tensor and the scalar field about the (x1, x3) plane. Moreover, prelimi-
nary calculations confirmed that the effects of these components were indeed negligible
in the present flow. Consequently, these diffusivities were set to zero before calculating
the other components.

Representative maps of the calculated mean scalar derivatives at x1/L = 28 are pre-
sented in figures 9a-c. Figures 9d-f show representative maps of scalar flux measurements
and contours of the corresponding components of Dij∂C/∂xj . Figures 9g-i show cross-
sections of the scalar flux maps, together with profiles of the appropriate individual
terms of Dij∂C/∂xj and their sums, which demonstrate that (1.2) was consistent with
all measurements.

The streamwise evolution of the estimated D22 is plotted in figure 10a, whereas fig-
ures 10d-g show the evolutions of the ratios of the remaining non-zero diffusivities and
D22. It may be seen that there is considerable uncertainty in these results, much of which
is attributed to the uncertainty of the estimated streamwise scalar derivative.

Secondary estimates of the turbulent diffusivities were obtained by assuming that gra-
dient transport also applies to third-order concentration-velocity covariances, as (Karnik
& Tavoularis 1989)

−c2ui =Dij
∂c′2

∂xj
, (4.6)

and estimating maps of ∂c′2/∂xj by analytical differentiation of (4.3). These estimates,
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Figure 9: (a-c) Maps of the calculated mean concentration derivatives at x1/L = 28,
normalized by CS/L; (d-f) maps of −cui measurements at x1/L = 28, normalized by
CSUC ; black lines mark contours of the corresponding components of Dij∂C/∂xj , also
normalized by CSUC ; the symbols + and − indicate regions with positive and negative
values; (g-i) cross-sections of the −cui maps with profiles of the appropriate individual
terms of Dij∂C/∂xj and their sums, all normalized by CSUC .

obtained as the best fits of maps of −c2ui to sets of maps of ∂c′2/∂xj , have also been
plotted in figure 10. It can be seen that the two estimates of each diffusivity are generally
close to each other, although it may be noted that the latter estimates have higher
uncertainty than the former ones.

The turbulent Schmidt number ScT ≡ νT /D22 decreased along the plume (see fig-
ure 10c) and approached an asymptote of approximately 1.3 for x1/L ⩾ 28. This value is
somewhat larger than the value of 1.1 measured by Tavoularis & Corrsin (1981) and the
conventional value near unity (Pope 2000).

The apparent diffusivities K2 and K3 were calculated by differentiating the power laws
fitted to the corresponding half-widths, according to (2.7). This operation also provided

power laws for K2 and K3, as, for example, K2/(UCL) = 0.0025 [(x1 − x0) /L]0.5, where,
as previously, the virtual origin was set as x0 = 2.0L. The apparent diffusivity ratio was
K3/K2 = (σ3/σ2)2 = 1.56. The evolution of the transverse apparent diffusivity K2/(UCL),
plotted in figure 10a, is fairly consistent with the measured values ofD22/(UCL), although
it tends to slightly overshoot the measurements in the far field. Similarly, the apparent
Schmidt number νT /K2, plotted in figure 10c, is consistent with the values determined
using D22. Furthermore, the ratio K3/K2 is close to measurements of D33/D22, as shown
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Figure 10: (a) The estimated turbulent diffusivity D22/UCL (symbols) and the apparent
diffusivity K2/UCL (solid line); (b) D22/u′2L11,1 (symbols) and its estimated asymptote
(dotted line), with L11,1 ≈ L22,2/0.55; (c) estimates of the turbulent Schmidt number
ScT = νT /D22 and the apparent Schmidt number νT /K2 (solid line); (d-g) ratios of the
turbulent diffusivities (symbols) and their estimated asymptotes (dotted lines);  and ▷
indicate diffusivities estimated from (1.2) and (4.6), respectively.

