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Abstract. This paper reports an improvement in dielectric and piezoelectric properties of 

screen-printed PZT/polymer films for flexible electronics applications using Cold Isostatic 

Pressing (CIP). The investigation involved half and fully cured PZT/polymer composite pastes 

with weight ratio of 12:1 to investigate the effect of the CIP process on the piezoelectric and 

dielectric properties. It was observed that the highest dielectric and piezoelectric properties are 

achieved at pressures of 5 and 10 MPa for half and fully cured films respectively. The relative 

dielectric constants were 300 and 245 measured at 1 kHz for the half and fully cured samples. 

Using unoptimised poling conditions, the initial d33 values were 30 and 35 pC/N for the half 

and fully cured films, respectively. The fully cured sample was then poled using optimized 

conditions and demonstrated a d33 of approximately 44 pC/N which is an increase of 7% 

compared with non-CIP processed materials.   

1. Introduction 

Many researchers exploit the piezoelectric effect in energy harvesting, sensing and actuating 

applications. Piezoelectric materials can be used in energy harvesting and sensing by applying a 

mechanical force (e.g. squashing or compression) to the material which produces a charge and voltage 

across the material (i.e. the direct effect). It can be also exploited inversely in actuating systems by 

applying a voltage across the material which results in a change in its geometry (i.e. the inverse 

effect).  

Piezoelectric materials can be found in four forms: single crystal materials, ceramics, polymers and 

composites. Ceramic piezoelectric materials (e.g. lead zirconate titanate PZT, Barium titanate BeTiO3) 

are brittle but offer high d33 (350-560 pC/N) and high dielectric constants (2900). Piezoelectric 

polymers such as PVDF provide relatively low d33 (20-30 pC/N) [1], low dielectric constants (~ 8 at 

1kHz) [2] but they have good mechanical flexibility. Relatively high d33, ɛr  and mechanical flexibility 

can be provided by piezoelectric composite materials which are a mixture of piezoelectric ceramic 

powders and a polymer matrix. The polymer used can itself be piezoelectric [3] or alternatively 

standard  non-piezoelectric materials can be employed [4, 5]. Using piezoelectric polymers such as 

PVDF can be problematic since it has positive piezoelectric coefficients and if mixed with PZT (which 

has negative coefficients) can reduce the overall d33 of the composite material [3]. Using piezoelectric 

composites instead of piezoelectric polymers gives the advantage of producing a material with a 

higher piezoelectric coefficient d33 and dielectric constant ɛr values [4, 5], improved electromechanical 

coupling coefficient [6] and greater opportunity for use in mass production because of the lower price 

of its ingredients compared to PVDF and its copolymers counterparts. However, piezoelectric 



 
 
 
 
 
 

composites suffer from porosity and air voids that affect its dielectric and piezoelectric properties. 

This porosity increases when increasing the weight percentages of the ceramic phase above 50% [7]. It 

occurs during the curing and evaporation of the solvent phase in the composite after printing as the 

solvent is only dissolved in the polymer phase. During evaporation, the solvent leaves pores in the 

polymer which then become filled with air. 

Thick film deposition such as screen-printing can produce films with typical thickness between 1-

100 µm [8]. However, some other reviews state that this range can be shifted to higher thicknesses 10-

200 µm [9]. The use of screen-printing can offer mass production, simplicity and a high range of 

ceramic loadings in the composite (e.g. < 90%).  

Applying high pressure to the printed film can densify the material and reduce the number and size 

of the air voids. Cold Isostatic Pressing (CIP) is a technique that applies a homogenous and 

continuous (i.e. depending on the holding time) force across the surface of the material at room 

temperature. CIP can also be used to process complicated shapes and structures without deformation 

[10]. 

 This paper presents an evaluation of the effect of CIP on screen-printed composite PZT/polymer 

films by measuring the effect it has on the mechanical, dielectric and piezoelectric properties of the 

printed material. 

 

2. Experimental 

2.1. Paste Formulation and Screen-printing  

The 0-3 type PZT/polymer composite material consists of three constituents, PZT-5H powder, 

thermoplastic polymer and solvent. The PZT powder was a mixture of 2 µm (Pz29, Ferroperm 

Piezoceramics) and 0.8 µm (Pzt-S-55, Sunnytec) particles with a weight ratio of 4:1. The 

thermoplastic polymer was dissolved in a solvent to convert it from a solid to liquid phase. Then, the 

PZT and the polymer were blended together with a weight ratio of 12:1. A triple roll mill was 

employed to disperse the PZT particles inside the polymer producing a homogeneous paste. This 

provides a screen-printable paste without lumps that has consistent and repeatable mechanical 

piezoelectric and dielectric properties. The material was screen-printed using a DEK 248 screen-

printer between two electrodes on Kapton polyimide 300 HN substrate (75 µm thickness). This 

printing formed the capacitive structure shown in Figure 1. 

