
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON
FACULTY OF ENGINEERING AND THE ENVIRONMENT

Engineering Sciences

Robust Automated Computational

Fluid Dynamics Analysis and Design

Optimisation of Rim Driven Thrusters

by

Aleksander J. Dubas

Thesis for the degree of Doctor of Philosophy

October 2014

ABSTRACT

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Doctor of Philosophy Engineering Sciences

ROBUST AUTOMATED COMPUTATIONAL FLUID DYNAMICS ANALYSIS

AND DESIGN OPTIMISATION OF RIM DRIVEN THRUSTERS

by Aleksander J Dubas

The rim driven thruster is a novel electromagnetic marine propulsion device that uses a

motor in its casing to drive a propeller by its rim. There are many interacting flow features

posing a number of challenges when it comes to simulating the device with computational

fluid dynamics. The primary concern is finding a suitable simulation method to capture

the flow behaviour accurately, though a secondary challenge is created by the complex

interactions creating a rugged design landscape that is difficult to optimise.

A steady-state simulation method has been developed and a verification and validation

process was conducted on a B4-70 standard series propeller as a baseline case. Results show

a great sensitivity to computational domain size below a radial distance of five propeller

diameters. The Re-Normalisation Group (RNG) k-ε and k-ω Shear Stress Transport (SST)

turbulence models were compared and the k-ω SST model was found to be the most robust

due to its better handling of separation that occurs at low propeller advance ratios.

To investigate the capture of rotor-stator interaction by the frozen rotor formulation

an unsteady simulation method was developed. The unsteady method was also verified

and validated, showing good agreement for a standard series propeller, and subsequently

applied to rim driven thruster simulations. The results show the frozen rotor formulation

does capture some variation and has reasonable agreement with thrust variation over one

rotation, but does not predict the variation in torque accurately and thus is considered

insufficient for rotor-stator interaction modelling.

While the capture of rotor-stator interaction is flawed in frozen rotors, if the stators

are omitted, the steady state simulation method is suitable for performance prediction.

Given the computational cost of full unsteady simulation, steady state was chosen for the

objective function calculation method for the design optimisation. A library of functions

was written to robustly automate the geometry creation, mesh generation, solution and

post-processing. An initial design study of the sensitivity of 13 parameters showed that the

most significant variables were pitch distribution, thickness distribution and hub diameter.

These were factored into a second design optimisation study of six parameters, using Kriging

for surrogate modelling, to produce an improved rim driven thruster design.

The improved design features a greater pitch at the tip exploiting the lack of tip-leakage

experienced with rim drive. A high sensitivity of the hydrofoil to Reynolds number was

discovered and exploited by increasing the blade thickness and pitch to make the blade

section produce more force over a greater area of the blade. The open water efficiency of

the improved design is 0.06 higher than the baseline design, showing the optimisation was

a success.

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Aims and Objectives . 14

1.3 Thesis Outline . 15

2 Propeller Design and Computational Fluid Dynamics Analysis 17

2.1 General Background . 17

2.1.1 Anatomy of The Propeller . 17

2.1.2 Non-Dimensional Parameters 19

2.1.3 The 100mm Rim Driven Thruster 20

2.2 Background to Computational Fluid Dynamics 22

2.2.1 Methods of Numerical Solutions 22

2.3 Reynolds Averaged Navier Stokes Equations Solutions 25

2.3.1 Turbulence Modelling . 26

2.3.2 k-ε Turbulence Model . 27

2.3.3 k-ω Turbulence Model . 28

2.3.4 RNG k-ε Turbulence Model 28

2.3.5 k-ω SST Turbulence Model 29

2.3.6 Turbulent Boundary Layers 30

2.3.7 Turbulent Intensity and Turbulent Viscosity Ratio 31

3 State of the Art in Design Optimisation and Numerical Analysis

of Propeller Performance 35

3.1 The State of the Art in Computational Fluid Dynamics of Hydraulic

Turbomachinery and Propulsors . 35

3.2 Turbulence Model Selection . 44

3.3 Ducted and Rim Driven Propulsors 45

3.4 Design Optimisation of Marine Propulsors 46

4 Computational Fluid Dynamics Methods 49

4.1 Geometry Creation . 51

3

4.1.1 Propeller Surface Visual Basic Macro 51

4.1.2 Automated Geometry Generation 51

4.2 Meshing for Steady State Simulations 54

4.2.1 Automated Mesh Generation 56

4.3 Steady State Solution Setup . 60

4.4 Automation of Steady State Solution 63

4.4.1 Simulation Case Setup . 64

4.5 Running The Simulation . 65

4.5.1 Automatically Running The Simulation From Python 66

4.6 Automated Post Processing . 67

4.7 Example: Steady State Simulation of Wageningen B4-70 67

4.8 Unsteady Simulation Method . 69

4.9 Unsteady Meshing . 69

4.9.1 Dynamic Meshing . 70

4.10 Unsteady Solution Set Up for OpenFOAM 71

4.11 Solving Unsteady Simulations . 73

5 Verification and Validation of Computational Fluid Dynamics 75

5.1 Steady Method Verification . 75

5.1.1 Boundary Distance Investigation 76

5.2 Steady Method Validation . 81

5.2.1 Convergence Problems at Low Advance Ratios 81

5.2.2 Bollard Pull Condition . 83

5.2.3 Summary . 84

5.3 Unsteady Method Verification and Validation 85

5.3.1 Numerical Start Up of Wageningen B4-70 Propeller 90

6 Results for Simulation of Rim Driven Thrusters 93

6.1 Preliminary Results for 70mm Rim Driven Thruster 93

6.1.1 Analysis of Preliminary 70mm Rim Driven Thruster Results 96

6.2 Raw Results for the 100mm Rim Driven Thruster 98

6.3 Analytical Annulus Models . 102

6.3.1 Radial Gap Models . 102

6.3.2 Axial Gap Models . 104

6.4 Results for 100mm Rim Driven Thruster Including Annulus Models 106

6.4.1 Annulus Analytical Modelling Summary 108

6.5 Computational Fluid Dynamics Simulation of the Annulus 108

6.6 Steady State Simulations Summary 109

6.6.1 Key Design Areas . 110

6.7 Unsteady Simulation Results . 110

4

6.7.1 Start Up of 100mm Rim Driven Thruster 111

6.7.2 Unsteady 100mm Rim Driven Thruster Results 112

6.7.3 Origins of the Unsteady Force Variations 117

7 Design Optimisation Study of the 100mm Rim Driven Thruster 121

7.1 Parameterisation and Parameter Selection 121

7.2 Surrogate Modelling . 132

7.2.1 Kriging . 132

7.2.2 Optimisation Strategy . 135

7.2.3 Surrogate Model Visualisation 136

7.2.4 Surrogate Modelling Validation 148

7.3 Results from Design Optimisation 153

7.3.1 Device Performance . 153

7.3.2 Blade Pressure Profiles . 158

7.3.3 Cavitation . 159

8 Conclusions 165

8.1 Conclusions . 165

8.2 Suggestions for Future Work . 168

A Propeller Blade Surface Co-ordinate Generating Program 177

B Stereolithographic Format Generation and Writing Program 193

C OpenFOAM Automation Functions 207

D Optimisation Functions 235

5

Declaration of Authorship

I, Aleksander J Dubas, declare that this thesis and the work presented in it are my

own and have been generated by me as the result of my own original research.

Thesis Title: Robust Automated Computational Fluid Dynamics Analysis

and Design Optimisation of Rim Driven Thrusters.

I confirm that:

• This work was done wholly or mainly while in canditature for a research degree

at this University;

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated;

• Where I have consulted the published work of others, this is always clearly

attributed;

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself;

• Either none of this work has been published before submission, or parts of this

work have been published as listed in the publications section.

Signed: ... Date:

7

Acknowledgements

I would like to thank my supervisors for their support in the production of this

work and their timely feedback on all that I have written throughout my canditature.

Secondly, this thesis would not have been possible without the support of my friends

and family through the highs and the lows of the last few years.

The help of TSL Technology Ltd in the generation of blade geometry and provi-

sion of geometry files and accompanying experimental data for existing rim driven

thrusters has been invaluable and is much appreciated. This work was supported by

an EPSRC Doctoral Training Centre grant (EP/G03690X/1). Finally I would like

to acknowledge the use of the IRIDIS High Performance Computing Facility, and

associated support services at the University of Southampton, in the completion of

this work.

9

List of Publications and

Presentations

Published Papers

• Dubas A J, Bressloff N W, Fangohr H, Sharkh S M - “Computational Fluid

Dynamics Simulation of a Rim Driven Thruster” in Proceedings of the Open

Source CFD International Conference, Paris, France, 2011

Submitted Papers

• Dubas A J, Bressloff N W, Sharkh S M - “Numerical Modelling of Rotor-

Stators Interaction in Rim Driven Thrusters” submitted to Ocean Engineering

Papers in Preparation

• Dubas A J, Bressloff N W, Sharkh S M - “Optimisation of Rim Drive Propellers

using Surrogate Modelling”

Presentations

• “Robust Automated Simulation of the Complex Flow Features in a Rim Driven

Thruster”, Poster at Student Conference on Complexity Sciences, Oxford, UK,

August 2013

• “Simulating the Complex Flow Features of a Rim Driven Thruster”, Poster

at 1st Postgraduate Conference in Engineering Sciences, Southampton, UK,

November 2012

• “Numerical Simulation of the Complex Flow Through Rim Driven Thrusters”,

Talk at European Fluid Mechanics Conference 9, Rome, Italy, September 2012

11

• “Simulating the Complex Flow Features of a Rim Driven Thruster”, Talk at

Student Conference on Complexity Sciences, Gloucester, UK, August 2012

• “Computational Fluid Dynamics Simulation of a Rim Driven Thruster”, Talk

at Open Source CFD International Conference, Paris, France, October 2011

• “Complexity in Computationally Simulating a Rim Driven Thruster”, Talk at

Student Conference on Complexity Sciences, Winchester, UK, August 2011

12

Chapter 1

Introduction

1.1 Motivation

Marine propulsion has been achieved through a large variety of different methods

since people first set sail on the sea, from the oars and sails of early mariners to

more recent ideas such as paddle wheels and the screw propeller. While the design of

the screw propeller could be originally attributed to Leonardo Da Vinci or perhaps

even to Archimedes, the technology as a method of marine propulsion was widely

adopted and developed in the 19th century as the design of engines to drive the

propellers also improved (Carlton, 2007).

Recent developments in marine propulsion and electrical machines have led to

the development of the rim driven thruster which is a propulsive device that is, as

the name implies, driven by the rim rather than the more conventional method of

a shaft (Sharkh et al., 2001). It is this device that has been chosen to be studied in

this project as there are some additional features to the device compared to a typical

propeller that add interest to the flow, and compose a different design environment

that has not yet been fully explored.

While there are similarities between rim drive devices and ducted propellers,

there are sufficient differences in the hydrodynamics that there are novel aspects

to the design space arising from the rim drive. In particular the presence of the

rim and its connection to the propeller blades change what is possible in the blade

design, both hydrodynamically and structurally. To the author’s best knowledge, a

surrogate modelling based design optimisation study of rim driven thrusters using

Reynolds-Averaged Navier-Stokes computational fluid dynamics has not previously

been conducted.

13

1.2 Aims and Objectives

The aims of this project are to optimise and improve upon the design of a rim driven

thruster and to gain a better understanding of the sources of hydrodynamic losses.

Insight into how different design parameters affect the performance of the device

is desired and the key design areas are to be highlighted. Due to the encapsulated

nature of a rim driven thruster, experimentally visualising and probing the flow

within is a physically challenging process. For this reason, computational methods

are instead employed in this project, with the additional benefit of being able to

rapidly and inexpensively evaluate changes without having to remanufacture proto-

types. However, computational methods are not without their pitfalls and a number

of potential difficulties in the modelling must be resolved, mitigated or avoided.

The performance derived from a propeller, and the inevitable losses, arise from

the interaction of a large number of flow features, each adding to the complexity

of the flow and rendering the task of its simulation more difficult. Viscous effects

and boundary layer development over the propeller are important to model as their

contribution is not insignificant, though a good first approximation can be obtained

using inviscid methods. The typical Reynolds numbers of propeller operating con-

ditions are moderate to high and consequently the flow is turbulent which then

requires either sufficient temporal and spatial resolution to simulate the turbulence

directly, or a model of the effects of the turbulence on the mean flow. At the larger

scales, there are tip and hub vortices which should not be neglected, as well as radial

pumping along the blade, which renders two dimensional approximations such as

blade element methods inaccurate. Some propellers operate at a scale and speed

at which a significant portion of the boundary layer on the blade is laminar and

thus accurate transition prediction is integral to a good solution, which is known to

be intrinsically difficult. The wake of upstream elements in the flow can impart a

non-uniform inflow to the propeller which can cause unsteady effects as the blades

rotate through the non-uniform wake. Finally, as the medium of operation is typi-

cally water, if the propeller is sufficiently loaded the local pressure in the flow field

can drop below the vapour pressure of the fluid causing it to change to the gaseous

phase, and then back to liquid again when the pressure recovers, in a phenomenon

known as cavitation. This adds further complexity to the computational simulation

of the flow as the transport of both liquid and gaseous phases must be included in

the model as well as the transition between them.

In addition to all these modelling challenges for an open water propeller, there

are additional features on a rim driven thruster that need consideration. There

is a ducting that houses the motor that drives the rim driven thruster, having a

hydrodynamic effect on the inflow to the propeller which is dependant on its own

contribution to thrust or drag. Also, there are stators that support the axle on which

14

the propeller rotates which can be located in a variety of configurations upstream

or downstream of the propeller that can cause either beneficial or detrimental in-

teractions with the rotor. Finally, the rim that forms the part of the motor drive

that is attached to the propeller tips can create interesting flow features, such as

Taylor-Couette vortices (Batten, 2002), between itself and the duct when it rotates.

