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Abstract: Fast capacity estimation is a key enabling technique for second-life of lithium-ion 

batteries due to the hard work involved in determining the capacity of a large number of used 

electric vehicle (EV) batteries. This paper tries to make three contributions to the existing 

literature through a robust and advanced algorithm: (1) a three layer back propagation 

artificial neural network (BP ANN) model is developed to estimate the battery capacity.  

The model employs internal resistance expressing the battery’s kinetics as the model input, 

which can realize fast capacity estimation; (2) an estimation error model is established to 

investigate the relationship between the robustness coefficient and regression coefficient.  

It is revealed that commonly used ANN capacity estimation algorithm is flawed in providing 

robustness of parameter measurement uncertainties; (3) the law of large numbers is used as 

the basis for a proposed robust estimation approach, which optimally balances the 

relationship between estimation accuracy and disturbance rejection. An optimal range of the 

threshold for robustness coefficient is also discussed and proposed. Experimental results 

demonstrate the efficacy and the robustness of the BP ANN model together with the 
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proposed identification approach, which can provide an important basis for large scale 

applications of second-life of batteries. 

Keywords: lithium-ion batteries; second-life; fast capacity estimation; artificial neural 

networks; robustness 

 

1. Introduction 

The number of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEV) has been growing 

at a rapid rate in recent years driven by the need to curb air pollution caused by petroleum-based vehicles. 

As a result, it is expected that a large number of “spent” electric vehicle batteries will become available. 

These batteries will have capacities in the range of 70%–80% of their initial value, which may not be 

acceptable for electric vehicle use, but may be usable in other less demanding applications, in terms of 

energy density requirements, such as grid reinforcement or buffering of intermittent renewable energy 

sources. This could in turn help reduce the cost of power batteries used in EVs, thus paving the way for 

faster EV development. 

In recent years, research on the re-use of spent EV, PHEV batteries has focused on reliability 

estimation [1], optimal use strategy [2] and economic analysis [3,4]. Mukherjee et al. [1] presented a 

reliability calculation method for a battery energy storage system, and designed a battery-to-grid 

converter topology for robust and reliable second-life batteries. Rule-based control is used to manage 

the charging and discharging of second-life batteries to extend their lifetime in [2], and realize 

commercial building peak load management and maximize cost savings. Neubauer and Pesaran [3] 

assessed the impact of the use of second-life batteries on the initial cost of PHEV/EV batteries to 

automotive consumers. They concluded that although the battery re-use is not expected to significantly 

affect today’s PHEV/EV prices, it has the potential to transform markets in need of cost-effective  

energy storage. 

Most of the above papers assume that the battery parameters are known. However, significant work 

is needed to characterize second-life batteries. Battery parameters including Ohmic resistance, 

polarization impedance and available capacity are needed. The available capacity, which describes the 

total capacity from a battery at a specified operation condition, is a key parameter in second-life battery 

applications. The parameters of a second-life battery will in general depend on their usage history. 

Batteries used under similar operating conditions and with a similar usage history tend to generally 

degrade at a similar rate and hence will have similar parameters. The battery capacity distribution 

characters used in two EV buses run at the same route are illustrated in Figure 1. It is shown that the 

parameters of the spent batteries used on EV buses applied in certain routes seem to have approximately 

identical statistical characteristics. 

Commonly used methods for estimating available capacity include the full charge-discharge method, 

open circuit voltage (OCV) [5], load voltage [6], internal resistance acquisition [7], extended Kalman 

filter (EKF)-based estimation [8–11], and statistical learning methods such as support vector machines 

(SVMs) [12] and artificial neural networks (ANNs) [13–17]. Among them, full charge-discharge 

measurement is an accurate and reliable method. It is however time consuming and costly, and difficult 



Energies 2014, 7 8078 

 

