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Abstract. The problem of data representation on a sphere of unknown radius arises from various
disciplines such as Statistics (spatial data representation), Psychology (constrained multidimensional
scaling), and Computer Science (machine learning and pattern recognition). The best representa-
tion often needs to minimize a distance function of the data on a sphere as well as to satisfy some
Euclidean distance constraints. It is those spherical and Euclidean distance constraints that present
an enormous challenge to the existing algorithms. In this paper, we reformulate the problem as an
Euclidean distance matrix optimization problem with a low rank constraint. We then propose an
iterative algorithm that uses a quadratically convergent Newton-CG method at its each step. We
study fundamental issues including constraint nondegeneracy and the nonsingularity of generalized
Jacobian that ensure the quadratic convergence of the Newton method. We use some classic ex-
amples from the spherical multidimensional scaling to demonstrate the flexibility of the algorithm
in incorporating various constraints. We also present an interesting application to the circle fitting
problem.
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1. Introduction. In this paper, we are mainly concerned with placing n points
{x1, . . . , xn} in a best way on a sphere in IRr. The primary information that we use is
an incomplete/complete set of pairwise Euclidean distances (often with noises) among
the n points. In such a setting, IRr is often a low-dimensional space (e.g., r takes 2
or 3 for data visualization) and is known as the embedding space. The center of the
sphere is unknown. For some applications, the center can be put at origin in IRr.
Furthermore, the radius of the sphere is also unknown. In our matrix optimization
formulation of the problem, we treat both the center and the radius as unknown
variables. We develop a fast numerical method for this problem and present a few of
interesting applications taken from existing literature.

The problem described above has long appeared in the constrained Multi-Dimensional
Scaling (MDS) when r ≤ 3, which is mainly for the purpose of data visualization, see
[9, Sect. 4.6] and [4, Sect. 10.3] for more details. In particular, it is known as the
spherical MDS when r = 3 and the circular MDS when r = 2. Most numerical meth-
ods in this part took advantages of r being 2 or 3. For example, two of the earliest
circular MDS were by Borg and Lingoes [5] and Lee and Bentler [28], where they
introduced a new point x0 ∈ IRr as the center of the sphere (i.e., circles in their case)
and further forced the following constraints to hold:

d01 = d02 = · · · = d0n.

Here d0j = ‖x0 − xj‖, j = 1, . . . , n are the Euclidean distances between the center
x0 and the other n points. In their models, the variables are the coordinates of the
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(n+ 1) points in IRr. In [5], the optimal criterion was a stress function widely used
in MDS literature (see [4, Chp. 3]), whereas [28] used a least square loss function as
its optimal criterion.

In the spherical MDS of [10], Cox and Cox placed the center of the sphere at
origin and represented the n points by their spherical coordinates. Moreover, they
also argued for the Euclidean distance to be used over the seemingly more appropriate
geodesic distance on the sphere. This is particularly the case when the order of the
distances among the n points are more important than the magnitude of their actual
distances. For the accurate relationship between Euclidean distance and the geodesic
distance on a sphere, see [38, Thm. 3.23], which is credited to Schoenberg [47]. A
recent method known as MDS on a quadratic surface (MDS-Q) was proposed by de
Leeuw and Mair [13], where geodesic distances were used. As noted in [13, p. 12],
“geodesic MDS-Q, however, seems limited for now to spheres in any dimension, with
the possible exception of ellipses and parabolas in IR2”. For the spherical case, MDS-
Q places the center at origin and the variables are the radius and the coordinates
of the n points on the sphere. The Euclidean distances were then converted to the
corresponding geodesic distances. The optimal criterion is a weighted least square
loss function.

When the center of the sphere is placed at origin, any point on the sphere sat-
isfies the spherical constraint of the type ‖x‖ = R, where x ∈ IRr and R is the
radius. Optimization with spherical constraints has recently attracted much atten-
tion of researchers, see, e.g., [32, 31, 16, 17, 29, 55] and the references therein. Such a
problem can be cast as a more general optimization problem over the Stiefel manifold
[52, 25]. One important example is the nearest low-rank correlation matrix problem,
where the unit diagonals of the correlation matrix yields the spherical constraints
[17, 29, 52, 25]. It is noted that the sequential second-order methods in [17, 29] as
well as the feasibility-preserving methods in [52, 25] all rely on the fact that the radius
is known (e.g., R = 1). This is in contrast to our problem where R is a variable.

In this paper, we propose a matrix optimization formulation that is conducive
to theoretical investigation and design of (second-order) numerical methods. An im-
portant concept that we will use is the Euclidean Distance Matrix (EDM), which
will be the matrix variable in our formulation. Hence, our optimization problem
can be treated as an Euclidean distance problem, recently surveyed by Liberti et
al. [30]. EDM optimization has been extensively studied and found many appli-
cations including sensor network localization and molecular confirmation, see, e.g.,
[20, 11, 15, 18, 19, 36, 12, 51, 35, 27, 39, 41]. However, it appears that none of the
existing EDM optimization methods known to us can be directly applied to handle
the spherical constraints with an unknown radius. We also like to point out that,
though similar in structure, the obtained EDM optimization is more involved (hav-
ing more spherical constraints) than those problems studied in the previous research
[39, 41], where only the simple diagonal constraints were studied. The implication
is that we have to develop a whole set of different techniques and analysis for our
new EDM optimization problem. For example, the important property of constraint
nondegeneracy does not automatically hold any more and its analysis is much more
complicated. We regard this as an important technical contribution in this paper.

The paper is organized as follows with the main contributions highlighted. In
Sect. 2, We first argue that when the EDM is used to formulate the problem, it is
necessary to introduce a new point to represent the center of the sphere. This is due
to a special property arising from embedding an EDM. The algorithmic framework
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that we use for the obtained non-convex matrix optimization problem is closely re-
lated to the majorized penalty method of Gao and Sun [17] for the nearest low-rank
correlation matrix problem. One of the key elements in this type of method is that the
subproblems are convex. Those convex problems are structurally similar to a convex
relaxation of the original matrix optimization problem and they all can be solved by
a quadratically convergent Newton-CG method. We establish that this is the case
for our problem by studying the challenging issue of constraint nondegeneracy, which
further ensures the nonsingularity of generalized Jacobian used by the Newton-CG
method. Those results can be found in Sect. 3 and ensure that the extension of the
majorization method of Gao and Sun [17] to our problem is complete. The algorithm
is presented in Sect. 4 and its key convergent results are stated without detailed
proofs as they can be proved similarly as in [17]. Sect. 5 aims to demonstrate a va-
riety of applications from classical MDS to the circle fitting problem. The numerical
performance is highly satisfactory with those applications. We conclude in Sect. 6.
Notation. Let Sn denote the space of n× n symmetric matrices equipped with the
standard inner product 〈A,B〉 = Tr(AB) for A,B ∈ Sn. Let ‖ · ‖ denote the induced
Frobenius norm. Let Sn+ denote the cone of positive semidefinite matrices in Sn (often
abbreviated as X � 0 for X ∈ Sn+). The so-called hollow subspace Snh is defined by
(“:=” means define)

Snh := {A ∈ Sn : diag(A) = 0} ,

where diag(A) is the vector formed by the diagonal elements of A. For subsets α, β
of {1, . . . , n}, denote Aαβ as the submatrix of A indexed by α and β (α for rows and
β for columns). Aα denotes the submatrix consisting of columns of A indexed by α,
and |α| is the cardinality of α. Throughout the paper, vectors are treated as column
vectors. For example, xT is a row vector for x ∈ IRn. The vector e is the vector of all
ones and I denotes the identity matrix, whose dimension is clear from the context.
When it is necessary, we use In to indicate its dimension n. Let ei denote the ith unit
vector, which is the ith column of I. Let Q be the Householder transformation that
maps e ∈ IRn+1 to the vector [0, . . . , 0,−

√
n+ 1]T ∈ IRn+1. Let

v := [1, . . . , 1, 1 +
√
n+ 1]T = e+

√
n+ 1en+1.

Then

Q = In+1 −
2

vT v
vvT .

Let

J := In+1 −
1

n+ 1
eeT .

We often use the following properties:

J2 = J, Q2 = I and J = Q

[
In 0
0 0

]
Q. (1)

2. The Matrix Optimization Formulation. In this section, we first give a
brief review of the important concept EDM and its relevant properties. We then apply
EDM to our problem to derive the matrix optimization formulation.
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2.1. Background on EDM. There are three elements that have become basics
in the research of Euclidean distance embedding. The first one is the definition of the
squared Euclidean distance matrix (EDM). The second are various characterizations
of EDMs. And the third one is the Procrustes analysis that produces actual embed-
ding in an Euclidean space. We briefly describe them one by one. Standard references
are [9, 4, 12]. Throughout, we use dimension (n + 1), which is more convenient for
our application. Of course, all results in this subsection can be stated in dimension
n.

