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Abstract:  

We propose and numerically investigate a phase regeneration technique that allows an M-PSK signal to be 

phase regenerated by an M/2-PSK (or even M/4-PSK) phase regenerator (applicable for M = 2k, with k an 

integer). This scheme comprises three main parts; firstly, phase harmonic generation is used to create the second 

and third phase harmonics, secondly, the second phase harmonic (a down-converted M/2-PSK signal) is 

partially phase-regenerated, and thirdly and finally, the partially regenerated second phase harmonic and the 

third phase harmonic are mixed together to re-synthesise a phase regenerated replica of the original signal.  

 

1. Introduction  

Next generation communication systems will rely on complex modulation formats in order to meet the 

increasing capacity demands imposed by user requirements. Complex modulation formats offer higher spectral 

efficiencies, however they require adherence to higher optical signal to noise ratios (OSNRs), increasing the 

need for signal regeneration. The electronic methods currently used for this do not scale well with increasing 

data rate and number of data channels. The development of all-optical techniques capable of eliminating phase 

noise (and ideally amplitude noise as well) from multi-level phase signals is consequently of great interest. To 

date, optical regeneration of binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) 

signals has been successfully demonstrated exploiting the characteristics of either single- or dual- pump phase-

sensitive amplification (PSA), implemented in either highly nonlinear fibers (HNLF) [1-2], periodically poled 

Lithium Niobate (PPLN) waveguides [3-4], or semiconductor optical amplifiers (SOA) [5]. The regeneration of 

an M-PSK signal (where M is the number of phase levels used) is possible in principle in a dual pump PSA, but 



requires the generation of higher order phase harmonics [2], posing inherent practical difficulties. Indeed, the 

generation of high-order phase harmonics through four-wave mixing (FWM) can be limited by the fiber 

parameters and input power constraints. Very recently 16-QAM signals in both polarizations and up to three 

channels have been successfully processed in a “copier-PSA” configuration [4], however this comes with the 

compromise of doubling the bandwidth occupied by the system. In the literature, a suggested approach towards 

the regeneration of complex modulation formats is to first demultiplex the signal into simpler phase-only 

tributaries, before parallel regeneration and subsequent coherent recombination [6]. In this work, we follow the 

same principle in order to regenerate an M-PSK signal, where M = 2k, with k an integer. In our approach, we 

propose to generate the second and third phase harmonics in a FWM process where the M-PSK signal and a 

continuous wave (CW) beam are used as the pump and the FWM-seed signal, respectively. The generated 

second phase harmonic, which corresponds to an optically format down-converted M/2-PSK signal [7], is 

subsequently partially regenerated before being coherently recombined with the third phase harmonic signal in 

another FWM process, where the M/2-PSK signal is used as the pump, to obtain back the now fully phase-

regenerated original M-PSK signal. A key point of the scheme is that regeneration of an M/2-PSK rather than an 

M-PSK signal is required. It is quite intuitive that this scheme can then, in principle, be repeated several times in 

order to scale to ever higher values of M to allow the regeneration of signals of ever increasing complexity, 

albeit at the expense of more involved physical implementations. 

 

2. Principle of Operation 

The operating principle of the proposed M-PSK phase regeneration scheme is depicted in Fig. 1 for the example 

of an 8-PSK signal. The figure also shows representations of the corresponding spectra at various points in the 

system. The regenerator comprises three main stages: in the first stage, the 8-PSK signal and a CW pump are 

used as inputs in a FWM process (a phase-insensitive amplifier, PIA) to generate the second and third phase 

harmonics of the incoming 8-PSK signal. If the pump phase is assumed constant for the sake of clarity, and thus 

ignored, the phases of the second and third phase harmonics can be written as a function of the initial 8-PSK 

signal as follows: 

𝜙𝑠𝑒𝑐𝑜𝑛𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = 2 ∗ 𝜙8−𝑃𝑆𝐾 (1) 

𝜙𝑡ℎ𝑖𝑟𝑑 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 = 3 ∗ 𝜙8−𝑃𝑆𝐾 (2) 



