The University of Southampton
University of Southampton Institutional Repository

An analysis of a swimmer’s passive wave resistance using experimental data and CFD simulations

An analysis of a swimmer’s passive wave resistance using experimental data and CFD simulations
An analysis of a swimmer’s passive wave resistance using experimental data and CFD simulations
The passive resistance of a swimmer on the free surface has previously been researched experimentally. The contribution of wave resistance to total drag for a swimmer with a velocity around 2.0 m.s-1 was found to vary from 5% for Vorontsov and Rumyantsev (2000), to 21 % for Toussaint et al. (2002) and up to 60% according to Vennell et al. (2006). The exact resistance breakdown of a swimmer remains unknown due to difficulties in the direct measurement of wave resistance. As noted by Sato and Hino (2010), this lack of experimental data makes it difficult to validate numerical simulations of swimmers on the free surface.
This study is therefore aimed at presenting direct measurements of a swimmer’s total drag and wave resistance, along with the longitudinal wave cuts which may be used to validate numerical simulations. In this paper, experimental data of a swimmer’s resistance are presented at two different velocities (case 1 = 1.7 m.s-1 and case 2 = 2.1 m.s-1). Total drag was measured using force block dynamometers mounted on a custom-built tow rig (Webb et al., 2011). Moreover, a longitudinal wave cut method was used to directly evaluate wave resistance (Eggers, 1955).
The two conditions tested were simulated using the open-source Computational Fluid Dynamics (CFD) code OpenFOAM (OpenFOAM® (2013)). The body geometry is a generic human form, morphed into the correct attitude and depth using the above- and under-water video footage recorded during the experiment. 3D Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations were performed using the Volume of Fluid (VOF) method to solve the air-water interface. A similar numerical technique was used by Banks (2013a) to assess the passive resistance of a swimmer. Two cases were simulated and the error in total drag compared to the experimental data was found to be 1 % and 22 % respectively. In this paper, the resistance components over a swimmer’s typical range of speeds are investigated and compared with the experimental data
1-6
Banks, J.
3e915107-6d17-4097-8e77-99c40c8c053d
James, M.C.
aaf059b7-05ec-4560-be35-7fc1bfe46f07
Turnock, S.R.
d6442f5c-d9af-4fdb-8406-7c79a92b26ce
Hudson, D.A.
3814e08b-1993-4e78-b5a4-2598c40af8e7
Banks, J.
3e915107-6d17-4097-8e77-99c40c8c053d
James, M.C.
aaf059b7-05ec-4560-be35-7fc1bfe46f07
Turnock, S.R.
d6442f5c-d9af-4fdb-8406-7c79a92b26ce
Hudson, D.A.
3814e08b-1993-4e78-b5a4-2598c40af8e7

Banks, J., James, M.C., Turnock, S.R. and Hudson, D.A. (2014) An analysis of a swimmer’s passive wave resistance using experimental data and CFD simulations. Biomechanics and Medicine in Swimming 2014, Canberra, Australia. 27 Apr - 01 May 2014. pp. 1-6 .

Record type: Conference or Workshop Item (Paper)

Abstract

The passive resistance of a swimmer on the free surface has previously been researched experimentally. The contribution of wave resistance to total drag for a swimmer with a velocity around 2.0 m.s-1 was found to vary from 5% for Vorontsov and Rumyantsev (2000), to 21 % for Toussaint et al. (2002) and up to 60% according to Vennell et al. (2006). The exact resistance breakdown of a swimmer remains unknown due to difficulties in the direct measurement of wave resistance. As noted by Sato and Hino (2010), this lack of experimental data makes it difficult to validate numerical simulations of swimmers on the free surface.
This study is therefore aimed at presenting direct measurements of a swimmer’s total drag and wave resistance, along with the longitudinal wave cuts which may be used to validate numerical simulations. In this paper, experimental data of a swimmer’s resistance are presented at two different velocities (case 1 = 1.7 m.s-1 and case 2 = 2.1 m.s-1). Total drag was measured using force block dynamometers mounted on a custom-built tow rig (Webb et al., 2011). Moreover, a longitudinal wave cut method was used to directly evaluate wave resistance (Eggers, 1955).
The two conditions tested were simulated using the open-source Computational Fluid Dynamics (CFD) code OpenFOAM (OpenFOAM® (2013)). The body geometry is a generic human form, morphed into the correct attitude and depth using the above- and under-water video footage recorded during the experiment. 3D Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations were performed using the Volume of Fluid (VOF) method to solve the air-water interface. A similar numerical technique was used by Banks (2013a) to assess the passive resistance of a swimmer. Two cases were simulated and the error in total drag compared to the experimental data was found to be 1 % and 22 % respectively. In this paper, the resistance components over a swimmer’s typical range of speeds are investigated and compared with the experimental data

Text
BANKS_JAMES_2014_An analysis of a swimmer's passive wave resistance using experimental data and CFD simulations.pdf - Other
Download (2MB)

More information

Published date: May 2014
Venue - Dates: Biomechanics and Medicine in Swimming 2014, Canberra, Australia, 2014-04-27 - 2014-05-01
Organisations: Fluid Structure Interactions Group

Identifiers

Local EPrints ID: 371941
URI: http://eprints.soton.ac.uk/id/eprint/371941
PURE UUID: dcc828b0-08ed-4b8f-95c5-62bb6c85e0d5
ORCID for J. Banks: ORCID iD orcid.org/0000-0002-3777-8962
ORCID for M.C. James: ORCID iD orcid.org/0000-0002-6964-4598
ORCID for S.R. Turnock: ORCID iD orcid.org/0000-0001-6288-0400
ORCID for D.A. Hudson: ORCID iD orcid.org/0000-0002-2012-6255

Catalogue record

Date deposited: 21 Nov 2014 14:15
Last modified: 10 Jun 2020 00:31

Export record

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×