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Abstract  

This paper is concerned with determining the minimum stand-off distance required to prevent column 

failures in reinforced concrete framed buildings. This is of interest because column failures can 

initiate progressive collapse resulting in mass casualties. A technique is developed to determine the 

critical range at which failure will occur for a given weight of explosives and thus provide a safe 

scaled distance. The method is used to carry out a parametric study of a range of reinforced concrete 

columns of variable dimensions and strengths. The corresponding data were used to predict safe 

scaled distances for columns (with and without clearing). These values can be used to estimate the 

minimum stand-off distance required to prevent progressive collapses of buildings that may be 

subjected to deliberate blast loading. 

 

Introduction 

The most effective means of protecting buildings against vehicle borne improvised explosive devices 

(VBIED’s) is to maximise the distance between the explosive and the structure. This is often ensured 

by the installation of barriers, such as the soil filled (HESCO) gabions used by NATO expeditionary 

forces. The distance between the barrier and the building is commonly termed “set-back” in the USA 

and “stand-off” in the UK. The Hopkinson and Cranz scaling laws (Hopkinson 1915, Cranz 1926) 

show that over-pressure can be predicted from the range (R) divided by the cubed root of the mass of 

the explosive (W
1/3

). This leads to the concept of scaled distance, Z = R/W
1/3

, in which the over-

pressure produced by different charge sizes would be identical for the same scaled distance (Z). Since 

damage is a function of over-pressure the scaled distance is a useful parameter for setting stand-off 

distances because it allows the mass of the explosive to be varied.  

 Guidance as to what value stand-off should take varies, with the US DoD recommending a 

scaled distance of not less than 4.46 m/kg
1/3

[11.24 ft/lbs
⅓
] (US DoD, 2004). This can be a restrictive 

limit and would for example require 45m of stand-off to be provided for a design charge weight of 

1000kg (TNT). Within this range masonry load bearing buildings are at significant risk of collapse, 

although r.c. framed buildings are known to survive at scaled distances well within this limit. UK 

research into blast effects on steel and r.c. framed buildings during World War 2 was led by Sir 

Dermot Christopherson, who suggested ‘the region 1 < Z < 5 ft/lbs
⅓
 [0.4 < Z < 1.98 m/kg

1/3
] is of 

first-rate importance to the designer’. At a range of less than 0.4 m/kg
1/3

 the target was defined as 



being within the explosive flame and outside the scope of normal design measures, whereas the upper 

limit of 1.98 m/kg
1/3

 is of interest as within this limit failure of framing members is likely.  

 Buildings subjected to large blasts include the Marriott Hotel in Islamabad which was 

subjected to a 4.4 m/kg
1/3

[11 ft/lbs
⅓
] blast in 2008 and the Police & Internal Affairs Building in the 

Republic of Ingushetia, Russia which received a 2.4 m/kg
1/3

 [5.3 ft/lbs
⅓
] blast in 2009. Neither of 

these buildings suffered structural damage to their supporting frames due to blast. Many progressive 

collapses of framed buildings subjected to VBIED’s have been triggered by the failure of columns, as 

occurred in the Alfred P. Murrah Federal Building in 1995, in which the failure of 3 perimeter 

columns led to a collapse of nearly ½ of the floor area. The scale of this disaster has previously been 

blamed on the use of a transfer girder to support every other perimeter column, Corley, W. G. et al 

(1998). However, recent blast analysis of the building, in which the transfer girder was removed to 

allow all perimeter columns to continue down to ground floor level has demonstrated that the VBIED 

detonated would still have created a 42m wide collapsed section of the building, Byfield and 

Paramasivam (2011). The work demonstrated that lack of redundancy was key to the collapse, 

because the building used open-plan architecture with a fully glazed façade.  

 Knowledge of the scaled distance at which reinforced concrete columns begin to fail is of 

practical interest in the recommending of a bare minimum stand-off distance for use in congested 

urban areas. This paper aims to determine this stand-off distance by exploring the failure of r.c. 

columns. A method is presented for determining at what scaled distance the balance point between 

survival and failure occurs. This is termed the Safe Scaled Distance (SSD).  

 

The Safe Scaled Distance (SSD) approach 

 In the present work the estimation of a SSD for a given column and threat is by iteration. For a given 

charge weight an initial range is assumed and the blast wave parameters such as reflected pressure 

determined. If the dynamic analysis reveals that the shear force is greater than the shear strength or 

the moment is greater than the flexural strength, then the column is deemed unsafe and the stand-off 

distance increased. This procedure is repeated until the strength of the column is exactly equal to the 

dynamic force developed in the column. This process is explained graphically in Fig 1 for the case of 

shear failure with a constant charge weight. The dynamic shear force experienced by the column and 

shear capacity are non-dimensionalized by dividing by the total applied load, which is equal to the 

column face area multiplied by the peak reflected pressure. These normalised forces are plotted 

against the ratio between the blast time duration and the natural period of vibration of the column 

(td/tn). This ratio governs the degree of impulsiveness and it also affects the ratio between shear 

strength and load, since the loading falls as the range increases. The intersection between the two 

graphs provides the value of td/tn which corresponds to the SSD. Once the critical td/tn ratio is defined 



it is subsequently a trivial procedure to define the range that corresponds to the given charge weight of 

explosives.  

