The University of Southampton
University of Southampton Institutional Repository

Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results

Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results
Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results
A nonuniform electric field exerts a force on a polarizable particle through the Coulomb interaction with the electric dipole induced in the particle, resulting in a motion termed dielectrophoresis. The magnitude of the force depends on the dielectric properties of both the particle and the medium it is suspended in. As a result, measurement of the dielectrophoretic force provides information about the internal and surface dielectric properties of the particle. This paper presents the first detailed measurements of the dielectrophoretic response of submicrometer particles as a function of electrolyte composition and conductivity, applied field frequency, and particle size. Comparisons are made between the experimental results and the classical theory of the dielectrophoretic force derived from Maxwell-Wagner interfacial polarization. For particles of 557 nm diameter, good agreement is obtained between the experimental results and theory of interfacial polarization taking into account the effects of surface conductance. However, the results for smaller sizes of particle (93, 216, and 282 nm diameter) demonstrate that the theory does not adequately explain the dielectric or dielectrophoretic behavior of colloidal particles. The existence of a second low-frequency dispersion is also apparent in the data, attributable to the polarization of the double layer. The data were compared with a theoretical plot generated by modeling the dispersion in terms of a single Debye relaxation.
1520-6106
Green, Nicolas G
d9b47269-c426-41fd-a41d-5f4579faa581
Morgan, Hywel
de00d59f-a5a2-48c4-a99a-1d5dd7854174
Green, Nicolas G
d9b47269-c426-41fd-a41d-5f4579faa581
Morgan, Hywel
de00d59f-a5a2-48c4-a99a-1d5dd7854174

Green, Nicolas G and Morgan, Hywel (1999) Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results. The Journal of Physical Chemistry B, 103 (1). (doi:10.1021/jp9829849).

Record type: Article

Abstract

A nonuniform electric field exerts a force on a polarizable particle through the Coulomb interaction with the electric dipole induced in the particle, resulting in a motion termed dielectrophoresis. The magnitude of the force depends on the dielectric properties of both the particle and the medium it is suspended in. As a result, measurement of the dielectrophoretic force provides information about the internal and surface dielectric properties of the particle. This paper presents the first detailed measurements of the dielectrophoretic response of submicrometer particles as a function of electrolyte composition and conductivity, applied field frequency, and particle size. Comparisons are made between the experimental results and the classical theory of the dielectrophoretic force derived from Maxwell-Wagner interfacial polarization. For particles of 557 nm diameter, good agreement is obtained between the experimental results and theory of interfacial polarization taking into account the effects of surface conductance. However, the results for smaller sizes of particle (93, 216, and 282 nm diameter) demonstrate that the theory does not adequately explain the dielectric or dielectrophoretic behavior of colloidal particles. The existence of a second low-frequency dispersion is also apparent in the data, attributable to the polarization of the double layer. The data were compared with a theoretical plot generated by modeling the dispersion in terms of a single Debye relaxation.

Text
J9_Green_Morgan_J_Physical_Chemistry_B_1999.pdf - Other
Restricted to Repository staff only
Request a copy

More information

Published date: 1999
Organisations: Electronics & Computer Science

Identifiers

Local EPrints ID: 372370
URI: http://eprints.soton.ac.uk/id/eprint/372370
ISSN: 1520-6106
PURE UUID: 9650394c-bed5-4a58-abc9-10b0f7aa2fb6
ORCID for Nicolas G Green: ORCID iD orcid.org/0000-0001-9230-4455
ORCID for Hywel Morgan: ORCID iD orcid.org/0000-0003-4850-5676

Catalogue record

Date deposited: 01 Dec 2014 17:38
Last modified: 15 Mar 2024 03:20

Export record

Altmetrics

Contributors

Author: Nicolas G Green ORCID iD
Author: Hywel Morgan ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×