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Predicting sound propagation through the jet exhaust of an aero-engine presents the specific difficulty of represent-

ing the refraction effect of the mean flow shear. This is described in full in the linearised Euler equations but this

model remains rather expensive to solve numerically. The other model commonly used in industry, the linearised

potential theory, is faster to solve but needs to be modified to represent a shear layer. This paper presents a way

to describe a vortex sheet in a finite element model based on the linearised potential theory. The key issues to

address are the continuity of pressure and displacement that have to be enforced across the vortex sheet, as well as

the implementation of the Kutta condition at the nozzle lip. Validation results are presented by comparison with

analytical results. It is shown that the discretization of the continuity conditions is crucial to obtain a robust and

accurate numerical model.

1 Introduction
This paper is concerned with the prediction of sound ra-

diation from jet exhausts. An important aspect of such prob-

lems is the refraction of the sound waves by the mean flow

shear as they propagate through the jet shear layer. This has

a significant effect on the directivity of the sound radiated to

the far field.

Another important aspect is that the sound field radiation

is coupled at the trailing edge of the duct (or nozzle) to the

vorticity shedding. This can also have a significant effect on

sound radiation and requires an accurate description of the

shed vorticity.

The Linearized Euler Equations (LEE) describe the prop-

agation of linear disturbances in a steady inviscid mean flow,

and include all the effects mentioned above. This model not

only describes the sound waves but also includes the hydro-

dynamic and entropy waves. The downside is that the LEE

are relatively costly to solve due to the large number of vari-

ables involved (4 or 5 in two- or three-dimensions). Another

approach is to use the linearized potential theory which is

based on the assumption that the mean flow and the perturba-

tions derive from scalar potentials. This has the advantage of

significantly reducing the cost of computational predictions,

but the restriction placed on the mean flow excludes the case

of jet exhausts, i.e. the shear layers cannot be represented by

a potential flow assumption. This limitation can be addressed

by constructing a model for a vortex sheet that represents the

jet shear layer explicitly. This provides a good compromise

between accuracy and computational efficiency.

The linearized potential theory is generally solved using

finite element methods in the frequency domain [1] (but time-

domain formulations have also been used), and this paper

follows this approach. Two finite element formulations of

the vortex sheet model have been proposed for the potential

theory, by Eversman and Okunbor [3] and by Manera et al.
[5]. The aim of this work was to revisit these models and

to perform a quantitative assessment by comparing against

an analytical solution for an idealized benchmark problem.

This has lead to a new finite element formulation of the vor-

tex sheet model which is able to accurately capture both the

sound radiation and the vorticity shedding.

The problem of sound waves interacting with a vortex

sheet separating two different mean flows is introduced in

section 2. The finite element models are then presented in

section 3. The results obtained with these models are com-

pared against the analytical solution in section 4, first for uni-

form flows and then for non-uniform flows.

2 Problem description
We will work in the frequency domain using an e+iωt no-

tation. The propagation of small acoustic disturbances in a

potential steady flow is described by the velocity potential φ:

iω

⎛⎜⎜⎜⎜⎝−ρ0

c2
0

d0φ

dt

⎞⎟⎟⎟⎟⎠ + ∇ ·
⎛⎜⎜⎜⎜⎝ρ0∇φ − ρ0

c2
0

d0φ

dt
u0

⎞⎟⎟⎟⎟⎠ = 0 , (1)

where ρ0, c0 and u0 are the mean flow density, sound speed

and velocity, and d0/dt = iω+u0 ·∇ is the material derivative

in the mean flow.

We consider that we have two different flow regions Ω1

and Ω2 separated by a vortex sheet Γ. The flow properties in

each region are denoted by a subscript 1 or 2. On Γ the mean

flow is tangential: u01 · n = u02 · n = 0, where n is the unit

normal to Γ pointing into Ω2. The solutions on either side

of the vortex sheet are coupled by imposing kinematic and

dynamic conditions [8]. They correspond to the continuity

of normal acoustic displacement and pressure. The latter can

be written as follows:

−ρ01

d01φ1

dt
= −ρ02

d02φ2

dt
, on Γ, (2)

To formulate the continuity of the normal displacement ξ one

has to introduce this quantity as an independent variable in

the model:

d01ξ

dt
=
∂φ1

∂n
,

d02ξ

dt
=
∂φ2

∂n
. (3)

An alternative to (3) is to impose the continuity of acoustic

normal velocity. This can be written in terms of the velocity

potential as follows:

∂φ1

∂n
=
∂φ2

∂n
. (4)

To compare and validate the different finite element im-

plementations of this model, we will consider a simplified

test case of a circular straight duct, as illustrated in Figure 1.