 

 

Fig. 1 Safe stand-off distance considering shear failure 

 

Calculating the dynamic shear force and moment 

During the assessment of shear failure the columns have been assumed to remain linear elastic up 

until shear failure at the supports. This assumed response is supported by observations from bomb 

damaged structures. The forensic investigation of the Murrah building showed that two perimeter 

columns failed by shear and the closest to the blast failed by brisance. The perimeter columns which 

failed by shear were found to have remained largely elastic along their lengths (Corley, 1998). Similar 

failures were observed during the forensic investigations carried out on bomb damaged buildings 

during World War 2, Byfield (2004, 2006) and Smith et al (2010). Fig. 2 shows bomb damaged 

columns which have experienced shear failures at the ceiling level but which have remained 

uncracked along their lengths. The assumption is conservative because linear-elastic response 

produces a shorter natural period of vibration than elastic-plastic response. This leads to a higher 

dynamic shear force because the ratio of td/tn is increased, which means the loading is less impulsive. 

In other words, by remaining elastic, shear failure at the supports is able to occur faster and at a lower 

load. In contrast, the dynamic analysis for flexural response was carried out assuming elasto-plastic 

response. The analysis reported herein demonstrated that shear failure of columns always occurred at 

lower scaled distances than for flexural failure. Since shear failure was always found to be critical the 

detailed information on the analysis for flexure is not presented herein, but it is available in 

Paramasivam (2008). 
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Fig. 2:  Shear failures due to blast (Baker, 1948) 

 

The columns were modelled using the standard distributed mass method defined in many textbooks 

such as Biggs (1964) and more recently by Chopra (2001).  In this method the partial differential 

equation (Eq. 1) is developed using force equilibrium and the response u(x,t) is expressed as the 

superposition of the response of individual modes. For RC columns, the shear deformation and the 

effect of axial compression on the dynamic response are negligible, hence ignored.    
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In this study the response (u) was obtained by combining these standard time and spatial functions to 

form the following expressions for columns: 
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L Length of the column 

m Mass per unit length 

n Mode number 

P[t] Blast load on column per metre length at time, ‘t’ 

u Displacement 

n  Natural frequency of n
th
 mode  

EI flexural stiffness 

 If the duration of the blast is quasi-static the maximum response occurs before the load 

diminishes to zero and the maximum response of an idealized column pinned at both ends was 

calculated using Eq. 3. This equation was used up to time td. In cases where the maximum deflection 

occurs after the load has diminished to below zero the response after was calculated using Eq. 4. 

Shear forces and moments were calculated from these displacement functions by solving the 

governing beam equations.   

 

Fig. 3:  Blast Load on Column 
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 During the analysis for shear the uncracked transformed section moment of inertia was used 

in the calculation of the natural time period (Ig + Is), where Ig is the gross moment of inertia and Is is 

the second moment of transformed area of reinforcement. During the analysis for flexural failure the 

cracking of concrete is important in reducing stiffness and increasing the natural time period of 

vibration and thus reducing peak moments on the column. In the present analysis the US DoD (2008) 

approach for flexure of using average moment of inertia of the cracked and uncracked sections was 

used. 

 

Defining the blast loading  

This investigation considered conditions in which the reflected pressure was or was not free to clear 

either side of the column. In columns that are free to clear the net load on the column (see the hatched 

area in Fig. 3(c)) is the front side load (Fig. 3(a)) minus the rear side load (Fig. 3(b)). Various graphs 

are available to estimate air blast loads (Kingery, 1984, Brode, 1955 and Henrych, 1979). In the 

present investigation blast wave parameters were based on the equations developed by Kingery 

(1984). Load duration is governed by the velocity of the wave front and the clearance distance, as the 

blast wave clears quickly if the blast wave is free to wrap around the column. For the work presented 

in this paper the complex pressure-time history shown by the hatched region of Fig. 3(c) was 

converted into a simple triangular pulse of equivalent area (impulse), as sketched in Fig. 3(d). The 

time duration (td) for the triangular pulse was calculated by dividing the impulse (net area under 

pressure-time curve) by the peak reflected pressure. In other words td is the effective time duration 

inclusive of clearing effects. To study the inaccuracy resulting from this simplification, a parametric 

study was carried out (Paramasivam 2008) which showed that the approximation is conservative and 

the error is within ten percent. 

