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THE COHOMOLOGY OF VIRTUALLY TORSION-FREE

SOLVABLE GROUPS OF FINITE RANK

PETER KROPHOLLER AND KARL LORENSEN

Abstract. Assume that G is a virtually torsion-free solvable group of finite

rank and A a ZG-module whose underlying abelian group is torsion-free and
has finite rank. We stipulate a condition on A that ensures the existence of

a positive integer m such that mHn(G,A) = 0 and mHn(G,A) = 0 for all

n ≥ 0. Using this property for cohomology in dimension two, we deduce two
results concerning the presence of near supplements and complements in solv-

able groups of finite rank. As an application of our near-supplement theorem,

we obtain a new result regarding the homological dimension of solvable groups.

1. Introduction

The primary goal of this paper is to establish a property of the cohomology and
homology of a virtually torsion-free solvable group of finite rank. We say that a
solvable group has finite rank if, for every prime p, each of its abelian p-sections
is a direct sum of finitely many cyclic and quasicyclic p-groups. In the literature,
this property is commonly referred to as having finite abelian section rank. For our
result, we will require the concept of the spectrum of a solvable group of finite rank,
a notion that is usually only associated with the special case of a solvable minimax
group. If G is a solvable group of finite rank, then the spectrum of G, denoted
spec(G), is the set of primes p for which G has a quasicyclic p-section. Given an
arbitrary set of primes π, we describe a solvable group of finite rank as π-spectral if
its spectrum is contained in π. Equipped with these terms, we can state our main
theorem.

Theorem A. Let G be a virtually torsion-free solvable group of finite rank with
spectrum π. Assume that A is a ZG-module whose underlying abelian group is
torsion-free and has finite rank. Suppose further that A does not have any nontrivial
ZG-submodules that are π-spectral as abelian groups. Then there exists a positive
integer m such that

m ·Hn(G,A) = 0 and m ·Hn(G,A) = 0

for all n ≥ 0.

Section 2 is devoted to the proof of this theorem. We begin the section by
establishing the following property of the functors ExtnZG and TorZGn forG an abelian
group. As well as playing a pivotal role in the proof of Theorem A, this proposition
may be of interest in its own right.
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2 KROPHOLLER AND LORENSEN

Proposition A. Let G be an abelian group. Assume that A and B are ZG-modules
whose additive groups are torsion-free abelian groups of finite rank. Suppose further
that A fails to contain a nontrivial submodule that is isomorphic to a submodule of
B. Then there is a positive integer m such that

m · ExtnZG(A,B) = 0 and m · TorZGn (A,B) = 0

for all n ≥ 0.

In Sections 3 and 4, we apply the cohomological part of Theorem A in dimension
two to shed light on the structure of solvable groups of finite rank. Our interest is
in discerning the presence of certain types of near supplements and complements.
A near supplement to a normal subgroup K of a group G is a subgroup X such
that [G : KX] is finite; if, in addition, K ∩X = 1, then X is referred to as a near
complement to K. The relevance of Theorem A to the detection of near supplements
and complements is revealed by the following result of D. J. S. Robinson, applied
in [7, Theorem C] to find nilpotent near supplements.

Proposition 1.1. (D. J. S. Robinson [8, Theorem 10.1.15]) Assume that G is a
group and A a ZG-module that has finite rank as an abelian group. Let ξ be an
element of H2(G,A) and 1→ A→ E → G→ 1 a group extension corresponding to
ξ. Then ξ has finite order if and only if E contains a subgroup X such that X ∩A
is finite and [E : AX] is finite.

Our focus is on near supplements and complements to normal subgroups that
give rise to a quotient that is minimax. We remind the reader that a solvable group
is minimax if it has a series of finite length in which each factor is either cyclic or
quasicyclic. Moreover, if π is a set of primes, then a π-minimax group is a solvable
minimax group that is π-spectral. Given a solvable group G with finite rank and
K �G such that G/K is π-minimax for a set of primes π, we seek conditions that
guarantee the existence of a π-minimax near supplement or complement to K.

Section 3 treats near supplements; our principal discovery is

Theorem B. Let G be a solvable group with finite rank. Assume that K is a
normal subgroup of G such that G/K is π-minimax for some set π of primes. If
G/K is virtually torsion-free, then K has a π-minimax near supplement in G.

The two key ingredients for Theorem B are Theorem A and a result of D. J. S.
Robinson [11] that describes a situation where the cohomology of a solvable mini-
max group with torsion coefficients must itself be torsion. With these cohomological
tools, the proof of Theorem B becomes a rather swift affair, involving induction on
the Hirsch length of K.

Theorem B is a generalization of [4, Proposition I.20], which states that, if G is
a solvable minimax group and K � G such that G/K is polycyclic, then K has a
polycyclic near supplement. The latter proposition is employed by M. R. Bridson
and the first author in order to prove a result [4, Theorem I.3] about the homological
dimension of an abelian-by-polycyclic group. We conclude Section 3 by applying
Theorem B to generalize Bridson and the first author’s theorem to a larger class of
groups (Proposition 3.6).

In the final section of the paper, we investigate which hypotheses need to be
added to Theorem B in order to give rise to a near complement to K. It turns
out that near complements are a comparatively rare phenomenon, their presence
assured only if K happens to enjoy two quite restrictive properties. The first
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condition is that K should be Noetherian as a G-operator group, meaning that it
satisfies the maximum condition on G-invariant subgroups. Second, K must not
have any torsion-free π-minimax quotients. That these two hypotheses suffice to
furnish a near complement forms the content of Theorem C below. The proof of
this result hinges on recognizing that the second property is often passed on to
G-invariant subgroups of Noetherian G-operator groups.

Before proceeding to the body of the paper, we relate the terms and notation
that we will be using. In addition, we state a proposition describing the basic
structure of solvable groups of finite rank.

Notation and terminology. Throughout the paper, π will represent an arbitrary
set of primes.

A section of a group or module is a quotient of one its subgroups or submodules,
respectively.

An abelian group A is said to be bounded if there is a positive integer m such
that mA = 0.

A Černikov group is a group that is a finite extension of a direct product of
finitely many quasicyclic groups.

Let G be a group. Then τ(G) represents the torsion radical of G, that is, the
join of all the torsion normal subgroups of G. The join of all the nilpotent normal
subgroups of G, known as the Fitting subgroup, is denoted by Fitt(G).

If G is a solvable group such that G/τ(G) has finite rank, then we say that G
has finite torsion-free rank.