 

to achieve for a large number of spent EV batteries. In [5], the unique OCV-Specific gravity relation that 

exists in lead-acid types was used to realize an estimation of the battery remaining capacity, but this 

technique is not suitable for lithium-ion batteries. A unified discharge voltage characteristic was 

presented to estimate battery capacity in [6]. The proposed method was simple to implement, however, 

it required a lot of experiments to characterize battery discharge behaviors. EKF and its improved 

algorithm based on various lumped parameter battery models were reported in [8–11]. The method can 

provide accurate estimation with model inaccuracy and measurement noises. However, it is a recursive 

method and needs historic data to get estimate updates, which is not practical for the estimation of 

hundreds of battery cells. The statistical learning methods aim to learn the behavior of the studied system 

from a large number of examples and then find a mathematical system description [12]. Such statistical 

methods can be employed without knowledge of battery internal structure and usage history, so long as 

training data is available [18]. SVM finds the solution to the support vector based on quadratic 

programming, which suffers from the need for large sample training. The ANN algorithm on the other 

hand has an advantage of parallel processing for large scale data. When comparing the existing ANN 

methods for battery life estimation, we find that most of them are used for battery cells and less for 

battery systems containing ten to hundreds of battery cells. This study aims to investigate the viability 

and effectiveness of ANN for estimating the available capacity of spent second-life EV lithium ion 

batteries that have been used on EV buses. 

Figure 1. Statistics of the battery capacity for two electric vehicle (EV) buses. 
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The paper is organized as follows: in Section 1 it is demonstrated that the used battery parameters of 

EV buses with the same usage history have identical statistical properties, which is the basis for 

parameter estimation using the ANN algorithm. A back propagation artificial neural network (BP ANN) 

model is then introduced as a basis for capacity estimation, in which the internal resistances with various 

currents at particular time points are used as inputs to the model. This part is discussed in Section 2.  

In Section 3, the BP ANN model is trained to get an accurate estimation of the battery capacity.  
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The robustness of the model is then discussed in detail. Taking model accuracy and robustness into 

consideration a robust BP ANN modeling method is proposed. The basic method and principle of 

choosing the robustness coefficient is also discussed. The verification of the proposed method is then 

presented in Section 4. The conclusions are finally summarized in Section 5. 

2. Back Propagation Network Modeling of a Battery System 

2.1. The Model Structure 

The feed-forward neural networks are classical ANN architectures, of which the BP network is 

commonly used since it has the ability to achieve nonlinear mapping, self-learning and adaptive, and 

generalization [19]. We started with a popularly used BP neural network with three layers comprising 

one input layer, one hidden layers and one output layer. It is demonstrated that the model with three 

layers has acceptable accuracy. The structure of the BP network is shown in Figure 2. 

Figure 2. The structure of the back propagation artificial neural network (BP ANN) model. 

 

The impedance and capacity degradation of the batteries between EV buses are relatively analogous 

since the battery packs were placed in the same location in the EV buses. Researchers have reported  

that the impedance of a lithium-ion battery is related to its state of charge (SOC) and state of health  

(SOH) [20,21], which are used to identify the battery aging mechanism. The internal resistance obtained 

from the voltage response of the battery at pulse current can in part describe the battery kinetics. This is 

consistent with the impedance obtained using an electrochemical impedance spectroscopy (EIS) test.  

It is therefore reasonable to estimate the capacity based on the internal resistance of the battery. Hence, 

the internal resistance, measured during pulsed current tests and at different sampling times is employed 

as an input to the capacity estimating neural network. 
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Taking the available charge/discharge currents and polarization time constant of the sample batteries 

into consideration, three currents and four sampling times are finally selected. The ANN model in this 

study therefore includes 12 training inputs, and each input is a column vector. The twelve vectors contain 

the batteries’ internal resistances acquired by pulse currents response of −200 A, −300 A and 100 A 

(discharge current is negative in this paper) at various sampling time which are 0.5, 1, 5 and 10 s.  

The output is the capacity of the batteries. 

In the hidden layer, a bipolar sigmoid transfer function is used, since it is continuously differentiable, 

and in which the weights from input to hidden units can be adjusted based on backward propagation of 

errors learning algorithm. The bipolar sigmoid function is given by: 
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   p , pj represents the jth input vector, wij is the weights value of the input vector 

pj, bi is biases values of the ith neuron. After analyzing the model input and output architecture, various 

numbers of neurons were trained; the neuron number in the hidden layer was determined to be 14 taking 

model accuracy and generalization abilities into account [22]. 

The mean square error (MSE) of the network output compared to the target is adopted as the error 

function. The goal is to minimize the average of the sum of the square of the errors: 
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where t

i
Q  is the experimental capacity value of cell i, e

iQ  is the estimated value of cell i, N represents 

the number of batteries used to train the ANN. 