(a) Squared EDM. A matrix D is a (squared) EDM if D ∈ Sn+1
h and there exist

points x1, . . . , xn+1 in IRr such that Dij = ‖xi−xj‖2 for i, j = 1, . . . , n+1. IRr is often
referred to as the embedding space and r is the embedding dimension when it is the
smallest such r. We note that D must belong to Sn+1

h if it is an EDM. Furthermore,
if those {xi} lie on a sphere, D is called an EDM on a sphere.

(b) Characterizations of EDM. It is well-known that a matrix D ∈ Sn+1 is an
EDM if and only if

D ∈ Sn+1
h and J(−D)J � 0. (2)

The origin of this result can be traced back to Schoenberg [46] and an independent
work [53] by Young and Householder. See also Gower [21] for a nice derivation of (2).
Moreover, the corresponding embedding dimension is r = rank(JDJ).

It is noted that the matrix J , when treated as an operator, is the orthogonal
projection onto the subspace e⊥ := {x ∈ IRn+1 : eTx = 0}. Characterization (2)
simply means that D is an EDM if and only if D ∈ Sn+1

h and D is negative semidefinite
on the subspace e⊥:

−D ∈ Kn+1
+ :=

{
A ∈ Sn+1 : xTAx ≥ 0, ∀ x ∈ IRn+1 such that 〈x, e〉 = 0

}
.

It follows that Kn+1
+ is a closed convex cone (known as the almost positive semidefinite

cone). Let ΠKn+1
+

(X) denote the orthogonal projection of X ∈ Sn+1 onto Kn+1
+ :

ΠKn+1
+

(X) := arg min ‖X − Y ‖ s.t Y ∈ Kn+1
+ .

A nice property is that this projection can be done through the orthogonal projection
onto the positive semidefinite cone Sn+1

+ and is due to Gaffke and Mathar [15]

ΠKn+1
+

(X) = X + ΠSn+1
+

(−JXJ) ∀ X ∈ Sn+1. (3)

(c) Euclidean Embedding. If D is an EDM with embedding dimension r, then
−JDJ � 0 by (2). Let

−JDJ/2 = XTX

where X ∈ IRr×(n+1). Let xi denote the ith column of X. It is known that
{x1, . . . , xn+1} are the embedding points of D in IRr, i.e., Dij = ‖xi − xj‖2. We
also note that any rotation and shifting of {x1, . . . , xn+1} would give same D. In
other words, there are infinitely many sets of embedding points. To find a desired
set of embedding points that match positions of certain existing points, one needs to
conduct the Procrustes analysis, which is a computational scheme and often has a
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closed-form formula, see [9, Chp. 5]. We omit the details here. It is also important to
point out that in many applications, any set of embedding points would be sufficient.
The circular embedding of the colour example in Sect. 5 is such an application. On
the contrary, the circle fitting example would need to select the best embedding points
by the orthogonal Procrustes analysis, which will be described in Sect. 5.

2.2. The Matrix Optimization Formulation. Returning to our problem, we
recall that our intention was to find n points {x1, . . . , xn} embedded on a sphere in
IRr satisfying certain optimal criterion. The available information for us is the set of
approximate (squared) Euclidean distances among the n points:

D0
ij ≈ ‖xi − xj‖2, i, j = 1, . . . , n.

Denote the center of the sphere by xn+1 (the (n + 1)th point) and its radius by R.
Since the n points are placed on the sphere, we must have

‖xj − xn+1‖ = R, j = 1, . . . , n.

Although we do not know the exact magnitude of R, we can be sure that twice the
radius cannot be bigger than the diameter of the data set:

2R ≤ dmax := max
i,j

√
D0
ij .

We therefore define the approximate distance matrix D ∈ Sn+1 by (only upper part
of D is defined)

Dij =


1
4d

2
max i = 1, . . . , n, j = n+ 1

D0
ij i < j = 2, . . . , n

0 i = j,

(4)

The elements in D are approximate Euclidean distances among the (n + 1) points
{x1, . . . , xn+1}. But D may not be a true EDM. Our purpose is to find the nearest
EDM Y to D such that the embedding dimension of Y is r and its embedding points
{x1, . . . , xn} are on a sphere centered at xn+1. The resulting matrix optimization
model is then given by

minY ∈Sn+1
1
2‖Y −D‖

2

s.t. Y ∈ Sn+1
h , −Y ∈ Kn+1

+ , rank(JY J) ≤ r
Y1(n+1) = Yj(n+1), j = 2, . . . , n.

(5)

We have following remarks regarding model (5).
(R1) Problem (5) is always feasible (e.g., the zero matrix is feasible). The feasible

region is closed and the objective function is coercive. Let Y be its optimal
solution. The first group of constraints in (5) implies that Y is an EDM with
an embedding dimension not greater than r. If r < n (i.e., rank(JY J) < n),
the problem is nonconvex. If r = n, then we can drop the rank constraint
so that the problem is convex. This is due to the fact that any EDM of size
(n+1)×(n+1) has an embedding dimension not greater than (n+1−1) = n.
Therefore, the rank constraint is automatically satisfied if r = n. Assume that

−1

2
JY J =: XTX, (6)
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where X ∈ IRr×(n+1). Let xi be the ith column of X. We then have

Y ij = ‖xi − xj‖2, i, j = 1, . . . , n+ 1.

The second group of constraints in (5) means that the distances from xi,
i = 1, . . . , n to xn+1 are equal. Hence, {x1, . . . , xn} lie on a sphere centered
at xn+1. We call those constraints spherical constraints and we note that they
are linear. This is in contrast to the nonlinear formulation of the spherical
constraints in the previous studies [5, 28, 10, 13].

(R2) If D0 is a true EDM from n points {z1, . . . , zn} on a sphere centered at zn+1

and let D be defined by (4), then Y = D and {x1, . . . , xn+1} can be exactly
matched to {z1, . . . , zn+1} through the orthogonal Procrustes analysis (see
Sect. 5). If D0 is just an approximate matrix to a true EDM on a sphere,
then problem (5) finds the nearest EDM Y on a sphere from D in the sense
that the total deviation of D from the true EDM is the smallest. This optimal
criterion is similar to the one used in MDS-Q [13].

(R3) The idea of introducing a variable representing the center (i.e., one more
dimension in our formulation) is similar to that of [5, 28], whose main purpose
was for the case r = 2 and the variables of the optimization problems are the
coordinates of the points concerned. Our model is more general for arbitrary
r and is conducive to (second-order) algorithmic development because the
spherical constraints are linear. Furthermore, the actual embedding is left out
as a separate issue, which can be done by (6), possibly through Procrustes
analysis.

(R4) The following reasoning further justifies why it is necessary to introduce a
new point for the center of the sphere. Let D0 denote the true squared
Euclidean distance matrix among n points on a sphere. By Schoenberg-
Young-Householder theorem [46, 53], the decomposition

−1

2
JD0J = XTX with J := In −

1

n
eeT and X ∈ IRr×n, (7)

would provide a set of points {xi : i = 1, . . . , n} such that the distances in
D0 are recovered through D0

ij = ‖xi − xj‖2. In order for those points to lie
on a sphere centered at origin, it is necessary and sufficient to enforce the
constraints

‖x1‖ = ‖x2‖ = · · · = ‖xn‖. (8)

We note that

‖xi‖2 = eTi (XTX)ei = −1

2
eTi JD

0Jei

= D0
ii +

1

2n

(
eiD

0e+ eTD0ei
)
− eTD0e

2n2

=
1

2n
〈D0, Ai〉 − eTD0e

2n2
,

where Ai := eie
T + eeTi . The spherical constraints are then equivalent to

〈D0, A1 −Ai〉 = 0, i = 2, · · · , n,
6



which are linear in the Euclidean distance matrix D0. It seems that there is no
need to introduce a new point to represent the center of the sphere. However,
there is a potential conflict in this seemingly correct argument. We note that
there is an implicit constraint we ignored. In (7), the embedding points in X
have to satisfy the centralization condition (because of the projection matrix
J)

Xe = 0. (9)

A potential conflict is that the constraints (8) and (9) may be contradicting to
each other. Such possible contradiction can be verified through the following
example: Let D0 be from the tree points on the unit circle centered at origin:

x1 = (1, 0)T , x2 = (−1, 0)T , x3 = (0, 1)T .