For the second phase harmonic the phase states 0 and π are changed to 0 and 2π after the process (similar 

relationships apply to the remaining states, as shown in Table 1) and as a consequence, the second phase 

harmonic corresponds to an optically format down-converted 4-PSK signal (i.e. it takes the form of a QPSK 

signal). This transformation is pictorially represented in Fig. 2 in the form of the signal constellation. (It should 

be appreciated however, that this is only a virtual format conversion, since the 4-PSK second phase harmonic 

signal cannot possibly contain the full information of the original 8-PSK signal.) For the third phase harmonic, 

on the other hand, the nominal phase values are multiplied by three, and as a result, the third phase harmonic 

corresponds to a signal which is still in the form of 8-PSK, but where the various symbol allocations have been 

shuffled in the constellation map, as also pictorially represented in Fig. 2. The corresponding nominal phase 

combinations between the various harmonics are also summarized in Table 1. In the second stage, the format 

converted QPSK signal (M/2-PSK in the general case) is partially phase regenerated. Meanwhile the third phase 

harmonic is simply temporally delayed to guarantee synchronization and temporal coherence with the partially 

regenerated second phase harmonic. Finally, in the third stage, the partially regenerated QPSK signal is 

coherently mixed with the third phase harmonic in order to obtain the properly regenerated 8-PSK signal. This is 

achieved by using them as the pump and signal, respectively, in an additional PIA stage. The phase of the 

mixing output ϕ8−PSKoutput can then be written as follows: 

ϕ8−PSKoutput = 2 ∗ ϕreg_second harmonic −  ϕthird harmonic (3) 

 

If Eq.1 and Eq.2 are substituted in Eq.3, we obtain: 

ϕ8−PSKoutput = 2 ∗ �2 ∗ ϕ8−PSKinput� −  3 ∗ ϕ8−PSKinput =  ϕ8−PSKinput 
(4) 

 

Equation 4 implies that in the noiseless case we obtain back the original 8-PSK formatted signal. 

In order to understand how regeneration is achieved, we need to write similar equations for the corresponding 

phase noise components associated with each of the nominal phase states. For example, if each phase state of 

the original signal is characterized by an initial phase error ∆φN (so that the actual relative value of the phase of 

the symbol is  ϕ8−PSKinput + ∆ϕN), the second (third) phase harmonic will have twice (three times) that phase 

error. Bearing this in mind and considering Eq.3, it can be deduced that to achieve optimum phase squeezing 



capability (where the output phase noise is zero), i.e. the minimum phase error for each nominal phase state, it is 

crucial that the phase noise error of the format converted signal must only be partially regenerated (by 25%). 

With this partially regenerated phase error of the second phase harmonic (i.e. 2*∆φN becoming 1.5*∆φN), a 

similar equation to Eq. 3 can be written to represent the output phase error of each state: 

Δϕ𝑁_𝑂𝑈𝑇𝑃𝑈𝑇 = 2 ∗ (1.5 ∗ Δϕ𝑁) − 3 ∗ Δϕ𝑁 = 0   (5) 
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Fig. 1: Operating principle and schematic diagram of the proposed M-PSK phase regenerator, adapted 

for an 8-PSK signal. 

This regeneration technique can be extended, such that the process of harmonic phase generation, partial 

regeneration and recombination can be nested to allow the use of even lower level regenerators. For instance, 

the QPSK signal resulting from format conversion, in the case described above, can be further converted to a 

BPSK signal. This BPSK signal can be partially regenerated (by a factor which can be calculated to be 6.25% 

following the same methodology as above) and then sequentially recombined with the third phase harmonics of 

each nested loop to generate the phase regenerated 8-PSK signal.  

It is worth highlighting that no specific phase or frequency relation is required between the pumps in Stage 1 

and Stage 2, and also that the pumps have been assumed ideal with no associated noise in the simulations. 



 

Q

I

7

1

3

5

2

86

4

Q

I

3

1

7

5

4

68

2

Original Signal Second Harmonic Third Harmonic

Q

I

 

Fig. 2: Constellation diagrams showing symbol placements for original signal (left), second (middle) and 
third (right) phase harmonics. 

Table 1: Individual symbol phase values. 

 

 

 

3. Simulation and analysis 

We carried out detailed simulations to prove the validity of our proposed approach. Our simulations assumed a 

set-up that followed the schematic shown in Fig.1. A non-return-to-zero (NRZ) 25 GBaud 8-PSK signal at 

1557 nm was combined with a CW pump at 1552 nm before entering the phase harmonic generation stage. For 

the nonlinear element in the first stage, as well as in all the others included in the set-up, we used the 

characteristics of a state-of-the-art strained HNLF that is readily available in our laboratories, and which 

exhibits a dispersion, dispersion slope, zero dispersion wavelength, nonlinear coefficient, linear loss and length 

of -0.08ps/nm/km, 0.018ps/nm2/km, 1553nm, 11.6/W/km, 0.88dB/km and 302m, respectively [2]. The fiber  