2.2. Input of the Back Propagation Model 

As mentioned earlier, the battery internal resistances calculated at sampling times ranging from 0.5 

to 10 s are employed as the model input since they can express battery dynamics such as Ohmic loss, 

activation polarization and concentration polarization. The dynamic resistance of the battery at the 

specified SOC and temperature can be determined experimentally based on the voltage response at the 

pulse current as illustrated above in Figure 3. The battery’s dynamic resistance Ri can be calculated as: 

0i
i

n

V V
R

I


  (3)

where In is the current measured at the sampling time. It is well known that the battery internal resistances 

in the middle region ranging from 20% to 80% SOC vary less than at both ends of the SOC [23], hence, 

the battery dynamic resistance in the middle range of SOC is applied in the study. Thus the kth input 

vector is given by: 

1 2[ , , , ] , 1, 2,3, ,T
k iR R R i n R     (4)

where n expresses the number of the tested batteries. 
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Figure 3. Voltage response at the pulse current. 

 

2.3. Method of Back Propagation Network Training 

The basic principle of BP training relies on the gradient descent method, which can reduce the 

network error by altering the weights and bias values along the direction of the negative gradient [13]. 

In this study, the Levenberg-Marquardt (LM) algorithm, which is a variant of the gradient descent 

method, is used to optimize the network weight parameters. The LM method is a modification of 

classical Newton algorithm for optimum solution to a minimization problem, and is often described as 

a more stable and efficient method than a BP algorithm. It is also preferred due to its fast convergence 

and stability in training of ANNs [13]. 

3. Available Capacity Estimation Using the Back Propagation Neural Network 

3.1. Training Result Analysis 

Ninety fours batteries that were used on a Beijing Olympic EV bus were chosen as the training sample 

in this paper. The tested capacity of the batteries with full charge-discharge cycle ranged from 185 Ah 

to 215 A·h. The internal resistances, which were measured under 100 A, −200 A and −300 A pulsed 

current tests at 50% SOC with sampling time at 0.5, 1, 5 and 10 s, were used as inputs to the ANN,  

as mentioned earlier. The training parameters of the neural network model are set as target error e = 0.1, 

the maximum number of iterations is 1000 for once training cycle, and the initial weights and biases are 

random values in the [−0.1, 0.1] range. 

The training error curve of the BP ANN model is shown in Figure 4. It can be seen that after  

1000 iterations, the MSE does not achieve the designed target error 0.1; however, the error curve 

eventually becomes steady, indicating that the minimum stable MSE is approximately around 1.  

The error difference after training 600 times and 1000 times is negligible, therefore 600 iterations were 

considered sufficient to meet the BP neural network accuracy requirements. 
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Figure 4. Mean square error (MSE) of the model. 

 

To summarize the model accuracy statistics, the weights are randomized and the entire training 

performed 100 times. The statistics of MSE for 100 trainings is shown in Figure 5. It can be seen that 

the maximum MSE is around 7, suggesting that the average error is approximately 3.5%. The estimated 

and true values of the battery capacity and their linear regression relationship are shown in Figure 6. The 

true values were obtained using the full charge-discharge method. The abscissas of the data points in 

Figure 6 are the capacity true values (targets), and the corresponding ordinates are the capacity estimated 

values (model outputs). Ideally, the model output and the target values are equal to each other with all 

the data points falling on a straight line with slope equaling 1. The training regression coefficient is 

theoretically 1, which is represented by the dotted line in Figure 6. The calculated regression coefficient 

based on the data points is 0.968. The more accurate the model estimates, the closer the scatter of the 

data points to the solid regression line. In this case, the training regression line and the ideal fit line 

almost coincide, which suggested that the model output is consistent with the true values, and the BP 

neural network model is valid. 

Figure 5. The MSE statistics for 100 training cycles. 
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Figure 6. Linear regression relationship between model outputs and targets. 
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A comparison of estimated and true values is shown in Figure 7, and the absolute error distribution is 

illustrated in Figure 8, for 94 batteries. It can be seen in Figure 8 that the model absolute error 

approximately obeys a Gaussian distribution with an average of 0.899 A·h and a variance of 2.034 A·h. 

The maximum absolute error is 4.23 A·h, and the capacity estimation error is controlled within 2.5%.  

It indicates that the BP ANN has high estimation accuracy. 