in figure 10g. These observations support the use of the apparent diffusivities K2 and K3

as surrogates for the turbulent diffusivities D22 and D33.
Taylor predicted that the turbulent diffusivity would grow to a state in which it would

depend only on Lagrangian turbulence properties when T ≪ t. For a continuously released
plume in steady flow, this state would be approached at a downstream distance that would
be comparable to the streamwise Lagrangian integral lengthscale L11. Although we have
no measurements of this lengthscale in the present flow, we can estimate it for USF as
L11 = 2L22 (Tavoularis & Corrsin 1985), where L22 is the transverse lengthscale, which
in turn can be estimated as L22 ≈ 1.3L22,2/u′2 (Karnik & Tavoularis 1990). Using these
approximations, we obtained L11 ≈ 45L, which is slightly higher than the current range
of measurements. Nevertheless our measurements of D22/u′2L11,1 appear to approach a
constant value, in conformity with Taylor’s conjecture. The value of this constant was
approximately 0.21 (see figure 10b), which is approximately twice the value reported by
Karnik & Tavoularis (1989).

When normalized byD22, most components of the turbulent diffusivity tensor appeared
to approach asymptotes far downstream of the source (figures 10d-g); the ratio D11/D22

seems to be an exception, as it keeps becoming more negative with increasing downstream
distance. The mean values of the ratios for x1/L ⩾ 28 were

Dij

D22
≈
⎡⎢⎢⎢⎢⎢⎣

−20 −1.1 0
8 1.0 0
0 0 1.5

⎤⎥⎥⎥⎥⎥⎦
. (4.7)

The presence of non-zero cross-diffusivities and the fact that D11, D22 and D33 had
different values are consequences of the strong anisotropy of the turbulence in USF. The
cross-diffusivities introduce effects of more than one mean scalar derivatives to the each
component of the scalar flux vector, a result that is also attributable to shear-generated
anisotropy. One may make the following observations concerning individual scalar fluxes.

The spanwise flux (−cu3): This property was proportional to the spanwise mean
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scalar derivative. Consistent with the fact that u1u3 = u2u3 = 0 in USF, D31 =D32 = 0, so
−cu3 had no contributions from the transverse and streamwise mean scalar derivatives.
The ratio D33/D22 was approximately 1.5, which is sufficiently close to the values of the
ratios u′23 T33/u′22 T22 and K3/K2 and the result reported by Tavoularis & Corrsin (1985).

The transverse flux (−cu2): The transverse flux had contributions from both the
transverse and the streamwise mean scalar derivatives, although the contribution of the
transverse derivative dominated, as illustrated in figure 9h. The value of D21 appeared
to be positive, albeit within considerable uncertainty, as the term D21∂C/∂x1 was much
smaller than D22∂C/∂x2.

The streamwise flux (−cu1): The streamwise flux had contributions from both the
transverse and the streamwise mean scalar derivatives. As illustrated in figure 9g, these
contributions had, respectively, antisymmetric and symmetric profiles. The antisymmet-
ric contribution corresponded to D12/D22 ≈ −1.1, which is consistent in sign but lower in
magnitude than the values -2.2 and -2.0, reported, respectively, by Tavoularis & Corrsin
(1981) and Karnik & Tavoularis (1989). The negative sign of D12 is a consequence of the
fact that, in USF, the streamwise velocity fluctuations u1 are negatively correlated to the
transverse fluctuations u2 (Tavoularis & Corrsin 1981). Because of the near symmetry
of the transverse mean scalar derivative ∂C/∂x2, its contribution to the streamwise flux
was negligible along the plume axis; therefore, the non-zero values of −cu1 may be at-
tributed to the streamwise mean scalar derivative. Far downstream of the source, −cu1 > 0
and ∂C/∂x1 < 0 along the plume axis, hence D11 was negative (i.e., counter-gradient).
Although ∣∂C/∂x1∣ ≪ ∣∂C/∂x2∣, the term D11∂C/∂x1 in the core of the plume was com-

parable in magnitude to the peak values of D12∂C/∂x2, with the result that D11 was an
order of magnitude larger than D12. Because ∣∂C/∂x1∣ was small, the magnitude of D11

is subject to more uncertainty than the other terms, which is why we only report the
value of D11 to one significant digit; however, the fact that estimates from both (1.2) and
(4.6) are consistent attests to the accuracy of the measured diffusivities. For additional
discussion concerning the complex shape of −cu1 and the negative value of D11, please
see section 5.5.

