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School of Mathematics
Doctor of Philosophy
COHOMOLOGICAL FINITENESS PROPERTIES OF GROUPS
by Simon St. John-Green

The main objects of study in this thesis are cohomological finiteness conditions
of discrete groups. While most of the conditions we investigate are algebraic,
they are inspired by topological invariants, particularly those concerning proper
actions on CW-complexes.

The first two chapters contain preliminary material necessary for the remain-
der of the thesis. Chapter [2] concerns modules over a category with an emphasis
on finiteness conditions. This material is well-known for (EI) categories, but we
use a more general setup applicable to Mackey and cohomological Mackey func-
tors, needed in Chapter [d] Chapter [3] specialises to Bredon cohomology, giving
an overview of some results and detailing a few interesting examples.

In Chapter [4| we study finiteness conditions associated to Bredon cohomology
with coefficients restricted to Mackey functors and cohomological Mackey func-
tors, building again on the material in Chapter [2 In particular we characterise
the corresponding FP,, conditions and prove that the Bredon cohomological di-
mension with coefficients restricted to cohomological Mackey functors is equal to
the §-cohomological dimension for all groups.

We prove in Chapter [5| that for groups of finite §-cohomological dimension,
the §-cohomological dimension equals the Gorenstein cohomological dimension,
and give an application to the behaviour of the §-cohomological dimension under
group extensions.

If a group G admits a closed manifold model for BG then G is a Poincaré
duality group, in Chapter [6] we study Bredon—Poincaré duality groups, a gener-
alisation of these. In particular if G admits a cocompact manifold model X for
E,G (the classifying space for proper actions) with X a submanifold for any
finite subgroup H of G, then G is a Bredon—Poincaré duality group. We give
several sources of examples, including using the reflection group trick of Davis to
produce examples where the dimensions of the submanifolds X are specified.
We classify Bredon—Poincaré duality groups in low dimensions and examine their
behaviour under group extensions.

In Chapter [7] we study Houghton’s group H,, calculating the centralisers of
virtually cyclic subgroups and the Bredon cohomological dimension with respect
to both the family of finite subgroups and the family of virtually cyclic subgroups.
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CHAPTER 1

Introduction

This introduction contains an overview of relevant background material and

details the contributions of this thesis as they arise.

1.1. Free actions and group cohomology

For any group G there exists an aspherical CW-complex X with fundamental
group G, this is called a model for BG or FEilenberg-Mac Lane space. Such
a space is unique up to homotopy equivalence, a fact observed essentially by
Hurewicz [Hur36|, arguably kick-starting the field of group cohomology. The
universal cover X, a contractible CW-complex with a free G-action, is called
a model for EG or a classifying space for free actions. Equivalently one could
define a model for EG as the terminal object in the G-homotopy category of free
G-CW-complexes.

One can use invariants of these spaces to study the groups themselves, for
example defining the group cohomology H*(G) to be H*(BG). Alternatively
there is an algebraic definition of group cohomology, replacing the space BG with
a resolution of Z by projective ZG-modules.

An important invariant is the geometric dimension gd G, the minimal dimen-
sion of a model for EG. Its algebraic counterpart is the cohomological dimension
c¢d G, the minimal length of a resolution of Z by projective ZG-modules. It’s easy
to see that gd G = 0 if and only if cd G = 0 if and only if G is the trivial group.
Also, by a theorem of Stallings and Swan, cd G = 1 if and only if gd G = 1 if and
only if G is a free group [Sta68, [Swa69|. Eilenberg and Ganea conjectured that
cdG = gd G for all groups and, along with Stallings and Swan’s result for the
dimension one case, proved this conjecture for all cases, except for the possibility
that cdG = 2 and gd G = 3 [EG57|. That this is impossible is still an open
problem, known as the Filenberg—Ganea conjecture.

A group G has type Fy, if it admits a model for BG with finite n-skeleton, and
on the algebraic side G has type FP,, if Z admits a resolution by projective ZG-
modules, finitely generated up to dimension n. A group of type F,, is necessarily
of type FP,,. All groups are of type Fy, since there always exists a model for BG
with a single 0-cell [Geo08| 7.1.5]. The conditions F, FP; and finitely generated
are all equivalent, but the situation is more complex for larger n. A group is Fs if

1



2 1. INTRODUCTION

and only if it is finitely presented, and FP,, together with Fo implies F,, [Geo08|,
7.2.1|[Bro94l, VIII §7]. Bestvina and Brady use discrete Morse theory techniques
to construct subgroups of right-angled Artin groups that are FP,, but not FP,,;
for all n, and groups of type FP,, which are not finitely presented for all n [BB97].

We say a group is type F if it is F, and gd G < oo, and type FP of it is FP
and cd G < oc.

For a more detailed overview of these finiteness conditions see [Bro94l, Chap-
ter VIII], [Bie81] and [Geo08| Chapter II].

1.2. Proper actions and Bredon cohomology

Let F be a family of subgroups of a group G, closed under conjugation and
taking subgroups. A model for ExrG, or classifying space for actions with isotropy
in F, is the terminal object in the G-homotopy category of G-CW complexes with
isotropy in F. A model for EG is thus the same as a model for Eg;, G, where Triv
denotes the family consisting of only the trivial subgroup.

Using the equivariant Whitehead theorem one can show that a G-CW-complex
X is a model for ExG if and only if X has isotropy in F and X is contractible
for all H € F [Liic05, Theorem 1.9]. Models for ExG always exist—there are
various standard constructions including the infinite join construction of Milnor
[Mil56], Segals construction [Seg68], and a construction where one iteratively
attaches equivariant cells to build a G-CW-complex with contractible fixed point
sets [Liic89) Proposition 2.3, p.35].

Let Fin denote the family of all finite subgroups of a group G. There are many
groups which admit natural models for E«;, G, for example mapping class groups,
word-hyperbolic groups, and one-relator groups. A good survey is [Liic05].

There has been recent interest in models for Eg,G' and models for Eqp, G,
where 7Cyc denotes the family of virtually cyclic subgroups, because they ap-
pear on one side of the Baum—Connes and Farrell-Jones conjectures respectively
[LRO5]. These are deep conjectures with far reaching consequences in mathe-
matics [MV03, BLROS]|.

We denote by gdr G the minimal dimension of a model for ExG, if F = Fin
then this is known as the proper geometric dimension of G. The cohomology the-
ory most suited to the study of this geometric invariant is Bredon cohomology,
introduced for finite groups by Bredon in [Bre67] to study equivariant obstruc-
tions and extended to the study of infinite groups by Liick [Liic89].

Fixing G we consider the orbit category Ox. This is the small category whose
objects are the transitive G-sets with stabilisers in F and the morphisms between
two such G-sets is the free abelian group on the G-maps between them. Bredon

modules, or Or-modules, are contravariant additive functors from Or to the
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category of left R-modules, where R is some commutative ring. Our definition of
Or is different from the usual definition given in, for example, [Liic89], but the
definitions lead to isomorphic Or-module categories (Remark .

The category of all Bredon modules is an abelian category with frees and
projectives, so one can use techniques from homological algebra to study them.
Let R be the constant Bredon module, defined as R(G/H) = R for all H €
F and R(a) = idg for any G-map « : G/H — G/K. As in ordinary group
cohomology, using projective resolutions of R one builds the Bredon cohomology
of G. Analagously to cd G, we denote by Orcd G the Bredon cohomological
dimension of G—the minimal length of a projective resolution of R. We denote
by OxFP,, the Bredon cohomological analogue of the FP,, conditions of ordinary
cohomology, so G is OrFP,, if there exists a resolution of R by projective Bredon
modules which is finitely generated in all degrees < n.

That the Bredon cohomological dimension Og;,cd G is the correct algebraic
invariant to mirror gdg;, G is exemplified by the following theorem, an analogue

of the classical results of Eilenberg—Ganea and Stallings—Swan.

THEOREM. [LMOO| Theorem 0.1][Dun79] If R = Z then O 5ycd G = gdgin G,
except for the possibility that Og,cd G = 2 and gdg, G = 3.

Brady, Leary and Nucinkis construct groups with Og,cd G = 2 and gd g, G =
3 [BLNO1].

If G admits a model for E4,G with cocompact n-skeleton then G is O, FP,,
over Z. In the other direction, if G is Oy, FP,, and the Weyl groups WH =
NgH/H are finitely presented for all finite subgroups H of G, then G admits a
model for E#,G with cocompact n-skeleton [LIMO00L Theorem 0.1].

ProposITION. [KMPN11b, Lemmas 3.1,3.2] A group G is Oz, FP,, if and
only if G has finitely many conjugacy classes of finite subgroups and the Weyl
groups WH = NqgH/H are FP,, for all finite subgroups H.

We will discuss these conditions in more depth in Section [3.6

Much of this thesis is concerned with the Bredon cohomological dimension and
Oy4, FP,, conditions, and how they interact with other cohomological finiteness
conditions. This includes those obtained by restricting the coefficients of Bredon
cohomology to Mackey functors or cohomological Mackey functors (Section
and Chapter 4)) and those obtained via relative homological algebra, namely the
Gorenstein cohomological dimension and F-cohomological dimension (Sections
and and Chapter [5)).

There are already many results giving bounds for the Bredon cohomolog-
ical dimension in terms of other algebraic invariants. In [MP13a, MP13b],

Martinez-Pérez uses the poset of finite subgroups of a group to provide bounds
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for Ogycd G and in [KMPNO09] Kropholler, Martinez-Pérez, and Nucinkis show

that any elementary amenable group of type FPo, over Z satisfies
Ogincd, G = hG = cdg G,

where hG denotes the Hirsch length of G. See [Hil91] for a definition of Hirsch
length for elementary amenable groups.
Finiteness conditions in Bredon cohomology are not well-behaved with re-

spect to group extensions. This is exemplified by the constructions of Leary and
Nucinkis [LNO3| of

(1) groups which are virtually-F (there exists a finite index subgroup of type
F) and satisify ved G < Og,ed G, and

(2) groups which are virtually-F with infinitely many conjugacy classes of
finite subgroups (and hence not of type O, FP( by Proposition [3.6.1]).

Interestingly, a virtually-F group cannot contain infinitely many conjugacy classes
of subgroups of prime power order [Bro94, 1X.13.2], but may contain infinitely
many conjugacy classes of subgroups isomorphic to some finite group H as long
as H does not have prime power order [Lea05].

In Chapter [3| we look in detail at O z-modules and at some results concerning
finiteness conditions in Bredon cohomology which will be needed later on in the
thesis. We also give some interesting examples of groups whose Bredon coho-
mological dimension is not preserved under change of rings. Apart from these
examples, this chapter contains mainly background material and straightforward

extensions of known results.

1.3. Modules over a category

An Ab category (also called a pre-additive category) is a category € enriched
over the category of abelian groups—for any two objects = and y in € the mor-
phisms from z to y form an abelian group and morphism composition distributes

over addition [ML98| p.28]. So for any w,z,y, z € € and morphisms
g
w L r=y £> Z,
h

we have
ko(g+h)of=kogof+kohof.

If € is a small Ab category then a €-module is a contravariant additive functor
from € to the category of left R-modules. The theory of modules over a category
specialises to Bredon cohomology by setting € = Oz. In Chapter [2] we study
modules over an Ab category € with the property that for all objects x and y
in €, the set of morphisms from x to y forms a free abelian group. We describe

standard constructions including tensor products; projective, injective, and flat
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modules; restriction, induction, and coinduction; the Tor¢ and Extg functors;
projective dimension and €FP,, conditions; and the Bieri-Eckmann criterion.

Let [z,y]e denote the morphisms from x to y in €. The category € is said to

be an (EI) category if (see Remark [2.0.1]):
(EI) For every x € € there is a distinguished basis of [z, z¢, the elements of

which are isomorphisms.

The material in this chapter is well-known in the case that € is an (EI) cate-
gory. We study a more general case which can be specialised, not just to Bredon
modules in Chapter [3] but also to Mackey and cohomological Mackey functors
in Chapter [}—Mackey and cohomological Mackey functors may be described as
modules over categories M r and H r respectively, categories which do not have
(EI).

1.4. ng and §-cohomological dimension

Let n¢g denote the minimal dimension of a contractible proper G-CW complex.
Nucinkis suggested §-cohomology in [Nuc99] as an algebraic analogue of ng, it
is a special case of the relative homology of Mac Lane [ML95] and Eilenberg—
Moore [EM65]. Fix a subfamily F of the family of finite subgroups, closed under
conjugation and taking subgroups. Let A be the G-set [[ .- G/H and say that a
module is F-projective if it is a direct summand of a module of the form N ® RA
where N is any RG-module. Short exact sequences are replaced with F-split
short exact sequences—short exact sequences which split when restricted to any
subgroup in F, or equivalently which split when tensored with RA. The class
of F-split short exact sequences is allowable in the sense of Mac Lane, and the
projective modules with respect to these sequences are exactly the F-projectives.
This means an RG-module P is F-projective if and only if given any F-split short
exact sequence

0—A—B—C—0

of RG-modules, applying Hompgg (P, —) gives a short exact sequence
0 — Hompg(P, A) — Hompg(P, B) — Hompq(P,C) — 0.

There are enough F-projectives and one can define Ext and Tor functors,
denoted FExth, and F TorE%  for any RG-modules M and N,

FExtho(M,N) = H* Hompgg(P,, N)
FTorB%(M,N) = H,(P, ®ra N)

where P, is a F-split resolution of M by JF-projective modules. We define the
F-cohomology and F-homology

FH*(G, M) = FExthy(R, M),
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FH.(G,M) = FTorE“(R, M).
The F-cohomological dimension, denoted Fecd G, is the shortest length of an
F-split F-projective resolution of R. A group G is FFP,, if there exists an F-split

F-projective resolution of R, finitely generated in all degrees < n.

NoTATION. When F = in, we use the standard notation in the literature,

writing §cd instead of #incd and referring to the §-cohomological dimension.

A result of Bouc and Kropholler—Wall implies Fcd G < ng [Bou99, KW11],
but it is unknown if §cd G < oo implies ng < oo, or if there are any groups for
which the two invariants differ. Unfortunately F-cohomology can be very difficult
to deal with, in particular it lacks some useful features such as free modules.

Since every model for E,G is a proper contractible G-CW complex, it is

clear that ng < gds, G.

CoNJECTURE (Kropholler-Mislin Conjecture [Gui08, Conjecture 43.1]). If
ng < oo then gdg, G < co.

Kropholler and Mislin verified their conjecture for groups of type FP, [KM9§]
and later Liick verified the conjecture for groups with {(G) < oo [Liic00]. Here
[(G) is the length of the longest chain

l=HosHi sHy < S Hy, G

of finite subgroups in G. Nucinkis posed an algebraic version of the conjecture,
asking whether the finiteness of §cd G and Og;,cd G are equivalent and verifying
this for groups with [(G) < co [Nuc00, Conjecture on p.337, Corollary 4.5].

The class HF of hierarchically decomposable groups was introduced by Krop-
holler as the smallest class of groups such that if there exists a finite-dimensional
contractible G-CW complex with stabilisers in HF then G € BHF [Kro93|, he
proves that every torsion-free group of type FP,, in H§ has finite cohomological
dimension. The class HF is extremely large, containing for example all countable
elementary amenable groups and all countable linear groups. The first known
example of a group not in Kropholler’s class HF was Thompson’s group F,
since F' is torsion-free of type FP,, but with infinite cohomological dimension
[BG84]. Other examples have since been found [Gan12bl, ABJT09|. Gandini
and Nucinkis have verified the Kropholler—Mislin conjecture for a class of groups
containing many groups of unbounded torsion [GN12]|.

In [MP13a, Example 3.6] Martinez-Peréz modifies the Leary—Nucinkis con-
struction [LINO3| to produce an extension G of a torsion-free group by a cyclic
group of order p, with Fcd G = 3 but Og,cd G = 4. Taking direct products of
these groups and using [DP12] Theorem C] gives a family of virtually torsion-
free groups G,, with Og,cd G,, = Fed G, + n for all natural numbers n [Degl3a),
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Remark 3.6]. However one should note that in these examples Fcd Gy, is growing
linearly with n.

Interestingly, it is still unknown if Og,cdG = Fed G when G is of type
O, FP_, although Degrijse and Martinez-Pérez have obtained some results per-
taining to this question in [DMP13]. They investigate groups admitting a co-
compact model X for E,G, and find a description of Og,cdG as largest n
for which H?(X® XX ) is non-trivial, where K runs over the finite subgroups

sing
of G, XX

sing denotes the subspace of cells in X K with isotropy containing K
but not equal to K, and H]' denotes the cohomology with compact supports
[DMP13| Corollary 2.5]. Using this they prove that if G acts properly and
chamber-transitively on a building of type (W, S), where (W, S) is a finite Cox-

eter group, then Og,cd G = Fed G [DMP13], Theorem 5.4].

1.5. Mackey and cohomological Mackey functors

In [MPNOG|, Martinez-Peréz and Nucinkis studied cohomological finiteness
conditions arising from taking the Bredon cohomology of a group G but restricting
to Mackey functor coefficents. They showed that the associated Mackey coho-
mological dimension M 4;,cd G is always equal to both the virtual cohomological
dimension and the §-cohomological dimension when G is virtually torsion-free.
One can view Mackey functors as contravariant functors from a small category
Mg, into the category of left R-modules, and a crucial result in the paper of
Martinez-Peréz and Nucinkis is that the Bredon cohomology with coefficients in
a Mackey functor may be calculated using a projective resolution of Mackey func-
tors. Specifically they prove that you can induce a resolution of R by projective
Bredon modules to a resolution of the Burnside functor B¢ by projective Mackey
functors. This is explained in more detail in Section

Degrijse showed that for groups with I(G) < oo the Mackey cohomological
dimension is equal to the §-cohomological dimension [Degl3al, Theorem A]. He
proves this via the study of Bredon cohomology with cohomological Mackey func-
tor coefficents and the associated notion of cohomological dimension H4;,cd G.

The main ingredient of Chapter {4 is a similar result to that of Martinez-
Peréz and Nucinkis for Bredon cohomology with cohomological Mackey functor
coefficients. Yoshida observed that a cohomological Mackey functor may be de-
scribed as a contravariant functor from a small category H g, to the category of
left R-modules [Yos83]. We use Yoshida’s result to prove in Section that
the Bredon cohomology with coefficients in a cohomological Mackey functor may
be calculated with a projective resolution of cohomological Mackey functors, by

showing that a resolution of R by projective Bredon modules can be induced to
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a resolution of the fixed point functor R~ by projective cohomological Mackey
functors.
Degrijse also proves in [Degl3a] that H#,cd G = Fed G when Hg,cd G < 00,

and asks if they are always equal, we can verify this:
THEOREM [4.5.1] Hgincd G = Fed G for all groups G.

Thus for an arbitrary group G we have a chain of inequalities
ngG = HﬁnCdG < MﬁnCdG < OﬁnCd G.

Since the new invariants Mg,cd and Hg,ed interpolate between Og,cd G
and §cd G, one might hope to use them to gain information about how the
Kropholler—Mislin conjecture might fail. However, few of the inequalities above
are well understood. The inequality §cd G < Og,cd G has already been discussed
in Section For groups with I(G) finite, Hped G = My,ed G [Degl3al

Theorem 4.10], we don’t know of any examples where they differ.

QUESTION 1.5.1. (1) For an arbitrary group G, does the finiteness of
Mgi,ed G imply the finiteness of Og,cd G?
(2) Is there any relation between M g,cd G and ng?

The O, FP,, conditions are well understood—see Section We study the
M4, FP,, conditions corresponding to Mackey functors, the Hg,FP,, conditions
corresponding to cohomological Mackey functors, and the §FP,, conditions de-

fined in the previous section.

COROLLARY [4.2.6. Over any ring R, a group is M 5, FP,, if and only if it is
O:TinFPn«

THEOREM [£.4.1] If R is a commutative Noetherian ring, a group is H,FP,,
if and only if it is SFP,.

In Section we prove a result similar to that shown for §-cohomology in
[LN10, §4], that depending on the coefficient ring, H#,cd may be calculated
using a subfamily of the family of finite subgroups. For example when working
over Z we need consider only the family of finite subgroups of prime power order,
and over either the finite field F), or over Z, (the integers localised at p), we

need consider only the family of subgroups of order a power of p.

THEOREM (4.6.1 Let R be either Z, Fp, or Zy. If R = Z then denote by
P the family of subgroups of prime-power order. If R = Ty or Z, then let P
denote the family of subgroups of order a power of p.

For all n € NU {oo}, the conditions HgncdG = n and HpcdG = n are
equivalent, as are the conditions Hg, ¥Py, and HpFP,,.
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We also give a complete description of the condition H 5, FP,, over IF),.

COROLLARY [4.6.11] G is H4,FP,, over Fy, if and only if G has finitely many
conjugacy classes of p-subgroups, and WH = NgH/H is FP,, over F, for all
finite p-subgroups H.

1.6. Gorenstein cohomological dimension

An RG-module is Gorenstein projective if it is a cokernel in a strong com-
plete resolution of RG-modules, these were first defined over an arbitrary ring
by Enochs and Jenda [EJ95]. We give a full explanation of complete resolutions
in Section [5.1.1} The Gorenstein projective dimension Gpd M of an RG-module
M is the minimal length of a resolution of M by Gorenstein projective mod-
ules. Equivalently, Gpd M < n if and only if M admits a complete resolution of
coincidence index n [BDT09) p.864].

The Gorenstein cohomological dimension of a group G, denoted Ged G, is
the Gorenstein projective dimension of R. If G is virtually torsion-free then
Ged G = ved G [BDTO09, Remark 2.9(1)], indeed the Gorenstein cohomology
can be seen as a generalisation of the virtual cohomological dimension.

Ged G is closely related to the silp RG and spli RG invariants studied by
Gedrich and Gruenberg [GG87| and recently shown to be equal by Emmanouil
when R = Z [Emm10]. The invariants silp RG and spli RG are defined as the
supremum of the injective lengths (injective dimensions) of the projective RG-
modules and the supremum of the projective lengths (projective dimensions) of

the injective RG-modules respectively. It is known that
Ged G < spli RG < Ged G + 1,

and conjectured that Ged G = spli RG [DT08], Conjecture A]. In fact, Dembegi-
oti and Talelli phrase this conjecture with the generalised cohomological dimen-
sion of Tkenaga [ITke84], but this is always equal to the Gorenstein cohomological
dimension [BDT09, Theorem 2.5].

By [ABS09, Lemma 2.21], every permutation RG-module with finite sta-
bilisers is Gorenstein projective, so combining with [Gan12bl Lemma 3.4] gives
that Ged G < Fed G.

THEOREM [5.2.11] If §cd G < oo then Fed G = Ged G.

We don’t know if Ged G < oo implies §ecd G < 00, although if Ged G =0 or 1
then Ged G = Fed G = Ogped G [ABS09, Proposition 2.19][BDT09, Theorem
3.6]. Additionally if G is in Kropholler’s class HF and has a bound on the orders
of its finite subgroups then Fcd G = Ged G (see Example .
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It is conjectured by Talelli that Ged G < oo if and only if Og,cd G < 0o (see
for example, [Tal07, Conjecture A]). This is a stronger version of the conjecture of
Nucinkis mentioned in Section that §cd G < oo if and only if Og,cd G < 0.
If one could strengthen Theorem[5.2.11]to show that Ged G = Fed G for all groups
G, then the two conjectures would be equivalent. Using [MPO07], Bahlekeh,
Dembegioti, and Talelli show that for groups with Og,cdG < oo, there is a
bound Og;,cd G < [(G) + Ged G [BDT09, Theorem CJ.

Generalising a construction of Avramov—Martsinkovsky, it was shown by
Asadollahi, Bahlekeh, and Salarian that if Ged G < oo then there is a long exact
sequence of cohomological functors relating group cohomology, complete coho-
mology and Gorenstein cohomology [AMO02), §7][ABS09, §3]. Theorem
follows from constructing a similar long exact sequence relating §-cohomology,
complete §-cohomology (defined in Section , and a new cohomology theory
we call Fg-cohomology (defined in Section [5.2).

When they both exist, these two long exact sequences fit into the commutative

diagram below, see Proposition [5.2.9

—n—1 —
> FH > FeH" ——> FH" —>FH —> FoH" —— .
I 24 S L
MNn
——= H"' —— GH" H" ar GH™ —— ...

where for conciseness we have written H" for H"(G, —) etc. In the commutative
diagram above, H™(G, —) is the complete cohomology, GH™(G, —) is the Goren-
stein cohomology, @n(G, —) is complete §-cohomology, and FoH" (G, —) is the
§a-cohomology.

Since Theorem [5.2.11]is proved via this commutative diagram, it appears that
the requirement that §cd G < oo will be difficult to circumvent—without it we
do not know how to construct the long exact sequence appearing on the top row.

In Section[5.3| we use that the Gorenstein cohomological dimension is subaddi-
tive to improve upon a result of Degrijse on the behaviour of the §-cohomological
dimension under group extensions [Degl3al Theorem B]. Degrijse phrased his
result in terms of Bredon cohomological dimension of G with coefficients re-
stricted to cohomological Mackey functors, but this invariant is equal to Fcd G
by Theorem [4.5.1] (see previous section).

COROLLARY [5.3.2] Given a short exact sequence of groups
1—N—G—Q—1,

if §cd G < oo then Fed G < Fed N + Fed Q.
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QUESTION 1.6.1. Is the §-cohomological dimension subadditive under group

extensions?

In Section we use the Avramov—Martsinkovsky long exact sequence to

prove the following.
PROPOSITION [5.4.4] If cdg G < oo then cdg G < Gedz G.

We know of no groups for which cdg G < Gedz G fails. If ¢dz G < oo then
necessarily cdz G = Ged G [ABS09, Corollary 2.25], but we cannot rule out
the possibility that there exists a torsion-free group G with cdz G = oo but

Ged G < 0. In fact, the question below is still open even for torsion-free groups.

QUESTION 1.6.2. Do there exist groups G' with cdg G' = oo but Gedz G < 00?

1.7. Bredon duality groups

A duality group is a group G of type FP for which

’ Z-flat if i =mn,
H'(G,2G) =
0 else,
where n is necessarily the cohomological dimension of G. The name duality comes
from the fact that this condition is equivalent to existence of a ZG-module D,

giving an isomorphism
HY(G,M)=H, ;(G,D®z M)

for all ¢ and all ZG-modules M. It can be proven that given such an isomorphism,
the module D is necessarily H"(G,ZG). A duality group G is called a Poincaré
duality group if in addition
Hi(G,ZG)%{ Z ifi=mn,
0 else.

These groups were first defined by Bieri [Bie72], and independently by Johnson—
Wall [JW72]. Duality groups were first studied by Bieri and Eckmann in [BE73].
See [Dav00] and [Bie81), §III] for a thorough introduction.

If a group G has an oriented manifold model for BG then G is a Poincaré
duality group [Dav00), p.1]. Wall asked if the converse is true [Wal79], the answer
is no as Poincaré duality groups can be built which are not finitely presented
[Dav98, Theorem C|. However the question remains a significant open problem
if we include the requirement that GG be finitely presented. The conjecture is
known to hold only in dimensions at most 2 [Eck87].

Let R be a commutative ring. A group G is a duality group over R if G is

FP over R and
R-flat ifi=mn,

0 else.

HY(G,RG) = {
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G is Poincaré duality over R if

HI(G, RG) = { R ifi=mn,

0 else.
An analogue of Wall’s conjecture is whether every torsion-free finitely presented
Poincaré duality group over R is the fundamental group of an aspherical closed
R-homology manifold [Dav00, Question 3.5]. This is answered in the negative
by Fowler for R = Q [Fow12], but remains open for R = Z.

We study a generalisation of Poincaré duality groups, looking at the algebraic
analogue of the condition that G admits a manifold model M for E4,G such that
for any finite subgroup H the fixed point set M is a submanifold.

If G admits a cocompact manifold model M for E, G then G is O, FP. Also
if for any finite subgroup H the fixed point set M is a submanifold, we have
the following condition on the cohomology of the Weyl groups WH = NgH/H:

7 ifi=dimMHY,

HY(WH,Z[WH]) = { 0 |

see [DLO3| p.3] for a proof of the above. Building on this, in [DL03| and also in
[MP13al, Definition 5.1] a Bredon duality group over R is defined as a group G
of type O, FP such that for every finite subgroup H of G there is an integer dy
with

H W H, RIWH]) = { R-flat if i = dy,

0 else.
Furthermore, G is said to be Bredon—Poincaré duality over R if for all finite
subgroups H,
H% (WH, RIWH]) = R.

We say that a Bredon duality group G is dimension n if Og,cd G = n. Note that
for torsion-free groups these definitions reduce to the usual definitions of duality
and Poincaré duality groups.

One might generalise Wall’s conjecture: Let G be Bredon—Poincaré duality
over Z, such that W H is finitely presented for all finite subgroups H. Does G
admit a cocompact manifold model M for E4,G? This is false by an example of

Jonathan Block and Schmuel Weinberger, suggested to us by Jim Davis.

THEOREM [6.2.7] There exist examples of Bredon—Poincaré duality groups
over Z, such that W H is finitely presented for all finite subgroups H but G doesn’t
admit a cocompact manifold model M for Eg,G.

If G is Bredon—Poincaré duality and virtually torsion-free then G is virtually
Poincaré duality. Thus an obvious question is whether all virtually Poincaré

duality groups are Bredon—Poincaré duality, in [DLO03] it is shown that this is
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not the case for R = Z. An example is also given in [MP13al §6] which fails for
both R = Z and for R = [F), the finite field of p elements. One might also ask if

every Bredon—Poincaré duality group is virtually torsion-free but this is also not

the case, see for instance Examples [6.2.5| and [6.2.21]
In [Ham11l Theorems D,E] Hamilton shows that, over a field IF of character-

istic p, given an extension I' of a torsion-free group G of type FP, by a finite p-

group, the group I' will be of type O, FP__ (by examples of Leary and Nucinkis,
an extension by an arbitrary finite group may not even be Og,FP, [LNO3]).
Martinez-Pérez builds on this result to show that if G is assumed Poincaré dual-
ity then I' is Bredon—Poincaré duality over F with Ogyedp I’ = cdp G [MP13a,
Theorem C]. However, her results do not extend to Bredon duality groups.

Given a Bredon duality group G we write V(G) for the set
V(G) = {dF : F a non-trivial finite subgroup of G} C {0,...,n}.

In Example we will build Bredon duality groups with arbitrary V(G). If
G has a manifold model, or homology manifold model, for E#,G then there are
some restrictions on V(G)—see Section for this. In Section we build
Bredon—Poincaré duality groups for many choices of V(G), however the following

question remains open:

QUESTION 1.7.1. Is it possible to construct Bredon—Poincaré duality groups
with prescribed V(G)?

It follows from Proposition [6.1.4] that for a Bredon—Poincaré duality group,
dy < Ogincd G (recall dy is the integer for which H% (G, RG) = R) and also, if we
are working over Z, then d; = cdg G (Lemma|6.1.2)). Thus the following question

is of interest.
QUESTION 1.7.2. Do there exist Bredon duality groups with Og,cd G # dy?

Examples of groups for which cdg G # Ogy,cd, G are known [LNO3|, but
there are no known examples of type Oy, FP . This question is also related to
[MP13al Question 5.8] where it is asked whether a virtually torsion-free Bredon
duality group satisfies Og,cd G = ved G.

One might hope to give a definition of Bredon—Poincaré duality groups in
terms of Bredon cohomology only, we do not know if this is possible but we show
in Section [6.7] that the naive idea of asking that a group be O, FP with

R ifi=n,

0 else,

Hp,, (G, R[?,-]) = {

is not the correct definition, where in the above Hggﬁn denotes the Bredon co-

homology and R is the constant covariant Bredon module. Namely we show in
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Theorem that any such group is necessarily a torsion-free Poincaré duality

group over R.

1.8. Houghton’s groups

Houghton’s group H,, was introduced in [Hou79], as an example of a group
acting on a set S with H'(H,, A ® Z[S]) = A"~! for any abelian group A.

In [Bro87], Brown used an important new technique to show that the groups
Fyr, Ty, and V,,, of Thompson and Higman were FP.,. In the same paper he
showed that Houghton’s group H,, is interesting from the viewpoint of cohomo-
logical finiteness conditions, namely H, is FP,,_; but not FP,. Brown proves
this by studying the action of H,, on the geometric realisation |M| of a certain
poset M. More recently, Johnson gave a finite presentation for Hs [Joh99], and
later Lee did the same for H,, where n > 3 [Leel2].

Interestingly, H, embeds in Thompson’s group V = V51 for all n > 0
[R6v99]. Antolin, Burillo, and Martino have shown that for n > 2, the group
H,, has solvable conjugacy problem [ABM13| and Burillo, Cleary, Martino, and
Rover have calculated the automorphism groups and abstract commensurators
of H, [BCMRI14].

There has been recent interest in the structure of the centralisers of Thomp-
son’s groups and their generalisations [MPN13, BBG™11, MPMN13|. The
results obtained here are similar to [MPMN13| 4.10,4.11] where it is shown that
in the groups V,.(X), generalisations of Thompson’s V', the centralisers of finite
subgroups are of type FP,, whenever the groups V,.(X) are of type FP.

In Section we completely describe centralisers of finite subgroups and

prove the following.

COROLLARY [7.1.7] If Q is a finite subgroup of H,, then the centraliser Cy, Q)
is FP,,_1 but not FP,,.

This contrasts with [KIMPN11a] where examples are given of soluble groups
of type FP,, with centralisers of finite subgroups that are not FP,,, although it is
shown in [MPN10] that in virtually soluble groups of type FP, the centralisers
of all finite subgroups are of type FP.

In Section our analysis is extended to arbitrary elements and virtually
cyclic subgroups. Using this information elements in H,, are constructed whose
centralisers are FP; for any 0 <i <n — 3.

In Section the space | M| mentioned previously is shown to be a model
for B, Hp,.

Finally Section contains a discussion of Bredon (co)homological finiteness

conditions that are satisfied by Houghton’s group. In particular we calculate the
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Bredon cohomological dimension with respect to the family of finite subgroups,
and use a construction of Liick and Weiermann [LW12] to calculate the Bredon

cohomological dimension with respect to the family of virtually cyclic subgroups.

PROPOSITION AND THEOREM . Ogped Hy, = Ogyppeed Hy, = 0.
Fi Cy:






CHAPTER 2

Modules over a category

Much of this chapter is based on [Liic89]. Although we consider a slightly
more general situation, as explained in Remark the idea is the same. The
material in this chapter is used in much of this thesis, especially in Chapters [3]
and [

Let R be a commutative ring with unit and € a small Ab category (sometimes

called a preadditive category) with the condition below.

(A) For any two objects x and y in €, the set of morphisms, denoted [z, y]¢,

between x and y is a free abelian group.

Recall that an Ab category is one where the morphisms between any two objects
form an abelian group and where morphism composition distributes over this
addition [Wei94, A .4).

REMARK 2.0.1. In [Liic89, 9.2], categories X are considered with the property
that every endomorphism in X is an isomorphism. However the approach to
defining modules over a category in [Liic89l 9.2] is different from that used here
(see also Remark . One can translate between the different viewpoints in

the following way:
[, y]x = Z[{Morphisms x — y in the sense of Liick}],

where Z[X] denotes the free abelian group on a set X.

The correct analogue of Liick’s property with our definitions is the following;:

(EI) For every = € €, there is a distinguished basis of [z, z]¢, the elements of

which are isomorphisms.

The main advantage of the (EI) property is that it allows objects in € to be
given a partial order: setting z < y if [x,y]¢ is non-empty. We choose not to
ask for this property in this section, since we want everything discussed here to
be relevant to the Mackey and Hecke categories, discussed in Chapter [ which
do not have (EI). The motivating example of a category with (EI) is the orbit
category, see Example [2.0.6]

Throughout, the fraktur letters €, », & etc. will always denote small Ab
categories with (A).

17
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Define the category of covariant €-modules over R to be the category of addi-
tive covariant functors from € to R-Mod, the category of left R-modules. Simi-
larly the category of contravariant €-modules over R is the category of additive
contravariant functors from € to R-Mod.

If neither “covariant” or “contravariant” is specified in a statement about
¢-modules, the reader should assume the statement holds for both covariant and
contravariant €-modules.

Since €-modules form a functor category and R-Mod is an abelian category,
the category of €-modules is an abelian category [Mur06, 44]. In fact, it inher-
its all of Grothendieck’s axioms for an abelian category which are satisfied by
R-Mod [Mur06, 44,55], namely:

(1) AB3 and AB4—Every small colimit exists and products of exact se-
quences are exact.

(2) AB3* and AB4*—Every small limit exists and coproducts of exact se-
quences are exact.

(3) AB5—TFiltered colimits of exact sequences are exact.

Again because we are working in a functor category, a sequence of €-modules
0—A—B—C—0

is exact if and only if it is exact when evaluated at every x € €. Note that 0
denotes the zero functor, sending every object to the zero module. Similarly, using
the fact that the category of €-modules is a functor category and the category of
abelian groups is complete, limits and colimits are computed pointwise [Mur06),
p.8].

Since [z,y|e is abelian for all  and y in €, for any y € € we can form a

contravariant module R[—, y|¢ by

R[_7 y]@(‘r) =R K7z [Ji,y]@

The analogous construction for covariant modules gives us

R[y> _]C(:E) = R®z [y7 l‘]@.