If G is a solvable group of finite torsion-free rank, then h(G) denotes the Hirsch
length of G, namely, the number of infinite cyclic factors in any series of finite length
whose factors are all either infinite cyclic or torsion. If G is also minimax, then the
minimax length of G, written m(G), is the number of infinite factors in any series
of finite length in which each factor is either cyclic or quasicyclic. Like the Hirsch
length, the minimax length is an invariant of the group; in other words, it does not
depend on the particular series selected.

Let G be a group and A a ZG-module. If A⊗Q is a simple QG-module, then we
will refer to A as rationally irreducible. In other words, A is rationally irreducible
if and only if the additive group of A is not torsion and, for every submodule B of
A, either B or A/B is torsion as an abelian group.

The following properties will be invoked frequently; they can be found in [8,
Section 5.2].

Proposition 1.2. Assume that G is a solvable group of finite rank.

(i) G is virtually torsion-free if and only if τ(G) is finite.

(ii) If G is virtually torsion-free, then G has a characteristic subgroup of finite index
that possesses a characteristic series of finite length whose factors are torsion-free
abelian groups.

(iii) If τ(G) is a Černikov group, then Fitt(G) is nilpotent and G/Fitt(G) virtually
abelian. Moreover, if τ(G) is finite, then G/Fitt(G) is also finitely generated.
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2. Cohomology and homology

The aim of this section is to prove Theorem A. Our first step is to establish
Proposition A. For this purpose, we require the following property, which can be
proved in the same fashion as Proposition 1.1.

Proposition 2.1. Let R be a ring. Suppose that A and B are R-modules such that
the additive group of B has finite rank. Let 0→ B → E → A→ 0 be an R-module
extension and ξ the element of Ext1R(A,B) that corresponds to this extension. Then
ξ has finite order if and only if E has a submodule X such that B∩X and E/B+X
are finite.

We now proceed with the proof of Proposition A; the argument we give for the
case where both A and B are rationally irreducible is due to D. J. S. Robinson.

Proof of Proposition A. First we treat the case where A and B are both ra-
tionally irreducible. Set R = ZG. Let a and b be nonzero elements of A and B,
respectively. Assume that I = AnnR(a) and J = AnnR(b). Then R/I ∼= Ra and
R/J ∼= Rb as R-modules. We claim that IA = 0 and JB = 0. To establish the
former assertion, let x ∈ A. Since A/Ra is torsion qua abelian group, we have
mx = ra for some positive integer m and r ∈ R. Thus m(Ix) = r(Ia) = 0, so that
Ix = 0. Hence IA = 0, and, by the same reasoning, JB = 0.

Next we show that I 6⊂ J . Suppose that I ⊂ J . Because R/I is a rationally
irreducible R-module, it follows that I = J . However, this implies that Ra ∼= Rb
as R-modules, contradicting the hypothesis. Therefore, I 6⊂ J . The rational irre-
ducibility of R/J , then, forces the additive group of R/I + J to be torsion. As a
result, there is a positive integer m such that m · 1R ∈ I + J . Now we observe
that, since R is commutative, ExtnR(A,B) and TorRn (A,B) can be endowed with

R-module structures. Moreover, as R-modules, both ExtnR(A,B) and TorRn (A,B)

are annihilated by I + J . Consequently, mExtnR(A,B) = 0 and mTorRn (A,B) = 0.
The second case that we consider is the one where merely B is rationally irre-

ducible. We proceed here by induction on h(A), the case h(A) = 0 being trivial.
Assume that h(A) ≥ 1, and let U be a rationally irreducible submodule of A such
that the additive group of A/U is torsion-free. The conclusion of the proposition
will follow from the case proved above and the inductive hypothesis if we succeed
in showing that A/U does not contain a nontrivial submodule that is isomorphic
to a submodule of B. To accomplish this, suppose that A/U possesses such a sub-
module and take V to be a submodule of A containing U such that V/U ∼= W ,
where W is a nontrivial submodule of B. By the case of the proposition established
above, Ext1R(V/U,U) is bounded. According to Proposition 2.1, this means that V
has a submodule that is isomorphic to a submodule of W with finite index. But
the presence of such a submodule contradicts our hypothesis. Therefore, we are
compelled to conclude that A/U fails to possess a nontrivial submodule that is
isomorphic to a submodule of B. This completes the proof for the case where B is
rationally irreducible.

Finally, we handle the general case of Proposition A by inducting on h(B).
Assume that h(B) ≥ 1, and let U be a rationally irreducible submodule of B such
thatB/U is torsion-free as an abelian group. In order to deduce the desired property
from the case above and the inductive hypothesis, we only need to establish that
B/U fails to contain a nontrivial submodule that is isomorphic to a submodule
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of A. This can be accomplished by adducing an argument virtually identical to the
one in the previous paragraph.

�

Our proof of Theorem A will employ Proposition A in conjunction with the
following homological isomorphisms. Although these are doubtless well known, we
provide proofs for the sake of completeness.

Lemma 2.2. Let G be a group and R a commutative ring. Suppose that A and B
are RG-modules and view both HomR(A,B) and A⊗RB as ZG-modules under the
diagonal actions.
(i) If either A is projective or B is injective as an R-module, then, for n ≥ 0,

ExtnRG(A,B) ∼= Hn(G,HomR(A,B)).

(ii) If B is flat as an R-module, then, for n ≥ 0,

TorRGn (A,B) ∼= Hn(G,A⊗R B).

The isomorphisms in Lemma 2.2 can be gleaned from the spectral sequences
below.

Proposition 2.3. Let G be a group and R a commutative ring. Suppose that A
and B are RG-modules and regard ExtnR(A,B) and TorRn (A,B) as ZG-modules via
the diagonal action for n ≥ 0. Then the following two statements hold.

(i) There is a cohomology spectral sequence whose E2-page is given by

Epq2 = Hp(G,ExtqR(A,B)),

and that converges to ExtnRG(A,B).

(ii) There is a homology spectral sequence whose E2-page is given by

E2
pq = Hp(G,TorRq (A,B)),

and that converges to TorRGn (A,B).

