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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

MATHEMATICAL SCIENCES

Doctor of Philosophy

STOCHASTIC AND ROBUST MODELS FOR OPTIMAL DECISION MAKING IN

ENERGY

by Arash Mostajeran Gourtani

The focus of the work in this thesis is to develop stochastic and robust optimisation

models for decision making problems in the energy industry, most notably for (i) the

medium-term trading strategy of a dominant producer in the electricity market, (ii) the

short-term unit commitment in power generation, and (iii) the long-term facility location

problem. These models support decision makers in incorporating the future uncertainty

and, in the case of the �rst model, the market competition into their investment, plan-

ning, and operational decisions.

The methodological contribution of the thesis o�ers several novel insights into the above

decision problems. In the context of the medium-term trading strategy of a dominant

producer, a multi-objective two-stage bilevel stochastic model is proposed in which the

dominant producer aims at maximizing the expected market share and the expected prof-

its in a pool-based market. The model is reformulated �rst as a multi-objective stochastic

mathematical program with equilibrium constraints and then as a mixed-integer linear

programming problem. Numerical test results are reported through a medium size case

study based on the Italian electricity market. The analysis of the Pareto frontier solution

illustrates the trade-o� between the producer’s con
icting interest in maximizing the ex-

pected pro�t and the expected market share. It was also concluded that the dominant

producer can substantially increase expected pro�ts and/or expected market share by

behaving strategically when o�ering power production to the market.

In the unit commitment problem, a two-stage stochastic and distributional robust model

is proposed to deal with day ahead wind uncertainty. The robust problem is formulated
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using two proposed uncertainty sets; the �rst one is based on a mixture of distributions

and the second one is based on the �rst order moment approach. Both robust models are

then reformulated as semi-in�nite programs and solved as mixed integer linear programs

using sampling methods. Some numerical results are presented and the results conclude

that, although the robust solutions may lose the potential of utilizing the wind power

in high wind climate, they perform much better in a low wind climate as compared to

the two-stage non-robust stochastic solutions that do not consider the uncertainty of the

distribution.

Finally, in the facility location problem with stochastic demand, a two-stage distribu-

tionally robust model is proposed to tackle the issue of incomplete information on the

true distribution of the uncertainty. The uncertainty set is constructed using the moment

information associated with the distribution of the random demands. Two numerical

methods are proposed based on the available moment information. Speci�cally, we �rst

formulate the robust problem as a semi-in�nite program for the case that only the �rst

moment information is given. The semi-in�nite program is then solved by approximation

using a linear decision rule, CVaR and Monte Carlo sampling. In the second method,

we formulate the robust problem as a semi-de�nite program on the basis of the �rst and

the second moments which is then solved by using a constraint generation algorithm.

Numerical results suggest that the distributionally robust solutions o�er the 
exibility in

hedging against uncertainty compared to the deterministic and the stochastic non-robust

solutions.
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Chapter 1

Introduction

1.1 Optimal decision making in energy

This thesis aims to analyse some of the challenges brought by the presence of uncertainty

in decision making and planning problems in energy systems. The sector is often charac-

terized by large investments in assets with long life cycles, volatile market prices, and the

need for climate change mitigation. In addition, energy markets have been deregulated

over the last decades. As a result, consumers, producers, and traders, as well as system

operators and regulators must make decisions whose outcomes are heavily in
uenced

by uncertain factors. In this chapter, we set to discuss some of the main sources of

uncertainty in energy systems that include, but are not limited to the following:

Policy and market uncertainty

Global concerns over climate change and energy security as well as the rising importance

of the role of energy as a key driver of economic growth have resulted in the ever

increasing intervention of policy makers in energy markets. Consequently, governments

and international institutions use a wide range of regulatory interventions to control the

energy sector performance. These interventions include price controls, competition and

market access rules, restrictive trade practice controls, and technical and environmental

performance management.

For instance, recognizing the importance of competition in energy markets, many coun-

tries over the past three decades have implemented infrastructure reforms such as dereg-

ulation and privatization to improve e�ciency in the market. Likewise, in order to tackle

1



2 Chapter 1 Introduction

global warming, green policies have been introduced to force the energy sector to look

for new energy production methods that place a smaller burden on the environment.

For example, the European Union has already introduced climate objectives to reduce

CO2 emissions in the EU by 20 percent from the 1990 level by 2020. The EU is also

committed to increase the share of renewable energies to 20 percent of the total energy

consumption.

Thus, the full or partial implementation of such policies, and more importantly, the

e�ectiveness of such interventions could result in greater levels of uncertainty in both

long-term and short-term decisions.

Demand and supply uncertainty

According to the International Energy Agency, world energy demand could be doubled

by 2050 (compared with that in 2009). The economic climate can have a signi�cant

impact on the energy demand as evidenced by the wide swings in demand and prices

brought about by the 2008 global recession. Another major driver of energy demand is

technological advancement. For example, the e�ective adoption of smart grid, the im-

provement in storage technology, the integration of electric vehicles and the deployment

of demand response may have signi�cant implications for demand patterns. Thus, the

trends in economics, geopolitical circumstances, and technological breakthroughs are

major sources of uncertainty in energy demand.

On the other hand, the energy supply projections are demand-driven. Therefore, factors

that will have an impact on the demand side will also impact the supply side. Techno-

logical developments, new policies, and changing prospects of fuel supply (e.g., recent

shale gas discoveries) and fuel prices may in
uence the choice of generation options

and the generation mix in the future. In some cases, social and local acceptability of

energy infrastructure projects is an important factor as well. For instance, due to the

implementation of the green policy and of �nancial incentives such as feed-in-tari�s, the

deployment of renewable resources has expanded rapidly in recent years. However, the

inherent variability of renewable energies coupled with the lack of e�cient storage facil-

ities has an adverse e�ect on the reliability and cost-e�ectiveness of generation output.

System reliability

In order to protect energy systems against unexpected events such as disturbances, con-

tingencies, attacks, and natural disasters, adequate security policies and practices need
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to be designed and implemented. Consequently, in the long term, su�cient and well-

located investment is needed to maintain the power system adequacy. In the short-term,

access to reliable supplies and their e�cient use are required to ensure that generation

equipment operates reliably and predictably.

Decision making horizon in energy systems

The variety of models used in energy system planning can be classi�ed according to the

planning horizon. Short-term planning typically deals with problems with horizons of

one week or shorter, such as unit commitment and economic dispatch. Medium-term

planning decisions cover a 1 to 3 years period and could be interpreted as a more strate-

gic vision for short-term problems. The generation scheduling and strategic market

participation could be classi�ed as medium-term problems. Long-term planning is often

involved with investment decision problems spanning more than 10 years in the future.

Capacity expansion and facility location are some examples of such long-term planning

problems. The uncertainties and risk factors associated with the planning problems

could also be classi�ed by the time horizon. For example, long-term investment deci-

sions should account for unforeseeable parameters such as economic growth, political

climate and technological advancement. On the other end of the spectrum, short-term

operational decisions are subject to risk exposure due to demand and supply uncertain-

ties. The time horizon for some of the planning decisions in energy systems and their

associated uncertainties are illustrated in Figure 1.1.



4 Chapter 1 Introduction

Decades Years Weeks Days Hours seconds 

Time to delivery 

Investment 
Decisions 

Operational 
Decisions  

Flow 
Decisions 

Demand, 
Wind, Fuel 

Prices 

Unit  and 
Line 

Failure 

Uncertainty 

Decisions 

Economic 
Growth, 
Climate 
Change, 

Technology 

Figure 1.1: Decision making horizon in energy systems

In this thesis, we investigate three separate but closely related problems in the context

of energy applications. Speci�cally, we develop a game theoretic model for the medium-

term generation scheduling problem with exogenous stochastic demand, a short-term

unit commitment problem with exogenous stochastic wind supply, and a long-term fa-

cility location problem under future demand uncertainty. Each problem is presented

in its own, free standing chapter. In the remainder of this section, a summary of each

problem is provided.

1.1.1 Medium-term energy production planning problem

Over the past three decades, electricity industry has undergone considerable structural

changes as governments have worked to promote competition, reliability and fair prices

for consumers. In many countries, deregulation has resulted in the formation of a cen-

tralized dispatch and pricing mechanism, called the electricity pool. The day-ahead

(spot) trading of the electricity in pool-based markets is carried out using a sealed-bid

auction. In a pool-based auction, an independent system operator (ISO) processes bids

from generators and retailers, typically on hourly basis, and determines the market price

and power dispatch on the basis of a social bene�t maximization framework. The ISO
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clears the market by �nding the equilibrium clearing price of the auction based on the

submitted bids. All subsequent trades are settled at this price. When the transaction

of power is carried out in zones of a transmission network, the netting of imbalances

determines zonal prices, power dispatch and power 
ows between zones.

Despite e�orts to increase competitiveness in electricity market, the presence of produc-

ers with market power, in some cases, results in imperfect competition. In this work,

we consider an electricity market where a single generator has a dominant position and

competes with a number of smaller price taking producers. Moreover, we consider the

market to consist of di�erent zones interconnected by capacitated transmission lines.

We study the medium-term (e.g., one year ahead) trading strategy of the dominant

producer in the day-ahead market aiming to maximize its expected market share and

expected pro�t simultaneously. Since the uncertainty of electricity demand becomes

more signi�cant over mid-term time horizon, it is sensible to consider the demand as

stochastic.

In order to model this problem, we propose a multi-objective two-stage bilevel stochastic

programming framework. At the �rst stage and upper level, the dominant producer

aims at maximizing its expected market share and pro�t. At the second stage and lower

level, the ISO determines the dispatches and power 
ows on an hourly basis, after the

realization of uncertainty in market demand, by solving an optimization problem which

aims at maximizing the total social welfare. Figure 1.2 illustrates the structure of the

proposed model.

Figure 1.2: Bilevel model structure for medium term trading strategy of the
dominant producer
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The dominant producer can use a number of alternative bidding strategies to excercise

its market power. We used three of the most common strategies to implement the model:

• making a strategic bid on power generation quantities as in the Cournot model by

retaining some generation capacity.

• making a strategic price bid as in the Bertrand model by setting a price above its

marginal generation cost.

• making a strategic bid of both price and quantity as in the supply function model.

1.1.2 Short-term unit commitment problem

One of the most crucial short-term operational decisions in power system is the unit com-

mitment (UC) which involves �nding the least-cost commitment and dispatch schedule

for the generation resources in order to meet the demand. In deregulated pool-based

electricity markets, the UC decisions are made by an independent system operator (ISO)

on an hourly basis for a time horizon of one day (24 hours) to one week ahead. Some

of the challenging factors that ISO faces in maintaining a reliable and cost-e�ective

operation of the system are as follows:

• Demand : On a day-ahead basis, the ISO determines the optimal generation sched-

ule taking into account the estimated load. In addition, a reserve capacity is also

scheduled so that unanticipated deviation from the load forecast can be dealt with

during the actual operating day. This excess reserve incurs additional cost which

need to be accounted for in the cost minimisation objective function.

• Technical limits: The operation of conventional generating units is subject to

physical limitations which has an impact on the scheduling decisions. For example,

the power output level of a generator should be within an operating range and

cannot be changed too rapidly.

• Security : In determining the UC decisions, the ISO needs to take into account the

risk of system disturbances such as line and generator outages. The risk of such

unplanned system disturbances can be mitigated through adequate contingency

planning. For instance, the outage of any single system component (or prede�ned
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set of components) should not cause a cascading outage of the system that leads

to a total or partial blackout. A system that is resistant to the outage of any one

component is said to be n− 1 secure.

• Wind power : Power generation from renewable sources has increased rapidly in re-

cent years. Amongst the sources of renewable energy, wind power has a prominent

position. However, due to the intermittent nature of the wind, the integration of

wind power into the existing power network is one of the major challenges for the

system operators. Therefore, ISO needs to take into account the wind uncertainty

when consider the short-term UC problem to avoid imbalances between scheduled

production and demand.

To address the above issues, we develop a two-stage unit commitment model which

provides solutions that are robust against the distributional uncertainty of the wind

generation. Moreover, it includes the operational characteristics of the power system

including the reserve scheduling, security criteria and technical constraints.

1.1.3 Long-term facility location problem

The long-term planning projects in energy industry are often involved with strategic

investment decisions that are capital intensive and non-repetitive. One of the important

problems that often arises in long-term investment planning is the optimal location of fa-

cilities. That is to locate facilities and allocate customers to the facility so as to minimise

the total investment cost and future service cost (e.g. distance travelled). Consider, an

example, where a gas producer has an obligation to deliver certain amounts of gas at

certain points in the network at certain times. The producer is aware that at times

there are 
uctuations in demand, or interruptions in its production or transportation

systems. By having storage facilities near the delivery points, the producer can reduce

the transportation cost or the chance of failing to deliver. A graphical representation of

the facility location problem from the gas producer’s point of view is shown in Figure

1.3.
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Storage Facility  
Locations 

Demand Locations 

Facility location and transportation problem 

Production, Shipping and 
Processing 

Production and transmission  

Figure 1.3: Natural gas supply chain

Whether it be building new wind farms, or constructing new gas storage facilities, the

starting point for facility location analysis is the projection of the future demand. This

is important since the decision for locating the facility has to be made at present and

hence is subject to risks arising from uncertainties in future demands and operations of

the established facilities. We propose a two-stage robust model to deal with the facility

location problem where the customer demand constitute considerable uncertainty and

complete information on the distribution of uncertainty is unavailable.

1.2 Optimisation under uncertainty

One of the fundamental assumptions in classical optimisation is that all data are known

and of deterministic nature. However, in many real-life problems, decisions are often

taken in the face of the uncertainty and the consequences of such decisions cannot fully

be determined until at a later stage. Neglecting such uncertainty may have adverse

e�ects on the quality of the solutions. For instance, the deterministic optimal solutions

may reveal to be non-optimal or even infeasible, as a result of small deviations from

nominal data [13]. As a result, the �eld of optimisation under uncertainty has a well-

established presence in the operational research literature and a considerable progress

has been made in this area over the past few decades. Within this area, two of the main

modelling frameworks are stochastic programming and robust optimisation.
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1.2.1 Stochastic programming

Inspired by the probability theory and statistics, the Stochastic Programming (SP) is a

family of optimisation techniques, that aims to include future uncertainty into decision

making. The term stochastic, as opposed to deterministic, refers to the presence of

random data in the mathematical programming formulation of the problem. The �eld

was pioneered in 1950s by the work of Dantzig and Beale ([39]-[12]), who developed the

�rst mathematical programming models consisting of the actions which were followed

by the observation and reaction, or so called recourse decision.

The stochastic programming approach is typically used for decision problems where

some decisions need to be made today, whilst the important information only becomes

available in the future and after the decision has been made. This makes the stochas-

tic programming a highly relevant approach to deal with the planning and investment

problems in energy, transportation, �nance and supply chain networks.

SP problems are inherently di�cult to solve and their complexity increases exponentially

to the number of realizations of the uncertain parameters [51]. The classic approach to

model and solve SP problems was focused on the representation of uncertainty via �nite

scenarios. The scenarios were generated by considering possible realizations of the uncer-

tain variables and their associated probabilities. The additional complexity introduced

by second-stage decision variables and their constraints has motivated the development

of more e�cient solution methods. These include the exploitation of SP model structure

in developing Dantzing-Wolfe decomposition [40] and the Benders’ decomposition [18].

A more recent and well-known approach to deal with the large number of scenarios in

the stochastic problems by approximation is the sample average approximation (SAA)

also called sample path method in the stochastic optimisation literature. There has

been extensive literature on SAA; see the works of Robinson [90], Shapiro [97] and more

recently Xu and Meng [78], who have investigated the convergence and applied the SAA

method to approximately solve two-stage stochastic programs. The basic idea of SAA

is to generate random samples of realizations of random variables and consequently the

expected value function is approximated by the corresponding sample average function.
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1.2.2 Robust optimisation

One of the fundamental issues in stochastic programming is the representation of uncer-

tainty. The distribution of the underlying uncertainty parameters (random variables)

are often assumed to be known in stochastic programming models. However, such as-

sumption might not be realistic in practical cases since the precise information on the

probability distribution might not be fully available. The implication of using erro-

neous information is two-fold; �rstly, the deviation of the \assumed" distribution from

the \true" distribution could lead to a suboptimal decision and secondly the obtained

solution strategy could be infeasible. Robust optimisation provides an alternative non-

probabilistic paradigm for decision making problems under uncertainty in which the

distribution of the uncertain parameters is unknown except for its support. The sup-

port set contains all possible realizations of the unknown parameters and is often referred

to as the uncertainty set in the robust optimisation literature. In robust optimisation

framework, instead of seeking to immunize the solution in some probabilistic sense, the

decision-maker constructs a solution that is optimal for any realization of uncertain pa-

rameters within their uncertainty set. The roots of robust optimisation can be found

in the �eld of robust control and in the work of Soyster [105] in the early 1970s, in

which every uncertain parameter in convex programming problems was taken equal to

its worst-case value within a set. Robust optimisation problems tend to be more di�-

cult to solve than stochastic optimization problems because of their minimax structure.

This issue was addressed in the later works of Ben-Tal and Nemirovski [15, 16, 17] and

independently in El-Ghaoui and Lebret [53] and El-Ghaoui et. al.[54]. In their works,

the uncertain parameters were restricted to belong to ellipsoidal uncertainty sets, which

removes the most unlikely outcomes from consideration and yields tractable mathemat-

ical programming problems. Bertsimas and Sim [25, 26] and Bertsimas et. al. [22] have

proposed a robust optimization approach based on polyhedral uncertainty sets, which

preserves the class of problems under analysis, e.g., the robust counterpart of a linear

programming problem remains a linear programming problem, and thus has advantages

in terms of tractability in large-scale settings. This approach can also be connected to

the decision maker’s attitude towards uncertainty and risk, providing guidelines to con-

struct the uncertainty set from the historical realizations of the random variables using

data-driven optimization [19].
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1.2.3 Distributional robust optimisation

An alternative method which aims to create a balance between the conservatism of

traditional robust approach and the strong distributional assumption in stochastic op-

timisation is distributionally robust optimisation. This approach is particularly useful

when the information on the distribution of underlying uncertainty is not fully available

(due to lack of historic data, estimation error or diverse views on uncertainty). In this

approach the decision maker uses the available information to constructs a set of dis-

tributions in which the true probability distribution is assumed to be contained. The

optimal decision is then taken w.r.t. the worst-case probability distribution within the

set of distributions. Since its introduction by Scarf [94], this approach has attracted

extensive research. by �Z�a�ckov�a [122], Dupa�cov�a [48, 50], and more recently by Shapiro

and Kleywegt [100] and Shapiro and Ahmed [98]. Over the past few years, it has gained

substantial popularity through further contributions by Bertsimas and Popescu [23],

Betsimas et al [20], Goh and Sim [56], Zhu and Fukushima [124], Goldfarb and Iyengar

[57], Delage and Ye [43] and Xu et al [118], to name a few, which cover a wide range of

topics ranging from numerical tractability to applications in operations research, �nance,

engineering and computer science.

The construction of distributional set is based on the form and level of available infor-

mation about the probability distribution of the random parameters and there are a

number of approaches investigated in the literature (see [49] and reference therein). In

this thesis, we focus on two approaches for the construction of the distributional set.

One is to use the moments of the distribution, and the other is to use a mixture of a set

of known probability distributions. One of the attractive features of such approaches

is that the duality theory can be used to reformulate the problem as a semi-in�nite

problem (or semi-de�nite program under certain conditions).

1.3 Structure of the thesis

The general aim of this thesis is to develop mathematical models for optimisation prob-

lems under uncertainty and the corresponding solution methods tailored to each frame-

work. These models are then applied to relevant problems in energy sector. The thesis

follows a paper-based approach and Table 1.1 lists papers, on which the thesis is based.
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Chapter Publication

Chapter 2 \Medium-Term Trading Strategy of a Dominant Electricity

Producer", Gourtani et al.[60]

Chapter 3 \Robust Unit Commitment with n − 1 Security Criteria",

Gourtani et al. [58]

Chapter 4 \A Distributionally Robust Optimisation Approach for

Two-Stage Facility Location Problem", Gourtani et al.[59]

Table 1.1: List of research papers

Chapter 2, provides a stochastic bi-level programming framework to model the future de-

mand uncertainty and spot market participation from a dominant producer perspective,

who is optimising his medium-term strategic decisions.

Chapter 3, present a stochastic and distributionally robust model for the day-ahead unit

commitment problem under wind supply uncertainty and security criteria.

Chapter 4, considers a robust framework for the facility location problem taking into

account the future uncertainty of demand.

Finally, Chapter 5, summarises the research contributions of this thesis. It also presents

the limitations of this work and suggests directions for future research.



Chapter 2

Medium-Term Trading Strategy

of a Dominant Electricity

Producer

Chapter Abstract

This chapter presents a multi-objective two-stage bilevel stochastic programming frame-

work for a dominant electricity producer to determine an optimal trading strategy in a

deregulated electricity spot market in a medium-term time horizon. At the �rst stage

and upper level, the dominant producer aims at maximizing its expected market share

and pro�t, while taking into account the trade-o� between the two objectives. At the

second stage and lower level, the independent system operator (ISO) determines the

dispatches and power 
ows on an hourly basis after realization of uncertainty in market

demand, by solving an optimisation problem which aims at maximizing the total social

welfare. Through utilizing Karush-Kuhn-Tucker conditions, the lower level problem is

formulated as a complementarity problem and subsequently the dominant producer’s

optimal decision making problem as a two-stage Stochastic Mathematical Problem with

Equilibrium Constraints (SMPEC). To solve the SMPEC, we reformulate the SMPEC

as a Mixed Integer Linear Program (MILP) by representing the complementarity con-

straints as a system of mixed integer linear inequalities with binary variables. Numerical

tests results are reported through a medium size case study based on Italian electricity

market.

13
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2.1 Introduction

Over the past three decades, the electricity industry in many parts of the world has been

restructured by the introduction of wholesale electricity markets. The way in which these

markets are implemented varies from one country to another, but they all seek to provide

electricity to consumers at a competitive price at the same time as giving appropriate

signals for investment and new entry (see Chao and Huntington [37] (1998), Stoft [107]

for more information on wholesale electricity markets). Pool-based auction is one of the

most common electricity markets where an independent system operator (ISO) processes

bids from generators and retailers [103] [66] and determines the market clearing price

and power dispatch on the basis of a social bene�t maximization framework. The ISO

clears the market by �nding the equilibrium clearing price of the auction based on the

submitted bids. All subsequent trades are settled at this price. When the transaction

of power is carried out in zones of a transmission network, the netting of imbalances

determines zonal prices, power dispatch and power 
ows between zones.

Various optimisation and game theoretic models have been proposed to study generator’s

optimal bidding behavior and market competition. Supply function equilibrium (SFE)

is one of them. The concept of SFE is proposed by Klemperer and Meyer [70] to derive

a Nash supply function equilibrium in an oligopoly where every player faces uncertainty

in demand. The model is applied to the British spot market by Green and Newbery

[62], where a supply function represents a generator’s one day ahead supply schedule

(a stack of price and quantities in increasing order) and the uncertainty describes the

daily time-varying demand. Since then, the SFE model has been widely used to study

bidding behavior in a single node electricity spot market, see for instances Bolle [27],

Baldick and Hogan [8], Rudkevich [93], Anderson and Xu [4].

The equilibrium program with equilibrium constraints (EPEC) is another important

model. While SFE focuses on the generators’ optimal bidding strategy and the result-

ing market equilibrium, EPEC models look into the impact of ISO dispatch mechanism

and network constraints. For instances, Hobbs, Metzler and Pang [64] investigated an

oligopolistic electricity market with several dominant generators located in an electric

power network. Generators submit their bids to an independent system operator (ISO)

and aim at maximizing their own pro�ts while taking into account the competitor’s re-

actions. By reformulating the ISO problem as a complementarity problem through the
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�rst order optimality conditions, they developed an EPEC model where the equilibrium

constraints represent the optimality conditions. Yao, Oren and Adler [121] extended

the research by considering a stochastic EPEC model (SEPEC) to study the genera-

tor’s strategic behaviors in a spot market with a two settlement system and network

constraints in USA where the stochastic model is used to re
ect a day-ahead demand

uncertainty. Further research in this direction can be found in Henrion and R�omisch

[63], Xu and Zhang [120], Surowiec [111], Ehrenmann and Neuho� [52], Zhang, Xu and

Wu [123] and references therein.