In Section [2.2] we will show that these modules are analogues of free modules in
the category of €-modules. Since R[z,y|¢ is a free R-module we write ra instead
of r®a, forr € R and a € [z,y]e.
If f € R[z,yle, where f =) r;f; for some f; € [x,y]e, and Q is a €-module,
then we will write Q(f) for the R-module homomorphism given by >, 7,Q(fi).
Let A and B be any two covariant €-modules, or any two contravariant €-
modules, then we denote by Home (A, B) the €-module morphisms between A

and B, i.e. the natural transformations from A to B.
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LEMMA 2.0.2 (The Yoneda-type lemma). For any covariant functor A and

x € €, there is an isomorphism, natural in A:
Home (R[z, —]e, A) = A(z)
fe fo)(ide)

Sitmilarly for any contravariant functor M and x € €, there is an isomor-

phism, natural in M :
Homg (R[—, z|e, M) = M(x)
[ f()(ide)
The proof is a generalisation of [MV03| p.9] into the setting of €-modules.

Proor. We provide a proof only for covariant modules, that for contravariant
modules is similar.

Let f be a morphism f : R[z, —|¢ — A, we claim f is completely determined
by f(x). If & € R[z,y|e then we can view a as o = R[z, al¢(idy), thus

fy)(e) = f(y) o Rlz, ale(ids)
= A() o f(x)(id)

where we use that f is R-additive and that f is a morphism in the category of

¢-modules—so a natural transformation of functors—meaning the diagram below

commutes.
Rl ale = A(z)
Rlz,ale J{ A(a)
f)

R[z,yle — A(y)
Conversely, given an element a € A(x) we can define a morphism f, with
f(2)(idz) = a, by
fy) : Rlz, yle — Aly)
a— A(a)(a).

0

The endomorphisms [z, z|¢ of an object = € € form an associative ring. This
ring will appear often, so we write End(x) instead of [z, z]¢, and write R End(z)
instead of R ®z End(x).

REMARK 2.0.3. Given a covariant module A, evaluating A at x gives a left

R End(z)-module, using the action
REnd(z) x A(x) — A(x)
(f,a) — A(f)(a).



20 2. MODULES OVER A CATEGORY

This is a left REnd(z)-module structure since given any two elements g, f €
REnd(x),

(gof)-z=Algo f)(x) = Alg) o A(f)(z) = g- (f - ).

Similarly, for a contravariant module M, M (z) has a right REnd(z)-module
structure.

REMARK 2.0.4. Let E@) denote the category with one object and with
morphisms the free abelian group End(z). Clearly End(x) has property (A) and
it’s possible to identify covariant End(z)-modules and left R End(z)-modules,

similarly contravariant E@)—modules and right R End(x)-modules.

There is often a need to consider bi-modules. A €-® bi-module (can be
covariant or contravariant in either variable, although most of the bi-modules
we shall use will be covariant in one variable in contravariant in the other), is a

functor

Q(—,7): € xD — R-Mod.
EXAMPLE 2.0.5. The €-€ bi-module R[—, ?]¢ is defined as
R[_7 ?]Q : (JI,y) = R[$7y]€

EXAMPLE 2.0.6 (The orbit category). The orbit category, denoted Ox, is the
prototypical example of a category with property (A), and will be studied prop-
erly in Chapter [3| It was introduced for finite groups by Bredon [Bre67], who
used the associated cohomology theory, Bredon cohomology, to develop equivari-
ant obstruction theories. It was later generalised to arbitrary groups by Liick
[Liic89).

Fix a discrete group G and family F of subgroups of G, closed under taking
subgroups and conjugation. Commonly studied families are the family Fin of
all finite subgroups, and the family 9Cyc of all virtually cyclic subgroups. The
objects of the orbit category Ox are all transitive G-sets with stabilisers in F, ie.
the G-sets G/H where H is a subgroup in F. The morphism set [G/H,G/K|o,
is the free abelian group on the set of G-maps G/H — G/K. A G-map

a:G/H— G/K
Hr— gK
is completely determined by the element a(H) = gK, and such an element gK €
G/K determines a G-map if and only if HgK = gK, usually written as gK €
(G/K)H. Equivalently gK determines a G-map if and only if g7'Hg < K.
In particular if F C Fin then the orbit category has (EI), since any G-map

a: G/K — G/K is automatically an automorphism. The isomorphism classes of
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elements in Or, denoted Iso O, are exactly the conjugacy classes of subgroups
in F.

REMARK 2.0.7. The morphisms from G/H to G/K in the orbit category are
usually defined as just the G-maps G/H — G/K. We show that this definition
gives an isomorphic module category.

For this remark, let Of" denote the category with the same objects as O
but with morphisms from G/H to G/K just the G-maps G/H — G/K. Let
t: O — OF be the faithful inclusion and given an Or-module M define an OF’
module M’ = M o 1. We claim that the functor M — M’ gives an isomorphism
of categories between Oz-modules and O#" modules.

Any Oz'-module M’ extends uniquely to an Oz-module M by setting:

(1) M(G/H) = M'(G/H) for all H € F.
(2) M(>>, zic) = Y, ziM' () for any O z-morphism ), z;«; written as the
sum of G-maps «;.

This gives an inverse to the functor M — M’ described above.

2.1. Tensor products

2.1.1. Tensor product over €. We describe a construction, due to Liick
[Liic89l 9.12], of the categorical tensor product of [Sch70, 16.7][Fis68] for the
categories of €-modules over R.

For M contravariant and A covariant, the tensor product over € of M and A
is

M ®¢ A= P M(x) @RA(:U)/ ~
el
where M(a)(m) ® a ~ m ® A(a)(a) for all morphisms « € [z,y] in €, elements
m € M(y) and a € A(z), and objects z,y € €. Since R is commutative, this
construction yields an R-module. The tensor product is associative [MP02,

Lemma 3.1], and commutes with direct sums.

ExamMpLE 2.1.1. If A is a left REnd(z)-module and M is a right R End(z)-
module then, by Remark [2.0.4] A and M can be regarded as covariant and con-

travariant End(z)-modules. It’s easy to check that

M ®Em) A= M ® R End(z) A.

ProprosiTION 2.1.2. [Liic89, p.166][MPO02] There are adjoint natural iso-

morphisms of R-modules:
Homg (M(?) ®e Q(?,—), N(—)) = Home (M (?), Homp (Q(?, =), N(-)))

HomQ(Q(?’ *) ®p A(*)7B(?)) = HOm@(A(*), HomQ(Q(?v *)’ B(?)))
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Here M and N are contravariant modules, A and B are covariant modules, and

113

Q(?,—) is an D-€-bi-module—a contravariant D-module in “—" and a covariant

C-module in “77.

LEMMA 2.1.3. [MVO03| p.14] There are natural isomorphisms of R-modules

for any contravariant module M and covariant module A:

M Xe R[a:, —]¢ = M(a;)

R[—, ac]@ R A = A(x)

2.1.2. Tensor product over R. We describe the tensor product over R
as in [Liic89) 9.13]. If A and B are €-modules, either both covariant or both

contravariant, then the tensor product over R is the €-module
(A®g B)(z) = A(z) ®r B(x).
If o : x — y is a morphism in €, then

(A®gr B)(a) = A(a) ®@r B(a).

2.2. Frees, projectives, injectives and flats

Free objects in a category are usually defined as left adjoint to some forgetful
functor, often with codomain Set. For €-modules the necessary forgetful functor
is

U : { €-modules } — [Ob(€), Set]
UA:xz+— A(z).

Here [Ob(C), Set| denotes the category of functors Ob(€) — Set, where Ob(C) is
the category whose objects are the objects of € but with only the identity mor-
phisms at each object. The functor F left adjoint to U is, for X € [Ob(€), Set],

FX =P P Rlz, e

zel€ X (z)

Analagously, if we are working with contravariant functors,

FX = P Rl ale.

el X (x)
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That (F,U) form an adjoint pair is a consequence of the Yoneda-type Lemma
for any covariant module A,

Homg(FX, A) = Homg @ @ Rz
zel€ X (x

NH HHom¢ [z, —]¢, A)

ze€ X (z

”HHA

rze€ X (z

= Hom[Ob(¢),Set] (X,UA).

The proof for contravariant functors is analogous.
Projective and injective modules are defined as in any abelian category—a
¢-module P is projective if Homg(P, —) is exact and a €-module I is injective if

Home(—, I) is exact [Wei94, §2.2]. Free modules are projective since if
0—A—B—C—0

is an exact sequence of €-modules then, by the Yoneda-type Lemma ([2.0.2)),
applying Homg (R[z, ?]¢, —) gives the exact sequence

0 — A(x) — B(x) — C(z) — 0.

Since direct sums of projectives are projective in any abelian category, this is
enough to show the category of €-modules has enough projectives, in fact the

counit of the adjunction between F' and U,
n:(FUA) — A,

is always an epimorphism: By construction,

FUA:@ @ Fy(z,—

z€C ac Ax)
where F,(z,—) = R[x,—]¢. The counit is the map defined on Fy(z,—), via the
Yoneda-type Lemma by id; +— a. It’s clear that every a € A(z) is in the
image of n(x), and thus 7 is an epimorphism.

The category of €-modules also has enough injectives, see Remark for a
proof using coinduction.

A covariant (respectively contravariant) €-module F' is flat if the functor
F ®¢ 1 (respectively 1 ®¢ F) is flat. Lemma shows free modules are flat, and
since the tensor product commutes with direct sums, projectives are flat also.

A covariant €-module M is said to be finitely generated if there exists an
epimorphism

@R[‘T7_]€ — M,

zel
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for some finite indexing set I of objects in €. There is an analogous definition for

contravariant €-modules.

2.3. Restriction, induction and coinduction

Given a functor ¢ : € — ©, we define restriction, induction, and coinduction
functors. Induction and restriction can be found in [Liic89, §9.8] but with the
names extension and restriction, he also defines an adjoint pair of functors called
“splitting” and “inclusion”. We don’t include these here as the adjointness of
these functors relies on the (EI) property which we are not assuming holds.

Restriction and induction are, for covariant modules:

Res, : {Covariant ©-modules} — {Covariant €-modules}

Res,: A—> Aoy

Ind, : {Covariant €-modules} — {Covariant ®-modules}
Ind, : A— R[u(?),—]p ®c A(?).

Where the notation R[¢(?), —]p means that in the variable “?”, this functor should

be regarded as a €-module using ¢. Coinduction is, for covariant modules:
Colnd, : {Covariant €-modules} — {Covariant ®-modules}
Colnd, : A — Homg(R[—, t(?)]p, A(?)).

For contravariant functors, the definition of restriction is identical, and for

induction and coinduction is nearly identical:

Ind, : {Contravariant €-modules} — {Contravariant ©-modules}

Ind, : M — M(?) ®¢ R[—, ()]0

Colnd, : {Contravariant €-modules} — {Contravariant ®-modules}
Colnd, : M(—) — Homeg(R[u(?), —]|o, M(?)).
Usually the functor ¢ will be implicit, and we will use the notation Res? for

Res,, and similarly for induction and coinduction. We will also write ResS instead

of Res® — and similarly for induction and coinduction.
End(z)

Note that for any left R End(z)-module A,
Ind® A(z) = Rz, x] ®REnd(z) A = A
Colnd% A(x) = Homp gna(z) (R[z, 7], A) = A.
Similarly for contravariant induction and coinduction.

ProposITION 2.3.1. [MPNOG6, §2] Induction is left adjoint to restriction and

cotnduction is Tight adjoint to restriction.
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The following proposition is almost entirely a consequence of this adjointness.

PROPOSITION 2.3.2.

(1) Restriction is exact.

(2) Induction is right exact and preserves frees, projectives, flats and “finitely
generated”.

(3) Coinduction preserves injectives.

(4) Induction and restriction preserve colimits and coinduction and restric-

tion preserve limits.

PRrOOF. (1) Since a short exact sequence of modules over € is exact if
and only if it’s exact when evaluated at every element of €, restriction
is always exact.

(2) Since induction has an exact right adjoint it preserves projectives and is
right-exact [Wei94), 2.3.10, 2.6.1].

That induction takes frees to frees is a consequence of Lemma [2.1.3
Ind? RH7 _}Q = R[L(?)a _]’D Qe RH? ?]Q = RH? _]’D

and similarly for contravariant modules.

That induction takes flats to flats is a consequence of Lemma, [2.3.3
below. In the covariant case, this implies the functor ? ®9 Ind? F is
naturally isomorphic to the functor (Resg?) ®¢ F. Thus if F is assumed
flat then ?7®4p Ind? Fis exact. An analogous proof holds for contravariant
F.

If A is a finitely generated €-module then there is an epimorphism
F —» A for some finitely generated free F. Induction is right exact so

there is an epimorphism
Indg F —» Indg A.

Induction takes finitely generated frees to finitely generated frees so
Ind%3 A is finitely generated.
(3) Since coinduction has an exact left adjoint it preserves injectives [Wei94],
2.3.10] and is left-exact [Wei94l, 2.6.1]
(4) This is another consequence of adjointness [ML98| p.118].
O

LEMMA 2.3.3. There exist natural isomorphisms for any contravariant €-

module M and covariant €-module A:
M ®9p Indy A= Resg M @¢ A

Indg M ®9 A= M ®¢ Resg A.
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PRrROOF. We prove the first natural isomorphism, the second is analogous:
M ®pIndg A= M(—) @9 (R[?,~]p ®c A(?))
> (M(—) @0 R[?,~]n) ®e A(?)
=] Resg M ®¢ A.
O

REMARK 2.3.4 (The category of €-modules has enough injectives). A con-
sequence of Proposition 3) is that the category of €-modules has enough
injectives. For any ring S and module M over S there always exists an injective
module I and injection M — I [Wei94, 2.3.11]. Given a €-module M choose
injective R End(z)-modules I, such that M (z) injects into I, for all z € €, and

consider the map
H Ne: M — H CoInd%End(I) I,

zel el
where 7, is chosen, via the adjointness of coinduction and restriction, such that

n.(x) is the inclusion of M (z) into CoIndS I,.(x) = I,.
Clearly the product of the 7, maps is an injection. The module on the right
is injective by Proposition m(3) and the fact that in any abelian category,

products of injective modules are injective.

ExaMpPLE 2.3.5. If A and B are covariant €-modules, we define a €-€ bi-

module:

A7) ®@r B(=) : (z,y) = A(z) © A(y).
Denote by A : € — € x € the diagonal functor A : z — (x,z). The tensor
product over R defined in Section could be defined as

A®p B =Resa(A(?) ®r B(—)).
2.4. Tor and Ext

Since the categories of €-modules are abelian and have enough projectives,
it is possible to use techniques from homological algebra to study them. For
M a €module, a projective resolution P, of M is an exact chain complex of
¢-modules,

o —PR— P — - —F—M-—0
where each P; is projective.
If A is a covariant €-module and P, a projective resolution of A then for any

covariant module B and contravariant module M, we define Exty and Tor? as
Ext§(A, B) = H" Home (P., B)

Torf (M, A) = Hy(M ®¢ P.).
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We make the same definitions for contravariant modules, if M is a contravari-
ant module, @, a projective resolution of M, A a covariant module and N a

contravariant module then

Extg(M, N) = H* Hom¢ (Q+, N)

Tor}; (M, A) = Hy(Qx ®¢ A).

A priori Tor? has just been given two definitions, these are equivalent by Propo-
sition below, an analogue of the classical result that Tor for modules over a

ring can be computed using a resolution in either variable.

PRrROPOSITION 2.4.1. If A is any covariant module, M is any contravariant
module, P, is a projective covariant resolution of A, and Q. is a projective con-

travariant resolution of M then for all k,

Hk(M KRe P*) = Hk(Q* KRe A)

We need some notation for the proof: If (Cy, 0,) is an arbitrary chain complex
of €-modules then we write C,; for the chain complex whose degree i term is
Ci+j, and differential (—1)79;4;. This change in the differential doesn’t affect
exactness, as the homology groups of the new complex are simply H,(Ciyj) =
Hpyj(C5).

PROOF. The proof is a generalisation of [Wei94l Theorem 2.7.2, p.58] into
the setting of €-modules. Form three double complexes, M Q¢ Py, @« Q¢ Py and
@+« ®¢ A. The augmentation maps ¢ : P, — A and 7 : Q« — M induce maps

between the total complexes,

Tot (Q* ®¢P*) —)TOt(M(X)@P) = M ®¢ Py

Tot (Q* K¢ P*) — Tot (Q* Re A) = Q* ¢ Ay

where Tot denotes the total complex of a bicomplex of R-modules (see [Wei94),
1.2.6] for the definition of total complex). We claim that these maps are weak
equivalences. Define a new double complex Ciy, by adding A, ®¢ Q«_1 in the
(—1) column of P, ®¢ Qs, giving the following complex. Note that we need to shift

Q4 so that the resulting complex is a bi-complex, without the shift the horizontal
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and vertical differentials would not anti-commute.

ARe Q2 =—FPh®e Q2 =— P ®c Qo <— -~

ARe Q1 =— P ®e Q1 =— P ®c Q1 ~— -

AReQo<~— PR Qo ~— P ®c Qo <~— -

0 0 0

The complex Tot(Cys )41 is the mapping cone of € ®¢ idg, so it suffices to show
that it is acyclic (see [Wei94l, §1.5]). But this follows from the Acyclic Assembly
Lemma [Wei94 2.7.3], since the flatness of ); means the functor t ®¢ Q; is exact
for all 7 and hence the rows of C,. are exact.

Similarly, the mapping cone of idp ®¢n is the complex Tot(Dyy)st1, Where
D, is the double complex obtained by adding P._; ®¢ B in row (—1) to the
complex P, ®¢ Q4. Since P; is flat for all i, P; ®¢ T is exact, and the columns
of D, are exact. Thus Tot(D..)«t1 is acyclic, again by the Acyclic Assembly
Lemma [Wei94l 2.7.3], showing idp ®¢n is a weak equivalence.

]

Tor¢ could also be calculated using flat resolutions instead of projective reso-
lutions. The standard proof of this in the case of modules over a ring goes through
with almost no modification, see for example [Wei94, 3.2.8|. Similarly, we could

calculate Exty using injective resolutions, again the proof is the standard one.

2.5. Finiteness conditions

We define projective and flat dimensions as one would expect, the projective
dimension €pd A of a contravariant €-module A is the minimal length of a pro-
jective resolution of A and the flat dimension €fd A is the minimal length of a
flat resolution. These can be characterised as the vanishing of the Extg and Tor¢
groups as in ordinary homological algebra.

Recall that a €-module is finitely generated if it admits an epimorphism from
a finite direct sum of modules of the form R[z,—|¢ for some z € €. We say
a €-module A is €FP,, if there is a projective resolution of A which is finitely
generated up to degree n. Additionally we call €FPy modules finitely generated
and €FP; modules finitely presented. There is an analogue of the Bieri-Eckmann
criterion [BET74], see also [Bie81l Theorem 1.3]. A proof in the case that € = Or
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appears in [MPN13, Theorem 5.3] and no substantial change is required to prove

for €-modules.

THEOREM 2.5.1 (Bieri-Eckmann Criterion). The following conditions on any

contravariant €-module A are equivalent:
(1) A is €FP,,.
(2) If By, for X € A, is a filtered system of €-modules then the natural map

ling Extg (A, By) — Ext¢(4, lim By)
A A

is an isomorphism for k < n — 1 and a monomorphism for k = n.
(3) For any filtered system By, for A € A, such that lim, By =0,

lig Extg (4, By) = 0
A

for all k < n.

(4) For any collection of indexing sets A, for x € €, the natural map

Tor% <M, H HR[:U,—]¢> — H HTor%(M,R[x,—]g)

z€Ob € A, zeOb € A,

is an isomorphism for k < n and an epimorphism for k =n.

There is a similar result for covariant modules.

LEmMMA 2.5.2. If
0—A—B—C—0
s a short exact sequence of €-modules then
(1) If A and B are €FP,, then C is CFP,,.
(2) If A and C are €FP,, then B is €FP,,.
(3) If B and C are €FP,, then A is €FP,,_;.

ProoF. This follows from the long exact sequence associated to Extg and
the Bieri-Eckmann criterion (Theorem [2.5.1)). O






CHAPTER 3

Bredon modules

Fix a family F of subgroups of G, closed under subgroups and conjugation,
and recall from Example that the orbit category Ox is the category whose
objects are all transitive G-sets with stabilisers in F and whose morphism set
[G/H,G/K|o, is the free abelian group on the set of G-maps G/H — G/K.
Common families to study are the family #in of all finite subgroups and the family
Vcye of all virtually cyclic subgroups.

Contravariant Og;,-modules and their associated finiteness conditions pro-
vide a good algebraic reflection of the geometric world of proper actions. This
background has already been discussed in the introduction and we will discuss
connections with geometry in Sections [3.3] and [3.5] also.

Sections and specialise information from Chapter [2| to modules over
the orbit category, and the later sections discuss finiteness conditions for con-
travariant O r-modules.

Recall that a G-map o« : G/H — G/K is completely determined by the
element a(H) = gK, and such an element gK € G/K determines a G-map if and
only if HgK = gK, equivalently ¢ 'Hg < K.

3.1. Free modules

For this section we require that / C Fin. In this section we describe the
structure of free Or-modules. Throughout this section H and K will denote
subgroups in F and a4 will denote a G-map o, : G/H — G/K sending H — gK
for any H and K.

REMARK 3.1.1 (Structure of End(G/H)). If oy : G/H — G/H is the G-
map sending H — gH then necessarily g € NgH and two such g determine the
same G-map if they are in the same left H-coset. Furthermore ay, 0 ay = agy, so,

denoting by W H the Weyl group NqoH/H,

——— op

End(G/H) = Z[W H]
Here Z[VVT{] denotes the category of one element and morphisms given by Z[W H|,
—— Op
and Z[W H]  is the opposite of that category. As described in Remark if A
is a covariant €-module then evaluating at x gives A(x) a left R End(z)-structure.

31
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——— op
Thus evaluating a covariant Or-module at G/H gives a left R[W H|
equivalently a right R[WW H]-structure.

-structure,

Similarly, if M is a contravariant Or-module then evaluating at G/H gives
M(G/H) aleft R[End(G/H )] structure, equivalently a left R[W H]-module struc-
ture.

Note that this description may fail when F ¢ Fin, as it is possible to have an
infinite cyclic subgroup H of a group G along with an element g € G such that
g 'Kg is a proper subgroup of K. This occurs for example in the Baumslag—
Solitar group BS(1,2).

ExAMPLE 3.1.2 (Right action of RIW K] on R[G/H,—]o.(G/K)). The action
of WK on R|G/H,G/K]o, is as follows: If f: G/H — G/K with f(H) = gK
and w € WK then

frw= R[G/H7aw]0}‘(f) =ayof.
Since (ay o f)(1) = gwK, under the identification
R[G/H,G/Klo, = R[(G/K)"],
the action is given by gK - w = gwK.
LEMMA 3.1.3. There is an isomorphism of right R[W K|-modules

R[G/H, o, (G/K) = R[G/H,G /K)o, = a RIWK].
gNGKGG/NgK
g lHg<K

PRrOOF. Firstly, R[G/H,G/K]o, = R[(G/K)"] is a free W K-module, since
if n € NgK is such that gnK = gK then nK = K and hence n € K. Now,
gK and ¢'K lie in the same WK orbit if and only if g(WK)K = ¢(WK)K,
equivalently gNgK = ¢'NgK, and gK determines an element of R[(G/K)X] if
and only if g7'Hg < K. Thus there is one R[W K] orbit for each element in the
set

{gNcK € G/NgK : ¢ 'Hg < K}.
O

For contravariant modules the situation is more complex, evaluating at G/H
doesn’t always give a free R[WW H]-module, although it does always give a R[W H]-
module of type FP,. This is proved in the case R = Z in [KMPNO09, Proof of

3.2], the proof for general rings R requires no substantial change, and is given in

Corollary
EXAMPLE 3.1.4 (Left action of RIWH] on R[—,G/K|o,(G/H)). A similar

argument to the previous example shows that under the identification

R[G/H,G/K]o, = R|(G/K)"]
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the action of R[W H] is given by w - gK = wgK.
LEMMA 3.1.5. There is an isomorphism of left R[W H|-modules
R[-,G/Ko,(G/H) = RG/H,G/Klo, = @) RIWH/W H,K]
where x Truns over a set of coset representatives of the subset of the set of No H-K
double cosets
{r € NgH\G/K : 2 'Hz < K},
and the stabilisers are given by
WH,kx = (NgHNzKaz™") /H.

PROOF. Recall the identification R|G/H,G/K]o, = R[(G/K)H]. The ele-
ments K and yK are in the same W H-orbit if there exists some nH € WH
(where n € NgH) with

nHxK = yK < neK = yK < (NgH)zK = (NgH)yK.

Combining this with the fact that *K € (G/K)f if and only if 2 'Hz < K
means there is a W H-orbit for each NoH-K double coset NoHxK such that

2 'Hx < K, i.e. coset representatives for
{x € NgH\G/K : o7 'Hz < K}

are orbit representatives for the R[W H]-orbits in R[G/H,G/K]o,.
The Ng(H)-stabiliser of the point 2K € (G/K)* is the set

{ge Ng(H) : gzK =2K}={ge€ Ng(H) : g eKax '} = Ng(H) NzKz .
So the W H-stabiliser of K € (G/K)! is WHyx = (Ng(H)NzKx~1)/H. O

COROLLARY 3.1.6. The Or-module R|—,G/K]o,.(G/H) = R|G/H,G/K]o,
is a finite direct sum of projective R[W H]-permutation modules of type FP o, with
stabilisers in F. In particular R(G/H,G/K]o, is FPw.

PROOF. Since K is finite, the set {v € NgH\G/K : 2 'Hx < K} is finite
and R[G/H,G/K]p, can be written as a finite direct sum
R[G/H,G/Ko, = @D RIWH/W H,x]
where the W H, g are finite groups. Since R is FP, as a R[W H,x]-module and
WH]  p

RIWH/W Hy | = Indg[WHmK]

we can apply Lemma below and deduce that R[W H/W H,k] is FP, as an
RG-module. Finally, any finite direct sum of FP,, modules is FP . ]

LEmMmA 3.1.7. If M is FPy as an RF-module for some subgroup F' < G,
then Indgg M = RG ®prr M is FPy as an RG-module.
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PROOF. Let [[, N; be an arbitrary direct product of RG-modules, then

Torf@ (hﬂﬁ% M ] NZ-) = TorRF (M, 1T Ni)
7 7

= [ Torf¥ (M, Ny)
i
= [ Torf€ (nd5§ M, N;)
i
where the first and third equalities come from Shapiro’s Lemma. This finishes
the proof as Ind¥% M is FP, if and only if Torf%(Ind%% M, —) commutes with

direct products [Bro94), Theorem VIII.4.8]. O

3.2. Restriction, induction and coinduction

In this section we require that F C Fin. We specialise the constructions of

Section |2.3|to the categories of covariant and contravariant Or-modules. In order

Or

GIH A for induction with

to match the literature, we write Indl(?v% A instead of Ind
the inclusion functor

t:End(G/H) — Of
and similarly for restriction and coinduction. Note that the notation for covariant
and contravariant induction is the same, if neither covariant or contravariant is

specified then contravariant should be assumed.

ExamMpLE 3.2.1. If R is the trivial RG module then inducing to a covariant

O r-module gives
d%% R : G/H — R®pg R|G/H] = R.

Checking the morphisms as well, Indgg R = R, the constant covariant functor

on R—sending every object to R and every G-map to the identity.

A group is said to contain no R-torsion if for every finite subgroup F' < G,

|F'| is invertible in R. For example every group has no Q-torsion. If

Tim

[F] = pY" P

is a prime factorisation of |F| then for each p; there is an element of order p;
by Cauchy’s Theorem [Rob96l, 1.6.17]. Since the invertible elements R* form
a group, if all the p; are invertible in R then so is |F|. Hence a group has no
R-torsion if and only if the order of every finite-order element is invertible in R.
Recall from Proposition [2.3.2 that covariant and contravariant restriction are

exact, in addition we have the following;:

PROPOSITION 3.2.2.

(1) Covariant restriction preserves projectives and flats.



3.2. RESTRICTION, INDUCTION AND COINDUCTION 35

(2) Contravariant restriction preserves finite generation.
(3) Contravariant restriction at H preserves projectives and flats if WH is
R-torsion-free, if not then contravariant restriction takes projectives to

FP . -modules.

PROOF. (1) If P is a projective covariant Or-module and F' a free co-
variant O r-module with a split epimorphism F' —» P then restricting
at G/H yields a split epimorphism F(G/H) — P(G/H), by Lemma
F(G/H) is free and thus P(G/H) is projective.

If F is a flat covariant module and M any left R[W H]-module then,

F(G/H) @pwm M = (R[-,G/H|oy ®oy F) @rwa M
= (R[-,G/Hloy @pwm M) ®o, F
Thus for any short exact sequence of left R[W H]-modules
0— M —M-—M"—0

applying F'(G/H)® g ) — is equivalent to applying first the contravari-
ant induction functor and then { ®o, F'. Since contravariant induction
is exact (Proposition [3.2.5(2)) and F is assumed flat, exactness is pre-
served, and thus F(G/H) is flat as required.

(2) Use the argument of the previous part, noting that Lemma implies
that for contravariant frees restricting at G/H preserves finite genera-
tion.

(3) If WH is R-torsion-free then, using Lemma restricting any free at
G/H gives a projective module, and the result follows. To see that in
this case, restriction preserves flats, let ' be a contravariant flat module

and consider a short exact sequence
0—A—B—C—0
of left R[W H]-modules, thus by Proposition below,
0 — Ind7; A — Ind$y%, B — Ind$), C — 0

is a short exact sequence of covariant modules. Since F is flat, the
functor { ®o, F is exact, applying this to the above and using Lemma

2.3.3] gives a short exact sequence
0— A®r F(G/H) — B®r F(G/H) — C®gr F(G/H) — 0

showing F(G/H) is flat.
If WH is not R-torsion free then the result is just Corollary [3.1.6]
U
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ExAMPLE 3.2.3. Unlike in the contravariant case, the covariant restriction
functor does not preserve “finitely generated” in general: Take for example the
infinite dihedral group Do, = (Z/27) * (Z/2Z) generated by the two elements a
and b of order 2. The finite subgroup (a) is self-normalising, thus R[W (a)] = R
and Lemma [3.1.3] implies that as R-modules,

R[Dw/1,Doc/(a)o,, = € R
9{a)€Doo /{a)

REMARK 3.2.4. The covariant restriction functor Resgf preserves “finitely

generated”. Recall that

RG ifK=1
0 else.

RIG/K,G /1o, = {

So if A is an arbitrary finitely generated covariant O z-module and F’ a free covari-
ant Or-module with an epimorphism onto A then F(G/1) is finitely generated as
an RG-module and since Resgg is exact there is a surjection F'(G/1) — A(G/1).

Recall from Proposition that contravariant and covariant induction both
preserve projectives, flats and finitely generation. In addition we have the follow-

ing facts.

PROPOSITION 3.2.5.

(1) If W H has no R-torsion the covariant induction functor Ind‘?v]}{ is exact.

(2) Contravariant induction is always exact.

PROOF. (1) Assume that W H has no R-torsion, we must check that the

functor
Ar— A ®R[WH] R[G/H, —](’)]__

is exact, where A is an R[W H|-module. Equivalently that for any sub-
group K in F, the functor

— QRWH) R|G/H,G/K]o,
is exact, but by Lemma |3.1.5

R[G/H,G/K]o, = @D RWH/WH,]
zel
for some finite indexing set I and W H, finite subgroups of WH. By
Maschke’s Theorem, R [W H/W H,| is projective, and hence flat, as an
R[W H]-module. Hence — ®pywp) R[G/H,G/K]o, is indeed exact.

(2) Similarly to the above, we must check the functor

R[G/K, G/H]o}. ®R[WH] -
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is exact, but by Lemma R[G/K,G/H]o

module, so this is automatic.

is free as an R[W H]-

f
g

3.3. Bredon homology and cohomology of spaces

Recall that a space X is a G-CW complex [tD87, §II.1] if there exists a
filtration {X;}iez of X such that

(1) X has the colimit topology with respect to the filtration.
(2) X_1=0.

(3) X, is obtained from X,,_; via a pushout of G-spaces:

H G/I’IJ X Snil — Ap-1
JEARL

Il ¢/H; x D" —— X,
JEAR
For any j € A, the image of G/H; x D™ in X is called an equivariant n-cell
with isotropy H;. We say X has isotropy in F if the subgroups H; are elements
of F. For example a G-CW complex is proper if and only if it has isotropy in Fin
and is free if and only if it has isotropy in 7Zriv (the family consisting of only the

trivial subgroup).

REMARK 3.3.1. [tD87, II.(1.15)] If X is a CW-complex with a G-action such
that

(1) For all g € G, the map x — gz takes cells to cells.

(2) If g € G fixes a cell o setwise then g fixes o pointwise.

Then X is a G-CW-complex. Such an action is often called cellular or rigid.

X is finite-dimensional if X = X,, for some integer n and the minimal such
n is called the dimension, and X is finite-type if for all n, X, is obtained from
Xp—1 by attaching finitely many equivariant n-cells (ie. the set A, is finite). X
is finite (equivalently cocompact) if it is both finite-dimensional and finite-type.
Let F be a family of subgroups such that X has isotropy in F. Define the

contravariant O z-module
CP7(X) = P Zl-,G/Hjlo,
JEAR

Denoting by C,,(X) the ordinary cellular chain complex of X (see for example
[Hat02| p.139))

O (X)(G/K) = Cu(XT).
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The boundary maps from the cellular chain complexes C,(X*) give boundary

maps for C97(X), including an augmentation map,
e:CYF(X) — Z,
which maps every 0-cell in Co(X %) to 1 € Z(G/K) = Z. We obtain a free chain
complex of contravariant Ox-modules
= C9F(X) — COF(X) — - — O (X) — Z — 0.
The Bredon homology of X with coefficients in some covariant module A is
HO7 (X, A) = H.(CO% (X) @0, A)

and similarly the Bredon cohomology of X with coefficients in some contravariant
module M is
H} (X, M) = H* Homp, (CO7 (X), M).

3.4. Homology and cohomology of groups

Recall the definitions of Torf?f and Exty, - from Section For a group G,

covariant module A, and contravariant module M we define
HE‘QF(G, M) = Ext@f(ﬁ, M)

HO7 (G, A) = Tor%7 (R, A).
Note that in both statements above, R denotes the contravariant constant functor
on R.
If X is amodel for ExG then the chain complex CO7 is exact, since evaluating
at G/H for any H € F gives the cellular chain complex of the contractible
space X, Thus there are isomorphisms for any covariant O@z-module A and

contravariant module M:
Hp, (G, M) = Hp (X, M)

HO7 (G, A) = HOF (X, A).

3.5. Cohomological dimension

Recall from Section that the projective dimension of an Or-module M,
denoted Orpd M, is the minimal length of a projective Or-module resolution of
M. We say that G has Bredon cohomological dimension n, written Orcd G = n,
if Orpd R = n where R is the constant contravariant O r-module. If we want to
emphasize the ring R we will write Orcdp instead of Orcd.

As mentioned in the previous section, if X is a model for E#G then cor (X)
is an exact resolution of Z by free Or-modules, hence Orcdy G < gdr G (recall

gdr is the minimal dimension of a model for ExG). A theorem of Liick and
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Meintrup in the high dimensional case and of Dunwoody in the dimension 1 case

provides an inequality in the other direction when F = Fin.

THEOREM 3.5.1. [LMOO, Theorem 0.1|/[Dun79] Ezcept for the possibility that
Ogincdy G =2 and gd g, G = 3, Ogpedy, G = gd g, G.

In [BLNO1], Brady, Leary and Nucinkis construct groups G with Og,cd, G =
2, but gdg, G = 3, showing the bound is sharp.

3.5.1. Low dimensions. Recall that cdr G = 0 if and only if G is finite
with no R-torsion [Bie81, Proposition 4.12].

PrOPOSITION 3.5.2. Orcdr G = 0 if and only if there exists a subgroup
H € F with |G/H| invertible in R and every K € F is subconjugate to H. In
particular, Og,edr G = 0 if and only if G is finite and and Oq/CyCCdRG =0 if
and only if G is virtually cyclic.

A proof of this when R = Z is available in [Flul0, Prop 3.20], there are some

minor modifications needed to generalise to arbitrary rings R.

ProoOF. Using a more general definition of family of subgroups F than we use
here, Symonds proves that R is projective if and only if every component of F has
a unique maximal element M and |NgM : M| is finite and invertible in R, where
he views F as a poset with inclusion [Sym10, Lemma 2.5]. Since we assume F is
closed under intersection, for us F may have only one component. Also, since we
assume F is closed under conjugation we must have No M = G—if g € G\ No M
then since M is maximal M9 < M and thus M < M g contradicting maximality
of M. The proposition now follows immediately from Symonds’ result and the
fact that Orcd G = 0 if and only if R is projective. O

Combining [Bie81) Proposition 4.12] and Proposition Ogincd;, G =0 if
and only if cdg G' = 0 if and only if G is finite.

Recall that cdz G = 1 if and only if G is a free group [Sta68), [Swa69],
cdr G = 1 if and only if G is R-torsion-free and acts properly on a tree, and
cdg G = 1 if and only if G acts properly on a tree or equivalently G is virtually-
free [Dun79J.

LEMMA 3.5.3. For any group G, Oguedy, G =1 if and only if cdg G = 1.

PRrROOF. If Orcdy; G = 1 then Lemmaimplies Orcdg G <1 and Lemma
3.7.2/ implies cdg G < 1. Since G is not finite, cdg G = 1.