Proof. We will confine our attention to (i), as (ii) can be proved by a dual argument.
The former statement will follow immediately from the Grothendieck spectral se-
quence in [5, Proposition VIII.9.3] provided that we verify thatHn(G,HomR(A, I)) = 0
for any injective RG-module I and n ≥ 1. To accomplish this, take a projective
RG-module resolution · · · → P1 → P0 → A → 0 of A. Since I is injective as an
RG-module, it is also injective as an R-module. Thus the sequence

(2.1) 0→ HomR(A, I)→ HomR(P0, I)→ HomR(P1, I)→ · · ·
is exact. We claim that Hn(G,HomR(Pi, I)) = 0 for i ≥ 0 and n ≥ 1. To show this,
it suffices to establish that Hn(G,HomR(RG, I)) = 0 for n ≥ 1. However, this is
easily seen to be true because HomR(RG, I) is isomorphic to the coinduced module
Hom(ZG, I), which has trivial cohomology in every positive dimension. Therefore,
(2.1) is an acyclic resolution of HomR(A, I) with respect to the functor H0(G, ).
As a consequence, the groups Hn(G,HomR(A, I)) are the cohomology groups of
the cochain complex

0→ HomRG(P0, I)→ HomRG(P1, I)→ · · · .
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But this complex is acyclic in view of the injectivity of I as an RG-module. Hence
Hn(G,HomR(A, I)) = 0 for n ≥ 1. �

In order to deduce Theorem A from Proposition A and Lemma 2.2, we will make
use of the following class of modules.

Definition. Assume that G is a group. Let C(G, π) be the smallest class of ZG-
modules with the following two properties.

(i) The class C(G, π) contains every ZG-module whose underlying abelian group is
torsion-free of finite rank and π-spectral.

(ii) The class C(G, π) is closed under forming ZG-module quotients as well as ex-
tensions.

As an immediate consequence of the definition, we have that C(G, π) is also
submodule-closed and therefore section-closed. This can be proved very easily by
inducting on the number of closure operations from (ii) required to construct a
module in C(G, π); the details are left to the reader.

Lemma 2.4. For any group G, the class C(G, π) is closed under forming ZG-
module sections.

Below we establish another closure property of C(G, π).

Lemma 2.5. Assume that G is a group. Suppose that B is a ZG-module whose
additive group is torsion-free of finite rank and π-spectral. If A is a ZG-module in
C(G, π), then A⊗B lies in C(G, π), where A⊗B is viewed as a ZG-module under
the diagonal action.

Proof. First we make the following three observations concerning B.
(i) If M is a ZG-module whose additive group is torsion-free of finite rank and
π-spectral, then M ⊗B is torsion-free of finite rank and π-spectral.
(ii) If M is a ZG-module and M̄ is a ZG-module quotient of M , then M̄ ⊗ B is a
ZG-module quotient of M ⊗B.
(iii) If M , M ′, and M ′′ are ZG-modules such that M is an extension of M ′ by M ′′,
then M ⊗B is a ZG-module extension of M ′ ⊗B by M ′′ ⊗B.
From these three properties it follows that A⊗ B belongs to C(G, π) by induction
on the number of closure operations required to construct A from ZG-modules that
are torsion-free of finite rank and π-spectral. Statement (i) establishes the base
case, and (ii) and (iii) permit the execution of the inductive step. �

Proposition A gives rise to the following properties of ExtnZG and TorZGn applied
to modules in C(G, π) when G is abelian.

Lemma 2.6. Let G be an abelian group. Assume that B is a ZG-module whose
additive group is torsion-free with finite rank. Suppose further that there are no
nontrivial ZG-submodules of B that are π-spectral as abelian groups. If A is a
ZG-module in C(G, π) and B̄ a ZG-module quotient of B, then ExtnZG(A, B̄) and

TorZGn (A, B̄) are bounded abelian groups for n ≥ 0.

Proof. We will just prove the result for ExtnZG; the same reasoning will then apply to

TorZGn . For each nonnegative integer k, let Ck(G, π) be the class of all ZG-modules
that can be constructed from ZG-modules that are torsion-free of finite rank and
π-spectral as abelian groups by a sequence of at most k homomorphic images and
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extensions. Taking B̄ to be a ZG-module quotient of B, we will prove by induction
on k that, for every module A belonging to Ck(G, π), ExtnZG(A, B̄) is a bounded
abelian group for n ≥ 0. The case k = 0 follows from Proposition A and the long
exact ExtZG-sequence. Suppose that k > 0, and let A be a module in the class
Ck(G, π). We distinguish two possibilities: (1) A is a ZG-module homomorphic
image of a module M in Ck−1(G, π); (2) A is a ZG-module extension of A′ by A′′

such that A′ and A′′ are both in Ck−1(G, π). First we treat case (2). Under this
assumption, ExtnZG(A′, B̄) and ExtnZG(A′′, B̄) are bounded for n ≥ 0, in view of the
inductive hypothesis. Therefore, ExtnZG(A, B̄) is bounded for n ≥ 0. Assume now
that case (1) holds. Let M ′ be a submodule of M such that M/M ′ ∼= A. It is
straightforward to see that every submodule of a module in Ck−1(G, π) is also in
Ck−1(G, π). Thus both ExtnZG(M, B̄) and ExtnZG(M ′, B̄) are bounded for n ≥ 0.
Once more availing ourselves of the long exact ExtZG-sequence, we conclude that
ExtnZG(A, B̄) is bounded for n ≥ 0. �

Our purpose in defining the class C(G, π) and enunciating Lemma 2.6 is to apply
the lemma to the integral homology of a nilpotent normal subgroup of a torsion-free
solvable group with finite rank and spectrum π in place of the module A. To this
end, we require the following property.

Lemma 2.7. Assume that G is a group, N � G, and Q = G/N . In addition,
suppose that N is nilpotent of finite rank, π-spectral, and torsion-free. Then, for
each n ≥ 0, the ZQ-module HnN lies in the class C(Q, π).

Proof. We proceed by induction on the nilpotency class of N . First suppose that
N is abelian. Then HnN is torsion-free for n ≥ 0. Also, as an exterior power
of N , HnN is π-spectral. Hence HnN belongs to C(Q, π). Now assume that
the nilpotency class of N exceeds one. Set Z = Z(N) and consider the Lyndon-
Hochschild-Serre (LHS) homology spectral sequence associated to the extension
1 → Z → N → N/Z → 1. In this spectral sequence, E2

pq = Hp(N/Z,HqZ) =
Hp(N/Z) ⊗ HqZ for p, q ≥ 0. By the inductive hypothesis, Hp(N/Z) lies in
C(Q, π). Therefore, by Lemma 2.5, E2

pq belongs to C(Q, π). Since the differentials
in the spectral sequence are ZQ-module homomorphisms, E∞pq can be regarded

as a ZQ-module section of E2
pq. Thus E∞pq belongs to C(Q, π). Moreover, HnN

has a series of submodules whose factors are isomorphic to the modules E∞pq for
p + q = n. The conclusion follows, then, from the closure of C(Q, π) with respect
to extensions. �

We now have everything in place to prove Theorem A.