5. Analysis of the results and discussion

5.1. The plume width

It is noted that our definition of plume width differs from those used by previous authors;
Webster et al. (2003) defined the plume half-width as twice the standard deviation of
the mean concentration profile, whereas Karnik & Tavoularis (1989) defined it as half
the distance between locations with mean concentrations equal to half the peak value.
Therefore, according to the present definition, the transverse half-widths of the plumes
examined by Webster et al. and Karnik & Tavoularis would, respectively, be equal to 0.5
and 0.85 times the values reported by the corresponding authors.

The evolution of the half-widths could be fitted by power laws with an exponent of
0.75. This value is equal to the value reported by Webster et al., within the range of 0.55
to 0.76 reported by Lepore & Mydlarski (2011), and comparable to the value 0.83 fitted
by us to the data of Karnik & Tavoularis.

When comparing measurements in the present plume to those from the literature, it
is also important to consider the state of growth of each plume with respect to the local
size of the turbulent eddies which convect and diffuse the scalar field. The lengthscale
ratio σ2/L22,2 may be chosen as a measure of relative plume growth. The streamwise evo-
lutions of this ratio in the present measurements and in the previous study by Karnik &
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Figure 11: Downstream development of the ratio of the plume halfwidth σ2 and the
transverse turbulent integral lengthscale L22,2;  , present measurements; ◻, Karnik &
Tavoularis (1989), with L22,2 ≈ 0.55L11,1.

Tavoularis (1989) is presented in figure 11. As figure 11 illustrates, our facility permitted
the present plume width to grow to values that were comparable to the transverse integral
lengthscale and so the entire plume may be characterised as slender. This was not the
case with the plume studied by Karnik & Tavoularis (1989), which grew to measurably
larger relative thicknesses.

5.2. Scalar fluctuations

All present profiles of c′ (see figure 7b) were single-peaked, unlike some of the profiles pre-
sented by Warhaft (1984), Karnik & Tavoularis (1989), Rahman & Webster (2005), and
Lepore & Mydlarski (2011), which were double-peaked. Karnik & Tavoularis attributed
the presence of double peaks in the near-source profiles to the particular shape of the
thermal wake of the heated ribbon used, a feature that is absent in the present experi-
ments. The development of double peaks far downstream of the source in the previous
studies was attributed to the fact that the peak production of scalar variance occurs at
the inflection points of the mean concentration field, which are located on either side of
the plume centreline. However, for gradient transport to be effective in producing local
fluctuation peaks, the plume width must be sufficiently large with respect to the integral
lengthscale of the flow. The logic behind this explanation is that, when the plume is
large enough for the local scalar transport to be dominated by eddy motions that are
mostly confined to the same side of the plume, scalar fluctuations would follow gradient
transport and so they would peak at the two inflection points of the mean concentration
gradient; on the other hand, when the plume half width is small by comparison to the
turbulent eddy mean free path, local transport would be dominated by eddy motions
that sweep across much of or the entire plume and thus smoothen off-axis peaks of con-
centration fluctuations. This argument, however, is not sufficient to explain entirely the
lack of double peaks in the present plume, whose half width grew to approximately the
size of the transverse integral lengthscale. An explanation will be given in the following
paragraph.

The present plume differs from the one studied by Warhaft (1984), Karnik & Tavoularis
(1989), and Lepore & Mydlarski (2011) in an important aspect: the former originated
from essentially a point source, whereas the latter originated from a line-source and was
two-dimensional on the mean. In a line-source plume, strong scalar fluctuations would be
introduced mainly by transverse motions (i.e., in a direction parallel to the mean scalar
gradient), whereas in a point-source plume, motions in all directions on a transverse
plane may introduce strong scalar fluctuations. Therefore, if both plumes had the same
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Figure 12: (a) Maps of the advective flux; (b) maps of the net diffusive flux in (1.1); (c)
transverse profiles of the advective and net diffusive fluxes at x3 = 0; (d-f) maps of the
individual diffusive flux terms; all results were at x1/L = 28; all fluxes were normalized
by CSUC/L and the symbols + and − indicate map regions with positive and negative
values, respectively.

ratio of σ2/L22,2, the 2-D plume would have a stronger tendency to be double-peaked.
One may then speculate that, for a double-peak c′ to be manifested in a point-source
plume, σ2/L22,2 would have to be much larger than its double-peaking threshold for a
line-source plume. The present plume was clearly far from meeting this condition, which
explains the observed single-peak pattern.