There exists no X ∈ IR2×3 that satisfies (7) (hence (9)) and (8). Now we
define D by (4) and solves problem (5), we obtain the following 4 embedding
points:

z1 = (−1, 0.25)T , z2 = (1, 0.25)T , z3 = (0,−0.75)T , z4 = (0, 0.25)T .

The first three points are on the unit circle centered at z4. The original three
points x1, x2 and x3 can be obtained through the simple shift xi = zi − z4
(the simplest Procrustes analysis). This example shows that it is necessary to
introduce a new point to represent the center in order to remove the potential
confliction in representing the spherical constraints as linear equations.

We now reformulate (5) in a more conventional format. By replacing Y by (−Y )
(in order to get rid of the minus sign before Kn+1

+ ), we obtain

minY ∈Sn+1
1
2‖Y +D‖2

s.t. Y ∈ Sn+1
h , Y ∈ Kn+1

+ , rank(JY J) ≤ r
Y1(n+1) = Yj(n+1), j = 2, . . . , n.

Define three linear mappings A1 : Sn+1 7→ IRn+1, A2 : Sn+1 7→ IRn−1 and A :
Sn+1 7→ IR2n respectively by

A1(Y ) := diag(Y ), A2(Y ) :=
(
Y1(n+1) − Yj(n+1)

)n
j=2

and A(Y ) :=

(
A1(Y )
A2(Y )

)
.

It is therefore that solving (5) is equivalent to solving the following problem

minY ∈Sn+1
1
2‖Y +D‖2

s.t. A(Y ) = 0, Y ∈ Kn+1
+

rank(JY J) ≤ r.
(10)

We note that without the spherical constraints A2(Y ) = 0, the problem reduces
to the problem studied in Qi and Yuan [41]. However, with the spherical constraints,
the analysis in [41], especially for the semismooth Newton-CG method developed in
[39, 41] is not valid any more because it heavily depends on the simple structure of
the diagonal constraints A1(Y ) = 0. One of our main tasks in this paper is to develop
more general analysis that covers the spherical constraints.
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3. Convex Relaxation. The convex relaxation is obtained by dropping the
rank constraint from (10).

minY ∈Sn+1
1
2‖Y +D‖2

s.t. A(Y ) = 0, Y ∈ Kn+1
+ .

(11)

The convex relaxation is not only important on its own right but also plays a vital
role in our algorithm because a sequence of such convex problems will be solved.
This section has two parts. The first part is about two constraint qualifications that
the convex relaxation may enjoy. The second part is about the semismooth Newton-
CG method that solves the convex relaxation and it is proved to be quadratically
convergent under the qualification of constraint nondegeneracy.

3.1. Constraint Qualifications. Constraints qualifications are essential prop-
erties in deriving optimality conditions and effective algorithms for optimization prob-
lems, see, e.g., [3]. We only study two of them, which are pertinent to our numerical
method to be developed later on. The first is the generalized Slater condition and the
second is constraint nondegeneracy.

It follows from [39, p. 71] that the convex cone Kn+1
+ can be characterized as

follows.

Kn+1
+ =

{
Q

[
Z z
zT z0

]
Q :

Z ∈ Sn+
z ∈ IRn, z0 ∈ IR

}
. (12)

It is easy to see that the linear equations in A(Y ) = 0 are linearly independent. We
further have.

Proposition 3.1. The generalized Slater condition hold for the convex relaxation
(11). That is, there exists Y ∈ Sn+1 such that

A(Y ) = 0 and Y ∈ intKn+1
+ ,

where intKn+1
+ denotes the interior of Kn+1

+ .

Proof. Let xi = (
√

2/2)(ei − (1/(n + 1))e), i = 1, . . . , n + 1, where ei is the ith
unit vector in IRn+1. Define Y ∈ Sn+1 by

Yij = ‖xi − xj‖2 =

{
1 if i 6= j

0 if i = j.

It follows from Schoenberg-Young-Householder theorem [46, 53] that

−1

2
JY J =

 (x1)T

...
(xn+1)T

 [x1, . . . , xn+1
]

and rank(JY J) = n.

Moreover, (−Y ) ∈ Kn+1
+ . By formula (12), there exist Z ∈ Sn+, z ∈ IRn and z0 ∈ IR

such that

−Y = Q

[
Z z
zT z0

]
Q.

By using the facts in (1), we obtain that

JY J = Q

[
In 0
0 0

]
QY Q

[
In 0
0 0

]
Q = −Q

[
Z 0
0 0

]
Q.
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Since the rank of JY J is n and Z ∈ Sn+, Z must be positive definite. This proves that

Y ∈ intKn+1
+ . Apparently, A(Y ) = 0 by the definition of Y . Hence, the generalized

Slater condition holds. �
The concept of constraint nondegeneracy was first studied by Robinson [43, 44]

for abstract optimization problems and has been extensively used in Bonnans and
Shapiro [3] and Shapiro [48] for sensitivity analysis in optimization and variational
analysis. It plays a vital role in the characterizations of strong regularity (via Clark’s
generalized Jacobian) in nonlinear semidefinite programming (SDP) by Sun [49]. For
linear SDP, it reduces to the primal (dual) nondegeneracy of Alizadeh et al. [1],
see also Chan and Sun [7] for further deep implications in SDP. It has been shown
fundamental in many optimization problems, see [40, 33, 39, 34, 26]. Our main result
is that constraint nondegeneracy holds for the convex problem (11) under a very
weak condition and it further ensures that the Newton-CG method is quadratically
convergent. For problem (11), constraint nondegeneracy is defined as follows (note
that the problem has 2n linear constraints).

Definition 3.2. We say that constraint nondegeneracy holds at a feasible point
A of (11) if

A
(

lin(TKn+1
+

(A))
)

= IR2n, (13)

where TKn+1
+

(A) is the tangent cone of Kn+1
+ at A and lin(TKn+1

+
(A)) is the largest

subspace contained in TKn+1
+

(A).

Let A ∈ Kn+1
+ and denote

A = Q

[
Z z
zT z0

]
Q, Z ∈ Sn+. (14)

We assume that rank(Z) = r and let λ1 ≥ λ2 ≥ . . . ≥ λr > 0 be the r positive
eigenvalues of Z in nonincreasing order. Let Λ := Diag(λ1, . . . , λr). We assume that
Z takes the following spectral decomposition

Z = U

[
Λ

0

]
UT , (15)

where U ∈ IRn×n and UTU = In. Let

U :=

[
U 0
0 1

]
∈ IR(n+1)×(n+1). (16)

Then U
T
U = I. It follows from [39, Eq. (24)] that

lin(TKn+(A)) =

QU
 [ Σ1 Σ12

ΣT12 0

]
a

aT a0

UTQ :
Σ1 ∈ Sr
Σ12 ∈ IRr×(n−r)

a ∈ IRn, a0 ∈ IR

 . (17)

Consider matrix X of the following form:

X := QU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

]
U
T
Q, (18)
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where

Γ :=

[
Σ1 Σ12

ΣT12 0

]
∈ Sn, q := UT e, a ∈ IRn. (19)

Obviously, X ∈ lin(TKn+(A)). Define two linear mappings Ãi : Sn 7→ IRn for i = 1, 2
respectively by

Ã1(Y ) = (Y11, Y22, . . . , Ynn)
T

and

Ã2(Y ) =
(
Y1(n+1) − Y2(n+1), . . . , Y1(n+1) − Yn(n+1), Y(n+1)(n+1)

)T
.

We have the following lemma.
Lemma 3.3. For any given y ∈ IRn, there exists a ∈ IRn, independent of the

choice of Γ in X of (18), such that

Ã2(X) = y. (20)

Proof. Simple calculation can verify that

Qen+1 = − 1√
n+ 1

e and Q(e1 − ej) = e1 − ej for j = 1, . . . , n.

We now calculate the elements of Ã2(X). For j = 1, . . . , n− 1, we have(
Ã2(X)

)
j

= (e1 − ej+1)TQU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

]
U
T
Qen+1

= (e1 − ej+1)TU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

][ − 1√
n+1

q

− 1√
n+1

]

= (e1 − ej+1)TU

[
−a
−qTa

]
= (uj+1 − u1)Ta, (using (16))

where uj denotes the jth column of UT . Similarly, we can calculate the last element
of Ã2(X): (

Ã2(X)
)
n

= X(n+1)(n+1)

=
1√
n+ 1

[qT , 1]

[
a
qTa

]
=

2√
n+ 1

qTa.

Then, equation (20) becomes the following simultaneous equations{
〈uj+1 − u1, a〉 = yj , j = 1, . . . , n− 1

〈UT e, a〉 =
√
n+1
2 yn.

