An Open System for Social Computation

David Robertson *!, Luc Moreau ?, Dave Murray-Rust ? and Kieron O’Hara b

 Informatics, University of Edinburgh
b Electronics and Computer Science, University of Southampton

Abstract. Part of the power of social computation comes from using the collective
intelligence of humans to tame the aggregate uncertainty of (otherwise) low verac-
ity data obtained from human and automated sources. We have witnessed a surge
in development of social computing systems but, ironically, there have been few
attempts to generalise across this activity so that creation of the underlying mech-
anisms themselves can be made more social. We describe a method for achieving
this by standardising patterns of social computation via lightweight formal speci-
fications (we call these social artifacts) that can be connected to existing internet
architectures via a single model of computation. Upon this framework we build a
mechanism for extracting provenance meta-data across social computations.

Keywords. social computation

1. Introduction

We have increased enormously our ability to acquire, store and process data but this
comes at the expense of data veracity; we have sophisticated data but often it is sub-
jective, contextualised and prone to misinterpretation. The proportion of this sort of low
veracity data increases as sensors, devices and social networks proliferate. We therefore
find ourselves in a situation where, in many domains, supply of data far exceeds our
ability to perform useful automated tasks with it.

Consider, for example, healthcare where we are rich in data at a variety of levels,
from intimately personal data obtained from personal health monitoring devices through
to data reflecting population trends and demographics. All of this, potentially, could
inter-relate but the technical task of relating such diverse data seems daunting and there
is concern over the ethics and motivations of monolithic organisations who operate as
integrators. A key issue is whether deeper human engagement with socially derived data
can assist technical operations and also help to address issues of computational and data
monopoly as the technology grows.

Algorithms that infer useful information from data continue to improve but many
tasks and judgements require human effort. For some of these, such as reliably identify-
ing a complex feature in a noisy image, human effort is required because algorithms have
not caught up with human skills. For others, such as crowdsourcing views or support,
the overall task requires choices that are deeply rooted in subjective human experience.
Connectivity over computer networks, complemented by ubiquitous social networking,

! Corresponding Author: Informatics, University of Edinburgh; E-mail: dr@inf.ed.ac.uk.

now provides opportunities to tap into human skills and experience at large scale. Inno-
vative applications have followed, each with its own special mixture of accessibility and
incentive to participate: some (e.g. ReCaptcha[16]) gain human effort by interweaving
the effort seamlessly with a task that humans already perform in large numbers; some
(e.g. Foldit[5]) motivate participants by turning the social task into a game; some (e.g.
Galaxy Zoo[3]) attract people to the social benefit of the exercise; in others (e.g. DARPA
Challenge systems[13]) the incentive may be personal payment. All of these systems are
effective but each is a unique software system, built to tackle a specific type of problem.
Consequently, conventional social computing systems (although solving individual prob-
lems that resist conventional methods) are never combined to tackle computing problems
of great sophistication. Conversely, conventional computing applications have grown to
be more sophisticated (having been developed through the integration of many compo-
nents via structured design methods) but are unsophisticated in their use of human social
structures. This leaves the unexplored area of social computation that we can’t yet do,
illustrated in Figure 1.

c
S
=] 4
S
22| B 5§
© 05 SEs .) g
= e Social computations we can’t yet do
& O €3
28 | 28 ‘
S
3% G o - 4
E5 | ©© ~
8 E Conventional social computation

Social intensiveness of solution

Figure 1. The space of potential social computations

We are, fortunately, unable to inhabit the unexplored space of Figure 1 by fiat - we
cannot and should not impose computation on human societies. We do, however, want
to provide mechanisms through which more complex social computations may socially
be assembled. This paper describes one way of achieving this goal, based on existing
methods and computational infrastructure. At the core of our method is the concept of a
social artifact which describes (in a formal language independent of the computational
environment) a social interaction. We describe this lingua franca for social computation
in Section 2. In the remainder of this section we give a simple social computation sce-
nario (to which we return later in the paper) and provide context to our approach in terms
of conventional social computation-related languages and architectures.

1.1. An Example Problem

Concepts such as friendship networks or crowdsourcing are common in mainstream so-
cial computation. Even such basic concepts, however, resist standardisation. There is no

single “best” way to crowdsource and not even an exhaustive set of such methods, since
we could always invent new ways of getting together to crowdsource the answer to a
question. We do not want to have to write a new social computation system every time
we want a different style of crowdsourcing; we would prefer to have a single, generic
social computation system to which we could describe different forms of crowdsourcing
and have it run them. We can get this far with emerging languages and tools but we want
more than this for our broader view of social computation. We would like to inter-relate
the outcomes of our social computations so we can build new computations on top of
the relevant data generated by others. Furthermore, we want to maintain provenance data
that allow us to summarise the context in which key data were derived - thus providing
more traction for automated reasoning systems to perform more sophisticated analytics
on the mass of data begin derived from our generic system and to supply a foundational
layer for accountable information[17].