If cdg G = 1 then by [Dun79, Theorem 1.1}, G acts properly and with finite
stabilisers on a tree T. For any finite subgroup H < G, H acts on T, TH +# ()
and in particular T is a sub-tree of T' [Ser03} 6.1, 6.3.1]. T is thus a model for
E#,G and Oxcdy G = 1. O
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COROLLARY 3.5.4. The following are equivalent for an infinite group G, and
any ring R:
(1) cdp G = 1.
(2) G has no R-torsion and Ogycd, G = 1.
(3) G has no R-torsion and Oguedp G = 1.

PrROOF. 1= 2 If cdgG = 1 then G has no R-torsion [Bie81l, Proposi-
tion 4.11] and G acts properly on a tree [Dun79, Theorem 1.1]. By
the argument of Lemma the tree is a model for E,G and hence
Ogincd, G = 1.

2 = 3 Lemma B.7.1]
3 =1 Lemma[3.7.2l
O

QUESTION 3.5.5. What does the condition Orcdr G = 1 represent? Is it
equivalent to Orcdy G = 17

3.6. FP,, conditions

Recall from Section that an Oz-module M is OxFP,, if there is a resolu-
tion of M by projective O r-modules, finitely generated up to dimension n. We
say G is OrFP,, if R is OfFP,,, if G is OgFP, with finite Bredon cohomological
dimension then we say G is O rFP.

If G admits a model X for ExG with cocompact n-skeleton then the chain
complex cor (X) is finitely generated up to dimension n and so G is of type
OxFP,, over Z. Conversely, if G is OxFP,, over Z and W H is finitely presented
for every finite subgroup then G has a model for ExG with cocompact n-skeleton
[LMO0O, Theorem 0.1].

PRrROPOSITION 3.6.1. G is OrFP over R if and only if there exists a finite set
Hy,...Hpy € F such that every K € F is subconjugate to some H;. In particular,
if F C Fin, G is OrFPy over R if and only if there are finitely many conjugacy

classes of subgroups in F.

The case F = Fin appears in [KMPNO09|, Lemma 3.1].

ProoF. If G is OrFP( then there is an epimorphism,
m
@ R[_) G/HZ]O]: - E,
=1

where the indexing set [ is finite. Let K be a subgroup in F, evaluating at G/K

gives a surjection
m

P RIG/K,G/Hio, — R,
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so for some i we have R|G/K,G/H;]o, # 0 and hence K is subconjugate to one
of the Hz

For the converse, one checks that the augmentation map
m
@ R[_v G/Hi]O]-‘ — R
i=1

is a surjection.
If F C #in then observe that each H; has at most finitely many subconjugate
subgroups, so the existence of such a collection Hi,..., Hy,, is equivalent to F

having finitely many conjugacy classes. O

PROPOSITION 3.6.2. Let G be OrFPy and F C Fin, then a contravariant
module M is OrFP, (n > 1) over R if and only if M(G/K) is of type FP,, over
RW K] for all subgroups K in F.

The proof in the case R = Z appears as [KMPNO09], Lemma 3.2] and requires

no substantial alteration to generalise to arbitrary rings R.

QUESTION 3.6.3. Is there an easy characterisation of the condition OrFP,,
for arbitrary F, or for F = VCyc?

COROLLARY 3.6.4. The following are equivalent for a group G and F C Fin,
(1) G is OfFP,, over R.
(2) G is OfFPq and the Weyl groups WK are FP,, over R for all K € F.
(3) G is OrFPy and the centralisers CaK are FPy,, over R for all K € F.

PROOF. By the previous Proposition (1) and (2) are equivalent. To see the

equivalence of (2) and (3) consider the short exact sequence
0 — K — NgK — WK — 0.

K is finite and hence FP,, so WK is FP,, over R if and only if Ng¢K is FP,, over
R [Bie81), Proposition 2.7]. Since K is finite, so CgK is finite index in NgK
[Rob96, 1.6.13] and so CgK is FP, over R if and only if NgK is FP,, over R.
Combining the last two results gives WK is FP, over R if and only if CoK is
FP,, over R. ]

EXAMPLE 3.6.5. In [BS80], it’s shown that Abels’ group is FP2 over Q but
not over Z. The Bestvina Brady groups also provide examples of groups which

are FP,, over some rings but not others [BB97].

3.6.1. Quasi-OfFP, conditions. In [MPN13 §6], Martinez-Pérez and
Nucinkis define the quasi-OrFP,, condition, a weakening of OrFP,,, these are
defined for all families 7 C #in. We will need these conditions in Chapter A
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group G is quasi-OrFP,, if WK is FP,, for all K € F and G has finitely many
conjugacy classes of subgroups in F isomorphic to a given finite subgroup.

For any positive integer k, define the module

R if |H| <k,
B(G/H) = { 0 otherwise.
Then G is quasi-OfFP,, if and only if R, is OfFP,, for all positive integers k
[MPN13| Proposition 6.5].

Say G is quasi-OrF,, if for all positive integers k, G has a finite type model
for Ex, G, where F}, is the subfamily of F containing all subgroups of order less
than k. If G is quasi-OrFP,, then G is quasi-OxF,, if and only if the centralisers
Ce K are finitely presented for all K € F [MPN13|, Proposition 6.10].

We can give a geometric meaning to the quasi-OrF,, conditions—a group
G is quasi-OrF, if and only if G admits a model for ExG which is a mapping
telescope of models for Er, G with cocompact n-skeleta [MPIN13l, Theorem 6.11].

3.7. Change of rings

If ¢ : Ri — Ry is a ring homomorphism then we define the change of rings

functor ¢* from Or-modules over Ry to Or-modules over R as follows,
©*A:G/H — A(G/H),

where we are viewing A(G/H) as an Rj-module via ¢. On morphisms:

A (Z 7“1‘041‘> = Z o(ri)Aay)

where r; € R; and the «; are morphisms G/H — G/K forsome G/H,G/K € Or.
We also define a functor Ry ®, — from Or-modules over Ry to Or-modules
over Ro by
Ry ®p, A:G/H — Ry ®pr, A(G/H)

where we are using ¢ to view Rg as an Rj-module. Applying this to a free module
gives

Ry ®pg, Ri[—,G/H]o, = Ry[—,G/H]o,.

Hence if P is a projective Or-module over R; then Ry ®g, P is a projective

Or-module over Rs.

LEmMA 3.7.1. If Orcdy G < n then Orcdr G < n for all rings R. Similarly
if G is OfFP,, over Z then G is OrFP,, over R for all rings R.

PROOF. For the first part, take a projective resolution of Z by contravari-
ant Or-modules of length n and define a new resolution by Q,(G/H) = R ®z
P,(G/H) for all n € N and G/H € Of. Since for any H € F the complex
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P.(G/H) is Z-acyclic and hence Z-split so Q.(G/H) is acyclic also. Finally each
Q@ is projective.

The second part is similar—choose the projective O z-module resolution of Z
to be finitely generated in all degrees ¢ < n and use that if P; is finitely generated
then so is Q;. O

LEMMA 3.7.2. If G has no R-torsion then cdr G < Orcdr G.

PRrOOF. Take a projective resolution of R by contravariant modules of length
n and evaluate at G/1, since G is R-torsion-free, Proposition|3.2.2{3) implies that
P,(G/1) is a length n projective resolution of R by RG-modules. O

ProrosiTION 3.7.3. If ¢ : Ry — Ro is a ring homomorphism and A is a
Or-module over Ry then

Torth]: (El’ SO*A) = Tor*RQ’O]: (327 A)
There are similar isomorphisms for contravariant modules and for Ext*of.

PRrROOF. Firstly, consider the case ¢ : Z — R for some ring R, we prove
Torl 9% (Z, p* A) = Tor*O7 (R, A).

Choose a resolution P, of Z by contravariant projective Ozr-modules over Z.
For any G/H in Or, P.(G/H) is a Z-split resolution, so applying the functor
R ®z — to P, yields a projective resolution of R by projective O z-modules over
R. Observing that

P, ®orz 0" A= (Py®z R)®0,r A

completes the proof.

For the general case, let ¢; : Z — R; and @2 : Z — Ry be (unique) ring
homomorphisms, then ¢ o @1 = @2 and ¢} o p* = 3. Applying the previous part
twice gives

Torf:07 (Ry, " A) = TorO% (L, ¢} 0 " A)
= Tor[>97 (R, A).

0

The next result is essentially [HamO8| 1.4.3], where it is proved for rings of

prime characteristic in the setting of ordinary group cohomology.

PROPOSITION 3.7.4. Given some integer m > 0 and ring R with characteristic
m, then G is OFP,, over R if and only if G is OrFP,, over Z/mZ.
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PROOF. The proof below is for contravariant modules, the proof for covariant
modules is analogous.

Assume that G is OgFP,, over Z/mZ. If M, is any directed system of con-
travariant Or-modules over R with hﬁM* = 0, we necessarily have hﬂ M, =
0. By the Bieri-Eckmann criterion (Theorem , and the fact that Z/mZ is
assumed OrFP,, over Z/mZ, we have that for all i < n,

i Exty . ,7(Z/mZ, ¢* M) = 0.
Thus by Proposition applied to the canonical map Z/mZ — R,
lim Extg, p(R, M) = 0.

The Bieri-Eckmann criterion (Theorem [2.5.1)) gives that R is OrFP,, over R.
For the “only if” direction, suppose M, is a directed system of Oz-modules
over Z/mZ, with lim M, = 0 thus lim M, ®z/m,z & = 0 and by Theorem for

all 1 < n,
liﬂEXt%f} r(R, M, ®7/1,7 R) = 0.

Combining with Proposition |3.7.3
lig Exty, o, (Z/mZ, Mx ®g/mz R) = lig Exthy o, (R, My ®z/mz R)
=0.

Since Z/mZ is self-injective [Lam99, Cor 3.13], R splits as a Z/mZ module
into R~ 7Z/mZ ® N where N is some Z/mZ module. Thus we have

liny ( ExtY iz, 0, (2/mZ, M.)
® Exth .z 0, (Z/MZ, My @)z N)) —0.
In particular
ling Ext ,,,7 0 (Z/mZ, M) = 0

so by the Bieri-Eckmann criterion (Theorem 2.5.1) Z /mZis OFP,, over Z/mZ,
i.e. G is OrFP, over Z/mZ. O

REMARK 3.7.5. This proposition fails in characteristic zero as the ring 7Z is
not self-injective. For example Q is not isomorphic, as a Z-module, to N & Z for

any Z-module N.

3.8. Some interesting examples

By the right-angled Coxeter group (W, S) corresponding to some flag complex
L we mean the group W generated by a set S of involutions where S is in bijection
with the vertices of L and two involutions commute if and only if they are adjacent
in L. Given such a (W, S) we let S be the poset of spherical subsets of S (subsets
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generating a finite subgroup of W) and form the geometric realisations K = S|
and 0K = |Ssg.

We form the simplicial complexes U(W,0K) and U(W,K) as in [DavO08,
5.1.2], both admit W-actions and U (W, OK) is the singular set of U(W, K) (sub-
complex with non-trivial isotropy). The complex U (W, K), often called the Davis
complex, is known to be a model for Eg, W [Dav08|, Theorem 12.3.4(ii)].

LEMMA 3.8.1. [DavO08|, 8.2.8] U(W,0K) is R-acyclic if and only if (OK)r is
R-acyclic for all spherical subsets T € S, where

Kp = )8zl

seT

The example below first appeared in [Bes93|, see also [Dav08, 8.5.8], and
much of the following argument appears in [DL98, proof of Theorem 2].

EXAMPLE 3.8.2 (A group W with Ogincdp, W = 2 but Oginedy, W = 3 which is
not torsion-free). Consider the right-angled Coxeter group (W, S) corresponding
to the barycentric subdivision L of the ordinary triangulation of RIP?.

Claim: Ogned, W = 3. Since U(W, K) is a model for Eg, W and one can
calculate that it is 3-dimensional, we conclude Og,cd, W < 3. To see that
Ogined, W = 3 we calculate Hp, (W, Z[—, W/1]o,,) as in [LNO3| p.147], using
Lemma [3:8.5] at the end of this section,

Hp,, (W, 2=, W/1o,,) = Hiy UW, K),U(W, K)™ ZW)
= Hiy (UW, K),U(W,0K); ZW).

Recall that U(W, K) = W x K/ ~ where the identification is only on W x
0K, that K is a fundamental domain for the W-action on U(W, K), and that
(K,0K) ~ (CRP? RP?). Here CX denotes the cone on a space X. The action of
W oon Co(UW,K),U(W,0K)) is free, so

Hy(UW,K),UW,0K);ZW) = H*(K,0K;Z) ®z7 ZW
>~ H*(CRP? RP?; Z) @7 ZW.

In particular, in dimension 3,
H3(CRP?, RP?; Z) @7 ZW = H*(RP?; Z) @7 ZW = FoW.

We conclude Ogpued, W = 3.
Claim: Ogyedp, W = 2. U(W,0K) is the singular set of U(W, K), so in
particular the fixed point sets of finite subgroups (except for the trivial subgroup)

agree. They are contractible and hence F3-acyclic. We claim U(W, 0K) is also F3-
acyclic. We use Lemma if T'# () then (0K ) = Kp which is contractible
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and hence Fz-acyclic and if T' = ) then (0K)r = 0K which is the barycentric

subdivision of L = RP? and hence Fs-acyclic. Taking the Bredon chain complex
P, = CO" U(W,0K)) @z Fs

gives that (’)ﬁnch3 W <2.

W is a right-angled Coxeter group so every finite subgroup of W has order a
power of 2, in particular W has no Fs-torsion. By Corollary Oginedp, W =1
if and only if Ogyucd, W = 1 but we have already shown that Og,ced, W = 3
proving that (’)gqnch3 W 21 and in fact (’)ﬁncdy3 W = 2.

EXAMPLE 3.8.3 (A group with cdg G # Ogincdg G). In [LNO3], Leary and
Nucinkis construct examples of groups with vedz G = nm and Og,cd;, G = m(n+
1) for various integers n and m. We show that these groups have Ogincdg G =
m(n + 1) as well, so since cdg G' < vedz G this provides examples of groups with
cdg G # Ogmcd@ G.

We prove that groups G satisfying the assumptions of [LINO3l, Theorem 6]
satisfy Ogincdg G > m(n + 1) also, since combining this with the inequality
Oginedg G < Oginedy G gives Ogedy G = m(n + 1) as required.

Leary and Nucinkis show there exists a model X for E#,G such that the
cellular chain complex C,(X™+1D) (xm(n+1))sing) contains a copy of ZG in di-
mension m(n + 1) as a direct summand. Here X* denotes the i skeleton of some
CW-complex X. Using Lemma below,

HE"D(GLQ1-G/1o,,) 2 HG™(CL(X, X5);06)
~ Hg‘(nJrl) (C*(Xm(nJrl)’ (Xm(n+1 )smg) QG)
#0
showing Og,cdg G > m(n+1).

The examples constructed with the method above can never be of type
04, FP_ [LNO03| Question 2, p.154], so a natural question is:

QUESTION 3.8.4. Are there groups G with cdgG # Ogmuedg G and type
OginFP 7

LEMMA 3.8.5. For any group G and model X for E,G
szgﬁn (G’ R[_7 G/l]of}’in) = Hé(c* (Xa Xsing); RG)
where Cy(X, X*™9) denotes the cellular chain complez of the pair (X, X*"9).

PRroOF. Firstly,

* (Hom% (C,,(?ﬁ'" (X*i8), R[—, G/l]o,m» ~0
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since the G-orbits of cells in X®"& all give rise to contravariant modules of the
form R[—,G/H]o,, for H # 1, and by the Yoneda-type Lemma[2.0.2}

Homo,, (R[—, G/H]o,,, R[=, G/1]o,,) = RIG/H,G/1]o,, = 0.
Using the long exact sequence in homology associated to the pair (X, X Si“g),
Hp,, (G, R, G/1]o,,) = H* Homo,, (C"(X), Rl=, G/1]o,,)
() > H* Homo,, (CY"" (X, X*¢), R[—, G/1]o,, ).
Via the Yoneda-type Lemma there is a chain of natural isomorphisms:

Homo,, (CY7™ (X, X58), R[—, G/1]0,,)

= Homg,,, GB R[-, G/l]oﬁw R[-, G/l]O’ﬂ‘n

G-orbits of i-cells
with trivial isotropy

= H Homofin (R[_? G/l]oﬁw R[_7 G/l]oﬁn)
= [ [ Homga(RG, RG)
~ Hompgg <@ RG, RG)
= Hong(C?ﬁ"(X, Xsmg), RG).
Thus,
H* Homo,, (CO7(X, X"%) = H* Hompo(C.(X, X*"), RG),

and combining this with the isomorphism (x) completes the proof. O

3.9. Finitely generated projectives and duality

In this section we require F C Fin. This section contains a number of technical
results concerning dual Or-modules, they are all analogs of results for modules
over group rings that can be found in [Bie81]. The results in this section are
built on in Section and utilised in Section [£.3]

For M a contravariant module, denote by M the dual module
MP = Homo, (M(=), R[—,?o,) -
Similarly for A a covariant module,
AP = Homo, (A(-), R[?, —]o,) -

This definition should be compared with that of the dual of an RG-module M,
namely M? = Homgg(M, RG) [Bie81] §3.1].
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ExampLE 3.9.1. If G is an infinite group and R is the covariant constant

functor on R then R” =0, as

ED = HOTHO;:(E(?)’ R[_’ ?]O]-')
=~ Homop, (Indgf R(?),R[—,7o,)
= HomRG(R> R[_7 G/l]o]:)7

using Example and the adjointness of induction and restriction. Finally,
Hompg (R, R[—,G/1]o,) is the zero module since G is infinite.

LEMMA 3.9.2. The dual functor takes projectives to projectives and the double-
dual functor —PP : {Oz-modules} — {Or-modules} is a natural isomorphism

when restricted to the subcategory of finitely generated projective Ox-modules.
PROOF. By the Yoneda-type Lemma [2.0.2]
R[_v G/H]g}— = HomOI(R[?v G/H]Of7 R[?> _]Of) = R[G/H’ _]OF'

The proof for covariant frees is identical.

For any module M, there is a map ¢ : M — MPP given by ((m)(f) =
f(m). If M = R[—,G/H]o, then applying the Yoneda-type lemma twice shows
MPDP = M. This generalises to projectives since the duality functor represents
direct sums.

Naturality follows from naturality of the map (. 0

For M and N contravariant Oz-modules, we construct an R-module homo-

morphism

v:N®p, MP — Homp, (M,N).
The main result of this section will be Lemma that v is an isomorphism
when M is finitely generated projective and Proposition [3.9.8 that v induces an

isomorphism
N(?) Qor H(i’)f (Gv R[_v ?](9]:) = H(iQ;(Gv N)

for all i <n when G is OrFP,,.
Recall that elements of N ®p, M D are equivalence classes of finite sums of

elements of the form

ng®ep € P N(G/H)@gHomo, (M, R[-,G/Hlo,).
G/HeOx

For any G/L € O and m € M(G/L) we define
v(ng ®gyr)(G/L): M(G/L) — N(G/L)
m— N (pu(G/L)(m)) (ng).
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This makes sense because ¢y (G/L)(m) € R[G/L,G/H]op, and N is a con-

travariant module so
N(@H(G/L)(m)) :N(G/H) — N(G/L).

We must check that v(ng ®ger) is a natural transformation, it’s well defined
including that it doesn’t depend on the choice of equivalence class in N(?) ®0,
Homp, (M(—), R[—, 7o), and that it is an R-module homomorphism.
v(ng @r ¢m) is a natural transformation:

Let a : G/L1 — G/Ls be a G-map and G/L; € Or, we must check the

following diagram commutes.

v(ng®prem)(G/L1)m—N (o5(G/L1)(m)) (nsr)

M(G/Ly) N(G/L1)
M(a) T N(a) T

v ®nen)(G/La)m—N (1 (G/L2)(m)) (nrr)
M(G/Ls) N(G/Ly)

N(a)o (v(nu @r r)(G/L2))(m)

N(a)o N (pu(G/Lz)(m)) (nu)
(eu(G/Ly)(m) o o) (ng)

((Rla, G/H]oy o pu(G/L2)) (m))(nm)
(%

(

N
N
N

#(G/Ly) o M(a))(m))(nm)
(1/ ng Qr ¢u)(G/Lg) o M(« ))( )

Where the second equality is because N is a contravariant functor, the third is
because by definition ¢y (G/L2)(m) o a = (Rla, G/H]o, o ¢u(G/L2)) (m), and
the fourth is because g is itself a natural transformation and hence the following

diagram commutes.

) M(G/Ly) 2

M(a)T
M(G/Ls)

R|G/L\,G/H]o,
R[a,G/H]OfT

G/L

er(G/L2) RIG/Ls, G/ Hlo,

v is well-defined: Firstly,
virng @ o) =v(ng @remn)
this is because
v(nmg -r@ren) (G/L)(m) = N (eu(G/L)(m)) (rnm)
=N (¢u(G/L)(m)) (nw)
= N (ron(G/L)(m)) (ng)

=v(ng @rem).
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Secondly, we show v doesn’t depend on the choice of equivalence class in
N(?) ®or Homo - (M(_)v R[_a ?]O}‘) .
Choose ng € N(G/H), pn € Homo, (M(—), R[—,G/Mlo,), o : G/H - G/M
a G-map and G/H,G/M € Or, we must show that
v(N(@) () ©r oar) = v (nar ©p (Homo, (M(=), Rl=, alo,) ) () -
Let G/L € Of, then
v(N(a)(nm) ®r ¢ar)(G/L)(m) = N (o1 (G/L1)(m)) (N(a)(nm))
=N (aopu(G/L)(m)) (nu)
= N (R[G/L, o]0, (eu(G/L1)(m))) (nm)
= N (Homo, (M(=), R[—, alo,) (¢u)(G/L1)(m)) (ng)
M(=), R[~, dloy) (¢um))(G/L)(m).

v is a map of R-modules: It’s clear that v is additive, and

)
= V(nH ®pr Homop - (

v(irng @ o) =rv(ng @ vg)
since N being a module over R implies that N (¢ (G/L)(m)) is an R-module
homomorphism.

LEMMA 3.9.3. v is natural in N in M.

ProOOF. We only prove naturality in N, the proof for M is similar. Let F' be
a morphism of contravariant modules N — N’, we must show that the following

diagram of R-modules commutes.

N(?) ®0, Homo, (M (=), R[-, 70, ) ———— Homo, (M (-), N(-))
i F(N®orHomo - (M(—-),R[—,"]ox) Homo . (M(—),F(-))
l/N/

N'(?) ®o, Homo, (M(—), R[-, o)

Homo, (M(-), N'(-))

Let ngy ® oy € N(G/H) ®o, Homp . (M (-), R[—,G/H]o,) then moving about
the top right of the diagram yields

(Homof(M(—), F(=))ovn(ng ® @H))(G/L)(m)

= F(G/L) o N(ou(G/L)(m))(nm).
Moving around the bottom left yields

(vnr 0 F(?) @ Homo, (M (=), R[—, Yo, )(ng ® ¢u))(G/L)(m)
= vy (F(G/H)(ng) ® o)) (G/L)(m)
= N'(eu(G/L)(m)) (F(G/H)(ng)).



3.9. FINITELY GENERATED PROJECTIVES AND DUALITY 51

That these two are equivalent is because F' is a natural transformation, so the

diagram below commutes.

F(G/L)
N(G/L) —= N'(G/L)

N (G/L)(m)) T T N’ (o (G/L)(m))
F(G/H)
N(G/H) — N'(G/H)

The next lemma is an Or module version of [Bie81l Proposition 3.1].
LEMMA 3.9.4. If M is finitely generated projective then v is an isomorphism.

PRrOOF. Consider first the case M = R[—,G/H|o,, then the map v becomes
v:N(?)®o,Hom (R[—,G/H|o,, R[—,?o,) — Home, (R[—,G/H]o,,N(-)).
But, using Lemmas and the left hand side collapses to

N(?) @0, Hom (R—, G/H]oy, Rl-, Ylo,) = N(?) & RIG/H, o,
N(G/H).

12

(x)
Under these isomorphisms ng € N(G/H) maps to
nyg ®idy € N(7) KRR R[G/H, ?](’)]:

and then to ng ® ¢ where ¢ is the unique natural transformation ¢ such that
The right hand side collapses to

() Homo, (R[—,G/H]oz, N(-)) = N(G/H)

again by the Yoneda-type Lemma [2.0.2] where ny maps to the unique natural
transformation ¢ with ¢(G/H)(id) = ng.

ving @ ¢)(G/H)(idr) = N(p(G/H)(idr))(ng) = N(idg)(ng) = nu

Precomposing v with the isomorphism from (*) and postcomposing with the
isomorphism from (t) gives the identity map N(G/H) — N(G/H) and hence v
is an isomorphism.

The case for finitely generated free modules follows as all the necessary func-
tors commute with finite direct sums, and for projectives from naturality of v
proved in Lemma [3.9.3 O

The following result is an analog of [Bie81l 5.2(a,c)].

LEMMA 3.9.5.

(1) If M is finitely presented and N is flat then v is an isomorphism.
(2) If M is finitely generated and N is projective then v is an isomorphism.
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PROOF. (1) If

(2)

Fr—F—M-—0

is an exact sequence with F; finitely generated free for ¢ = 0,1 then by
the naturality of v and flatness of N we have the following commutative
diagram with exact rows (for brevity we write Hom for Homp, and ®

for ®0 ).

0—=N?MP(?) —N?)eFP(?) — NO?) o FP(?)

| | |

0 — Hom(M, N) —— Hom(Fy, N) — Hom(F}, N)

The right hand and middle vertical maps are isomorphisms by Lemma
the result follows from the 5-Lemma.
If F(?) is free then by Lemma there is an isomorphism

F(?) ®o, Hom(M(—-), R[—,?]o,) = Hom(M, F').

Checking the definition of this isomorphism shows it’s induced by v. If
N(?) is projective and i : N(?) — F(?) is a split injection then by

naturality of v, the following diagram commutes:

N(?) ®o, Hom(M(—), R[—,?]o,) — Hom(M, N)

| |

F(?) ®0, Hom(M(~), R[,o,) — > Hom(M, F)

Since 7 is a split injection, the left hand map is an injection and the top
map must be an injection. Consider the commutative diagram in the
proof of part 1, only Fy is known to be projective so the middle vertical
map is an isomorphism. Since N is projective the left and right hand
vertical maps are monomorphisms and the Four Lemma completes the
proof, implying that the left hand vertical map is an isomorphism.

g

LEMMA 3.9.6. If Py is any chain complex of contravariant Or-modules and

N is any contravariant Ox-module, the following morphism is both well defined

and natural in P, and N :

¢ N(?) ®o, HP(?)P — H' (N(?) ®0, P.(1)P)

& : N(?) @0, H' (Hom(P.(), R[-, 7)) — H'(N(?) ®0, Hom(P,(~), R, 7))

ng @ [pu] = [ng ® vl

where H'P.(?)P : G/H — H'P,(G/H)P.
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PRrROOF. If ¢ is a cocycle, ng ® @ is also a cocycle and similarly if @ is
a coboundary then ny ® ¢p is a coboundary.
If «: G/L — G/H is a G-map then by definition a.[pn] = [axpm]| and
& (o' ny @ o] — ng @ aulen]) = € (a*ng @ [on] — ng © [owpn])
= [@"ng ® oy —ny @ axpH|
= 0.

Finally naturality follows because the the functors H* and Home,(—, ?) are nat-

ural, and so is the process of taking tensor products. O

Since v is natural (Lemma [3.9.3), if P, is a projective resolution of R by

contravariant modules then v induces chain homomorphisms
N(?) @0y Pu(?)” — Homo, (P., N)
which in turn induce maps on cohomology
H'(N(?) ®0, P(?)P) — Hj (G, N).
Precomposing this with ¢! gives a map
V' N(?) ®o, Hp, (G, R[—,0,) — Hp,(G,N).

PROPOSITION 3.9.7. If G is OrFP,, over R and N is projective then v' is an

isomorphism for all i < n.

PrOOF. Choose a projective resolution P, —» R, finitely generated up to
dimension n and write K; for the i*" syzygy of P,. Since N is projective it is also
flat and we have the following commutative diagram with exact rows, where we

omit the o, on ®, Hom, and H.
N(?)®P2y(?) = N(?) @ K2, (?) — N(?) @ H'(G, B[, "o,) — 0

Hom(Pi_l,N) — Hom(Ki_l,N) H’L(G,N) 0

Since G is OfFP,,, K;_1 and P;_; are finitely generated, Lemma [3.9.5(2) im-
plies the middle and left hand vertical maps are isomorphisms. The 5-Lemma

completes the proof. O

The following result is an analog of [Bie81l 9.1].

ProprosITION 3.9.8. If G is OFP over R, with Orcdp G =n, and N is any

contravariant module then there is a natural isomorphism

v N(?) ®O; H(g].— (Gv R[_v ?]O]:) = H(%].—(Gv N)
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PRrROOF. Let
0—K—F —N—0

be a short exact sequence of contravariant Or-modules over R with F' free. By
the naturality of ™ we have the following commutative diagram with exact rows,

we omit the Or decorations on ®, H*, and R[—,?] for brevity.

i | |

H"(G, K) H"(G,F) H"(G, N) 0

The middle vertical map is an isomorphism by Proposition thus by the
Four Lemma, the right hand vertical map is an epimorphism. Since there are no
restrictions on N, we conclude that the left hand vertical map is an epimorphism

and by the 5-Lemma that the right hand map is an isomorphism. O



CHAPTER 4

Mackey and cohomological Mackey functors

This chapter contains material that has appeared in:

e Finiteness conditions for Mackey and cohomological Mackey functors
(J. Algebra 411 (2014), no. 0, 225-258) [SJG14]

Throughout this section we will work over an arbitrary subfamily F of Fin,
closed under conjugation and taking subgroups. One could also work over larger
families of subgroups such as YCyc [Degl3bl p.101], however this necessitates a
change in the construction of Mackey and cohomological Mackey functors and we
shall not consider it.

In Section we give an overview of Mackey functors and cohomologi-
cal Mackey functors including the description due to Yoshida of cohomological
Mackey functors as modules over the category Hr [Yos83].

Section [4.2] contains a complete description of the condition M zFP,,, the

Mackey functor analogue of the OzFP,, conditions.

COROLLARY [£.2.6] Owver any ring R, a group is M zFP,, if and only if it is
OFFP, .

The main result of Section [£.3]is that the Bredon cohomology with coefficients
in a cohomological Mackey functor may be calculated with a projective resolution
of cohomological Mackey functors. We show in Proposition that a projective
resolution of R by Bredon modules can be induced to a projective resolution of
the fixed point functor R~ by cohomological Mackey functors, this is an analogue
of [MPNO06, Theorem 3.8]—that one can induce a projective resolution of R by
Bredon modules to a projective resolution of the Burnside functor B¢ by Mackey
functors.

Building on this, in Section [£.4] we study the HrFP,, conditions, the coho-
mological Mackey functor analogue of the OrFP,, conditions, relating them to
the FFP,, conditions defined in Section [1.4

THEOREM [£.4.0] If R is a commutative Noetherian ring, a group is HrFP,
if and only if it is FFP,.

In Section [£.5] the main result is the following.

THEOREM [£.5.1] HrcdG = Fed G for all groups G.

55
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In Section we prove that, depending on the coefficient ring, Hrcd G may
be calculated using a proper subfamily of 7. When working over Z we need
consider only the family P of subgroups in F with prime power order, and over
either the finite field I}, or over Z,) (the integers localised at p), we need consider
only the family P of subgroups of F with order a power of p. This is similar to
a result of Leary and Nucinkis for F-cohomology [LN10, §4].

THEOREM {4.6.1] For all n € N U {oo}, the conditions HrcdG = n and
Hpcd G = n are equivalent, as are the conditions HxFP,, and HpFP,,.

Over the finite field F,, we can be even more precise.

CoroLLARY [£.6.11] G is HFFP, over F, if and only if P has finitely many
congugacy classes and W H is FP,, over IF,, for all H € P.

4.1. Introduction

4.1.1. Mackey functors. There are many constructions of Mackey func-
tors, we use the construction coming from modules over a category, an approach
due to Linder [Lin76]. Another construction is mentioned in Remark We
begin by building a small category Mz then Mackey functors will be contravari-
ant M r-modules. As in Oz, the objects of M are the transitive G-sets with
stabilisers in F, the morphism set however is much larger. A basic morphism
from G/H to G/K, where H and K are in F, is an equivalence class of diagrams
of the form

G/H < G/L 2 Gk
where the maps are G-maps, and L € F. This basic morphism is equivalent to

o/ a2 Gk

if there is a bijective G-map o : G/L — G/L’, fitting into the commutative
diagram below:
G/L
(6%
yd
G/S =|¢ G/K
~ 4o
“a/r

Form the free abelian monoid on these basic morphisms, and complete this free

/s

abelian monoid to a group, denoted [G/H, G/K] . This is the set of morphisms
in Mz from G/H to G/K.

REMARK 4.1.1. When building the Mackey category, we could instead have

started with equivalence classes of diagrams

G/H + A - G/K
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where A is any finitely generated G-set with stabilisers in F and the maps are G-
maps. This can be shown to be the free abelian monoid on the basic morphisms
[TW95, Proposition 2.2]. Because of this alternative construction, we will pass

freely between writing
(G/H < G/L — G/K)+ (G/H + G/L' - G/K)

and

(G/H —a/L][a/L - G/K) .

To complete the description of Mz, we must describe composition of mor-
phisms. It’s sufficient to describe composition of basic morphisms, and then use

distributivity to extend this to all morphisms. If
G/H «+ G/L — G/K

and
G/K + G/S—G/Q

are two basic morphisms then their composition is the pullback diagram below

in the category of G-sets.

A
PN

G/L G/S
e RN e N
G/H G/K G/Q
LEMMA 4.1.2 (Composition of morphisms in Mx). [MPNOG6, §3] The dia-
gram below is a pullback in the category of G-sets.

1

G/(L9NSI=)

Z G //g_ Ju(gk S
zeL9I\K/S9' \ /

Notice that the subgroup L9 N S9°7" is both a subgroup of K via the maps on the
left and subconjugated to K via the map g, which is the composition of the maps

on the right.
If H is a subgroup of G the notation H9 means the conjugate g ' Hg.

LEMMA 4.1.3 (Standard form for morphisms in Mx). [TW95, Lemma 2.1]

Any basic morphism is equivalent to one in the standard form:



58 4. MACKEY AND COHOMOLOGICAL MACKEY FUNCTORS

Recall that two such basic morphisms are equivalent if there is a commutative

diagram of the form:

L G/L

g

G/K =|aa G/S
™~

id

9

/s

\

Q

/

G/L* °
The commutativity of the left hand triangle ensures that © € K, and that of the
right hand diagram gives oy = ag 00y, or more concisely gS = xg’S. This means
KgS = K¢S and z = ¢S(¢') "' N K = gSg~! N K. Thus a basic morphism is
determined by both an element of K\G/S and a subgroup L, subconjugate to
K, unique up to conjugation by an element z € gS¢~' N K. In summary,

(4.1) G/K,G/S|my = D [y Zy.g,

geK\G/S L<gSg~inK
Up to gSg—1 N K-conjugacy

where Zy, , = Z for all L and g.

EXAMPLE 4.1.4. If S =1 then (4.1]) becomes

G/K, G/l me = @ Z, = Z[K\G).
geK\G
REMARK 4.1.5. The category Mx has property (A) by construction, but it
does not have property (EI). For example, given any non-trivial H € F, the
endomorphism
(G/H &G e G/H)
is not an isomorphism. If
m = (G/H G/K 2% G/H)
is some other basic morphism then their composition is
moe= Y <G/H G/1 24 G/H)
z€H/K

So it’s clear that e cannot be a sum of automorphisms of G/H.

Following [MPNO6], we will mostly consider contravariant Mackey functors.
From here on, whenever we write M r-module, we mean contravariant M r-

module.

REMARK 4.1.6 (Green’s alternative description of Mackey functors). There is
an alternative description of Mackey functors, due to Green [Gre71], which we
include here in full because when we later study cohomological Mackey functors

we will need some of the language.
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Green defined a Mackey functor M as a mapping,
M:{G/H : He F} — R-Mod
with morphisms for any finite subgroups K < H in F,
M%)y : M(G/K) — M(G/H)
M(REY: M(G/H) — M(G/K)

-1

M(cg) : M(G/H) — M(G/HI")

called induction, restriction and conjugation respectively. Induction is sometimes
also called transfer. In the literature, M(IH), M(RI) and M(c,) are often
written as just [ {{I , RIIg and ¢y, omitting the M entirely. We choose to use
different notation so that we can identify I [Ig , R[I}[ and ¢, with specific morphisms
in Mz (see the end of this remark).

This mapping M must satisfy the following axioms,

(0) M(IH), M(RI) and M(cy,) are the identity morphism for all h € H.

(1) M(RY)o M(RE) = M(RY), where J < K < H and J, K, H € F.

(2) M) o M(IX) = M(1%), where J < K < H and J, K, H € F.

(3) M(cy) o M(cp) = M(cgp) for all g,h € G.

(4) M(R" ) 0 M(cy) = M(cy) o M(RIL), where K < H and K, H € F
and g € G.

(5) M1}y o M(cg) = M(cy) o M(I}}), where K < H and K, H € F and
geq.

(6) M(RY)o M(If) = X ey M) o1 ) 0 M(cz) o M(RYur ), where
J,K<Hand J K,HcF.