In this chapter we consider an electricity market where a single generator has a domi-

nant position. While this kind of market operation is no longer a common practice, it

does exist in some countries or regions that are in the process of market deregulation,

due to historical or geographical reasons. Indeed, our work is inspired by the recent

research of Vespucci et al [114] on the Italian electricity markets. Instead of consider-

ing a game theoretic model such as SFE or EPEC, here we propose a multi-objective

two-stage bilevel stochastic programming framework for a dominant electricity producer

to determine an optimal trading strategy in a deregulated electricity spot market in a

medium-term time horizon: at the �rst stage and upper level, the dominant producer

aims at maximizing its expected market share and pro�t and at the second stage and

lower level, the ISO determines the dispatches and power 
ows on an hourly basis, after

realization of uncertainty in market demand, by solving an optimisation problem which

aims at maximizing the total social welfare. A distinctive feature of our model is that the

dominant generator has two objectives rather than just pro�t maximization as in many

previous work. This is important since producers often seek to maximize their market

share to increase their market power. Furthermore, the levels of pro�t could be limited

by regulatory constraints such as price caps. Moreover, instead of studying optimal

bidding strategies in a one day ahead market, we look into the mid-term strategies for a

generator’s production schedule. This makes the stochastic model particularly relevant

as the uncertainty of demand becomes more signi�cant over mid-term time horizon.

The main contributions of this chapter are as follows. We propose a two-stage two-

objective stochastic bilevel model for studying optimal mid-term strategies of a dominant

producer whose decision is based on maximizing the expected market share and expected

pro�t. Since the two objectives are not consistent, we investigate the frontier which

represents the trade-o� between the expected market share and the expected pro�ts and
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observe that under step-wise o�ers and inelastic demand, this frontier is a convex curve.

In order to solve the mathematical model, we reformulate it as a two-stage stochastic

mixed-integer linear programming problem and carry out the analysis on the basis of

three alternative bidding strategies that the dominant producer can possibly adopt:

Cournot bids, Bertrand bids and Supply Functions bids. The proposed mathematical

model and the numerical methodology are then applied to analyze the Italian electricity

market.

The chapter is organized as follows. Section 2.2 presents a generic multi-objective bilevel

optimisation framework under uncertainty. The model is further developed in Section

2.3 with speci�c details for it to be applied to determining the optimal bidding strategies

that set out strategic production schedules in mid-term time horizon. A mathematical

reformulation as a single objective MPEC is proposed and further reformulated as a

mixed integer linear program in Section 2.4. In Section 2.5, we carry out numerical

tests on the proposed model and numerical methodology with real data from the Italian

electricity market and �nally we draw conclusions in Section 2.6.

2.2 A general multi-objective stochastic bilevel program-

ming model

Bilevel programming models are often adopted to describe the interaction between sev-

eral agents who are in a hierarchical relationship in an oligopolistic market. We present

a generic two-stage multi-objective bilevel stochastic programming model as follows:

max
x,y(·)

[�1(x, y(x, ·)), . . . ,�n(x, y(x, ·))] (2.2.1)

s.t. x ∈ X, (2.2.2)

where for almost every ξ ∈ �

y(x, ξ) solves



min
y

f(x, y, ξ)

s.t.

h(x, y, ξ) = 0,

g(x, y, ξ) ≥ 0,

y ∈ Y.


(2.2.3)
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The model has interesting practical interpretations: at the upper level and �rst stage,

an agent (leader) needs to make a strategic decision, represented by decision vector x, on

its investment or production schedule for the future with several objectives represented

by functions �1(x, y(x, ·)), . . . ,�n(x, y(x, ·)), before the realization of uncertainty. Here

we use random vector ξ(ω) to represent the uncertainty. In doing so, it anticipates the

reaction from the other agent (follower) y(x, ξ) which solves an optimisation problem

(2.2.3) after the uncertainty is realized and the leader’s decision x is observed. Typical

objectives for the leader are overall expected pro�t, expected market share, some risk

measures such as standard deviation and Conditional Value-at-Risk.

In the case when the follower’s problem (2.2.3) has a unique solution, the two-stage

bilevel program is well de�ned. However, if problem (2.2.3) has multiple optimal so-

lutions, then the leader’s anticipation of the follower’s reaction y(x, ξ) may depend on

the leader’s attitude: optimistic, pessimistic or indi�erent. If it is optimistic, the leader

would consider a positive reaction y(x, ξ) from the follower which would be desirable for

his/her own utility, and if it is pessimistic, then the leader would take into account the

reaction y(x, ξ) from follower that would be undesirable for his/her own utility.

From a numerical perspective, bilevel stochastic programming problems are in general

NP -hard, i.e. no numerical scheme exists that allows solving the problem in polynomial

time [44].

The leader’s problem is a multi-objective program which may not have a solution that

maximizes all objectives. A popular way in the literature of multi-objective optimisation

is to consider Pareto optimal solutions. A decision vector x∗ is said to be a Pareto optimal

solution to the problem (2.2.1)-(2.2.3) if and only if there does not exist another x ∈ X
such that �i(x, y(x, ·)) ≥ �i(x

∗, y(x∗, ·)) for all i and �j(x, y(x, ·)) > �j(x
∗, y(x∗, ·)) for

at least one j. The set of Pareto optimal solutions de�ne a Pareto efficient frontier.

The stochastic multi-objective bilevel programming model is an extension of a single

objective stochastic Stackelberg leader followers game. For a detailed discussion on the

latter, see [42] and [117].

Note also that the two-stage bilevel multi-objective stochastic optimisation problem is

generally nonconvex. In the literature of bilevel programming, various techniques have

been proposed to deal with the bilevel structure. One of the most well known approaches
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is to reformulate the lower-level problem as a complementarity problem or a variational

inequality problem through Karush-Kuhn-Tucker (KKT) conditions. This is justi�ed if

the lower level problem is convex in x for almost every ξ. Consequently, we can rewrite

(2.2.1)-(2.2.3) as a multi-objective stochastic mathematical program with equilibrium

constraints (SMPEC):

max
x,y(·),λ(·),µ(·)

[�1(x, y(x, ·)), . . . ,�n(x, y(x, ·))] (2.2.4)

s.t. ∇yL(x, y(x, ξ), λ(x, ξ), µ(x, ξ)) = 0 (2.2.5)

h(x, y, ξ) = 0 (2.2.6)

0 ≤ λ(x, ξ) ⊥ g(x, y(x, ξ), ξ) ≥ 0 (2.2.7)

x ∈ X, y(x, ξ) ∈ Y, a.e. ξ ∈ � (2.2.8)

where

L(x, y(x, ξ), λ(ξ), µ(ξ)) = f(x, y, ξ) + µ(x, ξ)h(x, y, ξ) + λ(x, ξ)g(x, y, ξ)

is the Lagrange function of the lower-level problem, and µ(x, ξ) and λ(x, ξ) are the

Lagrange multipliers associated with the lower-level constraints.

The complementary constraint (2.2.7) does not satisfy any classical constraint quali�-

cation for nonlinear optimisation problem such as the linear independence constraint

quali�cation (LICQ) and the Mangasarian-Fromovitz constraint quali�cation (MFCQ).

A lot of research has been carried out to address the issue including NLP-regularization

[95], partial penalization [74] and mixed integer programming reformulation [55]. We

will come back to this in Section 2.4 when we develop numerical methods for our speci�c

stochastic bilevel programming problem to be developed in the next section.

2.3 The mathematical model of the dominant producer’s

problem

In this section, we consider an electricity market with a large scale (dominant) producer

and a number of smaller producers behaving as a competitive fringe. The market is

divided in zones, interconnected by capacitated transmission networks. Both the dom-

inant producer and its competitors own a number of power generation units across the
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zones and the power generated in each zone can be transmitted to other zones subject

to the capacity constraint of transmission lines. The constraint may lead to the di�er-

entiation of spot prices across the network and this makes the location of a generation

unit highly crucial in pro�tability, particularly when the market demand is inelastic.

We consider a day-ahead spot market with an Independent System Operator which

oversees power trading and determines dispatch quantities, zonal prices and power 
ows

across the network on an hourly basis, given zonal demands and power producers’ bids

for every generation plant. The ISO’s decision is based on a framework which maximizes

the total social welfare.

The objective of the dominant producer is to set strategic quantity bids for each of

its generation unit on an hourly basis over a certain time horizon which maximizes its

market share while managing the risk of the pro�t falling below a prede�ned level. This

di�ers from many models in the literature where a generator often bases its decision on

pro�t maximization. Since the levels of pro�t could be limited by regulatory constraints

such as price caps.

This type of spot market was �rst considered by Vespucci et al [114] on the basis of

the Italian power market. They developed a deterministic bilevel programming model

for the dominant producer’s decision making problem where the producer sets out an

annual optimal power production schedule on an hourly basis at the upper level with an

anticipation of ISO’s social bene�t maximization based power dispatch mechanism at

the lower level. It is assumed that the dominant producer knows, for every hour of the

year, the zonal hourly demands and the competitors’ bids (minimum price requested,

which equals to the constant generation marginal cost, and maximum o�ered quantity).

The dominant producer determines �rst the quantities that the ISO would accept for

each plant in the system (both his and competitors’ generation units) if the dominant

producer does not exert market power, i.e. the dominant producers bid prices are equal

to the marginal costs, which are assumed to be constant. Outputs of this �rst step are the

accepted quantities of both its generation units and of the competitors’ units. In order

to guarantee the pro�t level allowed by the system (equality constraint), the dominant

producer tries to modify the \perfect competition" solution. It is assumed that, among

all solutions that guarantee the pro�t level agreed by the system, the dominant producer

prefers the one corresponding to the largest market share. This solution is also preferred
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by the system, because the larger the dominant producer’s market share, the lower the

zonal prices, since the dominant producers’ production withdrawal activates more costly

competitors’ bids.

The perfect competition solution can be modi�ed in two possible ways.

1. Consider a zone z in which the dominant producer is not indispensable to satisfy

the hourly zonal demand (i.e. there is some competitor’s capacity still available

either in zone z or in zones connected with zone z by non-saturated transmission

links). In this case the dominant producer has to reduce his own production,

in order to activate more costly competitors’ bids (for competitors’ units whose

dispatch is less than the plant capacity), which results in a higher hourly zonal

price set by the Market Operator. If the reduction of the dominant producer’s

production is such that every competitors’ bid is either completely accepted or

completely rejected, then the clearing price is not uniquely determined, as it may

be any value between the bid price of the last accepted bid and the bid price of

the �rst rejected bid. In this case the model determines the clearing price as the

value (between the bid price of the last accepted bid and the bid price of the �rst

rejected bid) that allows the dominant producer to exactly obtain the pre�xed

pro�t. In the model there is not a speci�c representation of the bid price of the

dominant producer. Indeed, only the quantities to be o�ered are determined by

the model. Anyway, the dominant producer gets a usable information about the

bid price he has to associate to the quantity o�ered by him: indeed he can bid at

any price not greater than the clearing price determined by the model.

2. In the hours and zones in which the dominant producer is indispensable to satisfy

the hourly zonal demand, the dominant producer cannot reduce his own produc-

tion, therefore he will be able to o�er his own production at a higher bid price.

This \higher" bid price would be the zonal price-cap, if the model required annual

pro�t maximization. But, analogously to the previous case, the model determines

the clearing price as the value, belonging to the interval between the bid price of

the last accepted competitors’ bid and the price-cap, that allows the dominant

producer to exactly obtain the pre�xed pro�t. Therefore the dominant producer

gets from the model the information that he has to o�er his own production at

the clearing price determined by the model.
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Summarizing, in the hours under case 1 a strategy on quantities is used, while in the

hours under case 2 a strategy on prices is used. The model determines the best combi-

nation of the two strategies, in terms of market share maximisation. Note that, since a

pre�xed pro�t level must be achieved, it can happen that in some hours no actions are

taken by the dominant producer, that is the perfect competition solution is used, even

if market power could be exerted.

While the model captures the main features of the Italian power market operation, it does

not address potential uncertainties in market demand particularly in a one year ahead

planning. This motivates us to consider a stochastic version of the model by explicitly

taking into account the 
uctuation of zonal demand on hourly basis. Moreover, instead

of setting the market share as a single objective, we consider an additional objective

which maximizes the expected pro�t and this allows us to analyze the trade-o� between

the two quantities.

2.3.1 Notation

Throughout this section and the rest of the chapter, a detailed mathematical formu-

lation of the dominant producer’s decision making problem is developed, a numerical

method is proposed for its solution and the results of some numerical tests are presented

and discussed. In order to present the mathematical model, the following notation is

introduced.

? Sets

Z set of zones across the network, indexed

by z

L set of transmission lines connecting the

zones, indexed by l

K set of power units owned by the dominant

producer, indexed by k

J set of power units owned by competitors,

indexed by j

T set of representative time periods within

the time horizon, indexed by t

S set of electricity demand scenario, indexed

by s

Kz set of power units owned by the dominant

producer in zone z

Jz set of power units owned by other produc-

ers in zone z

I set of dominant producer’s objectives, in-

dexed by i
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? Parameters

wt total number of hours in time period t

Dzts load demand in zone z, time t and scenario

s

ps probability of scenario s

f l power 
ow limit in line l

ϕlz power transfer distribution factor (PTDF)

for zone z and line l

qjt generation capacity of the competitor pro-

ducers’ plant j at time t

cjt unitary generation cost of plant j at time

t

bjt associated bid price of competitor produc-

ers’ plant j at time t

Qkt generation capacity of the dominant pro-

ducer’s plant k at time t

Ckt unitary generation cost of plant k at time

t

βi weight associated with the dominant pro-

ducer’s objective i

? Functions

�MS(q) expected annual market share of dominant

producer

�PR(q, π) expected annual pro�t of dominant pro-

ducer

? Variables

Bstr
kt associated bid price of the dominant pro-

ducer’s plant k at time t

Bstr
kt associated bid price of the dominant pro-

ducer’s plant k at time t

Qstrkt associated bid quantity of the dominant

producer’s plant k at time t

Qkts production of dominant producer’s plant

k, at time t, in scenario s

qjts production of competitors’ plant j, at time

t, in scenario s

rzts net power 
ow in and out of zone z, at

time t, in scenario s

πzts shadow price associated with zonal bal-

ance constraints (spot price) in zone z, at

time t, in scenario s

α+
kts dual variable of the upper bound to pro-

duction of dominant producer’s power

unit k at time t in scenario s

α−kts dual variable of the lower bound to pro-

duction of dominant producer’s power

unit k at time t in scenario s

λ+
jts dual variable of the upper bound to pro-

duction of competitors’ power unit j at

time t in scenario s

λ−jts dual variable of the lower bound to pro-

duction of competitors’ power unit j at

time t in scenario s

µts dual variable associated to the constraint

that states negligibility of power loss at

time t in scenario s

η+
lts dual variable of the upper bound to power


ow on transmission link l at time t in

scenario s

η−lts dual variable of the lower bound to power


ow on transmission link l at time t in

scenario s

θα
+

kts binary variable associated to the upper

bound to production of dominant pro-

ducer’s power unit k at time t in scenario

s

θα
−

kts binary variable associated to the lower

bound to production of dominant pro-

ducer’s power unit k at time t in scenario

s

θλ
+

jts binary variable associated to the up-

per bound to production of competitors’

power unit j at time t in scenario s

θλ
−
jts binary variable associated to the lower

bound to production of competitors’

power unit j at time t in scenario s

θη
+

lts binary variable associated to the upper

bound to power 
ow on transmission link

l at time t in scenario s

θη
−

lts binary variable associated to the lower

bound to power 
ow on transmission link

l at time t in scenario s
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2.3.2 The ISO’s decision making problem

We start our mathematical formulation with the ISO’s decision making problem. The

market clearing process in a day-ahead spot market works as follows. Upon the real-

ization of the actual demand, the ISO carries out a sealed bid auction in which the

electricity producers submit their generation bids in the form of hourly price-quantity

stacks. Figure 2.1 illustrates the spot market auction process.

Figure 2.1: Spot (day-ahead) market clearing process

For every hour t in the time horizon, the price-quantity bid made by the dominant

producer for his own power plant k is (Bstr
kt , Q

str
kt ), where Bstr

kt denotes the strategic

price set by the leader at the beginning of the year, subject to price-cap or marginal

generation cost, and Qstrkt denotes the strategic quantity, subject to the power plant

generation capacity constraint. The price-quantity bid for competitors’ power plant j

is (bjt, qjt): competitors are assumed not to be strategic players, i.e. the bid quantity is

the power plant capacity and the bid price is the power plant marginal cost.

Market demand is assumed to be inelastic and subject to some random shocks. In every

hour t and after the realization of uncertainty in demand, i.e. realization of scenario s,

the ISO determines the dispatch schedule, zonal prices and power 
ows by solving the

following minimization problem:
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min
Q,q,r

∑
k∈K

Bstr
kt ·Qkts +

∑
j∈J

bjt · qjts (2.3.1)

s.t.
∑
k∈Kz

Qkts +
∑
j∈Jz

qjts + rzts = Dzts, ∀z ∈ Z, πzts, (2.3.2)

∑
z∈Z

rzts = 0, µts, (2.3.3)

− f l ≤
∑
z∈Z

ϕlz · rzts ≤ f l, ∀l ∈ L, η−lts, η
+
lts, (2.3.4)

0 ≤ qjts ≤ qjt, ∀j ∈ J, λ−jts, λ
+
jts, (2.3.5)

0 ≤ Qkts ≤ Qstrkt , ∀k ∈ K, α−kts, α
+
kts. (2.3.6)

Here the objective is to determine Qkts, qjts and rzts so as to maximize the social

welfare, i.e. minimize the total cost, with market demand assumed to be inelastic and

independent of the market price in scenario s. The bid prices set by the dominant

producer and by the competitors are Bstr
kt and bjt respectively, and they are given as

parameters to the ISO. The bid quantities set by the dominant producer and by the

competitors are Qstrkt and qjt respectively and they are also given as parameters to the

ISO.

This minimization problem is subject to a number of technical and economic constraints.

Equality (2.3.2) is a power balance constraint which ensures that at any time the total

demand in each zone is met by the total production plus power 
ows in and out of each

zone. Constraint (2.3.3) means that there is no power loss across the whole network.

We make this assumption for the simplicity of discussion. Constraints (2.3.4) mean

that the power 
ow parameterized by the PTDF at each transmission line is subject

to the capacity limit of each line. Constraint (2.3.5) says that the competitors’ overall

dispatch for plant j must not exceed their generation capacity. The last constraints

(2.3.6) stipulate that the dominant producer’s total dispatch for the plant k must not

exceed its strategic bid quantities set at the beginning of the year.

The ISO’s decision making problem is a deterministic linear programming problem which

can be reformulated as a mixed complementarity problem through the �rst order opti-

mality conditions:
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∑
j∈Jz

qjts +
∑
k∈Kz

Qkts + rzts −Dzts = 0, ∀z ∈ Z, (2.3.7)

∑
z∈Z

rzts = 0, (2.3.8)

µts +
∑
l∈L

(
η+
lts − η−lts

)
· ϕlz − πzts = 0, ∀z ∈ Z, (2.3.9)

0 ≤ η−lts ⊥ f l +
∑
z∈Z

ϕlz · rzts ≥ 0, ∀l ∈ L, (2.3.10)

0 ≤ η+
lts ⊥ f l −

∑
z∈Z

ϕlz · rzts ≥ 0, ∀l ∈ L, (2.3.11)

bjt − πzts + λ+
jts − λ−jts = 0, ∀j ∈ Jz, z ∈ Z, (2.3.12)

0 ≤ λ−jts ⊥ qjts ≥ 0, ∀j ∈ J, (2.3.13)

0 ≤ λ+
jts ⊥ qjt − qjts ≥ 0, ∀j ∈ J, (2.3.14)

Bstr
kt − πzts + α+

kts − α−kts = 0, ∀k ∈ Kz, z ∈ Z, (2.3.15)

0 ≤ α−kts ⊥ Qkts ≥ 0, ∀k ∈ K, (2.3.16)

0 ≤ α+
kts ⊥ Qstrkt −Qkts ≥ 0, ∀k ∈ K, (2.3.17)

where πzts, η
−
lts, η

+
lts, λ

−
jts, λ

+
jts, α

−
kts and α+

kts are Lagrange multipliers. Note that in

solving the optimisation problem, ISO determines the dispatch quantities Qkts and qjts

for the dominant producer at plant k and the competitive producers’ at plant j, the net

power 
ow in/out rzts at zone z. The market clearing price at zone z is the dual variable

(shadow price) of the balance constraints, i.e. the maximum price a load is willing to

pay for a quantity of energy in that zone, which corresponds to Lagrange multiplier πzts.

2.3.3 The dominant producer’s decision making problem

The dominant producer has two main objectives: the expected market share and the

expected pro�t. There could be other objectives, represented by risk-aversion measures,

but we will not consider them for the simplicity of discussion.

To simplify the hourly demand levels within a �xed time horizon, say one year, we divide

the horizon into T time periods indexed by t = {1, · · · , T}. All the hours within a given

time period assumed to have the same level of demand. We represent the number of
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hours in each time period t by wt. For example we may divide a year into 4 time periods,

weekday peak, weekday o�-peak, weekend peak and weekend o�-peak, and assume that

in each period the demand level is identical.

The dominant producer’s total production in time period t in scenario s is wt ·
∑
k∈K

Qkts,

where wt denotes the number of single hours in the period. The total expected market

share is de�ned as the total expected power dispatched over the time horizon and can

be expressed as:

�MS(q) :=
∑
s∈S

ps
∑
t∈T

wt
∑
k∈K

Qkts, (2.3.18)

where q := {Qkts : k ∈ K, t ∈ T, s ∈ S}.

Likewise, we can derive the total annual expected pro�t:

�PR(q, π) :=
∑
s∈S

ps
∑
t∈T

wt

∑
z∈Z

∑
k∈Kz

πzts ·Qkts −
∑
k∈K

Ckt ·Qkts

 , (2.3.19)

where π = {πzts : z ∈ Z, t ∈ T, s ∈ S}.

Since the decision problem of the dominant producer is of the two-objective nature, the

objective function is de�ned as:

max
(

�MS(q),�PR(q, π)
)
. (2.3.20)

The presence of more than one objective necessitates the application of special opti-

misation procedures to optimize them, either simultaneously or iteratively. We use a

simultaneous approach so-called the utility function method (also known as weighting

function method); in which a utility function is de�ned for each of the objectives ac-

cording to their relative importance. More speci�cally, each objective i is multiplied by

a scalar βi ∈ [0, 1] such that
∑
i∈I

βi = 1. The value of βi indicate the relative utility

or the weight assigned to the corresponding objective i. In our problem, the dominant

producer has two objectives and therefore we can de�ne β1 = β and β2 = (1− β). The

total utility function can then be written as the weighted sum of both objective functions

as follow:

max
{
β · �MS(q) + (1− β) · �PR(q, π)

}
. (2.3.21)
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Since the two objectives may be con
icting, by varying the parameter β value we get a

frontier of optimal values and Pareto optimal solutions.

The aim of the dominant producer is to �nd the optimal bidding strategy in the spot

market, that is, the stack of quantity-price (Qstrkt , B
str
kt ). In a deregulated market where

producers do not have a market power, they tend to bid in with their available pro-

duction capacity (Qkt, qjt) and their true marginal generation cost (Ckt, cjt). However,

in an oligopolistic market where producers have market power, they have incentives to

in
uence the market price by retaining some of their generation capacities.

In the context of this research, we consider three di�erent of the most common ways in

which the dominant producer may exercise its market power:

• making a strategic bid on power generation quantities as in the Cournot model by

retaining some generation capacity;

• making a strategic price bid as in the Bertrand model by setting a price above its

marginal generation cost and below the price cap �π;

• making a strategic bid of both price and quantity as in the supply function model.

This leads to three di�erent optimisation models: the Cournot model, the Bertrand

model and the supply function model.

The Cournot model can be mathematically described as

max
Qstr

kt

β · �MS(q) + (1− β) · �PR(q, π)

s.t. 0 ≤ Qstrkt ≤ Qkt, ∀k ∈ K, t ∈ T ,
complementarity constraints (2.3.7)− (2.3.17), ∀t ∈ T, s ∈ S,

(2.3.22)

where the price bid Bstr
kt is �xed to the marginal cost of generation Ckt of the dominant

generating units.

The Bertrand model can be presented as

max
Bstr

kt

β · �MS(q) + (1− β) · �PR(q, π)

s.t. Ckt ≤ Bstr
kt ≤ �π, ∀k ∈ K, t ∈ T ,

complementarity constraints (2.3.7)− (2.3.17), ∀t ∈ T, s ∈ S,

(2.3.23)
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where the quantity bid Qstrkt is �xed to the total available capacity Qkt of the dominant

generating units.
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Consider the ISO problem. Since it is a linear convex program, by the strong duality

theorem, the optimal dual value equals the optimal primal value, i.e.