In what follows, we will return to a specific scenario illustrating this generic prob-
lem. To retain precision without wasting space, we make this scenario as simple as pos-
sible while retaining all the features of the general problem. Suppose we have someone,
x, who wants to crowdsource an answer to some question, g. To do this, x crowdsources
the answer indiscriminately to 3 other people (who turn out to be x1, x2 and x3). How-
ever, x2 and x3 already made friends (using a separate social computation) and x3 uses a
third social computation to crowdsource his answer from his immediate friends (in this
case just x2). We would like a system that will run all these social computations and
allow sharing of data appropriately (such as in the use of the friendship relation from the
second computation to establish the crowdsourced answer from the third computation.
Furthermore, we would like to be able to extract from these computations their key data
accompanied by a representation of sufficient provenance meta-data to be able to deter-
mine useful relationships between shared data (such as the fact that the answers from x2
and x3 in x’s crowdsourced computation were not independent of each other because in
a separate computation x3’s answer was derived from x2’s response.

1.2. Social Computation and Formal Languages

Languages relevant to social computation continue to be developed. The principal groups
of such languages are:

Languages oriented to crowdsourcing These languages give engineers an interface to
crowdsourcing architectures (e.g. Turkit[6] connects to Mechanical Turk) so that
one can program a social computation via a high-level language. The process spec-
ifications introduced later in this paper serve a similar purpose.

Languages for sharing workflows These are general-purpose process languages that
are used to provide a shared view of standard workflows across a community (e.g.
SCUFL was used as an underlying process language in MyExperiment for sharing
designs of scientific experiments[10]). Similarly, the process descriptions we in-
troduce later in this paper are designed to be shared (although the means of sharing
is different).

Languages for specifying data provenance The aim of this sort of language is to pro-
vide a means to annotate data with information related to its origin (e.g. PROV[9]
might be used to annotate personal data that is shared socially and, when it is
shared, to allow others better to understand its origin). We describe later how one

might link provenance-related data to process specification in support of social
computation.

Languages for specifying Web services It is, arguably, possible to imagine social com-
putation partly as a service choreography problem where people, as well as com-
puters, provide services (e.g. OWL-S[7] might be used to specify human services
and automated matchmakers might be built to help identify the humans most ap-
propriate to a given task). This level of specification relates to the discovery phase
of computation that we introduce later.

Languages for describing the permitted states of social interactions The purpose of
these languages is to characterise standard types of social interaction via state
specification models (e.g. finite state machines are used in ISLANDER([4] to spec-
ify the permitted transitions between roles and scenes in multi-agent interactions).
The process language we use later in this paper has been used for a similar purpose
(and a translator exists within ISLANDER to our language).

Languages for describing human interaction A wide variety of formal languages
have been used to model particular aspects of human behaviour when interacting
(e.g. Dialogue Games[8] are specification systems in which different aspects of
human argument may be represented). Often these specifications are not directly
executable but in earlier work we have shown how to provide executable versions
of some of these specification systems (such as Dialogue Games) using our process
language.

1.3. Social Computation and System Architectures

Many system architectures have been harnessed for social computation - indeed any
system architecture that allows people to network could in principle be employed of
this purpose. There are, however, a smaller number of overarching approaches to system
design:

Driving computation through the social network. This is the architecture that sup-
ports the giant social networking systems such as Facebook or LinkedIn. The so-
cial network in such systems provides the spine on which other computations are
supported.

Making the social element invisible. Social computation sometimes is embedded within
some other, larger activity in such a way that people using the larger system may
be unaware that there is a social element to it. Systems such as ReCaptcha (where
human effort to assist in OCR of historical texts is obtained in the guise of personal
identification) are examples of this.

Socially enhancing personal data. Humans are often motivated, with the right tools, to
acquire and maintain data about themselves. By performing useful analytics across
such data when it is shared across a social network it is sometimes possible to
generate a virtuous cycle in which more sharing leads to better analytical results
which in turn promotes more sharing. This is a driver for systems such as Patients
Like Me.

These approaches have typically been taken separately in different systems but we
will demonstrate later in this paper that they can be accommodated within a single,

generic architecture. This is important if we wish eventually to broaden engineering of
such systems to tackle larger and more sophisticated problems that may need a combina-
tion of approaches within a single framework. First, however, we introduce the concept
of a social artifact, which will form the basis of specification for all computations in our
system.

2. Social Artifacts

A social artifact is a data structure specifying the state of a social process. We take
advantage of the normal duality in executable specifications between the view of a social
artifact as a document, with a semantics independent of any specific machine, and the
view of it as a data structure that can be processed by specific computational mechanisms
that interact with the real world (in other words, we supply interpreters for these data
structures in a social computation engine). In a completely open social machine, all social
artifacts are visible to everyone. In practice, as we later discuss, we may wish to constrain
openness to protect the individual from the machine and from other individuals. Social
artifacts change, and multiply, as a consequence of the computational mechanisms that
act upon them. In Section 3 we describe a general purpose mechanism for updating social
artifacts and, as a consequence of this, producing social computations.

The language we use to specify social artifacts is the Lightweight Social Calculus
(LSC). This has many features in common with the Lightweight Coordination Calculus
(LCO)[15] which has been used in a variety of contexts to describe coordination between
peers in distributed systems [14]. It is not intended to be the last word on social com-
putation languages (these will continue to evolve and diversify as the area grows) but it
is intended to capture the essence of these sorts of computations while also being exe-
cutable via the generic operational definition given below. Although we do not dwell on
the systems engineering aspects of LSC itself, readers should be aware that an interpreter
for the language (written in Prolog) exists and there is also a separate system embedding
a version of LSC that operates using Twitter as a communication mechanism.