Proof of Theorem A. We begin by proving the result under the assumption
that A is a rationally irreducible ZG-module. There is a well-known theorem
of A. Mal’cev [8, 3.1.6] that states that every solvable irreducible linear group
is virtually abelian. Hence G/CG(A) is virtually abelian. Let F = Fitt(G) and
N = F ∩ CG(A). According to Proposition 1.2(iii), F is nilpotent and G/F vir-
tually abelian. Therefore, G/N , too, is virtually abelian. As a result, we can find
a torsion-free subgroup G0 of G such that [G : G0] is finite and Q0 = G0/N0 is
abelian, where N0 = N ∩G0. Our plan is to show that Hn(G0, A) and Hn(G0, A)
are bounded for each n ≥ 0. Since G0 has finite cohomological and homological
dimensions, an application of the transfer maps in cohomology and homology will
then yield the conclusion of the theorem.
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First we deal with cohomology. Setting Ã = (A⊗Q)/A, we will employ the LHS
cohomology spectral sequence for the group extension 1 → N0 → G0 → Q0 → 1
to study Hn(G0, Ã). The universal coefficient theorem and Lemma 2.2 give rise to
the following chain of isomorphisms for p, q ≥ 0.

(2.2) Hp(Q0, H
q(N0, Ã)) ∼= Hp(Q0,Hom(HqN0, Ã)) ∼= ExtpZQ0

(HqN0, Ã).

Since [G : G0] is finite, any ZG0-submodule of A that is π-spectral as an abelian
group generates a ZG-submodule with the same property. As a result, A must not
contain any nontrivial ZQ0-submodules that are π-spectral as abelian groups. Con-
sequently, the same is true forA⊗Q. Thus, by Lemmas 2.7 and 2.6, ExtpZQ0

(HqN0, Ã)

is bounded for p, q ≥ 0. It follows, then, that Hn(G0, Ã) is bounded for n ≥ 0.
Moreover, an identical argument establishes that Hn(G0, A ⊗ Q) is bounded for
n ≥ 0. Applying the long exact cohomology sequence, we infer that Hn(G0, A) is
bounded for n ≥ 0.

We investigate the homology groups Hn(G0, A) directly, relying as above on an
LHS spectral sequence. Dual to (2.2) are the isomorphisms

Hp(Q0, Hq(N0, A)) ∼= Hp(Q0, HqN0 ⊗A) ∼= TorZQ0
p (HqN0, A)

for p, q ≥ 0. Appealing again to Lemmas 2.7 and 2.6, we deduce that TorZQ0
p (HqN0, A)

is bounded for p, q ≥ 0. Therefore, Hn(G0, A) is bounded for n ≥ 0. This completes
the proof for the case where A is rationally irreducible.

Finally, we prove the general case of the theorem by induction on h(A), the case
h(A) = 0 being trivial. Assume that h(A) ≥ 1, and let B be a rationally irreducible
submodule of A such that the additive group of A/B is torsion-free. The conclusion
of the theorem will follow from the rationally irreducible case together with the
inductive hypothesis if we manage to show that A/B does not contain a nontrivial
submodule that is π-spectral as an abelian group. To accomplish this, suppose
that A/B possesses such a submodule and take C to be a submodule of A properly
containing B such that C/B is π-spectral. Now set Γ = C o G. By the case of
the theorem proved above, H2(Γ/B,B) is bounded. Applying Proposition 1.1, we
obtain a π-spectral subgroup X of Γ such that [Γ : BX] <∞. Notice that X ∩C is
a nontrivial normal subgroup of BX. Thus the ZG-submodule of C generated by
X∩C is π-spectral as an abelian group, which contradicts our hypothesis concerning
A. We conclude, then, that A/B does not possess any nontrivial submodules that
are π-spectral as abelian groups. Hence Theorem A has now been proven.

�

3. Near supplements

In this section, we prove the principal group-theoretic result of the paper, Theo-
rem B, and explore some of its consequences. In addition to Theorem A, the proof
of Theorem B appeals to the following result of D. J. S. Robinson.

Proposition 3.1. (D. J. S. Robinson [11, Theorem 2.1]) Let G be a π-minimax
group and A a ZG-module that is torsion and has finite rank qua abelian group. If
the additive group of A fails to have any quasicyclic p-subgroups for every p ∈ π,
then Hn(G,A) is torsion for n ≥ 0.

Robinson’s proposition immediately yields
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Lemma 3.2. Let G be a solvable group of finite rank. Suppose that T is a torsion
normal subgroup of G such that G/T is π-minimax. Then T has a π-minimax near
supplement.

Proof. The proof is by induction on the length of the derived series of T . First
suppose that T is abelian. Let π̄ = spec(G/T ) and S be the π̄-torsion part of
T . By Proposition 3.1, H2(G/T, T/S) is torsion. Invoking Proposition 1.1, we
conclude that G contains a subgroup X such that S < X, X ∩ T/S is finite, and
[G : TX] is finite. Since X is clearly π-minimax, this establishes the base case.

Assume that T ′ 6= 1. By the abelian case, G has a subgroup Y such that [G : TY ]
is finite and Y/T ′ is π-minimax. Applying the inductive hypothesis to T ′ inside Y ,
we obtain a π-minimax subgroup X < Y with [Y : T ′X] finite. It follows, then,
that [G : TX] is finite, thus completing the proof. �

Having stated Lemma 3.2, we are ready to proceed with the proof of Theorem B.

Proof of Theorem B. To begin with, we treat the case where K is torsion-free
abelian and rationally irreducible as a ZG-module. Within this case, we distinguish
two subcases: (1) K has no nontrivial π-minimax G-invariant subgroups; (2) K
has a nontrivial π-minimax G-invariant subgroup. First we dispose of case (1). In
this situation, we can apply Theorem A to deduce that H2(G/K,K) is bounded.
According to Proposition 1.1, this means that there is a subgroup X of G such that
X ∩K = 1 and [G : KX] is finite. Then X is π-minimax, yielding the conclusion.
Next we consider case (2). Let M be a nontrivial G-invariant π-minimax subgroup
of K. Because K/M is torsion, Lemma 3.2 furnishes a subgroup X containing M
such that X/M is π-minimax and [G : KX] <∞. As X is plainly π-minimax, this
concludes the argument for case (2).

Now we tackle the case where K is virtually torsion-free. We proceed by in-
duction on h(K), the case h(K) = 0 being trivial. Suppose that h(K) ≥ 1. By
Proposition 1.2(ii), K has a characteristic subgroup K0 of finite index that pos-
sesses a characteristic series of finite length in which each factor is a torsion-free
abelian group. Hence we can find a G-invariant subgroup L of K0 such that K0/L
is a torsion-free abelian group that is rationally irreducible as a ZG-module. Con-
sequently, by the case established in the first paragraph, there is a subgroup Y
such that L < Y , Y/L is π-minimax, and [G : K0Y ] < ∞. Since Y/L is virtually
torsion-free and h(L) < h(K), we can apply the inductive hypothesis to L inside Y .
This yields a π-minimax subgroup X < Y such that [Y : LX] is finite. It follows,
then, that [G : KX] is finite. Thus X can serve as the desired subgroup.