 

          
(a)                                                                                            (b) 

Figure 1: Printed capacitive structure. (a) Schematic of the capacitive structure. (b) Top view of the screen-

printed printed device 

2.2. Curing printed materials 

A silver-polymer paste (DuPont 5000) was used for printing the bottom and top electrodes. The curing 

conditions of the composite films were governed by the curing requirements of the polymer matrix. 

The screen-printed materials were cured in a box oven. Bottom electrode was cured at 120 °C for 10 

min. The PZT/polymer composite and top electrode films were cured at 90 °C for 8 min. Although 

both the top and bottom electrode are formed from the same material, the top electrode was cured at 

lower curing temperature so that it does not over-cure and affect the piezoelectric film, which might 

lead to a variation in the properties of the printed composite. 



 
 
 
 
 
 

2.3. Initial Dielectric and Piezoelectric Properties before CIP 

Poling ferroelectric materials such as PZT is an important phase to activate its piezoelectric behaviour. 

The poling process was conducted by applying an external electric field concurrently with elevated 

temperatures for a specific time. A variety of poling methods can activate the piezoelectric properties 

of the material. Direct contact poling method was used in this investigation. Electrodes offer a basic 

setup to ensure an even distributed electric filed across piezoelectric material. The applied electric 

field is given by E = V/d, where V, d and E are the applied voltage, the thickness of the piezoelectric 

material and external electric field applied. It was essential to take reference d33 and ɛr measurements 

in order to identify if CIP leads to any improvement in these properties. The d33 and dielectric constant 

measurements were performed using piezometer (PM35, PiezoTest) and Precision Impedance 

Analyser (WAYNE KERR, UK) respectively. The capacitances of the devices were obtained from the 

impedance analyser. Then, the dielectric constants were calculated with the aid of the following 

equation c = (A.ɛr.ɛ0)/d, where A is the area of the electrodes, ɛr is the relative permittivity or the 

dielectric constant of the material, ɛ0 is the permittivity of free space and d is the average thickness of 

the piezoelectric film. 

2.4. Cold Isostatic Pressing (CIP) Process 

The CIP process was performed using Cold Isostatic Pressing Machine (CIP-20TA, MTI Corporation) 

shown in Figure 2. The sample is placed in the cylindrical chamber that is filled with pressing medium 

as shown schematically in Figure 2a. The die is pushed by an external force through the hole from the 

top of the cylindrical chamber pressurizing the hydraulic fluid which then applies a homogenous 

pressure across the sample. The compression can be applied continuously for the duration of the 

holding time. 

      
(a)                                                      (b) 

Figure 2:  A schematic shows the CIP process (a). Actual CIP machine (b) 
 

3. Results and Discussion 

3.1. Dielectric Constants after Applying CIP 

After applying CIP on two devices at different pressures, 5 dielectric constant readings were taken for 

each device giving a total of 10 measurements at every pressure point. The overall dielectric constant 

of the half cured sample is greater than the fully cured ones because of incomplete evaporation of the 



 
 
 
 
 
 

solvent. Once the solvent is fully evaporated and voids are left (i.e. because of the poor cross linking 

of the polymer), these voids are filled with air and the dielectric constant is reduced.  Figure 3 shows 

that the dielectric constant increases to 300 and 245 with applied CIP pressures up to 5 and 10 MPa for 

the half and fully cured samples respectively. After 5 MPa, further increases in CIP pressure actually 

reduce the dielectric constant of the half cured sample whilst the fully cured sample remains fairly 

constant after 10 MPa.  

 
Figure 3: Effect of the applied pressure on the dielectric constant (at 1 kHz) for half and fully cured samples 

3.2. Piezoelectric Coefficient d33 after Applying CIP 

Two devices were used for every pressure point and five d33 measurements were taken for every 

device giving 10 measurements in total. Half cured samples were put in the oven for complete curing 

before the poling process. Similarly, the d33 values were improved by increasing the CIP on the 

samples reaching their maximum values 30 and 35 pC/N at pressures 5 and 10 MPa for the half cured 

and cured samples, respectively. Above these pressures, the CIP negatively affected the piezoelectric 

properties of the film for both the half cured and fully cured materials.  

 

 

 
Figure 4: Effect of the applied pressure on the d33 values for half and fully cured samples 

3.3. d33 Values at Optimum Poling Conditions 

CIP improved the piezoelectric properties of the cured samples by 6 and 7% for samples poled at with 

normal and optimum poling condition, respectively. Figure 5 shows the maximum d33 achieved is 44 

pC/N obtained at optimum poling conditions (E = 3.7 MV/m, T = 90 °C and t = 6 min). 



 
 
 
 
 
 

 
Figure 5: d33 values comparisons between PZT/polymer films with and without 10 MPa CIP at normal 

and optimum poling conditions 

 

4. Conclusion 

CIP process does improve the dielectric and piezoelectric properties of PZT/polymer films. This paper 

has confirmed this improvement but there is a limit to the pressure that should be applied (i.e. there is 

an optimum pressure that can be applied in order to maximise the properties of the material). After 

applying a CIP pressure of 10 MPa, the PZT/polymer film showed a maximum d33 of 44 pC/N with an 

increase of 7% compared to films without CIP. 
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