The syntax for LSC is given in Figure 2. The purpose of the language is to specify
the permitted sequences of communication within a social group (that is, a group of peo-
ple interacting together in some social way). Later, we show how computation within the
social group can be understood as manipulations on that specification (and it is in this
sense that LSC is an executable specification language). The effort of computation when
a LSC specification is used operationally is through the actors operating locally. LSC is
agnostic to the nature of these actors (they could be humans or automatons - it is not
always possible to distinguish on the open internet) but the anticipated use of LSC is in
cases where actors typically are humans. Actors connect to the LSC specification by sat-
isfying conditions associated with elements of the clauses of the LSC specification. Each
clause defines a role in the computation, so to enter a computation an actor must choose
an appropriate role, and all synchronisation between roles is through communication be-
tween clauses. This means that, when used as an executable specification language, each
clause can be used independently as the “script” of the particular actor that is engaged
with that role.

Social artifacts specify social interactions in two ways. The first of these is to de-
scribe potential interactions that may in future be performed. For example, a basic op-

Artifact := {Clause, ...}
Clause := Actor :: Def
Actor := a(Role,Id)
Def :=E | Def then Def | Def or Def
E :=Event | Event < C | C < Event | C + Event + C
Event := Actor | Communication | null
Communication := Content = Actor | Content <= Actor
C:={(..dtem...)
Item := k(Term) | e(Term) | i(Term) | k(Term) <+ e(Term)
Role :=Term
Content :== Term

Where null denotes an event which does not involve communication; Term is a
structured term in Prolog syntax and /d is either a variable or a unique identifier for the
actor. M = A denotes that content, M, is communicated to actor A. M < A denotes that

content, M, is received from actor A. Events can be associated with pre and post
conditions, so C; <— E < Cj, says that event E, can take place if C is true and that C,
must hold after E has occurred. All conditions are understood within the context of the

actor following the clause in which the condition appears. Conditions of the form
k(Term) denote that data itemTerm is assumed to be believed by the appropriate actor.
Conditions of the form e(Term) describe how the appropriate actor engages with the
social interaction. Conditions of the form i(Term) are internal computations performed
by the LSC interpreter. The then operator represents sequence. The or operator
represents committed choice.

Figure 2. Syntax of LSC

eration in social computation systems is to develop social links. In LSC we can specify
the simplest form of this type of social interaction using the single clause given in def-
inition 1. Informally, this definition says that an actor, X, can play the role of a friend
of actor Y if X offers an invite to Y (who accepts the role of a friend of X) and receives
an accept or (conversely) if X receives an invite from Y and offers an accept. The com-
munication of an invite by X is conditional on X actually wanting to invite Y (which is
denoted by the condition invites(Y)). Similarly the communication of an accept by X is
conditional on X actually wanting to accept an invitation from Y (which is denoted by
the condition acceprs(Y)).

a(friend,X) ::
invite = a(friend,Y) < (e(invites(Y))) then
(k(friends(X,Y))) « accept < a(friend,Y)
or
invite <= a(friend,Y) then
(k(friends(X,Y))) < accept = a(friend,Y) < (e(accepts(Y)))

ey

The second way in which we use specification is to describe actual interactions
that have been performed by specific collections of actors. For example, if (using the in-
teraction specification in definition 1) actors p1 and p2 established a friendship link then
the resulting specification of their specific interaction might be as shown in definition 2.
This is a ground version of definition 1 in which the variables have been replaced by
constants identifying the actors involved. Notice that we have two clauses in definition 2,
each an instance of definition 1 used by the appropriate actor. In Section 3.2 we explain
social computation as a derivation of actual from prospective clauses (i.e. deriving what
has been done from what might be done).

a(friend, pl) ::
invite = a(friend,p2) <+ (e(invites(p2))) then
(k(friends(pl,p2))) < accept < a(friend, p2)
(2)
a(friend,p2) ::
invite < a(friend, pl) then
(k(friends(p2,pl))) < accept = a(friend,pl) <+ (e(accepts(pl)))

From actual interactions we can infer from each clause the knowledge associated
with the corresponding actor. For example, from definition 2 we can infer that p1 knows
friends(pl, p2) and that p2 knows friends(p2, pl). Depending on the privacy policies
applying to each clause, this knowledge might be common knowledge (shared by p1, p2
and perhaps third parties). In Section 3.4 we look at this in more detail.

3. Core Cycle of Computation

The core cycle of computation is depicted in Figure 3. At the centre of the computation
is the repository of social artifacts. All of the basic operations of computation are trans-
formations on individual artifacts within this repository, achieved through the following
cycle of actions:

Discover: An actor, A, locates a relevant social artifact, (42, M), in the repository where
& is the state of the interaction and M is the set of open communication events
(the messages produced by actors that have not yet been read by their intended
recipients). We write this as Dy ((22,M)).

Engage: Actor A is motivated to choose a role in the interaction and chooses an appro-
priate clause, S, from &. We write this as & 34 S.

Act: The actor interacts according to the social norms expressed in S, producing the
new interaction state, S,. In doing so, the communication events associated with
& may change (through consumption and/or generation of communications by A)

to give the new event set M,,. This creates a new social artifact, (£2,,M,) that is

. . . . AP MM, S$,8n
recorded in the repository. We write this as § —— §,,, & — £,

A full cycle of social computation, starting with the discovery of artifact (27, M)
and concluding with new artifact (92,,M,) is then the sequence:

Retrieve state

Act f i \ .
N artifacts NG

®¢:;/

Figure 3. Basic cycle of computation in LSC

A, P .My, M) 51,52
#) 52,91 — 322

Da((£1,My)), 2 34 S1, S1

Repeating this cycle for (2),M)),...,(Z%,M;) gives a sequence of computations
for the social artifact.