Finally, we deal with the general case. Setting T = τ(K), we apply the virtually
torsion-free case to K/T , thereby obtaining a subgroup Y containing T such that
Y/T is π-minimax and [G : KY ] is finite. By Lemma 3.2, Y has a π-minimax
subgroup X such that [Y : TX] is finite. Since [G : KX] is thus finite, this
completes the proof of Theorem B. �

Remark. Although Theorem A holds for all groups of finite rank that are virtually
torsion-free, Theorem B cannot be extended to the case where G/K is not mini-
max. The reason is that Proposition 3.1 only applies to minimax groups (see [11,
Section 6]).

Below we describe an example that demonstrates that the hypothesis that G/K
is virtually torsion-free cannot be removed from Theorem B.
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Example 3.3. Assume that p and q are distinct primes. Define an action of
C∞ = 〈t〉 on Z[1/pq] by t · x = px for x ∈ Z[1/pq]. Let G = Z[1/pq] o 〈t〉 and
K = Z[1/p]. Then K �G, and G/K is {q}-minimax but not virtually torsion-free.
Moreover, K has no {q}-minimax near supplement. To see this, suppose that X is
a near supplement to K. Then K∩X 6= 1; otherwise X would contain a quasicyclic
subgroup. Since K ∩ X � KX, it follows that K ∩ X contains a copy of Z[1/p].
Thus X cannot be {q}-minimax.

As shown below in Corollary 3.4, Theorem B implies that, if G/K is not virtually
torsion-free, one is still assured of finding a π-minimax subgroup X satisfying the
weaker condition that h(KX) = h(G). We refer to such a subgroup as a Hirsch-
length supplement. Furthermore, if G/K happens to be finitely generated, then any
Hirsch-length supplement is necessarily a near supplement. This is due to the fact
that, in a finitely generated solvable minimax group, every subgroup with the same
Hirsch length as the group must have finite index (Lemma 3.5).

Corollary 3.4. Let G be a solvable group of finite rank. Assume that K is a
normal subgroup of G such that G/K is π-minimax. Then K has a π-minimax
Hirsch-length supplement. Furthermore, if G/K is finitely generated, then any
Hirsch-length supplement to K is a near supplement.

Proof. Let L be a normal subgroup of G containing K such that L/K is the torsion
radical of G/K. Applying Theorem B, we obtain a π-minimax subgroup X of G
such that [G : LX] <∞. Moreover,

h(KX) = h(K) + h(X)− h(K ∩X) = h(L) + h(X)− h(L ∩X) = h(LX).

Hence X is a Hirsch-length supplement to K. It remains to show that, if G/K
is finitely generated, then every Hirsch-length supplement to K is really a near
supplement. This assertion is an immediate consequence of Lemma 3.5 below. �

The following property is undoubtedly well known; nonetheless, for the reader’s
convenience, we provide a proof.

Lemma 3.5. Let G be a finitely generated solvable minimax group. If H < G and
h(H) = h(G), then [G : H] is finite.

Proof. The proof is by induction on m(G). If m(G) = 0, then the conclusion follows
immediately. Assume that m(G) > 0. Let A be an infinite abelian subgroup with
m(A) as small as possible subject to the condition that [G : NG(A)] is finite. With-
out any real loss of generality, we may replace G by NG(A) and H by H ∩NG(A),
rendering A normal in G. In this case, we have

h(AH/A) = h(H)− h(H ∩A) ≥ h(G)− h(A) = h(G/A),

implying that h(AH/A) = h(G/A). Hence, by the inductive hypothesis, AH has
finite index in G.

At this juncture, we distinguish the case of A being torsion from that where A
is not torsion. First we suppose that A is torsion. Because G is finitely generated,
AH is also finitely generated. Thus there is a finite subset F of A such that
〈H ∪F〉 = AH. Since A is a Černikov group, it has a characteristic finite subgroup
F containing F . Then FH = AH, so that [AH : H] is finite. Hence [G : H] is
finite.
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Next we treat the case that A is not torsion. Since H ∩A is normal in AH, our
choice of A ensures that H ∩A is either finite or has finite index in A. If H ∩A is
finite, then h(H) = h(G/A) < h(G), a contradiction. Therefore, H ∩ A has finite
index in A. It follows, then, that [AH : H] is finite. Thus [G : H] is finite. �

We conclude this section by applying Corollary 3.4 to obtain a new result on
the homological dimension of solvable groups. It is conjectured in [4] that, if k is a
field and G a solvable group, then hdk(G) is either infinite or equal to the Hirsch
length of G. This is established by U. Stammbach [12] if k has characteristic zero
and proved in [4] for arbitrary fields in the abelian-by-polycyclic case. We refer the
reader to [4] for background information on this problem, as well as to [3] for the
basic facts about homological dimension. Here we employ Corollary 3.4 to establish
the following generalization of the abelian-by-polycyclic case.

Proposition 3.6. Let p be a prime and k a field of characteristic p. Suppose that
G is an extension of an abelian group by a solvable group that has no quasicyclic
p-sections. If G has finite homological dimension over k, then hdk(G) = h(G).

Proof. That G has finite homological dimension over k yields that G has finite
Hirsch length. In addition, it implies that G has no k-torsion, meaning that
any finite element order in G is invertible in k. Let T = τ(G). Appealing
to the LHS spectral sequence, we will argue that hdk(G/T ) = hdk(G). Since
hdk(T ) = 0, we deduce right away that hdk(G/T ) ≥ hdk(G). To verify the re-
verse inequality, set n = hdk(G/T ) and let M be a k[G/T ]-module such that
Hn(G/T,M) 6= 0. As Hn(G,M) = Hn(G/T,M), it follows that hdk(G) ≥ n. Be-
cause hdk(G/T ) = hdk(G), we may, without any real loss of generality, assume that
T = 1. As observed in [3, Proposition 6.14], there is a finitely generated subgroup of
G with the same homological dimension over k as G. In addition, there is a finitely
generated subgroup with the same Hirsch length as G. This means that we can
find a finitely generated subgroup enjoying both of these properties. Consequently,
it suffices to consider the case where G is finitely generated and therefore, by the
principal result in [11], minimax.