Axiom (6) is often called the Mackey axiom. Converting between this descrip-

tion and our previous description is done by rewriting induction, restriction and

conjugation in terms of morphisms of M z.
M(If) «+— M(G/H <~ G/K N G/K)

M(RY) «— M(G/K &L G/K 2% G/H)

1

M(cy) +— M(G/HY " &L q/H9" 2% G/H)

Because of the above, we make the following definitions,
= (G/H & G/K 2% G/K)

Ril = (G/K &G/ 2y > G/H)

-1 —1 aq

o= (G/HI L q/HT 2% q/H).

It is possible to write any morphism in M r as a composition of the three types

of morphisms above.
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One can check that Green’s axioms all follow from the description of the
composition of morphisms in Mx as pullbacks (Lemma , and vice versa.
Complete proofs of the equivalence of this definition with our previous one can
be found in [TW95| §2].

4.1.1.1. Free modules. In this section we describe the structure of End(G/H)
and study free M r-modules.

REMARK 4.1.7 (Structure of End(G/H)). As mentioned in Remark
Mz doesn’t have property (EI). Consider the endomorphisms of an object given
by the diagrams of the form

a, = (G/H &~ G/H 2% G/H).

Every g € WH uniquely determines a G-map oy : G/H — G/H and every G-
map comes from such a g. Finally, since a4 o a;, = apg, we determine that such
endomorphisms give a copy of Z[WH]|°P inside End(G/H). This is similar to
the situation over the orbit category, where Endp . (G/H) = Z[W HP]. Thus, as
with Or-modules, if M is a Mackey functor, then M (G/H) is a right R[W H°P]
module, equivalently a left R[W H]-module.

A basic morphism in End(G/H) is determined by a morphism in standard
form

ery = (G/H &~ G/L 2% G/H)

where L is some subgroup of G. As such we can filter End(G/H) via the poset
F /G of conjugacy classes of subgroups in F. If L is a finite subgroup of G' then
we write End(G/H )y, for the basic morphisms er 4 for all ¢ € G. Note that
in particular, End(G/H)y = R[W H] by the paragraph above. Addition gives
End(G/H)r, an abelian group structure. Composing two elements of End(G/H ),
doesn’t necessarily give an element of End(G/H),, but pre-composing an element

of End(G/H)r, by some a,, does, since

€L,g 0 Gy = €[ yg-

Thus REnd(G/H)y, is a left R[W H]-module. In summary, there is an R[W H]-
module isomorphism
REnd(G/H)= € REnd(G/H)y
LEF/G

where REnd(G/H)y = R[W H].

ExamMPLE 4.1.8. Using (4.1),

REnd(G/H)n = P Ruy,
H\G/H
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with left action of w € W H taking g — wg. In other words, REnd(G/H); =
R[H\G/H] with the canonical action of W H. This is not in general finitely
generated—take for example G = D, the infinite dihedral group generated by
the involutions a and b, and H = (a). Then WgH is the trivial group but H\G/H
is an infinite set so R[H\G/H] is not a finitely generated R-module.

LEMMA 4.1.9. As a left RiWgS]-module, R[G/S,G/K|m, is an RIWgS]-
permutation module with finite stabilisers. In addition, R|G/1,G/K]|m, is FP
over RG.

PROOF. The left action of w € WS on [G/S,G/K]am, is the action given
by pre-composing any basic morphism G/S “da /L e /K with the morphism
G/S a G/S % G/S to yield the morphism

G/SEG/L™Y G/K.
To show this we calculate the pullback:

G/L
VRN
~N

1

o ays
1/ 2
G/S G/S

w

G/L

\ag
G/K

o,

1

Under the identification , w maps Ry, 4 onto Ry .4, so the stabiliser of this
action is the stabiliser of the action of R[W¢S] on R[S\G/K], which is finite.
In particular R[G/S,G/K|m, is an R[WgS]-permutation module with finite
stabilisers. If S = 1 then, using (£.1), R[G/1,G/K|m, = R[G/K] with RG
acting by multiplication on the left, thus R[G/1,G/K]m, is FP as a left RG-
module. U

REMARK 4.1.10. R[G/S,G/K]|m, is not in general finitely generated as a
left R[WgS]-module. For an example of this let F be all finite subgroups and
choose a group G with a finite subgroup S such that S\G has infinitely many
W S-orbits. Then, by Example [£.1.4]

R[G/S,G/1]m, = R[S\G]
which is not finitely generated as a left R[WS] module.

4.1.1.2. Induction. Let 0 : Or — Mx be the covariant functor sending
o(G/H)=G/H
o(G/H % G/K) = (G/H <L G/H -% G/K).

Thus ¢ induces restriction, induction, and coinduction between O r-modules and

M r-modules.
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LEMMA 4.1.11. [MPNOG6, Proposition 3.6] There is an Ox-module isomor-
phism:

Res, R[G/H, ~|my = @D R@wy1 RIG/L,~]o,-
L<H

Let B denote the Burnside functor B which, by an abuse of notation since
G/G is not an object of Mz, can be defined as
BY = R[—,G/G
Upon evaluation at G/K for some K € F,
B(G/K) = b B
L<K
Up to K-conjugacy
This is not so dissimilar from the case of the orbit category Or where, using a

similar abuse of notation, one could view R as R[—,G/Glo.

EXAMPLE 4.1.12. If R is the constant contravariant Oz-module then using

Lemma [£.1.11]
Ind, R(G/H) = R|G/H,0(—)|my @0, R

= @ R Wy L R[G/L, _](9]: Rox R
L<H

~ PR

L<H

Checking the morphisms as well, one sees that
Ind, R = BY.

ProposITION 4.1.13. [MPNO06| Theorem 3.8] Although induction with o is
not exact in general, induction with o takes contravariant resolutions of R by

projective O r-modules to resolutions of BE by projective M z-modules.

4.1.1.3. Homology and cohomology. We define the Mackey cohomology and
Mackey homology for any contravariant M z-module M and covariant M x-

module A as
Hiy,. (G, M) = Ext},(B°, M)
HM7(G, A) = Torly,. (B, A).
A corollary of Proposition is the following.
COROLLARY 4.1.14. [MPNO06, Theorem 3.8]
H3y (G, M) = Hp_ (G, Res, M).

G is said to be M#FP,, if there is a projective resolution of B®, finitely
generated up to degree n, and G has M rcd G < n if there is a length n projective
resolution of B¢ by M r-modules.
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4.1.2. Cohomological Mackey functors. A Mackey functor M is called
cohomological if, using the language of Remark it satisfies

(4.2) MYy o M(RE) = (m — |H : K|m)

for all subgroups K < H in F. Recall from Remark that to describe a
Mackey functor M it is sufficient to describe it on objects and on the induction,
restriction and conjugation morphisms in Mx (I ]Ig , RI[}’ and c¢g), we use this in

the examples below.

EXAMPLE 4.1.15 (Group cohomology). The group cohomology functor is co-

homological Mackey, more precisely the functor
H"(—,R):G/H — H"(H,R).

Where H"(—, R)(cg) is induced by conjugation, H"(—, R)(R) is the usual re-
striction map and H™(—, R)(I%) is the transfer (see for example [Bro94, §I11.9]).
That the group cohomology functor satisfies (4.2)) is [Bro94l I11.9.5(ii)].

ExXAMPLE 4.1.16 (Fixed point and fixed quotient functors). If M is a RG-

module then we write M~ for the fixed point functor
M~ :G/H +— M

where MH = Hompgpg (R, M). For any K < H in F, M~ (RI) is the inclusion,
M~ (1) is the trace m > hem/k him, and M~ (cg) is the map m — gm.
We write M_ for the fixed quotient functor

M_:G/H +— My

where Mg = R®ryg M. For any K < H in F, M_(Rg) is the trace 1 ® m
1® > hen/x hm, M_(I%) is the inclusion, and M_(c,) is the map m — gm.

LEMMA 4.1.17. [MPNO0G6| Lemma 4.2][TW90, 6.1] There are Mackey functor

isomorphisms for any RG-module M,
Colndyed M = M~
M ~Y
Indy s M = M_

where induction and coinduction are with the functor 7ZG — M given by com-
position of the usual inclusion functori@ — OFx and the functor o : O = Mx.

Thus there are also adjoint isomorphisms, for any Mackey functor N.
HomRG(N(G/l)a M) = HOIIIM]_.(N, M_)

Hompg(M, N(G/1)) = Homp . (M~, N)
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As observed by Thévenaz and Webb in [TW95, §16], in [Yos83|] Yoshida
proves that the category of cohomological Mackey modules is isomorphic to the
category of modules over the Hecke category Hr, which we shall describe be-
low. Yoshida concentrates mainly on finite groups but observes in [Yos83, §5,
Theorem 4.3'] that this isomorphism will hold for M z-modules, where F is any
subfamily of the family of finite groups.

The Hecke category Hr has for objects the transitive G-sets with stabilisers
in F. The morphisms between the objects G/H and G/K are exactly the ZG-
module homomorphisms, Homzq(Z[G/H], Z|G/K]).

REMARK 4.1.18. In [Yo0s83], Yoshida actually uses the category Hz', this
category has the same objects, but the morphisms between G/H and G/K are
the RG-module homomorphisms Hompq(R[G/H], R[G/K]). He then studies R-
additive functors from H 7' into the category of left R-modules and proves these
are exactly the cohomological Mackey functors. We claim that the category
of R-additive functors Hz' — R-Mod and the category of additive functors
Hr — R-Mod are isomorphic, where the isomorphism preserves the values the
functors take on objects.

Since Z|G/H] is finitely presented as a ZG-module and R is flat as a Z-module
there is an isomorphism for all H, K € F (the proof is essentially the proof of
[Wei94], 3.3.8))

Homy(Z[G/H), Z|G/K]) ®z R = Hompe(R[G/H], R[G/K]).

Using the above and that Homyg(Z[|G/H],Z|G/K)) is free as a Z-module, there

is a natural isomorphism for any R-module A
Homy (Homyzq(Z|G/H|,Z|G/K]), A)
= Homp(Homzq(Z|G/H], Z[G/K]) @z R, A)
= Hompg(Hompg(R|G/H], R|G/K]), A).

The claim follows from this isomorphism.

REMARK 4.1.19. In [Degl3a] Degrijse considers the categories Mack rG and
coMackrG. In the notation used here Mack G is the category of M r-modules
and coMackrG is the subcategory of cohomological Mackey functors, Degrijse

doesn’t study modules over H r.

LEMMA 4.1.20 (Free and projective Hr-modules). [TW95, Theorem 16.5(ii)]
The free Hr-modules are exactly the fixed point functors of permutation mod-
ules with stabilisers in F, and the projective Hr-modules are exactly the fized

point functors of direct summands of permutation modules with stabilisers in F.
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Thévenaz and Webb describe a map 7 : Mx — Hr (they call this map «),
taking objects G/H in Mz to G/H in ‘Hr and on morphisms as follows, for any
K < H,

o m(RI) is the natural projection map Z[G/K| — Z|G/H].

o w(IH) takes gH >nen/k 9K

o 7(c,) takes gH — gxH?.
If M is an Hr-module then it is straightforward to check that M o 7 is a M r-
module, see for example [Tam89, p.809] for a proof. Moreover, every cohomolog-
ical Mackey functor M : My — R-Mod factors through the map =, this is the
main result in [Yos83|, see also [Web00, §7]. Thus we may pass freely between

cohomological Mackey functors and modules over Hr.

LEMMA 4.1.21. [Yos83| Lemma 3.1'] There is an isomorphism for any finite
subgroups H and K of G,

RIH\G/K| = R|G/H,G /K] ,.
Under this identification, morphism composition is given by

(HaK)- (KyL)= > |[(HzKnzLy 'K)/K|(HzL).
z€H\G/L

REMARK 4.1.22. The identification in the lemma above relates to the usual
definition of R[G/H,G/K]y, as Hompgg(R|G/H], R|G/H]) with the isomor-
phism

<
e
=
2
L
lIIZ
T

ompg(R[G/H], RIG/K])

HxK — | gH — Z gur K
ueH/(HNzKz~1)

Notice that v satisfies
Y(HzK) - (KzL)) = ¢(KzL) oyp(HzK).

LEMMA 4.1.23. If «: G/L — G/K is the G-map L — xK then the induced

map o, on R[G/H,—]y, can be written as

a. : RIH\G/L] — R[H\G/K]

(HzL) — Z (HyzzK).
yeHNK o)™t ygnL="1
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Proor. We calculate

P Z HyzzK

yeHNK o)~ yHAL>1

= | H+— Z Z uyzrK

yeHNK o)™ JHAL* ™Y we H/HNK (v22) !

= | H— Z uzrL
weH/HNL*™!

which is exactly (¥ (HzL)). The final equality comes from the fact that y €
K@) oo gyzz) ™t — glez) O

4.1.2.1. Explicit description of w. Using the identification of Lemma

for any K < H, we can describe 7 as follows.

e 7(RI) = KH, since according to Lemma K H corresponds to the
morphism gK — gH, which is exactly Thévenaz and Webb’s description
of m(RH).

e 7(I) = HK, as according to Lemma HK corresponds to the
morphism gH +— > .y K wK, which is Thévenaz and Webb’s descrip-
tion of mw(I%).

e m(c;) = HxH?", similarly to the above because HxH?® corresponds to

the morphism gH +— gz H".

It is interesting to write down the effect of 7w on a basic morphism

G/L
[e%1 [
m = e N
G/H G/K
This morphism may be rewritten as
a1 G/L ag ai G/L Qa ai G/L* ai
Va N\ o} a N\ e} s N\
G/H G/L G/L G/L* G/L* G/K

So,

m = R, oc, o IF.
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Using the definition of 7w in [TW95] §16], 7(m) maps
m(m) = W(fo 0¢y 0 If)

= | H— Z haK
heH/L

= | H~ hyx K
) )

heH/HNK* ' yeHNK*"" /L

= | H~ hyz K
) 2.

yeHNK* ' /L he H/HNK (vo) ™!
- Y (HpK)
yeEHNK* /L

— |[HN K" :L|(HzK).

In summary,

G/L
™ N\ = |HN K" : L|(HzK).
G/H G/K

4.1.2.2. Homology and cohomology. In Section [£.3] we will prove results simi-
lar to Proposition and Corollary showing that inducing a projective

resolution of R by projective Or-modules yields a projective resolution of R~ by
projective H r-modules. For any group G, we define the cohomology and homol-
ogy functors Hy, (G, —) and H7 (G, ) as

Hj (G, M) =Extj, (R™,M)
HI'7 (G, A) = Torj,, (R, A)

where M is any contravariant H r-module and A is any covariant H r-module. In
Proposition we show that there is an isomorphism

Hy (G,M) = Hg_ (G, Respor M).

The Hr cohomological dimension of a group G, denoted Hrcd G, is defined to
be the length of the shortest projective resolution of R~ by Hzr-modules, or

equivalently
HredG =sup{n : Hy (G,M) # 0), M some Hz-module.}
Note that in [Degl3a] the Hr cohomological dimension is defined as
Hred G =sup{n : Hp (G, Resgos M) # 0, M some H r-module. }

These two definitions are equivalent by the isomorphism of Proposition .38

mentioned above.
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We say G is HrFP,, if there exists a projective H r-module resolution of R™,
finitely generated up to degree n.

4.2. FP,, conditions for Mackey functors

As far as we are aware, there are no results in the literature on the conditions
MFFP,,. We show in this section that the conditions M rFP,, and OxFP,, are
equivalent. From this point on, unless otherwise stated, all results are valid over

any commutative ring R.
ProposITION 4.2.1. If G is OFP,, then G is MxFP,,.

Proor. Combine Proposition with the fact that induction preserves
finite generation (Proposition [2.3.2{2)). O

Recall that G is OrFPy if and only if F has finitely many conjugacy classes
(Corollary [3.6.4)). In the lemmas below F/G denotes the poset of conjugacy
classes in F, ordered by subconjugation. We write H <4 K if H is subconjugate
to K.

LEMMA 4.2.2. G is MzFPy if and only if G is OrFPy.

ProOOF. We prove first that if G is MxzFP( then F/G has a finite cofinal
subset, since F is a subfamily of the family of finite subgroups this implies that
F/G is finite.

Let f be an M r-module morphism

f: R[—,G/K|my — B® = R[—,G/G] ;-
Firstly, we claim that the element m of R[G/S,G/G]m, given by
m=(G/S <L G/S — G/G)

cannot be in the image of f(G/S) unless S is subconjugate to K. Assume for a
contradiction that S is not subconjugate to K and assume m is in the image of
f(G/S). Thus m = f(G/S)y for some ¢ € [G/S,G/K]r,. Thinking of f as a

natural transformation gives the commutative diagram below

F(G/s)

RIG/S,G/K]|m, R[G/S,G/Gmx

Tw 1(G/K) TS&
R[G/K,G/K|mz —— RIG/K,G/G|ms

where

f(G/9)e
F(G/S) o™ idig/k,c/K]m,
(" 0 F(G/E)) (idia/Kx.6/K] a,)-

m
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Let f(G/K)(id[G/Kg/K}MI) = ) ., rix;, where r; € R and the z; are basic mor-
phisms in R[G/K,G/G]my. Similarly, let o = 3. s;y; for s; € R and where the
y; are basic morphisms in R[G/S, G /K] . By assumption we have that

m =" g X
7
= E TiT; O E S5Y;
i J
= E (’I"iSj)$Z'0yj.
i?j

There must exist some ¢ and j for which z; o y; is a morphism which, when
written as a sum of basic morphisms, has one component some multiple of m.
We calculate x; o y; for this ¢ and j. Write x; and y; in their standard forms as

below,

v = (G/K « G/L; — G/G)

y; = (G/s — GJJ; — G/K).
Their composition is (see Lemma [4.1.2])

G/ X,
e RN
xioyj:zk: /G/Jj\ /G/Li\
G/S G/K G/G

where X}, is some finite subgroup of G which is subconjugate to both L; and J;.
We claim |J;| is strictly smaller than [S|. Since J; is subconjugate to S we
have |J;| < |S]. If the cardinalities were equal then S and .J; would be conjugate,
but J; is subconjugate to K whereas by assumption S is not subconjugate to K.
Since |Xi| < [J;] < |S], the subgroup X cannot be conjugate to S. This
contradicts our earlier assertion that x; o y; when written as a sum of basic
morphisms, has one component some multiple of m. Thus, for m to be in the
image of f(G/S), S must be subconjugate to K.
Now, if G is MzFP, then B¢ admits an epimorphism from some finitely
generated free
P RrI-.G/Kilmy — BE.
el
As this set [ is finite, the argument above implies that all the subgroups in F
are subconjugate to one of a finite collection of subgroups in F. Thus there is a
finite cofinal subset of /G and F/G is finite.
For the converse, use Proposition O
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This remainder of this section is devoted to a proof that for any n, M rFP,,
implies OrFP,,. We will assume G is MxzFPy, equivalently F contains finitely
many conjugacy classes.

In [HPY13, 4.9, 4.10], there are the following definitions, for M an Oz-

module

DM = Colndgf, , M(G/H)

jHIM—>DHM

where Colndgﬁy H denotes coinduction (see Section [2.3[for the definition of coin-
duction) with the functor ¢ : Z[WH]| — Oz. Here we view Z[W H| as a category
with one object and morphisms elements of Z[W H], then Z[W H| has property
(A) and ¢ maps the one object to G/H and morphisms to the free abelian group
on the automorphisms of G/H in Or. Equivalently,

Colnd (i, ) M(G/H) = Homppy ) (RIG/H, ~Jo,, M(G/H)).

The map jg is the counit of the adjunction between coinduction and restriction.
Since evaluation, coinduction, and counits are all natural constructions, Dy and

ju are natural. Crucially the Or-module Dy M extends to a Mackey functor
[HPY13| Example 4.8]. Also defined are:

DM = H DyM
HeF/G

CM = CoKer (C Ml DM) .

Again all the constructions are natural and DM extends to a Mackey functor.
Naturality means that if M), for A € A, is a directed system of O z-modules then
DM, and C M) form directed systems also.

LEMMA 4.2.3. If M) is a directed system of Ox-modules with ligMA =0
then ligDM,\ = 0.

PROOF. Since the colimit of M) is zero, so is the colimit of M(G/H), and
for any K € F,
lim Dy My (G/K) = @Colndgﬁwﬂ M\(G/H)(G/K)
= lim Hompyy ) (R[G/H, G/ Klo,, MA(G/H))

= lim Hom gy i) (@ RWH/W H;], M/\(G/H)>

i€l
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where the last line is Lemma the indexing set [ is finite and W H; is a finite
subgroup of W H. Hence

lim Hom g p) <@ RIWH/W Hi, MA(G/H)>
iel

= (P lim Hompyy ) (R[W H/W H;], MA(G/H))
el

it @ hﬂHomR[WHi} (R, M)\<G/H))

i€l
=0
where the final zero is by the Bieri-Eckmann criterion (Theorem [2.5.1]), since R
is R[W H;)-finitely generated. Thus

lim DMy(G/K) =lim [[ DuMi(G/K)

HeF/G

= ]I limDuM\(G/K)

HEF/G
=0

where the commuting of the product and the colimit is because the product is
finite (F/G is assumed finite). O

LEMMA 4.2.4. If My is a directed system of Oxr-modules with liﬂMA =0
then ligC’MA =0.

PRrROOF. There is a natural short exact sequence for each A
0 — My — DMy — CM, — 0.

Since the colimit of the left hand and centre term are zero (Lemma [4.2.3), and
colimits are exact in the category of Or-modules, so ligCM » = 0 also. O

ProrosiTION 4.2.5. If G is MzFP,, then G is OrFP,,.

PRrROOF. Let G be of type MxzFP, and let M), for A € A, be a directed
system of Or-modules with colimit zero. Following the notation in [Degl3al,

we define
COM, = M),
C'My = CC" ' M,
for all natural numbers i > 0 and all A € A. There are short exact sequences of

directed systems,
0 — C"My — DC*My — C" "' My — 0

all the terms of which have colimit zero.
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As G is assumed M zFP,, and DC?M), extends to a Mackey functor for all 4,
the Bieri-Eckmann criterion (Theorem [2.5.1)) gives that for all m < n,

lim HE, (G, DC'M,) = 0

and thus using exactness of colimits and the long exact sequence associated to

cohomology gives that for all non-negative integers m and 1,
lim HY (G, C™ M) = lim HE (G, CM)).
So,

lim HE (G, My) = limy Hp - (G, €' M)

>~

= lim HY, (G, C™ M)
=0
where the zero is from the Bieri-Eckmann criterion (Theorem [2.5.1)), because G

is assumed M rFPy hence OzFP( by Lemma Using the Bieri-Eckmann
criterion again, G is OrFP,,. O

COROLLARY 4.2.6. The conditions OrFP,, and MrzFP,, are equivalent.

ProOF. Combine Propositions and O

4.3. Homology and cohomology of cohomological Mackey functors

The main result of this section is Proposition that we may induce
projective O r-module resolutions of R to projective Hr-module resolutions of
R~. The following diagram shows the relationship between the different induction
functors we will be using (for a small category €, we denote by €-Mod the category

of contravariant ¢-modules).

Hr-Mod

Indros
Ind,

Ind,
Or-Mod —— M r-Mod

LEMMA 4.3.1. For any L € F, there is an isomorphism of covariant O -

modules

RGSWOU R[G/L, _]’H]: = HOHIRL(R, R[G/l, —]o}_).
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PROOF. If H is a subgroup in F, then evaluating the left hand side at G/H

yields R[G/L,G/H]y, while evaluating the right hand side at G/H yields

Hompr (R, R[G/H]) =2 Homps(RG Qg R, R|G/H])
= Hompa(R[G/L], R[G/H])

where the first isomorphism is [Bro94, p.63 (3.3)]. If a, : G/H — G/K is the

G-map H — xK then, looking at the left hand side,

—1

Resroq R[G/L> _]'HI(O‘I) = R[G/Hv _]'HF(C:E © ng )

> RIG/H, ~}yr (c2) o RIG/H, ~)ur (R ).

But R[G/H, —}HF(Rﬁfl) is post-composition with the G-map
ar:G/H = G/K*
and R[G/H, -]y (c;) is post-composition with the G-map
Qg G/Kﬂﬂ_1 — G/K.
In summary, Resros R[G/L, =], (ay) is the map:
Hompe (R[G/L], R|G/H]) — Hompg(R[G/L], R[G/K])
fr=agof
Now, the right hand side, recall that
R[G/L,~los(az) : f = azo f
so Hompp (R, R|G/1,—]o,)(ay) is the map:
Hompr (R, R|G/H]|) — Hompg (R, R[G/K))
fr—oazof

Showing the left and right hand sides agree on morphisms.

O

Recall that Indgg denotes induction with the functor ¢ : ZG — Og, where

we view ZG as the single object category whose morphisms are elements of ZG

and ¢ maps the single object to G/1. Equivalently for an RG-module M,

Ind$Z M = R[—,G/1]o, @ra M.
LEMMA 4.3.2. The functor Indgg is exact.
ProoOF. This is because for any H € F,

M iftH=1

Ind$% M(G/H) =
0 else.
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LEMMA 4.3.3. For any finite subgroup H of G, the O z-module Indgg Indgg R
s of type OrFP .

PROOF. Since R is FP as a RH module, IndggR is of type FP,, over
RG. Choose a finite type free resolution F of IndggR by RG-modules, by
Lemma, Indgg F, is a finite type free resolution of Indgg Indgg R by Ox-

modules. O

LEMMA 4.3.4. If N is a projective Or-module and H € F, there is an iso-

morphism
N ®(9}- ReSﬂ—og R[G/H, _]'H]: = HOHIRH(R, N(G/l))

PRrROOF. The adjointness of induction and restriction gives an isomorphism

of Or-modules, for any Or-module N,
Hompgy (R, N(G/1)) = Hompg(Ind¥% R, N(G/1))
=~ Homo, (Ind9% IndfG R, N).
There is a chain of isomorphisms,

N ®0, Resros RIG/H, =3,
= N ®o, Hompry (R, R[G/1,—]0,)
=~ N(-) ®o, Home, (Ind9Z mdE% R(?), R[?, o, )
= Homo, (Ind9Z Ind RS R(?), N(?))
= Hompgn (R, N(G/1))
where the first isomorphism is Lemma and the second and fourth are the

adjoint isomorphism mentioned above. The third isomorphism is from Lemma
for which we need that Indgg IndEgR is finitely generated, but this is

implied by Lemma O

Recall from Example the definition of the fixed point functor. For the
constant RG-module R the fixed point functor R~ can be described explicitly as
RH = R for all H € F, and on morphisms,

R™(Ry) = idg
R (I =(r—|H: K|r)
Rf(cg) = idR.

LEMMA 4.3.5. Indoe R = R™.

PRroOF. The proof is split into two parts, first we check that the two functors

agree on objects, then we check they agree on morphisms. Throughout the proof
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H, K and L are elements of F. If « : G/L — G/K is a G-map then we will write

a for the induced map
a, : Hompg(R[G/H], R|G/L]) — Hompg(R[G/H], R[G/K])
and also for the induced map
as : RIH\G/L] — R[H\G/K]

where R[H\G/L] is identified with Hompq(R[G/H], R[G/L]) using the isomor-

phism ) of Remark
The functors Ind,os B and R~ agree on objects:
For any subgroup H € F,

Indﬂ'oa'E(G/H) =R Rox Resroq R[G/Ha _]'H}'
=R R0 x HOIIIRg(R[G/H], R[G/la _]OF)

TR ~NOT],
a:G/L G /K any G ma
=~ P Hompa(R[G/H], RIG/K]) / e cHom s MG ) RIG16)
KeF o €Hompe(R[G/H],R[G/L))

~ HxK)~ax(HzL
= @ R[H\G/K}/a:G(/L—>)G/K(anyG)map
KeF

where the first isomorphism is Lemma and the last is Lemma Let
(HzK) € R|[H\G/K] be an arbitrary element, and consider the G-map

0y G/(HNK" ') — G/K
(HNK* ') — 2K.
Then, using Lemma we calculate
() (Hl(H N Kfl)) — (HzK)

50 in Indroe R(G/H), the elements [H-z- K] and [H-1-HNK® '] are equal, where
[—] denotes an equivalence class of elements under the relation ~. Similarly if
K < Hthen [H-1-K|=|H:K|H-1-H]since if oy : G/K — G/H is the
projection, then using Lemma [4.1.23| again,

a1,(H1K) = |H : K|(H1H).
Combining the two facts proved above,
(%) [H-z-K]=|H: HnK* '|[H-1-H].
In particular, any element [H - z - K| is equal to some multiple of [H -1 - H], so

ndyer R(G/H) = R.

The functors Indgoe R and R~ agree on morphisms:
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Recall from Remark that we must only check this for the morphisms
R%, I If(l and c,.

Following the generator [H -1 - H| up the chain of isomorphisms at the be-
ginning of the proof shows the element

1® idR[G/H] € R®o, Resroq R[G/H, _]H}-
generates Ind;o, R(G/H) = R, where
idR[G/H] € Hompg(R[G/H|, R|[G/H]) = R[G/H, G/H}'Hf.
For some subgroup K € F with K < H,
Indros R(RY) : 1@ idpig/m = 1®@7

where 7 : R[G/K]| — R[G/H] is the projection map. Following this back down
the chain of isomorphisms at the beginning of the proof, gives the element [K -
1- H). Using (x), [K-1-H] = [K -1 K], so Indzor R(R) is the identity on R,
as required.

Similarly, for some L € F with H < L, we calculate
Indroo R(If7) : 1 ® idpi/m — 1 @ trn

where ¢,/ € Hompg(R|G/L], R|G/H]) denotes the map L — >,y IH. Fol-
lowing this element back down the chain of isomorphisms we get the element
[L -1 H], which by (%) is equal to |L : H|[H - 1- H]. Thus Indso, R(I%) acts as
multiplication by |L : H| on R, as required.

For any element x € GG, we calculate
Indros B(cz) : 1 @ idpig/m) — 1 ® 72

where 7, € Hompg(R[G/H® '], R[G/H]) is the map H® '~ zH. Following
this down the chain of isomorphisms we get the element [H ey H |, which by
(%) is equal to [Hf1 -1- Hfl]. Thus Ind,os R(c;) acts as the identity on R, as
required. ]

The next proposition should be compared with Proposition Recall
that a chain complex is F-split if it splits when restricted to RH for all H € F.

PROPOSITION 4.3.6. Induction with wo o takes projective Or-module resolu-

tions of R to projective Hx-module resolutions of R™.

PrOOF. Let P, be a projective resolution of R by Oz-modules, then by

Lemma [4.3.4]
Indﬂoo P*(G/H) = P* ®(’)f RGSWOU R[G/H, _]'Hf
= Hompp (R, P.(G/1)).
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So inducing P, —» R with 7 o o and using Lemma gives the chain complex
Ind oo P — R™.

Induction preserves projectives, so we must show only that the above is exact.
Since induction is right exact, it is necessarily exact at degree —1 and degree 0.

Evaluating at G/H gives the resolution
HOHlRH(R, P*(G/l)) — R.

By [Nuc00, Theorem 3.2], the resolution P, (G/1) is F-split. Since Hompgpy (R, —)
preserves the exactness of RH-split complexes, Homppy (R, P.(G/1)) is exact at
position 7 for all 4 > 1, completing the proof. O

REMARK 4.3.7. The proposition above may not hold with R replaced by an
arbitrary Or-module M, as a resolution of M by projective Or-modules will not

in general split when evaluated at G/1.

Recall that in Section [4.1.2.2| we defined, for any H r-module M,
Hy  (G,M) = Exty, (R, M).
There is an analogue of Corollary
PRrROPOSITION 4.3.8. For any Hr-module M and any natural number n,
Hy (G, M) = Hp (G, Resgog M).
PRrROOF. Let P, be a projective Or-module resolution of R, then
HE (G, Resros M) = H" Homo . (Px, Resgog M)
= H"Homy,, (Indree Py, M)
= H}, (G, M)

where the isomorphism is adjoint isomorphism between induction and restriction
and Ind;., Py is a projective Hr-module resolution of R~ by Proposition m
O

4.4. FP, conditions for cohomological Mackey functors

The main result of this section is Theorem [L.4.1] below. For a detailed con-

struction of F-cohomology and the condition FFP,, see [Nuc99], for an overview

see Section .11

THEOREM 4.4.1. For any ring R, if G is HxFP, then G is FFP,. If R is
Noetherian and G is FFP, then G is HrFP,,.

The proof is contained in Sections [4.4.1| and [4.4
p
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ProrosiTION 4.4.2. If G is MxFP,, then G is HrFP,,.

PRrOOF. Combining Corollary and Proposition [£.3.8 shows that for all

groups G, and all non-negative integers i,
Hj, (G, —) = Hj,, (G, Resy —).

Let G be a group of type MzFP, and let M), for A € A, be a directed system
of Hr-modules with colimit zero. Then the colimit of Res,; M) is zero also and
by the Bieri-Eckmann criterion (Theorem [2.5.1)), for any i < n,

lig Hj, (G, My) 2 lim Hj (G, Resz My)
A A

1

0.
Applying the Bieri-Eckmann criterion again shows G is of type HrFP,,. O
ProrosiTiON 4.4.3. If G is HFP,, then G is FP,,.

ProoF. Let P, —» R~ be a resolution of R~ by free Hr-modules, finitely
generated up to degree n. Since the finitely generated free H r-modules are fixed
point functors of finitely generated permutation modules with stabilisers in F,
evaluating at G/1 gives a resolution of R by RG-modules of type FP, and a

standard dimension shifting argument completes the proof. O

So there is a chain of implications:

G has finitely many
finite p-subgroups in F

O}‘FPn = M}‘Fpn = H]:FPn = FP,, + { conjugacy classes of

Where the final implication is [LIN10L Proposition 4.2], where it is proved that G
is FFPy if and only if G has finitely many conjugacy classes of finite p-subgroups
in F, for all primes p. It is conjectured in the same paper that a group G of type
FP. with finitely many conjugacy classes of finite p-subgroups in F is FFP
[LIN10, Conjecture 4.3].

Since G is M rFPy if and only if G has finitely many conjugacy classes in F
(Lemma , the implication M rFP,, = HrFP,, is not reversible.

There are examples due to Leary and Nucinkis of groups which act prop-
erly and cocompactly on contractible G-CW-complexes but which are not of
type OrFP, [LNO3 Example 3, p.149]. By Remark these groups are of
type HrFP,, showing that HrFP, # OrFPy. Leary and Nucinkis also give
examples of groups which act properly and cocompactly on contractible G-CW-
complexes, are of type OrFPy but which are not OzFP,, [LNO03, Example 4,
p.150]. Hence there can be no implication HxFP, + OrFPy = OrFP,,.
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4.4.1. HrFP, implies FFP,. This section comprises a series of lemmas,
building to the proof of Proposition that for any commutative ring R
the condition HrFP,, implies the condition FFP,,. Throughout, H and K are
arbitrary subgroups in F.

We say a short exact sequence of RG-modules
(%) 0—A—B—C—0

is H-good if
0— A s BH L 0

is exact. Similarly an exact chain complex C, is H-good if CH is exact. If an
exact chain complex is H-good for all H € F we say it is F-good. Note that an

F-split exact chain complex is automatically F-good.

REMARK 4.4.4. If C_ is an exact chain complex of fixed point functors then
C, is F-good.

REMARK 4.4.5. In general being H-good is a weaker property than being
RH-split: Applying Hompgg (R, —) to (x) gives

0 — Homppy (R, A) — Hompy (R, B) — Homgg(R,C) — H'(H, A) — ---

So to find an example of an H-good short exact sequence which is not RH-split it
is sufficient to find modules C and A such that H'(H, A) = 0 and Extk,(C, A) #
0. For example if H is any finite group we may set R = Z, A = ZH and
C=(Z/2Z)H.

Additionally, we say that an RH-module M has property (Pg) if for any
F-good short exact sequence (x), Hompp (M, —) preserves the exactness of (x).
Since Homppy (M, —) is always left exact, having (Pp) is equivalent to asking that
for any F-good short exact sequence (x) and any RH-module homomorphism
f: M — C, there is a RH-module homomorphism [ : M — B such that the

diagram below commutes.

M

~

: X
Y g
0 A B C 0

Note that the trivial RG-module R has property (Pp).

LEMMA 4.4.6. If M has (Pg) then any direct summand of M, as an RH -
module, has (Pyr).
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PrOOF. This is, with a minor alteration, the proof of [Rot09, Theorem
3.5(ii)]. Let N be a direct summand of M and consider the diagram with exact

bottom row. Assume the bottom row is F-good.

0 A B C 0

Here f is some arbitrary homomorphism, and 7 and ¢ are the projection and
inclusion maps respectively. Since M has Py, there is a map [ : M — B such

that g ol = f om, the composition [ o is the required map. O
LEMMA 4.4.7. For any K € F, the permutation module R|G /K] has (Pg).

PROOF. Let L be any subgroup of H, then using the natural isomorphism
HOmRH(R[H/L}, *) = HOmRL(R, *)

we see that R[H/L] has (Pg). Now use [Bro94, Proof of §I11.9.5(ii) on p.83] to
rewrite R[G/K] (as an RH-module), as

RG/K]= D R[H/K,)
geH\G/K
where K, = {h € H : g"*hg < K}. Thus:
Hompp (R[G/K],-)= ][] Hompgu(R[H/K, -).
geH\G/K
Now use that R[H/L] has (Pg) and that direct products of exact sequences are

exact. 0

LEMMA 4.4.8. If
0—A—B—C—0

is an H-good short exact sequence and both B and C have (Pg) then the short
exact sequence is H-split and A has (Pp).

PrOOF. Apply Hompgy(C, —) to see that the short exact sequence is H-split.