(21)
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It is easy to verify that the vectors {u2−u1, . . . , un−u1, UT e} are linearly independent.
Hence, there exists a unique solution a ∈ IRn to (21) for any given y ∈ IRn. We also
note that the solution of a is independent of Γ in X. �

Lemma 3.4. Let A be decomposed as in (14). Suppose that there exists an
eigenvector u ∈ IRn of Z corresponding to one of its positive eigenvalues such that

τi := ui +
1√

n+ 1 + 1
ρ 6= 0 ∀ i = 1, . . . , n with ρ :=

n∑
j=1

uj . (22)

Then for any given z ∈ IRn and a ∈ IRn, there exists Γ of the type in (19) such that

Ã1(X) = z, (23)

where X is defined by (18).
Proof. Let a ∈ IRn and z ∈ IRn be given. Define

X := X1 +X2 +X3 +X4,

with

X1 =

[
Γ 0
0 0

]
, X2 =

[
0 −Γq

−(Γq)T 0

]
, X3 =

[
0 0
0 qTΓq

]
, X4 =

√
n+ 1

[
0 a
aT 0

]
.

We calculate the first n diagonal elements of X. For i = 1, . . . , n, we have

Xii = eTi QU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

]
U
T
Qei

=
〈
U
T
Qeie

T
i QU, X

〉
= 〈Wi, X〉,

where Wi := U
T
Qeie

T
i QU . Then equation (23) becomes

〈Wi, X1 +X2 +X3〉 = zi − 〈Wi, X4〉, i = 1, . . . , n. (24)

We would like to determine what Γ satisfies (24).
Note that for i = 1, . . . , n,

Qei = ei −
1

n+ 1 +
√
n+ 1

v

and

Wien+1 = U
T
Qeie

T
i QUen+1

= U
T
Qeie

T
i Qen+1 = − 1√

n+ 1
U
T
Qei

= − 1√
n+ 1

[
UT ei

0

]
+

1

(n+ 1)(
√
n+ 1 + 1)

[
UT e

1 +
√
n+ 1

]
.

We derive the following identities (we omit some details of the calculations)

〈Wi, X1〉 = Tr

(
[UT , 0]QeieiQ

T

[
U
0

]
Γ

)
=

〈
UT (ei −

1

n+ 1 +
√
n+ 1

e)(ei −
1

n+ 1 +
√
n+ 1

e)TU, Γ

〉
.
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〈Wi, X2〉 = −2
〈
Wien+1, [qTΓ, 0]T

〉
=

2√
n+ 1

(qTΓUT ei)−
2

(n+ 1)(
√
n+ 1 + 1)

(qTΓUT e)

=
1√
n+ 1

〈
UT (eeTi + eie

T )U, Γ
〉
− 2

(n+ 1)(
√
n+ 1 + 1)

〈
UT eeTU, Γ

〉
.

〈Wi, X3〉 = qTΓq(eTn+1Qeie
T
i Qen+1) =

1

n+ 1
qTΓq =

1

n+ 1
〈UT eeTU, Γ〉.

The fact q = UT e was used above. We add together the identities above and simplify
to get

〈Wi, X1 +X2 +X3〉 =
〈
UTW iU, Γ

〉
, (25)

with

W i :=

(
ei +

1√
n+ 1 + 1

e

)(
ei +

1√
n+ 1 + 1

e

)T
.

Now we assume that condition (22) holds. Without loss of generality, we assume
that u is the leading eigenvector of Z corresponding to the largest eigenvalue λ1. Let
γ ∈ IRn and define Γ ∈ Sn by

Γij :=


γ1 if i = j = 1

γj/2 if i = 1, j ≥ 2

γi/2 if j = 1, i ≥ 2

0 otherwise.

Such Γ is consistent with the structure in (19). It follows from (25) that

〈Wi, X1 +X2 +X3〉 = 〈UTW iUe1, γ〉 = 〈W iUe1, Uγ〉 = 〈W iu, γ〉,

where γ := Uγ and the fact u = Ue1 was used. Then the linear equations in (24)
become

〈W iu, γ〉 = zi − 〈Wi, X4〉, i = 1, . . . , n (26)

with γ being unknown. To ensure the existence of γ that satisfies (26), it is enough
to prove the linear independence of the vectors {W iu}ni=1. Assume that there exist
µi ∈ IR, i = 1 . . . , n such that

n∑
i=1

µiW iu = 0,

which implies (by using the structure of W i)
µ1τ1 + 1√

n+1+1

∑n
i=1 µiτi = 0

...
...

...
µnτn + 1√

n+1+1

∑n
i=1 µiτi = 0.
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We must have from the above equations that

µ1τ1 = µ2τ2 = · · · = µnτn = 0.

Under the assumption of (22), we have µi = 0 for i = 1, . . . , n. Hence, the vectors
{W iu}ni=1 are linearly independent. There is a unique γ satisfying (26). Therefore,
γ = UT γ. Γ is well defined and the resulting X defined in (18) satisfies (23). This
proves the result. �

Combining the two lemmas together gives our constraint nondegeneracy result.
Proposition 3.5. Let A given by (14) be a feasible point of (11). Suppose

condition (22) is satisfied for A. Then constraint nondegeneracy holds at A.
Proof. By the definition of constraint nondegeneracy, it is sufficient to prove

that for any given x ∈ IR2n there exists X ∈ lin(TKn+1
+

(A)) such that A(X) = x. This

is equivalent to existence of X ∈ lin(TKn+1
+

(A)) such that both (20) and (23) hold

simultaneously for any given y, z ∈ IRn. Lemmas 3.3 and 3.4 just ensured this is the
case. We can choose a ∈ IRn first in Lemma 3.3 and then choose Γ in Lemma 3.4 to
generate the matrix X of (18), which satisfies (20) and (23) simultaneously for any
given y, z ∈ IRn. Hence, constraint nondegeneracy holds at A under assumption (22).
�

We comment as follows as pointed out by one referee. The only condition for A
in Prop. 3.5 is being feasible. However, we know that A = 0 is feasible and constraint
nondegeneracy does not hold at 0 (can be verified directly through definition). Con-
dition (22) serves the purpose of removing such points from the consideration. The
following example shows that condition (22) holds everywhere but one point.

Example 3.6. Consider the (squared) Euclidean distance matrix

A =


0 4 2(1− t) 1
4 0 2(1 + t) 1

2(1− t) 2(1 + t) 0 1
1 1 1 0

 and − 1 ≤ t ≤ 1.

It corresponds to a triangular embedding on a unit circle with the length of one edge
equal the diameter of 2. The remaining point of the triangle moves around the circle.
Hence rank(JAJ) = 2 (i.e., r = 2). The corresponding matrix Z is

Z =
1

18

 37− 12t −35 −5 + 30t

−35 37 + 12t −5− 30t

−5 + 30t −5− 30t 25

 .
It can be verified that condition (22) is satisfied for all t except t = 0.

3.2. Semismooth Newton Method. In this subsection, we develop the semis-
mooth Newton method for the convex relaxation problem (11). The method is shown
to be quadratically convergent under constraint nondegeneracy at the optimal solu-
tion. We will use this method to solve a sequence of subproblems that will appear in
solving the nonconvex problem (10).

(a) Semismooth Newton Method. The Newton method is actually designed for
the Lagrangian dual problem (in the form of minimization) of (11). We omit the
detailed calculations that lead to the following dual problem:

min
y∈IR2n

θ(y) :=
1

2
‖ΠKn+1

+
(−D +A∗(y))‖2 − 1

2
‖D‖2, (27)
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where A∗ : IR2n 7→ Sn+1 is the adjoint operator of A.
We note that the linear transformations in A are linearly independent and that

the generalized Slater condition holds for problem (11) (see Prop. 3.1). It follows from
the general results [16, Prop. 2.20, Prop. 4.11] that the dual function θ(·) is coercive
(i.e., θ(y) → ∞ as ‖y‖ → ∞). Furthermore, because Kn+1

+ is a closed and convex
cone, θ(·) is convex and continuously differentiable (see [23, Chp. IV, Example 2.1.4]).
Therefore, the dual problem (27) must admit an optimal solution and the first-order
optimality condition is

F (y) := ∇θ(y) = A
(

ΠKn+1
+

(−D +A∗(y))
)

= 0. (28)

It follows from the projection formula (3) of Gaffke and Mathar that F (y) is strongly
semismooth1 because it is a composition of linear mappings and ΠSn+1

+
(·), which is

known to be strongly semismooth [50, 6]. Now it becomes natural to develop the
semismooth Newton method: Given y0 ∈ IR2n and let k := 0. Compute Vk ∈ ∂F (yk)
and

yk+1 = yk − V −1k F (yk), k = 0, 1, 2, . . . . (29)

Since F is the gradient of θ, ∂F is often called the generalized Hessian of θ.
According to the basic theory (see e.g. [42, Thm. 3.2]) for the semismooth Newton

method, a key condition for it to be quadratically convergent is that the generalized
Jacobian ∂F (y∗) is nonsingular, where y∗ denotes the optimal solution of (27). The
optimal solution Y ∗ for the original convex problem (11) can be computed by

Y ∗ = ΠKn+1
+

(−D +A∗(y∗)). (30)

To practically implement the semismooth Newton method (29), we have to ad-
dress two key issues. One is how to compute a particular matrix V ∈ ∂F (y). This has

led us to use ∂̂F (y) instead (to be developed in part (c) in this subsection and also see
(41)). The other issue is how to solve the linear equation in (29). Direct evaluation of
V would need O(n4) flops and hence direct methods are very expensive. We choose to
use the well-developed conjugate gradient (CG) method to solve the Newton equation
(see Qi and Sun [40] and Zhao et al. [54]). This results in the Newton-CG method
that does not need to explicitly form the matrix V . The main task below is to show
that the nonsingularity of ∂̂F (y∗) (hence of ∂F (y)) under constraint nondegeneracy
at Y ∗.