Thus a significant effort is required to ensure that the computational simulations

output a result which is relevant to the real flow.

Once the computational method has been developed, if it is made robust and

automated, it enables the further use of the computational method in a iterative

design optimisation study. However, due to the time taken to evaluate a single

design, direct optimisation is not practicable, and a surrogate modelling approach is

used instead. In this particular case, Kriging is used as the surrogate model, which

uses radial basis functions to compose the response surface.

To summarise, the aims of improving and understanding the design of a rim

driven thruster can be achieved through satisfaction of the following objectives:

• Develop, verify and validate a computational method for simulating rim driven

thrusters.

• Use computational simulation results to identify key design regions.

• Automate the computational performance evaluation in a robust manner with

respect to different geometries.

• Optimise the design of a rim driven thruster using surrogate modelling.

• Visualise the response surface to gain insight into the significance of design

parameters.

With these completed, further knowledge of the design of rim driven thrusters will be

gained, leading to the improved efficiency of marine propulsors and the subsequent

reduction of environmental impact that improved efficiency brings.

1.3 Thesis Outline

This chapter, Chapter 1, begins by introducing the motivation to this work, the

aims it sets out to achieve and the deliverable objectives through which the aims

will be fulfilled. The next chapter, Chapter 2, gives a background of foundation

knowledge in the fields of propeller design and computational fluid dynamics, upon

which the following chapter, Chapter 3, builds upon to bring the reader up to date

with the state of the art and review the contemporary literature in the context of

this work.

15

The fourth chapter of this thesis details the methods employed to robustly eval-

uate and automate the computational fluid dynamics solutions. This includes all

stages from geometry creation, through meshing and solution setup, to post pro-

cessing the solution data for both steady state and unsteady simulation methods.

These methods are subsequently employed to verify and validate the simulation

model against a test case of a Wageningen B4-70 propeller in Chapter 5.

Application of the simulation method to rim driven thrusters is presented in

Chapter 6, first for a 70mm thruster and later a 100mm thruster. The results

from these simulations are used to yield insight into key design areas and highlight

flow features of interest in the rim driven thrusters while enabling a critique of the

methodology when applied to rim driven thrusters as opposed to the open water

propeller study in Chapter 5.

Moving forward with the insights gained from Chapter 6, Chapter 7 details a

design optimisation study undertaken on the 100mm rim driven thruster. Initially

parameterised into 13 parameters, this is subsequently reduced to six key parame-

ters, which are optimised to maximise open water efficiency using a Kriging surrogate

model searched by genetic algorithm. The optimised design is then compared to the

baseline to ascertain where the improvements originated.

Finally, the conclusion of this thesis is given in Chapter 8, with some proposals

for future work that may be undertaken to build upon the work presented herein.

16

Chapter 2

Propeller Design and

Computational Fluid Dynamics

Analysis

2.1 General Background

2.1.1 Anatomy of The Propeller

There are many parts to a propeller, which are often referred to in a variety of

different ways, thus the convention used in this report is outlined here. A propeller

typically consists of two main parts, the propeller hub and the propeller blade. The

hub is the central part of the propeller onto which the blades are mounted and has a

typical diameter of 15% to 20% of the overall diameter of the propeller. The blades

are mounted on to the hub; the end of the blade which is on the hub is the blade

root and the outer end is the blade tip.

A number of geometrical parameters must be specified to fully describe the

blades of a propeller. The first of these is the propeller diameter against which all

other dimensions of the blade are usually normalised. The non-dimensional distance

along the blade is given by x = r/R, where r is the radial position and R is the

propeller radius; half the diameter.

The propeller blade can be divided into hydrodynamic sections along its radial

length, over which the flow can be thought to pass over in a two-dimensional sense.

Although, in practice, radial pumping and vortical structures from the blade tip and

root add three-dimensional flow characteristics that invalidate this two-dimensional

simplification. The local angle of incidence to the flow of the blade sections is

dependent on the advance velocity, radial location and speed of rotation as well as

the installed angle, which is typically defined through a concept known as pitch.

The term pitch comes from the original design of the screw propeller, which was

17

(a) Normalised blade section at r/R = 0.2 (b) Normalised blade section at r/R = 0.9

Figure 2.1: Examples of blade sections from a Wageningen B series propeller.

based on the same principles as a screw, and refers to the distance that the screw

would travel in one full turn without slipping. Commonly, it is expressed non-

dimensionally as a pitch ratio, which is the ratio of the pitch to the diameter, with

typical values of pitch ratio ranging from 0.5 to 1.4 although higher pitch ratios are

used in some applications. While there are fixed, constant pitched propellers in use,

it is not uncommon for the pitch to vary with radial location along the blade or

for the entire pitch of the propeller to be changeable during operation to improve

efficiency where loads are variable.

As well as the local angle of incidence, the hydrodynamics of each blade section

are also affected by its size and shape, which are typically varying along the length

of the blade. The chord is the length of the blade section from the leading edge

to the trailing edge and is typically given by values normalised by the diameter

for each radial station. Similarly, the thickness of the blade section varies along

the blade and is normalised by the diameter. However, as thickness varies from

leading edge to trailing edge, it is only the maximum thickness that is usually given.

Thus the remainder of the profile of the blade sections must be defined, which can

be constant along the length of the blade but is usually varied. Typically, more

hydrodynamically streamlined sections (e.g. Figure 2.1a), such as NACA aerofoil

sections, are used at the root of the blade with the section progressing to a more

ogival shape (e.g. Figure 2.1b) towards the tip of the blade as cavitation becomes a

concern.

There are three commonly used methods for measuring the area of a propeller;

the simplest method is to measure the area of the disc swept by the propellers,

which can be found from the radius using Adisc = πr2. Similarly, if the propeller is

viewed from directly astern, the projected area of the propeller onto this plane can

be measured. This gives the projected area and can also be used to calculate the

18

blade area ratio, which is the ratio of the projected area to the disc area. Finally

there is the expanded area (AE), also called the developed area (AD), which is the

area that would be occupied if the propeller blades were flattened. The expanded

area ratio (EAR, also known as disc-area ratio, DAR) can then be calculated from

this as the ratio of the expanded area to the disc area.

It can be easily shown that the larger the diameter of a propeller, the greater the

propulsive efficiency. However often there are geometric constraints that limit the

diameter of a propeller that can be fitted, or the required torque, which also increases

with propeller diameter, cannot be delivered by the installed powerplant and gearbox

combination. To overcome the geometrical or torque delivery constraints, marine

propulsion engineers designed a method of increasing the effective diameter without

actually increasing the diameter. This is done by raking the propeller, adding slope

either forwards or backwards when viewed from the side, and the propeller rake is

conventionally defined as positive when backwards. In some applications, where it is

important to minimise noise or vibration, propellers are skewed, which can be seen

by a backwards sweeping of the blade contour when viewed along the rotational axis.

This allows each radial section of the blade to enter the water at different times and

thus have less synchronous pressure pulse effect when, for example, cutting across

the non-uniform wake of the hull.

2.1.2 Non-Dimensional Parameters

To evaluate the performance of a propulsive device in a manner that can be com-

pared to other devices of different sizes and operating conditions, non-dimensional

parameters are used to normalise performance against values it may depend upon.

For propellers there are four key non-dimensional parameters: thrust coefficient,

KT , torque coefficient, KQ, open water efficiency, ηo, and advance coefficient, J .

Also of importance is the relative effect of viscous and inertial forces in the flow

which is typically characterised by the Reynolds number Rn and also, if examining

the cavitation properties of a propeller, the cavitation number, σ0, is of interest

here. Thus the non-dimensional parameters for a propeller are as follows:

• Thrust Coefficient:

KT =
T

ρn2D4
(2.1)

where T is the thrust [N], ρ is the fluid density [kg/m3], n is the rotational

speed [revs/s] and D is the propeller diameter [m].

• Torque Coefficient:

KQ =
Q

ρn2D5
(2.2)

where Q is the torque [Nm].

19

• Open Water Efficiency:

ηO =
TVa

2πnQ
=
KT

KQ

J

2π
(2.3)

where Va is the advance velocity [m/s].

• Advance Coefficient:

J =
Va
nD

(2.4)

• Reynolds Number:

Rn =
ρnD2

µ
(2.5)

where µ is the dynamic viscosity [Ns/m2].

• Cavitation Number:

σ0 =
p0 − e
1
2ρn

2D2
(2.6)

where (p0 − e) is the local static pressure [N/m2]. Taken from the Bernoulli

relationship where p0 is the total pressure and e is the dynamic pressure.

2.1.3 The 100mm Rim Driven Thruster

The device that is the ultimate focus of this study is a novel electromagnetic device

developed at the University of Southampton (Sharkh et al., 2001) that drives the

propeller by its tips, rather than by the shaft, using a rim fixed to the propeller

tips and thus given the name ‘Rim Driven Thruster’. Preliminary results were

obtained using a 70mm thruster geometry but, due to insufficient experimental

data, the study subsequently switched focus to the 100mm IntegratedThruster™ as

produced and sold by TSL Technology Ltd, who have kindly provided geometrical

and experimental data for this study.

A picture of the rim driven thruster is shown in Figure 2.2 which shows its

similarities to a ducted propeller. While the ducting of the rim driven thruster is

essential to its operation as it houses the motor for the device, there are both ad-

vantages and disadvantages to ducting a propeller. The duct can be shaped such

that the inflow to the propeller is increased, which increases efficiency at low speeds,

although the additional drag from having a duct eventually leads to diminishing ef-

ficiency at higher speeds, thus the common application of ducted propellers is for

low speed and heavily loaded devices such as those on tug boats. Alternatively,

the duct can be shaped so as to reduce inflow speeds to the propeller, which will

consequently increase the local static pressure on the blades through the Bernoulli

effect, reducing the amount of cavitation but with a penalty to efficiency. Conse-

quently, a decelerating type of duct is typically only applied where noise reduction

20

is more important than efficiency, for example a military submarine propulsion sys-

tem. The advantages of driving a ducted propeller by the rim are that there is no

need for a driveshaft or gearbox which increases the compactness of the device and

also enables the rim driven thruster to be better suited to bi-directional operation.

Due to the bi-directional design of the IntegratedThruster™ the ducting does not

have as much impact on the performance as a Kort nozzle might (Carlton, 2007,

pp. 15–17), however there are unidirectional designs available with a preferrential

thrust direction, thus asymmetric ducts are also of interest for rim driven thrusters,

but not covered in the scope of this work.

The parts that make up a rim driven thruster can be seen in the cut-through

diagram in Figure 2.3. From the outside to the centreline of the diagram; first there

is the duct, or casing, that houses the motor and stator windings. Next is the rim,

which also forms part of the motor and this is attached to the tips of the blades.

There are stators attached to the duct, whose primary purpose is to hold the hub

and shaft bearings in place. Finally there is the shaft, which is solely for locating

the blades, rather than transmitting torque to the blades as it is in conventional

propellers. For convenience and contrast to the non-rotating components of the

device, the shaft, blades and rim are henceforth collectively referred to as the rotor.

To reduce vibration in the device it is typical to have a different number of stators

to blades, in the case of the 70mm and 100mm IntegratedThruster™ there are three

stators (as seen in Figure 2.2) and four blades.

21

2.2 Background to Computational Fluid Dynamics

To simulate the hydrodynamics of the rim driven thruster, this project proposes to

use computational fluid dynamics methods. While it could fill many books to detail

all the available methods, the most commonly used methods in marine propulsion

are summarised here and the chosen method for this project is described in more

detail.

2.2.1 Methods of Numerical Solutions

The complexity of fluid motion makes the governing equations difficult to solve using

traditional mathematical calculus, put eloquently by Leonhard Euler himself: “If it

is not permitted to us to penetrate to a complete knowledge concerning the motions

of fluids, it is not to mechanics, or to the insufficiency of the known principles of

motion, that we must attribute the cause. It is analysis itself which abandons us

here.” Indeed, to find the solution to all but a simplified subset of flows, numerical

methods must be employed. Numerical solution of differential equations pre-date

the advent of the modern computer although increasing computational power has

enabled quicker and higher fidelity solutions to equations for which few analytical

solutions are known.

Early attempts at computational fluid dynamics of propellers involved using sim-

plifications to make the problem tractable such as potential flow solutions which as-

sume that the flow is both inviscid and irrotational. When obtaining a potential flow

solution, there are two commonly employed methods of geometry description. The

first is to take many radial slices of the blade and compute a local two-dimensional

flow based on the inflow and rotational velocity of each slice and then integrate the

contribution from each slice along the blade. This method is known as the blade

element method and can be extended to include the effects of viscosity through us-

ing a viscous-inviscid interaction solver when computing the local two-dimensional

flow. However, blade element method has a major limitation in its lack of three-

dimensionality, as its formulation inherently does not account for any radial compo-

nents of the velocity field. However, blade element method can produce a reasonable

approximation when combined with momentum theory (Benini, 2004).

An alternative potential flow solution to the blade element method is to use full

three-dimensional panel methods (Kerwin et al., 1987; Hughes et al., 2000). This is

where the surface of the propeller is represented by a number of panels that consist

of potential flow elements, for example sources and doublets, and control points. A

linear problem is constructed by formulating a system of equations stating that the

sum of velocity contributions from each potential flow element must be tangential

to the surface at every control point. The system of equations is then solved to find

22

the strength of each potential flow element, allowing the velocity at any point in

the field to be calculated from the contributions from every flow element. While

this method is three-dimensional, it does not account for the effects of viscosity or

vorticity, both of which form a significant part of the flow around a propeller. The

importance of vortices in rotating devices has lead to recent development of meshless

vortex methods (Zhu et al., 2012), which can be combined with panel methods to

provide an efficient solution method that also captures the key vortical elements.