Invoking Corollary 3.4, and replacing G by a subgroup of finite index if necessary,
we may assume that G has a {p}′-minimax subgroup X and an abelian normal
subgroup A such that AX = G. The action of X on A by conjugation allows
us to construct a semidirect product A o X. Moreover, there is an epimorphism
φ : A o X → G such that B = Kerφ is isomorphic to A ∩ X. We claim that, if
hdk(A o X) = h(A o X), then hdk(G) = h(G). To establish this claim, assume
that hdk(AoX) = h(AoX). From the LHS spectral sequence we know that
hdk(AoX) ≤hdk(B) + hdk(G). Hence hdk(G) ≥ h(AoX)− h(B) = h(G). Also,
hdk(G) ≤ h(G) by [3, Theorem 7.11]. Therefore, the above claim holds; in other
words, we do not really lose any generality in supposing that G = AoX.

The argument advanced by U. Stammbach [12] for fields of characteristic zero
also serves to show that hdk(X) = h(X) (see [4, Lemma I.9]). Let m be the product

of all the primes in spec(A). Then Ã = A⊗Z[1/m] is isomorphic to the direct sum

of r copies of Z[1/m], where r = h(A). Let θ be the automorphism of Ã defined by

θ(x) = mx. Set K = Ão 〈θ〉. The action of X on A induces an action of X on Ã.

Now define an action of X on K by employing the action of X on Ã and allowing
X to centralize θ. Using this action, form the semidirect product G̃ = K oX. As
an ascending HNN extension of the direct sum of r copies of Z, K is constructible
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and thus an inverse duality group (see [2, Theorem 9]). By [3, Theorem 9.4], it
follows that K has type FP and Hn(K, kK) is k-free. Hence, in view of [3, Theo-

rem 5.5], hdk(G̃) = hdk(K)+hdk(X). Moreover, according to [4, Proposition I.11],

hdk(K) = h(K). In addition, since G̃ can be viewed as an ascending HNN exten-

sion of G, the Mayer-Vietoris sequence yields that hdk(G̃) ≤ hdk(G) + 1. We may
thus argue as follows.

hdk(G) ≥ hdk(G̃)− 1 = h(K) + h(X)− 1 = h(A) + h(X) = h(G).

As remarked above, the reverse inequality is already known to hold; hence hdk(G) =
h(G).

�

4. Near complements

In this section, we consider the same situation as in Theorem B; that is, we
suppose that G is a solvable group of finite rank and K � G such that G/K is
π-minimax and virtually torsion-free. Here our goal is to determine circumstances
under which Theorem B can be strengthened to yield a near complement, rather
than just a π-minimax near supplement. In order to ensure this, it will be necessary
to impose two quite stringent conditions on K. First, we will assume that K is
Noetherian as a G-operator group; second, we will require that K is, in some sense,
the “antithesis” of a torsion-free π-minimax group.

Before we concern ourselves with the second hypothesis, we point out that the
Noetherian property, as well as the condition that the quotient is virtually torsion-
free, applies to any normal subgroup in a solvable minimax group that satisfies
the maximum condition on normal subgroups. Moreover, solvable minimax groups
with the latter attribute are ubiquitous, especially in geometric group theory. In
particular, every constructible solvable group enjoys this property. Recall that the
class of constructible groups is the smallest class containing the trivial group that
is closed under forming finite extensions, generalized free products in which both
factors as well as the amalgamated subgroup are constructible, and HNN extensions
in which the base group and associated subgroups are constructible. Furthermore,
as shown in [2], the class of constructible solvable groups is the smallest class of
groups containing the trivial group that is closed with respect to forming extensions
by finite solvable groups and ascending HNN extensions with base group in the
class. As well as being of interest to geometers, constructible solvable groups are
important in homological algebra since the torsion-free constructible groups are
precisely those solvable groups that have type FP (see [6]).

Now we turn our attention to the second hypothesis that we will require for our
near-complement result, namely, that K fails to be a torsion-free π-minimax group
in some drastic fashion. In order to impart a more precise form to this idea, we
introduce the following class.

Definition. The class Xπ is the class of all groups G such that every π-minimax
quotient of G is torsion.

To illustrate this definition, we consider some examples. Notice that every torsion
group belongs to Xπ, whereas all π-minimax groups that are not torsion fall outside
Xπ. Another elementary observation is that a torsion-free abelian group of rank
one is a member of Xπ if and only if it is not π-minimax. From this example we
can see that the class Xπ fails to be closed under passage to subgroups.
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Although Xπ is not subgroup-closed, the class enjoys the four closure properties
described below in Lemma 4.1. Since the proofs of these are straightforward, we
leave them to the reader.

Lemma 4.1. (i) If G belongs to Xπ, then so does every subgroup of finite index in
G.
(ii) The class Xπ is closed under forming quotients and extensions.
(iii) Let G be a group. If {Kα : α ∈ I} is a family of normal subgroups of G such
that each Kα lies in Xπ, then the join of the Kα also belongs to Xπ.

Statements (ii) and (iii) in Lemma 4.1 make Xπ a radical class in the sense used
in [9, Section 1.3]. Employing the terminology from [9, Section 1.3], we define
the Xπ-radical of a group G, denoted ρπ(G), to be the join of all the normal Xπ-
subgroups of G. In studying the properties of Xπ and the Xπ-radical, we will draw
upon the wealth of information about radical classes contained in [9, Section 1.3].

Our definition of the class Xπ is inspired by the notion of an upper-finite group
from [10, Section 10.4]; this is a group whose finitely generated quotients are all
finite. To grasp the connection, consider the special case π = ∅. The class X∅
is the class of groups all of whose polycyclic quotients are finite. Using the fact
that solvable groups of finite rank are torsion-by-nilpotent-by-polycyclic (Proposi-
tion 1.2(iii)), it follows that a solvable group of finite rank is an X∅-group if and
only if it is upper-finite. Hence the X∅-radical of a solvable group of finite rank
coincides with the upper-finite radical from [10, Section 10.4].

The result on near complements that we will prove in this section is stated below.

Theorem C. Let G be a solvable group of finite rank and K�G. Assume that K is
a member of Xπ and K is Noetherian as a G-operator group. Suppose further that
G/K is π-minimax and virtually torsion-free. Then there is a near complement to
K in G.

The first step towards proving Theorem C is to establish that the property of
belonging to Xπ is inherited by submodules of certain Noetherian modules that lie
in Xπ. For this purpose, we require the following elementary observation.

Lemma 4.2. Assume that G is a group and K a normal subgroup of G that is
solvable and has finite rank. Then K is Noetherian as a G-operator group if and
only if every G-operator quotient of K is virtually torsion-free.