(b) Characterization of Constraint Nondegeneracy. Let A ∈ Kn+1
+ be decom-

posed as in (14) and let λ1 ≥ λ2 . . . ≥ λr > 0 be the positive eigenvalues of Z in
nonincreasing order. Let α := {1, 2, . . . , r}. We have the following characterization of
constraint nondegeneracy at A.

Lemma 3.7. Let h ∈ IR2n be given. Denote

H =

[
H1 h

hT h0

]
:= Q(A∗(h))Q with H1 ∈ Sn, h ∈ IRn and h0 ∈ IR. (31)

1A (locally) Lipschitz function Φ : IRm 7→ IR` is said to be strongly semismooth at x ∈ IRm if (i)
Φ is directionally differentiable at x, and (ii) for any V ∈ ∂Φ(x + h),

Φ(x + h)− Φ(x)− V h = o(‖h‖2), h ∈ IRm,

where ∂Φ(x) denotes the generalized Jacobian of Φ at x in the sense of Clarke [8, Sect. 2.6].
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Let A ∈ Kn+1
+ be decomposed as in (14) and the resulting Z has the spectral de-

composition (15). Constraint nondegeneracy holds at A if and only if the following
implication holds

UTαH1 = 0
h = 0
h0 = 0

 =⇒ h = 0. (32)

Proof. By (13), constraint nondegeneracy holds at A if and only if

h ∈
{
A
(

lin(TKn+1
+

(A))
)}⊥

=⇒ h = 0. (33)

It follows from (17) that

{
QBQ : B ∈ lin(TKn+1

+
(A))

}
=


 U

[
Σ1 Σ12

ΣT12 0

]
UT a

aT a0

 :
Σ1 ∈ Sr
Σ12 ∈ IRr×(n−r)

a ∈ IRn, a0 ∈ IR

 .

The left-hand side of (33) is equivalent to, for any B ∈ lin(TKn+1
+

(A)),

0 = 〈h,A(B)〉 = 〈A∗(h), B〉

= 〈QA∗(h)Q, QBQ〉 (because Q2 = I)

= 2〈h, a〉+ h0a0 + Tr

(
UTH1U

[
Σ1 Σ12

ΣT12 0

])
.

The above identities are for any a ∈ IRn, a0 ∈ IR, Σ1 ∈ Sr and Σ12 ∈ IRr×(n−r).
Hence, we must have (recall α = {1, 2, . . . , r})

h = 0, h0 = 0 and UTαH1U = 0.

Because of the nonsingularity of U , the above condition is equivalent to

h = 0, h0 = 0 and UTαH1 = 0.

Therefore, (33) holds if and only if (32) holds. �

(c) Structure of ∂̂F (y). For a given y ∈ IR2n, we let

Y := −J(−D +A∗(y))J and A := ΠKn+1
+

(−D +A∗(y)).

Denote[
Z z
zT z0

]
:= −Q(−D +A∗(y))Q with Z ∈ Sn, z ∈ IRn, z0 ∈ IR.

We then have from (1) that

Y = Q

[
Z 0
0 0

]
Q and ΠSn+1

+
(Y ) = Q

[
ΠSn+(Z) 0

0 0

]
Q. (34)
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We further have

QAQ = QΠKn+1
+

(−D +A∗(y))Q

= Q(−D +A∗(y))Q+QΠSn+1
+

(Y )Q (by (3))

= −
[
Z z
zT z0

]
+

[
ΠSn+(Z) 0

0 0

]
=

[
ΠSn+(−Z) −z
−zT −z0

]
.

We write A as in (14). It follows that

Z = ΠSn+(−Z), z = −z and z0 = −z0. (35)

Let Z admit the following spectral decomposition

Z = WΛWT ,

with Λ := Diag(λ1, . . . , λn) and λ1 ≥ . . . ≥ λn being the eigenvalues of Z and WWT =
In.

Define

α := {i : λi > 0} , β := {i : λi = 0} and γ := {i : λi < 0} .

The relationship between Y and Z in (34) means that {λ1, . . . , λn} are the eigenvalues
of Y . Moreover, Y has just one more eigenvalue, which is zero, than Z. For those
eigenvalues, define the corresponding symmetric matrix Ω ∈ Sn with entries

Ωij :=
max{λi, 0}+ max{λj , 0}

|λi|+ |λj |
, i, j = 1, . . . , n (36)

where 0/0 is defined to be 1. Let

W = [Wα, Wβ , Wγ ] and W :=

[
Wα Wβ 0 Wγ

0 0 1 0

]
. (37)

It follows from (28) and (3) that

F (y) = A(−D +A∗(y)) +A
(

ΠSn+1
+

(−J(−D +A∗(y))J)
)
.

The key part in F (y) is the composite function between ΠSn+1
+

(·) and the linear

operator JA∗(·)J . Because of this feature, it is hard to express ∂F (y) exactly. We
therefore define the following alternative:

∂̂F (y) := AA∗(y)−A
(
∂ΠSn+1

+
(Y )(JA∗(·)J)

)
. (38)

Although we do not know whether ∂F (y) is contained in ∂̂F (y), their images of vectors
coincide:

∂F (y)h = ∂̂F (y)h, ∀ h ∈ IR2n (39)
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which implies that if all elements in ∂̂F (y) are positive definite, so are those in ∂F (y).
The relationship in (39) holds because F (·) is the gradient of a convex function and
this fact implies the equivalence by [24].

The valuable benefit in using ∂̂F (y) is that the set can be completely character-
ized because the generalized Jacobian ∂ΠSn+1

+
(·) has a full characterization (see [49,

Prop. 2.2]). We describe ∂̂F (y) in the following result by making use of [49, Prop. 2.2].
Its proof can be patterned after those in Sect. 3.1 to Sect. 3.3 of [39] for [39, Prop.
3.2]. We note that only the submatrix Ωαγ is used in the description.

Proposition 3.8. For every matrix M ∈ ∂̂F (y), there exists Ṽ ∈ ∂Π
S|β|+1

+

(0)

such that

Mh = A(A∗(h))−A(PWhP
T ), ∀ h ∈ IR2n (40)

where P := QW ,

Wh :=


WT
αH1Wα

[
WT
αH1Wβ 0

]
Ωαγ ◦WT

αH1Wγ[
WT
β H1Wα

0

]
Ṽ

([
WT
β H1Wβ 0

0 0

])
0

ΩTαγ ◦WT
γ H1Wα 0 0


and H1 is from the partition in (31).

An implementable version of the semismooth Newton method (29) takes the fol-
lowing form

yk+1 = yk −M−1k F (yk), Mk ∈ ∂̂F (yk), k = 0, 1, 2, . . . . (41)

To implement the above method, we need to choose an explicit element Mk ∈ ∂̂F (yk).
The matrix M (subscript k is omitted) used in our implementation is given by (40)

with Ṽ = 0. This can be proved by using Prop. 3.8 and [37, Lemma 11].

(d) Nonsingularity of ∂̂F (y). Recall the matrices H and W are respectively defined
in (31) and (37). It is easy to verify that

W
T
HW =


WT
αH1Wα WT

αH1Wβ WT
α h WT

αH1Wγ

WT
β H1Wα WT

β H1Wβ WT
β h WT

β H1Wγ

hTWα hTWβ h0 hTWγ

WT
γ H1Wα WT

γ H1Wβ WT
γ h WT

γ H1Wγ

 . (42)

We further denote

G1 :=

[
WT
β H1Wβ WT

β h

hTWβ h0

]
, G2 :=

[
WT
β H1Wβ 0

0 0

]
.