5.3. Estimates of advection and diffusion

In this section, we investigate the terms in the Reynolds-averaged advection-diffusion
equation (1.1). The advection term in (1.1), which in USF is simplified to U1∂C/∂x1, was
calculated by multiplying the local mean velocity by the mean streamwise concentration
derivative, estimated by analytical differentiation of (4.2). The molecular diffusion term
was negligible, as the molecular diffusivity was several orders of magnitude smaller than
the main turbulent diffusivity. To estimate the three turbulent diffusion terms, we first
created smooth maps of −cu1, −cu2 and −cu3 using (4.2) and (1.2) and the estimated tur-
bulent diffusivities. The streamwise diffusive flux term −∂cu1/∂x1 was then determined
applying first-order central differencing to data from five measurement planes. The in-
plane diffusive flux terms −∂cu2/∂x2 and −∂cu3/∂x3 were determined using second-order
central differencing. Maps of the advection term, the three diffusive flux terms, and the
net (total) diffusion term are presented in Figure 12.

The estimated maps of the advection and net diffusion terms, which should ideally
balance each other, are in fairly good agreement; this attests to the accuracy of our results.
The net diffusion term appears to have somewhat smaller magnitude than the advection
term (see figure 12c); this difference may be largely attributed to the uncertainty of
the streamwise derivative of the mean concentration. The magnitude of this discrepancy
was comparable to the one in a turbulent jet (Fukushima et al. 2000), which was also
attributed to insufficient spatial resolution.



20 C. Vanderwel and S. Tavoularis

Tavoularis & Corrsin (1985) Rogers et al. (1989)

D11 = u2
1 T11 +

dU1
dx2

u1u2 T2
12 D11 = u2

1 T − dU1
dx2

u1u2 T2

D12 = u1u2 T12 D12 = u1u2 T − dU1
dx2

u2
2 T2

D21 = u1u2 T21 +
dU1
dx2

u2
2 T2

22 D21 = u1u2 T

D22 = u2
2 T22 D22 = u2

2 T

D33 = u2
3 T33 D33 = u2

3 T

Younis et al. (2005)

D11 = u2
1 (C2

k
ε
) +

dU1
dx2

u1u2 (2C4
k2

ε2
) +C1

k2

ε

D12 = u1u2 (C2
k
ε
) +

dU1
dx2

u2
2 (C4

k2

ε2
) +C3

k3

ε2
dU1
dx2

u2
2

D21 = u1u2 (C2
k
ε
) +

dU1
dx2

u2
2 (C4

k2

ε2
)

D22 = u2
2 (C2

k
ε
) +C1

k2

ε

D33 = u2
3 (C2

k
ε
) +C1

k2

ε

Table 3: Theoretical models of the turbulent diffusivities.

TC RMR YSC present

D22/D22m 3.2 2.3 3.8 1
D11/D22 -10.0 2.8 3.4 -20
D33/D22 1.6 1.6 1.9 1.5
D12/D22 -2.0 -1.9 -1.8 -1.1
D21/D22 0.0 -0.5 -1.5 8

Table 4: Theoretical estimates of the turbulent diffusivity ratios; D22m indicates the
measured D22.

Comparing the maps of the three diffusive flux terms, it is evident that the spanwise
term was essentially symmetric; the transverse term was slightly asymmetric, as a result
of the non-zero value of D21; the streamwise term was strongly asymmetric, in conformity
with the complex shape of −cu1. The transverse and spanwise diffusive fluxes were nearly
equal around the plume axis, but each became dominant off-axis, in regions in which the
corresponding mean concentration derivative was dominant. The streamwise diffusive
flux was consistently an order of magnitude smaller than the other two and made a
very small contribution (less than 5%) to the net diffusion. This provides justification
for disregarding streamwise diffusion in simplified models, even though the streamwise
diffusivity D11 is much larger than the two other normal diffusivities.