While individual people are interacting via this discover-engage-act cycle, auto-
mated mechanisms are used to infer additional data from the interaction states. These
derived data are fed into each step of the cycle with the aim of informing and assist-
ing individual actors. We describe this cycle (and its relationship to data provenance) in
Section 3.4 but first we describe in more detail the discover-engage-act cycle.

3.1. Discovery

A key advantage of high-level specification of social artifacts is that these specifications
may be accessed within a variety of architectures. For example:

Via a Web browser where artifacts are annotated to increase the likelihood of their be-
ing discovered by semantic web search engine and an action+engagement mecha-
nism is built into the browser. An example of this is the OKeilidh system[1].

Via peer to peer recommendation where artifacts are held on peers and query routing
mechanisms used to search for them across the peer network. An example of this
is the OpenKnowledge system[14].

Via interaction with existing social media systems where an interpreter for LSC spec-
ifications posts adverts to engage with them to the media stream and listens for
responses. An example of this is our use of Twitter as a media stream for LSC,
using hashtags to advertise and respond.

Although the specific choice of architecture (and artifact annotation) may vary, there
is a major difference, across architectures, in the way actors discover artifacts. The sim-

plest form of introduction (and the one most commonly practiced) is for actors to be
invited directly. The following example demonstrates this.

Having established friend-of-friend links via use of the computation specified in
definition 1, we might want to use this network to crowdsource the answer to some
question. Definition 3 defines one form of basic crowdsourcing, using immediate friends.
Here the social interaction is initiated by an actor in the role of coordinator who polls, in
turn, each of his/her friends for the answer to question, O, and then decides the answer,
A, based on the set, S of replies received. The role of each participant is simply to be
receive request(Q), from the coordinator and offer reply(A), if it is able to respond.

a(coordinator,C) ::
(k(answer(Q,A)) + e(decide(S,A))) + a(collector(Q,F,S),C) +
(set (Y, k(friends(C,Y)),F),e(choose_question(Q)))

a(collector(Q,F,S),C) ::
request(Q) = a(participant,Y) < (i(F = [Y|F)]) then
(i(S=A[S,)]) « reply(Q,A) < a(participant,Y) then
a(collector(Q,F,,S,),C)
or
null + (i(F

a(participant,Y) ::
request(Q) < a(collector,C) then
(k(answer(Q,A))) < reply(Q,A) = a(collector,C) + (e(respond(Q,A)))
3)
The approach of Definition 3 is not the only way to crowdsource. We could use a
less discriminating approach such as the one in Definition 4. This interaction does not
reference the friend relations known to the coordinator. Instead, the coordinator accepts
replies from any actor that responds (collecting the first N responses as its sample).

a(coordinator,C) ::
(k(answer(Q,A)) + e(decide(S,A))) < a(collator(Q,N,S),C) +
(e(choose_question(Q)),e(sample_size(N)))

a(collator(Q,N,S),C) ::
((i(S = [A|Sg])) < reply(Q,A) < a(responder(Q),Y) < (i(N > 0)) then)
a(collator(Q,N;,S,),C) + (i(N,=N-1))

null < (i(N=0),i(S=1]))

a(responder(Q),Y) ::
reply(Q,A) = a(collator,C) <+ (k(answer(Q,A)) < e(respond(Q,A)))
“
As in conventional specification, a wide range of different LSC definitions could be
constructed, even for a comparatively simple task like crowdsourcing a question. We are
unlikely to standardise on a single, canonical specification of a social activity. On the

other hand, we do want to take advantage of data sharing between social activities (so
that, for example, the specification of Definition 3 relies on friendship data that can be
produced by Definition 1). This is the reason why we distinguish (syntactically, using the
term k(X)) items of knowledge acquired by actors via interaction with social artifacts.

3.2. Acting

Recall from the start of Section 3 that a social artifact is a set, &2, of LSC clauses plus
a set of open communication events, M;, initiated by previous interaction with & (see
Figure 2 for syntax). A change in state of & takes place when an actor, A, selects a
clause, S, from £ and translates it to the new state S,. In performing this update, some
communication events in M; may be removed (because they are received by A) and others

may be added (because A initiates them), generating the new communication set M,. We

. . AP M; M,
write this as §; ————% S, in the formal definition of state transition in Figure 4. This

basic notion of state transition supplies us not only with the basis to support primary
social interactions (for the task in hand) but also with a basis for secondary support for
engagement (Section 3.3) and data inference (Section 3.4).

3.3. Engagement

Engagement of an actor, A, with a social artifact, &2, occurs when the actor commits to a
role in 2. In Section 3 we wrote this as & 34 S where S is the clause of the interaction
with which A engages. That engagement is likely to depend on a variety of things: the
ability of the actor to identify the role as being appropriate in his/her current context; the
incentive to engage with the role; and trust that other actors engaging with the artifact will
play their roles appropriately. This is complex and extensively studied from many human
perspectives (economic, social, psychological) but we are concerned with providing a
broad infrastructure for the (computer based) social interaction that may underpin these
human processes.

The actor must at least be able to form a view of what the social artifact is intended
to achieve, and this will inform the decision to join, as well as further questions about
the quantity of resources to commit. The artifact will in general focus on a particular
goal G (which may be designed in, or may have emerged via interaction between its
constituent members). Hence one obvious case would be when the actor shares the goal
G; his interests are therefore served by making a positive contribution to the artifact. But
he has to be sure that his contribution would be positive before he took steps to join (a
football supporter wants his team to win, but does not for that reason join the team).

