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Abstract. A non-uniform AC electric field induces a motion in polarizable particles,
called dielectrophoresis. The force responsible for this motion is governed by the
dielectric properties both of the suspending medium and of the particles, as well as
the geometry of the field. The dielectrophoretic properties of sub-micrometre latex
spheres have been studied using micro-fabricated electrode structures. The
electric field geometry for electrodes used in the measurements has been solved
using numerical analysis. Measurements of the dielectrophoretic properties of the
spheres have been made over a range of medium conductivities and applied field
frequencies and strengths. Comparisons between the observed behaviour and that
expected from theory are presented.

1. Introduction

Dielectrophoresis (DEP) is the motion of polarizable
particles in non-uniform alternating electric fields and arises
from the interaction of the field and the induced dipole
[1]. It has become an important field of biotechnological
research and has been reviewed in detail [2–5].

The DEP force can be derived from the time-dependent
force equation

F (t) = (m(t) · ∇)E(t) (1)

whereE(t) is the time-dependent electric field andm(t)
is the dipole moment which, for a spherical particle, can be
expressed in a frequency-dependent form as

m(ω) = 4πεmr
3fCME (2)

whereω is the angular field frequency,r is the particle’s
radius andfCM is the Clausius–Mossotti factor given by

fCM =
ε∗p − ε∗m
ε∗p + 2ε∗m

(3)

where ε∗p and ε∗m are the complex permittivities of the
particle and the medium respectively. For a real dielectric,
the complex permittivity is

ε∗ = ε − j
σ

ω
(4)

where j = √−1, ε is the permittivity andσ is the
conductivity of the dielectric.

The DEP force is given by the real part of (1) and, in
time-averaged form, is

F (ω) = 2πεmr
3 Re(fCM)∇|Erms |2. (5)

From equation (5), it can be seen that the DEP force
depends on the term∇|Erms |2, (a factor related to the
geometry of the electric field) and on the real part of
fCM , the in-phase component of the particle’s effective
polarizability. The real part offCM is bounded by the limits
1 < Re(fCM) < − 1

2 and varies with the frequency of the
applied field and the complex permittivity of the medium.
Positive DEP occurs when Re(fCM) > 0, the force is
towards increasing field strength and the particles collect
at the electrode edges where the highest field strengths are
found. The converse of this is negative DEP, in which
the force is in the direction of decreasing field strength,
the particles being repelled from the electrode edges. The
frequency dependence offCM makes DEP a powerful
means of manipulating particles in solution.

Because dielectrophoresis is a non-invasive, non-
destructive technique, it has potential uses in a wide range
of biotechnological applications and, as recent publications
have shown, the separation and concentration of micro-
organisms and mammalian cells is possible [6–14]. Micro-
and nano-fabrication methods used in the semiconductor
industry allow small electrodes to be manufactured [15].
The high electric field strengths generated by such
electrodes have allowed DEP manipulation both of viruses
and of sub-micrometre latex spheres [16–21].

In this paper, the results of dielectrophoretic investiga-
tions of the behaviour of sub-micrometre latex spheres are
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Figure 1. A photograph of a polynomial electrode array
used for dielectrophoretic manipulation of latex spheres
taken with a light microscope (×40). The distance across
the centre between opposing electrode pairs is 6 µm and
the parallel gap between adjacent electrodes is 2 µm.

presented, together with analysis of the data in terms of
simple theoretical models.

2. Materials and methods

2.1. Electrodes

The ‘polynomial’ design, shown in figure 1, has been
described in the literature [22] and its properties studied
experimentally and theoretically [23]. This design produces
not only steep gradients at the high-field points but also
steep gradients directed towards a low-field ‘trap’ in the
centre. Particles can therefore be collected either by
positive or by negative DEP.

The electrode-manufacturing procedures and the exper-
imental equipment and methodology have been explained
in detail previously [18, 19]. The electrodes were manufac-
tured on glass microscope slides and consisted of 10 nm
titanium, 10 nm palladium and 100 nm gold. They were
made using standard photolithographic and electron-beam
lithographic techniques. For DEP studies of 557 and
282 nm diameter spheres, electrodes were fabricated with
a 6 µm gap between opposing electrode tips and a 2µm
gap between adjacent electrodes.