Proof. For the “only if” part of the lemma, we need only observe that a Noetherian
G-operator group that is torsion and solvable of finite rank must be finite. To
verify the “if” direction, suppose that K is not Noetherian. Then K has an infinite
ascending series of G-invariant subgroups that never stabilizes. Since the sequence
of Hirsch lengths of the subgroups in this series must eventually become constant,
the series gives rise to a G-operator quotient of K with an infinite torsion radical.

�

Below we prove our inheritance property for modules.

Lemma 4.3. Let G be an abelian group and A a Noetherian ZG-module that has
finite rank as an abelian group. If the underlying abelian group of A is in the class
Xπ, then the same is true for every submodule of A.

Proof. We argue by induction on h(A). For h(A) = 0, the conclusion is trivially
true. Assume that h(A) ≥ 1. First we show that every rationally irreducible
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submodule of A lies in Xπ. Suppose that there is a rationally irreducible submodule
B outside the class Xπ. Set Ā = A/B. By Lemma 4.2, the additive groups of both
Ā and B are virtually torsion-free. Also, in view of the inductive hypothesis, every
ZG-submodule of Ā belongs to Xπ. On the other hand, B has no infinite ZG-
submodules that lie in Xπ. Therefore, by Proposition A, Ext1ZG(Ā, B) is bounded.
According to Proposition 2.1, this means that A has a submodule A0 of finite index
such that B/τ(B) is a homomorphic image of A0. The closure properties of Xπ
imply, then, that B is a member of Xπ, yielding a contradiction. Therefore, every
rationally irreducible submodule of A belongs to Xπ.

To complete the proof, we let B be an arbitrary ZG-submodule of A. If B
is finite, then B is immediately seen to belong to Xπ; hence we assume that B
is infinite. Let C be a rationally irreducible submodule of B. We have that C
belongs to Xπ by what was proved above. Moreover, B/C lies in Xπ by virtue of
the inductive hypothesis. Thus B is a member of Xπ.

�

We wish to discern inheritance properties similar to Lemma 4.3 for normal sub-
groups of solvable groups of finite rank. In order to accomplish this, we require the
notion of a nilpotent action.

Definition. Assume that G is a group and N a G-operator group. We define the
lower central G-series

· · · < γG3 N < γG2 N < γG1 N

of N as follows: γG1 N = N ; γGi N = 〈a(g · b)a−1b−1 | a ∈ N, b ∈ γGi−1N, g ∈ G〉 for
i > 1.

We say that the action of G on N is nilpotent if there is a nonnegative integer c
such that γGc+1N = 1. The smallest such integer c is called the nilpotency class of
the action.

In studying nilpotent actions, the following well-known property is exceedingly
useful.

Proposition 4.4. Assume that G is a group and N a G-operator group. Then, for
each i ≥ 1, there is an epimorphism

θi : Gab ⊗ · · · ⊗Gab︸ ︷︷ ︸
i−1

⊗(N/γG2 N)→ γGi N/γ
G
i+1N.

The above epimorphism can be employed to prove the lemma below.

Lemma 4.5. Let G be a group such that Gab has finite torsion-free rank. Assume
that N is a G-operator group upon which G acts nilpotently. If N belongs to Xπ,
then γGi (N) is in Xπ for all i ≥ 1.

Proof. The conclusion follows immediately from Proposition 4.4 and Lemma 4.6
below. �

Lemma 4.6. Let A and B be abelian groups. If A belongs to Xπ and B has finite
torsion-free rank, then A⊗B is a member of Xπ.

Proof. Choose a free abelian subgroup C of B such that B/C is torsion. Then
C ∼= Zn, where n = h(B), and so A ⊗ C ∼= A⊕ · · · ⊕A︸ ︷︷ ︸

n

. The class Xπ is closed

under extensions and quotients; hence every quotient of A⊗C is in Xπ . Also, as a
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torsion group, A⊗ (B/C) belongs to Xπ . It follows, then, from the exact sequence
A⊗ C → A⊗B → A⊗ (B/C)→ 0 that A⊗B lies in Xπ. �

Lemma 4.5 allows us to establish the following two inheritance properties for
solvable Xπ-groups of finite rank. The second of these, Lemma 4.8, will play an
essential role in the proof of Theorem C.

Lemma 4.7. Let M , N , and P be nilpotent normal subgroups of a group G such
that M < N < P and the following three conditions hold.

(i) The quotient G/P is abelian.
(ii) The group P has finite rank.
(iii) The subgroup N is Noetherian as a G-operator group.

If N belongs to Xπ, then M does too.

Proof. Our proof is by induction on the nilpotency class of the action of P on N . If
P acts trivially, then we can deduce the conclusion from Lemma 4.3, regarding N
and M as G/P -modules. Assume that the nilpotency class c of the action exceeds
one, and let A = γPc (N). Then A is a Xπ-group by Lemma 4.5. Consider the chain

M/M ∩A < N/A < P/A,

the second term of which is in Xπ. The action of P/A on N/A is nilpotent of class
c− 1. Consequently, the inductive hypothesis yields that M/M ∩A is in Xπ. Next
we look at the groups M ∩ A and A. Treating these groups as G/P -modules, it
follows from Lemma 4.3 that M ∩ A belongs to Xπ. Therefore, M is in Xπ, as
desired.

�

Lemma 4.8. Let G be a solvable group of finite rank such that τ(G) is a Černikov
group. Suppose that M and N are normal subgroups of G such that M < N and
N is Noetherian as a G-operator group. If N is in Xπ, then so is M .

Proof. By Proposition 1.2(iii), N can be expressed as an extension of a nilpotent
group by a polycyclic one. Since N belongs to the class Xπ, this means that N
must be virtually nilpotent. By passing to a G-invariant subgroup of finite index,
we can assume that N is nilpotent. In addition, F = Fitt(G) is nilpotent, and
G/F is virtually abelian. The latter assertion implies that G has a subgroup G0

of finite index such that F < G0 and G0/F is abelian. J. S. Wilson shows in
[13, Theorem A] that any normal subgroup of a group Γ that is Noetherian as a
Γ-operator group is also Noetherian with respect to any subgroup of finite index
in Γ. Hence N is Noetherian as a G0-operator group. Therefore, the conclusion
follows immediately by applying Lemma 4.7 to the chain M < N < F inside the
group G0.

�

Armed with the above lemma, we can proceed with the proof of Theorem C.