Yet this is not the only possibility. ReCAPTCHA is a social artifact whose goal is to
help Google transcribe books, which is not the goal of very many of its users. The actors
immediate goal is to prove that he or she is human, in pursuit of some wider goal (e.g.
of gaining admittance to a website), and hence ReCAPTCHA is designed to achieve its
own goal by presenting itself as a solution to actors immediate access problems. Other
social artifacts, such as the winning DARPA balloon challenge, offer financial or other
incentives to a public which would otherwise be indifferent. Where an artifact defines
a community, the goal of the actor may simply be to join the community, and to serve
that wider goal the actor may simply adopt the goal of the artifact (just as the goal of a
golfer is not to place this ball in that hole a quarter of a mile away — golf would be a

AP M;iM,
S1 ———— 8, denotes a transition in the social computation from the state

represented by clause Sy, taken from social artifact, P, to the state represented by clause
S> via the actions of actor A. M; and M, are sets of communication events remaining to
be processed at the start and end of the transition. Definition:

Ay D 22Ny ifp AP MiMo, g

Ty or 7, 22MiMe, i, AZMiMo, g

TyorT, AT MiMo, g if T, AP MM,

Ty then Ty 22MMos EihenTy if—o(Ty), T, 22MMo,
Tithen Ty 22 MM 1othen B it o(Ty), T, 22MM,

X Ay 22MMos (X = Ay w) i M, = M\ {m(A,X < Ar,)}

M= Ay SEHE (M = A) (M, W), M,y = M;U {m(A,X <A, y)}
a(R,1) 22 Mos W RI)VE i P o a(RD) D, D 22NN, g
T ¢ 22NN g cy) ifK(@A,C), T 22MMe g

coT 2IMMo ey E it 22NN B OR(AC W)

©®(T) denotes that an interaction term, 7" has been covered by the preceding interaction
(we say that it is closed). Definition:

O(c(X,)
®(A<+ B) if®(A)and & (B)
O(A then B) if ©(A) and © (B)
OX D) ifo(D)
& % X is true if clause X appears in the interaction framework .
P(X, y) is true when the actor assigns context description y to X.
K(A,C, y) is true if C can be satisfied from the actor’s current state of knowledge, given
whatever computational system the actor deploys internally. Definition:

K(A,k(C),) if C is known by A and P(C, y)

K(A,e(C),y) if C is satisfied through interaction with A and P(C, y)
K(A,C,0) if C is a predefined function that the system can perform
K(A CiNC, iy U l[/z) if K(A Ci, l//]) and K(A G, 1[12)

Figure 4. State transition for a clause of a social artifact

very inefficient way of doing that — but rather she adopts that goal because of her desire
to play a game of golf). The Zooniverse provides examples of this type of artifact, where
participants who have no intrinsic interest in galaxy formations or the sex life of worms
have the wider goal of taking part in a scientific project, promoting science and hanging
out in a community of citizen scientists.

Hence the artifact needs to communicate to potential users, in order to attract (the
right) actors, but communicating its ultimate goal G may on occasion be counterproduc-
tive. The content of the communication must depend on whether the actor is attracted by
the aims of the artifact itself, or instead by what the artifact will do for the actor.

Although part of an actor’s decision to engage with a role may be internal to his/her
own thoughts, the choice may also be influenced by external interactions with other ac-
tors. These interactions can also be enacted via the state transition mechanism of Fig-
ure 4, thus bring them also within the social computation. For example, an actor, X, may
wish to decide whether to engage a clause, S (so & 3% S) by requesting approval from
some authority, Y, by playing the role of a(assessor(S,R),X), as defined in interaction 5,
to obtain a recommendation, R, on whether or not to engage with the interaction defined
by S. The choice of whether or not to engage might then be based on the actor’s (internal)
judgement based on (socially derived) R.

a(assessor(C,R),X) ::
request (recommendation(C)) = a(authority,Y) < (e(choose_authority(Y)) then
recommend (R) <= a(authority,Y)

alauthority,Y) ::
request (recommendation(C)) < a(assessor,X) then
recommend (accept) = a(assessor,X) < (e(recommends(C,R)))
&)
Having moved this part of the decision process (partially) into the social computation
realm, we have the flexibility (as before) to define a wide variety of social mechanisms
for engagement. For example, definition 6 provides an alternative definition for assessor
by re-using the crowd sourcing interaction from definition 8.

a(assessor(C,R),X) :: 6)
(e(decide(S,R))) < a(collator(C,N,S),X) « (e(sample_size(N)))

This move has particular value in describing the mechanisms which support the de-
cision of the actor to trust (or not) the other elements of a social artifact to deliver their
promised contributions. Trust is essentially the belief that the would-be trustee is suffi-
ciently trustworthy in a given context, and so is an internal decision (or involuntary at-
titude) of the actor. However, there are many ways of socialising trust, to increase the
likelihood that trust effectively correlates with trustworthiness. Reputations store acces-
sible records of past performance; recommendations are the opinions of others who have
been in the role that the actor contemplates occupying; sanctions give the actor access
to redress which incentivises the would-be trustee not to defect; transparency allows the
actor to monitor the would-be trustees performance.