The duct extends from z = 0 to −∞ and its radius is R. In

the cylindrical jet column (r < R) the mean flow is assumed

uniform, and the same applies for the ambient mean flow

(r > R). The mean flow properties can be different between

these two regions. The vortex sheet is located at r = R and

originates from the duct trailing edge at z = 0 and extends to

+∞. The source of sound is an acoustic mode propagating

from within the duct to the far field. An analytical solution

is available for this test case [4] based on the continuity of

the acoustic displacement. It allows to calculate all quanti-

ties of interest in the near field (velocity potential, pressure,

displacement, etc).
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Figure 1: Schematic of the benchmark problem.

3 Finite element models
Equation (1) is solved using a standard finite element

method based on the following variational formulation:

∫
Ω

d0W
dt

d0φ

dt
−∇W ·∇φ dΩ+

∫
∂Ω

Wu0 ·nd0φ

dt
−W
∂φ

∂n
dS = 0 ,

where the overbar denotes the complex conjugate and W is

a test function. This formulation is applied to each acoustic

domain Ω1 and Ω2. The integral on ∂Ω is modified to incor-

porate the appropriate boundary conditions. We will concen-

trate on the implementation of the vortex sheet at the surface

Γ. Since the mean flow is parallel to the vortex sheet, the

relevant terms in the variational formulation are:∫
Γ

W1

∂φ1

∂n
−W2

∂φ2

∂n
dΓ .

3.1 Existing formulations of the vortex sheet
The formulation by Eversman and Okunbor [3] relies on

the continuity of pressure and normal velocity, i.e. Equations

(2) and (4). The normal displacement ξ is still used as an in-

dependent variable on the vortex sheet Γ, and the associated

test function is denoted by η. The displacement is related to

the gradient of potential by

iωξ =
∂φ1

∂r
=
∂φ2

∂r
. (5)

In addition the pressure continuity equation (2) is discretized

using η as the test function. Therefore, the relevant terms in

the variational formulation are:∫
Γ

(W1 −W2)iωξ + η

(
ρ01

d01φ1

dt
− ρ02

d02φ2

dt

)
dΓ .

Eversman and Okunbor suggest that the test function η should

be constructed by taking the material derivative of the stan-

dard finite element shape function. This is equivalent to using

∫
Γ

(W1 −W2)iωξ +
d0η

dt

(
ρ01

d01φ1

dt
− ρ02

d02φ2

dt

)
dΓ ,

where standard shape functions are used for η.
Another alternative was proposed by Manera et al. [5]

and it uses the continuity of displacement (3) instead of (5).

The corresponding variational formulation is

∫
Γ

W1

d01ξ

dt
−W2

d02ξ

dt
+ η

(
ρ01

d01φ1

dt
− ρ02

d02φ2

dt

)
dΓ .

In that context η can be interpreted as a Lagrange mul-

tiplier which is used to impose the additional constraint that

pressure should be continuous across the vortex sheet. Note

that in both these formulations there is no attempt to control

the behaviour of the solution at the trailing edge to satisfy the

Kutta condition.

3.2 Proposed formulation
The new formulation is also based on the continuity of

pressure and normal displacement, since these are the ac-

cepted matching conditions across the vortex sheet. In ad-

dition, it attempts to provide an explicit description of the

Kutta condition at the trailing edge. To that end we also in-

troduce the normal velocity on the vortex sheet as an inde-

pendent variable. Note that two velocities are defined since

this quantity is not necessarily continuous across the vortex

sheet. These additional variables only represent a very small

increase in the total number of degrees of freedom in the nu-

merical model. We define the velocities as follows

v1 =
d01ξ

dt
, v2 =

d02ξ

dt
, on Γ . (6)

The test functions associated with the new variables v1 and v2

are denoted by σ1 and σ2. Equation (2) for the continuity of

pressure is still discretized using η as the test function. The

advantage of having the displacement as an explicit variable

is that one can directly impose the Kutta condition by setting

v1 = v2 = 0 at the trailing edge.