Then since, as RH-modules, B is the direct sum of C and A, A necessarily has
(Pu) by Lemma [4.4.6] O

LEMMA 4.4.9. If P, is an F-good resolution of R by permutation RG-modules
with stabilisers in F, then P, is F-split.

PRrROOF. Use induction with Lemmas [4.4.7] and [1.4.8] O

REMARK 4.4.10. Similarly to Proposition the above lemma may fail for

F-good resolutions of arbitrary modules.
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ProrosiTION 4.4.11. If G is HFFP,, then G is FFP,.

ProoF. Find a free ‘Hr-module resolution P, of R, finitely generated up
to dimension n. By Remark -, «(G/1) is an F-good resolution of R by
permutation RG-modules with stabilisers in F. By Lemma P, is F-split,
and by [Nuc99, Definition 2.2] permutation RG-modules with stabilisers in F

are J-projective. O

4.4.2. FFP, implies HxFP,. This section comprises a series of lemmas,
building to the proof of Proposition [4.4.17] that if R is commutative Noetherian
and G is FFP, then G is HxFP,,.

LEMMA 4.4.12. For any H € F, inducing R[G/H] to a covariant Hr-module
gives the free module R|G/H, — -

PROOF. On objects the two functors are equal:

Ind37; RIG/H)(G/K) = R[G/H] ®rc RIG/1,~|u-(G/K)
= R[G/H] ® pc Hompa(RG, R[G/K])
= R[G/H]| ®rc R|G/K]
= R[H\G/K]
= Hompq (R[G/H], R|G/K]).

If L< K arein F, and Y ; gL € R[G/L]¥ then
R[G/1, =]u(RL) : RIG/1,G/ Ly, — RIG/1,G/K]y,

ZgiL — ZgiK
i i

Following this down the chain of isomorphisms, then
Ind}iZ R[G/H](RY) : Hompg(R|G/H], R|G/L]) — Hompe(R[G/H), R|G/K])
Z giL — Z giK
T I
as required. Similarly, if >°; ¢; K € R[G/K]¥ then
R[G/1, —|u,(I[') : RIG/1,G/ K]y, — RIG/1,G/Llu,

ZgJ(l—) Z ZngL

keK/L I

Following this down the chain of isomorphisms,
Ind}Z R(G/H]|(If) : Hompe(R|G/H), R|G/K]) — Hompq(R[G/H], R[G/L])

Zg,Kl—> Z ZngL

keK/L I

again as required.
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The proof for the conjugation morphisms ¢, is similar to the above. O
LEMMA 4.4.13.
H
mdyz [[ [[RlG/HI= ][ ]]RIG/H, -
HeF/G Au HeF/G A

where for each H € F/G, Ay is any indexing set and we are using covariant

induction.

PROOF. In this proof, we use ][ as a shorthand for [[ycz/c [, On ob-

jects, the two functors are equal:
wd}ig [ RIG/H)(G/K) = ([] RIG/H]) ©re RIG/1, ) (G/K)
= (T RIG/H)) @ne Hompa(RG, RIG/K))
— (TI riG/H)) @na RIG/ K]
(%) ~ [ [ (RIG/H] ®rc RIG/K])
= [[RIH\G/K]
= [[ Homra(RIG/H], R[G/K)).

Where the isomorphism marked (%) is the Bieri-Eckmann criterion [Bie81), The-
orem 1.3], which is valid because R[G/K] is FP,. That the morphisms are equal

can be checked as in the previous lemma. ]
LEMMA 4.4.14.
II IIRG/H] | =HY |6, [ TIRIG/H -
HEF/G An HEF/G An

where for each H € F/G, Ay is any indexing set.

PROOF. Again we use [] to stand for J[ycr/gIIs,. Let Pi be a free
‘Hr-module resolution of R™, then P,(G/1) is an F-split resolution of R by

F-projective modules by Lemma [4.4.9] so
FH,.(G,R|G/H]) = H, (P*(G/l) ®ra || R[G/H])
~ [, (P* @ur nd)E [] RIG/H) )
> H.(P, @, [ [ RIG/H, ~]n,)
~ H!'7(G, [ [ RIG/H, —)n;)

where the second isomorphism is the adjoint isomorphism between induction and
restriction and the third is Lemma £.4.13] O
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LEMMA 4.4.15. For any group G, any commutative Noetherian ring R, any
RG-module A of type FFP,,, and any exact limit, the natural map
F Tor?¢ (A, Jim My) — Jim F TorPC (A, M)
AEA AEA

s an isomorphism for i < n and an epimorphism for i = n.

PROOF. The proof is analogous to [Bie81, Theorem 1.3] and [Nuc99l The-
orem 7.1], using [Nuc99l, Proposition 6.3] which states that for R commutative

Noetherian, finitely generated F-projective modules over RG are of type FP.
O

Specialising the previous lemma to M = R:
COROLLARY 4.4.16. If R is commutative Noetherian and G is FFP,, over R,

then for any exact limit, the natural map

ITQ(GQQE}A[Q ——)EE%FLQ«?PMU)
AEA AEA

s an isomorphism for i < n and an epimorphism for i = n.

ProprosiTION 4.4.17. If R is commutative Noetherian and G is FFP,, over
R then G is HrFP, over R.

PROOF. In this proof, we write [ ] for [ e /i 15, Where Ap is any indexing

set. Using Lemmas [4.4.14] and [4.4.16], for any i < n:
o (G, [ ric/H. —]Hf) = FH, (G, I1 R[G/H})
= [[7H: (G, RlG/H))

::[I]I?f-«?,R“?/l{7_JHF)‘

Thus G is HrFP,, by the Bieri-Eckmann criterion (Theorem [2.5.1)). O

REMARK 4.4.18. The requirement that R be Noetherian was needed only for
Lemma where we need that finitely generated F-projectives are FP.
Nucinkis has given an example of a finitely generated F-projective module which

is not FP [Nuc99, Remark on p.167], but the following question is still open.
QUESTION 4.4.19. Does Proposition4.4.17|remain true if R is not Noetherian?
4.5. Cohomological dimension for cohomological Mackey functors
In [Degl3al, Degrijse shows that for all groups G with Hrcd G < oo,

FedG = HredG.

We can improve this.
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THEOREM 4.5.1. For all groups G,
FedG = HredG.

PROOF. Remark [£.4.4] and Lemma [£.4.9 imply Fcd G < Hrcd G.

For the opposite inequality, we first use [Ganl2bl Lemma 3.4] which states
that for a group G with Fed G < n there is an F-projective resolution P, of R
of length n, where each F; is a permutation module with stabilisers in F. Given
such a Py, we take fixed points of P, to get the Hx resolution P, . Since P is
F-split, P, is exact. O

Recall that Fin denotes the family of finite subgroups of G and ng denotes

the minimal dimension of a proper contractible G-CW complex.
PRroPOSITION 4.5.2. For all groups G,
HﬁnCd G < ng.

This fact is well-known for Fcd instead of H 5,cd, but since a direct proof for

‘H gincd is both interesting and short we provide one.

PROOF. Let P, denote the cellular chain complex for a contractible G-CW-
complex X of dimension n and take fixed points to get the complex P, — R~
of H zi,-modules. Since the action of G on X is proper the modules comprising Pk
are permutation modules with finite stabilisers and so P, is a chain complex of
free Hgi,-modules. By a result of Bouc [Bou99| and Kropholler-Wall [KW11]
this chain complex splits when restricted to a complex of RH-modules for any
finite subgroup H of G. In other words, P, is F-good, thus P — R is exact
for any finite subgroup H by Remark [£.4.4] O

This leads naturally to the question:
QUESTION 4.5.3. Does Hg,cd G < o0 imply ng < o0?

We know of no group for which ng and ‘Hrcd G differ. Brown has asked the

following:

QUESTION 4.5.4. [Bro94l, VIIL.11 p.226] If G is virtually torsion-free with
ved G < 00, then is ng = ved G7

If G is virtually torsion free then ved G = Hg,cd G [MPNO6], so a construc-
tive answer to Question would give information about Question [4.5.4] as
well.

Related to this is the following question, posed using Fcd instead of Hgy,cd
by Nucinkis.
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QUESTION 4.5.5. [Nuc00, p.337] Does Hgincd G < oo imply that Ogped G <

o00?

REMARK 4.5.6. If G acts properly and cocompactly on a finite-dimensional
contractible G-CW-complex then, by a modification of the argument of the proof
of Lemma G is H 7, FPo also. However, if G acts properly on a finite type
but infinite dimensional contractible complex X, then the theorem of Bouc and
Kropholler—Wall doesn’t apply, and the cellular chain complex of X may not be
$-split, thus we cannot deduce G is H 5, FP .

For an example of a group G acting properly on a finite-type but infinite
dimensional contractible CW-complex with a cellular chain complex which is not
$-split, take the cyclic group K = (5 acting antipodally on the infinite sphere
Sso, With the usual CW structure of 2 cells in each dimension. One calculates
that C,(S>)% is not exact and hence that C,(Ss) is not ZK-split.

QUESTION 4.5.7. If G acts properly on a contractible G-CW-complex of finite
type, but not necessarily finite dimension, then is G of type H 7, FP o7

4.5.1. Closure properties. The class of groups G with HrcdG < oo
is closed under subgroups, free products with amalgamation, HNN extensions
[Nuc00, Corollary 2.7], direct products [Ganl2bl, Corollary 3.9] and extensions
of finite groups by groups with H rcd finite [Degl3al Lemma 5.1].

Section contains a proof, via the Gorenstein cohomological dimension,

that for a group extension
1—N-—-G—Q—1
where Hgycd G < 0o, we have Hepyed N + Hgined Q < Hamed G.
PROPOSITION 4.5.8. [Gan12bl 3.8,3.10] Let
1—N—-G—Q—1

be a group extension such that for any finite extension H of N where H/N has
prime power order, Hyyzcd H < m, then Heyed G < n+m.

LEMMA 4.5.9. Let N be any group and p any prime. If for any extension
1—N—-G—Q—1

we have that Hencd G = Haped N where Q) is the cyclic group of order p, then
Heincd G = Hpued N, where Q) is any finite p-group.

PrROOF. We prove by induction on the order of @, the case |Q| = p is by

assumption. Let @' be a normal subgroup of index p in @ (such a subgroup
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exists by [Rot95, Theorem 4.6(ii)]) and consider the diagram below.

l— N —71 Q) —Q —1
1 N G Q 1

Since @’ is normal in @, the preimage 7~!(Q’) is normal in G, with quotient group
G/mHQ') of order p so Hyiwcd G = Hgmedn1(Q'). Finally by the induction
assumption Hg,ed 7 HQ') = Hapmed N. O

Combining the results above, if Hg,cd G fails to be subadditive there must
exist a finite cyclic group @, group N with Hg,cd N < 00, and an extension G
of @ by N with Hg,cd G = oo.

QUESTION 4.5.10. If N is a group with Hz,cd N < oo then does every ex-
tension G of a cyclic group of order p by N satisfy Hg,cd G < 007

Any counterexample cannot be virtually torsion-free, since Hg,cd G = ved G
for all virtually torsion-free groups [MPNO0G|, and neither can it be elementary
amenable [Ganl2bl, Proposition 3.13].

4.6. The family of p-subgroups

Throughout this section ¢ is an arbitrary fixed prime and R will denote one of
the following rings: the integers Z, the finite field F,, or the integers localised at
q denoted Z,). If R =F, or Z, then let P denote the subfamily of F consisting
of all finite g-subgroups of groups in F. If R = Z then let P denote the subfamily
of finite p-subgroups of groups in F for all primes p.

We will always treat the cases R = F, and R = Z, together, in fact the
only property of these rings that we use is that for any integer i coprime to ¢,
the image of ¢ under the map Z — R is invertible in R. Hence the arguments in
this section generalise to any other rings with this property, for example any ring
with characteristic q. The argument used for R = Z will go through for any ring
R.

For R = Z and F = Fin, Leary and Nucinkis prove that the conditions FFP,,
and PFP,, are equivalent, and that Fed G = Pcd G [LN10, Theorem 4.1]. We

use an averaging method similar to theirs to show that, for R = Z, Fy, or Z,:

THEOREM 4.6.1. Forn € NU{oo}, the conditions Hrcd G = n and Hpcd G =

n are equivalent, as are the conditions HrFP, and HpFP,,.

REMARK 4.6.2. If R = Z, or F; and all subgroups of G have order coprime
to ¢ then P contains only the trivial subgroup. Thus Hrcdr G = cdr G and the
conditions HrFP, and FP,, are equivalent.
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At the end of the section we will look at the case that R = K is a field
of characteristic zero, and prove that in this case Hrcd G = c¢d G and that the
conditions HrFP,, and FP,, are equivalent.

The argument relies on two maps ¢t and py defined for any subgroup H in
F \ P. These maps have different definitions depending on the ring R.

We treat the case that R = F, or R = Z g first. Let H € F\ P and let Q be
a Sylow g-subgroup of H, define

pr = R§ € RG/Q,G/H]y,

v = (1/|H : Q)I§ € RG/H,G/Qly-
The map ¢ is well defined since |H : @] contains no powers of ¢ and hence is
invertible in R.

If R=7Z and H € F\ P then let {P;}icr run over the non-trivial Sylow
p-subgroups of H (choosing one subgroup for each p). We necessarily have that
ged{|H : P;| : i € I} = 1 so, by Bézout’s identity, we may choose integers z; such
that >, ; zi|H : P;| = 1. Define, with a slight abuse of notation,

pH = @ R
i€l
By which we mean that for any H r-module M,
M(pw) : M(G/H) — P M(G/P)
i€l

m— @ M(RE)(m).

icl

With a similar abuse of notation we define
LH = Z zifg.
iel
By which we mean that for any H F-module M,
M(uy) : @ M(G/P) — M(G/H)
el

(mi)ier — Z 2 M(IF)(m;).
icl

The next couple of lemmas catalogue properties of the maps ¢z7 and py which
are needed for the proof of Theorem [4.6.1

LEMMA 4.6.3. For any Hxr-module M and subgroup H € F \ P,

M(e) o M(pm) = idaya/m) -
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PROOF. In the case R = F, or R = Z,, this follows from the fact that
M(Rg o Ig) is multiplication by |H : Q|. For R = Z,

M(ug)o M(py) => zM(Rp oIfl)=> z|H:P|=1.
]
LEMMA 4.64. If H € F then Res}” R[—,G/Hy
projective Hp-module.

» 5 a finitely generated

ProoOF. If H is an element of P then this is obvious so assume that H € P.
First, the case R = F, or R = Z(,). The projection
R[—,G/Qlyur — R[—,G/H]u;,
corresponding to ¢z under the Yoneda-type lemma (2.0.2)) is split by the map
R[=,G/Hlny — R[-,G/Qlu;
corresponding to py under the Yoneda-type lemma: It is sufficient to calculate
soi(G/H)(idy) = pg oty =idy .
Applying Res%]r gives a split surjection
Res}i” s : Res)i” R[—,G/Qly, — Res}” R[—,G/Hly,
Since ResH7f R[—-,G/Qlu, = R[—,G/Q]n, this completes the proof.

Now the case R = Z, this time we construct a split surjection

s: @ R[-,G/Ply R[-,G/H]u,
icl

using the maps corresponding to ¢ty and py under the Yoneda-type lemma. The
rest of the proof is identical to the case R =F, or R = Z . O

LEMMA 4.6.5. A chain complex Cy of Hr-modules is exact if and only if it
is exact at G/P for all subgroups P € P.

PRrROOF. The “only if” direction is obvious so assume C is a chain complex
of Hr-modules, exact at all P € P and let H € F \ P.

We claim that the maps Ci(tg) and Cy(pm) are chain complex maps, we
show this below for R = F; or R = Z,, the proof for R = Z is analogous. The
only non-obvious part of this claim is that the maps commute with the boundary

maps 9; of Cy, in other words the diagrams below commute:

cie/m e e/

Ci(ﬂH)l lci—l(PH)
9(G/Q)
(G/Q) > Z—l(G/Q)
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i@/ e, o)

Ci(’»H)l lci—l(LH)
9:(G/H)
Ci(G/H) — Ci1(G/H)
This follows from the fact that 9; is an H_r-module map.
Lemma [4.6.3| gives that C.(tir) o Ci(ppr) is the identity on the chain complex
C«(G/H). The induced maps ¢j; and pj; on homology satisfy
tgopy=id: H (C.(G/H)) — H.(C.(G/H))
so pj; is injective. The image of pj; lies in H,(Ci\(G/Q)) = 0 if R = F, or
R =7y, or ®;H.(C«(G/P;)) =0 if R =7, hence H.(C«(G/H)) is zero. O

LEMMA 4.6.6. If P is a projective (respectively finitely generated projective)
Hp-module then there exists a Hx-module QQ such that

Res%f Q=P
and Q is projective (resp. finitely generated projective).
PROOF. Recall from Lemma that the projective Hp-modules are ex-
actly those of the form V'~ for V some direct summand of a permutation RG-

module whose stabilisers lie in P. The required module is just V~ regarded as a
H r-module. O

PROOF OF THEOREM [£.6.1l Assume that HrcdG < n and let P, be a
length n projective resolution of R~ by Hr-modules, then restricting to the
family P and using Lemma gives a length n projective resolution by Hp-
modules. A similar argument shows that HxFP,, implies HpFP,,.

For the converse, let P, be a length n projective resolution of R~ by Hp-
modules. Lemma gives projective H r-modules @); such that Res%’: Q=P
for each i. Denoting by d; the boundary maps in P, define boundary maps of
Q« as 0;(G/P) =d;(G/P) if P € P and if H ¢ P then

9i(G/H) = Pi—1(vr) 0 di(G/H) © Fi(pu)-

One can check that these maps are indeed Hr-module maps and that this

makes (), a chain complex:
0i(G/H) 0 0;+1(G/H)
= Pi—1(tr) 0 di(G/H) o Pi(pp) © Pi(vw) 0 dig1(G/H) o Piy1(pn)
= Pi1(tn) 0 di(G/H) 0 dit1(G/H) © Pipa(pr)
=0.

Finally P, is exact by Lemma
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Since at all stages of the argument above finite generation is preserved, we
get that HpFP,, implies HxFP,, too. O

For the remainder of this section R = K is a field of characteristic zero, in
this case we can reduce to the family Zriz containing only the trivial subgroup.
For any H € F, let

pr = R{
H
o = (1/|H)IY

All the arguments of the section go through with no alteration, showing:

PROPOSITION 4.6.7. Hrcedg G = Hagip cdrg G and the conditions HrFP,, over
K and Hagiy FP,, over K are equivalent for any n € NU {co}.

COROLLARY 4.6.8. Hrcdg G = cdg G and the conditions HrFP,, over K and
FP,, over KG are equivalent for any n € NU {oo}.

PrOOF. The category of Hagi-modules is isomorphic to the category of KG-

modules. O

4.6.1. FP, conditions over [F,. Throughout this section, we fix a prime p
and work over the ring I, with the family P of all finite p-subgroups of groups
in F.

LEmMMA 4.6.9. [HPY13, Lemma 5.3] For any finite subgroup H € P and
Hp-module M, Dy M extends to a cohomological Mackey functor.

ProprosITION 4.6.10. G s HpFP,, over F,, if and only if G is OpFP, over
F,.

The proof is basically that of Proposition combined with the lemma

above.

PrOOF. We know already from Proposition and Corollary that
OpFP,, implies HpFP,,.

Let My, for A € A, be a directed system of Op-modules with colimit zero.
Using the notation of Proposition there is an exact sequence of directed

systems for each i > 0,
0 — C'My — DC'My — C*T'My — 0,

each of which has colimit zero. Moreover, DC?M) extends to a cohomological
Mackey functor so using the Bieri-Eckmann criterion (Theorem yifm <n
then for all 7 > 0,

lim HE (G, DC'M,) = 0.
A
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Thus,

ling HE, (G, My) = lim HE, (G, C°M))
= lim H5 (G, C' M)

= lim Hp,, (G,C™ M)
=0.

Where the final zero is because G is OpFPy (by [LIN10, Proposition 4.2] and
Theorem 4.4.1]). O

COROLLARY 4.6.11. G is HFFP,, over F, if and only if P contains finitely
many conjugacy classes, and W H is FP,, over F,, for all H € P.

Proor. G is HFFP,, if and only if G is OpFP,, by Theorem and Propo-
sition [4.6.10, Now use that G is OpFP,, if and only if P contains finitely many
conjugacy classes, and W H is FP,, for all H € P (Corollary [3.6.4]). O

PROPOSITION 4.6.12. If G is virtually torsion-free then the conditions virtu-
ally FP over F, and HFr FP over ), are equivalent.

Proor. If G is virtually FP over [F, then G has finitely many conjugacy
classes of finite p-subgroups [Bro94, I1X.(13.2)]. A result of Hamilton gives that
for any finite p-subgroup H of G, W H is virtually FP over F,, in particular W H
is FP over F,, [Ham11l, Theorem 7]. Finally, [Ham11 Proposition 34] gives
that G acts properly on a finite-dimensional F,-acyclic space, thus in particular

Hredp, G < co. The other direction is obvious. ([l

In [LN10] it is conjectured that, if F = Fin, G is FFP if and only if G is
FP, and has finitely many conjugacy classes of finite p-subgroups for all primes

p. One could generalise this and ask:

QUESTION 4.6.13. Let F = Fin and n € NU {o0}.

(1) If G is FP, over Z with finitely many conjugacy classes of finite p-
subgroups for all primes p, then is G of type HrFP,, over Z?

(2) Fixing a prime p, if G is FP, over F, with finitely many conjugacy
classes of finite p-subgroups then is G of type HrFP,, over F,?

A problem with finding a counterexample to Question [4.6.13(2) is that if G
admits a cocompact action on a finite-dimensional [Fp-acyclic space X then, via
Smith theory, X7 is [Fp-acyclic for any finite p-subgroup P and thus WP is FP,,
over IF,,. For this reason one cannot use the examples of Leary and Nucinkis in
[LNO3J, their construction requires actions of finite groups on finite dimensional

Fp-acyclic flag complexes with fixed point sets that are not Fj-acyclic.






CHAPTER 5

Gorenstein cohomology and §-cohomology

This chapter contains material that has appeared in:

e On the Gorenstein and §-cohomological dimensions (2013, to appear
Bull. Lond. Math. Soc.) [SJG13b].

We study the Gorenstein cohomological dimension Ged G and prove the fol-

lowing result.
THEOREM [5.2.11] If §cd G < oo then Fed G = Ged G.

The proof is via the construction in Theorem of a long exact sequence re-
lating the §-cohomology, the complete §-cohomology, and a new cohomology the-
ory we call the §g-cohomology. The construction is analogous to the construction
of the long exact sequence of Avramov—Martsinkovsky relating the group coho-
mology, complete cohomology, and Gorenstein cohomology [AMO02, §7][ABS09,
Theorem 3.11].

In Section [5.3 we use Theorem and subadditivity of the Gorenstein co-
homological dimension to study the behaviour of the §-cohomological dimension

under group extensions.
COROLLARY [5.3.2, Given a short exact sequence of groups
1—N—G—Q —1,

if §cd G < oo then Fed G < Fed N + Fed Q.

Finally, in Section [5.4] we use the Avramov—Martsinkovsky long exact se-

quence to prove the following.

PROPOSITION [5.4.4] If Ged G < 00 and cdg G < oo then cdg G < Ged G.

5.1. Preliminaries

5.1.1. Complete resolutions and complete cohomology. A weak com-
plete resolution of a module M is an acyclic complex T of projective modules
which coincides with an ordinary projective resolution P, of M in sufficiently high
degree. The degree in which the two coincide is called the coincidence index. A
weak complete resolution is called a strong complete resolution if Hompg (T, Q)

93
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is acyclic for every projective module Q. We avoid the term “complete resolu-
tion” since some authors use it to refer to a weak complete resolution and others

to a strong complete resolution.

ProrosiTION 5.1.1. [ABS09, Proposition 2.8] A group G admits a strong
complete resolution if and only if Ged G < 0.

The advantage of strong complete resolutions is that given strong complete
resolutions 7Ty and S, of modules M and N, any module homomorphism M — N
lifts to a morphism of strong complete resolutions T, — S, [CK97, Lemma 2.4].
Thus they can be used to define a cohomology theory: given a strong complete

resolution Ty of M we define
Extpg(M,—) = H* Hompa(Ts, —).

We also set H*(G, —) = E/Jx\t;G(R, —). This coincides with the complete cohomol-
ogy of Mislin [Mis94], Vogel [Goi92], and Benson—Carlson [BC92] (see [CK97,
Theorem 1.2] for a proof). Recall that the complete cohomology is itself a gen-
eralisation of the Farrell-Tate Cohomology, defined only for groups with finite
virtual cohomological dimension [Bro94l §X].

Even weak complete resolutions do not always exist, for example a free
Abelian group of infinite rank cannot admit a weak complete resolution [MT00),
Corollary 2.10]. It is conjectured by Dembegioti and Talelli that a ZG-module
admits a weak complete resolution if and only if it admits a strong complete
resolution [DT10, Conjecture BJ.

5.1.2. §-cohomology. This section contains two technical lemmas we will
need later.

If M is any RG-module and F; = RA" is the standard F-split resolution of R
[Nuc00, p.342], then F, @ M is an §-split F-projective resolution of M. Thus

we’ve shown:
LEMMA 5.1.2. §-split F-projective resolutions exist for all RG-modules M.
There is also a version of the Horseshoe lemma.

LEMMA 5.1.3 (Horseshoe lemma). If
0—A—B—C—0

1s an §-split short exact sequence and P, and Q. are §-split §-projective reso-
lutions of A and C respectively then there is an §-split §-projective resolution
S« of B such that S; = P; ® Q; and there is an §-split short exact sequence of

augmented complexes

0— P — S, — Q. —0.
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The proof is simlar to [EJ11), Lemma 8.2.1].

PROOF. First build the diagram below as in, for example, [Rot09, Proposi-
tion 6.24] where it is shown to commute and have exact rows and columns. Here,
K4, Kp and K¢ are the kernels of the maps Py — A, Py & Qo — B, and
Qo — C respectively.

0 0 0
0 Ky Kp Ko 0
0 Py Py @ Qo Qo 0
0 A B C 0
0 0 0

Since Py and ) are both §-projective, Py @ (g is F-projective, and since the
middle row is split, it is §-split.

Let A be the G-set [[ycq, G/H and apply — ® RA to the commutative
diagram to obtain a new commutative diagram with exact left column, right

column, bottom row, and central row.
(Po® Qo) ® RA — B® RA

is surjective is because the tensor product is right exact, and an application of
the 5-Lemma [Rot09 Lemma 2.72] shows

K ® RA — (Py @ Qo) ® RA

is injective. Hence the central column of our new commutative diagram is exact.
The 3 x 3-Lemma provides that the top row is exact too [Rot09], Ex 2.32], thus
all rows and columns of the first commutative diagram are §-split.

Now repeat this process, but starting with the §-split short exact sequence
00— Kyq— Kp— Kg—0.

0

5.1.3. Complete §-cohomology. In [Nuc99], Nucinkis constructs a com-
plete §-cohomology, we give a brief outline here. An §-complete resolution T, of
M is an acyclic §-split complex of §-projectives which coincides with an §-split

F-projective resolution of M in high enough dimensions. An §-strong §-complete
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resolution T} has Hompg (T, Q) exact for all F-projectives Q). Given such a T
we define
Bt (M, ) = H* Hompg (T, -)
§H (G, ~) = §Extpg(R, ).
Nucinkis also describes a Mislin style construction and a Benson—Carlson con-
struction of complete §-cohomology defined for all groups, proves they are equiv-
alent, and proves that whenever there exists an §-complete resolution they agree

with the definition above.

5.1.4. Gorenstein cohomology. The Gorenstein cohomology is, like the
§-cohomology, a special case of the relative homology of Mac Lane [ML95| §IX]
and Eilenberg—Moore [EM65].

Recall that a module is Gorenstein projective if it is a cokernel in a strong
complete resolution. An acyclic complex C, of Gorenstein projective modules is
G-proper if Hompg(Q, Cy) is exact for every Gorenstein projective Q). The class
of G-proper short exact sequences is allowable in the sense of Mac Lane [ML95|,
§IX.4]. The projectives objects with respect to G-proper short exact sequences
are exactly the Gorenstein projectives (for the definition of a projective object
with respect to a class of short exact sequences see [ML95| p.261]). For M and
N any RG-modules, we define

GExthy (M, N) = H* Hompg(P,, N)

GH*(G,N) = GExtpg(R,N)
where P, is a G-proper resolution of M by Gorenstein projectives.

The usual method of producing a “Gorenstein projective dimension” of a
module M in this setting would be to look at the shortest length of a G-proper
resolution of M by Gorenstein projectives. A priori this could be larger than the
Gorenstein projective dimension defined in the introduction, where the G-proper

condition is not required. Fortunately there is the following theorem of Holm:

THEOREM 5.1.4. [Hol04), Theorem 2.10] If M has finite Gorenstein projective
dimension then M admits a G-proper Gorenstein projective resolution of length
Gpd M.

Generalising an argument of Avramov and Martsinkovsky in [AMO2, §7]

Asadollahi, Bahlekeh, and Salarian construct a long exact sequence:

THEOREM 5.1.5 (Avramov—Martsinkovsky long exact sequence). [ABS09,
Theorem 3.11] For a group G with Ged G < oo, there is a long exact sequence of

cohomology functors

0— GHYG,-) — HYG,-) — ---
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.o — GH™G,-) — H"(G,-) — H"(G,-) — GH"(G, =) — - --

The construction relies on the complete cohomology being calculable via a
complete resolution, hence the requirement that Ged G < oo.

We will need the following lemma later:
LEMMA 5.1.6. Any G-proper resolution of R is §-split.

PRrROOF. If P, is a G-proper resolution of R then since R[G//H] is a Gorenstein
projective [ABS09, Lemma 2.21],

Hompe(R|G/H], P.) = Hompgp (R, P,) = P

is exact, thus by the argument of Proposition 4.4.11| P, is §-split. ]

5.2. §g-cohomology

5.2.1. Construction. We define another special case of relative homol-
ogy, which we call the §g-cohomology. It enables us to build an Avramov—
Martsinkovsky long exact sequence of cohomology functors containing §H*(G, —)
and $H (G, —).

We define an §g-projective to be the cokernel in a §-complete §-strong res-
olution and say a complex C, of RG-modules is Fg-proper if Hompa(Q, Cy) is
exact for any §g-projective Q. The Fg-proper short exact sequences form an
allowable class in the sense of Mac Lane, whose projective objects are the Fg-
projectives—to check the class of Fg-proper short exact sequences is allowable
we need only check that given a §g-proper short exact sequence, any isomorphic
short exact sequence is Fa-proper and that for any RG-module A the short exact

sequences

0—A-Y%AaA_—50—0

and

0—0—A-4% 410

are §g-proper.

We don’t know if the class of Fg-projectives is precovering (see [EJ11l §8]),
so we don’t know if there always exists an §g-proper §g-projective resolution.
However, if A and B admit Fg-proper Fg-resolutions P, and @, respectively,
then any map A — B induces a map of resolutions P, — Q) which is unique
up to chain homotopy equivalence [ML95|, IX.4.3] and we have a slightly weaker

form of the Horseshoe lemma.

LEMMA 5.2.1 (Horseshoe lemma). Suppose

0—A—B—C—0
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18 a Fa-proper short exact sequence of RG-modules and both A and C' admit §a-
proper §a-projective resolutions Py and Q4 then there is an Fq-proper resolution
S« of B such that S; = P; & Q; and there is an Fg-proper short exact sequence

of augmented complexes
O—>ﬁ’*—>§*—>@*—>0.
The proof is similar to that of [EJ11l 8.2.1] and Lemma

PRrROOF. First build the same commutative diagram as in the proof of Lemma
Since Py and Qg are both Fg-projective, Py® Qg is Fg-projective, and since
the middle row is split, it is Fg-proper.

Let T be an §g-projective and apply Hompgg(7, —) to obtain a new commu-
tative diagram with exact left column, right column, bottom row, and central
row. That

Hompg(T, Py ® Qo) — Hompg(T, B)

is surjective is an application of the 5-Lemma [Rot09 Lemma 2.72], and another

application of the same lemma shows
Hompe (T, Kp) — Hompga(T, Py & Qo)

is injective. Hence the central column of our new commutative diagram is exact,
and an application of the 3 x 3-Lemma shows the top row is exact [Rot09, Ex
2.32], thus the original commutative diagram is §-split. The rest of the proof is
the same as that of Lemma [5.1.3 O

For any module M which admits an §qg-proper resolution P, by §a-projectives
we define
ScExtpa(M,N) = H* Hompg(Px, N).
We define also
ScH* (G, —) = §cExtpa(R, —).
The next lemma follows from Lemma see [EJ11] 8.2.3].

LEMMA 5.2.2. Suppose
0—A—B—C—0

18 a Fqg-proper short exact sequence of RG-modules and both A and C admit
Sa-proper Fg-projective resolutions, then there is an FoExtho(—, M) long exact
sequence for any RG-module M.

For any RG-module M the §q projective dimension of G denoted §apd M
is the minimal length of an Fg-proper resolution of M by Fa-projectives. We
set §acd G = Faopd R. Note that these finiteness conditions will not be defined

unless R admits an §g-proper resolution by §g-projectives.
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One could think of §g-cohomology as the “Gorenstein cohomology relative
_8‘77'

5.2.2. Technical results. We need some results for the §g-cohomology
whose analogues are well-known for Gorenstein cohomology [Hol04].

We say an RG-module M admits a right resolution by F-projectives if there

exists an exact chain complex
0— M —T_ 1 —T 9g—---

where the T; are §-projectives. §-strong right resolutions and F-split right reso-

lutions are defined as for any chain complex.

LEMMA 5.2.3. An RG-module M is §g-projective if and only if M satisfies
(%) FExtlo (M, Q) 22 0 for all -projective Q
for alli > 1 and M admits a right §-strong §-split resolution by §-projectives.

PRrOOF. If M is the cokernel of a §-strong §-complete resolution T then for
all 4 > 1 and any §-projective Q,
FExthe (M, Q) = H' Hompg (T, Q)

where T." denotes the resolution T;r =1T;if i >0 and T;r =0 for i« < 0. Then
(%) follows because Ty is §-strong.

Conversely given (%) and an F-strong right resolution 7, then let T," be the
standard §-split resolution for M (Lemma [5.1.2)), (x) ensures that T, is F-strong

and splicing together T~ and T, gives the required resolution. O

LEMMA 5.2.4. If§pd N < oo and M is Fg-projective then FExtpe (M, N) = 0
for all i > 1.

PROOF. Let P, — N be a §-split §-projective resolution then by a standard

dimension shifting argument
FExt'(M, N) = FExt"™ (M, K;)

where K is the % syzygy of P,. Since K j is §-projective for j > n the result
follows from Lemma [5.2.3 O

PROPOSITION 5.2.5. Let A be any RG-module and P, — A a length n §-split
resolution of A with P; §-projective for i > 1, then P, is §q-proper.

PROOF. The case n = 0 is obvious. If n = 1 then for any Fg-projective Q,

there is a long exact sequence
0 — Hompe(Q, P1) — Hompe(Q, Po) — Hompa(Q, A)

— §Extpa(Q,P1) — - -



100 5. GORENSTEIN COHOMOLOGY AND §F-COHOMOLOGY

but FExth(Q, P1) = 0 by Lemma
Assume n > 2 and let K, be the syzygies of P, then there is an §-split

resolution

0 —PFP, — - — Py — K, —0

so §pd K; < oo for all ¢ > 0. Thus every short exact sequence
0— K, — P, — K; 1
is Fg-proper by Lemma so P, is Fg-proper. O

LEMMA 5.2.6 (Comparison Lemma). Let A and B be two RG-modules with
§-strong §-split right resolutions by F-projectives called S* and T™ respectively,
then any map f: A — B lifts to a map f. of complexes as shown below:

0 A St 52
lf lfl lfz
0 B T! T2

The map of complezes is unique up to chain homotopy and if f is §-split then so

8 fx-

PROOF. The lemma without the §-splitting comes from dualising [EJ11]
p.169], see also [Hol04), Proposition 1.8].

Assume f is §-split and consider the map of complexes restricted to RH for
some finite subgroup H of G. Let ¢I' and ¢J denote the splittings of the top and
bottom rows and s, the splitting of f., constructed only up to degree ¢ — 1. The

base case of the induction, when 7 = 0, holds because f is §-split.

s s
972 974 a7
. —_— > Sl_l — S/L — .
~— ~_
s s s
ti—2 bic1 b
Si—1 fi—1 fi
T T
9 91 af
L Tiil T =
-~ ~—
T T iy
ti—2 ti—1 b
Let s; = 07 ; 08;_1 01l |. Then,

fiosi=fiod] j0si 101,
=0l ofi_10si_10u 4
= 8311 © Lz?ll
= idpq
where the second equality is the commutativity condition coming from the fact

that f, is a chain map. O
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5.2.3. An Avramov—Martsinkovsky long exact sequence in §-coho-

mology.

THEOREM 5.2.7. Given an §-strong §-complete resolution of R there is a long
exact sequence
0 — FoH (G, —) — ---
——n—1
— §H" (G, =) — FoH" (G, =) — .

Proor. We follow the proof in [ABS09, §3]. Let T, be an §-strong §-
complete resolution coinciding with an §-projective §-split resolution P, in de-
grees n and above. We may choose 0, : T, — P, to be §-split by Lemma [5.2.6
and without loss of generality we may also assume that 6; is surjective for all 7.