Both blade element and panel methods are numerical methods that fall into the

category of boundary element methods. These only require a mesh over the bound-

aries of interest (i.e. the blade surface) and thus are typically more computationally

efficient than finite volume methods but are limited in their ability to model com-

plex flow features. In contrast, finite element, finite difference and finite volume

methods require a meshing of the entire fluid volume and consequently the effects

of the far field boundaries must be taken into consideration. However, the meshing

of the entire fluid domain, provided it is sufficient in resolution, allows the capture

of more complex flow features by the solution. While both finite element and finite

difference methods are used in computational fluid dynamics, finite volume methods

are much more prevalent and widely used in many applications including popular

commercial computational fluid dynamics packages such as ANSYS FLUENT.

As a finite volume method can model vorticity and viscosity effects, it is neces-

sary to consider the effects of turbulence; whether the flow is at sufficient Reynolds

number to be turbulent and whether the mesh is sufficiently fine to capture all the

relevant scales of motion. Typically, propeller flows are turbulent but it is not prac-

ticable to resolve all the turbulent scales, thus it is common in computational fluid

dynamics to utilise some form of turbulence modelling. Perhaps the most prevalent

models are Reynolds-Averaged Navier-Stokes (RANS) models which only solve for

the mean flow and use a turbulence model to estimate the effects of the turbulent

fluctuations on the mean flow. RANS solutions are a good compromise between ac-

curacy and computational requirements and have consequently been chosen for the

design optimisation study in this project. The RANS equations are not a fully closed

system of equations by themselves and require a turbulence closure model to make

them complete. The selection of turbulence closure model can have a great impact

on accuracy, solution time and robustness and further details on RANS methods

can be found in Section 2.3 as well as a more in depth look at RANS turbulence

modelling in Section 2.3.1. It is worth clarifying that finite volume methods can

also be used to solve laminar, inviscid and irrotational flows.

With sufficient computational power, it is possible to resolve the larger turbulent

scales in the simulation and model the unresolvable smaller scales known as sub-grid

scales (SGS). This is done with Large Eddy Simulation (LES), which still requires

23

a turbulence model, however as the small unresolved scales are less energetic and

less specific to the flow, the results obtained with LES are typically more accurate

than those achieved with RANS. Solution times for LES are substantially longer

than those for RANS and results are inherently unsteady so time averaging is nec-

essary to find ‘steady-state’ solutions for variables such as thrust and torque. Large

eddy simulation does suffer from a requirement to have a very refined mesh near to

walls which increases computational cost significantly to achieve a good result. One

solution to this drawback is to use Detached Eddy Simulation (DES).

Detached eddy simulation is a hybrid method which exploits the advantages of

both LES and RANS. The main principal behind DES is to use a RANS turbulence

model in regions that are close to the walls and LES away from the walls. This

gives the method the cost benefits of using RANS in the wall region while retaining

the unsteady flow and resolved large eddies captured by LES. However the use of

DES in computational fluid dynamics simulations of marine propulsors is not as

widespread as that of RANS and LES methods.

To complete the spectrum of available methods in computational fluid dynamics,

it is necessary to mention Direct Numerical Simulation (DNS), where all the time

and length scales of turbulence are resolved. An idea of the order of magnitude of

simulation size can be gleaned from the fact that, for highly periodic homogeneous

flows, the required spatial resolution scales with R
9/4
n and the required temporal

resolution scales with R
3/4
n where Rn is the integral scale Reynolds number or ‘tur-

bulence’ Reynolds number and usually smaller than the large scale flow Reynolds

number. Thus the computational cost of direct numerical simulation becomes pro-

hibitively expensive even at moderate Reynolds numbers and it is certainly not

practicable as a method at the typical Reynolds numbers at which marine propul-

sors operate.

24

2.3 Reynolds Averaged Navier Stokes Equations Solu-

tions

The instantaneous velocity at a single point in a steady state turbulent flow can

effectively be viewed as a (pseudo-) random fluctuation, u′ about some mean velocity,

U . This forms the basis of the Reynolds decomposition which is the beginning of

the derivation of the Reynolds-Averaged Navier-Stokes equations. Similarly the

pressure can be decomposed into mean, p, and fluctuating, p′, parts. In the case of

compressible turbulent flows, the density is also decomposed in mean and fluctuating

parts, ρ and ρ′ respectively. However as all the flows considered in this thesis are

incompressible, the decomposition of density is omitted henceforth. Starting with

the Navier-Stokes equations (for incompressible fluids, that is density ρ = constant):

∂uj
∂xj

= 0 (2.7)

∂ui
∂t

+
∂ujui
∂xj

= −1

ρ

∂p

∂xi
+
∂τji
∂xj

+ fi (2.8)

τji = −2

3
ν
∂uk
∂xk

δij + ν

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.9)

where ui is the ith component of velocity, t is time, xi is the ith component of

displacement, ρ is the density, p is the pressure, τji is the viscous stress tensor,

fi is the ith component of the body force, ν is the kinematic viscosity and δij is

the Kronecker delta which evaluates to 1 if i = j and 0 in all other cases. These

equations undergo a Reynolds decomposition where the velocity is split into a mean

and a fluctuating part, ui = Ui + u′i leading to the following equations:

∂Uj
∂xj

+
∂u′j
∂xj

= 0 (2.10)

∂Ui
∂t

+
∂u′i
∂t

+
∂UjUi
∂xj

+
∂Uju

′
i

∂xj
+
∂u′jUi

∂xj
+
∂u′ju

′
i

∂xj
= −1

ρ

∂p

∂xi
− 1

ρ

∂p′

∂xi
+
∂τji
∂xj

+
∂τ ′ji
∂xj

+ fi

(2.11)

Following the decomposition, the equations are then time averaged, such that:

∂u′j
∂xj

,
∂Ui
∂t

,
∂u′i
∂t

,
∂Uju′i
∂xj

,
∂u′jUi

∂xj
,
∂p′

∂xj
.
∂τ ′ji
∂xj

= 0
∂UjUi
∂xj

=
∂UjUi
∂xj

(2.12)

This ultimately leads to the Reynolds-Averaged Navier-Stokes equations which are

much the same as the Navier-Stokes equations except the solution variables are now

25

mean (filtered) variables and there is an additional tensor term:

∂Uj
∂xj

= 0 (2.13)

∂UjUi
∂xj

= −1

ρ

∂p

∂xi
+
∂τji
∂xj

+ fi −
u′ju
′
i

∂xj
(2.14)

While the Reynolds stress tensor, u′ju
′
i, originates from the advective term on the

left hand side of the equation it is often treated as a source term and placed on the

right hand side as it effectively represents the effect of the turbulence on the mean

flow.

As there are now extra solution variables with no extra equations, the system

of equations is no longer closed. Therefore to solve these equations, additional

equations must be found for the Reynolds stress tensor, for which there are two

predominant classifications. There are those which are based on the Boussinesq

approximation which utilises the concept of eddy viscosity:

−u′iu′j = νt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3

(
k + νt

∂Uk
∂xk

)
δij (2.15)

which requires some method of determining the scalar eddy viscosity, νt, and the

turbulent kinetic energy, k = 1
2u
′
iu
′
i. The most common method for determining k

and νt is to solve additional transport equations for k and another variable that can

be used to obtain an eddy viscosity, although other methods such as algebraic and

one-equation models are also available, or indeed the assumption of a constant eddy

viscosity in ocean current simulations. The Boussinesq models used in this work are

discussed in further details in Section 2.3.1.

Alternative to turbulence models based on the Boussinesq approximation are

Reynolds Stress Models (RSM) which explicitly solve transport equations for each

of the six components of the Reynolds stress tensor. This leads to a minimum of

six additional equations to solve, which is significantly more expensive in computa-

tional resources, and the transport equations for the Reynolds stresses also include

triple products of the fluctuating part of the velocity, u′iu
′
ju
′
k, thus still requiring a

turbulence model to close the system of equations.

2.3.1 Turbulence Modelling

There are a large number of turbulence models for Reynolds-Averaged Navier-Stokes

closure available to the computational fluid dynamics practitioner (Wilcox, 1994).

However, as each model is not a perfect representation of turbulence and there are a

large variety of flows that could be simulated, each model is stronger at simulating

and predicting some flow features than others. One analogy that describes the

26

situation of the turbulence model is that of a fitted sheet that is too small for the

mattress; it is impossible to cover the entire mattress with the sheet and therefore

it must be used to cover the corner that is most likely to be used. For simulating

the flow around a rim driven thruster, it is suggested that either the k-ε or k-

ω families of turbulence model are best (see Section 3.2) and the basic principles

of each are outlined in Section 2.3.2 and Section 2.3.3 respectively. The selected

turbulence models of RNG k-ε and k-ω SST are also detailed in Sections 2.3.4 and

2.3.5 respectively.

2.3.2 k-ε Turbulence Model

Though there are many k-ε turbulence models, the ‘standard’ model has come to

be accepted as the one proposed by Launder and Sharma (1974). The k-ε family

of turbulence models is based on solving two additional transport equations for the

turbulent kinetic energy, k, and the turbulent kinetic energy dissipation rate, ε,

and determining the turbulent eddy viscosity, νt, using these two variables. The

turbulent kinetic energy transport equation for steady state incompressible flow is

as follows:
∂kUj
∂xj

=
∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+ Pk − ε (2.16)

where σk is a calibration constant and Pk, the production of turbulent kinetic energy,

is given by:

Pk = 2νtS
2
ij (2.17)

where Sij is the mean rate of strain tensor:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.18)

Similarly the transport equation for the turbulent kinetic energy dissipation rate, ε,

is as follows:
∂εUj
∂xj

=
∂

∂xj

[(
ν +

νt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
Pk − C2ε

ε2

k
(2.19)

Finally complete closure of the system of equations is achieved by relating the

scalar eddy viscosity to k and ε:

νt = Cµ
k2

ε
(2.20)

There are a number of calibration constants for this model and while these vary

between applications, typical values are given here:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3

27

2.3.3 k-ω Turbulence Model

The first two equation model of turbulence was a k-ω turbulence model proposed

by Kolmogorov (1942), however, this model was flawed and after many years and

much development, the accepted ‘standard’ k-ω model came to be the one proposed

by Wilcox (1988). Similar to the k-ε models, the k-ω family of turbulence models

solve a transport equation for turbulent kinetic energy, k, but differ in the choice

of second variable, which is ω, the specific turbulent kinetic energy dissipation rate

(i.e. the dissipation per unit turbulent kinetic energy ω = ε/k). With this difference,

the turbulent kinetic energy transport equation becomes:

∂kUj
∂xj

=
∂

∂xj

[
(ν + σ1νt)

∂k

∂xj

]
+ Pk − β1kω (2.21)

where the production of turbulent kinetic energy, Pk, is given by:

Pk = τij
∂Ui
∂xj

(2.22)

Similarly the transport equation for the specific turbulent kinetic energy dissipation

rate, ω, is:
∂ωUj
∂xj

=
∂

∂xj

[
(ν + σ2νt)

∂ω

∂xj

]
+ α

ω

k
Pk − β2ω2 (2.23)

Finally to close the system of equation, again a relationship between k, ω and νt is

provided:

νt =
k

ω
(2.24)

Similar to the closure for the k-ε models, calibration coefficients for k-ω vary between

applications but typical values are as follow:

α =
5

9
, β1 =

9

100
, β2 =

3

40
, σ1 =

1

2
, σ2 =

1

2

2.3.4 RNG k-ε Turbulence Model

From the models detailed above, the two models used in this report have been

developed; the Re-Normalisation Group (RNG) k-ε model which is outlined in this

section and the k-ω Shear Stress Transport model which is outlined in Section 2.3.5.

The RNG k-ε model is identical to the standard k-ε model in Section 2.3.2 except

that C2ε is replaced with C∗2ε which is defined as:

C∗2ε = C2ε +
Cµη

3(1− η/η0)
1 + βη3

(2.25)

28

where η = Sk/ε and S = (2SijSij)
1/2, with the calibration coefficients adjusted as

follows:

C1ε = 1.42, C2ε = 1.68, Cµ = 0.0845,

σk = 0.7194, σε = 0.7194, η0 = 4.38, β = 0.012

to complete the RNG k-ε model.

The RNG k-ε model was developed by Yakhot et al. (1992) to account for tur-

bulent diffusion at all scales of motion rather than the single length scale based

turbulent diffusion in the standard k-ε model. It is reported that the RNG k-ε

model is best suited to rotating flows, thus it is likely to be good for modelling

flows of marine propulsors, although it is typically most favoured for indoor air

simulations.

2.3.5 k-ω SST Turbulence Model

The k-ω SST (Shear Stress Transport) Model has many similarities to the standard

k-ω but features some minimisations and maximisations to combine the best of k-ω

and k-ε turbulence models. The transport equation for the turbulent kinetic energy

in this case is:
∂kUj
∂xj

=
∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
+ Pk − β∗kω (2.26)

which from the outset looks identical to the standard k-ω model, but differs as the

production of turbulent kinetic energy Pk is defined by:

Pk = min

(
τij
∂Ui
∂xj

, 10β∗kω

)
(2.27)

The transport equation for the specific turbulent kinetic energy dissipation rate, ω,

differs further from the standard k-ω model:

∂ωUj
∂xj

=
∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ αS2 − βω2 + 2(1− F1)σω2

1

ω

k

xi

ω

xi
(2.28)

From k and ω, the turbulence viscosity can be calculated using the following relation:

νt =
α1k

max(α1ω, SF2)
(2.29)

Finally the remaining undefined terms are calculated from the following auxiliary

relations, calculating the unsubscripted coefficients from Equation 2.34:

F1 = tanh


{

min

[
max

(√
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

]}4
 (2.30)

29

CDkω = max

(
2ρσω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)
(2.31)

F2 = tanh

[max

(
2
√
k

β∗ωy
,
500ν

y2ω

)]2 (2.32)

S =
√

2 |symm(∇U)| (2.33)

Similar to the closure for the k-ω model, calibration coefficients for k-ω SST vary

between applications but typical values are as follow:

α1 =
5

9
, α2 = 0.44, β1 =

3

40
, β2 = 0.0828, β∗ =

9

100

σk1 = 0.85, σk2 = 1, σω1 = 0.5, σω2 = 0.856

Where a coefficient is unsubscripted, it is found from the following relationship:

φ = φ1F1 + φ2(1− F1) (2.34)

which finally completes the model.