2.2. The electric-field analysis

Electric field plots, showing the three-dimensional variation
of the field strength around the electrodes, were calculated
using finite-element field-analysis software (Maxwell 3D,

Ansoft Corp, Pittsburgh, USA). The general operating
principle of the software is as follows: the solution space
is divided into a tetrahedral mesh and the potential is
calculated at each vertex and the mid-point of every side
from Poisson’s equation. The potential is approximated
by a low-order polynomial so that the electric field across
each tetrahedron can be calculated, with the accuracy of
the solution controlled by the number of elements in the
mesh. The software performs error analysis on the field
in each tetrahedron and then refines the mesh where the
error is greatest, increasing the number of elements until
the desired solution accuracy is reached.

The symmetry of the polynomial design used (shown
in figure 1) meant that only one electrode of the four
needed to be modelled in the calculation. An electrostatic
approximation was assumed and the surface of the electrode
was modelled as a Dirichlet boundary (electric field normal)
with a potential of 5 V. The electrode was modelled sitting
on the interface of two 20µm cubes, the upper cube
representing water and the lower cube consisting of glass
(the substrate). The boundary conditions of the sides of
the cubes were set to mirror the electrode to produce a full
solution. Typically, the number of elements in the final
solution was approximately 50 000.

2.3. Latex spheres

Latex spheres 282 and 557 nm in diameter were obtained
from Molecular Probes (Oregon, USA). The spheres were
carboxylate-modified with a net negative surface charge and
had been pre-loaded with a yellow–green fluorescent dye
which allowed single-particle observation by fluorescence
microscopy. For DEP experiments, the spheres were
centrifuged and washed three times in either 1 or 10 mM
potassium phosphate buffer at pH 7.2. They were then re-
suspended to a final concentration of 0.02% by volume for
the experiments.

A scanning electron micrograph of the 282 and of
the 557 nm diameter spheres is shown in figure 2. The
distribution in particle size was estimated from images
such as these and was found to be in accord with
the manufacturer’s specification of 282 nm± 2.6% and
557 nm±2%. The electrophoretic mobility of a suspension
of spheres was measured using a Coulter particle analyser
and a distribution in mobilities was observed for both
particle sizes. Using the Helmoltz–Smoluchowski equation
[24] and the Gouy–Chapman and Grahame theory of the
double layer [25], this spread of mobilities was translated
into a spread in the surface charge density [18]. The
surface charge density of the 557 nm spheres was given
by the manufacturer as−1.85 C m−2 and measured to
be −0.041± 0.006 C m−2† and that for the 282 nm
spheres was given as−0.0483 C m−2 and measured to
be−0.031± 0.006 C m−2; see table 1.

† The relatively large discrepancy between our measured values and the
manufacturer’s is due to the fact that they do not directly measure the
surface charge on the beads; the data are supplied to them and errors can
occur.
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Figure 2. Scanning electron microscope images of the two sizes of latex spheres used for DEP experiments. The 282 nm
diameter spheres are shown in (a) and the 557 nm ones in (b).

Table 1.

Sphere size (nm) 282 557
Surface charge density ρb (measured) (C m−2) −0.031± 0.006 −0.041± 0.006
Zeta potential (calculated, see text) (mV) 46.3± 5.7 −54.9± 4.1
Buffer concentration (mM) 10 1 10
Conductivity σb (S m−1) 0.17 0.0185 0.17
Debye length κ−1 (nm) 3.05 9.65 3.05
Measured crossover frequency (kHz) 70–200 150–300 20–250
Relaxation frequency (calculated)
Schwarz, equation (8) (kHz) 31 8 8
Lyklema et al , equation (9) (kHz) 146± 13 118± 8 43± 2.7

3. Results

3.1. The electric-field analysis

The electric-field distribution in the polynomial electrodes
was calculated for potential differences of 0.1, 1 and 10 V
between adjacent electrodes. Typical results for a potential
of 10 V are shown in figure 3. Figures 3(a)–(d) are plots
of the electric field magnitude, at heights of 0, 0.1, 1 and
5 µm above the electrode surface.