Truncating at position 0 and adding cokernels gives the bottom two rows of
the diagram below, the row above is the row of kernels. Note that the map A — R

is necessarily surjective since the maps Ty — Py and Py — R are surjective.

00— Ky —> - —> Ky —> K ——>0
T, Th-1 1o A 0
Pn Pnfl PO R 0

We make some observations about the diagram: Firstly, since the module A is
the cokernel of a F-strong §-complete resolution, A is Fa-projective. Secondly,
in degree ¢ > 0 the columns are §-split and the P; are §-projective, thus the K;
are §-projective for all ¢ > 0. Thirdly the far right vertical short exact sequence
is §-split since the degree 0 column and the rows are §-split. Finally the top row
is exact and §-split since the other two rows are.

Apply the functor Hompg(—, M) for an arbitrary RG-module M and take

homology. This gives a long exact sequence
S FHUG, M) — FH (G, M) —s H Hompe (K., M) —s - -
We can simplify the right-hand term:
H'Hompg (K, M) = FoExthq (K, M)
~ o H Y G, M)

where the first isomorphism is because, by Proposition the top row is §g-

proper. For the second isomorphism note that the short exact sequence

0—K-—A—R—0
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is §g-proper by Proposition [5.2.5] so
0—Kp1——Ky—A—R—0

is an Fg-proper Fao-projective resolution of R. Thus the second isomorphism

follows from the short exact sequence and Lemma, [5.2.2 O

COROLLARY 5.2.8. If there exists an §-strong §-complete resolution of R then
Facd G < .

PROOF. In the proof of the theorem we assumed an §-strong F-complete res-
olution of R and built a finite length Fg-proper resolution of R by §g-projectives.
a

PRrROPOSITION 5.2.9. If the Avramov—Martsinkovsky long exact sequence and
the long exact sequence of Theorem[5.2.7 both exist, then there is a commutative

diagram:

—n—1 —
> FH > FeH" —> FH" ——>FH ——> FoH" —— .
N
MNn
s fgnl . GH™ H" Hn GH" —— ...

Where for conciseness we have written H™ for H"(G, —) etc.

PROOF. The Avramov-Martsinkovsky long exact sequence is constructed
analogously to in the proof of Theorem [5.1.5] we give a quick sketch below as we
will need the notation. Take a strong complete resolution T\, of R coinciding with
a projective resolution P! in high dimensions and let A’ be the zeroth cokernel
of T]. Thus A’ is Gorenstein projective. Again, the map T, — P, is assumed
surjective and the kernel K is a projective resolution of K’, the kernel of the
map A’ — R. Applying Hompg(—, M), for some RG-module M, to the short

exact sequence of complexes
0— K, —T,— P, —0

gives the Avramov—Martsinkovsky long exact sequence.
Let T, P, K., K and A be as defined in the proof of Theorem There

is a commutative diagram of chain complexes

0 K, T, P, 0
I
0 K’ T/ P! 0

where the maps (8 exists by the comparison theorem for projective resolutions

and 7 exists by the comparison theorem for strong complete resolutions [CK97,



5.2. §¢-COHOMOLOGY 103

Lemma 2.4]. The map « is the induced map on the kernels. Applying the functor
Hompg(—, M) for some RG-module M, and taking homology, the maps «a, 8 and
~ induce the maps au, Bs and .

Finally we construct the map n, : GH"(G,—) — §H"(G,—). Let By be a
G-proper Gorenstein projective resolution and recall P, is an §-split resolution by
§-projectives. Then B, is §-split (Lemma so there is a chain map P, — B,
inducing 7, on cohomology.

Commutativity is obvious for the diagram with the maps 7; removed, leaving

us with two relations to prove. Let
¢ GH"(G,-) — H"(G,-)

denote the map from the commutative diagram. This is the map induced by
comparison of a resolution of Gorenstein projectives and ordinary projectives
[ABS09, 3.2,3.11]. We get 3, o1, = €€, since all the maps are induced by com-
parison of resolutions, and such maps are unique up to chain homotopy equiva-
lence.

The final commutativity relation, that n, o a, = Efc, is the most difficult to
show. Here

56 FoH™ (G, —) — FH"(G, —)

denotes the map from the commutative diagram, it is induced by comparison of
resolutions.

Here is a commutative diagram showing the resolutions involved:

0 K A R 0
Al
0 K, ‘ T, ‘ P, ‘ 0
O‘—>K’—>A/—>R 0
v S /

0 K’ T/ P! 0

Let L, be the chain complex defined by L; = K; 1 for all ¢ > 1 and Ly = A,
with boundary map at ¢ = 1 the composition of the maps Ky — K and K — A.
Thus L, is acyclic except at degree zero where HoL, = R. Similarly, let L’
denote chain complex with L} = K] , for all ¢ > 1 and L = A’ augmented by
A’ so L, is acyclic except at degree zero where HoL!, = R. Note that L, is an
Sa-proper resolution of R by Proposition and L is a G-proper resolution
of R by the Gorenstein cohomology version of the same proposition.

Recall that the maps £%¢ and 7« are induced by comparison of resolutions:
sfc is induced by a map P, — L, and 7, is induced by a map P, — L. The

map

FaExthn (K, —) — GExtho (K, )
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is induced by a : K, — K,. Thus the map
s §cH"(G,—) — GH"(G,—)
is induced by L, — L. The diagram below is the one we must show commutes.

3o

gan(G, —) = H™ Hong(L*, —) —— SH”(G, —) = H" HOHle(P*, —)

GH"(G,—) = H"Hompg(L.,—)

Since the composition P, to L) to L, is a map of resolutions from P to L,
and such maps are unique up to chain homotopy equivalence, this completes the

proof. O

COROLLARY 5.2.10. Given an §-strong §-complete resolution of R, Ged G =
n < oo implies FH (G, —) injects into @l(G, —) foralli>n+1.

PrOOF. Ged G < oo implies the Avramov—Martsinkovsky long exact se-
quence exists (Theorem |5.1.5)). Consider the the commutative diagram of Propo-
sition [5.2.9) The map

JcH'(G,—) — FH'(G,-)

factors as n; o a; = 0, so since GHY(G,—)=0foralli>n+1, FH(G, —) injects
into @Z(G, —) forall i >n+1. O

THEOREM 5.2.11. If Fcd G < oo then §ed G = Ged G.

PROOF. We know already that Ged G < Fed G (see Section . If ed G <
oo then it is trivially true that § admits an §-strong §-complete resolution, thus
FH'(G, —) injects into ﬁz(G, —) for all i > Ged G + 1, but ﬁZ(G, —) is always
zero since §ed G < oo [Kro93l 4.1(i)]. O

ExamMpPLE 5.2.12. Let R = Z for this example. Kropholler introduced the
class HF of hierarchically decomposable groups in [Kro93| as the smallest class
of groups such that if there exists a finite-dimensional contractible G-CW complex
with stabilisers in HF then G € H§. Let HF}, denote the subclass of HF containing
groups with a bound on the orders of their finite subgroups.

The ZG-module B(G, Z) of bounded functions from G to Z was first studied in
[KT91], Kropholler and Mislin proved that if G is HF with a bound on lengths
of chains of finite subgroups and pdy;s B(G,Z) < oo then Ogucd G < o0, in
particular Fcd G < oo [KM98|, Theorem BJ. If Ged G < oo then pdyq B(G,Z) <
oo [ABS09, 2.10][CK98, Theorem C]. Thus if G € Hf}, then Ged G = Fed G.
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5.3. Group extensions

Recall Theorem that §cd G = Hgned G for all groups. The invariant
Hrincd G was studied by Degrijse in [Degl3a] where he proves the following
(though stated for H z,cd G not Fed G):

THEOREM 5.3.1. [Degl3al, Theorem B] Let
1—N—G—Q—1

be a short exact sequence of groups such that every finite index overgroup of N
i G has a bound on the orders of the finite subgroups not contained in N. If

Fcd G < 0o then Fed G < Fed N + Fed Q.

Since Gorenstein cohomological dimension is subadditive under extensions
[BDT09, Remark 2.9(2)], an application of Theorem [5.2.11| removes the condi-

tion on the orders of finite subgroups:
COROLLARY 5.3.2. Given a short exact sequence of groups
1—N—G—Q—1

if §cd G < 0o then Fed G < Fed N + Fed Q.

For further discussion on the behaviour of Fed G (equivalently Hg,cd G) un-

der group extensions and other standard constructions see Section [4.5.1]

5.4. Rational cohomological dimension

For this section, let R = Z. Gandini has shown that for groups in HSF,
cdg G < Ged G [Ganl2bl Remark 4.14] and this is the only result we are aware
of relating cdg G and Ged G. In Proposition we show that cdg G < Ged G
for all groups with cdg G' < co. Recall there are examples of torsion-free groups
with cdg G < cdz G [Dav08, Example 8.5.8] and GedG = cdz G whenever
cdz G < oo [ABS09, Corollary 2.9], so we cannot hope for equality of cdg G and
Gced G in general.

QUESTION 5.4.1. Are there groups G’ with Ged G < oo but cdg G = 00?

Recall from Section that silp RG denotes the supremum of the injective
lengths (injective dimensions) of all projective RG-modules and spli RG denotes
the infimum of the projective lengths (projective dimensions) of all injective RG-

modules.

LEMMA 5.4.2. For any group G, silp QG < silp ZG.
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PrROOF. Using [Emm10, Theorem 4.4], silpQG = spliQG and silpZG =
spli ZG. Combining with [GG87, Lemma 6.4] that spli QG < spliZG gives the
result. O

LEMMA 5.4.3. If Ged G < oo then for any QG-module M there is a natural
isomorphism

H*(G, M) ® Q 2 Extgq(Q, M).

PRrROOF. Let T, be a strong complete resolution of Z by ZG-modules, then
T, ® Q is a strong complete resolution of Q by QG-modules. By an obvious
generalisation of [MTO00, Lemma 2.2], if silpQG < oo then any complete QG-
module resolution is a strong complete QG-module resolution, so since silp QG <
silpZG < oo, Ty ® Q is a strong complete resolution. This gives a chain of
isomorphisms for any QG-module M:
H*(G, M) ®Q = H* Homy(Ty, M) ® Q
~ H* Hong(T* ® Q, M)

= E)RQG(QaM)'

PROPOSITION 5.4.4. If cdg G < oo then cdg G < Ged G.

PROOF. There is nothing to show if Ged G = 0o so assume that Ged G < o0.
Since Q is flat over Z, tensoring the Avramov—Martsinkovsky long exact sequence
with Q preserves exactness. Combining this with Lemma [5.4.3] and the well-

known fact that for any QG-module M there is a natural isomorphism [Bie81

p.2|

gives the long exact sequence
. — GHY(G, M) ® Q — Ext{)(Q, M) — Exto(Q, M) — ---

Since cdg G < oo, we have that E}R?QG(Q, M) =0 [Kro93| 4.1(i)]. Thus there is

an isomorphism for all 4,
GH'(G,M) ® Q = Ext(Q, M)

and the result follows. O



CHAPTER 6

Bredon duality groups

This chapter contains material that has appeared in:

e Bredon—Poincaré duality groups (2013, to appear J. Group Theory)
[STG13al.

In this chapter we study Bredon duality and Bredon—Poincaré duality groups.
Recall that a Bredon duality group over R is a group G of type O, FP over R
such that for every finite subgroup H of GG there is an integer dy with

R-flat if ¢ = dp,

HYWH, RWH]) = { . :

Furthermore, G is said to be Bredon—Poincaré duality over R if for all finite

subgroups H,
HY% (WH, RIWH]) = R.

In Section [6.2] we give several sources of examples of both Bredon duality and
Bredon—Poincaré duality groups, including the example below of Jonathan Block

and Schmuel Weinberger, suggested to us by Jim Davis.

THEOREM [6.2.7] There exist examples of Bredon—Poincaré duality groups
over Z, such that W H is finitely presented for all finite subgroups H but G doesn’t
admit a cocompact manifold model M for Eg,G.

This is a counterexample to a possible generalisation of Wall’s conjecture,
which asks if a finitely presented Poincaré duality group admits a cocompact
manifold model for EG: Let G be Bredon—Poincaré duality over Z, such that
W H is finitely presented for all finite subgroups H, does G admit a cocompact
manifold model M for E,G?

Section [6.4] contains an analysis of Bredon duality and Bredon—Poincaré du-
ality groups of low dimension and Section looks at when these properties are
preserved under group extensions.

Recall that given a Bredon duality group G of dimension n we write V(G) for
the set

V(G) = {dF : F a non-trivial finite subgroup of G} C {0,...,n}.

107
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In Example we build Bredon duality groups with arbitrary V(G) and in
Section [6.3] we build Bredon—Poincaré duality groups with a large selection of
V(G), although we are unable to produce arbitrary V(G).

One might hope to give a definition of Bredon—Poincaré duality groups in
terms of Bredon cohomology only, we show in Section [6.7] that the naive idea of
asking that a group be O, FP with

i )] R ifi=n,
H(Qﬂn (G, R[?, 7]071}1) = { 0 else,

is not the correct definition, namely we show in Theorem that any such

group is necessarily a torsion-free Poincaré duality group over R.

6.1. Preliminary observations

Recall that a group G is R-torsion-free if the order of every finite subgroup
of G is invertible in R, equivalently the order of every finite order element is
invertible in R (see page [34)).

Recall that a Bredon duality group is said to be dimension n if Og,cd G = n.

LEMMA 6.1.1. If G is Bredon duality of dimension n over Z then G is Bredon
duality of dimension n over any ring R, with the same values of dyy for all finite

subgroups H.

PROOF. Since G is O, FP over Z, G is O, FP over R (Lemma (3.7.1)). Also
because G is O, FP over Z, WH is FP, over Z for all finite subgroups H
(Corollary [3.6.4) and we may apply [Bie81l, Corollary 3.6] to get a short exact

sequence
0 — HY(WH,Z[WH)]) @z R — HY(WH, R &7, Z[W H])
— Tor? (HT™™ (W H, Z[W H]), R) — 0.
HITY (W H, Z[W H)) is Z-flat for all q giving an isomorphism
HY(WH,Z|WH)) ®z R = HY(W H, R[W H)).

Observing that if an Abelian group M is Z-flat then M ® R is R-flat completes
the proof. O

LEMMA 6.1.2. If G is R-torsion-free and Bredon duality of dimension n over
R then dg = cdr WH and di < n.

To prove the Lemma we need the following proposition, an analogue of

[Bro94, VIII.6.7] for arbitrary rings R and proved in exactly the same way.

ProprosITION 6.1.3. If G is FP over R then
cdr G = max{n : H"(G, RG) # 0}.



6.2. EXAMPLES 109

ProoF OoF LEMMA [6.1.2] If G is R-torsion-free then for any finite subgroup
H,

cdr NgH < cdr G < Ogjpedp G

and NgH is FP,, over R by Corollary and Lemma The short exact

sequence

1—H — N¢cH —WH —1

and Lemma [6.5.4] implies that
H(NgH, R|NgH)) = H'(WH, RIW HJ).

Thus Proposition shows dg = cdg NgH = cdr WH. Finally, di < n
because cdr G < Ogedp G (Lemma [3.7.2)). O

In the proposition below Fcd G denotes the F-cohomological dimension (see
Section and Gcd G denotes the Gorenstein cohomological dimension (see

Section .

This proposition implies that if G is Bredon—Poincaré duality over R then
Ged G = §ed G = dy and if G is also virtually torsion-free then ved G = d; also.

ProproSITION 6.1.4. If G is FPo with Og,cd G < 0o then
Ged G = Fed G = sup{n : H"(G, RG) # 0},
and if G is also virtually torsion-free then ved G = Ged G also.

PRrROOF. This proof uses an argument due to Degrijse and Martinez-Pérez in
[DMP13]. By [Hol04, Theorem 2.20] the Gorenstein cohomological dimension

can be characterised as
Ged G = sup{n : H"(G, P) # 0 for P any projective RG-module}.

As G is FPy we need only check when P = RG. Since §cd G < Og,cd G < 00,
we can conclude that §cd G = Ged G (Theorem [5.2.11)) and finally for virtually
torsion-free groups §cd G = ved G [MPNO6, Theorem 5.1]. O

6.2. Examples

In this section we provide several sources of examples of Bredon duality and

Bredon—Poincaré duality groups, showing that these properties are not too rare.
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6.2.1. Smooth actions on manifolds. Recall from the introduction that if
G has a cocompact manifold model M for Ey,G such that M is a submanifold
for all finite subgroups H then G is Bredon—Poincaré duality. The following

lemma gives a condition which guarantees that M* is a submanifold of M.

LEMMA 6.2.1. [DavO08|, 10.1 p.177] If G is a discrete group acting properly and
locally linearly on a manifold M then the fized points subsets of finite subgroups
of G are submanifolds of M.

Locally linear is a technical condition, the definition of which can be found
in [Dav08, Definition 10.1.1], for our purposes it is enough to know that if M
is a smooth manifold and G acts by diffeomorphisms then the action is locally
linear. The locally linear condition is necessary however—in [DL03|] examples
are given of virtually torsion-free groups acting as a discrete cocompact group of

isometries of a CAT(0) manifold which are not Bredon duality.

EXAMPLE 6.2.2. Let p be a prime, let K be a cyclic group of order p, and let
G be the wreath product

G=71K = (@Z) x K.

G acts properly and by diffeomorphisms on RP: The copies of Z act by translation
along the axes, and the K permutes the axes. The action is cocompact with
fundamental domain the quotient of the p-torus by the action of K. The finite
subgroup K is a representative of the only conjugacy class of finite subgroups in
G, and has fixed point set the line {(X,--- ,X) : X € R}. If 2 = (z1,...,2p,) € ZP
then

RS = {( A+ 21,..., A+ 2,) : AER}.

Hence R is a model for Eg;,G and, invoking Lemmal[6.2.1] G is a Bredon-Poincaré
duality group of dimension p.

We can explicitly calculate the Weyl group W K: let L denote the copy of
Z inside ZP generated by (1,1,...,1), then the normaliser NoK is L x K and
thus the Weyl group W K is isomorphic to Z. Since K is a representative of the
only non-trivial conjugacy class of finite subgroups it provides the only element
of V(G), thus V(G) = {1}.

ExaMPLE 6.2.3. Fixing positive integers m < n, if G = Z"™ x Cy where Cj,

the cyclic group of order 2, acts as the antipodal map on Z™~ ™ < Z" then

NgCy=CsCy={g € G : gz = zg}.
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But this is exactly the fixed points of the action of Co on G, hence NgCy =
Z™ x Cy and
H' (WgCa, RIWaCs)) & { Roifi=m,
0 else.
G embeds as a discrete subgroup of Isom(R™) = R™ x GL,(R) and acts properly
and cocompactly on R™. It follows that G is O, FP and Og,cdG = n so G is

Bredon—Poincaré duality of dimension n over any ring R with V = {m}.

EXAMPLE 6.2.4. Similarly to the previous example we can take

G:ZnNéCQ
=1

where the j* copy of Cy acts antipodally on the j* copy of Z in Z". Note that
G is isomorphic to (D)™ where Do, denotes the infinite dihedral group. As
before G embeds as a discrete subgroup of Isom(R") = R™ x GL,(R) and acts
properly and cocompactly on R™. Thus G is O, FP and Og,cdG = n, so G is
Bredon—Poincaré duality of dimension n over any ring R with V(G) = {0,...,n}.

More generally, we could take a subgroup ;" Co — ., C> and form
the semi-direct product of Z™ with this subgroup. Although this gives us a range
of possible values for V(G) it is impossible to produce a full range of values.

Consider the case m = 2, so we have a group
G=7"x(AxB)

where A =2 B = (5, and both A and B act either trivially or antipodally on
each coordinate of Z™. We can describe the normaliser NgA by an element
(a1,...,a,) € {0,1}", so A acts trivially on the i*" copy of Z if a; = 1 and acts
antipodally otherwise. Thus,

NgA:<é{OZ ifa; =1 }) w (A % B).

P else.

Similarly we can describe NgB by an element (by,...,b,) € {0,1}". One calcu-
lates that the normaliser Ng(A x B) is described by the element

(a1 ANbiy... an Aby)

where A denotes the boolean AND function. This is because the it! copy of Z is
normalised by A x B if and only if it is normalised by A and also by B.
If C denotes the subgroup of A x B generated by the element (1,1) then the

normaliser of NgC' is described by the element
(_'(al D b1)7 cees _'((ln D bn))

where & denotes the boolean XOR function, and — the unary negation operator.
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Now, using the above it can be shown that, for example, a Bredon—Poincaré

duality group of dimension 4 with the form
m
G=Z'xPC,
i=1

cannot have V(G) = {1,3}. Assume that such a G exists, clearly m > 2, let A
and B denote two of the Cy summands of ®72;Cy. Without loss of generality we
can assume that A and B don’t have the same action on Z*. If d4 = dg = 1 then
by the description of the normaliser of A x B above, daxp = 0, a contradiction.
If d4 = dp = 3 then in order for A and B not to have the same action on Z*, we

must have (up to some reordering of the coordinates)
(ab o .,CL4) = (17 17 170)

(bi,...,bs) = (0,1,1,1).

So daxp = 2, a contradiction. Finally, if d4 = 1 and dg = 3 then let C' be
the subgroup of A x B generated by (1,1). There are two possibilities, up to

reordering of the coordinates, either
(al, NN ,CL4) = (1, 1, 1,0)

(b1,...,bs4) =(1,0,0,0)
or

(a17"'aa4) = (1717170)
(bla"'7b4) = (0707071)

In the first case, do = 2, and in the second case d4xp = 0, both contradictions.

EXAMPLE 6.2.5. In [FWO08|, Theorem 6.1], Farb and Weinberger construct a
Bredon—Poincaré duality group G arising from a proper cocompact action on R"

by diffeomorphisms, however G is not virtually torsion-free.

REMARK 6.2.6. Restrictions on the dimensions of the fixed point sets.
Suppose G is a group acting smoothly on an m-dimensional manifold M, and
suppose furthermore that G contains a finite cyclic subgroup C), fixing a point
x € M. There is an induced linear action of C), on the tangent space T,,M = R™,
equivalently a representation of C), into the orthogonal group O(m). We can use
this to give some small restrictions on the possible dimensions of the submanifold
M and hence on the values of dc,,.

A representation of C), in O(m) is simply a matrix N with N? = 1. Using
the Jordan—Chevalley decomposition (expressing a matrix as the product of its
semi-simple and nilpotent parts), we see that N is semi-simple, so viewing NV as a

matrix over C it is diagonalisable. However, since N” = 1 and the characteristic
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polynomial has coefficients in R, all the eigenvalues come in pairs w,w™!, where
w is a p'M root of unity. Thus N is conjugate via complex matrices to
w1

w1 -1

or

wm 2
2

Wm =
2 +1

depending on whether m is even or odd. The blank space in the matrices should
be filled with zeros. Note that the 41 term can only be a —1 if p = 2. The matrix

o)

is conjugate via complex matrices to

cosf) —sinf
Ry =
sinf  cosd
Thus N is conjugate via complex matrices to Ry, @ --- @ Rgm/2 or Rg, & @

Ry 2
well. Hence the dimensions of the fixed point sets are the same. Noting that

@ (£1), and by [Zhalll 5.11], they are conjugate via real matrices as

the rotation matrix Ry fixes only the origin when 6 # 0, we conclude that for
p # 2, the fixed point set M » must be even dimensional if m is even, and odd
dimensional otherwise.

Consider the case that G is a Bredon—Poincaré duality group, arising from a
smooth cocompact action on an m-dimensional manifold M, and C), for p # 2 is
some finite subgroup of GG. Then d¢, is exactly the dimension of the submanifold
MC>, and by the discussion above dc, is odd dimensional if m is odd dimensional,
even dimensional otherwise. As demonstrated by Example there are no

restrictions when p = 2.

6.2.2. A counterexample to the generalised PD" conjecture. Let G
be Bredon—Poincaré duality over Z, such that W H is finitely presented for all
finite subgroups H. Omne might ask if G admits a cocompact manifold model
M for E,G. This is generalisation of the famous PD"-conjecture, due to Wall
[Wal79]. This example is due to Jonathan Block and Schmuel Weinberger and

was suggested to us by Jim Davis.

THEOREM 6.2.7. There exist examples of Bredon—Poincaré duality groups
over 7, such that W H is finitely presented for all finite subgroups H, but there

doesn’t exist a cocompact manifold model M for Eg,G.



114 6. BREDON DUALITY GROUPS

Combining Theorems 1.5 and 1.8 of [BWO08] gives the following example.

THEOREM 6.2.8 (Block—Weinberger). There exists a short exact sequence of
groups

1—-K—G—Q—1

with @ finite, such that

(1) All torsion in G is contained in K.
(2) There exists a cocompact manifold model for Eg, K.
(3) gdgin G < 0.
(4) There exists no manifold model for Ez,G.

PROOF OF THEOREM [6.2.7] Let G be one of the groups constructed by Block
and Weinberger in the theorem above. Since K has a cocompact model for E#;, K
it has finitely many conjugacy classes of finite subgroups hence G has finitely
many conjugacy classes of finite subgroups, since all torsion in G is contained
in K. Let H be a finite subgroup of G, so H is necessarily a subgroup of K
and the normaliser Ng H is finite index in NgH. Since there is a cocompact
model for Eg, K, the normaliser NxH is FPo, and finitely presented [LMOO,
Theorem 0.1] hence NgH and W H are FP, and finitely presented too [Bro94,
VIIL.5.1][Rob96) 2.2.5]. Using Corollary G is of type Oy, FP.

Finally, using [Bro94, III.(6.5)], there is a chain of isomorphisms for all

natural numbers 1,
HY(WgH, R[WgH]) = H (NgH, R[NgH])
>~ H'(NgH, R[Ng H])
>~ O'(WxH, R[W H])
proving that the Weyl groups of finite subgroups have the correct cohomology. [

REMARK 6.2.9. Although it doesn’t appear in the statements of [BWOS|
Theorems 1.5, 1.8], Block and Weinberger do prove that there is a cocompact
model for E,G, in their notation this is the space X.

6.2.3. Actions on R-homology manifolds. Following [DL98] we define
an R-homology n-manifold to be a locally finite simplicial complex M such that

the link o of every i-simplex of M satisfies
R ifj=n—i-1 =0,
Hy(o, ) ifj=n—1 or j
0 else,
for all 4 such that n —7 — 1 > 0 and the link is empty if n —i—1 < 0. In
particular M is an n-dimensional simplicial complex. M is called orientable if

we can choose an orientation for each n-simplex which is consistent along the
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(n — 1)-simplices and we say that M is R-orientable if either M is orientable or
if R has characteristic 2.
A topological space X is called R-acyclic if the reduced homology H, (X,R)

is trivial.

THEOREM 6.2.10. If G is a group acting properly and cocompactly on an
R-acyclic R-orientable R-homology n-manifold M then
R ifi=n,

0 else.

HY(G,RG) = {

PrOOF. By [Dav08, Lemma F.2.2] H (G, RG) = H(M, R), where H! de-
notes cohomology with compact supports. By Poincaré duality for R-orientable
R-homology manifolds (see for example [DL98, Theorem 5]), there is a duality
isomorphism Hi(M, R) = H,,_;(M, R). Finally, since M is assumed R-acyclic,

] R ifi=n,
ani(Mv R) =
0 else.
O

EXAMPLE 6.2.11. In [DL98|, Example 3|, Dicks and Leary construct a group
which is Poincaré duality over R, arising from an action on an R-orientable R-
acyclic R-homology manifold, but which is not Poincaré duality over Z. Here R

may be any ring for which a fixed prime ¢ is invertible, for example R = IF,, for

p#qor R=Q.

COROLLARY 6.2.12. Let G be a group which admits a cocompact model X
for EgG such that for every finite subgroup H of G, X is an R-orientable
R-acyclic R-homology manifold, then G is Bredon—Poincaré duality over R.

REMARK 6.2.13. In the case R = Z we can drop the condition that M be
orientable since this is implied by being acyclic. This is because if M is acyclic
then 71 (M) is perfect, thus 71 (M) has no normal subgroups of prime index, in
particular M has no index 2 subgroups. But if M were non-orientable then the
existence of an orientable double cover (see for example [Hat02| p.234]) would

imply that 71 (M) has a subgroup of index 2.

Let p be a prime and F, the field of p elements. A consequence of Smith
theory is the following theorem, for background on Smith theory see [Bre72
§IIT]

THEOREM 6.2.14 ([Bor60) §5 Theorem 2.2][Dav08|, 10.4.3]). If G is a finite
p-group acting properly on an Fy,-homology manifold M then the fized point set

ME is also an [F,,-homology manifold. If p # 2 then ME has even codimension
m M.
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COROLLARY 6.2.15 (Actions on homology manifolds).

(1) Let G have an n-dimensional IF,,-homology manifold model M for E,G.
If H is a finite p-subgroup of G then M is an Fp-homology manifold.
In particular if all finite subgroups of G are p-groups and M is cocompact
then G is Bredon—Poincaré duality over Fy,. If p # 2 and H is a finite
p-subgroup of G then n — dy is even.

(2) Let G have an n-dimensional Z-homology manifold model M for E,G.
If p # 2 is a prime and H is a finite p-subgroup of G such that M is

a Z-homology manifold then n — dim M is even.

REMARK 6.2.16. Given a group G with subgroup H which is not of prime
power order, looking at the Sylow p-subgroups can give further restrictions. For
example if P; for ¢ € I is a set of Sylow p-subgroups of H, one for each prime
p, then G is generated by the P; [Rot95, Ex. 4.10]. Thus if G acts on an R-
homology manifold then the fixed points of H are exactly the intersection of the

fixed points of the P;.

6.2.4. One relator groups. The following lemma is adapted from [BE73|
5.2].

LEMMA 6.2.17. If G is FPy with cdG = 2 and H*(G,ZG) = 0 then G is a
duality group.

PrOOF. We must show that H?(G,ZG) is a flat Z-module. Consider the

short exact sequence of ZG modules
0 — ZG 5% 726G — F,G — 0.
This yields a long exact sequence
.. — HY(G,F,G) — H?*(G,2G) =5 H*(G,2G) — - -

By [Bie81, Corollary 3.6], H(G,F,G) & HY(G,ZG) @z F, = 0. Hence the
map H2(G,ZG) =% H%(G,ZG) must have zero kernel for all p, in other words
H?(G,ZG@) is torsion-free, but the torsion-free Z-modules are exactly the flat
Z-modules. g

Let G be a one-relator group—a group admitting a presentation of finitely
many generators and one relator (see [LS01, §5] for background), then:
(1) G is OginFP and O?inCdZ G=2 [LliC057 412]
(2) G contains a torsion-free subgroup @ of finite index [FKS72].
(3) The normaliser of every non-trivial finite subgroup F' is finite. In fact,

every such F' is subconjugate to a finite cyclic self-normalising subgroup
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C of G, and furthermore the normaliser NgF' is subconjugate to C
[LSO01} 11.5.17,11.5.19]. Thus,

0 ifi>0,

HY{(NgF,Z[NgF)) =
(NeF, ZINGF]) {Z ifi=0.

Assume further that H'(G,ZG) = 0.

If cdz @ < 1 then @ is either trivial or a finitely generated free group so G is
either finite or virtually finitely generated free. Thus G is Bredon duality over Z
by [6.4.1], [6.4.3], and [6.4.2] Assume therefore that cdz @) = 2. Being finite index
in G, Q is also FPy and HY(Q,ZQ) = HY(G,ZG) = 0 [Bro94, I11.(6.5)], thus
by Lemma [6.2.17] Q is a duality group and G is virtual duality. Combining with

(iii) above, G is also Bredon duality of dimension 2.

In summary:

PROPOSITION 6.2.18. If G is a one relator group with H'(G,ZG) = 0 then
G is Bredon duality over any ring R.

REMARK 6.2.19. If G is a one relator group with H!(G,ZG) # 0 then, since
G is O, FPy, G has bounded orders of finite subgroups by Proposition m
By a result of Linnell, G admits a decomposition as the fundamental group of
a finite graph of groups with finite edge groups and vertex groups G, satisfy-
ing H'(G,,ZG,) = 0 [Lin83]. These vertex groups are subgroups of virtually
torsion-free groups so in particular virtually torsion-free with Ogy,cd, G, < 2.
Lemma below gives that the vertex groups are FPo and Lemma
shows that the edge groups are virtually duality.

LEMMA 6.2.20. Let G be a group which splits as a finite graph of groups with
finite edge groups Ge, indexed by E, and vertex groups G,, indexed by V. Then
if G is FPg, so are the vertex groups G,.

PRrOOF. Fix a vertex group G,. Let M), for A € A, be a directed system
of ZG, modules with hﬂM A = 0. To use the Bieri-Eckmann criterion [Bie81),
Theorem 1.3], we must show that hAlHi(Gv, My) =0 fori=1,2.

The Mayer—Vietoris sequence associated to the graph of groups is

. — HY(G,-) — @Hi(Gu,—) — @Hi(Ge,—) —
ueV ecE
Now h_n}M x =0, so ligﬂnd%gv M)y = 0 as well. Evaluating the Mayer—Vietoris
sequence at Ind%gv M), taking the limit, and using the Bieri-Eckmann criterion,
implies

lim @ H*(Gu, IndZ¢, My) = 0.
A uev
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In particular li_n>QHi(GU,Ind%gv M)) = 0 and because, as ZG,-module, M, is a
direct summand of Ind%gv M, [Bro94, VIL5.1], this implies hﬂHi(Gv, My) =
0. ]

6.2.5. Discrete subgroups of Lie groups. If L is a Lie group with finitely
many path components, K a maximal compact subgroup and G a discrete sub-
group then L/K is a model for Eg,G. The space L/K is a manifold and the
action of G on L/K is smooth so the fixed point subsets of finite groups are
submanifolds of L/K, using Lemma If we assume that the action is co-
compact then G is seen to be of type Oy, FP, Ogucd G = dim L/K and G is a
Bredon—Poincaré duality group. See [Liic05, Theorem 5.24] for a statement of

these results.

ExamMPLE 6.2.21. In [Rag84), [Rag95|, examples of cocompact lattices in
finite covers of the Lie group Spin(2,n) are given which are not virtually torsion-

free.

6.2.6. Virtually soluble groups. For G a soluble group the Hirsch length
hG is the sum of the torsion-free ranks of the factors in an abelian series [Rob96),
p.422]. Hillman later extended this definition to elementary amenable groups
[Hil91].

Much of the observation below appears in [MP13al, Example 5.6].

Torsion-free soluble groups of type FP., are duality [Kro86]. We combine
this with [MPIN10], that virtually soluble groups of type FP., are O, FP with
Ogincd G = hG, and deduce that if G is a virtually soluble duality group (equiv-
alently virtually soluble of type FP,) then G virtually duality of type Og,FP
with Og,cdG = hG. We claim G is also Bredon duality, so we must check the
cohomology condition on the Weyl groups. Since G is Og,FP, the normalisers
NgF of any finite subgroup F' of G are FP., (Corollary . Subgroups of
virtually-soluble groups are virtually-soluble [Rob96, 5.1.1|, so the normalisers
NgF' are virtually-soluble FP,, and hence virtually duality, and so the Weyl
groups satisfy the required condition on cohomology.

Additionally, if G is a virtually soluble Poincaré duality group then we claim G
is Bredon—Poincaré duality. By [Bie81), Theorem 9.23], G is virtually-polycyclic.
Subgroups of virtually-polycyclic groups are virtually-polycyclic [Rob96l p.52],
so NgF is polycyclic FP, for all finite subgroups F' and, since polycylic groups

are Poincaré duality,

He (NgF,Z[NgF)) = Z.

PROPOSITION 6.2.22. The following conditions on a virtually-soluble group G

are equivalent:
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(1) G is FP.
(2) G is virtually duality.
(3) G is virtually torsion-free and ved G = hG < cc.
(4) G is Bredon duality.
Additionally, if G is Bredon duality then G is virtually Poincaré duality if and
only if G is virtually-polycyclic if and only if G is Bredon—Poincaré duality.

PROOF. The equivalence of the first three is [Kro86] and [Kro93|. The rest

is the discussion above. O

6.2.7. Elementary amenable groups. If G is an elementary amenable
group of type FPo then G is virtually soluble [KMPNOQ9, p.4], in particular
Bredon duality over Z of dimension AG. The converse, that every elementary
amenable Bredon duality group is FP, is obvious.

If G is elementary amenable FP, then the condition H"(G,ZG) = 7 implies

that G is Bredon—Poincaré duality, so for all finite subgroups,
He (NgF,ZINgF]) = 7.

A natural question is whether
HY (NgF,Z|NGF]) = Z

can ever occur for an elementary amenable, or indeed a soluble Bredon duality,
but not Bredon—Poincaré duality group. An example of this behaviour is given

below.

EXAMPLE 6.2.23. We construct a finite index extension of the Baumslag—

Solitar group BS(1,p), for p a prime.
BS(1,p) = (x,y : y~'zy = a?)
This has a normal series [LRO4, p.60],
1< () D ((zx)) S BS(1,p),

where ((x)) denotes the normal closure of . The quotients of this normal series
are (x)/1 =2 Z, ((x))/(z) = Cp~ and BS(1,p)/{(z)) = Z, where Cp denotes the
Priifer group (see [Rob96, p.94]). Clearly BS(1,p) is finitely generated torsion-
free soluble with hBS(1,p) = 2, but not polycyclic, since Cpeo does not have the
maximal condition on subgroups [Rob96) 5.4.12], thus BS(1,p) is not Poincaré
duality. Also since BS(1,p) is an HNN extension of (z) = Z it has cohomological
dimension 2 [Bie81l, Proposition 6.12] and thus c¢d BS(1,p) = hBS(1,p). By
Proposition BS(1,p) is a Bredon duality group.