The SST formulation of the k-ω model is designed to combine the strengths of

both k-ω and k-ε models. It uses a k-ω formulation in the boundary layer and is

applicable all the way to the wall without the addition of damping functions and

in the freestream it switches to a k-ε behaviour to counteract the common k-ω

feature of the model being too sensitive to freestream turbulence properties. The

k-ω SST is often reported as being a good model for adverse pressure gradients and

separating flows and that is its primary reason for being chosen for this investigation

(see Section 5.2.1).

2.3.6 Turbulent Boundary Layers

An important consideration when modelling turbulent boundary layers is the mesh

resolution and the near-wall treatment of the chosen turbulence model. The reason-

ing behind this can be found by examining the structure of a turbulent boundary

layer, which can be divided into two distinct layers, the inner and outer layer. When

velocity and distance are normalised into wall units, u+ and y+ respectively, the in-

ner layer is assumed to have the same velocity profile in every turbulent boundary

layer. The wall units are defined as:

u+ =
u

uτ
, y+ =

yuτ
ν

(2.35)

30

where y is the distance away from the wall and uτ is the friction velocity given by:

uτ =

√
τw
ρ

(2.36)

The inner layer of the turbulent boundary layer can be subdivided into three

sublayers. First, closest to the wall, is the viscous sublayer where turbulent eddies

are limited in size by their proximity to the wall. The viscous sublayer extends of

the region of 0 ≤ y+ ≤ 5 and the velocity profile is given by:

u+ = y+ (2.37)

Following the viscous sublayer is a buffer region where the velocity profile un-

dergoes a transition from the viscous sublayer to the third and final sublayer within

the inner layer known as the log-law region. The log-law region extends from ap-

proximately y+ = 30 to the end of the inner layer (the size of which varies) and

within this region, under the present assumptions, the velocity profile follows the

relationship after which it is named, the log-law of the wall:

u+ =
1

κ
ln y+ +A (2.38)

where κ is Karman’s constant whose value is the topic of much debate but is typically

reported to lie in the region 0.38 ≤ κ ≤ 0.43 and in engineering is most commonly

taken as 0.41. Similarly A is not definitely determined, however a typical value is

approximately 5.5. After the log-law region is the outer layer, which depends fully

on the external flow.

There are two different types of wall treatments for turbulence models, typically

referred to as low and high Reynolds number wall treatments. When the Reynolds

number is low, it is more computationally affordable to resolve the entire turbulent

boundary layer, thus low Reynolds number wall treatments are designed to have the

distance of the first grid point away from the wall, y+1 , within the viscous sublayer

and ideally y+1 ≤ 1. Conversely, high Reynolds number wall treatments are designed

to model the viscous sublayer and buffer region and begin resolving in the log-law

region. In this case, good values of y+1 are typically in the region of 30 ≤ y+1 ≤ 50.

2.3.7 Turbulent Intensity and Turbulent Viscosity Ratio

Where there is background turbulence, a turbulent inflow or other initially turbulent

flow, there is need to calculate the turbulence quantities (k, ω, ε or otherwise) from

some model independent value. A few concepts exist in this area but this work solely

uses the turbulent intensity and viscosity ratio which are detailed in this Section.

The turbulent intensity is a measure of the level of turbulent velocity fluctua-

31

tion. It is expressed as the ratio of the root-mean-square of the turbulent velocity

fluctuations, u′, to the mean velocity, U , as follows:

I =
u′

U

The turbulent intensity, I, can be equated to the turbulent kinetic energy through

the equation below:

u′ =

√
2

3
k

and thus for a given turbulent intensity, the value of k can be found with Equation

(2.39).

k =
3

2
u′2 =

3

2
(IU)2 (2.39)

Typical values for the turbulent intensity very depending on the flow and certain

simulations can be very sensitive to its value. As a rough guide, values less that 1%

are considered low levels of turbulence, 5% is a medium level of turbulence and up

to 20% is a high level. It is rare for inlet turbulent intensity to be higher than 20%,

although this may be exceeded in some flow regions away from the inlet. Due to

the rotating machinery and typical operating environment of rim driven thrusters,

a turbulent intensity of 10% is used throughout this work.

To finish defining the turbulence quantities, a second parameter needs to be

estimated, in this case the turbulent viscosity ratio is used. This is the ratio of the

effective turbulent viscosity, µt, to the fluid dynamic viscosity, µ. For this work,

the value to the ratio is estimated to be 0.1 or 10%, thus the value of ε or ω can

be calculated from rearranging Equations (2.20) and (2.24) into (2.40) and (2.41)

respectively.

ε = Cµ
k2

µt
= Cµ

k2

0.1µ
(2.40)

ω =
k

µt
=

k

0.1µ
(2.41)

This completes the necessary background to computational fluid dynamics and

RANS turbulence modelling.

32

Figure 2.2: Picture of the IntegratedThruster™ from TSL Technology Ltd.

Figure 2.3: Diagram detailing the anatomy of a rim driven thruster.

33

34

Chapter 3

State of the Art in Design

Optimisation and Numerical

Analysis of Propeller

Performance

In order to place the present work in the context of current research, the following

section outlines the techniques used and results of recent publications. So as to

not exclude potentially useful papers from the literature search, it is inclusive of

ducted and unducted propulsors as well as hydraulic turbomachinery such as pumps

and turbines. Although these machines may be designed for a different purpose,

they are very similar in terms of Computational Fluid Dynamics (CFD) simulation

methodology.

3.1 The State of the Art in Computational Fluid Dy-

namics of Hydraulic Turbomachinery and Propul-

sors

Using a computer to predict the performance of a device is not a recent idea. Caster

(1973) made predictions of ducted propellers using a combination of linearised duct

theory, Lerbs’ moderately loaded propeller theory, and Hough and Ordway’s ap-

proach to computing induced velocities. The interaction between the duct and

propeller flows was considered via a velocity coupling which was iterated until the

propeller inflow (induced and freestream) did not change. Despite this method ad-

mittedly neglecting centrifugal force, slipstream contraction and the influence of the

duct on the propeller wake, the agreement with experimental data was reasonable

35

and a gain in efficiency of 10% in the design condition was achieved.

More recently, Salvatore et al. (2009) presented a good overview of the state of

the art by comparing seven different computational models’ ability to predict cav-

itation on an INSEAN E779A propeller. The simulations compared by Salvatore

et al. comprised one Blade Element Method (BEM) code, five Reynolds-Averaged

Navier-Stokes (RANS) codes and one Large Eddy Simulation (LES) code. For non-

cavitating flows, all methods are found to produce results with 1.2% of the exper-

imental values, though it is worth noting that BEM suffered from underpredicting

the torque and that LES achieved the best results. When cavitation modelling is

introduced it is found that all methods overpredict the cavity extension and Salva-

tore et al. questioned the reliability of current CFD models’ prediction of dynamic

cavitation effects such as pressure fluctuations, noise and erosion. While LES was

shown to give the best results here, given the similar performance of simpler mod-

els, the computational expense of resolving the large turbulent eddies is perhaps not

justified.

Perhaps the most ubiquitous methods for propeller performance prediction are

those that can be classified as boundary element methods, not to be confused with

blade element methods, which is a subset of the former. Occasionally these are

referred to as mesh-free methods, but this is a slight misnomer as surfaces still need

to be ‘meshed’, though the fluid domain itself is not meshed which is where the name

arises. The prevalence and attraction of boundary element methods is their lower

solution times which enabled them to be computed when computational resources

were less abundant than today (Caster, 1973). More recently, Benini (2004) showed

the relevance and accurate performance prediction of blade element methods for light

and moderately loaded propellers. Also, even in current work, they are attractive

where the propeller is not the main focus of the research or when solution time needs

to be minimised for a design optimisation study.

For investigating the maximum efficiencies of various marine propulsors, Brock-

ett (2003) used an inviscid lifting-line representation of rotors coupled with a panel

method for hub and duct surfaces. Viscosity was accounted for by Brockett through

an empirical method, presumably to keep solution time down as a large number of

cases were investigated. Similarly, Pashias et al. (2003) used a three-dimensional

surface panel method to investigate design cases of a rim driven thruster with a rota-

tionally symmetric blade section designed using a two-dimensional viscous-inviscid

interaction solver (Drela, 1989). Despite the relative simplicity of the CFD method

employed, validation against an open water propeller showed good agreement and

an improvement of 5% in bollard pull efficiency over the initial design was reported.

Celik and Guner (2007) used a lifting line theory for the design of stators or guide

vanes and compared the results to RANS solutions. Though an improvement of 5%

36

to propulsive efficiency was reported with the addition of stators, the simulation did

not report any substantial verification or validation, which does not lend confidence

to the results.

By adding a user defined function into a commercial code, Phillips et al. (2008)

modelled the effect of a propeller as an actuator disc using blade element momen-

tum theory to extract the performance coefficients of the propeller. This allowed

Phillips et al. to investigate the flow over the body of an AUV (Autonomous Un-

derwater Vehicle) using RANS without devoting too much computational time to

calculating the propeller flow. Similarly, Choi et al. (2010) modelled a hull flow

using RANS with the propeller disc flow solved using a potential flow solver. Val-

idation against experimental data showed that this method had at most a 5.7%

error in resistance (drag) and Choi et al. concluded that there is scope to apply

computational methods at the initial hull-form design stage but enhanced accuracy

is desirable. It is possible that a more accurate result could be achieved if RANS

were also used to model the propeller, but this would be at the expense of longer

solution time, which is not desirable in the initial design stages. Also, Berger et al.

(2011) investigated propeller-hull interaction by using a boundary element code for

the propeller and a commercial RANS code for the hull. This work differed from the

aforementioned in that unsteadiness is included using a time step of three degrees

of propeller rotation. The novel coupling method presented is shown to drastically

reduce computation time but even Berger et al. concluded that the results are not

completely satisfactory.

A design study of contra-rotating propellers was performed by Koronowicz et al.

(2010) using lifting line and lifting surface methods. An iterative procedure was

used to account for the effect of the forward propeller on the aft propeller and vice

versa. A pseudo-unsteady simulation was performed including a unsteady sheet

cavitation bubble model with a non-uniform inflow and the results concluded that,

in some conditions, contra-rotating propellers can be better than single propellers

and consequently should be considered when doing a design study. Yakovlev et al.

(2011) used a two-dimensional foil lattice method for the design optimisation of a

rim driven propulsor. An increase in propulsive efficiency of 0.4% was reported even

though the model was very simplified to make it quick to calculate for optimisation.

Similarly, Zeng and Kuiper (2012) used a lifting surface method to perform the de-

sign optimisation of a propeller with an objective of a maximum cavitation inception

speed (id est delaying the onset of cavitation as much as possible). The optimisation

was performed using a genetic algorithm, which is a very expensive method in terms

of number of function evaluations, so the speed of boundary element methods was

necessary here. However, the preliminary results reported do show an improvement

in cavitation inception behaviour.

37

Blade frequency noise prediction is usually calculated in the frequency domain,

however, Ye et al. (2012) took advantage of the speed of potential based surface

panel methods to perform a time domain prediction of a cavitating propeller. By

doing this, it was found that cavitation noise attenuates more slowly than non-

cavitation noise. A relatively large time-step of 3 degrees of propeller rotation does

bring in to question the maximum frequency resolution, but the lower frequencies

were most likely to have been captured well.

Recent innovations to boundary element methods try to increase the physical

modelling, to include flow vorticity for example, while still preserving the mesh-

free character of the solution. One such work is that of Zhu et al. (2012) where a

Lagrangian vortex method is outlined to include vortices in a panel or boundary

element method, though it could also be used within a finite volume method. The

method was applied to simulating unsteady flow in hydraulic turbines, but the

results had a greater than 10% error in off-design conditions. Zhu et al. make an

interesting point that no turbulence model accounts for centrifugal or Coriolis forces

(also known as first and second Coriolis forces), however these forces are only an

artefact of angular momentum conservation in a rotating reference frame (Coriolis,

1935) and do not manifest in the inertial reference frame in which most unsteady

simulations are performed.

Further extensions to boundary element methods and blade element momentum

theory were performed by Leone et al. (2013) to apply the methods to self pitching

propellers. The results obtained for blade element methods were accurate for a

pitch ratio of 0.8 but significantly worsened at higher pitch ratios up to an error

of approximately 20%. Leone et al. found that panel methods performed slighty

better with regards to performance prediction accuracy.

It is uncommon to find reports of the Euler equations being solved numerically

using volume meshed methods, as they provide little benefit over boundary element

methods. However it is a valid solution method and included here for completeness.

An interesting result was achieved by Bousquet and Gardarein (2003) when trying

to model unsteady propeller-wing interactions using a finite volume method solving

the (inviscid) Euler equations. Bousquet and Gardarein used fourth and second

order discretisations to achieve a high accuracy and good agreement with pressure

distributions in the validation case, but the integral normal force coefficient differred

from experimental values by up to 15% in the unsteady simulation. Carcangiu

et al. (2011) investigated the design of an urban vertical axis wind turbine using

a commercial finite element method but, as the investigation was focussed on the

inlet and outlet to the turbine, the rotating part of the impeller was neglected in

the model.