Given that the notion of an actor in LSC is agnostic to whether the actor is a human
or an automaton, there is an issue of what to do when trust relies on the actor being human
(because some uniquely human measure of trust needs to be applied). Although LSC
itself cannot verify whether or not actors are human, it could (via the constraints attached
to roles) attach to a separate claims systems that aim to provide such verification.

As well as trusting human actors in LSC-based systems it is necessary to trust the so-
cial artifacts themselves. Earlier work [11] supplies a system for checking social artifacts
against specifications made by an actor of the commitments and obligations he/she re-
quires of the interactions they contain. This contrasts with systems for propagating pref-
erence conditions for use of shared data along with data being shared (see, for example
[12]). Importantly, social artifacts expressed in LSC are themselves data so they, them-
selves, constitute personal data to be managed, with the architectural issues discussed in
(for example) [2].

3.4. Inferring Structured Common Knowledge

We now demonstrate by example how our style of social computation allows us to in-
fer useful information about the social structure of knowledge acquired via interaction
between actors. We return to the scenario introduced in Section 1 but this time enact it
using the social artifacts given in definitions 1, 3 and 4.

The first social interaction establishes x2 and x3 as friends via Definition 1. This
interaction constructs the ground social artifact shown in Definition 7.

a(friend,x2) :

invite = a(friend,x3) <+ (e(invites(x3))) then

(k(friends(x2,x3))) < accept < a(friend,x3))
a(friend,x3) :

invite <= a(friend,x2) then

(k(friends(x3,x2))) < accept = a(friend,x2) < (e(accepts(x2)))

Meanwhile, actor x decides to crowdsource the answer to question g via Definition 4.
This involves collecting three responses from which x then decides the answer (a2) based
on the responses from x1, x2 and x3. This interaction constructs the ground social artifact
shown in Definition 8.

a(coordinator,x) ::
(k(answer(q,a2)) < e(decide([al,a2,a2],a2))) <«
a(collator(q,3,[al,a2,a2]),x) ::
reply(q,al) < a(responder(q),x1) then
a(collator(q,2,[a2,a3)),x)
reply(q,a2) < a(responder(q),x2) then
a(collator(g,1,[a3]),x) ::
reply(q,a2) <= a(responder(q),x3) then
a(collator(q,0,]]),x)
— (e(choose_question(q)),e(sample_size(3)))

a(responder(q),x1) :: reply(q,al) = a(collator,x) < (k(answer(q,al)) < e(respond(q,al)))

a(responder(q),x2) :: reply(q,a2) = a(collator,x) < (k(answer(q,a2)) < e(respond(q,a)))

a(responder(q),x3) :: reply(q,a2) = a(collator,x) <+ (k(answer(q,a2)) < e(respond(q,a2)))
(®)

However, actor x3 had also crowdsourced an answer to question g using Definition 3
to contact his immediate friends. This interaction constructs the ground social artifact
shown in Definition 9.

a(coordinator,x3) ::
(k(answer(q,a2)) + e(decide([a2],a2))) +
a(collector(q, [x2],[a2]),x3) ::
request(q) = a(participant,x2) then
reply(q,a2) < a(participant,x2) then
a(collector(q,]],[]),x3)
<« (k(friends(x3,x2)),e(choose_question(q)))

a(participant,x2) ::
request(q) < a(collector,x3) then
(k(answer(q,a2))) < reply(q,a2) = a(collector,x3) <+ (e(respond(q,a2)))
©))
The social artifacts we have constructed through interaction in Definitions 7, 8 and 9
allow us to extract data and meta-data created during the interaction (illustrated in the ba-
sic computation cycle of Figure 3). We can directly extract data believed to be known by
actors as a consequence of completed interactions; for example, from Definition 7 we can
infer that actor x2 knows friends(x2,x3) and that actor x3 knows friends(x3,x2). This
direct data is, however, of limited value unless accompanied by meta-data describing the
context in which it was obtained; for example, the data that actor x knows answer(q,a2)
is not of much use without knowing how x acquired this answer. It is therefore necessary
to extract this sort of meta-data from social artifacts.

An important aspect of social data is its provenance. Various languages exist for de-
scribing data provenance but we have chosen to use the PROV language as an exemplar
in this paper because it was developed with the Web in mind, so if we have meta-data
expressed in PROV we have access to the efforts already made to make PROV expres-
sions accessible on the Web in a standard way. We can automatically infer PROV spec-
ifications (in a subset of the PROV language) from LSC specifications as summarised
below. This is a work in progress, so the PROV relations described here are not all that
we could infer from the LSC specifications (in particular, we are currently working on
a representation of entities that is more faithful to the PROV method) but the example
given here demonstrates the principle, which is the limit of our intention in this paper.

At the core of PROV are three classes of entity and eight relations, as shown in
Table 1. Of the core types and relations of Table 1, two are difficult to infer from LSC
specifications: waslnvalidatedBy(Entity, Activity) is hard to infer because in LSC there
is no specific invalidation construct (one can only access data or create it); actedOnBe-
halfOf(Agent1, Agent2) is hard to infer because in LSC there is no specific delegation
construct (although sophisticated interactions between actors can be defined which might
involve delegation, but it is hard to know when that occurs without an additional model
of delegation in terms of interaction). The remainder of the types and relations can be
inferred automatically, as described in Table 2.