Figure 4 is a pseudo-three-dimensional plot ofE2, with
the data plotted in thex–y, x–z andy–z planes. Figure 4
has been drawn with the origin at the centre of the four
electrodes (see figure 1). From equation (5), it can be seen
that the DEP force is proportional to the gradient of the field
squared for a given particle; figure 4 represents the potential
energy for negative DEP in the centre of the polynomial
electrode array.

3.2. Dielectrophoresis

Spheres were suspended in a range of molarities of
potassium phosphate buffer at pH 7.2. The buffer
conductivities were measured using a Hewlett-Packard
bridge at 10 kHz to 10 MHz using a platinum-black
cell with a cell constant of 1 cm−1. The 1 mM buffer
had a conductivity of 0.018 S m−1 and the 10 mM one,
0.17 S m−1. The frequency of the applied field was varied
in the range 1 kHz to 20 MHz and the potential from
0.1 V peak–peak to 10 V peak–peak. The experiments
were observed by fluorescence microscopy and recorded
on S-VHS video.

It was observed that the dielectrophoretic properties
of the spheres varied with the applied frequency and
the medium conductivity. Figure 5(a) is a fluorescence
photograph showing 282 nm spheres responding under
positive dielectrophoresis and being attracted to the high-
field regions at the electrode edges. This photograph was
taken with an applied voltage of 4 V peak–peak at 100 kHz
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Figure 3. A plot of the electric-field distribution for the polynomial electrodes shown in figure 1, for an electrode potential of
10 V peak–peak. The plot shows the field magnitude in planar slices parallel to the electrodes at (a) 0 µm, (b) 0.1 µm,
(c) 1 µm and (d) 5 µm above the top of the electrode surface.

and the medium conductivity was 0.17 S m−1. Figure 5(b)
shows the 282 nm spheres trapped in the centre of the
electrode array by negative DEP in the same buffer. The
applied voltage was unchanged at 4 V peak–peak but the
applied frequency was increased to 1 MHz. It is clear from
these two photographs that the dielectrophoretic response
of the spheres varies with applied frequency at a constant
medium conductivity. Similar results were obtained in
the 0.018 S m−1 conductivity buffer and for the 557 nm
spheres.

Figure 6 shows the frequency ranges over which
positive DEP, or negative DEP and no movement were
observed for the particles. Figures 6(a) and (b) summarize
results for the 282 nm spheres in 1 and 10 mM potassium
phosphate buffer respectively and figures 6(c) and (d) show
summary results for the 557 nm spheres in the same buffer
concentrations. It can be seen from figure 6 that in general,
positive DEP occurs from the lowest frequencies measured
(10 kHz) up to a frequency in the range 100 kHz to
5 MHz depending on the experimental conditions. Negative
DEP was observed for frequencies above a crossover point
(up to approximately 20 MHz) which depended on the
medium conductivity and the particle size. For the 282 nm
spheres in 0.018 S m−1 buffer the crossover point was
well defined and found to cover the range 4–6 MHz.
However, for the higher conductivity buffer and also for
the 557 nm spheres, a spread in the crossover frequencies
was measured. At any given frequency within this region,
individual spheres were seen moving either to the low-
or to the high-field regions (positive and negative DEP
respectively). For the 557 nm spheres in 0.17 S m−1 buffer
this effect occurred over almost two decades of frequency,

(figure (d)).

4. Discussion

The field plot in figure 3 shows that there was a
deep potential minimum in the centre of the polynomial
electrodes where the electric field varied from zero at the
centre to in excess of 5× 106 V m−1 at the electrode
edges. Figure 4 shows that the square of the electric field,
E2, increased rapidly near the edges of the electrodes and
consequently the gradient ofE2 acted to trap particles
in the potential energy minimum at the centre of the
electrode. These results are in qualitative agreement with
previous calculations for the dielectrophoretic potential in a
plane above the polynomial electrodes [26]. Figure 4 also
shows that, as the particles levitate above the surface, the
maximum trapping force decreases rapidly.

The experimental results (such as figure 5) are in
accordance with the electric field simulations. Under
conditions of positive DEP, the spheres collect at the
electrode edges, pearl chaining across the 2µm gap
(figure 5(a)). Negative-DEP trapping occurs as expected
in the centre of the electrodes (figure 5(b)).