A more popular method for solution in investigations where the propulsor is of

38

primary interest is to solve the RANS equations. This is most likely because, with

modern computing power, it presents the best trade off between solution time and

physical accuracy, though the turbulence effects still remain modelled rather than

simulated. Rhee and Joshi (2005) investigated the solution of a marine propeller

flow using RANS with a validation against experimental results. A commercial

solver, FLUENT, was used and the verification study found that domain size is not

as important as mesh resolution, which is in contrast to the author’s findings in

Section 5.1 where domain size is found to be important. With a total axial length

of 1.22 propeller diameters and radial diameter of 2.86 propeller diameters, the

domain used by Rhee and Joshi is smaller than the size recommended in Section

5.1, and this is likely to be a contribution to the errors of 8% in thrust and 11%

in torque reported, though Rhee and Joshi conjecture that the errors are due to

insufficient mesh resolution in the hub area. Using the same commercial package,

Lam et al. (2006) investigated the propeller wash at the bollard pull condition. A

structured grid of approximately 71,000 cells was used but rotational symmetry was

exploited such that this equates to a full propeller mesh of approximately 213,000

cells. For validation, the results were compared against laser-doppler anemometry

(LDA) data, however discrepancies were found. Also the results for the structured

and unstructured meshes differed significantly enough that it was concluded that

further investigation was needed.

A better result was achieved using FLUENT by Da-Qing (2006), where thrust

and torque were reported to be within 3% and 5% of experimental values respec-

tively. Although this work highlights the potential for integral values to give a

misleading representation of accuracy, as examining pressure distributions shows

discrepancies around the blade tip area. An interesting validation method was also

used here of comparing pictures of a paint test with skin friction contours as well as

comparing particle image velocimetry (PIV) measurements of vorticity in the wake

which did show a good agreement. Huang et al. (2007) also used the popular com-

mercial code of FLUENT to investigate the effects of thrust fins on thrust efficiency.

Although the mesh used does not look completely accurate in its representation of

the geometry, this discretisation error doesn’t appear to have a large effect as thrust

and torque profiles match well with experimental data.

The work presented by Li and Wang (2007) on investigating the effect of the

axial gap between inducer and impeller of a three blade axial pump is interesting

in its quasi-unsteady methodology. The device investigated comprises a six bladed

inducer, three bladed impeller and 11 vaned diffuser which denies any rotational

symmetry and the unsteady interaction is represented by a sequence of seven steady

state simulations. This method seems to produce good results in this case and

comparison of velocity profiles shows no significant differences. However, it is not a

39

true unsteady method and Li and Wang admitted it does not consider the unsteady

flow features between impeller and diffuser. Conversely, Petit et al. (2009) were

less convinced that using a steady-state frozen rotor formulation yields good results

and concluded that it is not accurate enough for rotor-stator interaction due to

improper treatment of the impeller wakes. Although this finding was with a model

of a centrifugal rather than axial pump, the hypothesis would stand for axial flow

devices too.

A prediction of the effective wake and performance of a rim driven tunnel thruster

was made by Kinnas et al. (2009), using FLUENT to achieve a RANS solution, and

then combining this with a vortex-lattice method to predict cavitation. Some results

achieved had a large 50% error between experimental and computational results, but

results closer to the design condition had a smaller error. However, cavitation predic-

tion was consistently close to experimental observation. A performance assessment

of ducted propellers by Funeno (2009) using RANS gave a recommendation of suit-

able boundary conditions for this simulation of a combination of a velocity inlet,

pressure outlet and slip walls. Again, use of a frozen rotor formulation here made

design difficult due to the interaction of nozzle, propeller and gear housing flows.

Contrary to other recent works (Phillips et al., 2008; Choi et al., 2010; Berger

et al., 2011), Abramowski et al. (2010) used a full RANS formulation for the pro-

peller when investigating the effect of different hull forms on propulsive efficiency.

The accuracy, compared with experimental results, was very high at advance ra-

tios greater than 0.2 but was found to be lower at low advance ratios. This was

attributed to possible geometrical differences, but an alternative explanation is of-

fered in Section 5.2.2 herein. Vesting and Bensow (2011) chose to use RANS coupled

with a vortex-lattice method to predict cavitation in an attempt to optimise the de-

sign of a propeller blade with respect to both propulsive efficiency and cavitation

performance at the same time. Unfortunately no comparison with experimental

data is made and the reported improvement of 8.5% in propulsive efficiency cannot

be taken as definitive, though it is likely that there was some improvement on the

original design if the measurement errors were effectively systematic in nature.

Good agreement with experimental particle image velocimetry (PIV) measure-

ments was achieved by Liu et al. (2012a) using RANS to investigate the internal

flow of a two-bladed centrifugal pump. This result was calculated using a first order

Gaussian upwind discretisation scheme as the initially selected total variation dimin-

ishing (TVD) scheme was diverging. The cavitation performance of ship propellers

was investigated by Zhu and Fang (2012) with good agreement with experimen-

tal results except at low advance ratio. It is possible that the poor results at low

advance ratio are due to poor prediction of the cavitation and the consequential

impact of this. An axial flow water turbine with a similar motor construction to a

40

rim driven thruster was analysed by Wang et al. (2012) with a conclusion that a

nozzle and diffuser can inrease the pressure drop across a turbine and thus extract

more power. Finally, Cao et al. (2012) used RANS for the solution of a rim driven

propulsor but neglected the stators in the model to remove the need to simulate

unsteady rotor-stator interaction.

The increasing popularity and power of RANS methods is shown in recent re-

search, where a study into the effect of rake angle by Hayati et al. (2012) had near

perfect agreement with experimental results up to an advance ratio of 0.6. It is also

arguable that more insight gained into the physics behind the trends observed than

would have been achieved had the study used boundary element methods. Hay-

ati et al. (2013) modelled the propeller-hull interaction, similar to that of Phillips

et al. (2008), but using RANS for the entire flowfield. This work highlighted the

significant difference between open water tests of marine propellers and that of their

in-service performance interaction with other flows and under off-design conditions

such as vehicle pitch.

Few studies have directly compared results of steady RANS and unsteady RANS

(URANS) as very often there are not any significant unsteady flow features to cap-

ture so as to justify the resource investment of an unsteady simulation. However,

in comparing RANS and URANS methods for marine propellers, Kaufmann and

Bertram (2011) did not find RANS to be categorically worse than URANS. The

results clearly showed that, when using multiple reference frame (MRF) method in

RANS, the size of the rotating reference frame zone has a significant (10%) impact

on results. Also, the findings for the URANS simulations showed a clear dependency

of results on time step, consequently Kaufmann and Bertram recommended a time

step of one degree of propeller rotation as a suitable trade-off between accuracy and

computation time. The ability of OpenFOAM to produce URANS results as ac-

curate as those calculated by FLUENT was documented by Muntean et al. (2009).

This improves the confidence in having no benefit in accuracy from commercial soft-

ware, or the corollary that the use of OpenFOAM does not penalise the potential

accuracy of results. Petit et al. (2009) made a recommendation in preference of

URANS due to the significantly unsteady nature of the rotor-stator interaction in

a centrifugal pump and consequently achieved better results, although the velocity

profiles are only qualitatively similar to experimental measurements and suffer some

quantitive error.

Unsteady methods are often not employed when a steady method will suffice as

they require temporal resolution and thus more computation time. However, very

often propellers are acting in non-uniform wakes, usually due to the hull ‘shadow’,

and thus the blades see a time-varying inflow as they undergo one rotation. This

is the most common reason for employing unsteady methods in the investigation

41

of propellers, though often large eddy simulations (LES) are preferred to URANS.

However, Liu et al. (2012b) utilised URANS for investigating cavitating flows around

skewed propellers using a measured wake for the inflow boundary condition. Liu

et al. concluded that a skew angle of 20 degrees is best for minimum cavitation.

In this work URANS allowed the use of relatively coarse grids of 700 thousand and

one million cells as would be an acceptable resolution in a steady RANS simulation,

whereas LES is likely to require a greater mesh density to resolve large eddies in the

flow.

Morros et al. (2011) performed a URANS simulation of a centrifugal turbine to

evaluate the risk of fatigue failure and found a 25% force fluctuation with a good

confidence as results were within 2% of experimental data. Also investigating a

turbine, though axial rather than centrifugal, Lloyd et al. (2011) used a URANS

formulation though the necessity for unsteady modelling in this case is not clear.

To perform a transient analysis of a single channel pump, Auvinen et al. (2010)

used URANS with a pre-solution from RANS and a large time-step preconditioning

phase to prepare the solution prior to transient analysis. Validation against laser

doppler velocimetry (LDV) measurements showed a varying error from 4% to 10%

though it is conjectured that this is due to simplification of the computational model.

Similar to the findings of Kaufmann and Bertram (2011), a high sensitivity to time-

step was observed. An axial flow pump was analysed using URANS by Zhang et al.

(2010) with a maximum error, against experimental measurements with a five hole

probe, of 4.54%. A timestep of three degrees was used which, given the results of

Kaufmann and Bertram (2011), may have been the major contributing factor to the

error. Although the qualitative findings of increased pressure fluctuations towards

the blade tip and small amounts of pre-rotation are probably still valid. In order to

predict the vortex rope in a swirl flow generator, Petit et al. (2010) used URANS and

validated against laser doppler velocimetry (LDV) velocity profiles. Visualisations

of the vortex rope looked qualitatively good, however tangential velocities were

underestimated, which was possibly due to using first order discretisation schemes.

It seems more popular for propeller flows, particularly with respect to simulating

cavitation, to use large eddy simulation (LES) as many find it is the best available

method to reproduce all the flow features of interest. However, a conclusive method

is yet to be developed for cavitation, as using LES to find cavitation around a twisted

hydrofoil, Lu et al. (2010) found cavity extent was underpredicted and the numerical

simulation was unable to predict the cavity collapse. Results from Di Felice et al.

(2009) using LES to model a submarine propeller flow were not much more accu-

rate than those from RANS and URANS methods with results for thrust and torque

around 5% of experimental values. Although a rather low resolution (for LES) mesh

of 4.467 million cells was used which is perhaps the reason the results are not more

42

accurate. A close agreement between the CFD and LDV measurements of velocity

fields suggest that the modelling was suitable even if the accuracy was not perfect.

The LES performed by Liefvendahl et al. (2010) of a submarine propeller and also

propeller-hull interaction used a more substantial mesh of up to 13 million cells.

As the rotation was modelled using mesh deformation methods, 18 topologically

different meshes were generated, corresponding to 20 degrees of rotation each, so as

to preserve mesh quality as cells deformed. Liefvendahl et al. failed to exploit the

rotational periodicity of the meshed seven bladed propeller as the same mesh can

be used every 51.42857 degrees of rotation, thus reducing the number of topological

meshes required or alternatively increasing the mesh quality with the same number

of topological meshes. It was found that the thrust on each blade fluctuates by

approximately 20% through each rotation. Bensow and Bark (2010) investigated

dynamic cavitation using implicit LES and found an overprediction of the cavity

extent but with good shape and location and good agreement with pressure dis-

tributions. Although sufficient discrepancies between numerical and experimental

results were reported that the method is not conclusively a good one. However, Alin

et al. (2010) performed a comparison of RANS, DES and LES for solution of flow

around a submarine and found that LES had the best agreement with experimental

results and captured more flow features. It is likely that the subgrid model plays a

key role in the accuracy of LES and it is not surprising that implicit LES, where the

subgrid model is the truncation error in the discretisation, has not reported very

good results in the literature.

The final option, that is not frequently utilised in the literature, is to use de-

tached eddy simulation (DES) which exploits the capabilities of LES where the

mesh resolution is sufficient to resolve the larger eddies but switches to a URANS

formulation in regions where it is not. This enables DES to work on grids with-

out the significant requirement for near-wall resolution that LES has, attempting

to provide the advantages of both LES and URANS in one method. Kornev et al.

(2011) developed a hybrid URANS-LES model for the ship stern area from tests

from a significant number of URANS and LES models. These include the linear k-ε,

non-linear k-ε, k-ω SST and kεv2f models from URANS and the simple Samgorin-

sky, dynamic Smagorinsky and the dynamic one-equation eddy models from LES.

The best results in terms of accuracy and numerical stability were achieved with a

combination of the k-ω SST and dynamic Samgorinsky models. The other interest-

ing finding reported by Kornev et al. is that instantaneous wake velocities deviate

sufficiently from the mean values to negatively influence the accuracy of propulsion

and unsteady load predictions made with a mean wake assumption.

For the most accurate simulations and most resolution of flow features that are

achievable with current computational capabilities, the literature confirms LES as

43

the leading tool, which is expected as it involves the least modelling out of the

above methods. However, the additional computational expense, in both spatial

and temporal resolution, required for an accurate LES preclude it from being useful

as a method where rapid design iteration is important (for example in design opti-

misation). It is also shown in the literature that RANS simulations have been used

to a great degree of accuracy and, as it is substantially quicker to solve, would be

preferrable provided it can reach the desired level of accuracy when simulating a rim

driven thruster. Although boundary element methods or blade elements methods

would be the best option in terms of speed of solution, their lack of accuracy in

highly loaded and off-design flow conditions render them unsuitable for accurately

capturing the entire design space in a design optimisation study.

3.2 Turbulence Model Selection

Selecting a turbulence model is not a simple task as all models have their benefits

and drawbacks in accuracy and stability when solving different flow features. An

editorial on RANS modelling by Spalart (2009) discussed the state of the art in

RANS turbulence modelling which has stagnated somewhat since 1992. Prediction

of transition to turbulence by turbulence models is still a weak point in all models,

which was also raised by Batten et al. (2009) where the transition point is found

to ‘creep’ upstream. Corson et al. (2009) also found transition to be a weakness of

the Spalart-Allmaras turbulence model as well as massive separation, unsteady flow

and near wall modelling. Conversely, Menter (2009) showed a good performance

of transition prediction, with the k-ω SST model, as well as good performance in

predicting boundary layers with adverse pressure gradients. However, due to the

high Reynolds number operation of marine propulsors, transition is not a critical

part of the flow and the limitations of transition prediction are not overly concerning.