It is easy to prove that

‖G1‖(‖G1‖ − ‖G2‖) ≥ ‖WT
β h‖2 +

1

2
h20. (43)
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It follows from [7, Eq (17)] that

〈Z1, Ṽ (Z2)〉 ≤ ‖Z1‖‖Z2‖ ∀ Ṽ ∈ ∂Π
S|β|+1|
+

(0), Z1, Z2 ∈ S |β|+1. (44)

From (35), the positive eigenvalues of Z are just the opposite of those nega-
tive eigenvalues in γ. Let Γ be the permutation matrix which maps the sequence
{1, 2, . . . , |γ|} to its reverse order. We have,

Z = Wγ(−Λγ)Wγ = (WγΓ)(Γ(−Λγ)Γ)(WγΓ)T .

Hence, Uα, which consists of the eigenvectors of positive eigenvalues in the spectral
decomposition (15), can be chosen to be

Uα = WγΓ. (45)

Theorem 3.9. Let y be the optimal solution of the dual problem (27). Let
A := ΠKn+1

+
(−D + A∗(y)). We assume that constraint nondegeneracy holds at A.

Then every matrix M ∈ ∂̂F (y) is positive definite.

Proof. We continue to use the notation developed so far. Let M ∈ ∂̂F (y). Our
purpose is to prove 〈h, Mh〉 > 0 for all 0 6= h ∈ IR2n. It follows from (40)

Mh = A(A∗(h))−A
(
PWhP

T
)
,

where Wh is given in Prop. 3.8.
We now calculate 〈h, Mh〉.

〈h, Mh〉 = ‖A∗(h)‖2 − 〈A∗(h), , PWhP
T 〉 = ‖QA∗(h)Q‖2 − 〈PTA∗(h)P, Wh〉

= ‖H‖2 − 〈WT
HW, Wh〉 (by (31) and P = QW )

= ‖WT
HW‖2 − 〈WT

HW, Wh〉 (by W W
T

= In+1)

= 2
{
‖WT

α h‖2 + ‖WT
αH1Wγ‖2 − 〈WT

αH1Wγ , Ωαγ ◦ (WT
αH1Wγ)〉

}
+2
{
‖WT

β H1Wγ‖2 + ‖WT
γ h‖2 + ‖WT

γ H1Wγ‖2/2
}

+‖G1‖2 − 〈G1, Ṽ (G2)〉.

The last equality made use of the structure of Wh and (42).
Define τmax := maxi∈α,j∈γ Ωij . By (36), 0 < τmax < 1. We continue to simplify

〈h,Mh〉.

〈h, Mh〉 ≥ 2
{
‖WT

α h‖2 + ‖WT
γ h‖2 + ‖WT

β H1Wγ‖2 + (1− τmax)‖WT
αH1Wγ‖2

}
+‖WT

γ H1Wγ‖2 + ‖G1‖2 − ‖G1‖‖G2‖ (by (44))

≥ 2

{
‖WT

α h‖2 + ‖WT
γ h‖2 +

1

2
‖WT

β h‖2
}

+ ‖WT
γ H1Wγ‖2

+2
{

(1− τmax)‖WT
αH1Wγ‖2 + ‖WT

β H1Wγ‖2
}

+
1

2
h20 (by (43))

≥ 0. (46)

Hence, the assumption 〈h, Mh〉 = 0 would imply

WT
α h = 0, WT

β h = 0, WT
γ h = 0, and h0 = 0,
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and

WT
αH1Wγ = 0, WT

β H1Wγ = 0, WT
γ H1Wγ = 0.

Because of (37) and nonsingularity of W , the two equations above yield:

h = 0, h0 = 0 and H1Wγ = 0,

which by (45) and the nonsingularity of Γ (Γ is a permutation matrix) leads to

h = 0, h0 = 0 and H1Uα = 0. (47)

By assumption, constraint nondegeneracy holds at A. Lemma 3.7 forces h = 0.
The inequality (46) implies that 〈h, Mh〉 > 0 for any h 6= 0. Therefore, any matrix

in ∂̂F (y) is positive definite under constraint nondegeneracy. �

(e) Quadratic convergence. The direct consequence of Thm. 3.9 is the quadratic
convergence of the Newton method (41). Let y∗ be an optimal solution of the La-
grangian dual problem (27).

Theorem 3.10. The Newton method (41) is quadratically convergent provided
that y0 is sufficiently close to the optimal solution y∗ of (27) and constraint nonde-
generacy holds at Y ∗ that is defined by (30).

Proof. In the general quadratic convergence-rate theorem of Qi and Sun [42,
Thm. 3.2] for semismooth Newton methods, there are three conditions: (i) The func-
tion F is strongly semismooth, which is true for our case because it is a composition of
linear mappings and the strongly semismooth mapping ΠSn+1

+
(·). (ii) Every matrix in

the generalized Jacobian of ∂̂F (y∗) is nonsingular, which has been proved in Thm. 3.9

under constraint nondegeneracy assumption. Furthermore, ∂̂F (·) is compact and up-
per semicontinuous. The last condition is that the initial point y0 stays close to y∗.
This proves our result. �

Since (27) is convex, globalization of the Newton method (41) is straightforward.
We simply use one of the well-developed globalization method (Newton-CG method)
studied by Qi and Sun [40] in our numerical experiment.

4. Majorized Penalty Method. In this section, we extend the majorized
penalty method of Gao and Sun [17] to our problem (10). The method has pre-
viously been used to compute the nearest EDM of low embedding dimensions in [41].
The situation here is that we have spherical constraints to deal with. The structure
of the extension is similar to that in [41]. We give a brief description of the method.

(a) The penalty problem. It has been shown that without the rank constraint
rank(JY J) ≤ r, the convex relaxation problem (11) can be solved by the Newton-CG
method (41). Problem (11) implicitly implies a very important fact that the matrix
(JY J) is positive semidefinite for any feasible point Y . Define

p(Y ) :=

n∑
i=r+1

λi(JY J) = 〈In+1, JY J〉 −
r∑
i=1

λi(JY J)

= 〈J, Y 〉 −
r∑
i=1

λi(JY J), (because J2 = J)
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where λ1(JY J) ≥ . . . ≥ λn+1(JY J) are the eigenvalues of (JY J). The equivalent
relationship below is obvious.

rank(JY J) ≤ r and JY J � 0 ⇐⇒ p(Y ) = 0 and JY J � 0.

Moreover, p(Y ) ≥ 0 for any Y satisfying JY J � 0. Therefore, the function p(Y ) can
be used as a penalty function for the rank constraint over the feasible region of (10).
A similar fact has been used by Gao and Sun [17] in their majorized penalty method
for computing the nearest low-rank correlation matrix, which is necessarily positive
semidefinite. The resulting penalty problem in our case is

min fc(Y ) := f(Y ) + cp(Y )

s.t. A(Y ) = 0, Y ∈ Kn+1
+ ,

(48)

where c > 0 is the penalty parameter and f(Y ) := ‖Y +D‖2/2.
The following result on the relationship between the original problem (10) and its

penalty counterpart (48) can be similarly proved as for [17, Prop. 3.1 and Prop. 3.2].
Proposition 4.1. Let Y ∗c denote a global optimal solution of (48), Yr be a

feasible solution of (10), and Y ∗ be an optimal solution of the convex problem (11).
(i) If rank(Y ∗c ) ≤ r, then Y ∗c already solves (10).

(ii) If the penalty parameter c is chosen to satisfy c ≥ (f(Yr)−f(Y ∗))/ε, for some
given ε > 0, then we have

p(Y ∗c ) ≤ ε and f(Y ∗c ) ≤ ν∗ − cp(Y ∗c ),

where ν∗ denotes the optimal objective vale of (10).
The result in (ii) means that when the rank error measured by p(·) at Y ∗c is less

than ε, the corresponding objective value comes very close to the optimal value ν∗.
Such a solution is referred to as an ε-optimal solution in [17].

(b) Majorized Penalty Approach. The focus now is on solving the penalty prob-
lem (48). Since p(Y ) is concave (i.e., the sum of the first r largest eigenvalues of a
symmetric matrix is a convex function of the matrix), it can be majorized by the
linear function defined by its subgradient: For given Y k ∈ Sn+1 (the current iterate)
and Uk ∈ ∂p(Y k), we have

p(Y ) ≤ mp
k(Y ) := p(Y k) + 〈Uk, Y − Y k〉 ∀ Y. (49)

The function mp
k(Y ) is called a majorization of p(Y ) at Y k because of (49) and

p(Y k) = mp
k(Y k). The majorized (convex) subproblem to be solved is

min f(Y ) + cmp
k(Y ), s.t. A(Y ) = 0, Y ∈ Kn+1

+ . (50)

We now extend the majorized penalty algorithm of Gao and Sun [17] to our problem
(10).