The crossover frequency from positive to negative DEP
occurs when the real part of equation (3) equals zero. For
the 282 nm spheres in a buffer of conductivity 0.018 S m−1

this occurred at a frequency of 5± 1 MHz. Taking the
permittivity of latex to beεp = 2.5, the conductance
of the particle can be estimated from equation (3) to be
0.0185 S m−1. The conductivity of a particle can be
written as the sum of a bulk conductance (σb) and a surface
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Figure 4. A representation of the DEP force which gives rise to the trap in the centre of the electrodes. Taking the origin at
the centre of the electrodes (in 3D), E2 was plotted in the x–y, x–z and y–z planes. The DEP force is proportional to the
gradient of this plot and in the planes shown there is no normal component to the force vector. The plot therefore represents
a complete solution for the force in the planes and shows the variation of the force with the height above the electrodes as
well as with the distance from the centre.

conductance (κs) [27, 28]. Therefore, the total conductivity
σp can be written

σp = σb + 2κs
a

(6)

wherea is the radius of the particle. For the latex spheres
σb ∼= 0, so that, from our data for the 282 nm spheres, the
surface conductance can be estimated to be 1.3 nS, a value
which is in general agreement with literature data on latex
spheres of larger sizes [29].

For a single homogeneous solid dielectric sphere
immersed in a conducting medium the dielectrophoretic
properties are generally attributed to a single dielectric
relaxation due to Maxwell–Wagner interfacial polarization,
known as theβ-relaxation [30]. The frequency of this
dispersion is given by

τβ = 1

2πfβ
= εp + 2εm
σp + 2σm

. (7)

Owing to the relatively small forces imparted on sub-
micrometre spheres our observations of the positive and
negative DEP regimes were obtained with approximately
equal forces either side of the crossover point. Generally,
the crossover frequency for a relaxation due to interfacial

polarization occurs within half a decade or so of the
frequency calculated from equation (7). Therefore, the
measured crossover frequencies which are close to those
predicted by equation (7) can be attributed to the Maxwell–
Wagner relaxation frequency.

For the 282 nm spheres in the low-conductivity buffer,
the Maxwell–Wagner relaxation frequency was calculated
to befβ = 6.5 MHz, which is very close to the observed
crossover frequency of 5 MHz. For the solution of higher
conductivity (0.17 S m−1) fβ = 42.3 MHz (calculated),
compared with an observed crossover frequency in the
range 0.07 to 0.2 MHz. Assuming a surface conductance of
1 nS, then calculations for the Maxwell–Wagner relaxation
frequency for the 557 nm spheres give similar frequencies,
whereas measured crossover frequencies are at least two
decades lower, see table 1.

Dielectric measurements for suspensions of charged
latex spheres [31, 32] indicate the existence of two
dispersions. The high-frequency dispersion is generally
assigned to the Maxwell–Wagner interfacial polarization
mechanism and the second dispersion, which occurs at a
lower frequency, has been interpreted as a relaxation of the
electrical double layer associated with the surface charge
of the sphere. From the early work of Schwarz [28], the
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(a)

(b)

Figure 5. Digitized video images of fluorescently loaded
282 nm diameter latex spheres observed with a
fluorescence microscope: (a) spheres trapped by positive
DEP at 100 kHz and an applied voltage of 4 V peak–peak
and (b) spheres undergoing negative DEP and remaining
trapped in a potential energy minimum at the centre of
electrode array; the frequency in this case was 1 MHz and
the applied voltage 4 V peak–peak. The suspending buffer
was 10 mM potassium phosphate, of conductivity
0.17 S m−1.

relaxation time for this dispersion is given as

τα = a2

2D
(8)

where a is the particle radius andD is the diffusion
coefficient of the ions in the electrical double layer.
Lyklema, Duhkin and Shilov introduced a comprehensive
theory [33–35] to account for the low-frequency relaxation
of the double layer, involving either polarization of the
diffuse component or polarization of the bound layer of
charge. In the latter case the equation for the relaxation
time is similar to that of Schwarz but modified to include
a factor, M, which takes into account the contribution
from the polarization of the bound layer of charge. The

characteristic relaxation frequency for this dispersion is then

τα = a2

2Db

1

M
(9)

with Db the diffusion coefficient of the bound counterions
andM defined as

M = 1+ Fρb

RT Cd
. (10)

The differential capacitance of the double layer is given by

Cd = ε0εrκ cosh

(
F8d

2RT

)
. (11)

κ is the reciprocal Debye length,ρb the bound surface
charge density,8d the zeta potential and other symbols
have their usual meaning.