To test the model, 80% of the sample data is applied for the training model, and the remaining 20% 

of the data is used to validate the trained model. The comparisons of the trained and validated results are 

illustrated in Figure 9. It can be found that regression coefficient of validated results is around 0.91, 

indicating acceptable estimation accuracy. 

Figure 7. Comparisons of the estimated and true values. 
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Figure 8. Statistical characters of absolute errors between model outputs and targets. 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
0

5

10

15

20

25

30

F
re

qu
en

cy

Absolute error (Ah)  

Figure 9. Comparisons of the trained and validated results. (a): Trained results; (b): validated results. 

 

3.2. Analysis of Robustness to Noisy Data 

System parameter uncertainty is often inevitable in practice. Inaccurate measurements may cause the 

parameters’ tested values to deviate from their true values. Robustness is a measure of a system’s ability 

to maintain its expected performance under some kind of disturbance, including model inaccuracy [24]. 

Due to the limited sensitivity and resolution of the measurements, the training data including internal 

resistance and capacity measurement may be different from the true value: 
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where m
iR  is the measured value; r

iR  is the true value of the internal resistance; and γe is a random  

testing error. Ideally γe = 0 and m r
i iR R , thus ANN outputs a true estimate of the capacity r
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where 1
,i jw  and 1

ib  are the weight and bias from the input layer to the hidden layer, respectively, 2
,i jw  and 

2
ib  are the weight and bias from the hidden layer to the output layer, respectively, f(·) represents the 

transfer function of these layers. The total error function is calculated using the Equation (7). By using 

the LM gradient algorithm the mean square error of the estimation MSE1 is reduced and eventually 

reaches a minimum value MSE1,min. If however, the measured internal resistance input to the ANN has 

an error γe, then the estimated value of battery capacity and the total error MSE2 are given by: 
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The error tends to its minimum value MSE2,min in the training process. After training, the total error in 

ideal situation MSE1,min and the total error in practical situation MSE2,min have a deviation ∆MSE,  

which is an estimation error resulting from measurement error of the neural network model’s input,  

the internal resistance: 

1,min 2,minMSE MSE MSE    (10)

A random error γe is used to imitate the estimation error ∆MSE; this random error is also called 

accidental error or ambiguity error. Random errors occur due to a series of small random fluctuations of 

the relevant factors during the test. Its characteristics can be summarized as follows: amplitudes and 

directions are indeterminate, immeasurable and unable to calibrate and the average of the error tends to 

be zero over time. 

The robustness of the BP ANN is examined by adding white Gaussian noise to the tested internal 

resistance to imitate random errors during the measurement process. Random numbers with Gaussian 

distribution are produced, with an average value E(γe) = 0. The variance can be calculated as: 
2 2 m m 2

eσ (γ ) (( ) )i iE E R R    (11)

A variance of σ2 = 0.02 is set. Assignment of the initial weights of the neural network model is done 

randomly and BP networks with different weights can be established. The regression coefficient is taken 

as an indicator of ANN’s precision; the bigger the coefficient the higher accuracy the model will be.  
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To assess the ANN’s robustness, a robustness coefficient is defined as the reciprocal of output (capacity) 

error variance: 

t e
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Q i iQ Q
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 (12)

The bigger the coefficient, the better the ANN’s robustness is. One hundred times training with 

different weights was executed, respectively, and the relationship between the robustness coefficient and 

regression coefficient of the model is illustrated in Figure 10. Correlation between the two is inspected 

by using Pearson related coefficient, which is given by: 

COV(ε,λ)
ρ

(ε) (λ)D D
  (13)

Where COV represents the covariance of ε and λ. The Pearson related coefficient is found to be 

−0.805, which indicates that they have a significant negative correlation and the robustness coefficient 

is a decreasing function of the regression coefficient, i.e., the robustness coefficient decreases with the 

increase of the regression coefficient. 

Figure 10. Relationship between the model regression coefficient and robustness coefficient. 
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Employing the ANN established in Section 3, with a regression coefficient of 0.968, the output 

capacity estimated value with white noise added to the internal resistance input is illustrated in  

Figure 11. It can be seen that after adding the white noise to the input, the difference of the estimated 

and the true values increases significantly compared to Figure 7. The robustness coefficient of the model 

with high estimation accuracy significantly decreases. The scatter of the estimated capacity also 

increases significantly. The absolute estimation error statistics are illustrated in Figure 12. The maximum 

absolute error reaches 44 A·h, and the estimation values are reduced overall. 
  