Proof of Theorem C. We argue by induction on the length of the derived series
of K. First suppose that K is abelian. Appealing to Lemma 4.8 and Theorem A, we
deduce that H2(G/K,K) is bounded. Thus G has a subgroup Y such that K ∩ Y
is finite and [G : KY ] <∞. The former property implies that Y is residually finite.
As a result, Y has a subgroup X of finite index with X ∩K = 1. The subgroup X,
then, can serve as the near complement that we seek.
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Next assume that the derived length of K is greater than one. By the abelian
case, G contains a subgroup Y such that Y ∩K = K ′ and [G : KY ] <∞. According
to Lemma 4.8, K ′ belongs to Xπ. Hence we can apply the inductive hypothesis to
K ′ inside of Y to obtain X < Y such that K ′ ∩ X = 1 and [Y : K ′X] is finite.
Then X fulfills our requirements. �

In view of the observations made at the beginning of the second paragraph of
this section, Theorem C has the following important special case.

Corollary 4.9. Let G be a solvable minimax group that satisfies the maximum
condition on normal subgroups. Assume that K is a normal Xπ-subgroup of G such
that G/K is π-minimax. Then K has a near complement in G.

In addition to the assumption that G/K is π-minimax, Theorem C requires
three hypotheses: (1) G/K is virtually torsion-free; (2) K is Noetherian; (3) K
belongs to Xπ. It is very easy to demonstrate that each of these three conditions
is indispensable. To accomplish this, we present three examples in which no near
complement is present; in each, one of the three hypotheses is violated, while the
other two hold.

Example 4.10. Let p be a prime and Γ the group consisting of all matrices of the
form 1 ∗ ∗

0 † ∗
0 0 1

 ,

where the entries ∗ above the diagonal are chosen from the ring Z[1/p] and the
diagonal entry † is an integer power of p. Let A be the central subgroup generated
by 1 0 1

0 1 0
0 0 1

 .

Let G = Γ/A and K be the central subgroup of G generated by the image of1 0 p−1

0 1 0
0 0 1

 .

The group G is a finitely generated solvable minimax group and K ∼= Cp. If
π = {p}, then G/K is π-minimax, yet K lacks a near complement. Notice that K
satisfies conditions (2) and (3), but G/K fails to fulfill (1).

Example 4.11. Let p be a prime and G the nilpotent minimax group consisting
of all matrices of the form 1 ∗ †

0 1 ∗
0 0 1

 ,

where the entries ∗ are integers and the entry † is from the ring Z[1/p]. Let K =
Z(G); that is, K consists of all the matrices in G whose ∗ entries are 0. For π = ∅,
G/K is π-minimax, and the extension 1→ K → G→ G/K → 1 satisfies conditions
(1) and (3), but not (2). In addition, there is no near complement to K in G.
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Remark. The group G in Example 4.11 is not finitely generated. It would be
interesting to discover whether there is a finitely generated example with the same
characteristics.

Example 4.12. Let G be the group of 3x3 upper unitriangular matrices with
integer entries. Set K = Z(G). For π = ∅, G/K is π-minimax; also, the extension
1→ K → G→ G/K → 1 satisfies conditions (1) and (2), but not (3). Finally, we
observe that K does not have a near complement.

One particular normal subgroup K of a solvable group G with finite rank that
often satisfies the hypotheses of Theorem C is the subgroup ρπ(G). In order to
show this, we require the following observation.

Proposition 4.13. Let G be a virtually torsion-free solvable group of finite rank. If
every subnormal abelian subgroup of G is π-minimax, then G must be π-minimax.

Proof. We will invoke R. Baer’s result [1, Hilfssatz 7.12] that a metabelian group
with finite torsion radical is π-minimax if every normal abelian subgroup is π-
minimax. To deduce the proposition from Baer’s assertion, we argue by induction
on h(G), the case h(G) = 0 being trivial. Assume that h(G) > 0. By Proposi-
tion 1.2(ii), G has an infinite abelian characteristic subgroup A such that G/A is
virtually torsion-free. Let B be a subnormal subgroup of G such that A < B and
B/A is abelian. It follows from Baer’s result that B is π-minimax. Therefore, by
the inductive hypothesis, G/A is π-minimax. Thus G is π-minimax. �

Proposition 4.13 allows us to establish the following lemma and its corollary.

Lemma 4.14. Let G be a solvable group with finite torsion-free rank. If G has no
nontrivial subnormal Xπ-subgroups, then G is π-minimax.

Proof. Suppose that G is not π-minimax. We will show that G must contain a
nontrivial subnormal Xπ-subgroup, proving the lemma. If τ(G) 6= 1, then it can
serve as the desired subgroup. Assume that τ(G) = 1. By Proposition 4.13, G must
have a subnormal abelian subgroup A that is not π-minimax. Let B be a subgroup
of A with the smallest possible Hirsch length such that A/B is π-minimax. Then
B is a nontrivial group in Xπ, and B is subnormal in G. �

Corollary 4.15. If G is a solvable group with finite torsion-free rank, then G/ρπ(G)
is a virtually torsion-free π-minimax group.

Proof. The Xπ-radical of G/ρπ(G) is trivial. Hence G/ρπ(G) has no nontrivial
subnormal Xπ-subgroups. Therefore, it is π-minimax by Lemma 4.14. In addition,
its torsion radical is trivial, making it virtually torsion-free. �

In light of Corollary 4.15, we can state the following corollary to Theorem C.

Corollary 4.16. Let G be a solvable group of finite rank such that ρπ(G) is Noe-
therian as a G-operator group. Then ρπ(G) has a near complement in G.

In passing, we remark that, if the hypothesis that ρπ(G) is Noetherian as a G-
operator group is dropped from Corollary 4.16, we can still find a near supplement
to ρπ(G). This is a corollary to Theorem B.

Corollary 4.17. Let G be a solvable group of finite rank. Then ρπ(G) has a π-
minimax near supplement in G.
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We conclude this section by observing that Corollary 4.16, and a fortiori Theo-
rem C, cannot be strengthened to deliver a full complement to K.

Example 4.18. Assume that p is an odd prime. Let Q be a free abelian group of
rank two. Put A = Z[1/p] and define an action of Q on A by having both generators
act via multiplication by p. This makes A into a Noetherian ZQ-module. We have
H2(Q,A) ∼= H0(Q,A) by Poincaré duality. Hence, since p 6= 2, H2(Q,A) 6= 0.
Therefore, there is at least one nonsplit extension of A by Q. In this extension, A
is the X∅-radical and fails to have a full complement.

Acknowledgement. The authors are greatly indebted to Derek Robinson for pro-
viding the argument for Proposition A that appears in this version of the article.
Our original proof of the proposition was considerably longer and yielded a re-
sult that was not as robust as the current form. Moreover, the improvement to
Proposition A allowed us to strengthen Theorem A in two respects: in our original
formulation the conclusion was merely that the cohomology groups were torsion; in
addition, the group G had to be minimax. Hence, not only did Derek Robinson’s
contribution make the paper more succinct and perspicuous, but it also served to
enhance the main result.
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