For the modelling of marine flows, there are conflicting results on the most

suitable turbulence model. Zhang et al. (2006) stated a preference for k-ω SST for

ship wake flows and others have also chosen to use it (Da-Qing, 2006; Funeno, 2009;

Berger et al., 2011; Kaufmann and Bertram, 2011; Lloyd et al., 2011; Cao et al.,

2012), although others chose to use RNG k-ε (Huang et al., 2007; Abramowski et al.,

2010; Zhu and Fang, 2012) as it is supposed to be the best for swirling flows. In

investigating the prediction by standard, Realizable and RNG k-ε models of the flow

past an inclined flat plate (confer flow past a blade section), Castelli et al. (2012)

found the Realizable k-ε model, when combined with standard wall functions, to

be the most accurate. However at low angles of incidence (9 degrees), the results

of Castelli et al. show the RNG k-ε model to be the most accurate. Also used in

literature is the standard k-ε model (Choi et al., 2010; Liu et al., 2012b) and was

44

found to be the closest to experimental measurements when compared to standard

k-ω and RNG k-ε models by Lam et al. (2006).

For centrifugal and axial pump flows both the standard k-ε model (Petit et al.,

2010; Morros et al., 2011) and the RNG k-ε model (Li and Wang, 2007; Zhang et al.,

2010) are commonly used. However the standard k-ε model is found to produce more

accurate results when compared to the k-ω SST model by Auvinen et al. (2010) and

both the RNG k-ε and k-ω SST models by Liu et al. (2012a) though these are both

studies of centrifugal pump flows.

For RANS simulations of ducted and rim driven propulsors, the prevalent model

is the k-ω SST model. This model is also the one chosen by Kornev et al. (2011)

in a comprehensive attempt to find the best URANS and LES models for the ship

stern area. A preference and better accuracy has been shown for the RNG k-ε model

in some marine propulsion cases due to its suitability for swirling flow. Hence it is

decided that for the numerical modelling of a rim driven thruster either the RNG

k-ε or k-ω SST turbulence models are the most suited for the purpose.

3.3 Ducted and Rim Driven Propulsors

As there as many similarities between ducted and rim driven propulsors, many of

the design and experimental findings for the former are still valid considerations

when designing rim driven thrusters. English and Rowe (1973) found that while

ducted propellers typically have lower open water efficiencies, they improve the hull

efficiency and they induce a greater proportion of hull boundary layer fluid, thus

leading to a higher wake fraction. They also found that steerable ducted propellers

allow for an improved turning circle over conventional propeller and rudder configu-

rations. Another reported advantage of the ducted propeller is thrust loading can be

transferred to the duct, reducing propeller loading and increasing cavitation perfor-

mance. This advantage is also reported by Brockett (2003) who derived, through a

lifting-line method, the maximum efficiency of a ducted propulsor of
√
CT /J2 = 4.3

at an advance ratio of J = 4.3. However the effects of the blade tips and clearance

region are detrimental to efficiency.

For rim driven propulsors, Lea et al. (2003) stated the advantages of rim drive as

increased propulsion efficiency, increased arrangement flexibility, decreased weight

and increased harbour maneuverability. Lea et al. found the open water efficiency

of a rim driven propulsor to be 4.5% greater than the equivalent hub-driven variant.

One advantage found, that rim driven propulsors have over ducted propulsors, is

that the rim allows a significant hydrodynamic loading on the blade tip without

generating a tip vortex and the associated losses (ibidem, Kinnas et al. 2009).

A hubless design of rim driven thruster was tested by Yakovlev et al. (2011)

45

which has the advantages of not entrapping debris such as cables or fishing lines.

However, in terms of blade stresses, Yakovlev et al. found a combination of both a

hub and rim reduces the stresses experienced by the blades four fold over a hubless

design and six fold over a conventional propeller.

The distribution of loading on the blades of a rim driven thruster was investigated

numerically by Cao et al. (2012) who found the maximum hydrodynamic loading

occurs typically at the tip. This work simplified the complexity of a rim driven

thruster in two ways, first neglecting the stators from the modelled and secondly

replacing the flow in the gap between rim and duct with an empirical model. The

reported torque contribution of the rim based on these models totals 27% of the

total torque losses.

The flow in the gap region features many possible states and as it constitutes

part of the motor the design is a trade-off between motor electromagnetic and hydro-

dynamic efficiency as well as being constrained by machining tolerances. In terms

of the physical flow features, the Taylor-Couette flow region has been investigated

both experimentally (Batten et al., 2004) and numerically (Batten et al., 2002; Lin

et al., 2010). Although, in terms of effect on the device, Lea et al. (2003) did not

find an efficiency maximum but found the highest efficiency was with the smallest

gap tested.

3.4 Design Optimisation of Marine Propulsors

Due to the complexity of marine propulsors, they do not lend themselves to simple

optimisation, but a few attempts with varying success have been made. To improve

the bollard pull efficiency of a rim driven thruster, Pashias et al. (2003) optimised

seperate components in a sequential fashion. First the two-dimensional blade section

was designed to be rotationally symmetric, such that the section shape is the same

for both directions of rotation. Then the duct profile was chosen from a selection

of designs, followed by the duct length and finally the blade area ratio. Despite

the simplicity of this approach, an improvement of 5% in bollard pull efficiency was

reported. It should be noted that, like Cao et al. (2012), the stators were neglected

from this study as their effect on efficiency was assumed to be less than 1%. Yakovlev

et al. (2011) also tried to improve the efficiency of a rim driven thruster using a two

parameter optimisation to both maximise propeller efficiency and minimise pressure

reduction on the blade surface to minimise cavitation. The results reported here were

not a significant improvement as the efficiency increase reported was only 0.4%. A

penalty of 30% more pressure reduction was also reported, which would increase the

amount of cavitation and is not desirable.

For the optimising the design of marine propellers, Benini (2003) defines a multi-

46

objective method for maximising both the efficiency and thrust of a B-series pro-

peller, subject to a cavitation based constraint. Benini uses a novel fitness function

to optimise genetic diversity as well as Pareto optimality for an evolutionary algo-

rithm based optmisation. Conversely, Gaafary et al. (2011) use a single objective

function of open water efficiency to select the optimal B-series propeller, choosing to

formulate other requirements as constraints imposed by cavitation, material strength

and propeller thrust. This allows a more general single-objective constrained opti-

misation method to be used, for which the example in the paper is a commercial

optimiser called LINGO.

Design optimisation of a propeller blade with ten design variables was performed

by Vesting and Bensow (2011) using response surface modelling (RSM) and a ge-

netic algorithm to search the output response surface. This method produced a

reduction in required power of 8.5% although the noise produced by the propeller

was increased. If evaluation of the objective function is sufficiently inexpensive, then

a genetic algorithm may be applied directly as done by Zeng and Kuiper (2012) to

find a propeller with the highest cavitation inception speed. Preliminary results

reported an improvement of inception speed by two knots.

Where the objective function is expensive to evaluate and/or the dimensionality

of the problem is high, response surface modelling, also known as surrogate mod-

elling, can be used to represent the true objective with a fitted model. Forrester

et al. (2008) makes a good reference for surrogate modelling techniques, particularly

favouring one known a Kriging name after Daniel Krige, who originally developed

it as a mine valuation method (Krige, 1951). Jones et al. (1998) showed that global

optimization of response surface modelling could be improved through the balancing

of exploration and exploitation through means of the standard error.

While the body of work on optimization of propellers is not exhaustive, the

literature suggests that even with the simplest of computational fluid dynamics

models, there are improvements to be found. Multi-objective optimisation has been

found as the least productive of approaches reviewed here, with response surface

modelling yielding the best improvements and perhaps the best method to apply

to rim driven propulsors. Due to the relatively long evaluation times in the chosen

analysis method, that is RANS simulation, the best way to optimise the performance

would be through response surface modelling, in this case Kriging is chosen, with a

single objective function that can be rapidly searched using a genetic algorithm.

47

48

Chapter 4

Computational Fluid Dynamics

Methods

There are a number of steps in creating computational fluid dynamics simulations,

each being typically performed with separate, specialised pieces of software. How-

ever, this is not always necessarily the case as some CFD packages are available

that provide all the necessary tools to generate geometry, mesh the domain, solve

the equations and post process the results. In this project, open source software is

used in preference to commercial codes where possible, primarily to avoid problems

with licence contention, but also because open source allows complete interrogation

and modification of the code. A number of different programs are used to cre-

ate, solve and post-process the simulations, but the majority of applications come

from the software package OpenFOAM (Open Field Operation And Manipulation),

an open source collection of utilities and solvers for computational fluid dynamics.

However, for geometry generation, SolidWorks, Visual Basic and Python were used.

Meshing was subsequently handled by blockMesh and snappyHexMesh, two mesh-

ing utilities provided in the OpenFOAM package, and steady state solution was also

performed with the OpenFOAM solver MRFSimpleFoam. Post-processing was pri-

marily performed using ParaView, an open-source, multi-platform data analysis and

visualization application that is bundled as third party software complimentary to

OpenFOAM. Python was also used for some post-processing (graphs) and scripting

purposes. The complete solution procedure is outlined in Figure 4.1 and further

details of the simulation process, and the role of each package in the methodology,

is described in the following sections.

49

Figure 4.1: Outline flowchart of the solution procedure.

50

4.1 Geometry Creation

Two methods were used to generate the propeller geometry definition. Both methods

ultimately generated a sterolithographic (.stl) format file that is required by the

meshing program snappyHexMesh. The first method used a proprietary Visual Basic

macro, provided by TSL Technology Ltd., to automate SolidWorks to generate the

propeller surface whereas the second method was written in the Python language

and was designed so that the geometry creation can be automated.

4.1.1 Propeller Surface Visual Basic Macro

The Visual Basic program for propeller surface generation took details of the pro-

peller section and distributions of section, thickness, chord, pitch and rake along the

radius from a Microsoft Excel spreadsheet containing the geometrical data provided

by TSL Technology Ltd. With these inputs the program then automatically pro-

vided a lofted propeller surface in SolidWorks that was then converted into a solid

body. This program only provides a single blade, therefore it is necessary to repeat

the solid body in a circular pattern and include a propeller hub. Following this, the

resulting geometry is exported into .stl format for reading into snappyHexMesh.

4.1.2 Automated Geometry Generation

While the Visual Basic program developed by TSL Technology Ltd. provides all the

necessary functionality for generating the propeller blade geometry, it was decided

that the workflow could be improved by developing a geometry creation method in

Python. The advantages to writing a new geometry creation method are two-fold,

first Python is available on the GNU/Linux platform that OpenFOAM is designed

to run on, preventing the need to switch from Microsoft Windows to GNU/Linux

to run SolidWorks and OpenFOAM, respectively. Secondly, removing the need to

switch platform and using a scriptable language such as Python allows for the easy

automation of the entire simulation process, speeding up the time it takes to evaluate

different design iterations.

The programming language of Python was chosen over other languages for a

number of reasons, many of which are not specific to this application. As a high level

language, it benefits from quicker development time, primarily due to the readability

of the code enforced by its syntax rules, but also attributable to rapid debugging

at the interpreter prompt. A trade-off for this lexical benefit is that Python will

not run as fast as perhaps a compiled language might, but the computational time

of the task of automation is small compared to the time taken to write the code,

thus it is more efficient to minimise writing (and reading) time than to minimise the

relatively small run time. Other advantages of Python are that it is free, popular

51

and has many libraries for a large variety of scientific tasks. It also supports multiple

programming paradigms for improved flexibility and because everything in Python

is an object, it is easy to program in a modular, re-usable fashion.

There are two parts to the automated geometry generation process, the first is

to generate data to represent the geometry (Section 4.1.2) and the second is to store

those data in a format that is readable by the computational fluid dynamics code

(Section 4.1.2).

Blade Co-ordinate Generation

To generate the blade geometry as a set of co-ordinates, a set of Python functions

were written and are listed in Appendix A. The primary function for generating

the blade geometry is bladegen which takes as arguments functions for the blade

section, chord, thickness and pitch as well as the number of degrees of rake. The

bladegen function then calculates the co-ordinates of the blade at 15%, 20%, 25%,

30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the radius and returns them.

This results in a set of three dimensional curves, which can be lofted to produce a

solid blade surface.

The process of generating the co-ordinates begins with the non-dimensional sec-

tions of the blade being placed at each radial station in the x-z plane, with the y

axis forming the radial direction of the blade. Next, the section is scaled to the

correct chord and thickness, by multiplication of the values returned by the chord

and thickness functions. It should be noted here that the non-dimensional section

should be specified such that the origin (0, 0) coincides with the generator line of

the blade. The pitch is applied next by calculating the rotation angle and rotating

the x-z plane about the y axis. Then the rake is added by translating the z co-

ordinates according to their radial position to give the required rake angle. Finally,

the co-ordinates, which lie on planes of constant y value, are mapped onto cylin-

drical planes of constant radius, such that the radial slices are consistent with the

propeller definition.

To enable the program to be used in an extensible and modular fashion, the

program is designed to take pitch, chord and thickness in the form of functions of

radial position and diameter. The advantage of this is that any form of function

can be specified, without changing the underlying code, to give constant, linear,

quadratic and any other distribution of the geometry variables.

To validate the output of the blade geometry generation program, the blade

contours produced by the Python program and the Visual Basic program provided

by TSL Technology Ltd. were compared and found to match. Visualisations of the

geometry were also compared to pictures (Gerr, 2001; Carlton, 2007) and propeller

diagrams in Kuiper (1992) and there were no perceptable differences between them,

52

thus validating the output of the blade geometry generation program.

STereoLithographic (.stl) File Format

The OpenFOAM meshing utility snappyHexMesh uses .stl (stereolithographic) files

as the input of the geometry. These files specify a geometry through a number of

triangular facets, consisting of three vertices given by cartesian co-ordinates and a

face normal vector. The specification for the file format allows two different types:

ASCII, which is written in characters, and binary, which is stored in a numerical

format that is not human readable. As snappyHexMesh only reads ASCII format

.stl files, the binary .stl format will not be considered further.