5.4. Comparison of diffusivities to theoretical estimates

Analytical models of the turbulent diffusivity tensor relevant to USF have been devel-
oped by Tavoularis & Corrsin (1985), Rogers et al. (1989), and Younis et al. (2005), to
be referred to as TC, RMR and YSC, respectively. The corresponding expressions are
summarized in table 3, whereas ratios of the predicted diffusivity values are compared
to the present results in table 4. All models assumed that D31 = D13 = D32 = D23 = 0 by
symmetry of the Reynolds stress tensor about the (x1, x3) plane.
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The TC model contains the Lagrangian integral timescales T11 etc.. We have no mea-
surements of these timescales in the present flow, but we used the estimates T22 ≈
1.3L22,2/u′2 (Karnik & Tavoularis 1990) and T12 = T21 = 4T22, T11 = 2T22, and T33 = T22

(TC), all applicable to USF. The RMR model is very similar to the TC model, however,
the former contains a constant timescale T = 2k/(CDε), in which CD = 12.6 for the
present conditions (CD is specified by RMR as a function mainly of a Reynolds number
and, weakly, of the Prandtl number). The YSC model is more complex than either of the
two other models, expressing the diffusivities in terms of relationships that contain four
adjustable coefficients, for which YSC recommend values.

All models predicted values of D22 which were more than double the measured value;
moreover, they all predicted values of the ratio D33/D22 that were close to the experimen-
tal one. The TC prediction of D11/D22 agreed in sign with the measured ratio although
it was smaller in magnitude, whereas the two other models missed this ratio not only in
magnitude, but in sign as well. All models predicted D12/D22 that had the same sign as
the measured value but were more than twice as large; in this respect, the models are
in fair agreement with the measurements of Tavoularis & Corrsin (1981) and Karnik &
Tavoularis (1989) who found D12/D22 was −2.2 and −2.0, respectively. The RMR and
YSC models predicted a negative value of D21/D22, whereas the TC model predicted a
value of zero; in this respect, all models differ from the present measurements of D21/D22,
which tended to be positive.

Overall, all models had comparable performances, with the notable exception that the
TC model was the only one to predict correctly the sign of D11. None of the models
predicted accurately the magnitudes of the diffusivities, but predictions and measure-
ments were of the same order of magnitude. It is noted that all models were developed
and calibrated for air flows, in which the Prandtl/Schmidt numbers were of order one,
whereas the scalar field in the present experiments had a very high Schmidt number.

5.5. On the streamwise turbulent mass flux and the streamwise turbulent diffusivities

The map of −cu1 (figure 9d) appears to be oddly complex and invites some in-depth
physical scrutiny. For simplicity, let us consider the transverse profile of −cu1, shown
in figure 9g. We shall explain its shape by the following qualitative discussion, which
makes use of gradient-transport-type arguments, but also takes into consideration the
turbulence structure of USF.

If this profile were entirely the result of transverse gradient transport, it would have
been antisymmetric about the plume axis. In the lower half of the plume, where ∂C/∂x2 >
0, c and u2 would tend to be negatively correlated; however, in this USF, u2 and u1 are
also negatively correlated, which implies that c and u1 would be positively correlated. A
corresponding argument can be made for the upper half of the plume to show that c and
u1 would be negatively correlated in this region. Using a similar argument, Tavoularis
& Corrsin (1981) explained the observed sign of cu1 in USF with a uniform mean scalar
gradient. This argument explains why D12 in shear flows would have the same sign as
u1u2.