As a demonstration of this method, we can use Table 2 to convert the social artifacts
from Definitions 7, 8 and 9 into the PROV graphs shown in Figures 5, 6 and 7 respec-
tively. In these visual depictions of PROV relations, the yellow ovals represent entities;

Table 1. Core PROV types and relations

PROV construct Informal meaning
entity(Entity) Something being created, adapted or manipulated.
activity(Activity) Something that occurs over time and acts upon or with
entities.
agent(Agent) Something that bears responsibility for an activity.

wasDerivedFrom(Entity2, Entity1)

Transformation or constriction of Entity2 from En-
tity1.

wasGeneratedBy(Entity, Activity)

Production of an Entity by an Activity.

used(Activity, Entity)

Utilisation of an Entity by an Activity.

wasInformedBy(Activity2, Activityl)

The use of information in Activityl to inform Activ-
ity?2.

waslnvalidatedBy(Activity, Entity)

Making an Entity unavailable for further use through
an Activity.

wasAttributedTo(Entity, Agent)

Ascribing an Entity to an Agent.

wasAssociatedWith(Activity, Agent)

Assigning responsibility for an Activity to an Agent.

actedOnBehalfOf(Agent2, Agentl)

Delegating responsibility to Agent2 by Agentl.

Table 2. Core PROV types and relations

PROV construct

Means of inference from LSC specification

entity(Entity)

Any instance of Entity in a term k(Entity)

activity(Activity)

Any Activity subterm of the form M = A, M <= A or e(X).

agent(Agent)

Any instance of Agent in a term a(Role, Agent)

wasGeneratedBy(Entity, Activity)

Any subterm of the form k(Entity) < Activity or of the form
(...k(Entity)...) < Activity

used(Activity, Entity)

Any subterm of the form Activity <+ k(Entity) or of the form
Activity < (...k(Entity)...)

wasInformedBy(Activity2, Activity1l)

Any subterm of the form Activityl then Activity2 or of
the form Activityl < (...e(Activity2)...) or of the form
(...e(Activityl)...) < Activity2

wasAttributedTo(Entity, Agent)

Any Agent appearing as the principal actor in a clause of the
form a(R,Agent) :: Def, where Def contains a subterm for
which entity(Entity) can be derived.

wasAssociatedWith(Activity, Agent)

Any Agent appearing as the principal actor in a clause of the
form a(R,Agent) :: Def, where Def contains a subterm for
which activity(Activity) can be derived

the purple rectangles are activities; the orange pentagons are agents. For completeness
in terms of LSC we have also included in the diagram green lozenges representing the
role associated with an agent as part of its attribution or association relation. This an also
be derived automatically from an LSC specification because all occurrences of an Agent
appear within a term of the form a(Role,Agent) (see third line in Table 2).

— .-~
fssociatedWith

waslInformedBy

h
wasAttributefiTo 1
.
|
h

P—

Figure 5. Provenance graph derived from Definition 7

e(x, choose question(q))

waslnform

e(x, sample size(3))

[(collator(q, 3, [a1, a2, a2]), x)]

wasAttributedTo
k(x, answer(qg,a2))

I
x4

wasGengratedBy

| e(x, decide([al,a2,a2],a2))

fatedWith
waslnfoimed By

wasAsSociatedWith

wasASsociatedWith
| reply(q, al) < a(responder(q), x1) | | reply(q, a2) < a(responder(q), x2) | | reply(q, a2) < a(responder(q), x3) |
waslnfirmedBy

wasInformedBy

| reply(q,al)=>a(collator,x) }—

wasInformedBy

waslInfoymedBy
| reply(q,a2)=>a(collator,x) }—
e(respond(qg,al))

waslInfofmedBy

e(respond(q,a2))

| reply(q,a2)=>a(collator,x) }—

waslInfofmedBy

wasGeneratedBy

wasGenferatedBy
iatedWith

e(respond(q,a2))
k(x1, answer(qg,al))

)q

wasGengratedBy
iatedWith
k(x2, answer(q,a2))

wasAttrijutedTo
N
N

was)

riatedWith
k(x3, answer(q,a2))

1 wasAttributedTo N

il [\ N 1 \

[D [

i ' N i \

1) N \ \

T o NS T

AN ' N \ \ N

v W

a(responder(q),x1)

\
a(responder(q),x2)

\
a(responder(q),x3)

Figure 6. Provenance graph derived from Definition 8

e(choose question(q))

[a(collector(q,[x2],[a2]),x3)]
ARAAR
wasAttributedTo s

k(x3, answer(q,a2))

wasGengratedBy

| e(x, decide([a2],a2)) wasAssqciatedWith

waslnfoimedBy

I waslInformedBy | =
| request(q) = a(participant, x2) | >| reply(q, a2) € a(participant, x2)

waslnférmedBy waslnformedB

| reply(qg,a2)=a(collector,x3) |(‘

waslInformedBy

e(respond(q,a2))

wasGeneratedBy

k(x2, answer(q,a2))

wasAttriqutedTo
N

vasAssociatedWith

v
v
\
\
\
\

h

i

'

1

1

\ \
A4 A4

a(responder(q),x1)

Figure 7. Provenance graph derived from Definition 9

4. Conclusions

The contribution of this paper is to demonstrate how, with the aid of comparatively well
understood formal methods assembled for the new engineering setting of social com-
putation, we can produce an infrastructure for a wide class of social computation using
mechanisms originally developed for knowledge sharing in open, peer-to-peer environ-
ments. This is important for two reasons: to give a uniform technical basis for supporting
social computations, so that both computations and data can more readily be shared, and
to disrupt the current trend for social computations to be centralised within institutions
with resulting loss of control over personal data.