The .stl file format opens with a line to describe the solid by name:

solid <name>

and similarly the file must finish with a closing statement:

endsolid <name>

In the enclosed region between each of these statements, the triangular facets that

make up the solid surface are listed. For each triangle with a unit normal vector

given by <ni> <nj> <nk> and vertex co-ordinates given by <v1x> <v1y> <v1z>,

<v2x> <v2y> <v2z> and <v3x> <v3y> <v3z>, the resulting code for this facet is as

follows:

facet normal <ni> <nj> <nk>

outer loop

vertex <v1x> <v1y> <v1z>

vertex <v2x> <v2y> <v2z>

vertex <v3x> <v3y> <v3z>

endloop

endfacet

where each number is given in floating point format.

To generate .stl files from co-ordinate data, a series of functions were written in

Python and are listed in Appendix B. As the geometric data in blade generation is

predominantly based on lofting profiles, that is interpolating through a series of two

dimensional profiles, the functions were written to either generate a surface between

two profiles (in 3D space) or to fill in a profile so as to close the lofted surfaces at

either end.

The function oneface takes a set of co-ordinates and returns a string repre-

senting the co-ordinates as a face in .stl format. This is done by first splitting the

co-ordinates into an upper and lower set. Triangles are then added to the .stl string

53

in a pairwise fashion between co-ordinates from the upper and lower sets. It should

be noted that for the best representation of a blade section, the upper and lower sets

of co-ordinates should be split at the leading and trailing edges, thus best preserving

the blade curvature. However, very often the final blade section will be beyond the

intersection of blade and hub, or blade and rim, and consequently its shape is not

of utmost importance.

The lofting between two three dimensional lines is provided by the function

twoface, which takes two sets of co-ordinates, one for each line, and returns a

string that represents the face lofted between these two lines. This function requires

an equal number of co-ordinates for both lines, as the triangles are created in a

similar pairwise fashion as the function oneface. Another caution required is that

both sets of co-ordinates are given from the same reference point, id est leading or

trailing edge, and also progress in the same direction, otherwise the produced loft

will be skewed.

By combining the strings from subsequent oneface and twoface outputs, writestl

finishes the formatting of the .stl files with the correct header and footer and writes

the result to an ASCII .stl file ready for reading in to snappyHexMesh.

4.2 Meshing for Steady State Simulations

All the meshing in this work was performed using the programs blockMesh and snap-

pyHexMesh, which are open source mesh programs and both part of the OpenFOAM

software package. The process of mesh generation using these programs begins with

the generation of a baseline hexahedral mesh using the program blockMesh. It is at

this point where both the extent of the computational domain and the largest cell

size must be chosen. The baseline mesh defines the largest possible cell size (base

size) as snappyHexMesh will only split cells, not combine them. Initially, to make

sure the computational domain was sufficiently large, it was designed to extend six

propeller diameters in the radial and upstream directions and 12 propellers diam-

eters in the downstream direction. The minimum required computational domain

size was later investigated as part of the verification procedure in Section 5.1. The

base cell size was selected to be a cube with a side length of one quarter of the

propeller diameter, 17.5mm.

Once the base mesh was generated with blockMesh (Figure 4.2a), the program

snappyHexMesh was used to finish the meshing procedure, as blockMesh is not well

suited to complex geometries such as that of marine propulsors. There are three

distinct stages in the meshing procedure with snappyHexMesh, first a castellated

mesh is produced (Figure 4.2b), then the castellated mesh is fitted (snapped) to the

surface (Figure 4.2c) and finally a layer mesh is grown on the surface (Figure 4.2d).

54

Figure 4.2: Outline of the meshing procedure in snappyHexMesh.

The surfaces used in snappyHexMesh must be provided in .stl format which,

after reading the surfaces in, begins by refining the base mesh next to surfaces and

regions specified by the user by splitting cells. This is done non-discriminantly,

therefore cells that ultimately end up being removed, because they are ‘inside’ the

propeller, are also refined. Once the refinement stage has finished, snappyHexMesh

searches out all the cells in the fluid domain from a location specified by the user

and removes any unreachable cells to leave a refined castellated mesh. It would be

more memory efficient to remove ‘interior’ cells after each stage of refinement but it

would be less time efficient.

The next stage of the meshing process is the snapping stage after which snap-

pyHexMesh is named and involves moving vertices such that they lie on the surface

but without violating any of the mesh quality constraints defined by the user. The

application of the refinement and snapping stages to a Wageningen B4-70 propeller

are clearly visible in Figure 4.3 with the final resultant mesh shown in Figure 4.4. It

is noted here, as it can be clearly seen in Figure 4.4, that the tip of the Wageningen

B4-70 propeller is difficult to recreate using the geometry method of Sections 4.1.2

and 4.1.2 as at the tip, both the thickness and chord become zero. Therefore, to

generate this open water propeller geometry, the tip is cut at 99% of the radius to

produce a viable final section.

Depending on the complexity of the geometry and the level of mesh quality

55

Figure 4.3: Slice through Wageningen B4-70 propeller mesh.

desired, this stage of the meshing procedure can take a considerable amount of time

for complex geometries and if running on a multi-user cluster this stage is best

executed in batch.

The final stage of the mesh generation procedure in snappyHexMesh is the cre-

ation of a layer mesh. This involves displacing the mesh on the surface and inserting

extra cells of a user specified height so that y+ may be controlled as well the number

and distribution of cells used to resolve the boundary layer. Adding a layer mesh is

a time consuming process and it may take multiple iterations of meshing follow by

solution to achieve a suitable value for y+ (see Section 2.3.6 for the importance of

y+).

4.2.1 Automated Mesh Generation

The automatic generation of the mesh is performed using the geometry from Sec-

tion 4.1.2 with some of the functions listed in Appendix C. The automation was

designed to be as general as possible, whilst still containing the requisite features

for modelling propellers and rim driven thrusters. There are three main parts to

the mesh generation as previously outlined in Section 4.2: the base meshing done

with blockMesh, the geometry snapping done with snappyHexMesh and the feature

edge snapping improvement.

56

Figure 4.4: Meshed Wageningen B4-70 propeller.

makeDomain

Specifying the computational domain is done using the makeDomain function which

takes as input the limits of the domain and writes a blockMeshDict file to generate

the domain. To maintain the generality of the function, the default boundaries are

referred to as xmin, xmax, ymin, ymax, zmin and zmax, denoting the minimum

and maximum x, y and z values respectively. The function also takes a base size

parameter which defines how large the mesh cells will be and the total number of

cells in the base mesh can be calculated by:

ncells =
xmax − xmin

base size
× ymax − ymin

base size
× zmax − zmin

base size

Once the makeDomain function has created the blockMeshDict file, the base

mesh is generated by running the blockMesh program. This can be done within

the script using the run wrapper function which executes a command in the shell

and automatically stores the output in a log file, as well as optionally forwarding

the output to the console too. The ‘silent running’ option in the run function is

included to suppress the output when an automated code is called multiple times,

or when the simulations are running otherwise unattended (exempli gratia in batch

on a supercomputer), and this also reduces the time taken to execute.

57

snappyHexMesh

Automated generation of a meshed geometry from the base mesh and .stl files

is then completed using the OpenFOAM utility snappyHexMesh. The function

snappyHexMeshDict creates the requisite control file to generate the final mesh. As

mesh generation is specific to the geometry and problem setup, the function takes

a large number of parameters, as well as many optional parameters for the mesh

quality, the defaults of which should generally produce a good mesh. If snappy-

HexMesh is able to snap the mesh correctly, then the mesh produced should have a

maximum non-orthogonality of 60 degrees and a maximum skewness of five, except

at the boundaries where this requirement is relaxed to 20.

The primary arguments that are required are: ‘stls’, a list of the names of the

.stl files; ‘lvls’, a list of the required mesh refinement on the respective .stl surface

and ‘loc’, the co-ordinates of a location in the meshed region. There are two further

keyword arguments that are also useful, especially in the case of rim driven thruster

meshing, and these are: ‘MRFrotor’, which takes a list of three parameters, defining

the start co-ordinate, end co-ordinate and radius of a rotating region, and uses

these to create a cellZone for using multiple reference frame rotation; and ‘features’,

which takes the number of iterations to use for feature edge snapping which vastly

improves the capture of the geometry by the mesh.

Once the snappyHexMeshDict file has been created, the mesh is created with the

run("snappyHexMesh") command. This creates a snapped hexahedral mesh, but

this still required some further modification before it is ready for solution. An empty

patch called rotor_region0 is created in the process of creating the rotating region,

that requires defining correctly with a patch type of empty. For correcting the patch

type, a function called changePatchType exists to change the patch type to any

required, therefore the command changePatchType("rotor_region0", "empty")

will fix the patch.

As the automated generation of the initial and boundary condition files, per-

formed by the function makeFieldsiKO (see Section 4.4.1), requires knowledge of

which patches are to be treated as inlets and outlets, the patches need to be re-

named. In the rim driven thruster case the patch in the positive z direction, that

is the direction in which the thrust is produced, is the inlet boundary which the

blockMesh function names zmax. The opposite patch is the outlet boundary, which

the blockMesh function names zmin. A function renamePatch was written that

takes the patch name and the desired new name, and renames the patch to the new

name. This allows the renaming of zmax and zmin to inlet and outlet respectively,

such that the boundary fields are generated correctly.

58

Robust Automated Generation

Automated mesh generation needs to produce high quality meshes for a large number

of geometries which to some extent can be tuned by the mesh quality parameters

in the snappyHexMeshDict file. The meshing parameters which were found to be

most critical in overall quality were nCellsBetweenLevels, tolerance and nSolveIter.

The nCellsBetweenLevels parameter controls the number of cells in each successive

level of refinement. Having more cells in a level improves the ability of the mesh to

move, while reducing the likelihood of solution divergence, but comes at a cost of

requiring more cells and subsequent computational memory and time.

The parameters tolerance and nSolveIter are part of the mesh snapping controls

and affect how well the geometry is captured. Increasing the tolerance increases the

amount the mesh will move towards the .stl geometry during the snapping phase.

The higher the tolerance, the better the capture of the geometry, however if the

tolerance is too high, points will snap to the wrong patch. It was found setting

the tolerance to between 1.0 and 1.7 is sufficient for a good mesh snapping without

any patches going awry. Similarly the nSolveIter parameter controls the number of

iterations in the snapping phase of the meshing. The number of iterations must be a

trade-off, as more iterations lead to a better snapping, but with diminishing returns

and increased mesh generation time. 30 iterations were found to be sufficient to

produce the desired mesh without any noticeable improvement beyond this number.

Feature edge snapping can further improve geometry capture, especially of sharp

edges that are typically not well captured by snappyHexMesh alone. There are

two ways that feature edge snapping can be performed, either with a utility called

snapEdge, or with the inbuilt feature edge snapping in snappyHexMesh. Functional-

ity for both methods of feature edge snapping has been included, although snapEdge

requires a priori compilation from source code as it is a third party OpenFOAM

utility.

First the snapEdge functionality was included in the function snapSTL which,

given a list of .stl files, writes the requisite snapEdgeDict dictionary with some

default parameters and then calls the snapEdge utility. However, a more robust

method of feature edge snapping was found in snappyHexMesh version 2.1.0, de-

spite being listed as an experimental feature at the time. This method performs

the feature edge snapping during the snapping stage of the meshing, rather than

retrospectively applying it after the meshing is completed. It is enabled by passing

the argument features=10 to the snappyHexMeshDict function, which will prompt

the function to add the necessary features sub-dictionary, extract the edge mesh

(.eMesh) files from the .stls, and perform 10 iterations of feature edge snapping

during the mesh snapping phase.

59

4.3 Steady State Solution Setup

Once the meshing is finished, the rest of the set up for solution in OpenFOAM can

be performed; this involves writing a number of control dictionaries that specify the

solution schemes to be used. Figure 4.5 shows the resulting case structure and the lo-

cation and names of files that need to be written for the example Wageningen B4-70

case. The OpenFOAM solver chosen for simulating steady state flows is MRFSimple-

Foam, which uses moving reference frames and the SIMPLE (Semi-Implicit Method

for Pressure Linked Equations) algorithm to handle pressure-velocity coupling. The

key dictionaries for solving with MRFSimpleFoam are fvSchemes, fvSolution and

controlDict which are located in the system directory as well as the transportProp-

erties, RASProperties and MRFZones dictionaries located in the constant directory.

The fvSchemes dictionary is where the numerical schemes for calculating the

gradient, divergence and laplacian of variables as well as the finite volume interpo-

lation schemes are specified. Different schemes were tested in an attempt to improve

convergence and robustness during the verification and validation procedure and the

baseline schemes chosen for the solution in this work are Gaussian schemes using

linear interpolation with the exception of the turbulence quantities k, ε and ω which

use an upwind interpolation scheme. All the discretisation schemes are second order

accurate in space and the linear and upwind interpolation schemes are second and

first order respectively.

Control of the solution and choices such as matrix solvers, preconditioners and

inner iterations are done through the fvSolution dictionary. Here, for every variable

that is solved for, the user can specify the matrix solver and preconditioner. There

are also two tolerance levels that are given for the solution of each variable; the

absolute tolerance and the relative tolerance. The absolute tolerance gives some

convergence control and the variable will stop the solution if the residual falls below

this value. The relative tolerance is the value residuals must achieve, relative to the

initial residual at the beginning of the timestep, for solution to continue onto the next

variable, thus allowing control over the inner iterations of the solver. The matrix

solvers chosen were Preconditioned Conjugate Gradient (PCG) and Preconditioned

Bi-Conjugate Gradient (PBiCG) for symmetric and asymmetric matrices, respec-

tively. The pressure matrix, however, was solved using a generalised Geometric-

Algebraic Multi-Grid (GAMG) solver to speed up convergence. The preconditioning

of the solution matrices was performed using Diagonal Incomplete-Cholesky (DIC)

for the PCG solver and Diagonal Incomplete-LU (DILU) for the PBiCG solver. Af-

ter an issue with the turbulence quantities, k and ε, reaching the absolute tolerance

too quickly and the solution of these variables halting prematurely, all the absolute

tolerances were set to 1× 10−12. Experimentation with different relative tolerances

found that a relative tolerance of 0.01 worked best for speed and convergence.