Algorithm 4.2. (Majorized Penalty Algorithm (MPA))
(S.1) Choose a feasible point Y 0 of (11). Set k := 0.
(S.2) Solve subproblem (50) to get Y k+1.
(S.3) If Y k+1 = Y k, stop; otherwise, set k := k + 1 and go to (S.2).

We have the following remarks about the algorithm.
(R1) There are a few choices for the starting (feasible) point Y 0 in (S.1). One of

them is the optimal solution of (11) by the Newton-CG method (41).
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(R2) Alg. 4.2 generates a sequence of decreasing objective values {fc(Y k)} for
fixed c. This is because of the majorization property (49). In our practical
implementation, the penalty parameter is updated according to some rules.

(R3) Subproblem (50) can be solved by the Newton-CG method (41) because it is
equivalent to the following problem, which is the type of the convex problem
(11) but with different input D:

min
1

2
‖Y +D‖2, s.t. A(Y ) = 0, Y ∈ Kn+1

+ , (51)

where D := D + cUk. We note that the feasible region remains unchanged.
Hence, the generalized Slater condition and the constraint nondegeneracy
results studied before hold for those subproblems.

(R4) The algorithm converges to a B-stationary point of (10), which is stated below
and whose proof can be patterned after [17, Thm. 3.4]. For the definition of
B-stationary point, see [17]. Roughly speaking, as problem (10) is nonconvex,
converging to a B-stationary point is one kind of global convergence that the
algorithm can best achieve. We omit the details. We also note that if Y f

is the final iterate of Alg. 4.2, then (−Y f ) should be the final output as it
is a true Euclidean distance matrix (put the minus back because we have
introduced the minus sign in the formulation process that led to problem
(10)).

Proposition 4.3. Let {Y k} be the sequence generated by Alg. 4.2. Then {fc(Y k)}
is a monotonically decreasing sequence. If Y k+1 = Y k for some Y k, then Y k is an
optimal solution of (48). Otherwise, the infinite sequence {Y k} satisfies

1

2
‖Y k+1 − Y k‖2 ≤ fc(Y k)− fc(Y k+1), k = 0, 1, . . . .

Moreover, the sequence {Y k} is bounded and any accumulation point is a B-stationary
point of (48).

5. Numerical Examples. In this section, we first briefly describe the Matlab
implementation of Alg. 4.2. For ease of reference, we call the resulting code FITS2,
standing for “FIT data on a Sphere”. We then test a few well-known examples that
have spherical constraints. Through those examples, it is demonstrated that FITS

can provide data visualization of high quality and is capable of including extra (lin-
ear) constraints such as the “pole constraints” in Ekman’s color example [14], which
results in a wheel representation of 14 colors. We are not aware any existing methods
that can deal with such pole constraints. It also provides an alternative method for
the circle fitting problem, recently studied by Beck and Pan [2].

(a) Termination Criterion. We terminate Alg. 4.2 when the following two condi-
tions are met. The first condition is on the objective function value:

ffrog :=
|
√
f(Y k)−

√
f(Y k−1)|

max{100,
√
f(Y k−1)}

≤ tol, (52)

where f(Y ) = 0.5‖Y + D‖2 and tol is a small tolerance level (e.g., 1.0 × 10−4). In
other words, whenever there is lack of the relative progress on the successive objective

2Available from http://personal.soton.ac.uk/hdqi.

21



function values, we believe that the current iterate is a good candidate subject to the
second condition below. This stopping criterion was suggested by Gao and Sun [17]
for the low-rank nearest correlation matrix problem.

The second condition is on the rank of the current iterate Y k. There are two ways
to monitor the rank. One is to compute the absolute value of the eigenvalue residue:

rankerror :=

n∑
i=r+1

λi(JY
kJ) ≤ ranktol, (53)

where ranktol is a small tolerance (e.g., 10−2) and λ1 ≥ . . . ≥ λn are the eigenvalues
of (JY kJ), which is positive semidefinite. This quantity does not scale well with the
magnitude of (JY kJ). To rectify this drawback, we also calculate the percentage of
the first r eigenvalues of (JY kJ) out of all the eigenvalues:

Eigenratio :=

r∑
i=1

λi(JY
kJ)/

n∑
i=1

λi(JY
kJ) ≥ Eigentol, (54)

where Eigentol is a high percentage (e.g., 90%). We terminate the algorithm when
(52) and either of (53) and (54) are satisfied.

(b) Initial Point and Updating the Penalty Parameter. The initial point is
computed by the Semismooth Newton-CG method for the convex problem (11). We
note that all the subproblems of (51) are solved by the same Newton-CG method.
Alg. 4.2 solves the penalty problem (48) for a fixed penalty parameter c. In practical
implementation, we may start from c0 and increase c a few times before we can find
a good solution. The initial c0 = 10 in our implementation. We update ck (k ≥ 1) as
follows

ck :=

{
ck−1, if rank(JY k−1J) ≤ r
4ck−1, otherwise.

That is, we keep the penalty parameter unchanged if the current iterate has the de-
sired embedding dimension. Otherwise, it is increased by 4 times.

(c) Numerical Examples. Four existing examples were tested. They are (E1) Ek-
man’s color example [14], (E2) Trading globe in [10], (E3) 3D Map of global cities
(HA30 data set3) in [22], and (E4) Circle fitting problem in [2]. We also show how a
Procrustes procedure can be devised to assess the quality of the final embedding in
(E3) or to help to get the final embedding to match the existing points in (E4).

(E1) Ekman color example. This is a classical example in MDS where data
can be represented on a circle, called circular fitting. Ekman [14] presents similarities
for 14 colors (wavelengths from 434 to 674 nm). The similarities are based on a rating
by 31 subjects where each pair of colors was rated on a 5-point scale (0 means no
similarity up to 4 meaning identical). After averaging, the similarities were divided
by 4 such that they are within the unit interval. The similarity matrix is denoted by
∆. The initial distance matrix is obtained from (D0)ij := (1−∆ij)

2.
Fig. 5.1 (a) (the radius is R = 0.5354) is the resulting circular representation

by FITS with colors appearing on the circle one by one in order of their wavelength.

3Data available from http://people.sc.fsu.edu/∼jburkardt/m src/distance to position sphere.html
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(a) Circular fitting without any constraints
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(b) Circuclar fitting with pole constraints

Fig. 5.1. Comparison between the two circular fitting of Ekman’s 14 color problem with
and without pole constraints.

This figure is similar to [13, Fig. 2], where more comments on this example can be
found. A pair of colors (i, j) are said opposing to each other if their distance equals
the diameter of the circle. That is

Yij = 4Y1(n+1), (55)

which means that the squared distance between opposing colors is fourfold of the
radius squared. This type of constraints is called “pole constraint”. An interesting
feature is that we assume that the first 7 colors are set to oppose the remaining 7
colors, the resulting circular representation appears as a nice wheel, without having
changed the order of the colors, see Fig. 5.1(b) (the radius is 0.5310). Practitioners in
Psychology may have new interpretation of such nice representation. We emphasize
that our method can easily include the pole constraints and other linear constraints
without any technical difficulties. We are not aware any existing methods that can
directly handle those extra constraints.

(E2) Trading globe. The data in this example was first mapped to a sphere
(r = 3) in [10] and was recently tested in [13]. The data was originally taken from
the New Geographical Digest (1986) on which countries traded with other countries.
For 20 countries the main trading partners are dichotomously scored (1 means trade
performed, 0 trade not performed). Based on this dichotomous matrix X the distance
matrix D0 is computed using the squared Jaccard coefficient (computed by the Matlab
build-in function pdist(X, ’jaccard’). The most intuitive MDS approach is to project
the resulting distances to a sphere which gives a “trading globe”.

In Fig. 5.2 (R = 0.5428), the counties were projected on to a globe with the
shaded points being on the other side of the sphere. The figure is from the default
viewpoint of Matlab. It is interesting to point out that obvious clusters of countries
can be observed. For example, on the top left is the cluster of Commonwealth nations
(Australia, Canada, India, and New Zealand). On the bottom right is the cluster of
western allies (UK, US, and West Germany) with Japan not far on above of them.
On the north pole is China, which reflects its isolated trading situation back in 1986.
On the backside is the cluster of countries headed by USSR. On the left backside is
the cluster of Brazil, Argentina, Egypt. We note that this figure appears different
from those in [10, 13] mainly because that each used a different method on a different
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Fig. 5.2. Spherical representation for trading data in 1986 between countries {Argentina,
Australia, Brazil, Canada, China, Czechoslovakia, East Germany, Egypt, France, Hungary,
India, Italy, Japan, New Zealand, Poland, Sweden, UK, USA, USSR, West Germany}.