∑
k∈K

Bstr
kt Qkts +

∑
j∈J

bjtqjts =
∑
z∈Z

πztsDzts −
∑
k∈K

α+
ktsQ

str
kt −

∑
j∈J

λ+
jtsqjt

−
∑
l∈L

η+
ltsf l −

∑
l∈L

η−ltsf l. (2.4.1)

Multiplying both sides of equation (2.3.15) by Qkts and summing over z ∈ Z and k ∈ K,

we obtain

∑
k∈K

Bstr
kt Qkts −

∑
z∈Z

∑
k∈Kz

πztsQkts +
∑
k∈K

α+
ktsQkts −

∑
k∈K

α−ktsQkts = 0. (2.4.2)

On the other hand, the complementarity conditions (2.3.16) and (2.3.17) imply that

α−ktsQkts = 0,

α+
kts(Q

str
kt −Qkts) = 0,

or, equivalently,

α+
ktsQkts = α+

ktsQ
str
kt .

Using the two relations above, we can rewrite (2.4.2) as

∑
k∈K

α+
ktsQ

str
kt =

∑
z∈Z

∑
k∈Kz

πztsQkts −
∑
k∈K

Bstr
kt Qkts.

By substituting
∑
k

α+
ktsQ

str
kt into (2.4.1), we obtain

∑
k∈K

Bstr
kt Qkts +

∑
j∈J

bjtqjts =
∑
z∈Z

πztsDzts −
∑
l∈L

η+
ltsf l −

∑
l∈L

η−ltsf l

−

∑
z∈Z

∑
k∈Kz

πztsQkts −
∑
k∈K

Bstr
kt Qkts

−∑
j∈J

λ+
jtsqjt.

and through some cancellations, we arrive at

∑
z∈Z

∑
k∈Kz

πztsQkts =
∑
z∈Z

πztsDzts −
∑
j∈J

bjtqjts −
∑
j∈J

λ+
jtsqjt −

∑
l∈L

(η+
lts + η−lts)f l,

(2.4.3)
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where the right-hand side is a linear function of the decision variables. Based on this,

the objective function of the three SMPECs can be formulated as follows

�β(q, π) :=β�MS(q) + (1− β)�PR(q, π)

=β

(∑
s∈S

ps
∑
t∈T

wt
∑
k∈K

Qkts

)
+ (1− β)

(∑
s∈S

ps
∑
t∈T

wt

(∑
z∈Z

πztsDzts

−
∑
j∈J

bjtqjts −
∑
j∈J

λ+
jtsqjt −

∑
l∈L

(η+
lts + η−lts)f l −

∑
k∈K

QktsCk

 ,

and the ISO’s KKT equivalent constraints (2.3.7){(2.3.17), for all t ∈ T and s ∈ S, as

∑
k∈Kz

Qkts +
∑
j∈Jz

qjts + rzts −Dzts = 0, ∀z ∈ Z, (2.4.4)

∑
z∈Z

rzts = 0, (2.4.5)

Bstr
kt − πzts + α+

kts − α−kts = 0, ∀k ∈ Kz, z ∈ Z, (2.4.6)

bjt − πzts + λ+
jts − λ−jts = 0, ∀j ∈ Jz, z ∈ Z, (2.4.7)

µts +
∑
l∈L

(
η+
lts − η−lts

)
ϕlz − πzts = 0, ∀z ∈ Z, (2.4.8)

0 ≤ Qstrkt −Qkts ≤ BMQ(1− θα+

kts), ∀k ∈ K, (2.4.9)

0 ≤ α+
kts ≤ BMαθα

+

kts, ∀k ∈ K, (2.4.10)

0 ≤ Qkts ≤ BMQ(1− θα−
kts), ∀k ∈ K, (2.4.11)

0 ≤ α−kts ≤ BMαθα
−

kts, ∀k ∈ K, (2.4.12)

0 ≤ qjt − qjts ≤ BM q(1− θλ+jts), ∀j ∈ J, (2.4.13)

0 ≤ λ+
jts ≤ BMλθλ

+

jts , ∀j ∈ J, (2.4.14)

0 ≤ qjts ≤ BM q(1− θλ−jts), ∀j ∈ J, (2.4.15)

0 ≤ λ−jts ≤ BMλθλ
−
jts , ∀j ∈ J, (2.4.16)

0 ≤ f l −
∑
z∈Z

ϕlzrzts ≤ BMf (1− θη+lts ), ∀l ∈ L, (2.4.17)

0 ≤ η+
lts ≤ BMηθη

+

lts , ∀l ∈ L, (2.4.18)

0 ≤ f l +
∑
z∈Z

ϕlzrzts ≤ BMf (1− θη−lts ), ∀l ∈ L, (2.4.19)

0 ≤ η−lts ≤ BMηθη
−

lts , ∀l ∈ L. (2.4.20)
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The proposed SMPEC is stated as a MILP model solvable with commercial solvers.

The complementary equations (2.3.10){(2.3.17) are replaced by the linearized equations

(2.4.9){(2.4.20) by introducing the binary variables θα
+

kts, θ
α−
kts, θ

λ+

jts , θ
λ−
jts , θ

η+

lts , θη
−

lts , and the

su�cient large constants BMQ, BMα, BM q, BMλ, BMf and BMη. This complemen-

tary constraints linearization is based on [55], and constitutes an exact reformulation.

2.5 Numerical tests

The proposed models have been applied to the Italian electricity market, using data re-

lated to the year 2011. The market consists of 5 zones, interconnected by 4 capacitated

transmission links (Figure 2.2).

l f l

Line Capacity[GW]

1→ 2 2.70

1→ 3 0.30

1→ 5 2.30

4→ 5 0.60

ϕlz =


0 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 1


Figure 2.2: Italian market zones, transmission line capacities and PTDF

matrix

The electricity producers consist of a dominant producer, with higher production capac-

ity and market power, and a number of small producers which behave as a competitive

fringe. They own 23 and respectively 41 generating units across the zones and are capa-

ble of transferring their generations to other zones, subject to demand level and capacity

of the lines. The aggregated zonal generation capacities and zonal average marginal cost

of generation are summarized in Table 2.1. We can see that the dominant producer
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holds around 34.6% of the total installed generation capacity and has a lower average

marginal cost than the competitors in all zones apart from zone 5.

Data Dominant producer Competitors

zones Max Cap Avg Cost % of Installed Capacity Max Cap Avg Cost

Zone 1 8.08 47.59 60.20 5.34 48.13

Zone 2 6.82 43.81 25.16 20.29 47.39

Zone 3 0.86 53.66 29.78 2.02 58.89

Zone 4 2.36 55.24 54.67 1.96 73.96

Zone 5 4.21 69.43 24.96 12.65 45.70

Total 22.33 34.57 42.26

Table 2.1: Aggregated zonal installed generation capacity [GW], average
production cost [EURs/MWh] and zonal installed capacity rate for the

dominant producer [%]

The demand for electricity is assumed to be inelastic and stochastic. Historical (2011)

hourly load data is used as a basis to simplify the annual demand vector of 8760 hours

into 8 representative demand levels or periods {t1, · · · , t8} as shown in Figure 2.3.

t wt

Period No. hours

t1 213

t2 1030

t3 1637

t4 1127

t5 1365

t6 1789

t7 1321

t8 278

Figure 2.3: Representative load level as 8 time periods
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The uncertainty in demand is represented via three demand scenarios {s1, s2, s3}. For

each time period, the average demand scenario s2 is based on the load data from the

year 2011 and the lower and higher scenarios for the demand, s1 and s3, are generated

by scaling down and up the average value. The probability of each scenario is de�ned

as ps = [0.25 0.5 0.25]. The hourly demand scenarios for each zone for the peak time

period (hours), t1 are reported in Table 2.2.

Zones

Period t1 z1 z2 z3 z4 z5 Total

D
em

an
d

S
ce

n
a
ri

o
s s1 (Low) 13.05 26.19 1.89 3.05 3.96 48.13

s2 (Avg) 13.31 26.73 1.93 3.11 4.04 49.12

s3 (High) 13.58 27.26 1.97 3.17 4.12 50.10

Table 2.2: Zonal demand scenarios [GW] for the peak load period t1

2.5.1 Results

In order to model the in
uence of the dominant producer in the Italian electricity system

and analyze the consequences of its strategic behavior, we solve the model with four

di�erent approaches: (i) Cournot strategic bidding (ii) Bertrand Strategic bidding (iii)

supply function strategic bidding (iv) no strategic behavior, the so called \base case",

in which the dominant producer submits the capacity and marginal cost of generation

of its units as its quantity and price bids. When bidding strategically, the dominant

producer modi�es its quantity and/or price o�ers in the spot market in order to increase

its pro�t and market share.

Although in the Italian electricity market bid prices are allowed to be at price-cap, some

form of restriction is usually imposed by the Regulatory Authorities, in order to avoid

the over exploitation of the market. In Vespucci et al [114] the restriction is considered

to allow the dominant producer to obtain a predetermined annual pro�t level. As a

consequence of this restriction, the dominant producer tends not to bid at the cap price

and not to withdraw all available capacity. In this work the maximum annual pro�t

constraint is approximated by imposing the following restrictions:
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1. the dominant producer cannot bid at a price which is more than 30% of the power

plant marginal costs, i.e., Bstr
kt ≤ 1.3 · Ckt;

2. the dominant producer o�ers at least the 80% of its total installed capacity, i.e.,∑
k

Qstrkt ≥ 0.8 ·
∑
k

Qkt.

For each bidding approach we carried out numerical tests with 5 di�erent values of β

between 0 and 1, in order to analyze the trade-o� between the objectives. When β

is 0, the problem reduces to pro�t maximization. In Figure 2.4, we show the results

of the four cases. Note that the frontier points are joined for the sake of clarity. The

dominant producer’s expected market share is represented as its percentage share of total

generation in the market. In the base case, the frontier reduce to a single point, as it is

a static vision of the spot market, where both the dominant producer and competitors’

bids are �xed.
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Figure 2.4: Expected pro�t vs. expected market share frontier

By constructing the Pareto frontier, we can see that the dominant producer can sig-

ni�cantly increase the expected pro�t and/or the expected market share by bidding

strategically. There is also, as expected, a clear trade-o� between the two objectives

in the sense that by increasing the expected market share of production, the expected
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pro�t falls and vice versa. It is interesting to compare the outcomes of the three strategic

bidding approaches. By bidding strategic prices and quantities (supply function o�ers),

the dominant producer can obtain higher pro�t than either bidding strategic quantities

only (Cournot o�ers) or bidding strategic prices only (Bertrand o�ers), for the same

levels of the market share. This can be explained by the fact that in supply function

o�ers the dominant producer can optimize both price and quantity bids at the same

time.

In order to illustrate the e�ect of dominant producer’s strategic bidding on zonal prices,

network 
ows and dispatch quantities, during peak hours (t1) and high demand scenario

(s3), we compare the base case with the supply function approach for the value β =

0.95 in Figures 2.5 and 2.6. We can observe that, when bidding in a supply function

manner, the dominant producer o�ers quantities that are less than its capacity and at

higher prices than its marginal production cost across all zones in which the competitors’

aggregate capacity is not su�cient to meet the demand (zones 1 to 4). The only exception

is in zone 5, where the competitors’ have a lower average marginal production cost than

the dominant producer and also much higher production capacity (Table 2.1), which

would satisfy the demand even at high levels. This would prevent the dominant producer

to exert its market power. Therefore, the dominant producer o�ers all its capacity as

quantity bid and at the same price as its marginal cost of generation in zone 5 in all

demand scenarios, as shown in Figures 2.5 to 2.10.

The high demand for energy and the dominant producer’ production withdrawal in zones

1 to 3 result in the dispatched quantities in these zones reaching the capacity levels for

all producers (Qstrkts − Qkts = 0 and qjts − qjts = 0). Mathematically, both λ+
jts and

α+
kts in the complementarity constraints (2.3.12)-(2.3.17) take positive values, whereas

λ−jts = α−kts = 0, which results in the zonal price πzts to reach the cap level. On the

other hand, the dispatch price remains low in zone 5, due to cheaper and excessive

generation by the competitors and some of this cheap generation being transferred to

zone 4 (reaching the capacity limit of the transmission line), and subsequently the zonal

price remains well below the price cap.

In the base case, as opposed to the supply function approach, during the high demand

period the zonal prices remain low and closer to the marginal generation cost. We can

observe that the saturation of the transmission links leads to price di�erentiation in
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zones 4 and 5. Since the objective is to maximize both the expected pro�t and the

expected market share (with respect to β) the dominant producer’s dispatch varies in

terms of quantities when compared to the base case solution as β varies.

Figure 2.5: Base case solution
for t1, s3

Figure 2.6: Supply function
solution for t1, s3 and β = 0.95

The o�-peak (t8) and low demand (s1) solutions of the same models are reported in

Figures 2.7 and 2.8, which demonstrate that at lower demand level the dominant pro-

ducer’s strategic bids for quantity and price o�er are closer to the base case, namely the

capacity of its units and the marginal generation cost. Therefore, during low demand

periods, the dominant producer is not able to fully exert market power, which leads to

lower zonal prices.
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Figure 2.7: Base case solution
for t8, s1

Figure 2.8: Supply function
solution for t8, s1 and β = 0.95

Finally, in order to examine the system output sensitivity to the dominant producer’s

preferences, represented by the value of the weight β in the objective), we compare the

supply function model at an average level demand period (t5, s2) for two extreme values

of β, namely 0, corresponding to maximizing expected pro�t only, and 1, corresponding

to maximizing market share only. The results are reported in Figures 2.9 and 2.10.

Figure 2.9: Supply function
solution for t5, s2 and β = 0

Figure 2.10: Supply function
solution for t5, s2 and β = 1
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It can be observed that when the dominant producer aims at maximizing expected pro�t

only, the strategic bid prices are higher and the strategic bid quantities are lower, in

order to force higher zonal prices and to obtain higher pro�ts. On the other hand, when

the objective is to maximize the market share, dominant producer bids the capacity of

its units at lower prices, in order to fully utilize the generation capacity and obtain a

higher market share.

All case studies have been solved using CPLEX 11 under GAMS. We have used a Dell

PowerEdge R910 x64 computer with 4 processors at 1.87 GHz and 32 GB of RAM.

Table 2.3 shows the running times and computational complexity required for solving the

problems. The second to �fth columns show CPU times and computational complexity

for each case study and only one point of the Pareto frontier. The CPU times shown in

the second row are given by the average of all Pareto points of the frontier.

Base Case Cournot Bertrand Supply function

Avg. CPU time for 1 point
0.56 sec 123 min 19 sec 145 min

of the pareto frontier
# of binary variables 0 3264 3264 3264
# of positive variables 1536 4984 4984 5168
# of free continuous variables 120 264 264 264
# of inequality constraints 1728 9976 10160 10344
# of equality constraints 144 1800 1800 1800

Table 2.3: CPU times and computational complexity of base case, Cournot,
Bertrand and Supply function strategic o�ers

2.6 Conclusion

This chapter presents a multi-objective two-stage bilevel stochastic model for a dominant

producer aiming at maximizing the expected market share and the expected pro�ts in a

pool-based markets for a mid-term horizon. The model is reformulated �rst as a multi-

objective SMPEC and then as a mixed-integer linear programming problem suitable for

application in large scale systems.

Three di�erent strategic approaches have been proposed for the dominant producer, in

order to achieve both objectives in a pool-based market: o�ering strategically the power
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generation (Cournot model); price bid (Bertrand model); and both price and quantity

(supply function model).

The proposed model is then solved and the Pareto frontier is obtained. The Pareto

frontier illustrates the trade-o� between the dominant producer’s con
icting interest in

maximizing the expected pro�t and expected market share.

By analyzing the simulation results we draw the following conclusions.

? The dominant producer can substantially increase expected pro�ts and/or ex-

pected market share by behaving strategically when o�ering power production to

the ISO.

? The expected pro�t is higher when bidding in supply function manner than bidding

only strategic price or quantity for the same levels of the market share.

? In peak load demand hours, the dominant producer can exert market power by

bidding higher energy prices and withdrawing some of its generation capacity,

which leads to higher spot market prices. Conversely, in low demand periods the

dominant producer has little in
uence on market clearing prices and hence the

pro�t is similar to the base case.

? The MILP formulation gives rise to computational e�ciency, specially in the case

of Bertrand approach (due to smaller solution space) .

Finally, the proposed two-objective model can be varied by looking at various other

objectives such as risk measures, capacity expansion/investment, production scheduling

and maintenance of generation units. We leave these topics for our future work.





Chapter 3

Robust Unit Commitment

Problem

Chapter Abstract

The short term unit commitment and reserve scheduling decisions are made in the face

of increasing supply side uncertainty in power systems. This has been mainly caused

by a higher penetration of renewable generation that is encouraged and enforced by

the market and policy makers. In this chapter, we propose a two-stage stochastic and

distributionally robust modelling framework for the unit commitment problem under

supply uncertainty. Based on the availability of the information on the distribution

of the random supply, we consider two speci�c models: i) a moment model where the

mean values of the random supply variables are known, and ii) a mixture distribution

model where the true probability distribution lies within the convex hull of a �nite set

of known distributions. In each case, we reformulate these models through dualization

which leads to a semi-in�nite program in the former case and a one-stage stochastic

program in the latter case. We solve the reformulated models using sampling method

and sample average approximation respectively. We also establish exponential rate of

convergence of the optimal value when the randomization scheme is applied to discretize

the semi-in�nite constraints. The proposed robust unit commitment models are applied

to an illustrative case study and numerical test results are reported in comparison with

the two-stage non-robust stochastic programming model.

41
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3.1 Introduction

The recent increase in the deployment of renewable energy resources such as wind power

has a great impact on the short-term operational and long-term investment decisions in

power systems due to their non-dispatchability and intermittent nature. In the short-

term, the higher penetration of wind power and the lack of e�cient storage facilities

has an adverse e�ect on the stability of generation output. One of the most crucial

decision problems that are a�ected by the short-term supply uncertainty is the unit

commitment (UC) problem [112, 83]. The objective of the UC problem is to minimize

the generation cost by determining the hourly unit commitment and the reserve schedule

for the day-ahead given the demand and wind forecasts.

Classical models for the UC problem are often deterministic and consider supply and

demand for electricity in the day ahead to be known in advance. Whilst the demand

forecast for the day ahead can be reasonably estimated, the high reliance of the gen-

eration output on the unreliable wind power potentially makes optimal solutions of a

deterministic model to be heavily infeasible or non-optimal under realized supply [80].

Probabilistic and robust optimisation models provide an alternative approach to incor-

porate the increased uncertainties associated with the wind and load forecasts into power

system operations. In this sense, approaches to account for the uncertainty in renewable

energy generation in the UC problem fall into three categories: (two-stage) stochastic

programming, chance-constrained programming, and robust optimisation.

The �rst approach of two-stage stochastic optimisation [99] has been used widely for

solving the UC problem [113, 84, 116], where energy and reserve generation are jointly

scheduled to meet demand under stochastic wind supply. Chance-constrained program-

ming is also proposed to deal with the jointly energy and reserve scheduling UC where

one or several constraints must be satis�ed with a given probability [86, 87]. One of

the key assumptions in two-stage stochastic programming and chance-constrained pro-

gramming is that the decision maker has complete information on the distribution of

the uncertain parameters. However, limited predictability and high volatility of the

renewable supply make this assumption non realistic.

In the third approach, classical robust optimisation, the distribution of the uncertain

parameters is unknown except for its support. The support set contains all possible
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realizations of the unknown parameter and is often referred to as the uncertainty set

[105, 26, 17]. From this, an equivalent deterministic problem can be derived. For the

basic concept and a thorough survey of robust optimisation, we refer the interested

readers to [71, 1, 13]. In the context of the UC problem, references [67, 68, 21] provide

a robust optimisation formulation and an adaptive robust optimisation to address the

wind power and demand uncertainty, respectively.

The min-max robust optimisation is often criticized for not utilizing partial information

on the distribution of the uncertainty. Distributionally robust optimisation is part of the

robust modeling framework where no assumption on the true probability distribution is

made. But there is some knowledge of the underlying probability distribution.

There is an extensive research published on UC models where energy and reserve are

scheduled together. Table 3.1 summarizes some of those references that are more closely

related to the models proposed in this chapter.

Reference Multiperiod Network Security Model Uncertainty Available information

[28] no no n− 2 Det. with prob. constr. contingencies probability of outage

[5] no yes n− 1 Det. MILP contingencies set of plausible outages

[30] no yes n− 1 TS-SP� and MILP ref.y contingencies probability of outage

[31, 32] yes yes n− 1 TS-SP and MILP ref. contingencies probability of outage

[29] yes no n− 1 TS-SP and MILP ref. contingencies probability of outage

demand and wind demand and wind pdf

[108] yes no n−K Det. with WCx contingency contingencies set of plausible outages

[88] yes no n− 1 TS-SP and MILP ref. demand and wind wind and demand pdf

[69] yes yes n− 1 TS-SP and MILP ref. contingencies probability of outage

[21] yes yes n− 1 Det. AROz demand demand bound uncertainty

[86] yes no n−K CC-SP� and MILP ref. demand and wind demand and wind pdf

Current work yes no n− 1 distributionally robust wind distributional information

∗ → Two-stage stochastic programming † → Mixed integer linear programming reformulation § → Worst-case

‡ → Adaptive robust optimisation � → Chance-constrained stochastic programming

Table 3.1: A survey of UC models with security criteria

For a comparison between the existing literature and the proposed distributionally robust

UC model in this chapter, we provide some criteria for classi�cation as follows:
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• The �rst classi�cation criterion is based on the uncertainty sources and their avail-

able information. Contingencies, demand and wind production are some common

sources of uncertainty in the UC problem with security criterion. Contingency

events are usually considered as scenarios to include into a deterministic or stochas-

tic UC constraints. Then, a bunch of post-contingency power 
ow operation equa-

tions should be included in the problem as presented in [28, 30, 5, 31, 32, 88, 69]

to model that the system remain stable under the loss of one or more unit or

line. Probability of the contingencies may be known (e.g. in [28, 30, 88, 69]) or

may not be known (e.g. in [5, 108, 86]). References [29, 88, 86] include stochastic

demand and wind with full knowledge of probability distributions of the uncertain-

ties. Reference [21] includes stochastic demand with partial information, where the

uncertainty set is de�ned as box uncertainty with a budget constraint.

In this chapter, we model wind production as an uncertainty parameter with par-

tial information on its probability distribution. Speci�cally, we propose two uncer-

tainty sets: the �rst one is based on the �rst moment information and the second

one is based on a family set of known distributions.

• The second classi�cation criterion is based on the system reliability considera-

tions. Current reliability policy and associated security standards in power sys-

tems mainly focus on contingencies caused by outage of transmission or generation

assets. The purpose of security criteria is to keep the system stable in case of one

(n−1 criterion) or more (n−K criteria) outages of a generating unit or line, where

reserve planning is justi�ed to compensate for possible outages.

The n − 1 criterion has been extensively applied to UC problem [5, 30, 31, 32,

29, 88, 69]. Some studies extend the security criterion up to K simultaneous

contingencies [108, 86]. However, more strict criteria increases the complexity of

the model and its tractability.

We propose a model where a n−1 security criterion is included in the sense that if

one unit is loss, the demand is met with the scheduled reserve from the �rst stage

under any wind scenario.

• The third criterion is based on the modeling of contingencies. Outages can be

treated as deterministic parameters and the preventive actions are taken pre-

contingency and through inclusion of deterministic constraints. These security
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constraints will ensure that enough resources for the normal operation of the sys-

tem in the event of a contingency (see [5]). On the other hand, outages can be

treated as stochastic parameters, then the objective function includes expected

value of the second-stage corrective costs. Contingencies probabilities should be

known for this model, and the set of post-contingencies equations, one for each

outage, are included into the model (see [29, 31]). Note that, when others sources

of uncertainty exists, post-contingencies equations should be extended for each

scenario, which may leads into an intractable problem. Because of that, some au-

thors limit the scenarios of contingencies to an umbrella of credible contingencies

[5, 30, 31, 32, 69, 29]. Another approach to deal with security criteria is posing an

optimisation problem to determinate the worst contingency/contingencies. The

works [108] and [86] propose a worst-case optimisation problem embedded into a

deterministic and chance-constrained UC model, respectively.

In this chapter, we formulate the security criterion as a deterministic constraint

for the worst-case outage. We show that this worst-case outage is always the worst

for any wind scenario. In this sense, we do not need to add up post-contingency

equations for each plausible outage (all generating units) and each wind scenario.

There is no cost term in the objective function to account for the extra cost of

the corrective actions in the event of a contingency. This is a reasonable approach

because contingencies has a very low probability of occurrence.

• A fourth criterion is based on the model formulation and solution approach. Ref-

erences [28, 5] propose a deterministic modelling framework, [29, 31] formulate

a two-stage optimisation problem, [86] formulates a chance-constrained problem,

and [108, 21] present a robust optimisation framework. Most of these models are

solved by driving their deterministic counterparts and later reformulating them as

MILPs.