We have tackled these issues by giving (in Section 2) a generic language in which
specifications for social computations may be described. These “social artifacts” may
then be used computationally (via the mechanisms summarised in Section 3) to provide
a core cycle of computation that allows people to discover, engage and act with social
artifacts while, in the process, deriving data established through the social interaction.
These data can be expressed (through automatic translation) within standard formats that
allow them to be combined with other “semantic web” data and used to infer further
knowledge about the social computation. In our example of Section 3.4 the data we
derived was provenance-related, so we were interested in inferring dependencies between

data and the events (and actors) creating data. We chose PROV because a community
of engineers exists around the PROV language and by conforming to it we increase the
chances that tools developed by that community to analyse PROV could be used for the
our data.

The mechanisms described in this paper do not provide the last word on generic
social computation - this will take the combined efforts of many researchers across the
wide spread of relevant disciplines. We have already seen rapid growth in the number and
variety of systems that rely on human social systems for their operation (the lower block
of Figure 1). The key issue of scale is whether we can build larger and more compli-
cated systems of social computation (the upper-right block of Figure 1) by growing the
complexity of one or more individual, closed systems or whether the route to growth is
through greater interoperability between systems through shared data. Our paper pushes,
as far as we are able, toward the shared data option - to the extent that the framework
for social interaction is itself shared data (and can be used to derive data for systems
outside the immediate social computation). We have not demonstrated, however, that our
solution actually scales in practice to large problems. Technically, it allows an open com-
munity of actors to engage with as many different forms of social interaction as can be
described in the LSC language so, in principle, this can operate at large scale. In practice,
we need additional mechanisms to discover, engage and act in concert with these LSC
specifications. Our earlier work in ontology matching, reputation management and dis-
tributed execution with these sorts of specifications provides prototypical mechanisms
for these tasks but much work remains to be done in assembling these in a new social
context.

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC) under grant number EP/J017728/1 (SOCIAM: The Theory and Practice of
Social Machines) and by the European Communitys Seventh Framework Programme
under grant agreement 600854 (Smart-Society: Hybrid and Diversity-Aware Collective
Adaptive Systems). We have benefited from discussions with colleagues on both these
projects.

References

[11 X. Bai. Peer-to-Peer, Multi-Agent Interaction Adapted to a Web Architecture. PhD thesis, School of
Informatics, University of Edinburgh, 2013.

[2] J. Bus and C. Nguyen. Digital Enlightenment Yearbook, chapter Personal Data Management A Struc-
tured Discussion. IOS Press, 2013.

[3] D. Clery. Galaxy zoo volunteers share pain and glory of research. Science, 333(6039), 2011.

[4] M. Esteva, D. de la Cruz, and C. Sierra. Islander: an electronic institutions editor. In Proceedings of the
1st International Joint Conference on Autonomous Agents and MultiAgent Systems, pages 1045-1052,
2002.

[5] F. Khatib, F. Dimaio, S. Cooper, M. Kazmierczyk, M. Gilski, S. Krzywda, H. Zabranska, I. Pichova,
and J. Thompson. Crystal structure of a monomeric retroviral protease solved by protein folding game
players. Nature Structural and Molecular Biology, 18(10), 2011.

(6]

(7]
(8]
[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

G. Little, L.B. Chilton, M. Goldman, and R.L. Miller. Turkit: Human computation algorithms on me-
chanical turk. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and
Technology, pages 57-66. ACM Press, 2010.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mcllraith, S. Narayanan, M. Paolucci,
B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara. OWL-S 1.1, 2004.

P. McBurney and S. Parsons. Games that agents play: A formal framework for dialogues between
autonomous agents. Journal of Logic, Language and Information, 11(3):315-334, 2002.

Luc Moreau and Paul Groth. Provenance: An Introduction to PROV. Morgan and Claypool, September
2013.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. Pocock,
A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17):3045-3054, 2004.

N. Osman and D. Robertson. Dynamic verification of trust in distributed open systems. In Twentieth
International Joint Conference on Artificial Intelligence, 2007.

S. Pearson and M. Casassa Mont. Sticky policies: An approach for managing privacy across multiple
parties. IEEE Computer, September, 2011.

G. Pickard, W. Pan, I. Rahwan, M. Cebrian, R. Crane, A. Madan, and A. Pentland. Time critical social
mobilisation. Science, 334(6055), 2011.

D. Robertson, C. Walton, P. Barker, A. Besana, Y. Chen-Burger, F. Hassan, D. Lambert, G. Li, J. McGin-
nis, N. Osman, A. Bundy, F. McNeill, F. van Harmelen, C. Sierra, and F. Giunchiglia. Models of in-
teraction as a grounding for peer to peer knowledge sharing. In E Chang, T. Dillon, R. Meersman, and
K Sycara, editors, Advances in Web Semantics, vol 1. Springer-Verlag, LNCS-4891, 2008.

David Robertson. Multi-agent coordination as distributed logic programming. In International Con-
ference on Logic Programming, volume 3132 of Lecture Notes in Computer Science, pages 416430,
Sant-Malo, France, 2004. Springer.

L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. recaptcha: Human-based character
recognition via web security measures. Science, 321(5895):1465-1468, 2008.

D. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler, and G. Sussman. Information
accountability. Communications of the ACM, 51(6):82-87, 2008.