 

Application of the method to a real building 

The Murrah Building incident was reanalysed to illustrate the approach. The blast load (W) and its 

duration (td) were estimated for various stand-off distances (3 to 50m) with the charge size 

corresponding to that used in the original incident (1800kg TNT equivalent). The shear capacity of the 

columns was calculated assuming an axial compression force resulting from full unfactored dead 

loads + 1/3
rd

 unfactored imposed loads. Using the approach (Fig. 1) the normalised shear force and 

strength were plotted against td/tn. The intersecting point shown in Fig. 4(a) occurred at td/tn = 0.17 

which yielded a safe stand-off distance of 23.75m (Fig. 4(b)). The forensic investigation of the 

building showed column G16 (range 15.24m, scaled distance 1.25 m/kg
1/3

) failed in shear, whereas 

the next closest column G12 (range 27.13m, scaled distance 2.23 m/kg
1/3

) survived. This corresponds 

to what was observed on the actual building and provides some confidence in the solution. Shear 



failure was found to be critical over flexural failure and the safe scaled distance (SSD) for the building 

(against progressive collapse) was shown to be 1.95 m/kg
1/3

, which is remarkably close to 

Christopherson’s value of 1.98 m/kg
1/3

.  

 

(a) Calculation of critical td/tn ratio for the Murrah Building 

 

(b) Calculation of SSD from the given td/ tn ratio 

Fig. 4 Safe scaled distance for the Murrah building  

 

Parametric study to determine a general design value for the scaled distance for reinforced 

concrete columns 

This method for calculating SSD is complex and not for rapid use. Therefore is becomes necessary to 

create interpolation functions for predicting the SSD for a given set of input parameters. The first step 

in developing an expression is to identify the influencing parameters. The dynamic shear force can be 

mathematically represented as follows, 
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Where: 

It  is the second moment of area for the transformed section 

Ig  is the second moment of area for gross concrete section 

B  is the column breadth 

D  is the column depth 

L  is the column length 

fck  is the characteristic cube compressive strength 

SD is the stand of distance 

W is the charge weight 

 

For simplicity this is not broken down into sub parameters such as area of compression steel, cover 

thickness etc. The explanation for the decision to divide B by L and D by L in this list of influencing 

parameters was that it reduces the size of the number range from 0.05 to 0.3 for typical column sizes. 

This had numerical advantage in speed of calculation. The column shear strength (Vu) is normalised 

by dividing by        to form the normalised shear strength (Ks) represented by Eq. 10. This 

normalisation has advantage because it provides a measure of the relative shear strength of the 

column, independent of column dimensions. 
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To solve this equation f1 and f2 are plotted against stand-off distance, hence W, B/L, D/L, L, It, fck and 

Ks are constant and the intersection point (Fig. 1) can be obtained. The SSD is mathematically 

represented by equation (9) for clearing: 
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and equation (10) for no clearing: 
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From these equations it is clear that SSD as related to shear failure depends on charge weight, 

concrete strength, B/L, D/L, L, It and Ks. Using the above method a database of SSD’s for shear and 

flexure were generated using the following range of variables: charge weight {230, 500, 1000, 1500, 

1800, 4500kg},  fck ranging from 20 to 40 N/mm
2
,  B/L ranging from 0.05 to 0.3, D/L ranging from 

0.05 to 0.3, L ranging from 2.5 to 6 m,  normalised shear strength (Ks) ranging from 0.1 to 0.8 and 

normalised flexural strength ranging from 0.1 to 0.8. The concrete strengths are low, particularly for 

old structures in developed countries; however the 20 to 40N/mm
2
 range is more realistic for 

buildings in developing regions where concrete strengths are often lower. The parametric study 

provided an array of approximately 300,000 data points upon which a regression analysis was based. 

A series of the regression analysis functions were developed and used in a parametric study to explore 

the range of the safe scaled distance for columns adopted in practice. The functions (SSD equations) 

yield the maximum R-squared values of 0.996 and 0.994 to estimate the SSD of a column for clearing 

and no clearing respectively. A total of 396 columns were examined based on a combination of the 

following parameters: B{300, 450, 600mm}, D {300, 450, 600mm}, L{3, 4, 5, 6m}, diameter of main 

reinforcement {20, 25, 32mm}, number of main rebars {4, 8mm}, 2 and 4 legged ties-with 12 mm 

rebars, spacing of ties {150, 200, 250mm} and axial compression of 10, 20 and 30 % of Agfck . The 

shear and flexural strength of these columns was estimated using BS 8110 (BSI, 1997) without any 

material safety factors.  