In this chapter, we propose a distributionally robust optimisation formulation

which is then reformulated as an MILP using duality theory and sampling.

Paper [21] proposes a two-stage deterministic robust optimisation UC model, where the

uncertainty set is de�ned through a deterministic set. The solution of the proposed

adaptive robust model provides immunity against all realizations of the uncertain data

within the deterministic uncertainty set. However, this robust model does not take
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into account the distributional information of the random variables. In contrast, our

model accounts for the partial/available information on the probability distribution of

the uncertain data. Furthermore, in [21], the �rst stage decision variables consist of the

on/o� commitment variables and the second stage solves an economic dispatch, there-

fore, they do not need to schedule reserve for the second-stage uncertainty deviations

(North American’s UC outlook). However, in our model, the �rst stage decision vari-

ables are the set of on/o� decisions and scheduled energy and reserve (European’s UC

outlook). Scheduled reserve is used in the second stage as corrective actions to meet the

demand under wind production deviations and/or the outage of one generating unit.

Despite the fact that there is a rich body of literature focusing on two-stage stochastic

and robust UC with endogenous reserve scheduling and wind generation models, a dis-

tributionally robust UC approach has not been presented yet. The main contributions

of this chapter are summarized as follows:

• We propose a distributionally robust UC model to deal with day ahead wind

uncertainty and robust n− 1 security criteria.

• We consider two uncertainty sets based on the available information to model the

stochastic wind. This leads to two speci�c models: i) a moment model where

the mean values of the random supply variables are known, and ii) a mixture

distribution model where the true probability distribution lies within the convex

hull of a �nite set of known distributions.

• We reformulate the robust model with moment condition as a semi-in�nite program

through duality. Moreover, we develop a randomization scheme for solving the

Lagrange dual of the robust optimisation problem. To show the convergence of

the randomized problem, we consider a general mathematical program with semi-

in�nite constrains and establish exponential rate of convergence of the optimal

value when the randomization scheme is applied to discretize the semi-in�nite

constraints.

• We also reformulate the mixture model as a one-stage stochastic program through

duality and develop a practical solution method based on SAA to reformulate the

problem as an MILP.
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• We provide numerical results for an illustrative case study. We analyse and

compare both approaches against a two-stage (non-robust) stochastic UC model.

Speci�cally, we analyse the sensibility of the solutions to the variation of the mean

and covariance.

The remainder of this chapter is organized as follows. In Section 3.2, deterministic UC

model is introduced �rst, then, a two-stage UC model is presented under wind generation

uncertainty and �nally a distributionally robust UC is presented. In Section 3.3 and 3.4

describe the robust UC solution methodologies based on uncertainty generated with

moments information and mixture of distributions, respectively. Section 3.5 presents

several case studies comparing the proposed approaches. The main conclusions are

summarized in Section 3.6.

3.2 Mathematical formulation

In the most basic form, the unit commitment problem involves the system operator to

�nd the optimal schedule and the generation level for a set of conventional generating

units over a planning horizon in order to meet the demand. Under a deterministic

framework, the demand and supply parameters are assumed to be known and given in

advance. There is a vast literature on deterministic unit commitment models, see [83] for

a comprehensive survey. Consider a set I = {1, · · · , I} of conventional generating units,

indexed by i, and let T = {1, · · · , T} be the set of time periods in the planning horizon

(i.e. 24 hours of the day ahead), indexed by t. The deterministic demand for each time

period is given as dt. The system operator aims to minimize the total generation cost

by planning a schedule consisting of the on/o� decision for each generator in each time

period de�ned by binary variables

uit =


1, if generator i is on in time period t,

0, otherwise.

The energy dispatched by the generator i at time t is de�ned by continuous variable

qit. Each generator i ∈ I has a �xed on cost of cfi and, if on, it has a unit generation

cost of cli. The upper and lower generation capacity of generator i is given by qi and q
i
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respectively. The basic deterministic UC problem is then formulated as follows

min
u,q,r

∑
i

∑
t

[
cfi uit + cliqit

]
s.t.

∑
i

qit = dt, ∀ t ∈ T , (3.2.1)

qit ≤ qiuit, ∀ t ∈ T , i ∈ I, (3.2.2)

qit ≥ qiuit, ∀ t ∈ T , i ∈ I, (3.2.3)

qit ∈ R+, uit ∈ {0, 1}, ∀ t ∈ T , i ∈ I, (3.2.4)

where the balance constraint (3.2.1) ensures the forecasted demand is met at all time

periods and constraints (3.2.2) and (3.2.3) impose the upper and lower generation limits

of every unit for all time periods.

In the remaining of this section, we �rst introduce the two-stage stochastic unit commit-

ment problem (Sto-UC) taking into account the wind uncertainty and reliability criteria.

Since it is not often possible to have complete information on the probability distribution

of the wind supply, we extend the stochastic framework into a two-stage distributionally

robust model. Most of the notations used in this chapter are introduced in this section.

3.2.1 Two-stage stochastic UC with uncertain net load

The unit commitment and generation scheduling problems involve inherent uncertain-

ties stemming from the short-term volatility of demand and unpredictability of wind

power. The recent progress in the �eld of stochastic programming makes it an attrac-

tive approach for modelling the UC problem under uncertainty. Research carried out

in [36, 112, 45] were amongst the �rst that formulate the UC problem as a two-stage

stochastic program. Under the stochastic framework, adequate reserves are scheduled

in advance and used to hedge against the uncertainty in future demand and/or supply.

In what follows, we �rst de�ne operational characteristics of the power system including

the reserve scheduling, the reliability criteria and the ramping constraints. We then

present the UC problem under the wind generation uncertainty as a two-stage stochastic

program. Assuming that the day-ahead demand load is known, we denote the stochastic

net load with a random vector l(ξ) which is given by the di�erence between the known
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demand d and stochastic wind power generation w(ξ) at any time period

lt(ξ) = dt − wt(ξ), ∀ t ∈ T .

For the convenience of notation, we use l(ξ) and ξ interchangeably, i.e. both lt and

ξt refer to the stochastic net load at time period t. Mathematically ξ is a random

vector de�ned over measurable space (
,F) with sigma-algebra. We use � to denote

the support set of ξ. Obviously in this context, we can assume that � is a compact set

(bounded and closed).

The �rst-stage (here and now) decisions are determined prior to realization of uncertain

net load ξ. These include the on/o� decision variable uit, for generator i and time period

t, the energy dispatched variable qit, for the generator i at time t, and the up and down

scheduled reserves for generator i at time t denoted as rupit , r
dw
it respectively. The upper

and lower limits for reserve up/down for generator i are given by rupit /r
dw
it and rupit /r

dw
it

respectively. The unitary cost of scheduling reserve up cr,upi and down cr,dwi for generator

i are given as input of the problem.

The second stage (wait and see) after the realization of the uncertainty in net load ξ

includes decision variables on the actual up and down deployed reserves, denoted by

r̂upit (ξ), r̂dwit (ξ). The unitary cost for the actual deployment of the reserve up and down

are given by ĉupi and ĉdwi . To avoid unbalance in the supply and demand for energy

in the second stage, we introduce additional auxiliary variables for load shedding and

wind spillage. The load shedding variable is denoted by St(ξ) and represents the excess

demand which can not be met by the total generation output at time period t and has

to be shed at high penalty cost of clst . On the other hand, the wind spillage variable,

denoted by Wt(ξ), is equal to the excess wind power that can not be utilized upon the

realization of the net load. Wind spillage incurs an unitary opportunity cost of cwst .

Figure 3.1 gives a graphical interpretation of the scheduling up and down reserves to

meet the demand under any net load deviation.
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Figure 3.1: Net load distribution and scheduled production and reserve for
time t

Figure 3.1 gives a graphical interpretation of the scheduling up and down reserves to

meet the demand under any net load deviation. Note that for illustration purpose, it

was assumed that the net load distribution lt(ξ) function follows a normal distribution.

Note that for illustration purpose, it was shown in Figure 3.1 that the net load distri-

bution lt(ξ) function follows a normal distribution. However, in practice net load could

follow other distributions.

Ramp constraints

For conventional generation units, it is important to take into account the short-term

dynamics of generation output for the consecutive periods. Such requirements are often

referred to as ramp constraints which limit the maximum increase or decrease of gen-

erated power from one time period to the next, re
ecting the thermal and mechanical

inertia that has to be overtaken in order for the generating unit to increase or decrease

its output.

In a two-stage stochastic framework, we need to de�ne the ramp constraints for any

possible realization of the net load ξ. At the second stage and after the realization of
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uncertain net load, the scheduled energy qit does not change and the generating units

adapt their production to accommodate the realized net load. To do this, up and down

reserves (r̂upit (ξ), r̂dwit (ξ)) are used. We denote the actual power output of unit i at time

t and scenario ξ as q̂it(ξ) which is given by

q̂it(ξ) = qit + r̂upit (ξ)− r̂dwit (ξ), ∀t, i, ξ.

Note that, up and down reserves should not be simultaneously positives. We consider

the ramps constraints for all four combinations of on-o� decisions between any two

consecutive periods t− 1 and t as follows.

q̂it(ξ)

qit

q̂i(t−1)(ξ)

qi(t−1)

q̄i

q
i

(a) ui(t�1) = 1 and uit = 1

q̄i

q
i

qi(t−1)

q̂i(t−1)(ξ)

qit

q̂it(ξ)

(b) ui(t�1) = 0 and uit = 1

Figure 3.2: Ramp limitation

1. If ui(t−1) = 1 and uit = 1, the generating unit i is coupled for both hours and ramp

limitations in hour t are bounded by the ramp up and down rates, RU and RD

respectively (see Figure 3.2a). The ramp equations will then be as follows:

q̂it(ξ)− q̂i(t−1)(ξ) ≤ RUi, ∀t, i, ξ, (R1)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDi, ∀t, i, ξ. (R2)

2. If ui(t−1) = 0 and uit = 1, generating unit i starts up at the beginning of period t

and hence the limitation for hour t should be the starting up ramp SU (see Figure
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3.2b). The ramp equations will then be as follows

q̂it(ξ)− q̂i(t−1)(ξ) ≤ SUi, ∀t, i, ξ, (R1)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDi, ∀t, i, ξ. (R2)

Note that, (R2) always holds because q̂i(t−1)(ξ) = 0, q̂it(ξ) ≥ 0 and RDi ≥ 0.

3. If ui(t−1) = 1 and uit = 0, generating unit i shutdowns at the beginning of time

period t and hence limitation during the hour t
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Having de�ned the ramp constraints for all combinations of on/o� decisions between

two time period, we can generalize them in relations to decision variable uit as follow:

q̂it(ξ)− q̂i(t−1)(ξ) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, ξ,

q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDiuit + SDi(1− uit), ∀t, i, ξ.

Reliability and n− 1 security constraint

To ensure the system reliability under the failure of up to one scheduled generator, we

consider the worst-case scenario that the system could face; That is, for any given time

period, the generator with the highest total scheduled generation and actual up reserve

to fail under the lowest level of wind (highest net load) available. This can be modeled

as

∑
i

(qit + rupit )−max
i
{qit + r̂upit (ξ)}+ St(ξ) ≥ dt −min

ξ
{wt(ξ)}, ∀t, ξ. (3.2.5)

Let us denote the worst (lowest) realization of wind output at time t by

ξ
t

= arg min
ξ
{wt(ξ)},

and let St(ξ) denote the corresponding load shedding for this realization. Since the

actual up reserve used has to be less than the scheduled up reserve, i.e. r̂upit (ξ) ≤ rupit for

every scenario ξ, the inequality (3.2.5) can be rewritten as

∑
i

(qit + rupit )−max
i
{qit + rupit }+ St(ξ) ≥ dt − wt(ξ), ∀t. (3.2.6)

Lets denote the upper limit of total generation and reserve schedules at time t as follow

Qt =
∑
i

(qit + rupit ) , ∀t.

The inequality (3.2.6) can be rewritten as

Qt − (qit + rupit ) + St(ξ) ≥ lt(ξ), ∀t, i.
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Two-stage stochastic model

The resulting mathematical model for the two-stage stochastic UC problem with n− 1

security criterion and ramping constraints is given as follows

(Sto-UC) min
u,q,r

∑
i

∑
t

[
cfi uit + cliqit︸ ︷︷ ︸

Generation Cost

+ cr,upi rupit + cr,dwi rdwit︸ ︷︷ ︸
Reserves Cost

]
+ EP [g(u,q, r, ξ)]︸ ︷︷ ︸

Expected variation cost

s.t. qit + rupit ≤ qiuit, ∀t, i, (3.2.7)

qit − rdwit ≥ qiuit, ∀t, i, (3.2.8)

rupi uit ≤ r
up
it ≤ r

up
i uit, ∀t, i, (3.2.9)

rdwi uit ≤ rdwit ≤ rdwi uit, ∀t, i, (3.2.10)

qit, r
dw
it , r

up
it ∈ R+, uit ∈ {0, 1}, ∀t, i, (3.2.11)

where EP denotes the mathematical expectation taken w.r.t. the distribution of ξ. over

probability space (P,
,F), and g(u,q, r, ξ) is the optimal value of the second-stage

problem and is de�ned as

g(u,q, r, ξ) = min
r̂,W,S

∑
i

∑
t

{
ĉupi r̂

up
it (ξ) + ĉdwi r̂dwit (ξ)

}
+
∑
t

{
clst St(ξ) + cwst Wt(ξ)

}
s.t.

∑
i

q̂it(ξ) + St(ξ)−Wt(ξ) = lt(ξ), ∀t, (3.2.12)

0 ≤ r̂upit (ξ) ≤ rupit , ∀t, i, (3.2.13)

0 ≤ r̂dwit (ξ) ≤ rdwit , ∀t, i, (3.2.14)

Qt − (qit + rupit ) + St(ξ) ≥ lt(ξ), ∀t, i, (3.2.15)

q̂it(ξ)− q̂i(t−1)(ξ) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, (3.2.16)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDiuit + SDi(1− uit), ∀t, i. (3.2.17)

In the �rst stage, constraints (3.2.7) and (3.2.8) represent the generation limits including

the up and down scheduled reserves. The equations (3.2.9) and (3.2.10) bound the

minimum and maximum reserves to schedule.

In the second stage, constraint (3.2.12) represents the energy balance for each hour t

and net load wind scenario ξ. Constraints (3.2.13) and (3.2.14) ensure that the actual

up and down reserves used are within the limits of the nominal reserve scheduled in the
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�rst stage. Furthermore, equation (3.2.15) represents the n−1 reliability constraint and

ensures that the demand is met under the failure of up to one generating unit. Finally,

constraints (3.2.16) and (3.2.17) represent the ramp constraint as de�ned above.

3.2.2 Distributionally robust UC problem

Under the stochastic programming framework (Sto-UC), we assume that the \true"

probability distribution P of the random wind variables is known. In practice, how-

ever, such distribution is often unknown or estimated through partial information and

subjective judgements. One of the possible ways to deal with this issue is to use avail-

able information to construct a set of distributions, denoted as P, in which the true

probability distribution is assumed to be contained. The robust optimisation approach

to the two-stage stochastic problem with respect to this ambiguity aims to make deci-

sions that is optimal for the worst probability distribution from P. The corresponding

mathematical formulation is

(R-UC) min
x

cTx+ sup
P∈P

EP [g(x, ξ)]

s.t. x ∈ X ,

(3.2.18)

where g(x, ξ) is the optimal value of the second-stage problem

g(x, ξ) = min
y

hT y

s.t. y ∈ Y(x, ξ),

(3.2.19)

where Y(x, ξ) is the second-stage feasible set which is dependent on the �rst-stage de-

cision x and the realization ξ. For convenience in notation we refer to the set of the

�rst-stage decision variables as x = (u,q, r) and the feasible domain of x in the �rst

stage to be X . Likewise we refer to the second-stage variables as y = (r̂,W,S). Fur-

thermore, we refer to the �rst-stage cost parameters as c = (cf , cl, cr,up, cr,dw) and the

second-stage cost parameters as h = (ĉup, ĉdw, cls, cws).
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In the literature of robust optimisation, (3.2.18) is known as a distributionally robust

optimisation problem where the robustness is taken w.r.t. the probability distribution

rather than the scenarios of the random vector ξ. The set P is called ambiguity set.

The �rst-stage distributionally robust decisions are related to the energy and reserve

scheduling and on/o� commitment decisions. The second-stage distributionally robust

UC decisions are related to the corrective actions to meet the net load. Corrective

actions could be preventive as deploying the already scheduled reserve at the �rst stage

or emergency corrective actions such as load shedding or wind spillage. UC solutions

from the �rst stage remain feasible for any realization of the wind uncertainty that

belongs to a family of distributions P.

The uncertainty set P can be de�ned in various ways depending on the availability of

information. We consider two approaches; one is to use the moment information where

moments of ξ is assumed known. The other is to use mixture distribution with a set of

perceived distributions.

3.3 A semi-infinite programming approach

In this section, we investigate the robust unit commitment problem where the �rst

moment conditions of the underlying random wind, and therefore the net load, variables

are known. In the case of uncertain wind, the exact probability distribution is often

unknown and partial information such as the �rst moment condition is more readily

available in practical situations. Let µ ∈ RT denote the mean of ξ. We consider the

ambiguity P being de�ned as follows:

P = {P ∈P : EP [ξ] = µ} , (3.3.1)

where P denotes the set of all probability measures of measurable space (�,B) induced

by ξ. For each �xed x ∈ X , we consider the worst expected value of g(x, ξ) over the

ambiguity set P:

H(x) := sup
P∈P

EP [g(x, ξ)]. (3.3.2)
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Using the moment conditions, we can write H(x) as the optimal value of the following

maximization problem

H(x) = sup
P∈M+

∫
Ξ
g(x, ξ)P (dξ),

s.t.

∫
Ξ
ξtP (dξ) = µt,∀t = 1, · · · , T,

∫
Ξ
P (dξ) = 1,

(3.3.3)

where M + denotes the set of all non-negative �nite measures on measurable space

(�,B), µt is the tth component of µ. Problem (3.3.3) is a typical form of a classical

moment problem. We refer interested readers to monograph [73] for a comprehensive

discussion of the historical background of the latter. Note that mathematically (3.3.3)

is a semi-in�nite linear program because the optimisation space is �nite dimensional

while the number of constraints is in�nite. In order to deal with di�culties associated

to solving such in�nite dimensional problem duality theory is often used; see for example

[91]. Here we follow [96, Proposition 3.1] to derive the Lagrange dual associated with

the moment problem (3.3.3).

Proposition 3.3.1. For a given x ∈ X , the Lagrange dual of problem (3.3.2) is

HD(x) := min
α

α0 +
T∑
t=1

αtµt

s.t. g(x, ξ) ≤ α0 +
T∑
t=1

αtξt,∀ξ ∈ �,

(3.3.4)

where αt ∈ R, t = 0, 1, · · · , T , denotes the dual variables corresponding to moment

problem constraints and � ⊂ RT is the support set of ξ, and HD(x) = H(x).

Proof: The derivation of the dual formulation can be found in [99]. Here we include

some details for completeness. Let

L(x, P, α) :=

∫
Ξ
g(x, ξ)P (dξ) + α0

(
1−

∫
Ξ

1P (dξ)
)

+

T∑
t=1

αt

(
µt −

∫
Ξ
ξtP (dξ)

)
=

∫
Ξ

(
g(x, ξ)− α0 −

T∑
t=1

αtξt

)
P (dξ) + α0 +

T∑
t=1

αtµt,
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where αt ∈ IR for t = 0, 1, · · · , T . The Lagrange dual of (3.3.3) is

HD(x) = min
α

sup
P
L(x, P, α). (3.3.5)

If there exist an ξ∗ ∈ � such that

g(x, ξ∗)− α0 −
T∑
t=1

αtξ
∗
t > 0.

Then we can take P := σI(ξ∗), where σ > 0 is a positive constant and I(·) takes value

1 at ξ∗ and 0 otherwise. Hence

∫
Ξ

(
g(x, ξ)− α0 −

T∑
t=1

αtξt

)
P (dξ) = σ

(
g(x, ξ∗)− α0 −

T∑
t=1

αtξ
∗
t

)
.

The R.H.S of the equation above can be arbitrarily large as σ can take any positive

value. Consequently, it can be veri�ed that

max
P∈P
L(x, P, α) :=


α0 +

T∑
t=1

αtµt, if g(x, ξ)− α0 −
T∑
t=1

αtξt ≤ 0, ∀ξ,

+∞, otherwise,

which yields (3.3.4).

To complete the proof, let us now show H(x) = HD(x). Observe �rst that for any �xed

x ∈ X , since � is compact, H(x) is �nite. Moreover, with the compactness of �, it

follows by [109, Remark 2] that P is compact (closed and tight) and thereby the set

{EP [g(x, ξ)],EP [ξt]− µt : P ∈ P}

is a compact set. By [96, Proposition 3.1], H(x) = HD(x). �

Using Proposition 3.3.1, we can reformulate (R-UC) as

(SIP-UC) min
x,α0,α

cTx+ α0 +αTµ

s.t. x ∈ X ,

g(x, ξ) ≤ α0 +αT ξ, ∀ξ ∈ �,

(3.3.6)
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under the moment conditions. Moreover, it is easy to verify that (3.3.6) is equivalent to

the following program which incorporate the details of the second-stage problem

min
x,y(.),α0,α

cTx+ α0 +αTµ

s.t. x ∈ X ,

hT y(ξ) ≤ α0 +αT ξ, ∀ξ ∈ �,

y(ξ) ∈ Y(x, ξ),∀ξ ∈ �.

(3.3.7)

3.3.1 Sample approximation scheme

One of the well-known solution approaches for semi-in�nite programs is random dis-

cretization. The basic idea is to construct a tractable sub-problem by considering a

randomly drawn �nite subset of constraints. The approach has been shown to be numer-

ically e�cient and it has been widely applied to various stochastic and robust programs,

see [33]. In a more recent development, Anderson et al [2] proposed a CVaR approx-

imation scheme to a semi-in�nite constraint system and then apply the well known

sample average approximation to the CVaR (of the constraint function), see also Liu

and Xu [76] where the approach is applied to mathematical programs with semi-in�nite

complementarity constraints.

Let ξ1, · · · , ξS be random variables which are independent and follow identical distribu-

tion to that of ξ. Let S = {1, · · · , S}. We consider the following discretization problem

as an approximation to (3.3.7):

min
x,y(ξs):s∈S,α0,α

cTx+ α0 +αTµ

s.t. x ∈ X ,

hT y(ξs) ≤ α0 +αT ξs,∀s ∈ S,

y(ξs) ∈ Y(x, ξs), ∀s ∈ S,

(3.3.8)
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where ξs is a realization of ξ for s ∈ S. In what follows, we show the convergence of

the optimal value of (3.3.8) to its true counterpart as the sample size increases. To this

end, we consider an equivalent form of (3.3.8) which is presented in terms of the optimal

value function of the second-stage problem:

min
x,α0,α

cTx+ α0 +αTµ

s.t. x ∈ X ,

g(x, ξs) ≤ α0 +αT ξs,∀s ∈ S.

(3.3.9)

A clear bene�t of the formulation above is that the decision variables and the number

of constraints are independent of the sample and this will particularly facilitate the

convergence.

To minimize the dependence on the speci�c details of the objective and constraints

functions of problem (3.3.9) for the convergence analysis and also for the purpose of

potential applications of the convergence result, we consider the following general opti-

misation problem

min
x∈X

ψ(x)

s.t. f(x, ξ) ≤ 0,∀ξ ∈ �,
(3.3.10)

where X is a compact set in a �nite dimensional space, ψ and f are continuous functions

which map from Rn and Rn × Rk to R respectively, ξ is parameter which takes values

over a compact set �.

Let ξ1, · · · , ξN be independent and identically distributed random variables following

continuous distribution with support set �. We consider the discretized problem:

min
x∈X

ψ(x)

s.t. f(x, ξi) ≤ 0, i = 1, · · · , N.
(3.3.11)

Let v and vN denote respectively the optimal values of program (3.3.10) and program

(3.3.11).

Lemma 3.3.1. Assume that (a) ψ is Lipschitz continuous, (b) � is a compact set, (c) ξ
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is continuous random variable with identical distribution1 for ξi, i = 1, · · · , N and there

exist positive constants K and τ independent of x such that for each x ∈ X, there exist

α0(x) < f∗(x) := max
y∈Ξ

f(x, y) with

1− Fx(α) ≥ K (f∗(x)− α)τ , for all α ∈ (α0(x), f∗(x)), (3.3.12)

where Fx denotes the cumulative distribution function of f(x, ξ) 2, (d) f is Lipschitz

continuous in x with integrable Lipschitz modulus (w.r.t. the distribution of ξ). Then

for any positive number ε, there exists positive constants C(ε) and β(ε) such that

Prob(|vN − v| ≥ ε) ≤ C(ε)e−β(ε)N (3.3.13)

for N sufficiently large.