The previous argument is not sufficient to explain the variation of −cu1, because its
profile is obviously not antisymmetric. Nevertheless, −cu1 can be represented quite well by
the sum of an antisymmetric part and a symmetric part. We will argue that the symmetric
part may be attributed to the streamwise variation of the mean concentration and the
plume growth. The supporting arguments can be best presented by considering the region
near the plume axis, where the symmetric part is strongest and the antisymmetric part
is weak. In this region, ∂C/∂x1 < 0 and conventional gradient transport with a positive
diffusivity D11 would imply that −cu1 < 0 as well. This is not the case, however, because
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the symmetric part of −cu1 is strongly positive around the plume axis, thus necessitating
the use of a negativeD11. This amounts to counter-gradient transport and requires further
examination.

It was mentioned previously that the present plume half-width was comparable to
the transverse turbulent lengthscale L22,2, which means that the plume was subject to
strong meandering so that fluid parcels from the edges of and outside the plume would
often cross its axis. The value of −cu1 would be dominated by the contributions of
events having simultaneously large fluctuations of u1 and large fluctuations of c. Large
negative fluctuations of c would occur if an eddy originating at the plume edge or beyond
approached the plume axis, as such an eddy would transport a concentration that would
be much lower than the mean near the axis. For an eddy from the edges of the plume
to penetrate to the axis, it must have a strong velocity u2. In USF, such eddies would
typically also have strong u1 with a sign opposite to that of u2. Eddies from the upper edge
would have u2 < 0 and u1 > 0, i.e., they would originate upstream of the measurement
plane. On the contrary, eddies from the lower edge would have u2 > 0 and u1 < 0, i.e.,
they would originate downstream of the measurement plane. So, eddies with large c < 0
would sometimes be associated with u1 > 0 and other times with u1 < 0. How would then
a net positive −cu1 be produced near the axis?

We will now demonstrate that the positive −cu1 near the plume axis is the result
of plume growth in size with streamwise distance from the origin, namely the result
of transverse turbulent diffusion itself. In the plume core, ∂C/∂x1 < 0 , because the
peak mean concentration decays downstream; on the contrary, ∂C/∂x1 > 0 near the
edges, because the plume spreads outwards. Consequently, upstream eddies crossing the
measurement plane would transport negative c with a magnitude that is larger than that
of downstream eddies, which also transport negative c; thus, the net effect of mixing
would be −cu1 > 0. This explains why D11 was negative and transport was counter-
gradient with respect to the gradient around the plume axis. This apparent paradox
may, however, be resolved by a change of perspective: mass was actually flowing along
the gradient, if one considers the gradient where it matters for −cu1, namely at the plume
edges.

In the previous discussion, we invoked the fact that u1 and u2 are strongly correlated.
In USF, this means that strong downward-bound eddies typically come from upstream
and strong upward-bound eddies come from downstream, namely that the two types of
eddies transport fluid from opposite edges of the plume. Albeit, because the plume is
symmetric, it makes no difference to the value of c whether it comes from the upper edge
or the lower one. Consequently, counter-gradient streamwise transport does not require
the net Reynolds stress to be non-zero, but only that eddies with strong fluctuations in
u1 also have strong u2, which allows them to originate outside of the plume. In other
words, mean shear is not necessary for counter-gradient transport to arise, but it helps,
as it organizes the motion and generates strong coherent structures, which in the case of
USF are horseshoe-shaped vortices (Vanderwel & Tavoularis 2011).

We have so far focused on diffusion in the transverse direction, but there is also spanwise
diffusion. In fact, Vanderwel & Tavoularis (2011) demonstrated that coherent structures
in USF are not always aligned with the transverse direction, but appear over a wide range
of orientations. In the case of the present plume, strong eddies with significant spanwise
velocity would still transport low-concentration fluid from the plume edges and beyond,
and so they would contribute to counter-gradient transport. On the other hand, spanwise
motions in two-dimensional plumes, such as those generated by a heated wire, would not
encounter edges and so the range of motions that would contribute to counter-gradient
transport would be severely restricted. This may explain why the transverse profiles of
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−cu1 measured by Karnik & Tavoularis (1987) were essentially antisymmetric and free
of streamwise diffusion effects.