The other element of novelty in the proposed formulation

is the use of a Streamwise Upwind Petrov Galerkin (SUPG)

method to discretize equations (2) and (6). This can be jus-

tified by noting that the oscillations of the vortex sheet will

be caused not only by acoustic waves propagating through it

but also by the vorticity shedding from the trailing edge. The

latter is hydrodynamic in nature and has quite different prop-

erties from the acoustic field. In particular its wavelength is

smaller and given by ω/u0 (there is therefore a factor M be-

tween the acoustic and hydrodynamic wavelengths). These

hydrodynamic oscillations are simply convected by the mean

flow along the vortex sheet. It is well-known that standard fi-

nite elements are particularly inefficient at representing such

solutions due to the lack of upwinding. This can be remedied

by using SUPG methods which add upwinding by choosing

test functions of the form η + β∂η/∂x where η is a standard

shape function. The parameter β is adjusted to optimize the

accuracy of the numerical scheme. SUPG methods are used

extensively for convection-dominated problems in the time

domain, see for instance [9]. It is not so common for time-

harmonic problems, one exception being the work of Rao

and Morris on a finite element model for the linearized Euler

equations [6, 7]. In the present work the SUPG test function

is written in a form similar to the material derivative:

dαη

dt
= iωη + α

∂η

∂z
.

The value of the coefficient α is chosen so that the discretiza-

tion of the material derivative d0/dt is accurate.

∫
Γ

dασ1

dt

(
v1 − d01ξ

dt

)
+

dασ2

dt

(
v2 − d02ξ

dt

)
dΓ

+

∫
Γ

W1v1 −W2v2 +
dαη

dt

(
ρ01

d01φ1

dt
− ρ02

d02φ2

dt

)
dΓ
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Figure 2: Example of finite element mesh used for the

validation.

Figure 3: Analytical solution for the velocity potential (real

part).

where standard shape functions are used for the test functions

ξ, σ1and σ2.

4 Validation

4.1 Uniform mean flows
We begin by presenting results for the case where the

mean flow is uniform. As explained above, even in this case a

vortex sheet model is required to describe the vorticity shed-

ding appropriately. We consider a test case based on non-

dimensional parameters (using R, c0 and ρ0 as reference val-

ues). The mean flow Mach number is 0.45 and the Helmholtz

number is 10. The sound speed and mean density are uni-

form. The incident mode is the second radial mode with

m = 3. The computational domain is shown in Figure 1. The

physical region is located within −1 < z < 3 and 0 < r < 3

and is surrounded by a Perfectly Matched Layer to act as a

non-reflecting condition (for details of the PML implementa-

tion see [2]). An example of the mesh used is given in Figure

2. The element size is slightly reduced along the vortex sheet

to better represent the hydrodynamic oscillations.

Figure 3 shows the analytical solution for the velocity po-

tential in the near field. One can observe the acoustic mode

radiating from the duct at approximately 50◦. Of particular

importance here is the presence at r = 1, z > 0 of the vortic-

ity shed from the trailing edge. Since the acoustic wave and

the shed vorticity are coupled at the trailing edge, one has to

resolve both accurately.

We begin by considering the convergence of the finite el-
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Figure 4: Relative numerical error in % as a function of the

mesh resolution.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

z

no
rm

al
 d

is
pl

ac
em

en
t (

re
al

 p
ar

t)

Figure 5: Displacement of the vortex sheet (real part).

Analytical solution (◦), Eversman and Okunbor (�), Manera

et al. (×).

ement solution towards the analytical model. This is done in

terms of relative error on the velocity potential in the compu-

tational domain:

(∫
Ω

|φ − φex|2 dΩ/

∫
Ω

|φex|2 dΩ

)1/2
,

where φex is the exact solution. This is shown in Figure 4 as

a function of the mesh resolution. Only the proposed formu-

lation is able to converge towards the expected solution (the

plateau observed at a level of error of 0.05% is due to the

PML).

To better explain these observations we now consider the

displacement of the vortex sheet. The numerical results are

compared against the analytical solution for the existing and

new formulation in Figures 5 and 6, respectively. It is clear

that the previous formulations of the vortex sheet are not able

to capture the hydrodynamic oscillations which are strongly

underestimated. The proposed formulation captures these os-

cillations accurately. It is shown in Figure 6 that the SUPG

method is crucial in achieving this.