Energies 2014, 7 8087 

 

 

Figure 11. Estimated and true capacities when white noise is added to the measured internal 

resistance using an ANN with a regression coefficient of 0.968. 
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Figure 12. Statistical characters of absolute errors (∆e) between ANN model outputs  

and true value when white noise is added to the input of an ANN with a regression coefficient 

of 0.968. 
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The reason for the above results is as follows: when an ANN model is highly accurate, it remembers 

not only the sample’s general features, but also individual characteristics (such as random noise),  

and thus it doesn’t have tolerance to faults in the input internal resistance acquisition. 

In the remainder of this paper, a method that can balance an ANN model accuracy and robustness is 

developed. The model can not only satisfy the accuracy requirements, but also has fault tolerance at the 

same time. Reducing the accuracy and using 0.75 as the model regression coefficient of the neural 

network model established in Section 3.1, and inputting the internal resistance with white noise to the 
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ANN model, we got a comparison of the output and the truth of the capacity, as shown in Figure 13, and 

its statistical characters of absolute errors (∆e) between ANN model outputs and true value is shown in 

Figure 14. Compared with Figure 11, the scatter of this ANN model’s estimated capacity is obviously 

smaller than the ANN model with regression coefficient of 0.968, and the maximum estimation error is 

15 Ah, and 90% of the cells’ capacity estimation error is within 5%. It indicates that robustness can be 

improved by lowering the model’s accuracy. 

Figure 13. Estimated and true capacities when white noise is added to the measured internal 

resistance using an ANN with a regression coefficient of 0.75 internal resistance with white 

noise and the true value. 

 

Figure 14. Statistical characters of absolute errors (∆e) between ANN model outputs  

and true value when white noise is added to the input of an ANN with a regression coefficient 

of 0.75. 
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3.3. Proposed Robust Back Propagation Artificial Neural Network 

The aforementioned analysis indicates that the robustness coefficient of the BP network model is 

correlated with the regression coefficient. Reducing the regression coefficient of the model will enhance 

the robustness of the estimate, but the estimation accuracy will decrease. It is necessary to find a method 

that optimally balances the relationship between the accuracy and robustness of the ANN capacity 

estimation model. 

The law of large numbers is a theorem expressing the idea that the average of the results obtained 

from a large number of trials should be approaching the expected value, which is commonly used in 

noise attenuation and system identification [25,26]. The main idea is that BP ANN modeling is to 

repeatedly perform in the process of training. The coefficients expressing robustness and regression 

performance of each model are calculated, respectively. The models will be preserved for capacity 

prediction if both coefficients are within the set values. The training is stopped till a specified number 

of models are selected. In the prediction, the chosen weights and neuron biases are then used as the 

predictor model parameters. The average of the estimated values is regarded as the predictive output: 

0 0z  

1 e, 1

1

1 1k k k

k

k k  
 

z z Q  

0,1,2,...,k N  

(14)

p NQ z  (15)

where Qe,k+1 represents the (k+1)th network output vector, Qp is a vector expressing the final  

predicted output. 

The flowchart of the proposed robust BP ANN training method for capacity prediction is illustrated 

in Figure 15; in which ε and L express the calculated regression coefficient and the threshold, 

respectively; λ and M represent calculated robustness coefficient and the threshold, respectively. The 

specific procedure is as follows: first, the internal resistance calculated at for variety of currents at 

various sampling times, and the measured capacities of the battery in one EV bus were used as training 

samples to build the BP ANN model. The model regression coefficient was computed to examine its 

estimation accuracy. Second, white noise was added to the model input, and the robustness coefficient 

based on Equation (12) was calculated. The ANN model (with specific weighting factors),  

for which both regression and robustness coefficients meet the requirements, was ultimately chosen to 

estimate the capacity the battery of another EV bus. Finally, those networks’ capacity estimates outputs 

were averaged. 

The basic principle of robust coefficient selection can be summarized as follows: the regression 

coefficient is first determined according to model accuracy. Using the specified regression coefficient, 

a reasonable range of robustness coefficient can be obtained after comparing the model simulation results. 
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Figure 15. Flowchart of the proposed robust BP ANN training method. 
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4. Results and Discussion 

Verification of the proposed robust BP ANN modeling method was performed by testing 50 used EV 

bus batteries. The threshold value of the regression coefficient is set to 0.65 based on the results.  