On the basis of our measurements for the 1 mM buffer,
M ≈ 14.8 (282 nm spheres) and for the 10 mM buffer,
M ≈ 4.7, (282 nm spheres) andM ≈ 5.3 (557 nm spheres).
It is likely that the bound ion diffusion constant and the
permittivity of the medium will have values less than the
bulk values. As an approximation, using the bulk values for
medium permittivity together with the value of the diffusion
constant of free potassium ions (D = 1.94×10−9 m2 s−1),
the frequencies predicted by this equation were calculated
and are given in table 1. These calculations point to
the fact that the measured crossover frequencies for the
282 nm spheres in 10 mM potassium phosphate buffer and
the 557 nm spheres in both buffer concentrations must be
attributable to the dispersion of the electrical double layer
rather than to interfacial polarization mechanisms.

The large overlap in crossover frequencies in figure 6
can be attributed to a number of factors such as the
distribution in surface charge on the particles and a spread
in particle diameter. However, the spread in sphere
diameters is typically±2% around the mean, which gives
an uncertainty of 3–4% in the frequencies. This may
add to, but cannot account for, the observed distribution
in crossover frequencies. The origin of the distribution
is likely to be a wide spread in surface charge density
on individual spheres. The±10% spread in calculated
relaxation frequencies shown in table 1 was derived from
the width at half height of a near-Gaussian distribution
in measured surface charge density. Such a variation has
been exploited to perform separation of a mixture of nano-
particles with a range of surface charge into two populations
[18].

The movement of particles in the electrodes is affected
by a number of forces apart from DEP. The high electric
fields used in the experiments would be expected to cause
localized heating of the sample [20]. This effect is governed
by the electrohydrodynamic equations which describe not
only the thermally driven but also the electrically driven
convective liquid streaming [36]. Convection due to
heating forms cylindrical vortices over electrode edges
and several other effects are observed which occur at
frequencies which change with particle size. At certain
frequencies, electroconvection completely dominates the
particle behaviour. A typical example of particle flow under
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(a) 282 nm spheres in 1 mM potassium phosphate (b) 282 nm spheres in 10 mM potassium phosphate

Figure 6. The frequency ranges over which positive and negative DEP are observed for the latex spheres. (a) 282 nm
spheres in 1 mM potassium phosphate: for each particle concentration there is a frequency range around 5 MHz where
neither positive nor negative DEP is observed. (b) 282 nm spheres in 10 mM potassium phosphate: for each particle
concentration there is a range around 200 kHz where both positive and negative DEP are observed. (c) 557 nm spheres in
1 mM potassium phosphate: there is a frequency range around 200 kHz with both positive and negative DEP. (d) 557 nm
spheres in 10 mM potassium phosphate: there is a frequency range around 100 kHz with both positive and negative DEP.

Figure 7. A digitized video image of convection in the
polynomial electrodes. The formation of plumes down the
symmetry axes of the electrodes is noticeable, occurring
particularly at high applied potentials (8–10 V peak–peak).

this regime are the plumes shown in figure 7, which occur
in a low-frequency region where positive DEP is expected

but cannot be measured. These effects are both well defined
and repeatable and could be useful as an additional means
of manipulating particles in solution.

5. Conclusion

This paper has demonstrated the potential for dielec-
trophoretic characterization of sub-micrometre particles in
micrometre-scale electrode arrays. The initial experimental
results have been shown to match simple theoretical pre-
dictions qualitatively. The use of dielectrophoresis for sep-
aration, filtration and so on, as has been demonstrated on
much larger particles, may therefore be applicable to sub-
micrometre particles. This is of potential interest in areas
such as biotechnology for the non-invasive manipulation of
viruses and protein molecules.
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