Proof: The thrust of the proof is to use CVaR and its sample average approximation

to approximate the semi-in�nite constraint of (3.3.10) which is in line with the conver-

gence analysis carried out in [2]. However, there are a few important distinctions: (i)

the convergence here is for the randomization scheme (3.3.11) rather than the sample

average approximation of the CVaR approximation of the semi-in�nite constraints, (ii)

the underlying functions in the objective and constraints are not necessarily convex and

(iii) the decision vector may consist of some integer variables.

Let

�(x) := sup
ξ∈Ξ

f(x, ξ) and �N (x) := sup
i=1,··· ,N

f(x, ξi),

let F and FN denote the feasible set of problem (3.3.10) and problem (3.3.11) respec-

tively. Then

F = {x : �(x) = 0} and FN = {x : �N (x) = 0}.

1Although ξ is a deterministic parameter here, we may regard it as a random variable and by writing
f(x, ξ) ≤ 0 we mean that for every realization of ξ, the inequality holds.

2 Note that ξ could be any random variable which follows a continuous distribution with support set
Ξ and the cumulative distribution function satisfying (3.3.12).
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Moreover, since �N (x) ≤ �(x), F ⊂ FN . For β ∈ (0, 1), let

CVaRβ(f(x, ξ)) := sup
η

{
η +

1

1− β

∫
y∈Y

(f(x, y)− η)+ρ(y)dy
}

and

	N
β (x) := sup

η

{
η +

1

(1− β)N

N∑
j=1

(f(x, ξj)− η)+

}
where ρ(·) denotes the density function of the random variable ξ, (a)+ = max(0, a)

for a ∈ IR. In the literature, CVaRβ (f(x, ξ)) is known as conditional value at risk

and 	N
β (x) is its sample average approximation, see [92, 2]. It is well known that the

maximum w.r.t. η in the above formulation is achieved at a �nite η. In other words, we

may restrict the maximum to be taken within a closed interval [−a, a] for a su�ciently

large, see [92]. It is easy to verify that

	N
β (x) ≤ �N (x) ≤ �(x). (3.3.14)

We proceed the rest of the proof in four steps.

Step 1. By the de�nition of CVaR,

CVaRβ (f(x, ξ)) ≤ �(x).

for any β ∈ (0, 1), see [2]. Moreover, under condition (c), it follows by [2, Theorem 2.1]

that

|CVaRβ (f(x, ξ))− �(x)| ≤ 1

K1/τ

τ

1 + τ
(1− β)1/τ . (3.3.15)

Therefore by driving β to 1, we obtain

sup
x∈X
|CVaRβ (f(x, ξ))− �(x)| → 0.

Step 2. Using the inequalities (3.3.14), we have

|�N (x)− �(x)| ≤ |	N
β (x)− �(x)|

≤ |	N
β (x)− CVaRβ (f(x, ξ)) |+ |CVaRβ (f(x, ξ))− �(x)|.(3.3.16)
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Let ε be a small positive number. By (3.3.15), we may set β su�ciently close to 1 such

that

sup
x∈X
|CVaRβ (f(x, ξ))− �(x)| ≤ ε

2
.

On the other hand, since � is compact and f is Lipschitz continuous in x with integrable

modulus, by virtue of [102, Theorem 5.1], there exist positive constants C(ε) and α(ε)

such that

Prob
(

sup
x∈X
|	N

β (x)− CVaRβ (f(x, ξ)) | ≥ ε/2
)

≤ Prob
( 1

1− β sup
x∈X

sup
η∈[−a,a]

∣∣∣∣∣∣ 1

N

N∑
j=1

(f(x, ξj)− η)+ − EP [(η − f(x, ξ))+]

∣∣∣∣∣∣ ≥ ε/2
)

≤ C(ε)e−α(ε)N (3.3.17)

for N su�ciently large. Here in the �rst inequality, we are using the fact that the

maximum w.r.t. η is achieved in [−a, a] for some appropriate positive constant a. See

similar discussions in [119]. Therefore

Prob
(
|�N (x)−�(x)| ≥ ε

)
≤ Prob

(
|CVaRN

β (f(x, ξ))−CVaRβ (f(x, ξ)) | ≥ ε/2
)
≤ C(ε)e−α(ε)N .

Step 3. For small positive number δ, let

R(δ) = min
x

{
�(x) : d(x,F)

}
≥ δ,

where d(x,F) denotes the distance from point x to set F . Obviously R(δ) > 0, it is

monotonically increasing and R(δ)→ 0 as δ ↓ 0. It is easy to observe that

d(x,F) ≥ ε⇐⇒ �(x) ≥ R(ε).

Let

D(FN ,F) := sup
x∈FN

d(x,F)

and

H(FN ,F) := max
(
D(FN ,F),D(F ,FN )

)
,

which is the Hausdor� distance between FN and F . Since both FN and F are bounded,

the Hausdor� distance is well de�ned. Moreover, since F ⊂ FN , H(FN ,F) = D(FN ,F).
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In what follows, we estimate Prob
(
D(FN ,F) ≥ ε

)
. For any xN ∈ FN , since �N (XN ) =

0, then

�(xN ) ≥ R(δ)⇐⇒ �(xN )− �N (xN ) ≥ R(δ).

Therefore

Prob
(
D(FN ,F) ≥ δ

)
≤ Prob

(
sup
x∈FN

|�(x)| ≥ R(δ)

)

≤ Prob

(
sup
x∈X
|�(x)− �N (x)| ≥ R(δ)

)
. (3.3.18)

Step 4. Let x∗ ∈ F and xN ∈ FN be the optimal solutions to (3.3.10) and (3.3.11).

Then by the Lipschitz continuity of ψ,

|vN − v∗| = |ψ(xN )− ψ(x∗)| ≤ L‖xN − x∗‖ ≤ LH(FN ,F)

where L denotes the Lipschitz modulus of ψ. By selecting δ such that R(δ/L) < ε, we

arrive at

Prob(|vN − v∗| ≥ ε) ≤ Prob
(
H(FN ,F) ≥ δ/L

)
≤ Prob

(
sup
x∈X
|�(x)− �N (x)| ≥ ε

)
.

The rest follows from Step 2. The proof is complete. �

With Lemma 3.3.1, we are ready to state the convergence of problem (3.3.9).

Theorem 3.3.1. Let ϑ and ϑN denote the optimal value of (SIP-UC) and (3.3.9) re-

spectively. Assume that ξ follows a uniform distribution. Then for any positive number

ε, there exists positive constants C(ε) and β(ε) such that

Prob(|ϑN − ϑ| ≥ ε) ≤ C(ε)e−β(ε)N (3.3.19)

for N sufficiently large.

Proof: It su�ces to verify the conditions of Lemma 3.3.1. Conditions (a) and (b) are

obvious since the objective function is linear and � is compact problem (3.3.9). Condition

(c) is satis�ed because g(x, ξ) also follows a uniform distribution for each �xed x and the

cumulative distribution function of g(x, ξ) is a linear function. Let us verify condition

(d). It follows by [115, 81] (see also [75, Lemma 4.3]) that g(x, ξ) is Lipschitz continuous
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w.r.t. x and ξ and since � is compact, g(x, ξ) is Lipschitz continuous in x with integrable

Lipschitz modulus. The proof is complete. �

In Theorem 3.3.1, we assume that ξ follows a uniform distribution. It might be interest-

ing to show the conclusion when ξ follows a general continuous distribution with positive

density function in the interior of �, that is, g(x, ξ) satis�es (3.3.12), we leave this for

our future work.

The detailed formulation for the sample approximation of (SIP-UC) problem is given by

mixed integer linear program below

min
u,q,r,̂r(.),α

cfi uit + cliqit + cr,upi rupit + cr,dwi rdwit + α0 +
T∑
t=1

αtµt

s.t. qit + rupit ≤ qiuit, ∀t, i,

qit − rdwit ≥ qiuit, ∀t, i,

rupi uit ≤ r
up
it ≤ r

up
i uit, ∀t, i,

rdwi uit ≤ rdwit ≤ rdwi uit, ∀t, i,

qit, r
dw
it , r

up
it ∈ R+, uit ∈ {0, 1}, ∀t, i,∑

i

∑
t

{ĉupi r̂
up
it (ξs) + ĉdwi r̂dwit (ξs)}

+
∑
t

{clst St(ξs) + cwst Wt(ξ
s)} ≤ α0 +

T∑
t=1

αtξ
s
t , ∀s,

∑
i

q̂it(ξ
s) + St(ξ

s)−Wt(ξ
s) = lt(ξ

s), ∀t, s,

0 ≤ r̂upit (ξs) ≤ rupit , ∀t, i, s,

0 ≤ r̂dwit (ξs) ≤ rdwit , ∀t, i, s,

Qt − (qit + rupit ) + St(ξ) ≥ lt(ξ), ∀t, i,

q̂it(ξ
s)− q̂i(t−1)(ξ

s) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, s,

q̂i(t−1)(ξ
s)− q̂it(ξs) ≤ RDiuit + SDi(1− uit), ∀t, i, s,

where the �rst 5 constraints are the �rst-stage constraints, and the last 6 constraints

represent the remaining of constraints in problem (3.3.8).
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3.4 A mixture distribution approach

In the absence of complete information on the underlying distribution of random vari-

ables, the decision maker could integrate information obtained through various channels

to construct a mixture probability distribution. The use of mixture distribution in the

context of robust optimisation could be traced back to [85] and more recently in [124]

for portfolio optimisation problems.

To de�ne the ambiguity set corresponding to the robust problem (3.2.18), let Pj , j =

1, · · · , L be a set of probability measures such that EPj [g(x, ξ)] is well de�ned for j =

1, · · · , L. The ambiguity set under mixture distribution can then be de�ned as follows

P :=
{ L∑
j=1

γjPj :
L∑
j=1

γj = 1, γj ≥ 0, ∀j = 1, · · · , L
}
,

where γj denotes the weight of distribution j. The probability distributions P1, · · · , PL
are assumed to be known and true probability distribution is assumed to be in their

convex hull. For any realization of the distribution P :=
∑
j

γjPj we have

EP [g(x, ξ)] =

L∑
j=1

γjEPj [g(x, ξ)].

Under mixture distribution, the inner maximization problem in (3.2.18) can then be

rewritten as follows

H(x) = sup
γ

L∑
j=1

γjEPj [g(x, ξ)]

s.t.
∑
j

γj = 1,

γj ≥ 0, ∀j = 1, · · · , L.

(3.4.1)
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Let λ be the dual variable corresponding to the �rst constraint in (3.4.1), the dual of

the above problem is

HD(x) = min
λ

λ

s.t. EPj [g(x, ξ)] ≤ λ, ∀j = 1, · · · , L.

(3.4.2)

Proposition 3.4.1. In the case when ξ has a finite discrete distribution with the support

set containing a finite number of values ξ1, · · · , ξN and for a given first-stage decision

x, model (3.4.2) is equivalent to

min
y1,··· ,yN ,λ

λ

s.t.
N∑
k=1

pkj (h
T yk) ≤ λ,∀j = 1, · · · , L,

yk ∈ Y(x, ξk), ∀k = 1, · · · , N,

(3.4.3)

where pkj is the probability measure of Pj in scenario k.

Proof: If ξ has a discrete distribution with a �nite number of values ξ1, · · · , ξN , then

model (3.4.2) can be written as

min
λ

λ

s.t.
N∑
k=1

pkj g(x, ξk) ≤ λ, ∀j = 1, · · · , L,

where g(x, ξk) refers to the second-stage problem

g(x, ξk) = min
y

hT y

s.t. y ∈ Y(x, ξk).
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Let us denote the optimal solution of the above problem as

ŷk = arg min
y∈Y(x,ξk)

hT y,∀k,

then we have g(x, ξk) = hT ŷk. Let us de�ne λ̂ =
N∑
k=1

pkj (h
T ŷk). It is clear that (λ̂, ŷ)

is a feasible solution for the problem (3.4.3). Let (~λ, ~yk : k = 1, · · · , N) be an optimal

solution for problem(3.4.3) then hT ~yk ≥ hT ŷk, ∀k holds by the de�nition of ŷk. Thus,

we have

N∑
k=1

pkj (h
T ~yk) ≥

N∑
k=1

pkj (h
T ŷk), ∀j.

Therefore

min
j

{
N∑
k=1

pkj (h
T ~yk)

}
≥ min

j

{
N∑
k=1

pkj (h
T ŷk)

}
,

and hence ~λ ≥ λ̂. Since (λ̂, ŷ) is a feasible solution of (3.4.3), it must also be an optimal

solution. �

Thus, when ξ has a �nite discrete distribution, the original robust problem (3.2.18) can

be rewritten as

(Mix-UC) min
x,y(.),λ

cTx+ λ

s.t. x ∈ X ,

N∑
k=1

pkj (h
T yk) ≤ λ,∀j = 1, · · · , L,

yk ∈ Y(x, ξk),∀k = 1, · · · , N.

(3.4.4)

Note that when Pj follows a continuous distribution, it might be di�cult to compute

the expected value of the functions in the constraints in model (3.4.2) with respect to

probability distribution. A well known approach to resolve this issue is to use sample

average approximation (SAA). For a �xed j, let ξ1
j , · · · , ξ

Nj

j denote independent and

identically random sampling of ξ from the probability distribution pj then Epj [g(x, ξ)]
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can be approximated as

1

Nj

Nj∑
k=1

g(x, ξkj ).

The SAA of the problem (3.4.4) can be written as

min
x,y(.),λ

cTx+ λ

s.t. x ∈ X ,

1

Nj

Nj∑
k=1

hT ykj ≤ λ,∀j = 1, · · · , L,

ykj ∈ Y(x, ξkj ),∀k = 1, · · · , Nj , j = 1, · · · , L.

(3.4.5)

The detailed formulation for the Mix-UC problem is as follows

min
u,q,r,̂r(.),W,S,λ

cfi uit + cliqit + cr,upi rupit + cr,dwi rdwit + λ

s.t. qit + rupit ≤ qiuit, ∀t, i,

qit − rdwit ≥ qiuit, ∀t, i,

rupi uit ≤ r
up
it ≤ r

up
i uit, ∀t, i,

rdwi uit ≤ rdwit ≤ rdwi uit, ∀t, i,

qit, r
dw
it , r

up
it ∈ R+, uit ∈ {0, 1}, ∀t, i,

1

Nj

Nj∑
k=1

[∑
i

∑
t

{ĉupi r̂
up
it (ξkj ) + ĉdwi r̂dwit (ξkj )}

+
∑
t

{clst St(ξkj ) + cwst Wt(ξ
k
j )}
]
≤ λ ∀j,

∑
i

q̂it(ξ
k
j ) + St(ξ

k
j )−Wt(ξ

k
j ) = lt(ξ

k
j ) ∀t, k, j,

0 ≤ r̂upit (ξkj ) ≤ rupit ∀t, i, k, j,

0 ≤ r̂dwit (ξkj ) ≤ rdwit ∀t, i, k, j,

Qt − (qit + rupit ) + St(ξ) ≥ lt(ξ), ∀t, i,

q̂it(ξ
k
j )− q̂i(t−1)(ξ

k
j ) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, k, j,

q̂i(t−1)(ξ
k
j )− q̂it(ξkj ) ≤ RDiuit + SDi(1− uit), ∀t, i, k, j.
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Note that the SAA approach to Mix-UC results in a mixed integer linear program

(MILP).

3.5 Case study

In this section, we carry out some numerical experiments to evaluate the proposed

methods. To facilitate the exposition and reading, we develop a list of models and their

corresponding abbreviations in Table3.3.

abbreviations Problem Method Known information on uncertainty

Sto-UC (3.2.7)-(3.2.17) Stochastic UC Probability distribution (P )

SIP-UC (3.3.6) Robust UC with semi-in�nite formulation First moments (µ)

Mix-UC (3.4.4) Robust UC with mixture distribution A set of known distributions

Table 3.3: Abbreviations and reference of the methodologies

3.5.1 Data

We consider an illustrative case study based on a system with 10 generating unit. The

data for the generators is based on [86] and includes the cost and limitation of the

generation and reserve utilization as summarised in Table 3.4.

Costs [$/MW] Capacities [MW]

Unit Fixed [$] Variable Reserve up/down Reserve up Reserve down Minimum Maximum Reserve

cost cost (scheduled) (actual) (actual) output output up/down

i cfi cli cr,upi / cr,dwi ĉupi ĉdwi q
i

qi rupi /rdwi

1 2,550 16.19 1.80 17.81 -14.57 150 455 153

2 2,550 17.26 1.92 18.99 -15.53 150 455 153

3 1,300 16.60 1.84 18.26 -14.94 70 180 55

4 1,300 16.50 1.83 18.15 -14.85 70 180 55

5 1,620 19.70 2.19 21.67 -17.73 50 165 58

6 800 22.26 2.47 24.49 -20.03 30 90 30

7 850 27.74 3.08 30.51 -24.97 40 85 23

8 550 25.92 2.88 28.51 -23.33 20 60 20

9 550 27.27 3.03 30.00 -24.54 20 60 20

10 550 27.79 3.09 30.57 -25.01 20 60 20

Table 3.4: Ten unit system: generation and reserve cost and capacities
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Stochastic base case

The hourly power demand is assumed to be known and under the two-stage stochastic

setting (Sto-UC) the wind output is assumed to follow a multivariate normal distribution

N (µ,�) with mean µ, standard deviation σ, correlation C and covariance � = σCσT .

The hourly demand, wind output mean values µ, and the standard deviations σ for 24

hours period are given in Table 3.5. The corresponding mean values for the stochastic

net load is also presented in the Figure 3.3.

Hour Demand Wind Hour Demand Wind

t dt Mean (µt) SD(σt) t dt Mean (µt) SD(σt)

1 1127 282 42.3 13 2254 564 126.8

2 1208 302 47.2 14 2093 523 121

3 1369 342 55.6 15 1932 483 114.7

4 1530 383 64.5 16 1691 423 103

5 1610 403 70.4 17 1610 403 100.6

6 1771 443 80.2 18 1771 443 113.5

7 1852 463 86.8 19 1932 483 126.8

8 1932 483 93.6 20 2254 564 151.4

9 2093 523 104.7 21 2093 523 143.9

10 2254 564 116.2 22 1771 443 124.5

11 2335 584 124 23 1449 362 104.1

12 2415 604 132.1 24 1288 322 94.6

Table 3.5: Hourly demand and mean/standard deviation of the wind
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Figure 3.3: Nominal values of demand and mean wind

The correlation matrix is C is based on the hourly Danish wind output data3 for the

year 2013 and is given by

C =



1 0.994 0.979 0.962 0.942 0.913 0.88 0.844 0.812 0.778 0.744 0.705 0.665 0.629 0.597 0.566 0.54 0.51 0.479 0.462 0.449 0.428 0.399 0.372

0.994 1 0.994 0.982 0.965 0.937 0.905 0.87 0.838 0.806 0.774 0.735 0.697 0.66 0.627 0.595 0.568 0.535 0.504 0.486 0.471 0.449 0.42 0.391

0.979 0.994 1 0.995 0.982 0.957 0.927 0.893 0.862 0.829 0.797 0.759 0.719 0.682 0.648 0.616 0.587 0.553 0.522 0.505 0.489 0.467 0.439 0.411

0.962 0.982 0.995 1 0.994 0.975 0.949 0.919 0.888 0.856 0.823 0.784 0.744 0.706 0.672 0.64 0.611 0.576 0.544 0.527 0.511 0.487 0.459 0.43

0.942 0.965 0.982 0.994 1 0.992 0.974 0.949 0.922 0.892 0.86 0.821 0.781 0.741 0.705 0.673 0.643 0.608 0.576 0.558 0.54 0.515 0.486 0.454

0.913 0.937 0.957 0.975 0.992 1 0.993 0.976 0.953 0.926 0.895 0.858 0.817 0.776 0.74 0.707 0.677 0.641 0.609 0.59 0.57 0.542 0.511 0.477

0.88 0.905 0.927 0.949 0.974 0.993 1 0.993 0.976 0.953 0.924 0.888 0.847 0.805 0.768 0.735 0.705 0.669 0.636 0.616 0.594 0.563 0.53 0.494

0.844 0.87 0.893 0.919 0.949 0.976 0.993 1 0.992 0.974 0.947 0.913 0.873 0.831 0.795 0.762 0.731 0.696 0.663 0.642 0.619 0.586 0.55 0.511

0.812 0.838 0.862 0.888 0.922 0.953 0.976 0.992 1 0.992 0.969 0.939 0.902 0.862 0.827 0.796 0.766 0.731 0.699 0.678 0.652 0.616 0.577 0.536

0.778 0.806 0.829 0.856 0.892 0.926 0.953 0.974 0.992 1 0.99 0.967 0.935 0.899 0.866 0.836 0.806 0.77 0.735 0.711 0.683 0.644 0.604 0.562

0.744 0.774 0.797 0.823 0.86 0.895 0.924 0.947 0.969 0.99 1 0.991 0.969 0.94 0.91 0.882 0.854 0.819 0.78 0.754 0.723 0.682 0.641 0.598

0.705 0.735 0.759 0.784 0.821 0.858 0.888 0.913 0.939 0.967 0.991 1 0.991 0.971 0.946 0.922 0.895 0.861 0.822 0.794 0.761 0.719 0.677 0.635

0.665 0.697 0.719 0.744 0.781 0.817 0.847 0.873 0.902 0.935 0.969 0.991 1 0.993 0.976 0.957 0.933 0.901 0.863 0.835 0.801 0.759 0.719 0.679

0.629 0.66 0.682 0.706 0.741 0.776 0.805 0.831 0.862 0.899 0.94 0.971 0.993 1 0.994 0.98 0.961 0.933 0.899 0.871 0.837 0.796 0.757 0.719

0.597 0.627 0.648 0.672 0.705 0.74 0.768 0.795 0.827 0.866 0.91 0.946 0.976 0.994 1 0.995 0.981 0.958 0.928 0.901 0.867 0.827 0.789 0.753

0.566 0.595 0.616 0.64 0.673 0.707 0.735 0.762 0.796 0.836 0.882 0.922 0.957 0.98 0.995 1 0.994 0.977 0.952 0.927 0.894 0.855 0.818 0.783

0.54 0.568 0.587 0.611 0.643 0.677 0.705 0.731 0.766 0.806 0.854 0.895 0.933 0.961 0.981 0.994 1 0.993 0.974 0.951 0.92 0.882 0.847 0.814

0.51 0.535 0.553 0.576 0.608 0.641 0.669 0.696 0.731 0.77 0.819 0.861 0.901 0.933 0.958 0.977 0.993 1 0.991 0.973 0.944 0.908 0.875 0.845

0.479 0.504 0.522 0.544 0.576 0.609 0.636 0.663 0.699 0.735 0.78 0.822 0.863 0.899 0.928 0.952 0.974 0.991 1 0.992 0.969 0.937 0.905 0.876

0.462 0.486 0.505 0.527 0.558 0.59 0.616 0.642 0.678 0.711 0.754 0.794 0.835 0.871 0.901 0.927 0.951 0.973 0.992 1 0.989 0.964 0.935 0.906

0.449 0.471 0.489 0.511 0.54 0.57 0.594 0.619 0.652 0.683 0.723 0.761 0.801 0.837 0.867 0.894 0.92 0.944 0.969 0.989 1 0.99 0.969 0.944

0.428 0.449 0.467 0.487 0.515 0.542 0.563 0.586 0.616 0.644 0.682 0.719 0.759 0.796 0.827 0.855 0.882 0.908 0.937 0.964 0.99 1 0.992 0.975

0.399 0.42 0.439 0.459 0.486 0.511 0.53 0.55 0.577 0.604 0.641 0.677 0.719 0.757 0.789 0.818 0.847 0.875 0.905 0.935 0.969 0.992 1 0.992

0.372 0.391 0.411 0.43 0.454 0.477 0.494 0.511 0.536 0.562 0.598 0.635 0.679 0.719 0.753 0.783 0.814 0.845 0.876 0.906 0.944 0.975 0.992 1


3Available online at http://energinet.dk

http://energinet.dk
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SIP formulation

In the SIP formulation, we assume that only the �rst moment of the uncertain wind

power is known and is given by µ. Based on this assumption, we implement the �rst

proposed model and formulate the problem as a robust SIP (SIP-UC). In solving the

SIP problem, we limit the support set of random hourly wind to 150 values generated

from a multivariate uniform distribution.