The effect of different threshold values of robustness coefficient on the estimate accuracy was 

investigated. The maximum relative estimated error as a function of the robustness coefficient is 

illustrated in Figure 16. The maximum relative estimate errors remain approximately constant when the 

limit value of the robustness coefficient M ranges from 0.0125 to 0.017, suggesting that the fault 

tolerance capability of the model is poor in this range. The estimation error decreases significantly when 

0.017 ≤ M ≤ 0.025, which indicates that the fault tolerance of the ANN model can improve the estimation 

accuracy in this range. M is rarely greater than 0.025. It is therefore concluded that a reasonable range 

of the liminal value of the robustness coefficient is [0.017, 0.025] at the specified limits of the regression 

coefficient. The true and the predicted capacity for different liminal values of the robust coefficient are 

shown in Figure 17, and the statistical characteristics of the prediction error are illustrated in Figure 18. 

From Figures 17 and 18, it is clear that the difference between the predicted value and true value 

decrease as the robustness coefficient increases in the specified range and the error of the mean gets 

closer to zero. A comparison of the predicted results for different robustness coefficients is shown in 

Table 1. It is suggested that the maximum prediction error is 6.8%, and 94% of the battery samples’ 

prediction error is controlled within 5% when M = 0.017. The maximum prediction error when M = 0.02 

decreases by 1.21% compared to M = 0.017, and 96% of the samples’ prediction error is within 5%.  

All the battery samples’ prediction error can be controlled within 5% when M = 0.025, and the average 

error reduces to 1.8%. 
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Figure 16. The maximum relative estimate error as a function of the robustness coefficient. 

0.012 0.015 0.018 0.021 0.024 0.027
4.0

4.5

5.0

5.5

6.0

6.5

7.0

M
ax

im
u

m
 r

el
at

iv
e 

er
ro

r 
(%

)

Robustness coefficient  

Figure 17. The measured capacity and the predicted capacity for different liminal values of 

the robust coefficient. 

 

Figure 18. The statistical characters of the prediction error for different liminal values of 

robustness coefficient. 
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Table 1. Comparison of predicted results for different robustness coefficients. 

Liminal value of 

robustness 

coefficient 

Maximum 

absolute 

prediction error 

(A·h) 

Maximum 

relative 

prediction error 

(%) 

Absolute 

average 

error 

(A·h) 

Relative 

average 

error (%) 

The Percentage 

of relative error 

less than 5%  

MSE 

M = 0.017 12.911 6.367 4.891 2.431 94 34.386 

M = 0.02 10.736 5.294 4.593 2.282 96 30.146 

M = 0.025 8.431 4.241 3.598 1.792 100 18.300 

M = 0.03 NA NA NA NA NA NA 

None of the models can meet both requirements of L = 0.65 and M = 0.03. The optimal liminal value 

M = 0.025 of the robustness coefficient is ultimately chosen in this study. It is concluded that improving 

the robustness coefficient can increase the prediction accuracy over a certain range, and using the laws 

of large numbers can achieve better capacity prediction of the battery status. The simulation results 

demonstrated the efficacy of the proposed modeling method. 

5. Conclusions 

Recognizing that measuring the capacity of a large number of used EV batteries is time consuming, 

and that batteries with the same usage history should exhibit approximately identical statistical 

characteristics, a BP ANN capacity estimation model with three layers was developed. The internal 

resistance of the battery, which expresses the kinetics of the battery related to the available capacity, 

calculated at several sampling times during pulsed current tests is used as the ANN model input.  

The proposed approach can not only achieve accurate states estimates, but also it is much faster than 

conventional methods like the full charge-discharge one. 

To optimally balance the relationship between the estimate accuracy and robustness to measurement 

uncertainty, a robust estimation approach is proposed in the paper. A regression coefficient and a 

robustness coefficient are introduced to comprehensively evaluate the ANN model’s estimate. The law 

of large numbers is also employed in calculating the results of the model estimate. The testing data of a 

battery retired from another EV bus was used to verify the proposed robust estimation approach. 

Experimental results demonstrate the efficacy of the BP ANN model with the proposed robust 

identification approach, providing foundations for large scale applications of second-life batteries. 
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