SBS threshold after straining HNLF was 27dBm. The second and third order phase harmonics which were 

produced in the first PIA were then demultiplexed; the second phase harmonic, the format down-converted 

Symbol Input signal 
Phase 

2nd Harmonic 
(SH) Phase 

3rd Harmonic 
(TH) Phase 

2*(SH)-(TH) 
Phase 

1 0o 0o 0o 0o 
2 45o 90o 135o 45o 
3 90o 180o 270o 90o 
4 135o 270o 45o 135o 
5 180o 0o 180o 180o 
6 225o 90o 315o 225o 
7 270o 180o 90o 270o 
8 315o 270o 225o 315o 



QPSK signal, was partially regenerated assuming the characteristics of the dual-pump non-degenerate PSA 

described in [2]. The maximum power used of the two phase-locked pumps for this PSA was 24dBm each, 

while the power of the signal was 10dBm. These power relations ensured that the signal was only partially 

regenerated at the output of the PSA (optimum phase regeneration would require a power of 27dBm on each of 

the pumps). In parallel, the third phase harmonic was propagated through a standard single mode fiber (SSMF) 

in order to properly match the two paths. The partially regenerated second phase harmonic was coherently 

mixed with the third phase harmonic in a last PIA stage to reconstruct the 8-PSK with regenerated phase at 

exactly the original wavelength. 

Fig. 3 reports the response of the proposed system. In particular, Fig. 3(a) shows the output phase transfer 

function as a function of the input signal phase between –π/8 and +π/8 radians. The blue dots represent the 

numerical simulations and the red line represents the analytic fit. To obtain this fit, the signals after the partial 

QPSK regenerator and at the very output of the system were represented by their amplitude (Apr and Aout) and 

phase (φpr and φout) transfer profiles, as follows: 

𝐴𝑝𝑟𝑒𝑖𝜙𝑝𝑟 ∝ 𝑒𝑖∗(2𝜙𝑠) + 𝑚𝑒−𝑖3∗(2𝜙𝑠)    (6) 

𝐴𝑜𝑢𝑡𝑒𝑖𝜙𝑜𝑢𝑡 ∝ 𝐴𝑝𝑟2. 𝑒𝑖�2𝜙𝑝𝑟−3𝜙𝑠�    (7) 

 

where 𝜙𝑠 is the phase of the initial 8-PSK signal and 𝑚 is the optimum mixing ratio which depends on the gain 

of the PSA process [2]. The optimal value for the  𝑚 factor, which was used to calculate the corresponding 

transfer functions displayed in Fig. 3, is 𝑚 =0.069 (M/2=4). As compared to the value of 𝑚 =0.33 required for 

full QPSK regeneration (as estimated in [8]), this is lower, as expected, since only partial regeneration is needed. 

The system implication is that Stage 2 requires lower pump powers than an ideal QPSK regenerator, in order to 

achieve the optimum overall phase transfer function. However, the trend of the various transfer functions as 𝑚 

increases are very similar in the two regenerators, and the phase transfer functions for four values (0, 0.069, 0.13 

and 0.33) of  𝑚 are depicted in Fig.4. Fig. 4 a) displays the single step (between –π/4 and π/4 radians) phase 

transfer function for the four 𝑚 values directly after the QPSK regenerator (stage 2). Fig. 4 b) displays the 

corresponding single step (between –π/8 and π/8 radians) phase transfer function for the four 𝑚 values for the 

final 8PSK signal (after stage 3). 



Fig. 3(b) shows the numerical simulation and analytic fit of the output amplitude as a function of the input phase 

between –π and +π radians. As expected the amplitude of the synthesized signal becomes a sinusoidal function 

of the phase with a periodicity of 2π/M. Fig. 3(c) displays how the input signal (green) with induced continuous 

phase variations from 0 to 2π is shaped at the very output (blue) of the (fully regenerated) system. 

 

Fig. 3: Simulation in blue, analytic fit in red for a) Phase transfer function versus input phase between 
−𝝅 𝟖⁄   and  𝝅 𝟖⁄  rads,  b) Amplitude phase transfer function versus input phase and c) full phase spread 

constellation diagram of input (green) and output (blue). 