Mixture distribution formulation

In the second approach of mixture distribution, we consider a case where the informa-

tion on the uncertain net load is received through various resources, e.g. advise from a

group of experts. While each alternative net load model provides a speci�c distribution

and parameters such as the mean and the covariance, there is no consensus among the

decision makers on which model contains the true distribution. Therefore, instead of

relying on a particular expert model, we use the mixture model (Mix-UC) to combine all

these potential distributions. Speci�cally, we assume that we are given three di�erent

distributions for the stochastic net load, shown in Table 3.6. We assume that three dis-

tributions are equally relevant and therefore they have equal weights in the construction

of the mixture distribution. We construct the uncertainty set by drawing 50 random

samples from each distribution.

Distribution Mean Covariance Weight

Multivariate Normal 0.8µ � 1
3

Multivariate Normal 1.2µ � 1
3

Multivariate Uniform µ � 1
3

Table 3.6: Potential distributions for wind power

Computational results

The models have been implemented on an Intel Core Duo with processor at 3.33 GHz

and 8 GB of RAM memory using CPLEX 12.5 under MATLAB R2012b. Table 3.7
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shows the size of each problem as well as the running time for solving each problem.

Model Scenarios (#) Constraints (#) Total variables (#) Binary variables (#) CPU time (s)

Sto-UC 150 222,000 80,160 240 10,601

Mix-UC 150 222,003 80,161 240 11,012

SIP-UC 150 222,150 80,185 240 6,021

Table 3.7: Problems size and computational times

3.5.2 Numerical results

The proposed robust methods have been applied to the problem described above. The

quality of robust solutions has been assessed through comparison with results achieved

through the stochastic programming method. The cumulative �rst-stage decisions as

well as the second-stage and total costs for each solution is presented in Table 3.8, for

detailed �rst stage decisions please refer to Appendix A.2. It can be observed that both

robust solutions have a higher total expected cost than the stochastic solution.

Model

First-stage decisions [Total MW] Cost [$]

Generation Reserve up Reserve down

First-stage Second-stage Total expected∑
t

∑
i

qit

∑
t

∑
i

rup
it

∑
t

∑
i

rdw
it

Sto-UC 32,148.7 3,723.4 3,906.5 823,339 48,339 871,678

Mix-UC 33,893.0 3,154.2 2,595.2 866,506 103,463 969,969

SIP-UC 32,758.3 5,306 7,328.4 885,219 191,057 1,076,276

Table 3.8: Stochastic versus robust solutions

The higher �rst-stage cost of the Mix-UC and SIP-UC solutions are as a result of the

hedging strategy against the ambiguity of the distribution of the underlying net load

uncertainty. In other words, robust models result in additional �rst-stage generation or

reserve scheduling. The hourly cumulative �rst-stage generation and reserve levels are
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presented in Figure 3.4. It can be observed that, in the case of the Mix-UC solution,

the hourly pattern of total generation is generally higher than the base Sto-UC solution.

Additionally, the SIP-UC solution provides a greater 
exibility for the second stage

through a higher level of up and down reserves. It can also be observed that the hourly

patterns of the generation and the reserve schedule are similar to the net load quantities

and at the peak hours the maximum generation capacity of generators are scheduled

either in term of generation (Mix-UC) or generation with reserve (Sto-UC and SIP-UC).
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(a) Sto-UC
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(b) Mix-UC
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(c) SIP-UC

Figure 3.4: UC �rst-stage solutions

Sensitivity of solutions to variation in mean and covariance

The �rst-stage decisions of the UC models determines the 
exibility of the solution to

changes in the actual realization of the wind distribution in the second stage. i.e. we
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expect the robust solutions to provide greater 
exibility if the actual distribution of the

uncertainty was di�erent from the assumed distribution. To compare the performance

of the Sto-UC model, MIX-UC model, and SIP-UC model, we analyse the e�ect of

deviation of the distribution parameters such as mean and covariance from the nominal

value. In doing so, we consider a two-stage stochastic structure for each instance, in

which the �rst stage unit commitment and reserve schedules are �xed as the �rst-stage

solutions of the Sto-UC model, MIX-UC model, and SIP-UC model. In each instance,

we then solve the second-stage problem using a distribution with di�erent means or

covariances for the uncertain wind.

We �rst study the sensitivity of solution to changes in the actual mean of the distribu-

tion, we compare the Sto-UC and Mix-UC for instances with the following wind distri-

butions: N (aµ,�), a = {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}. For each instance,

the second-stage problem is solved by drawing 200 i.i.d samples from the corresponding

distribution. Furthermore, we carry 100 independent runs for each instance. The solu-

tions of 100 runs for each instance are summarised as a box plot and are presented in

Figure 3.5a-3.5b. The mean values of objective function (total expected cost) for the

100 runs of each instance are also shown in Figure 3.5c.
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Figure 3.5: Sensitivity of solutions to variation in mean

It can be observed that when the actual wind distribution is N = (µ,�), i.e. when

a = 1, the Sto-UC solution performs better than Mix-UC solution as expected since

the assumed distribution in Sto-UC coincides with the actual distribution. The Sto-UC

solution also performs better for all the instances with the mean of distribution greater

than µ, i.e. when the mean of wind level is greater than expected in Sto-UC model.
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This is due to the ability of the system operator to dispatch higher levels of energy

using the excess wind power rather than utilizing the costly reserve. On the other hand,

the Mix-UC solution performs better when the mean of the wind distribution is less

than 90% of the anticipated value in Sto-UC model. In other word the Mix-UC robust

solution has a lower total cost than Sto-UC solution when the wind output is less than

what decision maker assumed under the Sto-UC model.

In the second set of sensitivity test instances, we compare the performance of Sto-

UC, Mix-UC, SIP-UC solutions to the possible changes in the covariances of the wind

distribution.
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Figure 3.6: Sensitivity of solutions to variation in covariance
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We speci�cally consider the following distributions for the second-stage uncertain wind:

N (µ, (b)2�), where b = {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6}. Similar to previ-

ous tests, we draw 200 i.i.d samples from the corresponding distribution in each instance

and repeat each instance for 100 runs. The corresponding box plots for test instances

for all three models are presented in Figures 3.6a-3.6c. Furthermore, the mean value of

the objective function for 100 test in each instance and each model is shown in Figure

3.6d. It can be observed that SIP-UC solution has the least sensitivity to change in

covariance of the distribution, since the only available information for SIP-UC model

was the �rst moment condition of the distribution and there was no assumption on the

covariance of the distribution. However, this additional 
exibility comes at a cost and

it can be observed that the SIP-UC is more conservative and costly for instances with

covariance coe�cients b < 2, when compared to the Sto-UC solutions. For the instances

with b ≥ 2 the SIP-UC performs better than both Sto-UC and Mix-UC solutions.

The sensitivity of Mix-UC and Sto-UC solutions to changes in covariance are very similar

and the di�erence between the two curve is almost unchanged across the test instances.

This is due to the covariance assumptions in construction of the mixture model, i.e.

covariance of all distribution used to construct the mixture model was equal to �.

We have also constructed the mixture distribution using the following distributions:

N
(
µ, (0.8)2�

)
,N
(
µ,�

)
,N
(
µ, (1.2)2�

)
. The solution of this mixture model was very

similar to the Sto-UC model.

3.6 Conclusion

In this chapter, we presented a two-stage distributionally robust model that provides

a novel and practical approach to deal with the uncertainty of the distribution of ran-

dom wind output in the unit commitment problem. The model includes the technical

ramping constraints as well as reliability condition against failure of up to one gener-

ating unit. The robustness takes into account the available information on uncertainty

in two alternative ways. First, we assume that only the �rst moment information of

the random wind is given and use duality theory to formulate the problem as a linear

semi-in�nite program. The SIP model is then solved using sampling. Second, we assume

that the information on probability distribution of uncertain wind is received through
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various sources and construct a mixture model to include these into decision making.

The mixture model is also reformulated using duality theory and solved through sample

average approximation approach. Empirical tests have been carried out using an illus-

trative UC case study, taken from the literature, in order to illustrate the performance

of the proposed robust models. The robust UC solutions may lose the potential of uti-

lizing the wind power in high wind climate, however, they perform much better in a low

wind climate as compared to the solutions that do not consider the uncertainty of the

distribution (Sto-UC).



Chapter 4

Robust Facility Location Problem

Chapter Abstract

In this chapter, we consider a facility location problem where customer demand con-

stitutes considerable uncertainty and complete information on the distribution of the

uncertainty is unavailable. We formulate the optimal decision problem as a two-stage

mixed integer programming problem: an optimal selection of facility locations in the

�rst stage and an optimal decision on the operation of each facility in the second stage.

A distributionally robust optimisation framework is proposed to hedge risks arising from

incomplete information on the distribution of the uncertainty. Speci�cally, by exploiting

the moment information, we construct a set of distributions which contains the true

distribution and the optimal decision is based on the worst distribution from the set.

We then develop two numerical schemes for solving the distributionally robust facil-

ity location problem: a semi-in�nite programming approach which exploits moments of

certain reference random variables, and a semi-de�nite programming approach which

utilizes the mean and correlation of the underlying random variables describing the de-

mand uncertainty. In the semi-in�nite programming approach, we apply the well-known

linear decision rule approach to the robust dual problem and then approximate the

semi-in�nite constraints through CVaR. We provide numerical tests to demonstrate the

computation and properties of the robust solutions.

81
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4.1 Introduction

The classic discrete facility location problem (FLP) involves selecting a subset of facility

locations within a �nite set of available locations and assigning customers to the selected

facilities with the aim to minimize the combined facility setup cost and transportation

cost. In the most basic form, the discrete FLPs consist of allocating p facilities to a

given list of candidate locations. In these so-called p-median problems the �xed setup

cost of all candidate sites are assumed to be equal. The objective function is only to

minimize the total service cost to the customers, i.e. the transportation cost. Under

the non-homogeneity the facilities’ setup cost, the p-median problem can be extended to

uncapacitated facility location problems (UFLP) in which the setup cost is also added to

the objective function. The UFLP assumes that facilities can serve an unlimited amount

of demand. However, in many practical problems, facilities have capacity constraints and

this leads to an important family of FLPs called capacitated facility location problems

(CFLP) in which the closest-assignment criteria is not su�cient for the optimality of the

solution. The p-median, UFLP, and CFLP have been the subject of extensive research

and interested readers might refer to [41, 89, 79, 11, 106] for some comprehensive reviews.

The aforementioned models share certain characteristics such as single-period planning

horizon, single product and facility type, and deterministic parameters (i.e., demands,

supplies, and costs). However, the deterministic assumption is one of the major draw-

backs in coping with many real-world problems. The strategic decision on facility setup

are often capital intensive, non-repetitive and spanning over a long time horizon. The

decision has to be made at present and hence is subject to risks arising from uncertain-

ties in demands and operations of the established facilities. Hedging the risk, therefore,

becomes a vital component of the decision making process. The facility location prob-

lem under uncertainty has attracted considerable attention recently, see for examples,

reviews in [82, 104]. Two major frameworks used to model uncertainty in the facility

location problems are stochastic optimisation and robust optimisation.

In the �rst framework, stochastic optimisation has been a well-known mathematical

method for �nding optimal decision under uncertainty over the past few decades. A key

assumption in this approach is that the decision maker has complete information on the

distribution of the uncertainty, through either empirical data or subjective judgement.
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However, in some circumstances, this might turn out to be di�cult if not possible when

a strategic decision has to be made well in advance of the realization of the uncertainty.

In the second approach, the robust optimisation framework, no assumption is made on

the probability distribution of the uncertainty. The traditional proposed measure of

robustness is the minmax cost approach in which the cost associated with the worst

case scenario is minimized. Some of the examples of the minmax regret approach can

be found in [6, 7, 38].

A feasible way to address the issue of distributional uncertainty in stochastic optimisa-

tion is to use the available data to construct a set of distributions which contains the true

distribution of the uncertainty and make an optimal decision on the basis of the worst

distribution from the set. This approach is known as distributionally robust optimisation

which was proposed by Scarf [94] and has now been extensively studied over the past few

decades. How to construct the set of distributions depends on the available information

and there is no consensus on that. A popular way is to use moments of some random

variables which may consists of the mean, variation and covariance. In this chapter, we

propose a distributionally robust optimisation model for the capacitated facility location

problem. We then propose two numerical schemes, namely a semi-de�nite program and

a semi-in�nite program to solve the distributionally robust optimisation model.

The remainder of this chapter is organized as follows. In Section 4.2, we formally describe

the deterministic model, a two-stage stochastic model and a disrtibutionally robust

formulation of the stochastic model. We then proceed discussions on numerical schemes

in the following two consecutive sections for solving the robust model depending on the

availability of information on the distribution of demands: a semi-in�nite programming

(SIP) scheme in Section 4.3 and a semi-de�nite programming (SDP) scheme in Section

4.4. Finally in Section 4.5, we report numerical test results of the two schemes.

4.2 Facility location models

We �rst introduce the classic deterministic capacitated facility location (D-FLP) prob-

lem. By taking into account the future uncertainty we extend it to a two-stage stochastic

facility location (S-FLP) modelling framework, which then forms the basis for developing

a distributionally robust facility location (R-FLP) model.
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4.2.1 Deterministic facility location model

There is a vast literature on the deterministic facility location problem. A good review

of the related literature is carried out by Owen and Daskin [82] and Daskin [41]. Suppose

there are up to n facilities to be opened in a set of possible locations I = {1, · · · , n},
indexed by i. Let J = {1, · · · ,m}
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demand and supply capacity constraints. The deterministic FLP is formulated as follows

(D-FLP) min
z,x,w

∑
i

bizi +
∑
i,j

cijxij +
∑
j

Cwj

s.t.
∑
i

xij + wj ≥ dj , ∀ j ∈ J, (4.2.1)∑
j

xij ≤ zisi, ∀ i ∈ I, (4.2.2)

xij ≥ 0, ∀ j ∈ J, i ∈ I, (4.2.3)

wj ≥ 0, ∀ j ∈ J, (4.2.4)

zi ∈ {0, 1}, ∀ i ∈ I. (4.2.5)

Balance constraint (4.2.1) ensures that the demands of all customers are met. Con-

straint (4.2.2) prevents the service level assigned to each facility to exceed its capacity

and also ensures that the customers cannot be served by un-built facilities (i.e. when

zi = 0, xij must be equal to zero). Finally, constraints (4.2.3) and (4.2.5) enforce the

non-negativity of the service quantities and the binary nature of the facility allocating

decisions respectively.

4.2.2 Two-stage stochastic model

The facility location problems involve uncertainties that stem from unpredictability of

demand, supply and service costs. Since the facility location decisions are irreversible

and capital intensive, it is vital to take into account the future uncertainties when the

facility location decisions are made. Louveaux [77] �rst introduced a two-stage stochastic

program with recourse for solving simple plant location problems and p-median problems

where uncertainties in demand, production and transportation costs are considered. To

extend deterministic model described in subsection 4.2.1 to a stochastic setting, customer

demand is assumed to be stochastic with a known probability distribution. Instead of

having a deterministic demand vector d, we use the notation d(ξ) for the stochastic

demands that depend on a random vector ξ. For convenience in notation, we use d(ξ)

and ξ interchangeably, i.e. both dj(ξ) and ξj refer to the stochastic demand of customer

j. The objective of the two-stage problem is to minimize the sum of �xed investment cost

of allocating the facilities and the expected future transportation costs. The resulting
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mathematical model is given as follows

(S-FLP) min
z

∑
i

bizi + E [g(z, ξ)]

s.t. zi ∈ {0, 1}, ∀ i ∈ I,

(4.2.6)

where g(z, ξ) is the optimal value of the second stage transportation problem

g(z, ξ) = min
x,w

∑
i,j

cijxij +
∑
j

Cwj ,

s.t.
∑
i

xij + wj ≥ dj(ξ), ∀ j ∈ J,

∑
j

xij ≤ zisi, ∀ i ∈ I,

xij ≥ 0, ∀ i ∈ I, j ∈ J,

wj ≥ 0, ∀ j ∈ J.

(4.2.7)

The decision on z in the �rst stage determines the location of new facilities to be built,

before the realization of the uncertain demand d(ξ), while the second stage speci�es

the allocation of transportation resources after the demand is realized. The optimal

value g(z, ξ) of the second stage is therefore a function of the �rst stage variables z and

a realization of uncertain demand. The expected transportation cost is based on the

probability distribution of random vector ξ, which is assumed to be bounded with a

support set �.

4.2.3 Distributionally robust facility location model

One of the major di�culties which often arise in facility location problems is the lack

of complete information on the probability distribution of future customer demand. We

consider a setting where there might be limited information on the probability distri-

bution P of the random parameters ξ. Suppose that we are able to construct a set of
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probability measures1, denoted by P, which contains the true probability distribution

P . In order to hedge against ambiguity of the true distribution, we may consider a

robust model where the optimal decision on locations of the new facilities to be built

and the operation of all facilities is based on the worst distribution from the ambiguity

set. The corresponding distributionally robust optimisation problem can be formulated

as follows

(R-FLP) min
z

bT z + sup
P∈P

EP [g(z, ξ))]

s.t. z ∈ {0, 1}n.

(4.2.8)

In practice, there are various ways to construct the uncertainty set. One approach is

through the moments of the underlying probability distribution, which may consist of

the mean, variation and covariance. Another way is to use a mixture distribution, which

is a weighted distribution that can harmonize di�erent potential distributions. In this

chapter, based on the available moment information, we investigate two formulations for

the proposed distributionally robust model in (4.2.8). In the �rst approach, we assume

that only the �rst moment information is speci�ed and we reformulate the problem as

a semi-in�nite program (SIP). In the second approach, we assume the �rst and sec-

ond moments of the unknown distribution are given and on this basis we reformulate

model (4.2.8) as a semi-de�nite program (SDP). We then develop appropriate numerical

methods to solve these problems.

4.3 A semi-infinite approach

In this section we consider the case when the uncertainty set is de�ned through the �rst

moment

P = {P ∈P : EP [ξ] = µ} , (4.3.1)

1Throughout the chapter, we use interchangeably the terminology probability measure and probability
distribution.
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where µ is the mean value of the random demand ξ. Let us reconsider the inner maxi-

mization problem associated with the robust problem (4.2.8)

H(z) = sup
P∈P

EP [g(z, ξ)] .

We can derive the dual formulation with respect to the moment condition as

HD(z) = min
λ0,λ

λ0 + λTµ

s.t. g(z, ξ) ≤ λ0 + ξTλ, ∀ξ ∈ �,

(4.3.2)

where � ⊂ Rm is the support set of ξ, λ ∈ Rm and λ0 ∈ R are the dual variables

associated with the moment constraints and the normalization constraint respectively.

Since the support set � is in�nite, the dual problem (4.3.2) is a linear semi-in�nite

programming problem (SIP). It is important to note that (4.3.2) is a deterministic semi-

in�nite programming problem. If � is structured, e.g., polyhedral or semi-algebraic and

g is linear or quadratic w.r.t. ξ, then through the well known S-lemma, the semi-in�nite

system can be represented as an SDP, see for instance [125]. Here, we don’t assume any

special structure as such. To avoid duality gap, we assume that the regularity conditions

speci�ed in [99] hold. Speci�cally, we assume the dual problem has a non-empty and

bounded set of optimal solutions and also the support set � is convex and compact. The

second stage maximization problem in (4.2.8) can therefore be replaced by its dual as

follows

(R-SIP) min
z,λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

g(z, ξ) ≤ λ0 + ξTλ, ∀ξ ∈ �,

(4.3.3)
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or equivalently

min
z,x(·),w(·),λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

c • x(ξ) + CeTw(ξ) ≤ λ0 + ξTλ, ∀ξ ∈ �,

(
x(ξ),w(ξ)

)
∈ G(z, ξ), ∀ξ ∈ �,

(4.3.4)

where x(ξ) ∈ Rn×m and w(ξ) ∈ Rm are optimal transportation decisions for each �xed z

and for each realization of ξ, and where c is the matrix of transportation cost coe�cients,

C is the cost of serving customers from the external source, and e ∈ Rm is a vector of

all ones. Moreover, G(z, ξ) is the feasible regions associated to second stage problem

(4.2.7).

4.3.1 Linear decision rule approximation

One of the main challenges in solving the semi-in�nite problem above is the dependence

of the second stage transportation variables x(ξ) and w(ξ) on random variable ξ. These

\adjustable" variables are often referred to as decision rules, and their presence could

often complicate the solution procedure. Formally, a decision rule x(ξ) can be de�ned

as a vector valued function, mapping the random variables ξ ∈ Rm with support set �

into the decisions. The decision rule problem can be interpreted as identifying the best

decision x(ξ) ∈ � ⊂ X once ξ is observed, where X denotes the set of all the mapping

from � to Rn×m and � a subset of X .

One of the tractable approximation schemes to deal with the decision rules is to restrict

their feasible set to the ones that have a functionality a�ne relation with the uncertain

random variables (that are a�ne functions of the uncertain data). This approach was

proposed by Ben-Tal et al. [14] and was extended in [101] and [72] to develop tractable

numerical procedure for stochastic programming problems. Here, we take the initiative

to apply the linear decision rule (LDR) approximation to problem (4.3.4), that is, we

impose the dependence of transportation decisions on the random demand to follow
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linear functions:

x(ξ) = Xξ + x0,

w(ξ) = Wξ + w0,

where X ∈ R(nm×m),W ∈ Rm×m ∈ Rn×m,x0 ∈ Rn×m, and w0 ∈ Rm. Consequently,

problem (4.3.4) can be approximated as

(R-LDR) min
z,X,x0,W,w0,λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

c • (Xξ) + x0 + CeT (Wξ) + w0 ≤ λ0 + ξTλ, ∀ξ ∈ �,

(
Xξ + x0,Wξ + w0

)
∈ G(z, ξ), ∀ξ ∈ �.

(4.3.5)

Note that here we are slightly abusing the notation in this formulation: ξ should be

understood as a parameter rather than a random variable. Indeed, it represents a real-

ization of the random vector ξ. The optimal value of the LDR approximation problem

will generate an upper bound on the optimal value of original robust problem (4.3.4).

4.3.2 Conditional value at risk approximation

Having de�ned the LDR formulation of the original robust semi-in�nite problem, we ap-

proximate the �rst semi-in�nite constraint with Conditional Value at Risk (CVaR) and

then approximate the latter through Monte Carlo sampling to reduce the number of con-

straints. One of the main advantages of using CVaR is that it converts the semi-in�nite

number of constraints into a single constraint. A recent study [3] has shown promis-

ing performance of CVaR approximation in dealing with semi-in�nite problems. The

CVaR method has been extensively used in stochastic programming for approximating

the chance constraints and we may refer the readers to [110, 65] for more details.

In the case of our 0 G
 0 0 T414roximating
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and Q := (X,x0,W,w0, λ0,λ). The semi-in�nite constraint of (4.3.5) can be written

as

sup
ξ∈Ξ

h(Q, ξ) ≤ 0,

Let ~ξ be a random vector with support �. Then sup
ξ∈Ξ

h(Q, ξ) can be approximated by

CVaR of h(Q, ~ξ), which is de�ned as

CVaRβ(h(Q, ~ξ)) = min
η∈R

�β(Q, η),

where

�β(Q, η) = η +
1

1− β

∫
ξ̃∈Ξ

(
h(Q, ~ξ)− η

)
+

~P (d~ξ),

(τ)+ = max(0, τ), and ~P denotes the distribution of ~ξ.

Note that the set consisting of the values η is a nonempty, closed and bounded interval.

Consequently, the CVaR approximation of the semi-in�nite constraint in problem (4.3.5)

can be expressed as follows:

min
η∈R

(
η +

1

1− βE
[
(h
(
Q, ~ξ)− η

)
+

])
≤ 0. (4.3.6)

It is important to distinguish the expectation E[·] here from the expectation E[·] in

(S-FLP). The former should be understood as a mathematical expectation taken w.r.t.

any distribution of any random variable ~ξ with support set �. In other words here the

~ξ does not have to be identical to the ξ in (S-FLP). For example, we may set ~ξ as a

random variable with uniform distribution over �. Of course, the selection of ~ξ and its

distribution will a�ect the quantity of CVaR of h and the rate of approximation to its

essential supremum.

Under some mild conditions, we can show that the error arising from the approximation

scheme does not have signi�cant impact on the optimal value, see [3]. By replacing the
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constraint in original LDR problem, we can write the CVaR approximation problem as

(R-CVaR) min
η,z,X,x0,W,w0,λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

η +
1

1− βE
[(
h(X,x0,W,w0, λ0,λ, ~ξ)− η

)
+

]
≤ 0,

(
Xξ + x0,Wξ + w0

)
∈ G(z, ξ), ∀ξ ∈ �.

(4.3.7)

Under the assumption that LDR problem (4.3.5) satis�es the Slater constraint quali�ca-

tion, the optimal solution of CVaR approximation problem (4.3.7) converges to optimal

solution of LDR problem as β → 1.