Recall that elements of BS(1,p) can be put in a normal form: y’z¥y =7 where

i,7 > 0 and if 4,5 > 0 then n 1 k. Consider the automorphism ¢ of BS(1,p),
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sending  — z~! and y — v, an automorphism since it is its own inverse and

because the relation y 1y = 2P in BS(1,p) implies the relation y 1z =1y = z7P.

Let 4'2%, 77 be an element in normal form, then
i y'aly ™ — ylahy
So the only fixed points of ¢ are in the subgroup (y) = Z. Form the extension
1— BS(l,p) — G —Cy — 1

where C acts by the automorphism . The property of being soluble is extension
closed [Rob96, 5.1.1], so G is soluble virtual duality and Bredon duality by
Proposition [6.2.22] The normaliser

NgCy = CCy ={g € G : gz = zg for the generator z € Cs}

is exactly (y) x Cy 2 Z x Cy. Thus WgCs = Z and HY(WgCy, ZIWgCs]) = Z.
Since BS(1,p) is finite index in G, by [Bro94l, I11.(6.5)]

H*(G,7G) = H*(BS(1,p), Z[BS(1,p)]).

However since BS(1,p) is not Poincaré duality, H"(BS(1,p), Z[BS(1,p)]) is Z-
flat but not isomorphic to Z.

REMARK 6.2.24. Baues [Bau04] and Dekimpe [Dek03] proved independently
that any virtually polycyclic group G can be realised as a NIL affine crystal-
lographic group—G acts properly, cocompactly, and by diffeomorphisms on a
simply connected nilpotent Lie group of dimension hG. Any connected, simply
connected nilpotent Lie group is diffeomorphic to some Euclidean space [Kna02),
§1.16] and hence contractible, so any elementary amenable Bredon—Poincaré du-

ality group has a cocompact manifold model for E,G.

6.3. Finite extensions of right-angled Coxeter groups

Recall Corollary that if G has a cocompact n-dimensional Z-homology
manifold model M for Eg,G such that all fixed point sets MY are Z-homology
manifolds, and if H is a finite p-subgroup of G with p # 2 then n — dy is even. In
this section we construct Bredon—Poincaré duality groups G over Z of arbitrary
dimension such that, for any fixed prime p # 2:

(1) All of the finite subgroups of G are p-groups.
(2) V(G) is any set with n — dg even for all finite subgroups H.

The method of constructing these examples was recommended to us by Ian
Leary and utilises methods from [DLO03, §2] and [Dav08| §11]. We write “I"”
instead of “W”, as is used in [DLO03], to denote a Coxeter group so the notation

can’t be confused with our use of W H for the Weyl group.
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Let M be an compact contractible n-manifold with boundary dM, such that
OM is triangulated as a flag complex. Let G be a group acting on M such that
the induced action on the boundary is by simplicial automorphisms. Let I' be
the right angled Coxeter group corresponding to the flag complex dM, the group
G acts by automorphisms on I' and we can form the semi-direct product I' x G.
Moreover there is a space U = U(M,0M, G) such that:

(1) U is a contractible n-manifold without boundary.

(2) T' x G acts properly and cocompactly on U.

(3) For any finite subgroup H of G, we have U = uU(M™ (OM)H , WsH),
in particular dim/* = dim M*H.

(4) WrugH = TH x WgH, where T is the right-angled Coxeter group
associated to the flag complex (OM)H.

(5) If M is the cone on a finite complex then ¢ has a CAT(0) cubical struc-
ture (1-connected cubical complex whose links are simplicial flag com-
plexes) such that the action of I' X G is by isometries.

Every Coxeter group contains a finite-index torsion-free subgroup [Dav08|
Corollary D.1.4], let I denote such a subgroup of I" and assume that I'" is normal.
Then IV x G is finite index in I x G and so acts properly and cocompactly on U/

also.

LEMMA 6.3.1. If M is the cone on a finite complex then U is a cocompact
model for E¢(T'x G) and for Eq,(T' x Q). In particular, T" x G is of type O 5, FP.

PrOOF. A CAT(0) cubical complex has a CAT(0) metric [Wis12l Remark
2.1] and any contractible CAT(0) space on which a group acts properly is a
model for the classifying space for proper actions [BH99, Corollary I1.2.8] (see
also [Liic05, Theorem 4.6]). O

LEMMA 6.3.2. Let M be the cone on the finite compler OM. If K is a finite
subgroup of T' x G then K is subconjugate in T' x G to G.

PROOF. Since, by Lemma U is a model for E# (' x G), the finite
subgroup K necessarily fixes a vertex v of U and hence is a subgroup of the
stabiliser of v.

Recall from [Dav08| §5] and Section [3.§| that

U=Tx M/~
where the identification is along I' x M only and the action of I' x G on U is
given by
(Y, 9) - (v;m) = (4, gm).
A fundamental domain for the I'-action is the copy of M inside U given by

1 x M and as such the stabiliser of any vertex is conjugate via an element of I'
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to the stabiliser of a vertex v’ in 1 x M. Finally, the only elements from I" x G
stabilising v € 1 x M are contained in G (I moves M about U freely, whereas
G stabilises M setwise). O

THEOREM 6.3.3. Let G be a finite group with real representation p : G —
GL,R and, for all subgroups H of G, let dg denote the dimension of the subspace
of R™ fized by H. Then there exists a Bredon—Poincaré duality group I" x G of

dimension n such that
V(F’ xG)={dyg : H<G}.

PROOF. Restrict p to an action on (D", S"!) and choose a G-equivariant
flag triangulation of S"~1 (use, for example, [III78]). We obtain a Coxeter group
I', normal finite-index torsion-free subgroup I", and space Y. Lemma gives
that TV x G is of type O, FP.

Since I'" x G has an n-dimensional model for E#,I” x G we have that gd &, I x

G < n, by Lemma|6.1.2(1) cdg I'" x G = dy, and by Theorem|[6.2.10]and Corollary
6.2.12| dy = n. Using the chain of inequalities

n:CdQF,NGSOg’mCdF/NGSgdg’mF,NGSTL,

shows that Og,cdI” x G = n. It remains only to check the condition on the
cohomology of the Weyl groups of the finite subgroups.

For any finite subgroup H of G, the Weyl group Wt/ o H acts properly and
cocompactly on U(M* (OM)H W H) which is a contractible d z-manifold with-
out boundary. By Theorem [6.2.10)

7 ifi=dy,

Hn(WF/NGH, Z[WF’NGH]) =
0 else.

If K is any finite subgroup of IV x G then, by Lemma K is conjugate
in ' x G to some H < G. In particular the normalisers of H and K in I' x G are
isomorphic. Also, since I" x G is finite index in I" x G, the normaliser Nt ,gK

is finite index in Ny, oK, thus:
H"(Nriwo K, Z| Ny K]) =2 H"(Nrwe K, Z[NrwcK])
= H"(NrwgH,Z[NrwcH))
= H"(NrwgH, Z[Nr g H)).
From the short exact sequence
1— K — NpyoaK — WriyaK — 1
and Lemma [6.5.4

H"(NriwgH, Z[NrrwoH]) = H"(Wriwa K, ZWr g K]).
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Thus,
7 ifi=dp,
H" (Wi K, Z[Wrr o K]) = "
0 else.
O

EXAMPLE 6.3.4. We construct a group using Theorem with the proper-
ties mentioned at the beginning of this section. It will be of the form I x Cpm,
where Cpm is the cyclic group of order p™.

For 7 between 1 and m let w; be any collection of positive integers and let
n =, 2w;. If ¢ is a generator of the cyclic group Cpm, then Cpm embeds into

the orthogonal group O(n) via the real representation
p: Cpm — O(n)
Dwi Dwa2 DSwm
cr— (R27r/p) ©® (R27r/p2) ©--- D (R27r/pm)

where Ry is the the 2-dimensional rotation matrix of angle . The image is in
O(n) since we chose n such that 2w; + - - - 2w, = n.

If 7 is some integer between 1 and m then there is a unique subgroup Cpm—i+1
of Cpm with generator cpi, in fact this enumerates all subgroups of Cpm except

the trivial subgroup. Under p, this generator maps to

Dwit1 Dwn,

pr s RE™ @ @ RY™ @ (Ryige/pin1) & @ (Ryign/pm)

In other words, the fixed point set corresponding to Cpym—i+1 is R2wit+2wi - Thyg
the set of dimensions of the fixed point subspaces of non-trivial finite subgroups

of Cym are
{21,01, 2(w1 + ’LUQ), c. ,2(w1 +wy + ...+ wmfl)}.
Applying Theorem m gives a group IV x Cpm of type O, FP with

OgincdG =n = Z 2w;
i=1

and such that
V(F/ X Cpm) = {2w1, 2(11)1 + U)Q), ey 2(11)1 +wo + ...+ ’Ll)mfl)}.

Since there were no restrictions on the integers w;, using this technique we can
build an even dimensional Bredon—Poincaré duality group with any V(G), as long
as all the integers dy are even.

The case n is odd reduces to the case n is even. Proposition [6.5.3|shows that
if a group G is Bredon—Poincaré duality then taking the direct product with Z

gives a Bredon—Poincaré duality group G x Z where

VGXZ)={v+1:veV(G)}



124 6. BREDON DUALITY GROUPS

Thus we can build a group with odd ny and V containing only odd elements by

building a group with even ngy and then taking a direct product with Z.

6.4. Low dimensions

This section is devoted to the study of Bredon duality groups and Bredon—
Poincaré duality groups of low dimension. We completely classify those of dimen-
sion 0 in Lemma We partially classify those of dimension 1-—see Proposi-
tions [6.4.2] and [6.4.5] and Question There is a discussion of the dimension

2 case.

Recall that a group G is duality of dimension 0 over R if and only if |G|
is finite and invertible in R, and any such group is necessarily Poincaré duality
[Bie81), Proposition 9.17(a)].

LEMMA 6.4.1. G is Bredon duality of dimension 0 over R if and only if |G|

1s finite. Any such group is necessarily Bredon—Poincaré duality.

PROOF. By [Geo08) 13.2.11],

R if |G| is finite,

HY(G,RG) =
0 else.

Hence if G is Bredon duality of dimension 0 then G is finite and moreover G is
Bredon—Poincaré duality.

Conversely, if G is finite then Ogucdp G = 0 and G is Oy, FP  over R
(Propositions [3.5.2| and [3.6.1]). Finally the Weyl groups of any finite subgroup
will be finite so by [Geo08, 13.2.11,13.3.1],

" R ifn=0,
H"(WH,RWH]) =
0 ifn>0.
Thus G is Bredon—Poincaré duality of dimension 0. O

The duality groups of dimension 1 over R are exactly the groups of type FP;
over R (equivalently finitely generated groups [Bie81l Proposition 2.1]) with
cdr G = 1 [Bie81], Proposition 9.17(b)].

ProproSITION 6.4.2. If G is infinite R-torsion free, then the following are
equivalent:
(1) G is Bredon duality over R, of dimension 1.
(2) G is finitely generated and virtually-free.
(3) G is virtually duality over R, of dimension 1.

Proor. That 2 = 3 is [Bie81) Proposition 9.17(b)]. For 3 = 2, let G be
virtually duality over R of dimension 1, then cdg G < 1 so by [Dun79] G acts
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properly on a tree. Since G is assumed finitely generated, G is virtually-free
[Ant11l Theorem 3.3].

For 1 = 2, if G is Bredon duality over R of dimension 1, then G is automat-
ically finitely generated and Ogucdp G = 1. By Lemma cdr G =1 so, as
above, by [Dun79|] and [Ant11, Theorem 3.3|, G is virtually-free.

For 2 = 1, if G is virtually finitely generated free then G acts properly
and cocompactly on a tree [Ant1ll Theorem 3.3], so G is O, FP over R with
Ogincdp G = 1. As G is O, FP, for any finite subgroup K, the normaliser Ng K is
finitely generated. Subgroups of virtually-free groups are virtually-free, so Ng K
is virtually finitely generated free, in particular a virtual duality group [Bie81)
Proposition 9.17(b)], so

, , Z-flat  for i = df,
H (WK, ZIWK]) = H(NgK, Z[NcK)) = 0 I
else,

where dg = 0 or 1. Thus G is Bredon duality over Z and hence also over R. [J

REMARK 6.4.3. The only place that the condition G be R-torsion-free was
used was in the implication 1 = 2, the problem for groups which are not R-
torsion-free is that the condition Og,cdp G < 1 is not known to imply that G
acts properly on a tree.

If we take R = Z then Og,cd;, G < 1 implies G acts properly on a tree by
a result of Dunwoody [Dun79|. Thus over Z, G is Bredon duality of dimension
1 if and only G is finitely generated virtually free, if and only if G is virtually

duality of dimension 1.

QUESTION 6.4.4. What characterises Bredon duality groups of dimension 1

over R?

PROPOSITION 6.4.5. If G is infinite then the following are equivalent:

(1) G is Bredon—Poincaré duality over R, of dimension 1.
(2) G is virtually infinite cyclic.

(3) G is virtually Poincaré duality over R, of dimension 1.

PRrOOF. The equivalence follows from the fact that for G a finitely gener-
ated group, G is virtually infinite cyclic if and only if H'(G, RG) = R [Geo08,
13.5.5,13.5.9]. ]

In dimension 2 we can only classify Bredon—Poincaré duality groups over Z.
The following result appears in [MP13a, Example 5.7], but a proof is not given
there. Recall that a surface group is the fundamental group of a compact surface

without boundary.

LEMMA 6.4.6. If G is virtually a surface group then G is Bredon—Poincaré
duality.
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PROOF. As G is a virtual surface group, G has finite index subgroup H with
H the fundamental group of some compact surface without boundary. Firstly,
assume H = m(Sy) where S, is the orientable surface of genus g. If g = 0 then
Sy is the 2-sphere and G is a finite group, thus G is Bredon-Poincaré duality by
Lemma If g > 0 then by [Mis10, Lemma 4.4(b)] G is O, FP over Z with
Ogined, G < 2.

We now treat the cases ¢ = 1 and g > 1 separately. If g > 1 then, in the
same lemma, Mislin shows that the upper half-plane is a model for Eg,G with G
acting by hyperbolic isometries. Thus [Dav08, §10.1] gives that the fixed point
sets are all submanifolds, hence G is Bredon—Poincaré duality of dimension 2.
If g = 1 then by [Mis10, Lemma 4.3], G acts by affine maps on R? so again
R? is a model for E4,G whose fixed point sets are submanifolds, and thus G is
Bredon—Poincaré duality of dimension 2.

Now we treat the non-orientable case, so H = m1 (T} ) where T}, is a closed non-
orientable surface of genus k. In particular T} has Euler characteristic x(7}) =
2 — k. H has an index 2 subgroup H' isomorphic to the fundamental group of
the closed orientable surface of Euler characteristic 2x (7)), thus H = 71 (Sk—1).
If k=1 then H =7/2 and G is a finite group, thus Bredon—Poincaré duality by
Lemma Assume then that & > 1, we are now back in the situation above
where G is virtually m1(S,) for g > 0 and as such G is Bredon-Poincaré duality

of dimension n, by the previous part of the proof. O

PROPOSITION 6.4.7. The following conditions are equivalent:

(1) G is virtually Poincaré duality of dimension 2 over Z.
(2) G is virtually surface.

(3) G is Bredon—Poincaré duality of dimension 2 over Z.

PRrROOF. That 1 < 2 is [Eck87] and that 2 = 3 is Lemma The im-
plication 3 = 1 is provided by [Bow04] Theorem 0.1] which states that any
FPy group with H?(G,QG) = Q is a virtual surface group and hence a virtual
Poincaré duality group. If G is Bredon—Poincaré duality of dimension 2 then
H(G,QG) = H(G,ZG) ® Q = Q (see proof of Lemma[6.1.2(1)) and G is FP,

so we may apply the aforementioned theorem. O

The above proposition doesn’t extend from Poincaré duality to just duality,
as demonstrated by [Sch78, p.163] where an example, based on Higman’s group,
is given of a Bredon duality group of dimension 2 over Z which is not virtual
duality. This example is extension of a finite group by a torsion-free duality
group of dimension 2. Schneebeli proves that the group is not virtually torsion-

free, that it is Bredon duality follows from Proposition [6.5.8
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QUESTION 6.4.8. Is there an easy characterisation of Bredon duality, or

Bredon—Poincaré duality groups, of dimension 2 over R?

6.5. Extensions

In the classical case, extensions of duality groups by duality groups are always
duality [Bie81), 9.10]. In the Bredon case the situation is more complex, for
example semi-direct products of torsion-free groups by finite groups may not even
be O, FP, [LNO3]. Davis and Leary build examples of finite index extensions of
Poincaré duality groups which are not Bredon duality, although they are O, FP
[DLO03| Theorem 2], and examples of virtual duality groups which are not of type
O, FP_ [DLO3| Theorem 1]. In [FLO4], Farrell and Lafont give examples of
prime index extensions of J-hyperbolic Poincaré duality groups which are not
Bredon—Poincaré duality. In [MP13al §5], Martinez-Pérez considers p-power
extensions of duality groups over fields of characteristic p, showing that if @) is a
p-group and G is Poincaré duality of dimension n over a field of characteristic p
then then G x @ is Bredon—Poincaré duality of dimension n. These results do not
extend from Poincaré duality groups to duality groups however [MP13al §6].

We study direct products of Bredon duality groups and extensions of the form

finite-by-Bredon duality.
6.5.1. Direct products.

LEMMA 6.5.1. For all groups G and Ga,

(1) If G1 and Gy are O, FP over R then G1 X Gg is Oz, FP over R.
(2) OﬁnCdR Gl X GQ < Oﬁ'nCdR Gl + OﬁnCdR GQ.

Proor. That Ogycdp G1 X G2 < Ogpedp G+ Ogpedp Go is a special case
of [Flul0l 3.62], where Fluch proves that given projective resolutions P, of R by
Ogp-modules for G and Q4 of R by Og,-modules for Ga, the total complex of
the tensor product double complex is a projective resolution of R by projective
Og-modules for G x Gy. So to prove that G x Gg is O, FP it is sufficient to
show that if P, and Q) are finite type resolutions, then so is the total complex,
but this follows from [Flul0, 3.52]. O

LEMMA 6.5.2. If L is a finite subgroup of Gi1 x Ga then the normaliser
Ng,xa,L is finite index in Ng,m L x Ng,moL, where m1 and my are the pro-

jection maps from G1 X Go onto the factors G1 and Gs.
PROOF. It’s straightforward to check that
NG1><G2L < NGlﬂ'lL X NGQ7T2L.

Next, observe that Ng,m1 L x Ng,m2L acts by conjugation on m1 L X maL and
the setwise stabiliser of L < (m1L x moL) is exactly Ng, xq, L. Since m1L X moL is
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finite, any stabiliser of a subset is necessarily finite-index (via the orbit-stabiliser

theorem), thus Ng, xg, L is finite index in Ng,m1 L x Ng,maL. O

PROPOSITION 6.5.3. If G1 and G are Bredon duality (resp. Bredon—Poincaré
duality), then G = G1 x Ga 1is Bredon duality (resp. Bredon-Poincaré duality).

Furthermore,

V(G1 x G2) = {v1 +v2:v; € V(Gi)} U{vr + di(Ga) 1 v1 € V(G1)}
U{dl(Gl) +v9 1 vy € V(Gg)}.
PROOF. By Lemma [6.5.1} G; x G2 is O, FP. If L is some finite subgroup of

G, then, via Lemma the normaliser N L is finite index in Ng, m1 L X Ng,m2L
so an application of Shapiro’s Lemma [Bro94, III1.(6.5) p.73] gives that for all 7,

H'(NgL, RINgL)]) = H'(Ng,m L x Ng,m2L, RINg, 71 L x Ng,m2L]).
Noting the isomorphism of RG-modules
R[Ng,m L x Ng,maL] = R[Ng,m L] ® R[Ng,m2L],
the Kiinneth formula for group cohomology (see [Bro94, p.109)]) is:

0

l

@Z’+j:k (Hi(NGﬂrlLa R[Ng,m L)) ® Hj(NGlﬁlLv R[NGl”TlLD)

!

H*(Ng,m1L x Ng,maL, RINg,m L x Ng,maL])

l

D, j—rs1 Torf (H (Ne,m L, R[Ng,m L]), H (Ng,m2 L, R[Ng,m L))

i

0

Here we are using that the R[Ng,m;L] are R-free. Since H*(Ng, 71 L, R[Ng,m1L])
is R-flat the Tor; term is zero. Hence the central term is non-zero only when
i =dr, 1 and j = dg, 1, in which case it is R-flat. Furthermore, dy, = dr, 1. + dn, 1L
If G1 and G5 are Bredon—Poincaré duality then the central term in this case
is R.
Since if L is non-trivial one of 71 L and w9 L must be non-trivial, the argument

above implies that

V(Gl X GQ) - {U1 +vo:v; € V(Gl)} U {Ul + dl(Gg) v € V(Gl)}
U{d1(G1) +v2 : v2 € V(G2)}.
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For the other inclusion let
ve{vr+va:v € V(G;)}U{v1 +di(Ge) : v1 € V(G)}
U{di(G1) +v2:v2 € V(G)}.

Thus there exist finite finite subgroups L; of G; and Ly of G such that dr,, = vy,
dr, = v, and one of the L; is non-trivial. Using the Kiinneth formula again, one

calculates that dr, xr, = v. O

6.5.2. Finite-by-duality groups. Throughout this section, F';, G and @)

will denote groups in a short exact sequence
1 —F—G5Q—1,

where F' is finite. This section builds up to the proof of Proposition that if

Q is Bredon duality of dimension n over R, then G is also.
LEMMA 6.5.4. H'(G, RG) = HY(Q, RQ) for all i.

ProOOF. The Lyndon—Hochschild—Serre spectral sequence associated to the
extension is [Bro94, VII§6]

H?(Q, HI(F, RG)) = HPT9(G, RG).

RG is projective as a RF-module so by [Bie81, Proposition 5.3, Lemma 5.7,

R®prr RG=RQ ifq=0
Hq(RRG)%’Hq(F,RF)@RFRG:{0®RF @ ifg=0,

else.
The spectral sequence collapses to H (G, RG) = H'(Q, RQ). O
LEMMA 6.5.5. If Q is Oz, FP, then G is Oz, FP,.
ProOOF. Let B; for i =0,...,n be a collection of conjugacy class representa-

tives of all finite subgroups in (). For each i, let Bg be a collection of conjugacy
class representatives of finite subgroups in G which project onto B;. Since F' is
finite 771 (B;) is finite and there are only finitely many j for each i, we claim that
these Bg are conjugacy class representatives for all finite subgroups in G.

Let K be some finite subgroup of G, we need to check it is conjugate to some
BZ] A = 7(K) is conjugate to B;, let ¢ € Q be such that ¢~ Aq = B; and let
g € G be such that 7(g) = q.

(g7 'Kg) = ¢ ' Aq = B; so g"'Kg is conjugate to some Bg and hence K is
conjugate to some sz . Since we have already observed that for each ¢, the set

{Bg }; is finite, G has finitely many conjugacy classes of finite subgroups. O

LEMMA 6.5.6. If K is a finite subgroup of G then NgK is finite index in
Ng(n~tom(K)).
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PROOF. NgK is a subgroup of Ng(n~! o w(K)) since if g7'Kg = K then

(71'_1 o 7r(g)) (71'_1 o W(K)) (71'_1 o Tr(g))i1 =7 1o m(K),

but g € 7 tom(g) so g(rton(K)) gt =t onm(K).
Consider the action of Ng(n~! o m(K)) on 7! o m(K) by conjugation, the
setwise stabiliser of K is exactly NgK. Since 71 o w(K) is finite, any stabiliser

is finite index Via the orbit-stabiliser theorem. We conclude that Ng K is finite
index in Ng(rm~!on(K)). O

LEMMA 6.5.7. If L is a subgroup of Q then Ngm (L) = 7~ NgL.

PROOF. If g € Ngm (L) then g~'7n=1(L)g = m~1(L) so applying 7 gives
that 7(g) L7 (g) = L. Thus 7(g) € NgL, equivalently g € 71 NgL.
Conversely if g € 7~ 1(NgL) then 7(g)~'Lw(g) = L so
(71'71 om(g))
Since g € 7! o 7(g), we have that g~ 'n~1(L)g = 7~ (L). O

! 7 (L) (71'71 o 7r(g)) = 1(L).

PROPOSITION 6.5.8. @ is Bredon duality of dimension n over R if and only
if G is Bredon duality of dimension n over R. Moreover, V(G) = V(Q).

PROOF. Assume that @) is Bredon duality of dimension n of R. Let K be
a finite subgroup of G. We combine Lemma [6.5.6) and Lemma to see that
NgK is finite index in Ng(r~! o 7(K)) = n~ 1 (Nom(K)). Hence

1

H'(WgK, RWgK)) = H' (NgK, R[NgK))

(
(77" (Nom(K)), R [~ (Nom(K))])
(
(

12

12

Nom(K), R[Nom(K)])

H
H
H' (Wor(K), R[Won(K)))

1

where the first isomorphism is from the short exact sequence
1— K — NgK — WgK —1

and Lemma the fourth isomorphism is from the same lemma and a similar
short exact sequence containing Ng K, and the third isomorphism follows from

Lemma and the short exact sequence
1 — F — 71 (Ngm(K)) — Nom(K) — 1.

Since @ is Bredon duality of dimension n this gives the condition on the coho-
mology of the Weyl groups.

G is Oy, FPy by Lemma and Ogcd G = Ogped @ = n by [Nuc04),
Theorem 5.5]. So by Corollary it remains to show that the Weyl groups
of the finite subgroups are FP.,. For any finite subgroup K of G, the short
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exact sequence above and [Bie81l, Proposition 1.4] gives that 7~ (Nom(K)) is
FP. But as discussed at the beginning of the proof, NgK is finite index in
Ng(r ton(K)) =71 (Ngn(K)), so NgK is FP also.

For the converse, assume that G is Bredon duality of dimension n over R.
Let K be a finite subgroup of ) then

H'(WoK, RWgK]) = H'(NgK, R[NgK))
(n (NQK), Rln ™! (NgK)])
(Ngn 'K, R[Ngm ' K])
{(Wen ™ K, R[Wen ™' K]),
where the first isomorphism is from the short exact sequence

l1— K — NgK — WK —1

and Lemma the fourth isomorphism is from the same lemma and a similar
short exact sequence containing Nom 'K, the second isomorphism follows from

Lemma and the short exact sequence
1— F— 7 ' (NgK) — NoK — 1,

and the third isomorphism is from Lemma
Since G is Bredon duality of dimension n this gives the condition on the

cohomology of the Weyl groups. Finally, since G is Og,FP_, thus also @ is
OginFP . O

6.6. Graphs of groups

An amalgamated free product of two duality groups of dimension n over a
duality group of dimension n — 1 is duality of dimension n, similarly an HNN
extension of a duality group of dimension n relative to a duality group of dimen-
sion n — 1 is duality of dimension n [Bie81l Proposition 9.15]. Unfortunately we
know of no such result for Bredon—Poincaré duality groups: the problem is how
to obtain the correct condition on the cohomology of the Weyl groups of the fi-
nite subgroups. However by putting some restrictions on the graph of groups, we
can obtain some useful examples. For instance using graphs of groups of Bredon
duality groups we will be able to build Bredon duality groups G with arbitrary
V(G).

Throughout this section, G is the fundamental group of a finite graph of
groups. Let T'= (V, E) denote the associated Bass—Serre tree, we denote by G,
the stabiliser of the vertex v € V' and we denote by G, the stabiliser of the edge
e € E. See [Ser03] for the necessary background on Bass—Serre trees and graphs

of groups.
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We need some preliminary results, showing that a graph of groups is O, FP
if all groups involved are Og, FP. See [Ser03| for the necessary background on

Bass—Serre trees and graphs of groups.

LEMMA 6.6.1. [GN12| Lemma 3.2] There is an exact sequence, arising from

the Bass—Serre tree.

e — Hé)?’in (G, —) — @Hém (GwReng —)
veV

- @Héjfin (Ge,Resge —) — ...
eck

LEMMA 6.6.2. If all vertex groups G, are of type O, FP,, and all edge groups
Ge are of type Oz, FP, | over R then G is of type Oz, FP, over R.

PROOF. Let M), for A € A, be a directed system of Og;,-modules with colimit
zero. For any subgroup H of G, the directed system Resg M) also has colimit
zero. The long exact sequence of Lemma and the exactness of colimits gives

that for all 7, there is an exact sequence

o — lim Hy (G, M) — &y lim Hp,, (G, Res& M)
AeA eV AEA

— @ tim H, (Ge.Resf, My) — -
ecE AEA

If : < n then by the Bieri-Eckmann criterion (Theorem [2.5.1]), the left and right
hand terms vanish, thus the central term vanishes. Another application of the

Bieri-Eckmann criterion gives that G is O, FP,,. n

LEMMA 6.6.3. If Ogucdp Gy < n for all vertex groups G, and Oguedp Ge <
n — 1 for all edge groups G then Ogyedp G < n.

PRrROOF. Use the long exact sequence of Lemma [6.6.1 ([l

LEMMA 6.6.4. If there exists a positive integer n such that:

(1) For everyv € V, H(G,, RG,) is R-flat if i = n and 0 otherwise.
(2) For everye € E, H (G, RG.) is R-flat if i =n — 1 and 0 otherwise.

Then H'(G, RG) is R-flat if i = n and 0 else.
ProoOF. The Mayer—Vietoris sequence associated to the graph of groups is

-+ — HY(G,RG) — @ H' (G, RG) — P H* (G, RG) — -+ .
veV eclE

HY(Gy, RG) = HY(G,, RGy) ®ra, RG by [Bie81l, Proposition 5.4] so we have

HY(G,RG) =0 for q # n,
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and a short exact sequence

0 — P H"(Ge, RG.) ®ra, RG — H™(G, RG)
ecE

— @ H"(Gv, RGy) ®ra, RG — 0.
veV

Finally, extensions of flat modules by flat modules are flat (use, for example, the

long exact sequence associated to Tor*RG). O

REMARK 6.6.5. In the above, if H*(G, RG,) = R and H" *(G.,RG.) = R
for all vertex and edge groups then H"(G, RG) will not be isomorphic to R.

LEMMA 6.6.6. If K is a subgroup of the vertex group G, and K is not sub-
conjugate to any edge group then NgK = Ng, K.

PROOF. Let T be the Bass—Serre tree, then the normaliser NgK fixes TK
setwise, but TX is the single vertex v (if w # v was also fixed by K then K
would fix all edges on the path from v to w, but it is assumed that K is not

subconjugate to any edge stabiliser). Thus, NgK < G,. U

EXAMPLE 6.6.7. Let S, denote the star graph of n + 1 vertices—a single
central vertex vy, and a single edge connecting every other vertex v; to the central
vertex. Let G be the fundamental group of a graph of groups on S,,, where the
central vertex group Gy is torsion-free duality of dimension n, the edge groups
are torsion-free duality of dimension n — 1 and the remaining vertex groups G;

are Bredon duality of dimension n with ny = n.

By Lemmas [6.6.2] and [6.6.3] G is O, FP of dimension n, so to prove it is

Bredon duality it suffices to check the cohomology of the Weyl groups of the finite
subgroups. Any non-trivial finite subgroup is subconjugate to a unique vertex
group (G, and cannot be subconjugate to an edge group since they are assumed
torsion-free. If K is a subgroup of GG; then by Lemma H{(NgK, R[NgK]) =
H'(Ng,K, R[Ng,K]) and the condition follows as G; was assumed to be Bredon
duality. Finally, for the trivial subgroup we must calculate H*(G, RG), which is
Lemma
V(G) is easily calculable too,

V(G) ={v:v e V(G;) for some i€ {1,...,n}}.

EXAMPLE 6.6.8 (A Bredon duality group with prescribed V(G)). We spe-
cialise the above example. Let V = {vy,..., v} C {0,1,...,n} be given. Choos-
ing G; = Z™ X Zy as in Example so that V(G;) = v;, let Go = Z", let the

edge groups be Z" !, and choose injections Z" "' — Z" and Z"~! — Z" x Zs from
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the edge groups into the vertex groups. Then form the graph of groups as in the

previous example to get, for G the fundamental group of the graph of groups,
V(G) ={v1,..., v}

Because of Remark the groups constructed in the example above will

not be Bredon—Poincaré duality groups.

6.7. The wrong notion of Bredon duality

This section grew out of an investigation into which groups were O, FP over

some ring R with

i | R(®) ifi=n,

HOyin(G7R[_7?]Oﬁn) = { 0 clse.
One might hope that this naive definition would give a duality similar to Poincaré
duality, we show this is not the case. Namely we prove in Theorem that
the only groups satisfying this property are torsion-free, and hence torsion-free
Poincaré duality groups over R. We need a couple of technical results before we
can prove the theorem.

Recall from Section that for M a contravariant O;,-module we denote by

MP the dual module
MP = Homoﬂn (M(_)7 R[_v ?]Oﬁn) .

Note that MP is a covariant Og,-module. Similarly for A a covariant O.g,-

module,

AP = Homo,, (A(-),R[?, —]o,,) -

LEMMA 6.7.1. If there exists a length n resolution of the constant covari-
ant module R by projective covariant Ogy,-modules then G is R-torsion free and
cdr G <n.

PRrROOF. Let P, —» R be a length n projective covariant resolution of R,
evaluating at G/1 gives a length n resolution of R by projective RG-modules
(Propositions [2.3.2(1) and [3.2.2))(1). Thus cdg G < n and it follows that G is

R-torsion free. O

Let M be an RG-module and recall from Section that inducing M to a
covariant Og,-module gives Indgg” M = M ®grg R[G/1,—]o,,- The covariant
induction functor maps projective modules to projective modules and satisfies

the following adjoint isomorphism for any covariant O ,-module A (Propositions

and ,
Homo,, (Ind5% M, A) = Hom e (M, A(G/1)).
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LEMMA 6.7.2. If cdr G < n then there exists a length n projective covariant

resolution of R.

PROOF. Let P, be a length n projective RG-module resolution of R, then we

claim Indgg" P, is a projective covariant resolution of R. One can easily check
O_’fin

that Indpy R = R (Example |3.2.1 and since GG is necessarily R-torsion-free,
Indgg" P, is exact (Proposition [3.2.5). O

THEOREM 6.7.3. If G is Op,FP with Ogpedp G = n and

R(?) ifi=n,

0 else,

HgQﬁn (Ga R[_> ?]Oﬁn) = {

then G is torsion-free. Note that in the above, R denotes the constant covariant

O gin-module.

ProOOF. Choose a length n finite type projective Og;,-module resolution P,
of R then by the assumption on Hp (G, R[—,7]0,,), we know that PP is a

covariant resolution by finitely generated projectives of R:

93

op op
0— POD(_) _1> PlD(_) — - PTLD(_) — Hgﬁ‘n (GvR[?a _]Ofin) = E(_) — 0.

By Lemma G is R-torsion-free and cdg G < n. Since G is O, FP_, G
is FPo (Corollary and we may choose a length n finite type projective
RG-module resolution @, of R. Lemma gives that Indgg" Qs — Risa
projective covariant resolution.

By the Ogi,-module analogue of the comparison theorem [Wei94, 2.2.6], the
two projective covariant resolutions of R are chain homotopy equivalent. Any
additive functor preserves chain homotopy equivalences, so applying the dual

functor to both complexes gives a chain homotopy equivalence between

0 — RP =0 — (Indj Qo)P — -+ — (Indp2 Q)P

and
0—RP=0— pPP __ pPh__,...__, pPD,

(that RP = 0 is Example [3.9.1). Since Homp,, is left exact we know both

complexes above are left exact. Lemma [3.9.2] gives the commutative diagram

below.
0 ppp ppP — ppP
0 P, P by
The lower complex, P, satisfies HoP, = R and H;P, = 0 for all ¢ # 0.

Thus the same is true for the top complex, and also the complex Indgg“ D,
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since this is homotopy equivalent to it. In particular, there is an epimorphism of

O gin-modules,
md9%% QP — R.
The left hand side simplifies, using the adjoint isomorphism
Ind% QF = Homoy,, (1057 Q. RI?, ~lo,, ) = Hompa (Qu, RI?, G/1]oy,)-

Since Hompa(Qn, R[?, G/1]0,,,)(G/H) = 0 if H # 1, this module cannot surject

onto R unless G is torsion-free. O



CHAPTER 7
Houghton’s groups

This chapter, with the exception of Sections and contains material
that has appeared in:

e Centralisers in Houghton’s Groups (2012, to appear Proc. Edinburgh
Math. Soc.) [SJG12].

Sections and contain unpublished joint work with Nansen Petrosyan.

Section [7.1] contains an analysis of the centralisers of finite subgroups in
Houghton’s group. As Corollary we obtain that centralisers of finite sub-
groups are FP,_; but not FP,. In Section our analysis is extended to arbi-
trary elements and virtually cyclic subgroups. Using this information elements
in H, are constructed whose centralisers are FP; for any 0 < i <n — 3.

In Section [7.3| the space that Brown constructed in [Bro87], in order to prove
that H, is FP,_1 but not FP,, is shown to be a model for E, H,,, the classifying
space for proper actions of H,,. Finally Section[7.4]contains a discussion of Bredon
(co)homological finiteness conditions satisfied by Houghton’s group, namely we
show in Proposition that H,, is not quasi-Og;,FP, and in Proposition
that the Bredon cohomological dimension with respect to the family of finite
subgroups and virtually cyclic subgroups are both equal to n. See Section [3.6.1
for the definition of quasi-O#,FP,,.