In addition, we can compare the sound fields away from

the vortex sheet as shown in Figure 7. The differences be-

tween the formulation of Manera et al. and the analytical
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Figure 6: Displacement of the vortex sheet (real part).

Analytical solution (◦), new formulation without SUPG (�)

and with SUPG (×).
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Figure 7: Velocity potential (real part) at r = 2.75 for a

mesh resolution of 0.1. Analytical solution (solid line),

Eversman & Okunbor (dot-dashed line), Manera et al.
(dashed line) and the new formulation (dotted line).

solution are visible. However, the formulation proposed by

Eversman & Okunbor agrees quite well with the theory. This

is because this formulation imposes the continuity of velocity

which is valid in the special case of a uniform flow. So, even

though it doesn’t capture the vorticity shedding accurately it

can still provide a valid prediction of the acoustic field in this

case.

Finally, Figure 8 presents the condition number of the nu-

merical model. This is particularly important to assess since

the conditioning of the linear system greatly influences the

rate of convergence of iterative solvers. It can be seen that

the conditioning of the proposed formulation compares quite

well with the other two formulations.

4.2 Non-uniform mean flows
For the case with non-uniform flow we consider a Mach

number of 0.45 for the jet and 0.1 for the ambient flow (the

mean density and sound speed remain uniform). It should be

noted that the vortex sheet is unstable and supports a Kelvin-

Helmholtz instability, but that solving this kind of problem

in the frequency domain generally yields a non-causal so-
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Figure 8: Condition number as a function of the mesh

resolution.
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Figure 9: Displacement of the vortex sheet (real part) for the

case with non-uniform flow: Analytical solution (solid line),

Eversman & Okunbor (dot-dashed line), Manera et al.
(dashed line) and the new formulation (dotted line).

lution which doesn’t include the instability wave. We will

discuss the case where the Kutta condition is not enforced

at the trailing edge (the case with the Kutta condition is still

under investigation).

Figure 9 shows the displacement of the vortex sheet. The

formulation proposed by Eversman & Okunbor does not yield

the correct solution. This is to be expected since the continu-

ity of normal velocity that is imposed across the vortex sheet

does not apply in this case. The formulation of Manera et
al. tends to follow the analytical solution but exhibits node-

to-node oscillations. Finally, the new formulation does not

produce such oscillations and matches the analytical model

very well.

Figure 10 shows the velocity potential outside the jet on

the line r = 2.75. As for the vortex sheet displacement, the

formulation by Eversman & Okunbor yields a solution dif-

ferent from the analytical model. The other three solutions

agree relatively well.

All of these observations are confirmed by Figure 11,

which shows the convergence of the numerical models as the

mesh resolution is increased. It is clear that the formulation

of Eversman & Okunbor does not convergence to the appro-

priate solution. The new formulation converges towards the
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Figure 10: Velocity potential (real part) at r = 2.75 for the

case with non-uniform flow: Analytical solution (solid line),

Eversman & Okunbor (dot-dashed line), Manera et al.
(dashed line) and the new formulation (dotted line).
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Figure 11: Relative numerical error in % as a function of

mesh resolution for the case with a non-uniform flow.

analytical solution (the plateau observed in the error at 0.1%

is due to the finite accuracy with which the reference solution

is computed). The formulation of Manera et al. introduces

somewhat larger levels of error. This can be traced back to

its inability to capture the oscillations of the vortex sheet as

illustrated in Figure 9.

5 Conclusions
Two finite element formulations of a vortex sheet have

been revisited and validated. A novel formulation has also

been proposed. It provides direct control over the behaviour

of the solution at the trailing edge (with or without Kutta con-

dition), and it includes a SUPG method to improve the res-

olution of the hydrodynamic oscillations of the vortex sheet.

The formulation proposed by Eversman & Okunbor provides

good far-field results for uniform mean flows but cannot yield

the correct solution for non-uniform mean flows. In compar-

ison, the formulation by Manera et al. can provide accurate

solutions for non-uniform flows when the Kutta condition is

not enforced, but it is not possible to enforce the Kutta con-

dition.
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