 

Fig. 4: Single step phase transfer function of the a) QPSK signal after stage 2, and the b) final 8PSK 
signal, with m factor set to 0 (blue), 0.069 (green), 0.13 (red) and 0.33 (teal) 

Some better appreciation of the regenerator performance can be obtained from Figs. 5 and 6, which present 

corresponding constellation diagrams at the input (a) and output (b) of the 8-PSK regenerator for two different 

values of phase noise with a constant (flat-top) probability density function of 0.062 radians and 0.098 radians, 

respectively, added to the signal, neglecting any amplitude noise. At the output of the regenerator the phase 

noise distribution was reduced to 0.006 radians and 0.016 radians in these two respective cases.  
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Fig. 5: Example of constellation diagrams at the input (a) and output (b) of the system when a phase noise 
of 0.062 radiant (with a constant probability density function) is added to the signal. 

 

Fig. 6: Example constellation diagrams at the input (a) and output (b) of the system when a phase noise of 
0.098 (with a constant probability density function) is added to the signal. 

 

The regenerator was then fully characterized for various levels of initial Gaussian distributed phase noise added 

to the signal. The corresponding standard deviations of the phase and amplitude noise at the output of the system 

as a function of the input phase noise standard deviation are summarised in Fig.7. The output phase noise stays 

reasonably constant up to an input phase noise standard deviation of 0.065 radians, achieving a reduction in the 

phase noise by as much as 7.1 times. Beyond this value, the output phase noise slightly increases with input 

signal noise, however a reduction of almost 3 for the worst case we examined is still achieved, corresponding to 

an input phase noise standard deviation of 0.12 radians. The red dotted line denotes the 1:1 ratio and the region 

below it represents phase regeneration. On the other hand, if saturation is not achieved, phase-to-amplitude 

noise conversion takes place via the cosine transfer function shown in Fig. 3 (b). This effect can also be clearly 
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seen in Fig. 5 and Fig. 6. In our scheme, the PSA-based partial phase regenerator was intentionally operated in 

the linear regime to guarantee correct phase noise cancellation. Note, however, that this undesired phase-to-

amplitude conversion effect could be reduced drastically if a more complex PSA scheme, including an extra 

phase harmonic, was considered, as proposed and demonstrated in [9, 10]. 

 

Fig. 7: Output phase standard deviations versus initial phase standard deviations (a) and normalized 
output amplitude standard deviations versus initial phase standard deviations (b). 

Finally, the system was numerically characterized for the case when both Gaussian phase and amplitude noise 

was added to the 8-PSK input. The standard deviation of the phase and amplitude noise we assumed were 

0.064 radians and 6%, respectively. Since the phase regenerator scheme amplifies the input amplitude noise, it 

was imperative to firstly reduce any amplitude noise present in the signal. To guarantee best overall 

performance an amplitude limiter based on a saturated single-pump parametric amplifier was added at the input 

of the proposed scheme. The amplitude limiter consisted of a single HNLF (with the same characteristics as in 

the remaining sections), pumped by a CW signal with a power level of 27dBm at 1552 nm. The noisy 8PSK 

signal at its input had an average power of 23 dBm at 1557 nm. The amplitude limiter was successful in 

containing any strong amplitude noise distortion. Fig. 8 displays the corresponding constellation diagrams at the 

input (a) and output (b) of the 8-PSK regenerator. At the output of the regenerator the signal phase and 

amplitude noise deviations were 0.014 radians and 8.75%, respectively. Consequently, the phase deviation was 

reduced by a factor of 4.5, while the amplitude noise increased slightly by a factor of 1.5.  



 

Fig. 8: Examples of constellation diagrams at the input (a) and output (b) of the system when Gaussian 
phase and amplitude noises with standard deviations of 0.064 radians and 6%, respectively, were added 

to the signal. 

Some practical issues relating to this scheme are imposed by the need to preserve coherence among the different 

paths in the second stage of the system in Fig. 1. In our simulations, HNLFs have been considered, but we 

appreciate that in order to ensure that the signals traversing the various paths are added coherently, photonic 

integrated solutions would provide far better stability.  

    

4.  Conclusion 

This work demonstrates a phase regeneration technique that allows an M-PSK signal to be regenerated using an 

M/2-PSK (or an even lower order) partial regenerator. The technique requires a three-stage coherent process. 

Firstly, a single pump parametric amplifier is used to produce the two spectral phase harmonics of interest, the 

second and third phase harmonics. Secondly, the second (down-converted) phase harmonic is partially 

regenerated using a M/2-PSK regenerator. Thirdly, the third phase harmonic and the partially regenerated 

second phase harmonic are used as the signal and pump, respectively, in a last FWM stage where the original 

signal is recovered at the very same wavelength.  
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