The presently used scalar has a Schmidt number which is more than three orders of
magnitude larger than the Prandtl number of air in heated-flow experiments, so it seems
worthwhile to question whether this difference would play a significant role in counter-
gradient transport. Molecular diffusion would reduce the contrast of concentration maps
and lower concentration peaks, and so it would tend to reduce differences between con-
centration values in the core and the edges of the plume. Nevertheless, such effects would
be present in both conventional and counter-gradient diffusion. In the absence of evidence
for the opposite, one may speculate that counter-gradient diffusion is not subjected to
strong Schmidt/Prandtl number effects.

To speculate whether a negative D11 would also appear in a plume in another flow
configuration, one would need to consider whether the plume width would satisfy the
following conditions: first it should be sufficiently narrow in all directions by comparison
to the lengthscale of the energy containing eddies and second it should grow sufficiently
fast downstream. For example, in the case of a turbulent jet transporting a scalar in its
entirety, the first condition would not be satisfied and so jets with −cu1 > 0 have not been
reported (Fukushima et al. 2000; Webster et al. 2001). We have reviewed the available
literature in search of previous references to counter-gradient streamwise diffusion, but
could not find any. There are, however, several references dealing with counter-gradient
diffusion in the transverse direction, with which the mean scalar gradient was nearly
aligned. Such phenomena have been observed in atmospheric flows (Deardorff 1966; van
Dop & Verver 2001; de Roode et al. 2004) as well as in the laboratory (Sreenivasan
et al. 1982; Veeravalli & Warhaft 1990; Paranthoën et al. 2004) and in most cases the
discrepancy has been attributed to inhomogeneity.

6. Summary

Simultaneous concentration and velocity maps in the plume of a continuous point
source in uniformly sheared turbulence have been measured. Gradient transport analysis
with a turbulent diffusivity tensor described well the relationship between the measured
turbulent mass flux vector and the mean concentration gradient. For the first time, all
non-vanishing components of the turbulent diffusivity tensor were determined simulta-
neously from experimental results. The apparent diffusivities followed the same trends
as the corresponding normal diffusivities on a transverse plane. Sufficiently downstream
of the source, the various components of the turbulent diffusivity tensor grew at the
same rates with distance from the source. Counter-gradient streamwise diffusion was re-
ported for the first time and was attributed to the meandering and streamwise spread
of the plume. Three previous theoretical models of turbulent diffusion in shear flows had
some qualitative agreement with the present results, especially the model of Tavoularis
& Corrsin (1985), which also predicted counter-gradient streamwise diffusion.

Financial support by the Natural Sciences and Engineering Research Council of Canada
(NSERC) is gratefully acknowledged.

Appendix A. Determining the optimal flow rate

The optimal flow rate through the injector was determined by comparing the velocity
maps for different injection flow rates in a plane normal to the flow at a distance of
x1/L = 5 from the injector tip; this distance is equal to approximately 70 inner tube



24 C. Vanderwel and S. Tavoularis
2

1

0

-1

-2

x
  
/ 

L
2

0.8           1.0            1.2

1U  / UC

(a)             (b)             (c)             (d)              (e)             (f)              (g)

Figure 13: Solid lines are transverse profiles of the mean streamwise velocity at x1/L = 5
and x3 = 0 with injector flow rates of (a) 0, (b) 0.78, (c) 0.97, (d) 1.07, (e) 1.25, (f) 1.37,
and (g) 1.68 m`/s. Dashed lines represent velocity profiles without the injector. The flow
rate chosen for the present experiments was Q = 0.97 m`/s.

diameters. As representative of these velocity maps, we present transverse profiles of the
mean velocity in figure 13. The physical presence of the injection tube created a region
of relative velocity deficit due to the boundary layer that grew along the tube. At the
same time, injection at a velocity higher than the local value created a local momentum
surplus within the injected fluid. Our objective was to adjust the injection flow rate so
that the momentum surplus of the jet would compensate, as much as possible, for the
momentum deficit around the injector, without introducing significant jet effects which
would distort the structure of the USF. The value Q = 0.97 m`/s, represented by curve
(c) in figure 13, was deemed to be the optimal one and was used for all reported results.
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