Discretization through sampling

One of the well-known solution approaches for semi-in�nite programs is random dis-

cretization. The basic idea is to construct a tractable sub-problem by considering a ran-

domly drawn �nite subset of constraints and hence enlarging the solution set. Cala�ore

and Campi [33, 34] investigated this approach and used Monte Carlo sampling (often

referred to as sample average approximation) to approximate the convex problems con-

sisting of linear objectives and semi-in�nite constraints. They showed that the resulting

randomized solution fails to satisfy only a small proportion of the original constraints

for a su�ciently large sample size. An explicit bound on the measures of the original

constraints that may be violated by the randomized solution is derived. The approach

has been shown to be numerically e�cient and it has been widely applied to various

stochastic and robust programs, we refer interested readers to [35, 97] and references

therein.

In this chapter, we apply the Monte Carlo sampling approach respectively to the original

semi-in�nite problem (4.3.4), its LDR approximation (4.3.5) and the CVaR formulation

(4.3.7).

To construct the sample space, let K = {1, · · · ,K} denote the �nite set of sample indices

and ξ1, · · · , ξK to be an independent and identically distributed (i.i.d) sampling of ξ.
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We may construct the discretized approximation of problem (4.3.4) as follows

min
z,x(ξk),w(ξk):k∈K,λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

c • x(ξk) + CeTw(ξk) ≤ λ0 + λT ξk, ∀k ∈ K,

(
x(ξk),w(ξk)

)
∈ G(z, ξk), ∀k ∈ K.

(4.3.8)

Similarly the discretized LDR problem (4.3.5) can be formulated as

min
z,X,x0,W,w0,λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

c • (Xξk) + x0 + CeT (Wξk) + w0 ≤ λ0 + λT ξk, ∀k ∈ K,

(
Xξk + x0,Wξk + w0

)
∈ G(z, ξk), ∀k ∈ K,

(4.3.9)

and �nally, we apply the sample average approximation (SAA) scheme to CVaR approx-

imation problem (4.3.7) as follows

min
η,z,X,x0,W,w0,λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

η +
1

(1− β)K

K∑
k=1

[(
h(X,x0,W,w0, λ0,λ, ξ

k)− η
)

+

]
≤ 0,

(
Xξk + x0,Wξk + w0

)
∈ G(z, ξk), ∀k ∈ K.

(4.3.10)

Compared to (4.3.8), the CVaR approximation scheme allows one to take a few sam-

ples at the tail rather than the extreme one, and in that way smooth up or stabilize

the numerical computation. In the case of CVaR formulation, we replace the CVaR

constraint with the equivalent system of linear inequalities by introducing additional
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positive dummy variables θ1, · · · θk as follows

η +
1

(1− β)K

K∑
k=1

θk ≤ 0,

h(X,x0,W,w0, λ0,λ, ξ
k)− η ≤ θk, ∀k ∈ K,

θk ≥ 0, ∀k ∈ K,

(4.3.11)

the substitution results in

min
θ,η,z,X,x0,W,w0,λ0,λ

bT z + λ0 + λTµ

s.t. z ∈ {0, 1}n,

η +
1

(1− β)K

K∑
k=1

θk ≤ 0,

h(X,x0,W,w0, λ0,λ, ξ
k)− η ≤ θk, ∀k ∈ K,

(
Xξk + x0,Wξk + w0

)
∈ G(z, ξk), ∀k ∈ K,

θk ≥ 0, ∀k ∈ K.

(4.3.12)

The reformulation will e�ectively address the non-smoothness caused by the (.)+ opera-

tion but at the cost of introducing additional variables and constraints. It is worthwhile

to do that here as the latter formulation will result in an overall MILP. A detailed

formulation of problems (4.3.8), (4.3.9) and (4.3.12) is provided in Appendix A.1.

4.4 A semi-definite programming approach

In this section, we investigate (R-FLP) with the �rst and second moment of the under-

lying random variables. Throughout this chapter, let P denote the set of all probability

measures of ξ. We consider the following ambiguity set

P =
{
P ∈P : EP [ξ] = µ, EP [ξξT ] = Q

}
, (4.4.1)
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where µ denotes the mean and Q the second moment, both of which are assumed to be

known. Let

H(z) = sup
P∈P

EP [g(z, ξ)] . (4.4.2)

Problem (4.4.2) is related to the classical problem of moments. Here, instead of �nding

a feasible distribution P ∈ P, we want to �nd one which maximizes the expected value

of g(z, ξ). For a discussion on the background of the problem of moments the interested

reader is referred to [73]. Let M + denote the set of all non-negative �nite measures on

measurable space (�,B). Then

H(z) := sup
P∈M+

∫
Ξ
g(z, ξ)P (dξ)

s.t.

∫
Ξ
ξiξjP (dξ) = Qij , ∀i, j = 1, · · · ,m,

∫
Ξ
ξiP (dξ) = µi, ∀i = 1, · · · ,m,

∫
Ξ
P (dξ) = 1,

(4.4.3)

where Qij denotes the (ij)− th component of Q, and µj the j− th component of µ. The

problem above is a semi-in�nite linear program. Duality theory is often used to deal

with the di�culty of solving such in�nite dimensional problems; see for example, [91].

For the duality theory applied in the case of moment problems we refer the readers to

[96]. Let Sm×m denote the space of m by m real matrices. Let Y ∈ Sm×m, y ∈ Rm and

y0 ∈ R denote the dual variables associated with the moment constraints. We can then

write the dual of problem (4.4.3) as follows

HD(z) = min
Y,y,y0

Q •Y + µTy + y0

s.t. ξTYξ + ξTy + y0 ≥ g(z, ξ), ∀ξ ∈ Rm,

(4.4.4)

where Q•Y denote the Frobenius inner product of matrices Q and Y. The weak duality

condition, H(z) ≤ HD(z), can be shown easily (see [24] for the proof).
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For strong duality results to hold, we make the following assumption

Assumption 4.4.1. The linear matrix inequality Q − µµT � 0 hold, where A � 0

means A is positive definite.

Note that, for (µ,Q) to be valid �rst and second moments of some random variable, it

is necessary to have condition {Q − µµT � 0} satis�ed. Assumption 4.4.1 is slightly

stronger as we replace the � sign by the � sign. This is needed for technicality reason

in proving the strong duality result which is formally stated in the following proposition

Proposition 4.4.1. Under Assumption 4.4.1, H(z) = HD(z).

Proof: Let us de�ne H =
{

(M,v) | M = MT , M � vvT
}

and let X ∈ IRn be a

random vector which follows the standard multivariate normal distribution. For any

(M,v) ∈ H, there exists a symmetric matrix W such that W 2 = (M − vvT ). We can

then construct a random variable ξ = WX + v which has a mean value of v and a

covariance matrix of (M − vvT ), i.e.,

∫
Ξ
ξiξjP (dξ) = Mij , ∀i, j = 1, · · · ,m,

∫
Ξ
ξiP (dξ) = vi, ∀i = 1, · · · ,m,

∫
Ξ
P (dξ) = 1.

(4.4.5)

In other words, using any choice of (M, v) ∈ H to replace (Q,µ) in the R.H.S of (4.4.5)

would lead to a feasible ξ. In addition, we can show that H is an open set. Therefore,

under Assumption 4.4.1, i.e. (Q,µ) ∈ H, we also have (Q,µ) to belong to the interior

of H. As a result, there exists a neighbourhood B small enough around (Q,µ) such that

if we replace the R.H.S of (4.4.5) by any (M,v) ∈ B, the system of equalities (4.4.5)

is still feasible (for some di�erent ξ). This is the su�cient condition for having strong

duality result to hold, i.e. H(z) = HD(z), as stated in [96, Proposition 3.4]. �
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From the strong duality result, problem (4.2.8) can be equivalently written as

min
z,Y,y,y0

bT z + Q •Y + µTy + y0

s.t. ξTYξ + ξTy + y0 ≥ g(z, ξ), ∀ξ ∈ �,

z ∈ {0, 1}n.

(4.4.6)

Let us now write down the dual of the transportation problem described in prob-

lem (4.2.7)

gD(z, ξ) = max
α,β

∑
j

αjξj −
∑
i

βi(sizi)

s.t. αj − βi ≤ cij , ∀ i ∈ I, j ∈ J,

αj ≤ C, ∀ j ∈ J,

αj , βi ≥ 0, ∀ i ∈ I, j ∈ J,

where αj , j ∈ J , are dual variables associated with demand constraints and βi, i ∈ I,

are dual variables associated with supply constraints in model (4.2.7). Observe that

problem (4.2.7) satis�es Mangasarian-Fromovitz constraint quali�cation (MFCQ). Thus

the Lagrange multipliers of the problem are bounded and there exists a positive number

C ′ such that the problem above is equivalent to the following

(DTP) gD(z, ξ) = max
α,β

∑
j

αjξj −
∑
i

βi(sizi)

s.t. αj − βi ≤ cij , ∀ i ∈ I, j ∈ J,

αj ≤ C, ∀ j ∈ J,

αj , βi ≥ 0, ∀ i ∈ I, j ∈ J,

βj ≤ C ′, ∀j ∈ J.

To ease the notation, let γα := α, γβ := β, and γ := (γα,γβ). Let � denote the feasible

set of (DTP). It is easy to observe that � is a polyhedral in IR|I|+|J | where |I| and |J |
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denote the cardinality of the index set I and J respectively.

Proposition 4.4.2. � is a bounded polyhedral with a finite number of vertices.

Proof: It is easy to observe that � is a bounded polyhedral. The second part of

assertion follows from Balinski [10]. �

Let {γ1, · · · ,γN} denote the set of vertices. Using the notation introduced above, we

can rewrite (DTP) in a neater form

gD(z, ξ) = max
γ(z)

ξTγα − γβT (s ◦ z)

s.t. γ ∈ �,

(4.4.7)

where (s ◦ z) denotes an m-dimensional vector with components sizi for i ∈ I. Combin-

ing (4.4.6) and (DTP), we can recast the robust facility location problem (4.2.8) as a

semi-de�nite program through the following proposition.

Proposition 4.4.3. Let P be defined as in (4.4.1) and � ≡ IRm. Under Assump-

tion 4.4.1, the two-stage distributionally robust facility location problem (4.2.8) can be

reformulated as the following semi-definite optimization problem:

(R-SDP) min
z,Y,y,y0

bT z + Q •Y + µTy + y0

s.t. z ∈ {0, 1}n,y0 + γβ
T (s ◦ z)

1

2
(y − γα)T

1

2
(y − γα) Y

 � 0, ∀γ ∈ {γ1, · · · ,γN}.

(4.4.8)

Here and later on we write M � 0 for matrix M being positive semi-definite.

Proof: It follows from Proposition 4.4.1 that, under Assumption 4.4.1, H(z) = HD(z)

and problem (4.2.8) can be reformulated as problem (4.4.6). Note that the reformulation

still involves g(z, ξ). Since g(z, ξ) and gD(z, ξ) are primal and dual LPs of each other

and since both of them are feasible (i.e. by setting x = 0, ωj = dj ,∀j ∈ J in the primal

and α = β = 0 in the dual), strong duality result holds and we have g(z, ξ) = gD(z, ξ).
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Thus, we can replace the second stage transportation problem through its dual and

rewrite the constraint of problem (4.4.6) as:

ξTYξ + ξTy + y0 ≥ max
γ∈Γ

{
ξTγα − γβT (s ◦ z)

}
, ∀ξ ∈ Rm. (4.4.9)

Since � is bounded with a �nite set of extreme points {γ1, · · · ,γN}, the maximizer of

the LP on the R.H.S of (4.4.9) occurs at one of the extreme points. Thus, (4.4.9) can

be equivalently rewritten as

ξTYξ + ξTy + y0 ≥ ξTγα − γβT (s ◦ z), ∀ξ ∈ Rm, ∀γ ∈ {γ1, · · · ,γN}.

A simple rearrangement yields

min
ξ

{
ξTYξ + ξT (y − γα) + y0 + γβ

T (s ◦ z)
}
≥ 0, ∀γ ∈ {γ1, · · · ,γN}. (4.4.10)

We can show that inequality (4.4.10) holds if and only if

y0 + γβ
T (s ◦ z)

1

2
(y − γα)T

1

2
(y − γα) Y

 � 0, ∀γ ∈ {γ1, · · · ,γN}. (4.4.11)

Here, it is very clear that (4.4.11) implies (4.4.10). For the reverse, suppose that (4.4.11)

does not hold, i.e. there exists γ and (q0, q) such that

[
q0 qT

]y0 + γβ
T (s ◦ z)

1

2
(y − γα)T

1

2
(y − γα) Y


q0

q

 < 0.

We then need to show that (4.4.10) does not hold neither. If q0 6= 0, then we can

construct ξ = q/q0 and obtain ξTYξ + ξT (y − γα) + y0 + γβ
T (s ◦ z) < 0 which means

(4.4.10) does not hold. If q0 = 0, we have qTYq < 0. We can then construct ξ = δq

with su�ciently large δ such that δ2qTYq + δqT (y − γα) + y0 + γβ
T (s ◦ z) < 0 which

also means (4.4.10) does not hold.

Finally, we can replace the constraint in (4.4.4) with the SDP constraint (4.4.11) and

obtain the SDP (4.4.8).

�
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Notice that the derivation from inequality (4.4.10) to inequality (4.4.11) requires � ≡
IRm. In practice, there is often some information on the bounds of the uncertain pa-

rameters. For example the customer demand cannot take negative values. In order to

handle the inde�nite set of constraints that appears in problem (4.4.6) for this case, we

will approximate the inde�nite constraint with a �nite set of semi-de�nite constraints

as shown next.

Suppose the support set is speci�ed as � =
∏
j∈J

�j , where �j = [ξ
j
, �ξj ] for all j ∈ J and ξ

and ξ are some given lower and upper bounds. For technicality reason in proving strong

duality, we make an assumption that there exists a random vector X with support set

� such that E[X] = 0 and E[XXT ] = I, where I ∈ IRm×m is the identity matrix.

Under this new assumption and Assumption 4.4.1, we can show that the strong duality

result still holds where the proof is very similar to that of Proposition 4.4.1. The only

di�erence is in the way we construct the random variable X (i.e., instead of choosing a

multi-variate normal random variable, we choose X such that E[X] = 0 and E[XXT ] =

I). It is noted that, the new assumption can be relaxed further by a proper scaling of

the random variables ξ.

Once we have derived the strong duality result, problem (4.4.4) become

HD(z) = min
Y,y,y0

Q •Y + µTy + y0

s.t. ξTYξ + ξTy + y0 ≥ g(z, ξ), ∀ξ ∈ �,

(4.4.12)

where the only di�erence compared to problem (4.4.4) is that we have replaced the

semi-in�nite constraint from {∀ξ ∈ IRn} to {∀ξ ∈ �}. Inequality (4.4.10) now become

min
ξ ≤ ξ ≤ ξ̄

[
ξTYξ + ξT (y − γα) + y0 + γβ

T (s ◦ z)
]
≥ 0, ∀γ ∈ {γ1, · · · ,γN},(4.4.13)

which is equivalent to

φ(γ) ≥ 0, ∀γ ∈ {γ1, · · · ,γN}, (4.4.14)
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where φ(γ) is the optimal value of the following program

min
ξ


[

1 ξ

]y0 + γβ
T (s ◦ z)

1

2
(y − γα)T

1

2
(y − γα) Y


1

ξ




s.t.

[
1 ξ

]
Vj

1

ξ

 ≤ 0, ∀j ∈ J,

where Vj =


ξjξj vTj

vj Ij

 , with Ij denoting an m×m matrix with all elements being 0

except and 1 at (j, j), and vj is an m-dimensional vector with all components are equal

to zero except for the jth element which is equal to −(ξ
j

+ ξj)/2 .

The S-lemma [46] provides a su�cient condition for the non-negativity of the quadratic

objective function over the quadratic inequalities corresponding to the bounds. In other

words, for the conditions (4.4.14) to be satis�ed for each γ ∈ �, it su�ces that there

exists h ≥ 0 such thaty0 + γβ
T (s ◦ z)

1

2
(y − γα)T

1

2
(y − γα) Y

+
∑
j∈J

hjVj � 0,

where hj denotes the jth component of vector h. Consequently, the SDP problem (4.4.8)

can be reformulated as

min
z,Y,y,y0,h

bT z + Q •Y + µTy + y0

s.t. z ∈ {0, 1}n,

h ≥ 0,y0 + γβ
T (s ◦ z)

1

2
(y − γα)T

1

2
(y − γα) Y

+
∑
j∈J

hjVj � 0, ∀γ ∈ {γ1, · · · ,γN}.

(4.4.15)

Remark : Problem (4.4.15) is very similar to problem (4.4.8) except for the newly intro-

duced decision variable h. If we restrict h = 0, then problem (4.4.15) is exactly the same
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with problem (4.4.8). Each h > 0 essentially enlarges the feasible domain of (Y,y, y0)

in problem (4.4.8) to a larger feasible domain of (Y,y, y0) in problem (4.4.15).

From computational perspective, problems (4.4.8) and (4.4.15) are complex to solve for

two main reasons.

• The problem constitutes N semi-de�nite constraints where N is the number of

vertices of �. Balinski [10] shows that for the case of DTP polyhedra, N is �nite

but it grows exponentially as the problem size increases. This means the number

of semi-de�nite constraints increases at exponential rate with the increase of the

problem size.

• Due to the binary decision variables z, the problem is NP-hard. This is well known

in deterministic FLPs.

In the following subsections, we address these numerical challenges. Concerning the

�rst issue of having many SDP constraints, we propose a constraint generation (CG)

algorithm. We �rst �x the binary facility location variables z and focus on solving

problem (4.4.15) using the constraint generation method, which involves solving a series

of SDP programs with progressively higher number of constraints until the optimal

solution is found. At limit, the problem reaches the full complexity of problem (4.4.15).

In practice, however, it might converge to an optimal solution much sooner. To deal

with the second issue of having binary variables, we use a genetic algorithm (GA), which

utilized the CG algorithm for computing the �tness function, to search for the optimal

facility location variables.

4.4.1 Constraint generation algorithm

We start implementing the CG algorithm by treating the decision variables z as a pa-

rameter, i.e. setting it to a �xed value. This will reduce problem (4.4.15) to an SDP

program with a linear objective function and a �nite number of constraints (denoted

by the set R) corresponding to some extreme points of the DTP problem. The enu-

meration of all extreme points can be numerically cumbersome since that could be very

large. A less complex sub-problem can be constructed by selecting a subset of con-

straints Rsub ⊆ R. However, the solution obtained might violate some constraints of
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the original problem. The next step is to identify such violated constraints which are

then added to the sub-problem in an iterative manner. This procedure is applied until

the relaxed problem solution is feasible and the global optimal solution is reached. The

detail of such procedure is explained in Algorithm 1:

Algorithm 1 Constraint generation algorithm

Step 0. Sub-problem initiation: set k := 1; Rsub = {γ1, · · · ,γp} for p� N .

Step 1. Sub-problem solution: solve problem (4.4.15) with the subset of

constraints Rsub to obtain Y(k), y(k), y
(k)
0 and h(k).

Step 2. Feasibility: verify feasibility of the solution Y(k), y(k) and y
(k)
0

through Algorithm 2 and if:

Step 2.1 (Y(k),y(k), y
(k)
0 ) is infeasible, then add the violating constraint

to Rsub, set k = k + 1 and go to Step 1.

Step 2.2 otherwise, optimal solution found, stop the algorithm.

Note that Step 2, on checking the feasibility of (Y(k),y(k), y
(k)
0 ) to the original problem,

we also identify a violating constraint if that was not the case. To �nd a violating

constraint, we need to solve the following problem:

min
γ∈Γ

y(k)
0 + γβ

T (s ◦ z)
1

2
(y(k) − γα)T

1

2
(y(k) − γα) Y(k)

+
∑
j∈J

h
(k)
j Vj � 0, (4.4.16)

which can be done by solving

min
γ∈Γ

(
min

ξ ≤ ξ ≤ ξ̄

[
ξTY(k)ξ + ξT (y(k) − γα) + y

(k)
0 + γβ

T (s ◦ z)
])

, (4.4.17)

and checking whether this is greater than or equal to zero. For each �xed γ, the inner

minimization problem of (4.4.17) is a quadratic programming problem. Let us denote
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its objective by

W = ξTY(k)ξ + ξT (y(k) − γα) + y
(k)
0 + γβ

T (s ◦ z). (4.4.18)

The feasibility assessment procedure is nested within the CG algorithm and explained

in detail in Algorithm 2. Although CG is not an exact Algorithm, it provides an e�cient

method to deal with the non-convexity of problem (4.4.17).

Algorithm 2 Feasibility veri�cation procedure

Step (A) Initialization: set r = 0, generate random ξ(0) and set ξ = ξ(r).

Step (B) Extreme point calculation: solve the DTP (4.4.7) to get γ(r).

Step (C) Violation verification: use ξ(r) and γ(r) to calculate

W (r) = ξ(r)TY(k)ξ(r) + ξ(r)T (y(k) − γ(r)
α ) + y

(k)
0 + γ

(r)
β

T
(s ◦ z),

and if:

Step (C.1) W (r) < 0, conclude (Y(k),y(k), y
(k)
0 ) is infeasible solution,

stop Algorithm 2

(and go back to Step 2.1 of Algorithm 1 to add the violating constraint.)

Step (C.2) otherwise, if (W (r−1) −W (r)) ≥ 10−6 :

Step (C.2.1) use γ(r)
α and γ(r)

α to compute ξ∗ through solving the

quadratic problem (the inner minimization problem

of (4.4.17)), set r = r + 1, ξ(r) = ξ∗ and go to Step.(B).

Step (C.2.2) otherwise, feasible solution reached, go to Step 2.2

of Algorithm 1, i.e. stop the CG algorithm.
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4.4.2 Genetic algorithm (GA)

The constraint generation algorithm described in subsection 4.4.1 evaluates the objective

function of the robust facility location problem (4.2.8) for each �xed z. We need to search

for the optimal value of the facility location variable z. The original SDP problem can

be rewritten as a mixed integer non-linear programming problem

min
z

bTz +HD(z)

s.t. z ∈ {0, 1}n.

Since the MINLP problem above is NP-complete, we propose a heuristic method to

solve the problem. More speci�cally, we use a Genetic Algorithm (GA), which is a

probabilistic search method that mimics the biological model of natural selection. The

GA algorithm applies the principle of \survival of the �ttest" to a population of potential

solutions to produce progressively better solutions over the generations. The detail GA

is explained in Algorithm 3.
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Algorithm 3 Genetic Algorithm

Step 0. Population initialization: randomly generate a chromosome population of

size N : z1, · · · zN ,

Step 1. Evaluation: for each chromosome calculate the �tness, using the solution

of SDP problem HD(z) as the parameter,

Step 2. Verification: is the termination criterion is met?

Step 2.1 if yes, stop.

Step 2.2 if no proceed to next step,

Step 3. Selection: a pair of \parent" solutions are selected from population

for breeding,

Step 4. Crossover: with the cross over probability of pc, exchange parts of the

two selected parents and create two o�spring solutions,

Step 5. Mutation: with the mutation probability of pm, randomly change the

gene values of the two o�spring solutions,

Step 6. New population: create a new population using the new o� springs

and check if the new population have the size N ?

Step 6.1 if yes, go to Step 1.

Step 6.2 if no, go to Step 3.

In order to illustrate the synchronization of the GA and CG approaches, the process of

interaction between the two algorithms is shown in Figure.4.1



Chapter 4 Robust Facility Location Problem 107

Genetic Algorithm

START

Constraint Generation Algorithm.

.

Population initialization

Calculate the fitness
of population via

SDP fitness function

Termination
criterion
satisfied?

STOP

Select pair of chro-
mosomes for mating

Crossover by exchanging
parts of two selected

chromosomes and
create two offspring

Randomly change the
gene values in the two
offsprings chromosomes

Create new population by
placing new chromosomes

Size of new
population

equal to
N?

Replace the current popu-
lation with new population

Optimal solution

Initialize the SDP
subproblem con-
straints set Rsub

Solve the SDP subproblem
with constraint set Rsub

Initialize ξ0

Solve DTP to obtain
an extreme point

Calculate the value
of function V

Function
Value ≥ 0?

Change in
value

significant?