 

Fig. 5 Normalised shear strength vs. safe scaled distance  

 

 

Results from the parametric study 

Fig. 5 shows SSD plotted against the normalised shear strength of the 396 columns considered, each 

with and without clearing. An equivalent graph is available showing SSD versus the normalised 

flexural strength (Sakthivel, 2008) although since shear failure was found to be critical in all cases the 

flexural graph is not included. Shear failure tends to be critical for columns due to a number of factors 

which include: (a) columns tend to have low shear resistance, and (b) the higher modes of vibration 

contribute significantly to the dynamic shear force, whereas the higher modes of vibration do not 

contribute significantly to the dynamic bending moments.   

 The mean value of SSD determined from these data was 1.84m/kg
1/3

 with clearing and 

2.20m/kg
1/3

 without clearing. It is interesting to compare these values with those from other sources. 

As discussed previously Christopherson (1945) concluded from his extensive investigations that the 

scaled distance of most interest to designers was within the limit of 1.98 m/kg
1/3

. More recently, finite 

element modelling using LS-DYNA by Wu and Hao (2007) provided a critical SSD of 1.8m/kg
1/3 

where column axial forces are low and 1.18m/kg
1/3 

where column axial forces are high. The reason for 

the variation with axial compression is because compression enhances the shear strength of the 

column. This parametric study assumed axial compression was developed from a loading of 1.0 x 

dead load + 1/3
rd

 of the imposed loading and this produced axial compression forces of the order of 

10-25% of Agfck. This corresponds to a low value of axial force from the Wu and Hao study; hence the 

scaled distance of 1.8 m/kg
1/3 

is the most appropriate value for comparison purposes. Therefore the 

results of both Christopherson and Wu and Hao are close to those from the present investigation. The 

forensic analysis presented in this study indicated that the Murrah Building required a SSD of 

1.00

1.50

2.00

2.50

3.00

3.50

0.40 0.60 0.80 1.00 1.20 1.40

Normalised shear strength, K s

S
a
fe

 S
c
a
le

d
 D

is
ta

n
c
e
, 

m
/k

g
1

/3

Without clearing

With clearing



1.95m/kg
1/3

, which again fits comfortably with Wu and Hao (1.8m/kg
1/3

) and Christopherson 

(1.98m/kg
1/3

) values. It is worth noting that blast loading can in certain circumstances create tensile 

loading in columns and effect would reduce the shear capacity of the columns considerably. Uplift 

effects from blast on conventional buildings are not understood in sufficient detail to allow them to be 

included in this study. They are however worthy of future study and they have the potential to reduce 

the safe scaled distance significantly.  

 

Fig. 6: Normalised shear strength vs. safe scaled distance design chart for r.c. columns 

The US DoD (DoD, 2004) provide a SSD value of 4.46 m/kg
1/3 

for unstrengthed framed structures. 

This appears to be conservative, at least in respect of the column failure criteria. However this value is 

designed to provide a basic level of protection from effects such as secondary fragmentation, which 

are not within the scope of this parametric study. In the congested urban environment achieving a 

SSD of 4.46 m/kg
1/3 

can be problematic, in which case a basic level of protection against column 

failure is of interest. In this circumstance the SSD can be established approximately for a given 

column using the normalised shear strength vs. SSD design chart presented in Fig. 6. This shows the 

trend-lines obtained from the parametric values presented in Fig. 5. It should be noted that uplift can 

occur during blast loading and this will reduce the compression force in the columns. Therefore, the 

reduced shear strength due to the loss of compression may need to be included when calculating the 

normalised shear strength for use with this chart. It should also be noted that this chart contains no 

factors of safety.   

 

Conclusions 

The safe scaled distance within which r.c. columns can be expected to fail is of interest when 

developing security measures for buildings, since column failure is normally required before 

progressive collapse can be initiated. This paper develops an iterative method for establishing the 

critical distance within which r.c. columns can be expected to fail. This distance is presented in terms 

of scaled distance and this approach has the built in flexibility to account for variations in charge size. 
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Using this method a series of functions were developed from which the safe scaled distance could be 

determined for a given charge size, column geometry and set of material properties. These functions 

were used to establish the safe scaled distances for a set of 396 columns, each with and without 

clearing of blast pressure. The results were used to develop a design chart for estimating the safe 

scaled distance for columns. This allows for a rapid estimation of the stand-off distance required to 

safeguard against column failure, inclusive of an allowance for the relative strength of the column. 

The results from the study have been found to be in good agreement with other studies, which 

included a World War II investigation into the performance of structures subjected to blast and a more 

recent LS-Dyna based study. The method was also shown to correctly predict the failure modes that 

occurred when the Murrah Building was subjected to blast loading. 
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