(nonconvex) model of the spherical embedding of the data.

(E3) 3D Map of global cities in HA30 data set. HA30 is a dataset of spherical
distances among 30 global cities, measured in hundreds of miles and selected by Har-
tigan [22] from the World Almanac, 1966. It also provides XYZ coordinates of those
cities. In order to use FITS, we first convert the spherical distances to Euclidean dis-
tances through the formula: dij := 2R sin(sij/(2R)) where sij is the spherical distance
between city i and city j and R = 39.59 (hundreds miles) is the Earth radius (see [38,
Thm. 3.23]). The initial matrix D0 consists of the squared distances d2ij . It is observed

that the matrix (−JD0J) has 15 positive eigenvalues and 14 negative eigenvalues and
1 zero eigenvalue. Therefore, the original spherical distances are not accurate and
contain large errors. Therefore, FITS is needed to correct those errors. We plot the
resulting coordinates of the 30 cities in Fig. 5.3. One of the remarkable features is
that FITS is able to recover the Earth radius with high accuracy R = 39.5916.

We now assess the quality of the spherical embedding in Fig. 5.3 through a Pro-
crustes analysis. Let Y be the final Euclidean distance matrix from FITS and let X
be obtained from (6). Let xi denotes the ith column of X. Then, xn+1 is the center of
the sphere. We shift the center to origin and the resulting points are zi := xi− xn+1.
Let Z denote the matrix of consisting of zi as its columns. The data set HA30 includes
a set of XZY coordinates of those 30 cities. We let A denote those coordinates (in
columns). We would like to see how close Z and A are. This can be done through
solving the orthogonal Procrustes problem:

min
P∈IRr×r

f = ‖PZ −A‖, s.t. PTP = I, (56)

which seeks the best rotational (including rotations and flips) matrix P such that the
columns in Z best match the corresponding columns in A after the rotation. Problem
(56) has a closed form solution P = UV T , where U and V are from the singular-
value-decomposition of AZT = USV T with the standard meaning of U ,S, and V .
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Fig. 5.3. Spherical embedding of HA30 data set with radius R = 39.5916.

The optimal objective is f = 0.2782. This small error is probably due to the fact that
the radius used in HA30 is 39.59 in contrast to ours 39.5916. This small value also
confirms the good quality of the embedding from FITS when compared to the solution
in HA30.

(E4) Circle fitting. The problem of circle fitting has recently been studied in
[2], where more references on the topic can be found. Let points {ai}ni=1 with ai ∈ IRr

be given. The problem is to find a circle with center x ∈ IRr and radius R such that
the points stay as close to the circle as possible. Two criteria were considered in [2]:

min
x, R

f1 =

n∑
i=1

(
‖ai − x‖ −R

)2
(57)

and

min
x, R

f2 =

n∑
i=1

(
‖ai − x‖2 −R2

)2
. (58)

Problem (58) is much easier to solve than (57). But the key numerical message in [2] is
that (57) may produce far better geometric fitting than (58). This was demonstrated
through the following example [2, Example 5.3]:

a1 =

[
1
9

]
, a2 =

[
2
7

]
, a3 =

[
5
8

]
, a4 =

[
7
7

]
, a5 =

[
9
5

]
, a6 =

[
3
7

]
.

Model (58) produces a very small circle, not truly reflecting the geometric layout of
the data.

The Euclidean distance embedding studied in this paper provides an alternative
model. Let D0

ij = ‖ai− aj‖2 for i = 1, . . . , n and n = 6, r = 2 in this example. Let Y
be the final distance matrix from FITS and the embedding points in X be obtained
from (6). The first 6 columns {xi}6i=1 of X correspond to the known points {ai}6i=1.
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Fig. 5.4. Circle fitting of 6 points with R = 6.5673. The known points and their corre-
sponding points on the circle by FITS are linked by a line.

The last column x7 is the center. The points {xi}6i=1 are on the circle centered at x7

with radius R (R =
√
Y 1(n+1)). We need to match {xi}6i=1 to {ai}6i=1 so that the

known points stay as close to the circle as possible. This can be done through the
orthogonal Procrustes problem (56).

We first centralize both sets of points. Let

a0 :=
1

n

n∑
i=1

ai, ai := ai − a0 and x0 :=
1

n

n∑
i=1

xi, xi := xi − x0, i = 1, . . . , n.

Let A be the matrix whose columns are ai and Z whose columns are xi for i = 1, . . . , n.
Solve the orthogonal Procrustes problem (56) to get P = UV T . The resulting points
are

zi := Pxi + a0, i = 1, . . . , n

and the new center, denoted by zn+1, is

zn+1 := P (xn+1 − x0) + a0.

It can be verified that the points {zi}ni=1 are on the circle centered at zn+1 with radius
R. That is

‖zi − zn+1‖2 = ‖P (xi − xn+1)‖2 = ‖xi − xn+1‖2 = R2.

This circle is the best circle from model (5) and is plotted in Fig. 5.4 with the pair of
points {ai, zi} being linked by a line. When the obtained center x = zn+1 and R are
substituted to (57), we get f1 = 3.6789, not far from the reported value f1 = 3.1724
in [2]. The circle fits the original data reasonably well. We complete this example by
noting a common feature between our model (5) and the squared least square model
(58) in that the squared distances are used in both models. But the key difference is
that (5) used all available pairwise squared distances among ai rather than just those
from ai to the center x as is in (58).

6. Conclusion. In this paper, we proposed a matrix optimization approach to
the problem of Euclidean distance embedding on a sphere. We applied the majorized
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penalty method of Gao and Sun [17] to the resulting matrix problem. A key feature
we exploited is that all subproblems to be solved share a common set of Euclidean
distance constraints with a simple distance objective function. We showed that such
problems can be efficiently solved by the Newton-CG method, which is proved to be
quadratically convergent under constraint nondegeneracy.

Constraint nondegeneracy is a difficult constraint qualification to analyze. We
proved it under a weak condition for our problem. We illustrated in Example 3.6 that
this condition holds everywhere but one point (t = 0). This means that constraint
nondegeneracy is satisfied for t 6= 0. For the case t = 0, we can verify (through veri-
fying Lemma 3.7) that constraint nondegeneracy also holds. This motivates our open
question whether constraint nondegeneracy should hold under a weaker condition.

In the numerical part, we used 4 existing embedding problems on a sphere to
demonstrate a variety of applications that the developed algorithm can be applied to.
The first two examples are from classical MDS and new features (wheel representation
for E1 and new clusters for E2) are revealed. For E3, despite the large noises in the
initial distance matrix, our method is remarkably able to recover the Earth radius and
to project accurate mapping of the 30 global cities on the sphere. The last example
is different from the others in that its inputs are the coordinates of known points
(rather than a distance matrix). Finding the best circle to fit those points requires
localization of its center and radius. A Procrustes procedure is described to help
finish the job. The resulting visualizations are very satisfactory for all the examples.
Since those examples are of small scale, our method took less than 1 second to find
the optimal embedding. Hence, we omitted reporting such information. In future,
we plan to investigate its application in machine learning on manifolds, which would
involve large data sets as well as higher dimensional embedding (r > 3).
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[38] E. Pȩkalaska and R.P.W. Duin The Dissimilarity Representation for Pattern Recognition:
Foundations and Application, Series in Machine Perception Artificial Intelligence 64,
World Scientific 2005.

28



[39] H.-D. Qi, A semismooth Newton method for the nearest Euclidean distance matrix problem,
SIAM J. Matrix Anal. Appl. 34 (2013), pp. 67–93.

[40] H.-D. Qi and D.F. Sun, A quadratically convergent Newton method for computing the nearest
correlation matrix, SIAM J. Matrix Anal. Appl. 28 (2006), pp. 360–385.

[41] H.-D. Qi and X.M. Yuan, Computing the nearest Euclidean distance matrix with low em-
bedding dimensions, Math. Program. 147 (2014), pp. 351–389.

[42] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Program. 58 (1993),
pp. 353–367.

[43] S.M. Robinson, Local structural of feasible sets in nonlinear programming, part III: Stability
and sensitivity, Math. Programming Stud. 30 (1987), pp. 45–66.

[44] S.M. Robinson, Constraint nondegeneracy in variational analysis, Math. Oper. Res. 28
(3003), 201–232.

[45] P. Schönemann, A generalized solution of the orthogonal procrustes problem, Psychometrika,
31 (1966), pp. 1-10.
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