Add the violating con-
straints to the set Rsub

Solve QP problem
to obtain new ξ

Yes

No

No

Yes

No

No

Yes

Yes

Figure 4.1: A hybrid algorithm

4.5 Computational results

In this section we report the numerical experiments performed to evaluate the proposed

methodologies. For convenience in recapping these methods, Table 4.1 provides a quick

reference on their abbreviations and the key di�erences among them.
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Abbreviation Problem Methods Known information on demand

D-FLP (4.2.1) Deterministic FLP Actual values (d)

S-FLP (4.2.6) Stochastic FLP Probability distribution (P )

R-SIP (4.3.4) Robust FLP with semi-in�nite formulation

R-LDR (4.3.5) LDR approximation of R-SIP problem First moment (µ)

R-CVaR (4.3.7) CVaR approximation of R-LDR problem

R-SDP (4.4.15) Robust FLP with semi-de�nite formulation First and second moments (µ,Q)

Table 4.1: Abbreviations and reference of methodologies used

4.5.1 A small case study

We study a small scale facility location problem to illustrate the quality of solutions

obtained from the proposed solution methods. We randomly generate a facility location

problem with 4 demand nodes and 3 potential locations to build facilities. The trans-

portation costs are assumed to be proportional to the distances between the customers

and the facilities. Figure 4.2 shows the network layout of this problem.
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Figure 4.2: The network of facility location problem
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The transportation cost, �xed investment cost and the capacity of each potential facility

are given in Table 4.2.

Supply points
Demand points

Supply capacity Fixed initial cost

dem1 dem2 dem3 dem4

sup1 14 12 21 25 200 2000

sup2 14 18 16 16 300 3200

sup3 17 10 14 19 254 3700

Table 4.2: Transportation and investment costs and capacity of the facilities

We assume that customer demands are unknown prior to the construction of facil-

ities and we are only given the �rst moment information of the demand with µ =

(150, 150, 100, 100). Moreover, in the SDP formulation of the problem, we are also pro-

vided with the second moment information of the uncertain demand

Q =


22669.34 22511.07 15038.4 15026.78

22511.07 22551.57 15000.53 14988.58

15038.4 15000.53 10045.48 10013.84

15026.78 14988.58 10013.84 10031.04



4.5.1.1 Robust SDP formulation

Under the assumption of available �rst and second moments, we formulate the problem as

a robust SDP (R-SDP). Since the problem size is small, we �rst consider all combinations

of the possible facility location decisions (23 possible combinations of z). For each

potential solution, the full R-SDP problem (4.4.15) is constructed by including all of the

extreme points of the dual transportation polytopes (obtained by using the signature

method in [9]). The full R-SDP problem is then solved for each potential solution and

the total cost of each decision is compared in Table 4.3. Note that the very high cost of

the \infeasible" solutions is due to high cost of using the external facility when demand

exceeds the capacity of facilities built. It can be observed that solution number 4, i.e.

z = (0, 1, 1) has the least cost and therefore is optimal.
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Facility Possible FL decisions

Decision sol1 sol2 sol3 sol4 sol5 sol6 sol7 sol8

z1 0 0 0 0 1 1 1 1

z2 0 0 1 1 0 0 1 1

z3 0 1 0 1 0 1 0 1

Cost 100,132.1 56,012.3 47,851.8 13,723.6 64,639.2 21,349.9 13,829.1 15,507.8

Table 4.3: Worst expected cost associated with each possible facility location
decision

In order to illustrate the performance of the proposed constraint generating algorithm

for the R-SDP formulation, we �rst �xed the facility decisions to z = (1, 1, 1). In

each run, the problem was initiated by randomly selecting one of the SDP constraints

corresponding one of the extreme points of the dual transportation problem. We record

the objective value after each iteration of the constraint generation process. Figure

4.3 summarizes the objective value after each iteration of algorithm (by taking the

average over 100 runs, each with a di�erent starting point). It can be observed that

the convergence of the constraint generation algorithm to the optimal value takes place

after around 15 iterations.
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Figure 4.3: Convergence of the constraint generation algorithm solutions
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After �nding the optimal solution for a �xed facility location decision z, the next step

of the proposed solution method is to �nd the optimal z using GA. However, this is not

necessary for this small instance as it has only 8 possible solutions.

4.5.1.2 Robust SIP formulation

Let us assume that we are only given the �rst moment information µ and the second

moment Q is unknown. We implement the second proposed method and formulate

the FLP as a semi-in�nite program. For assessing the quality of LDR approximation

(R-LDR) of the \true" robust SIP (R-SIP) solution, we limit the support set of the ran-

dom demand for each customer to 2000 values generated from the uniform distribution

U(0, 250). We then solve the full R-SIP and its R-LDR approximation over this support

set. As shown in Table 4.4, R-LDR solution provides an upper bound approximation

with 0.9% deviation from the original R-SIP solution. For the comparison purposes, we

also solve the deterministic version of the instance by assuming that the demand values

are knows and given by µ. The solution from deterministic problem (D-FLP) is then

benchmarked against the robust solutions in Table 4.4.

Models
Optimal FLP decisions

Total cost

z1 z2 z3

D-FLP 1 1 0 12,300.00

R-SDP 0 1 1 13,723.61

R-SIP 1 1 1 15,641.42

R-LDR 1 1 1 15,781.42

Table 4.4: Deterministic versus robust solutions

The deterministic solution is to install just enough capacity to meet the predicted (as-

sumed to be known) demand values by locating facilities 1 and 2. In other words, D-FLP

solution provides no 
exibility for possible variation in future demand. The robust so-

lutions on the other hand, o�ers to install the facilities with a higher total capacity at a

higher total cost (i.e. constructing facilities 2 and 3 in R-SDP case and all facilities in

R-SIP case), to hedge against the risk of not meeting the customer demand.
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In the next step, we implement the proposed CVaR approximation (R-CVaR) of the

R-LDR solution. Using the same support set of 2000 values, we solved the R-CVaR

approximation with various β values. The results are presented in Figure 4.4. It can be

observed that the CVaR solution approximates the R-LDR optimal solution consistently

and without any error for β ≥ 0.7.
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Figure 4.4: CVaR approximation of R-LDR problem for various β values

4.5.1.3 Discretization through sampling

The complexity of the R-LDR and R-CVaR schemes increases by the number of sce-

narios. As described in subsection 4.3.2, one way to resolve this issue is to use sample

approximation (SA) for R-LDR and sample average approximation for R-CVaR. These

involve drawing i.i.d samples from the underlying distribution of the uncertainty. In the

case of the �rst instance, we have chosen the samples from the same support set used to

run the full R-SIP tests. To assess the quality of sample approximation, we solve R-SIP,

R-DLR and R-CVaR using various sample sizes. For each sample size, we carried out

1000 independent runs. The β value for all of the CVaR instances was set to 0.99. The

normalized deviation of the sample approximations of all problems from the true robust

(full R-SIP) solution is shown in Figure 4.5 for various choices of the sample sizes.



Chapter 4 Robust Facility Location Problem 113

−0.5

−0.3

−0.1

0

0.1

0.3

0.5

0.7

0.9

1

90 100 200 500 800 1500 1800 1900

Sample size

 

 

%
D
ev
ia
ti
o
n
fr
o
m

tr
u
e
R
-S
IP

so
lu
ti
o
n

R-SIP
R-LDR
Mean Deviation of
R-CVaR (SAA)

(a) SAA of R-CVaR

−0.4

−0.2

0

0.2

0.4

0.6

0.8

90 100 200 500 800 1500 1800 1900

Sample size

 

 

%
D
ev
ia
ti
o
n
fr
o
m

tr
u
e
R
-S
IP

so
lu
ti
o
n

R-SIP
R-LDR
Mean Deviation of
R-LDR (SA)

(b) SA of R-LDR

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

90 100 200 500 800 1500 1800 1900

Sample size

 

 

%
D
ev
ia
ti
o
n
fr
o
m

tr
u
e
R
-S
IP

R-SIP
Mean Deviation (SA)

(c) SA of R-SIP

Figure 4.5: Normalized deviation of approximation problems from the true
robust solution



114 Chapter 4 Robust Facility Location Problem

It can be observed that, for each sample size, the mean deviation of R-CVaR and R-

LDR solutions from the true robust solution are very similar. They range from -0.4%

to 0.9% of the true solution (here 0.9% deviation means that the approximate solution

is 0.9% higher than the true value of the robust solution). We can also see that the

sample approximation of R-CVaR and R-LDR converge to the full R-LDR solution as

sample size increases. Furthermore, the sampling method applied to R-SIP provides a

very good approximation of the true solution even for small sample sizes.

Figure 4.6 shows the average computation times for 1000 runs of each sample size.
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Figure 4.6: Average computation time

4.5.2 Medium size test instances

In this section, we consider a set of larger facility location problems. Test instances

are selected from those existing in the literature. We have modi�ed and used p1 to p6

test problems presented by D��az and Fern�andez [47] for the single-source capacitated

facility location problem 2. These networks consist of 10 potential facility locations and

20 customer demand points. We have used the given demand values in test instances as

the �rst moment of the customer demand distribution. The second moment matrix for

the SDP formulation was randomly generated.

2available at http://www-eio.upc.edu/~elena/sscplp/index.html

http://www-eio.upc.edu/~elena/sscplp/index.html
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4.5.2.1 SDP formulation

We implement the constraint generation and GA algorithms for solving the medium

size instances in MATLAB R2012b utilising SeDuMi 1.3 and Cplex LP solvers. GA

population size is set to 40 with stopping criteria of a maximum of 30 generations or 10

Stall generations. The iterative method and the solution of problem p1 is illustrated in

Figure 4.7. As is shown in this �gure, the algorithm converges in 10 iterations and halts

after 15 iterations.
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Figure 4.7: CGGA convergence and solution for test p1

The test results for instances p1 to p6 are presented in the Table 4.5. In order to verify

the performance of GA, we also ran the CG problem for every combination of z and

found the optimal solution with minimum cost. In all 6 tests the solution obtained from

GA matched the optimal solution3.

Test
Optimal robust decisions

SDP solution CPU (s) D-FLP
z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

p1 1 1 0 1 1 0 1 1 1 1 1999.28 4692 1810.85

p2 1 1 0 1 0 1 1 1 1 1 4380.12 3517 4060.41

p3 1 1 1 0 1 1 1 0 1 1 6118.17 5076 5744.54

p4 1 0 1 1 0 1 1 1 0 1 7293.38 5708 6982.16

p5 1 1 0 0 1 1 1 1 1 0 4603.65 3518 4417.26

p6 1 1 1 1 1 1 1 0 1 0 2296.99 3069 2172.59

Table 4.5: Robust facility location solutions

3Despite the consistent performance of GA in finding the optimal solution in these instances, in
theory an optimal solution cannot be guaranteed. However, in practice, the “local” solutions obtained
using GA are often of high quality.
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For comparison purposes, we also include the deterministic solutions of the instances

in the table above. As expected, all of the robust solutions have a higher costs than

deterministic facility decisions as a result of installing higher total capacities. Although

the lower cost of D-FLP solutions comes at the expense of non-
exibility of the facility

decisions against the 
uctuation in future customer demand.

Furthermore, we analyze the robustness of these solutions by implementing the stochastic

version of the problems in which the distribution of demand uncertainty is assumed to

be known. For this purpose, we have selected the test instance p5. Let us denote the

�rst moment and the covariance matrix corresponding to this test instant by (µ,�). We

assume that the probability distribution P is known and given by a multivariate uniform

distribution with parameters (µ,�). The resulting two-stage stochastic problem, given

by (4.2.6), is then solved via SAA and the optimal facility location solution Z∗STOC is

obtained. We then test the performance of Z∗STOC against the robust facility location

solution, denoted by Z∗ROB, by solving problem (4.4.15) for �xed z and sampling ξ from

various multivariate distributions with µ as the �rst moment and � as the covariance

matrix.
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Figure 4.8: Performance of robust solution Z∗ROB against stochastic solution
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This comparison in illustrated in Figure 4.8 and it can be observed that the robust

solution is not sensitive to change in probability distribution whilst the performance of

stochastic solution can be highly a�ected by the choice of the probability distribution
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of the underlying uncertainty. In other word, without taking robust measures, the

stochastic performance might be very poor if the assumed distribution is wrong. This

can be observed in Figure 4.8; the stochastic solution outperforms the robust solution

if the actual distribution is uniform (as assumed). However, if the actual distribution is

not uniform, e.g. in case of the normal distribution, the stochastic solution could result

in a much higher cost than the robust solution.

4.5.2.2 SIP formulation

We now reconsider the problem instance p5 and assume that the only available infor-

mation on demand uncertainty is the �rst moment of the distribution µ. The R-SIP

framework is then used to construct and solve this problem. As before, we limit the

support set of the random variable ξ to 200 uniformly generated random values. For

comparison purposes, we summarize the full R-SIP solution to this problem along with

those from D-FLP, S-FLP and full R-SDP versions of the problem in the Table 4.6 below.

Model Available
Optimal FLP decisions

Total cost Installed
information z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 capacity

D-FLP d 1 1 0 0 0 1 1 1 1 1 4417.26 458

S-FLP P 1 1 0 1 1 1 1 0 1 0 4495.33 462

R-SDP (µ,Q) 1 1 0 0 1 1 1 1 1 0 4603.65 481

R-SIP µ 1 1 0 0 1 1 1 1 1 1 4938.95 511

Table 4.6: FLP solutions for various methodologies

It can be observed that R-SIP o�ers a more 
exible solution by installing a higher level

of supply capacity. This, of course, comes at the expense of a higher total expected cost.

Also, as we include progressively less information on the uncertainty in our models,

the solution becomes more and more robust (higher levels of supply capacity installed),

which is intuitively sensible.

Having solved the full R-SIP p5, we consider sample approximation of the R-SIP, R-

LDR and R-CVaR. Various sample sizes are used for each problem and repeat each test

for 100 times. The normalized deviation from the full R-SIP solution is computed and

presented in Figure 4.9.
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Figure 4.9: Deviation of approximation solutions from the true robust solution

It can be observed that in all models, the sampling scheme results in approximation
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of the true robust solution (R-SIP) with a very low error (with less than 3% mean

deviation). Moreover, in the case of smaller sample sizes, the CVaR model preforms

much better than the other two models and has the mean deviation of less than 0.5%.

4.6 Conclusion

In this chapter we consider a capacitated facility location problem with customer demand

uncertainty and propose a two-stage distributionally robust model for the problem to

tackle the issue of incomplete information on the true distribution of the uncertainty.

We constructed the uncertainty set using the moments information associated with the

distribution of the random demands. Two numerical methods are proposed based on

the available moment information. Speci�cally, we �rst formulate the robust problem

as a semi-in�nite program for the case that only the �rst moment information is given.

The semi-in�nite program is then solved by approximation using a linear decision rule,

CVaR and Monte Carlo sampling. Moreover, we formulate the robust problem as a

semi-de�nite program on the basis of the �rst and the second moments which is then

solved by using a constraint generation algorithm. Finally, we carry out numerical tests

for a small instance and also some medium-sized instances taken from the literature.

In each case, the distributionally robust solutions o�er the 
exibility in hedging against

uncertainty compared to the deterministic and the stochastic solutions.

In the future, it would be interesting to study the possibility of extending the results

and methodologies presented in this chapter to include uncertainty in supply, multi-

stage problems and the competition in the market. Also, we would like to explore the

problem structure to enhance the solution algorithms for a better performance in large

scale instances. Another open direction is to apply the proposed methodologies and

numerical schemes to the practical problems with similar structure and characteristics

such as uncertain the supply and demand. Some examples related to energy industry

could include the wind farm site location problem and lique�ed natural gas storage

facility location problems.





Chapter 5

Summary and Conclusions

This thesis has presented new stochastic and robust optimisation and equilibrium mod-

elling frameworks as well as solution schemes for decision making problems under uncer-

tainty; those that were motivated by planning and investment problems in the energy

industry.

In this chapter, a summary of the results of the work in chapters 2, 3 and 4 is given

followed by a discussion on the limitations of the developed models and the potential

avenues for further research.

5.1 Medium-term trading strategy of a dominant electric-

ity producer

The second chapter of the thesis investigated the medium-term strategic behaviour of a

dominant electricity in a pool-based day-ahead auction. A two-stage bi-level stochastic

model was presented to take into account the demand uncertainty and the competition

from a number of smaller producers. The pro�t and the market share maximization

objectives of the dominant producers were also incorporated in the modelling framework.

The reformulation of the model resulted in a multi-objective stochastic mathematical

program with equilibrium constraints (SMPEC). In order to make this model applicable

to large scale systems the SMPEC model was then formulated as a mixed-integer linear

programming problem. The applicability of the proposed model was illustrated through

a realistic case study based on the Italian power system. By analysing the simulation it

121
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was concluded that the dominant producer can substantially increase expected pro�ts

and/or expected market share by behaving strategically when o�ering power production

to the ISO. Additionally, the expected pro�t is higher when bidding in supply function

manner than bidding only strategic price or quantity for the same levels of the market

share. Moreover, we found out that in peak load demand hours, the dominant producer

can exert market power by bidding higher energy prices and withdrawing some of its

generation capacity, which leads to higher spot market prices. Conversely, in low demand

periods the dominant producer has little in
uence on market clearing prices and hence

the pro�t is similar to the base case.

5.2 Robust unit commitment problem

In the third chapter of the thesis, a two-stage stochastic and distributionally robust

model was developed for the unit commitment problem under the supply uncertainty.

The model accounts for the technical constraints such as ramping requirement and un-

expected generation outages of up to one generating unit (n − 1 security criteria). We

considered two robust; the �rst one is based on the available moment information and

the second one consider a mixture distribution on the random supply. The robust model

with moment condition was reformulated as a semi-in�nite program (SIP-UC) through

duality and solved via a sampling scheme. The mixture distribution model (Mix-UC)

is also reformulate using duality theory and solved using sample average approximation

technique. The proposed modelling frameworks were tested on a medium size case study

and the obtained solutions were compared against the two-stage non-robust stochastic

formulation (Sto-UC). By analysing the solutions it was concluded that, despite hav-

ing higher expected cost, both robust solutions o�er more 
exibility in hedging against

the uncertainty than the Sto-UC solution by having a higher levels of reserve schedule

in the �rst stage. Furthermore, the SIP-UC solution o�ers more 
exibility than Mix-

UC solution due to lower speci�city of assumptions on the distribution of the net load

uncertainty in the SIP-UC model.
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5.3 Robust facility location problem

The facility location decisions are irreversible and capital intensive and therefore it is

vital to take into account the future uncertainties, such as demand, when the facility

location decisions are made. In Chapter 4, a two-stage robust model was proposed

to include the distributional uncertainty associated with the stochastic demand into

long-term facility location decisions. The available moment information were used to

construct two formulations for the robust problem. In the �rst formulation, the �rst mo-

ment conditions were used to formulate the robust problem as a semi-in�nite program.

In the second formulation, the �rst and the second moment conditions were exploited to

formulate the robust problem as a semi-de�nite program. The semi-in�nite program is

solved by approximation using a linear decision rule, CVaR and Monte Carlo Sampling.

Moreover, a constraint generation algorithm is developed for solving the semi-de�nite

program. The performance of the proposed models and numerical methods were investi-

gated through some medium size test instances taken from the literature. Based on the

numerical results we can conclude that both of the robust formulations result in more

conservative but more 
exible facility location solutions compared to the traditional

deterministic and non-robust stochastic solutions. Moreover, the semi-in�nite model

solution o�ered a more 
exible solution by installing a higher level of supply capacity.

This, of course, resulted in a higher total expected cost. Therefore, it was concluded

that including progressively less information on uncertainty in the models, the obtained

solutions become more 
exible against the risk of demand uncertainty.

5.4 Future research

The model and the solution methods presented in each chapter of this thesis contributed

to the existing literature. However, these models contain some limitations. To go beyond

these limitations, we suggest the following direction of future research for each model:

In the case of the proposed model for the medium-term trading strategy of dominant

producer:
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• The proposed multi-objective model can be extended by looking at various other

aspects such as risk measures, capacity expansion/investment, production schedul-

ing and maintenance of generation units.

• In our analysis, the demand for electricity is assumed to be inelastic. However, the

integration of demand response technologies in the future smart grid could lead to

demand elasticity. It would be interesting to investigate the e�ect of short-term

demand elasticity in the market clearing process.

• The e�ect of renewable power on market prices could be introduced in the model.

• As more demand scenarios are incorporated in the stochastic framework, the prob-

lem size increases and so does the complexity of solving it. Developing decompo-

sition techniques to exploit the structure of this problem could be explored.

• Finally, modelling competition between producers in the framework of Equilibrium

Problem with Equilibrium Constraints (EPEC) would be particularly interesting.

In the case of the robust unit commitment problem :

• The recent advances in development of smart-grid could lead to a more responsive

demand. For instance, when the energy prices and the reserve prices in the system

tend to increase due to contingencies, customers may consider ramping down their

demand to avoid possible blackouts. It would be interesting to study the impact

of responsive (elastic) demand on the short-term scheduling decisions.

• In this work, we considered a pool-based market with a single node. The model can

be extended to include a network of zones interconnected with transmission lines.

Further contingencies such as transmission line failures could also be included.

• Finally, the security criteria could be extended to (n − K) scheme to provide

additional reliability in the operation of the system.

Finally, in the robust facility location problem:

• In the proposed model, we assumed that only the demand is stochastic and the

other model parameters such as supply and transportation costs were assumed to

be deterministic. In reality, such parameters could also be subject to uncertainty
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and it would be interesting to investigate a possible extension of the robust models

to include additional uncertainties.

• Also, we would like to explore the problem structure to enhance the solution

algorithms for a better performance in large scale instances.

• Another open direction is to apply the proposed methodologies and numerical

schemes to practical problems with similar structure and characteristics such as

uncertain supply and demand. Some examples related to the energy industry could

include the wind farm site location problem and the lique�ed natural gas storage

facility location problem.
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Appendix

A.1 Expanded formulations for the facility location prob-

lem

R-SIP problem (SAA):

min
z,x(.),w,λ0,λ

∑
i

bizi + λ0 +
m∑
j=1

λjµj

s.t.
∑
i

zi ≤ n,

zi ∈ {0, 1}, ∀ i ∈ I,

∑
i,j

cijxij(ξ
k) +

∑
j

�cwj(ξ
k) ≤ λ0 +

m∑
j=1

λjξ
k
j , ∀k ∈ K,

∑
i

xij(ξ
k) + wj(ξ

k) ≥ ξkj , ∀ j ∈ J, k ∈ K,

∑
j

xij(ξ
k) ≤ zisi, ∀ i ∈ I, k ∈ K,

xij(ξ
k) ≥ 0, ∀ i ∈ I, j ∈ J, k ∈ K,

wj(ξ
k) ≥ 0, ∀ j ∈ J, k ∈ K.
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R-LDR problem (SAA):

min
z,X,x̄,W,w̄,λ0,λ

∑
i

bizi + λ0 +

m∑
j=1

λjµj ,

s.t.
∑
i

zi ≤ n

zi ∈ {0, 1}, ∀ i ∈ I,

∑
i,j

cij

[ m∑
l=1

X l
ijξ

k
l + �xij

]
+
∑
j

�c

[ m∑
l=1

W l
jξ
k
l + �wj

]
≤ λ0 +

m∑
j=1

λjξ
k
j , ∀k ∈ K,

∑
i

[ m∑
l=1

X l
ijξ

k
l + �xij

]
+

m∑
l=1

W l
jξ
k
l + �wj ≥ ξkj , ∀j ∈ J, k ∈ K,

∑
i

[ m∑
l=1

X l
ijξ

k
l + �xij

]
≤ zisi, ∀i ∈ I, k ∈ K,

m∑
l=1

X l
ijξ

k
l + �xij ≥ 0, ∀ i ∈ I, j ∈ J, k ∈ K,

m∑
l=1

W l
jξ
k
l + �wj ≥ 0, ∀ j ∈ J, k ∈ K.

R-CVaR problem (SAA):

min
θ,η,z,X,x̄,W,w̄,λ0,λ

∑
i

bizi + λ0 +

m∑
j=1

λjµj ,

s.t.
∑
i

zi ≤ n

zi ∈ {0, 1}, ∀ i ∈ I,

η +
1

(1− β)K
K∑
k=1

θk ≤ 0,

∑
i,j

cij

[ m∑
l=1

X l
ijξ

k
l + �xij

]
+
∑
j

�c

[ m∑
l=1

W l
jξ
k
l + �wj

]
− λ0 −

m∑
j=1

λjξ
k
j − η ≤ θk, ∀k ∈ K,

∑
i

[ m∑
l=1

X l
ijξ

k
l + �xij

]
+

m∑
l=1

W l
jξ
k
l + �wj ≥ ξkj , ∀j ∈ J, k ∈ K,

∑
i

[ m∑
l=1

X l
ijξ

k
l + �xij

]
≤ zisi, ∀i ∈ I, k ∈ K,

m∑
l=1

X l
ijξ

k
l + �xij ≥ 0, ∀ i ∈ I, j ∈ J, k ∈ K,

m∑
l=1

W l
jξ
k
l + �wj ≥ 0, ∀ j ∈ J, k ∈ K,

θk ≥ 0, ∀k ∈ K.
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