Fixing a natural number n > 1, define Houghton’s group H, to be the group
of permutations of S = N x {1,...,n} which are “eventually translations”, ie.
for any given permutation h € H, there are collections {z1,...,2,} € N” and

{mi,...,m,} € Z" with

(7.1) h(i,x) = (i + mg,x) for all x € {1,...,n} and all i > z,.

Define a map ¢ as follows:
(7.2) ¢: Hy = {(ma,...,mp) €Z" : Y m; =0} 22"
(7.3) ¢ h— (my,...,my).

Its kernel is exactly the permutations which are “eventually zero” on S, ie. the

infinite symmetric group Sym_ (the finite support permutations of the countable
set .S).

137
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7.1. Centralisers of finite subgroups in H,

First we recall some properties of group actions on sets, before specialising to

Houghton’s group.

ProrosiTIiON 7.1.1. If G is a group acting on a countable set X and H is
any subgroup of G then

(1) If x and y are in the same G-orbit then their isotropy subgroups G, and
Gy are G-conjugate.

(2) If g€ Cq(H) then Hyy = Hy for all x € X.

(3) Partition X into {X,}'_,, where t € NU {00}, via the equivalence re-
lation x ~ y if and only if H, is H-conjugate to H,. Any two points
in the same H-orbit will lie in the same partition and any ¢ € Cg(H)
maps X, onto X, for all a.

(4) Let G act faithfully on X, with the property that for all g € G and
X, C X as in the previous section, there exists a group element g, € G
which fizres X\ X, and acts as g does on X,. Then Cq(H) = Cyx---xC}y
where Cy, is the subgroup of Cq(H) acting trivially on X \ X,.

PROOF. (1) and (2) are standard results.

(3) This follows immediately from (1) and (2).

(4) This follows from (3) and our new assumption on G: Let ¢ € Cg(H)
and ¢, be the element given by the assumption. Since the action of G
on X is faithful, ¢, is necessarily unique. That the action is faithful also
implies ¢ = ¢;1 -+ - ¢; and that any two ¢, and ¢, commute in G because
they act non-trivially only on distinct X,. Thus we have the necessary
isomorphism Cg(H) — Cp x -+ x Ct.

O

Let @ < H, be a finite subgroup of Houghton’s group H,, and Sg = S\ S
the set of points of S which are not fized by Q. @ being finite implies ¢(Q) = 0
as any element ¢ with ¢(q) # 0 necessarily has infinite order. For every ¢ € @
there exists {z1,...,2n} € N such that

q(i,z) = (i,2) if i > 2.

Taking z/ to be the maximum of these z, over all elements in @, then @ must
fix the set {(i,z) : ¢ > 2} and in particular Sg C {(i,x) : i < 2} is finite.

We need to see that the subgroup @ < H, acting on the set S satisfies
the conditions of Proposition ). We give the following lemma in more
generality than is needed here, as it will come in useful later on. That the action
is faithful is automatic as an element h € H,, is uniquely determined by its action
on the set S.
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LEMMA 7.1.2. Let Q < H, be a subgroup, which is either finite or of the
form F X Z for F a finite subgroup of H,. Partition S with respect to Q into
sets {Sa}._, as in Proposition (5’) applied to the action of Hy, on S and the
subgroup Q of Hy,. Then the conditions of Proposition (4) are satisfied.

PrOOF. Fixa € {1,...,t} and let h, denote the permutation of S which fixes
S\ S, and acts as h does on S,. We wish to show that h, is an element of H,.

There are only finitely many elements in () with finite order so as in the
argument just before this lemma we may choose integers z, for x € {1,...,n}
such that if ¢ is a finite order element of @) then ¢(i,x) = (i, 2) whenever i > z,.

If Q is a finite group then either:
e S, is fixed by @, in which case

{(l,) i >z, x€{l,...,n}} C S,

$0 hg(i,x) = h(i,x) for all i > z,. In particular for large enough i, h,

acts as a translation on (i, z) and is hence an element of H,.

e S, is not fixed by @, in which case
Se CH{(l,x) 1 i<zy,xze{l,...,n}}.
In particular S, is finite and hg(i,x) = (i,2) for all i > z,. Hence h, is
an element of H,.

It remains to treat the case where Q = F' x Z. Write w for a generator of Z
in F' xZ. By choosing a larger z, if needed we may assume w acts either trivially
or as a translation on (i, 2) whenever ¢ > z,. Hence for any = € {1,...,n}, the
isotropy group in @ of {(i,z) : i > 2.} is either F or Q.

If S, has isotropy group @ or F then for some z € {1,...,n}, either

[ ]
Sa N {(i,z) 11> 25} ={(i,x) 11> 25}
in which case hg(i,x) = h(i,z) for i > z,. In particular for large enough

i, he acts as a translation on (7, x) and hence is an element of H,,.

SaN{(i,x):i> 2,3 =10

in which case hq(i,2) = (i, ) for i > z,. In particular for large enough

i, hq fixes (i,x) and hence is an element of H,,.

If S, is the set corresponding to an isotropy group not equal to F' or () then

Se CH{li,x) 11> 2, x€{1,...,n}}.
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So hy, fixes (i,z) for i > z, and hence h, is an element of H,. O

Partition S into disjoint sets according to the @Q-conjugacy classes of the
stabilisers, as in Proposition [7.1.1{3). The set with isotropy in @ equal to @ is
S? and since Sgq is finite the partition is finite, thus

S=8uUS,U---US,.

Proposition [7.1.1(4) gives that
Ch,(Q) =Hplge x C1 x ... x C

where each C, acts only on S, and leaves S9 and S, fixed for a # b (where
a,b € {1,...,t}). The first element of the direct product decomposition is the
subgroup of Cy, (Q) acting only on S% and leaving S\ S? fixed. This is Hy|ga
(H, restricted to S%) because, as the action of Q on S¥ is trivial, any permutation
of S will centralise Q. Choose a bijection S€ — S such that for all z, (i,z)
(i + mg, x) for large enough i and some m, € Z, this induces an isomorphism
between H,|gq and H,.

To give an explicit definition of the group C, we need three lemmas.

LEMMA 7.1.3. C, is isomorphic to the group T of Q-set automorphisms of
Sq.

PROOF. An element ¢ € C, determines a ()-set automorphism of S, giving a
map C, — T. Since the action of C, on S, is faithful this map is injective. Any
@-set automorphism « of S, may be extended to a @)-set automorphism of S,
where « acts trivially on S\ S,. Since S, is a finite set, o acts trivially on (i, x) for
large enough i and any z € {1,...,n}, and hence « is an element of H,,. Finally,
since o is a Q-set automorphism gas = ags, equivalently o 'qas = s, for all

s € § and ¢ € Q, showing that o € C, and so the map C, — T is surjective. [

LEMMA 7.1.4. S, is Q-set isomorphic to the disjoint union of r copies of
Q/Qa, where Qg is an isotropy group of Sg and r = |Sg|/|Q : Qql.

PROOF. S, is finite and so splits as a disjoint union of finitely many Q-orbits.
Choose orbit representatives {si,...,s,} C S, for these orbits, these s; may be
chosen to have the same @-stabilisers: If )5, # @5, then there is some g € () such
that Qgs, = qQs,q~ ' = Qs, (the partitions S, were chosen to have this property
by Proposition, iterating this procedure we get a set of representatives who
all have isotropy group Qs,. Now set Q, = @5, and note that there are |Q : Q|
elements in each of the Q-orbits so 7|Q : Qq| = |Sal- O
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Recall that if G is any group and r > 1 is some natural number then the

wreath product G ¢ Sym,. is the semi-direct product

G1Sym, = [ G x Sym,
k=1

where the symmetric group Sym, acts by permuting the factors in the direct
product.

Recall also that for any subgroup H of a group G, the Weyl group WgH is
defined to be WgH = NqH/H.

LEMMA 7.1.5. The group C, is isomorphic to the wreath product WgQ,Sym,.,
where Qg is some isotropy group of Sq and r = [S,|/|Q : Qql.

PROOF. Using Lemmas[7.1.3|and[7.1.4] C, is isomorphic to the group of Q-set
automorphisms of the disjoint union of r copies of Q/Q,.

To begin, we show the group of automorphisms of the Q-set QQ/Q, is isomor-
phic to WgQ,. An automorphism « : Q/Q, — Q/Qq is determined by the image
a(Qq) = qQ, of the identity coset and such an element determines an automor-
phism if and only if ¢ 'Q.q < Qq, equivalently ¢ € NgQ,. Since two elements
q1,q2 € Q will determine the same automorphism if and only if ¢1Q, = ¢2Q4, the
group of @-set automorphisms of QQ/Q, is the Weyl group WoQ,.

For the general case, note that if ¢ € C, then ¢ permutes the (-orbits
{Qs1,...,Qs,}, so there is a map m : C, — Sym,. Assume that the repre-
sentatives {s1,..., s, } have been chosen, as in the proof of Lemma to have
the same @Q-stabilisers. The map 7 is split by the map

¢ Sym, — Cy
o (L(U) D qSk = qSq(k) for all g € Q) .
Each (o) is a well defined element of H,, since
gsk = Gsk < § 0 € Qo = Qs © USo(k) = TSo(k)-

The kernel of the map 7 is exactly the elements of C, which fix each Q-orbit
but may permute the elements inside the @)-orbits, by the previous part this is
exactly [[;_; WoQq. For any o € Sym,, the element ¢(0) acts on [[;_; WoQq
by permuting the factors, so the group C, is indeed isomorphic to the wreath

product. ]

The centraliser C'y, () can now be completely described.

PROPOSITION 7.1.6. The centraliser Cy, (Q) of any finite subgroup Q < H,

splits as a direct product

Ch,(Q) = Hplge x C1 x -+ x Cy,



142 7. HOUGHTON’S GROUPS

FI1GURE 1. A representation of S,. The large circles are the sets
{Qs1...,Qs,} (in this figure r = 3). Elements of Sym, permute
only the large circles, while elements of [[,._; WoQ, leave the

large circles fixed and permute only elements inside them.

where Hy|gq = H, is Houghton’s group restricted to S? and for alla € {1,...,t},
Co = WpQq 1 Sym,

for Qg is an isotropy group of S, and r = |S,|/|Q : Qal|. In particular H, is finite
index in Cp, (Q).

PrROOF. We have already proven that
Cp,(Q) = Hylge x C1 X -+ x Cy
and Lemma gives the required description of C,,. O

COROLLARY 7.1.7. If Q is a finite subgroup of H,, then the centraliser Cpy, (Q)
is FP,,_1 but not FP,,.

PROOF. H,, is finite index in the centraliser C, (Q) by Proposition
Appealing to Brown’s result [Bro87, 5.1] that H,, is FP,_1 but not FP,,, and that
a group is FP,, if and only if a finite index subgroup is FP,, [Bro94, VIII1.5.5.1]
we can deduce Cy, (Q) is FP,_1 but not FP,,. O

7.2. Centralisers of elements in H,

If ¢ € Hy, is an element of finite order then the subgroup @ = (q) is a
finite subgroup and the previous section may be used to describe the centraliser
Ch,(q) = Cp,(Q). Thus for an element ¢ of finite order Cp, (q) = C x H,, for
some finite group C.

If ¢ € H, is an element of infinite order and @ = (¢) then we may apply
Proposition (3) to split up S into a disjoint collection {S, : a € A C N}US?

(S9 is the element of the collection associated to the isotropy group Q). Assume
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that Sy is the set associated to the trivial isotropy group. Since ¢ is a translation
on (i,2) € S =N x {1,...,n} for large enough 7 and points acted on by such a
translation have trivial isotropy, there are only finitely many elements of S whose
isotropy group is neither the trivial group nor Q. Hence S, is finite for a # 0 and
the set A is finite. From now on let A = {0,...,t}. We now use Lemma
and Proposition [7.1.1(4) as in the previous section: Cp, (Q) splits as

where C, acts only on S, and H,|ge is Houghton’s group restricted to S9. Unlike
in the last section, H,|ge may not be isomorphic to H,,. Let J C {1,...,n} satisfy

z € J if and only if (i,z) € S¥ for all i > z,, some z, € N.

If x ¢ J then for large enough i, ¢ must act as a non-trivial translation on (i, z),
and the set (N x {z}) N S¥ is finite. Clearly |J| < n — 2, but different elements
q may give values 0 < |J| < n — 2. In the case |J| = 0, S9 is necessarily finite
and so H,|gq is isomorphic to a finite symmetric group on S?. It is also possible
that S¢ = 0, in which case H,|gq is just the trivial group. If |J| # 0 then the

argument proceeds by choosing a bijection
S9¢ - NxJ

such that (i,x) — (i + mg,z) for some m, € Z whenever i is large enough and
x € J. This set map induces a group isomorphism between H,|qe and H
(Houghton’s group on the set J x N).

Lemma describes the groups C, for a # 0, so it remains only to treat
the case a = 0. We cannot use the arguments used for a # 0 here as the set Sy is
not finite, in particular Lemma [7.1.3] doesn’t apply: Every Q-set isomorphism of
Sp is realised by an element of the infinite support permutation group on Sy, but
there are -set isomorphisms of Sy which are not realised by an element of H,,.

The next three lemmas are needed to describe Cy, this description will use
the graph I which we now describe. The vertices of I" are those z € {1,...,n} for
which ¢ acts non-trivially on infinitely many elements of N x {z}. Equivalently,
the vertices are the elements of {1,...,n}\ J. There is an edge from z to y in I'
if there exists s € Sp and N € N such that for all m > N we have ¢"™s € Nx {z}
and ¢™s € Nx {y}. Let moI" denote the path components of I', and for any vertex
x of " denote by [z] the element of myI" corresponding to that vertex.

Let z € N be some integer such that for all ¢ > z, ¢ acts trivially or as a
translation on (i,z) for all z € {1,...,n}. Fix z for the remainder of this section.

For each path component [z] in mT, let S[[)x} denote the smallest ()-subset of
So containing the set {(i,y) : @ > z, y € [z]}. Note that (i,y) ¢ S([)x] for any

y ¢ [z] and @ > z, since if (¢,2) and (j,y) are two elements of Sp in the same
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Q-orbit with ¢ > 2z and j > z then there is an edge between x and y in I': If
(i,2) = ¢*(j,y) and q acts as a positive translation on the element (i, ) then let
N =k and s = (i,x), similarly for when ¢ acts as a negative translation. This
gives a (Q-set decomposition of Sy as

So= ] s

[z]emeT

where [ ] denotes disjoint union.

LEMMA 7.2.1. Let [x] € mol, if C([]m] denotes the subgroup of Co which acts
[z]

non-trivially only on Sy~ then there is an isomorphism
Co= Oy x - x O,
where [z1], [x2], ..., [x,] are all elements of moL.

PROOF. If ¢ € Cp and [z] € mol" then let cf,) denote the permutation of S
such that cf;) acts as ¢ does on S([)x], and acts trivially on S\ S([)x]. We will show
that Clz] 18 an element of Cj. Since the action of Cy on Sy is faithful it follows

that the elements ¢, and ¢, commute and

€= Caa]Caa] " Clan)s

which suffices to prove the lemma.
Let y € {1,...,n}. The element ¢, acts trivially on (i,y) for i > z if y ¢ [7]
and acts as as ¢ does on (i,y) for i > z if y € [z], thus c|;) is an element of H,.

Since c|,) is also a @-set automorphism of S, cf;) is a member of Co. O

LEMMA 7.2.2. Let [z] € moL, let ¢ € Cy, and let 2’ € N be such that ¢ acts
either trivially or as a translation on (i,z) for allz € {1,...,n} andi > 2’'. Then
the action of ¢ on some element (i,z) € S for i > 2z completely determines the
action of ¢ on S([)x].

PROOF. Firstly, note that knowing the action of ¢ on some element (i, x) for
i > 2’ determines the action of ¢ on the set {(i,x) : i > 2’}, since we chose 2’ in
order to have this property.

Let y € [z] such that there is an edge from « to y, so there is a natural number
N and element s € S([)x] such that ¢"Vs = (i,2) and ¢~Vs = (j,y) for some natural
numbers i and j. By choosing N larger if necessary we can take 7,7 > z’. The
action of ¢ on (j,y) is now completely determined by the action on (i,x), since
2N( _2Nc(i, .T})

c(dyy) = cq 7" (i,2) = g

For any y € [z] there is a path from z to y in I', so we’ve determined the action
of conthe set X ={(j,y) : j>2',ye[z]}. If s€ S([)‘ﬂ \ X then, since S([)m] \ X
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is finite, there is some integer m with ¢™s =z € X. So ¢s = cq "z = ¢~ "cx,

which completely determines the action of ¢ on s. O

LEMMA 7.2.3. For any [z] € moL', there is an isomorphism
cl~z.

PROOF. By Lemmal[7.2.2]the action is completely determined by the action on
some element (i, x) for large enough 4, and the action on this element is necessarily
by translation by some element m,(c). This defines an injective homomorphism
C([)m] — Z, sending ¢ — mgz(c). Let gj; be the element of C’([)x} described in the

£ of L i -trivial clement of C so CJ i d
proof of Lemma [7.2.1} gf,) is a non-trivial element of Cj~ so Cj” is mappe

isomorphically onto a non-trivial subgroup of Z. 0

Combining Lemmas and shows Cy = Z" where r = |moT'|.

Recall that the vertices of I" are indexed by the set {1,...,n}\ J. Since there
are no isolated vertices in I, |moI'| < [(n—|J|)/2| (where | —| denotes the integer
floor function). Recalling that 0 < |J| < n—2, the set {1,...,n}\J is necessarily

non-empty so 1 < ||, combining these gives
L < fmol| < [(n = [J])/2].
We can now completely describe the centraliser Cp, (q).

THEOREM 7.2.4.

(1) If g € Hy, is an element of finite order then
C’Hn(q) = Hn‘sQ X Cl X+ X Ct
where Hy|gso = H, is Houghton’s group restricted to S and for all

ac{l,... t},
Cy = WoQq 1 Sym,.

for Qq an isotropy group of S, and r = [Su|/|Q : Q4|. In particular H,
is finite index in Cy, Q.
(2) If g € Hy, is an element of infinite order then either

Cu,(q) 2 H, XxZ" xCp x -+ xCy
or
Cu,(Q) T FXZ" xCy x -+ xCy

where I is some finite symmetric group, Hy is Houghton’s group with
0 <k <n-—2, and the groups C, are as in the previous part. In the
first case 1 <r < |(n—k)/2], and in the second case 1 <r < |n/2].
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In Corollary it was proved that for an element ¢ of finite order, Cg,, (q) is
FP,,_1 but not FP,,. The situation is much worse for elements ¢ of infinite order,

in which case the centraliser may not even be finitely generated, for example

when n is odd and ¢ is the element acting on S =N x {1,...,n} as
(i,x) — (i+ 1,2) ifx<(n—-1)/2
) G2) e (- 1,x) if(n+1)/2<xz<n-—1landi#0
T (0,2) = (02— ((n=1)/2) if(n+1)/2<e<n—1
(i,n) = (i,n)

then the only fixed points are on the ray N x {n}. The argument leading up
to Theorem shows that the centraliser is a direct product of groups, one
of which is Houghton’s group H; which is isomorphic to the infinite symmetric
group and hence not finitely generated. In particular for this ¢, the centraliser
Ch, (q) is not even FP;. A similar example can easily be constructed when n is
even.

All the groups in the direct product decomposition from Theorem ex-
cept Hy, are FP,, being built by extensions from finite groups and free Abelian
groups. By choosing various infinite order elements ¢, for example by modifying
the example of the previous paragraph, the centralisers can be chosen to be FPy
for 0 < k < n — 3. The upper bound of n — 3 arises because any infinite order
element ¢ must necessarily be “eventually a translation” (in the sense of )
on N x {x} for at least two x. As such the copy of Houghton’s group in the
centraliser can act on at most n — 2 rays and is thus at largest H,_o, which is
FP,_s.

COROLLARY 7.2.5. If Q is an infinite virtually cyclic subgroup of H, then

either
Cu,(Q) =2 H XxZ"xCp x -+ xCy
or
C,(Q)=2FXZ"xCy x--xC,
where the elements in the decomposition are all as in Theorem[7.2.4)

This corollary can be proved by reducing to the case of Theorem [7.2.4] but

before that we require the following lemma.
LEMMA 7.2.6. Every infinite virtually cyclic subgroup @ of H, is finite-by-Z..

Proor. By [JPLO06, Proposition 4], @ is either finite-by-Z or finite-by-Doo
where D, denotes the infinite dihedral group, we show the latter cannot occur.

Assume that there is a short exact sequence of groups

1 —F—Q - Dy — 1,
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regarding F' as a subgroup of (). Let a, b generate D, so that
Do = {(a,b|a* =b*=1).

Let p,q € Q be lifts of a,b, such that 7(p) = a, 7(q) = b, then p> € F. Since
F is finite, p? has finite order and hence p has finite order. The same argument
shows that ¢ has finite order. The element pq € () necessarily has infinite order
as 7(pq) is infinite order in Dq.

However, since p and ¢ are finite order elements of H,, by the argument at
the beginning of Section they both permute only a finite subset of S. Thus
pq permutes a finite subset of S and is of finite order, but this contradicts the
previous paragraph.

O

PROOF OF COROLLARY [7.2.5] Using the previous lemma, write Q as Q =
F x 7Z where F is a finite group. As F is finite, the set Sr of points not fixed
by F' is finite (see the argument at the beginning of Section . Let z € N
be such that for ¢ > z, F acts trivially on (i,z) for all x, and Z acts on (i,x)
either trivially or as a translation. Applying Lemma and Proposition [7.1.1]

S splits as a disjoint union
S=8%USuUSiU---US

where S? is the fixed point set, Sy is the set with isotropy group F and the S,
for 1 < a <t are subsets of {(i,x) : i < z}, and hence all finite. By Proposition

Ch, (Q) splits as a direct product
C=Hylge xCyxCp x...xCy

where H,|se denotes Houghton’s group restricted to S9. The argument of Theo-
rem showing that H,|g¢ is isomorphic to either a finite symmetric group or
to Hy for some 0 < k < n — 2 goes through with no change, as does the proof of
the structure of the groups C, for 1 < a < t. It remains to observe that because
every element in Sy is fixed by F, any element of H,, centralising Z and fixing
S\ Sp necessarily also centralises @ and is thus a member of Cy. This reduces
us again to the case of Theorem showing that Cy = Z" for some natural
number 1 <7 < |(n—k)/2], or 1 < r < |n/2] if Hy|ge is a finite symmetric
group. ]

7.3. Brown’s model for Eg, H,

The main result of this section will be Corollary where the construction
of Brown [Bro87| used to prove that H,, is FP,_; but not FP,, is shown to be a
model for Eg, H,.

In this section, maps are written from left to right.



148 7. HOUGHTON’S GROUPS

Write M for the monoid of injective maps S — S with the property that
every permutation is “eventually a translation” (in the sense of (7.1])), and write

T for the free monoid generated by {t1,...,t,} where

, ) +1La) ifx=y,
(i, 2)ty = { (i,2) if © #y.

The elements of T will be called translations. The map ¢ : H,, — Z", defined
in , extends naturally to a map ¢ : M — Z". Give M a poset structure
by setting a < g if § = ta for some t € T. The monoid M can be given the
obvious action on the right by H,, which in turn gives an action of H,, on the
poset (M, <) since § = ta implies Sh = tah for all h € H,. Let |M| be the
geometric realisation of this poset, namely simplicies in | M| are finite ordered
collections of elements in M with the obvious face maps. An element h € H,
fixes a vertex {a} € |[M| if and only if sah = sa for all s € S if and only if A
fixes Sa, so the stabiliser (H,,), may only permute the finite set S\ Sa and we

may deduce:
PROPOSITION 7.3.1. Stabilisers of simplicies in |M| are finite.

We now build up to the the proof that |[M]| is a model for E, H,, with a few

lemmas.

ProrosITION 7.3.2. If Q < H, is a finite group then the fized point set \M!Q

s non-empty and contractible.

PRrOOF. For all ¢ € @, choose {z0(q),...,2n(q)} to be an n-tuple of nat-
ural numbers such that (i,2)q = (i,z) whenever i > z,(q) for all i. @ then
fixes all elements (i,z) € S with ¢ > maxg 2,(q). Define a translation ¢ =
e 2(0) | gmaxg Z"(q), t € M% so {t} is a vertex of |[M|? and |M|? £ 0.

If {m},{n} € |M|? then let a,b € T be two translations such that

(recall that for a translation ¢, ¢(¢t) must be an n-tuple of positive numbers).
Thus ¢(am) = ¢(bn), and since am, bn € M there exist n-tuples {z1, ..., z,} and
{#},..., 2]} such that am acts as a translation for all (i,z) € S with ¢ > z, and

bn acts as a translation for all (i,2) € S with ¢ > 2. Let

/
c = trlnax{zl,zl} B .tglax{zn,z;l}

so that cam = cbn, further pre-composing ¢ with a large translation (for example
that from the first section of this proof) we can assume that cam = cbn € M9,
and {cam = cbn} € |M|?. This shows the poset M is directed and hence the
simplicial realisation [M®| = |M|¥ is contractible. O
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PROPOSITION 7.3.3. If Q < H,, is an infinite group then |M|? = 0.

PROOF. Consider an infinite subgroup Q < H, with |[M|? # § and choose
some vertex {m} € |M|%. For any q € Q, since mq = m it must be that ¢(m) +
#(q) = ¢(m) and so ¢(q) = 0, hence @ is a subgroup of Sym_, < H,,. Furthermore
() must permute an infinite subset of S (if it permuted just a finite set it would
be a finite subgroup). That mg = m implies that this infinite subset is a subset
of §\ Sm but this is finite by construction. So the fixed point subset |M|% for
any infinite subgroup @ is empty. O

COROLLARY 7.3.4. |M| is a model for Eg, H,,.

ProOF. Combine Propositions [7.3.1], [7.3.2] and [7.3.3] O

7.4. Finiteness conditions satisfied by H,

Recall from Proposition that a group G is Og,FP, if and only if it
has finitely many conjugacy classes of finite subgroups. G satisfies the weaker
quasi-Og, FP condition if and only if it has finitely many conjugacy classes of

subgroups isomorphic to a given finite subgroup (see Section |3.6.1)).
PROPOSITION 7.4.1. H,, is not quasi-Og,FP,.

Before the above proposition is proved, we need a lemma. In the infinite sym-
metric group Sym,, acting on the set .S, elements can be represented by products
of disjoint cycles. We use the standard notation for a cycle: (s1,s9,...,Sy) rep-
resents the element of Sym., sending s; +— s;11 for ¢ < n and s, — s;. Any
element of finite order in H,, is contained in the infinite symmetric group Sym g
by the argument at the beginning of Section We say two elements of Sym
have the same cycle type if they have the same number of cycles of length m for

each m € N.

LEMMA 7.4.2. If q is a finite order element of H, and h is an arbitrary
element of H,, then hqgh™' is the permutation given in the disjoint cycle nota-
tion by applying h to each element in each disjoint cycle of q. In particular,
if q is represented by the single cycle (s1,...8m), then hqh™' is represented by
(hs1y..., hsm).

Furthermore, two finite order elements of H,, are conjugate if and only if they

have the same cycle type.

PROOF. The proof of the first part is analogous to [Rot95, Lemma 3.4]. Let
q be an element of finite order and h an arbitrary element of H,,. If ¢q fixes s € S
then hgh~! fixes hs. If q(i) = j, h(i) = k and h(j) = I, for i,j,k,I € S, then
hgh~'(k) = I exactly as required.
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By the above, conjugate elements have the same cycle type. For the converse,
notice any two finite order elements with the same cycle type necessarily lie in
Sym, for some r € N so by [Rot95, Theorem 3.5] they are conjugated by an

element of Sym,.. O

PROOF OF PROPOSITION [7.4.1] Choosing a collection of elements ¢; for each
i € N>1, so that ¢; has i disjoint 2-cycles gives a collection of isomorphic subgroups

which are all non-conjugate by Lemma [7.4.2 g
ProrosiTION 7.4.3. Ogyed Hy, = gdgiy Hy, = n.
PROOF. As described in the introduction, H,, can be written as
Sym,, — H, —» Z" 1.

Now, gdg, Z" ' = gdZ" ' = n — 1 and gdg, Sym,, = 1 by [LW12, Theorem
4.3], as it is the colimit of its finite subgroups each of which have proper geo-
metric dimension 0, and the directed category over which the colimit is taken
has homotopy dimension 1 [LW12], Lemma 4.2]. Z"! is torsion free and so has
a bound of 1 on the orders of its finite subgroups and we deduce from [Liic00,
Theorem 3.1] that gdg, H, <n—14+1=mn.

To deduce the other bound, we use an argument due to Gandini [Ganl2a).
Assume that Og,ced H, <n — 1. By [BLNO1, Theorem 2] we have

cdo H,, < Ogiped Hy = n — 1.

In [Bro87, Theorem 5.1], it is proved that H,, is FP,,_; (but not FP,,), combining
this with [LINO1), Proposition 1] we deduce that there is a bound on the orders

of the finite subgroups of H,,, but this is obviously a contradiction, thus

n < Ogiwed Hy, < gdgin Hy <.

The remainder of this section is devoted to proving the following.
THEOREM 7.4.4. Oyppecd Hy = n.

The proof is based on a pushout of Liick and Weiermann [LW12], described

below.

7.4.1. The pushout of Liick and Weiermann. For any group G, we
say two infinite virtually cyclic subgroups K and K’ of G are commensurate,
written K ~ K', if |[K N K'| = co. Commensurability is an equivalence relation

and we write [VCyc\ Fin] for the set of equivalence classes. The normaliser of
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an equivalence class [K] is defined to be the stabiliser of the action of G on

[VCyc \ Fin] by conjugation, namely
Ng[Kl|={x € G: K" ~ K}.

Associated to each infinite virtually cyclic subgroup K we define the subfamily
Veye[K| of YCyc by

VCyc|[K] = {L € VCyc\ Fin: L ~ K} U (FinNK).

If X is a right G-space and Y is a left G-space then we denote by X xgY
the twisted product of X and Y, defined to be the quotient space of X x Y under
the action g - (z,y) = (zg~ %, gy) [Bre72l §I1.2]. If Y is a left H-space for some
subgroup H of G then G x g Y is a left G-space via the usual left action of G on
itself.

ProprosiTION 7.4.5 ([tD87, Proposition 1.(4.3)]). Let H be a subgroup of
G, let Y be a left H-space, and let X be a left G-space. There is an adjoint
isomorphism
GxpgY, X]c=1Y,X]n,
where [Z, X denotes the set of G-homotopy classes of G-equivariant maps be-

tween two G-spaces Z and X.

THEOREM 7.4.6. [LW12, Theorem 2.3, Remark 2.5] Let I denote a complete
set of representatives of the G-orbits in [VCyc\ Fin|. Choosing arbitrary Ng[K]-
CW-models for EgquNg[K] and Eyqx)Ne[K] and an arbitrary G-CW-model
for EgyG, the cellular G-pushout described below may be constructed with the
maps i and f(x) equivariant cellular maps, and either with © an inclusion of G-
CW-complezes or with every fx) an inclusion of N [K]-CW-complexes and i a

cellular G-map.

i

[ G Xngir) Ern NG [K] EgG

[KleI
J{ ikjeride X ng (k1 f(x]

[K]TIIG X NglK] By )N [K] —— X
€

Moreover the space X defined by the pushout is a model for Eyq, G.

We can describe explicitly the G-homotopy classes of the maps i and fixj in
the pushout above: By restricting the G-action, any model for F#,G is a model
for EsyNg[K] so there is a Ng[K]-map Es,Ng[K] — E5,G, and using the
adjoint isomorphism of Proposition there is a G-map G X n, (k) Egin NG [ K] —
E,G. The coproduct of these maps, one for each [K] € I, is the map 4. Since
E,Ng[K] is an Ng|[K]-space with finite isotropy, it is a priori an Ng[K]-space
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with isotropy in VCyc[K], there is a map EgNG[K] — Eypex)Ne[K]. This is
the map fix).
This pushout gives a long exact sequence in Bredon cohomology [Liic89,

Lemma 13.7]:

- — Hp,, (G, =) —

i Oy G i Oy G
H HOWCyu[K](NG [K]’RGSOVZE[K]NG[K} -)|® Hofin (G, Res@fin -)
[KleI

— H Hégrm(NG’[K],R SOWH&G —) — .

80 NG K]
[Klel

For brevity we will usually omit the restriction maps from now on.

Given an infinite virtually cyclic subgroup K of G, let 7% : NgK — WK
denote the projection map and for any Oy, (x] N K-module let 7K M denote the
O W K-module given by

7EM :WK/L— M(NgK/n (L)),
for any finite subgroup L of W K.

LEMMA 7.4.7. [DP12| Lemma 4.2] If K is an infinite virtually cyclic subgroup
and Ng|K] = NgK then there is an isomorphism,

NeK,-) = Hp, (WeK, K.

1
Owpye K] (

Combining this lemma with the long exact sequence gives the following.

PROPOSITION 7.4.8. If every G-orbit in [VCyc\ Fin] contains a K such that
N¢g|K] = NgK then, letting A be a set of representatives with that property, there

15 a long exvact sequence:

- — Hp,, (G, =) — < 11 #6,, WeK, =X —)> & Hp,, (G, —)
KeA

— 1] Hb,,(NcK,~) — -
KeA

7.4.2. Calculation of Oy .cd Hy,.

LEMMA 7.4.9. For every infinite virtually cyclic subgroup K of H, there exists

L commensurate to K with
N¢[K] = Ng[L] = N¢L.

Moreover, we may assume L = 7.
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PRrROOF. Firstly replace K with a finite-index subgroup isomorphic to Z and
let k generate K. Consider the action of K on S. There are finitely many
finite K-orbits (see Section [7.2)), so for large enough m, the subgroup (k™) acts
semifreely (freely away from the fixed point set), let L = (k™).

If S¥ £ ) then let s € ST and pick any n € Ng,[L], so the stabiliser of ns
is L™. Since L acts semi-freely L™ = L or L™ = 1 but since L™ ~ L this forces
L" = L, thus Ny, [L] = Ny, L.

If S¥ = () then let n € Ny, [L],let I € L, and let i € {1,...,n}. So for z large
enough,

l:(i,z) = (i,z+ )
n:(i,z) = (i, +t,).
For some t;,t, € Z with ¢; # 0 (L acts non-trivially everywhere),
nHn (i, x) = (e 4ty F 1 —ty) = (i, 2+ 1)

so n~tln acts as L does on all (,) for large enough z, in particular for all but
finitely many elements of S. Since all orbits are infinite this means n~'In acts as

L does on all of S. Hence n~!ln = [, in particular n € NgL. ]

Let A denote a set of representatives of H,-orbits in [¥Cyc\ Fin| such that for
all L € A, we have Ng[L] = NgL and L = Z.
LEMMA 7.4.10. For any K € A we have Ny, K = Cq, K.

PROOF. Recall that there is a short exact sequence
1—Cy, K — Ny, K —Q —1

where @ is a subgroup of Aut(K) [Rob96 1.6.13].
Let n € Ny, K and choose some k € K generating K. Assume that K acts

non-trivially on the i*® ray, so for x large enough,
k:(i,x)— (i,x +tg)
n: (i,x) — (i,x +tp)
for some ty,t, € Z with t;, # 0. Let a € Z be such that n~'kn = k%, then
n"kn (i) — (6,2 + t)

but
kE®: (i,x) — (i, + aty).
Thus a = 1 and n acts as the trivial automorphism on K, thus ) = 1, proving

the lemma. i

LEMMA 7.4.11. If K € A then Ogped N, K < n—1 and Ogped Wy, K <

n— 2.
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PRrROOF. Recall from Corollary that
Cy,K = Hp, x7Z" x F,
where F' is a finite group, 0 <k <n—2,and 1 <r < |(n —k)/2]. Thus,
Ogincd Ny, K = Ogied Cp, K
= Ogyped(Hp X 2" X F)
< Ogiped Hy + Ogied Z7 + Ogyped F
=k+r

< ISII?SELT}LEQ (k+ [(n—k)/2]),

where we’ve used Proposition that Og,cd H, = k, Lemma and
Lemma We claim that max;<x<p—2k+ |(n—k)/2| =n—1, indeed we can
always achieve n — 1 by choosing k =n — 2 and k + |(n — k)/2] is an increasing
function of k.

Examining the proof of Corollary [7.2.5] that Cy, K = Hj, x Z", we see that
K is a subgroup of Z", so

WeH = H, x 271 x F/,
for some finite subgroup F’, which gives the second inequality. O

PRrROOF OF [T.4.4] Via Lemmal7.4.9 we have the long exact sequence of Propo-
sition [7-4-8]
o — | H5, (Nu, K, =) — H,, (Hy,—)
KeA
— ( H H(ioﬁ,,(WHnK, 71'5—)) &) Hggﬁn(Hn, —)— .

KeA
Let ¢ = n+ 1 then using Lemma|7.4.11} the left and right hand terms vanish.

Thus the central term vanishes proving Oypcd Hy < n.
Let ¢ = n then, using Lemma again, there is a long exact sequence
which terminates as
o — Hp, (Hp,—) — Hp, (Hn, —) — 0.
Let M be an Ogy,-module such that Hp, (Hn, M) # 0 then we may extend

in

M to an Oye-module by setting M(G/K) = 0 for all virtually cyclic subgroups
K and thus ng/@c(Hn, M) # 0. In particular, Oqp,cd Hy > n. O
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