60

Figure 4.5: Outline diagram of the OpenFOAM case file and directory structure.

61

Top level control of the simulation is done through the controlDict dictionary,

through which the number of iterations, size of timestep and frequency of saving

are controlled. It is possible to set up controlDict dictionary to be re-read every

timestep, such that changes may be made during computation in response to the

equation residuals if desired. The controlDict dictionary is also the file where force

calculations are specified by giving details of density, centre of rotation and the

patches over which the forces are to be calculated. If the force calculations are

specified prior to solution, the frequency of output can be given such that a history of

the force values during the solution can be viewed and used to monitor convergence.

Additional post-processing forces calculations can also be added after solution and

computed for each saved timestep using the execFlowFunctionObjects command.

Viscosity and the model used for the working fluid are set in the transportProp-

erties dictionary; set as a Newtonian fluid with a constant kinematic viscosity of

1.307× 10−6m2/s. In the RASProperties dictionary, it is possible to select the tur-

bulence model and turn turbulence ‘on’ or ‘off’ and in the MRFZones dictionary,

where the rotating region is specified, the axis about which rotation occurs and

angular velocity are set.

The problem specific parts of the solution setup are the boundary and initial

conditions. In OpenFOAM these are both specified in one file per solution variable

in contrast to a lot of commercial CFD packages which allow the selection of a

specific boundary ‘type’ that sets up all the fields on that boundary automatically.

This has the advantage of being able to specify entirely custom boundary conditions

on a fieldwise basis as well as being entirely transparent as to the exact condition

being applied to each field. Initial conditions for the problem have been chosen

to be a single uniform value, the advance speed in the case of velocity, the outlet

pressure in the case of pressure and the initial turbulence quantities are based on

the turbulent intensity and turbulence viscosity ratio (see Section 2.3.7).

For the verification procedure the advance velocity was fixed at 1 m/s, and as the

forward thrust direction is the z-axis, the velocity vector is (0 0 -1). Using a turbulent

intensity of 2.5%, this lead to a value of the turbulent kinetic energy, k = 0.000625

m2/s2, and using a turbulence viscosity ratio of 10 yielded a turbulent dissipation

rate of ε = 0.00269 m2/s3. The boundary conditions are set differently for each type

of boundary, with the key options of the four types used in the simulations shown in

Figure 4.6. For a wall type boundary, id est the surface of the propeller, the velocity

is set to 0, pressure is set to zeroGradient and the turbulence quantities are set to

use wall functions. A zeroGradient boundary condition is a Neumann condition such

that the gradient of the pressure in the surface normal direction is equal to 0. The

specific boundary condition names within OpenFOAM for the wall functions are

kqRWallFunction, epsilonWallFunction, omegaWallFunction and nutWallFunction

62

Figure 4.6: Diagram of the four boundary conditions.

for the scalar variables of k, ε, ω and ντ , respectively.

At the outlet the pressure is set to 0 as it is a relative quantity and the remaining

fields are set as zeroGradient boundaries. For the inlet, the velocity obviously takes

on the value of the advance speed, pressure is set as zeroGradient and the turbulent

quantites set up to reflect the freestream turbulent intensity and turbulence viscosity

ratio. Similarly for the outer walls of the domain, the velocity is set (as a vector) to

be the same as the inlet, essentially preventing any fluid from traversing across the

boundary but without acting as a ‘real’ (id est no-slip) wall. The pressure boundary

condition at these outer walls is set to zeroGradient and the turbulence quantities

are set up the same as the inlet and initial conditions.

4.4 Automation of Steady State Solution

To automate the above process of setting up the simulation, a number of functions

were created to calculate the variables and write the necessary dictionaries. All

the functions required to do these tasks are listed in Appendix C, completing the

functionality required to automate design evaluation for the purpose of optimising

rim driven thrusters. The procedure for setting up a simulation using these functions

is outlined in Section 4.4.1 below.

63

4.4.1 Simulation Case Setup

Initially, the simulation case setup requires the making of a case directory, and the

requisite directory structure within it. This is carried out by the function makeCase

which takes as an argument the name of the case and an optional parameter to

overwrite the case if it exists, to reduce data storage requirements in some use

cases.

Writing the dictionary to control the simulation is performed by the controlDict

function. This takes the parameters of the solver name, end time and time step,

along with an optional choice of write interval, which is the number of iterations

between each successive saving of the field files to disk. If this optional parameter

is not given, then the default is to write the data at the end of the simulation only.

Selection of the discretisation schemes and the control of the solvers inner loops

comes from the fvSchemes and fvSolution dictionaries respectively. These can be

automatically created using the Python functions of the same name. Suitable, robust

defaults have been chosen such that these dictionaries can be written with calls

to the function requiring no parameters (id est fvSchemes(); fvSolution();).

However, functionality to select discretisation schemes, in the fvSchemes dictionary,

and custom inner iteration tolerances, in the fvSolution dictionary, has also been

included.

Viscosity for the solution is set using the transportProperties dictionary and

function of the same name, with the default kinematic viscosity equal to that used

throughout this thesis (1.307 × 10−6m2/s). Similarly, the turbulence properties of

the simulation are set through the RASProperties dictionary and the function to

create it is named likewise. This function takes a parameter of the turbulence model

name, and two boolean parameters of whether turbulence should be on and whether

to print the turbulence coefficients.

To complete the global settings for a marine propulsor simulation, the rotation

must be specified which can be done using the MRFZones dictionary created using

the MRFZones function. This function requires two arguments; the name of the

rotating region and the number of revolutions per minute. There are also options to

change the centre of rotation, which defaults to the origin, and the axis of rotation

which defaults to the z-axis. It is also possible to include names of patches in the

rotating region that do not rotate, although this feature is not required for rim

driven thrusters.

Perhaps the most important function in the ajopenfoam package is the function

makeFieldsiKO, named as such as it creates the internal and boundary fields (make-

Fields) for incompressible flow (i) with the k-ω turbulence model (KO). For a given

initial velocity, this function assigns the relevant boundary conditions according to

the name and type of the patches, extracted from the constant/polyMesh/boundary

64

file. Turbulent intensity and viscosity ratio, defaulting to 0.1 and 10 respectively,

can be passed to the function which then calculates the freestream turbulent ki-

netic energy (k) and specific turbulent kinetic energy dissipation rate (ω) automat-

ically. For wall boundary conditions, the parameter wallFunctions can be set to

either True or False depending on whether wall functions are desired. Two further

optional functionalities are included through the parameters inlet_pressure and

rot_omega, the former specifying the inlet pressure for a pressure driven flow and

the latter specifying the rotation rate for rotating wall boundary conditions. With

all this information, the function computes and writes the requisite files for p, U, k,

omega and nut, which give the initial and boundary conditions for their respective

fields.

4.5 Running The Simulation

After the entire problem has been set up, the numerical solution process can begin.

Depending on the size and expected run-time of the problem, each case was run

either locally on a PC or on the cluster Iridis3. To run the case locally it is simply

a matter of changing the current directory to the relevant case directory and using

the commands:

MRFSimpleFoam >> log.MRFSimpleFoam &

tail -f log

This runs the simulation and appends the output to the log file, the ampersand

telling it to run in the background. The second line then outputs the log to the

console as it is written, allowing the residuals and solution progress to be monitored.

Alternatively, if it is desirable to run the program in the foreground, so that it

can be easily exited if it begins to diverge for example, this is possible with the

command MRFSimpleFoam | tee log.MRFSimpleFoam which writes the output to

the file log.MRFSimpleFoam as well as the console.

When the number of simulations or their size or runtime rendered it impractical

to run them locally, the Iridis3 supercomputer was used to solve the simulations.

There is some trade-off when deciding whether execution should be performed in

batch on the supercomputer as the typical queue length is approximately 12 hours.

For example if three simulations of length five hours were required, it would take

15 hours to run them sequentially locally or a total (including queueing time) of 17

hours to run them in a parallel batch on the supercomputer. Additionally, where a

number of different solution configurations are being tested, some of which are likely

to fail within a few iterations, it is a fruitless exercise to wait the entire length of a

12 hour queue for the solution to fail after five minutes of runtime. Actual execution

65

of programs on the Iridis3 supercomputer is done through submitting the required

commands to the distributed resource manager, Torque in the case of Iridis3.

As the solution size gets larger or if a reduction in solution time is desired, it is

possible to run the solution in parallel. It is simpler to generate the mesh and set up

the field files in serial and then to decompose the domain into parallel regions for the

solution, recombining them after solution for serial post processing. However, if the

desired mesh is too large to fit into RAM on a single node (22 Gigabytes on Iridis3,

which experience shows is enough for roughly 5.5 million cells), then it may be

necessary to also generate the mesh in parallel. First of all, the decomposition must

be set up in the decomposeParDict dictionary, where the number of subdomains

and how the domain is to be split is specified. Then the decomposition, solution

and reconstruction is performed with the following commands:

decomposePar | tee log.decomposePar

mpirun -np 4 MRFSimpleFoam | tee log.MRFSimpleFoam

reconstructPar | tee log.reconstructPar

These will run the solution in the foreground, as they must be executed sequentially,

alternatively they can be run in batch on a cluster or the commands can be entered

into a script which can be run in the background to enable local running in the

background while preserving the sequential order of execution.

4.5.1 Automatically Running The Simulation From Python

The simulation can be automatically run from within a script, after it is meshed

and set up, by using the run function. This function automatically directs the

output of whichever program is run into a log file with the option of including it

as output of the Python function also. For example, to run MRFSimpleFoam, the

function call would be run("MRFSimpleFoam") and would store the output in the

file log.MRFSimpleFoam.

If automatic parallel running is desired, the functionality is also included. First,

the decomposeParDict function will write a dictionary of the same name with the

required number of processes in the specified decomposition. The domain can then

be decomposed with the command run("decomposePar") which will store the out-

put of the domain decomposition utility in the file log.decomposePar.

Once the domain has been decomposed, it is then possible to run the simula-

tion in parallel by using the run function. For example, a four process simulation

would be invoked with the command: run("mpirun -np 4 MRFSimpleFoam"). In

this case the output is stored in the file named log.mpirun. Similarly, reconstruc-

tion of the domain back into a single mesh can be automated with the command:

run("reconstructPar").

66

4.6 Automated Post Processing

There are many ways in which one might want to post-process a simulation, de-

pending on the purpose of the simulation and data required. The post-processing

functions in ajopenfoam.py are focussed only on getting the required data for the

design optimisation of rim driven thrusters. Consequently, the two main functions

are residuals and forces which extract the residuals and forces (and moments)

respectively, allowing the subsequent calculation of thrust and torque coefficients

and from this derive the efficiency of the device.

Convergence is a necessary, although not sufficient, condition for a good compu-

tational fluid dynamics simulation result. The equation residuals can be extracted

from the solution log file using the residuals function which returns a dictionary

containing lists of the residuals with the solution variables as the dictionary keys.

The exception to this are the time step continuity errors, where the sum of the local

residuals, the global residual and the cumulative residual are stored with the keys

"local cont", "global cont" and "cum cont" respectively. Thus the continuity

residual, which is perhaps the best indicator of convergence or lack thereof, can be

checked with the command:

assert residuals("log.MRFSimpleFoam")["local cont"] < 1e-4.

Once there is some confidence that the solution has obtained a sensible solution,

the performance metrics of interest must be extracted. This is done with the forces

function, which extracts the force and moment histories stored by the force func-

tion objects, that are set up either a priori or posteriori with the forceFuncObj

function. The forces function returns a set of lists of pressure based and viscous

based forces calculated from the normal and shear stresses on a face respectively.

Summing the outputs for the z-axis will yield the thrust and torque which can then

be normalised against fluid density, rotation rate and diameter to give the preferred

non-dimensional co-efficients.

4.7 Example: Steady State Simulation of Wageningen

B4-70

To illustrate the entirety of the automation functions and general simulation process,

here follows an example that computes the thrust coefficient, torque coefficient and

efficiency for a 70mm Wageningen B4-70 propeller at an advance speed of one metre

per second and rotation rate of 3000 revolutions per minute.

from ajopenfoam import ∗
from a j b l a d e s import outputb470st l

67

s e t up the case

makeCase (”b470−70mm”)

c o n t ro l D i c t (”MRFSimpleFoam” , ”500” , ”1”)

forceFuncObj (”prop” , ”b470 . s t l b 4 7 0 ” , 1027)

decomposeParDict ()

fvSchemes ()

f v S o l u t i o n ()

MRFZones(” ro to r ” , 3000)

RASProperties (”kOmegaSST”)

t r a n s p o r t P r o p e r t i e s ()

c r e a t e the geometry

outputb470st l (0 . 0 7)

os . system (”mv b470 . s t l constant / t r i S u r f a c e /b470 . s t l ”)

c r e a t e the mesh

makeDomain(−0.42 , −0.42 , −0.42 , 0 . 42 , 0 . 42 , 0 . 21 , 0 . 0175)

snappyHexMeshDict ([”b470 . s t l ”] , [” (6 6) ”] , [0 , 0 , 0 . 1] ,

MRFrotor =[[0 , 0 , −0.05] , [0 , 0 , 0 . 0 5] , 0 . 0 5] ,

f e a t u r e s =10)

run (”blockMesh”)

run (”snappyHexMesh −ove rwr i t e ”)

s e t up boundary c o n d i t i o n s

changePatchType (” r o t o r r e g i o n 0 ” , ”empty”)

renamePatch (”zmax” , ” i n l e t ”)

renamePatch (”zmin” , ” o u t l e t ”)

makeFieldsiKO ([0 , 0 , −1])

run the s i m u l a t i o n

run (”MRFSimpleFoam”)

a s s e r t r e s i d u a l s (” l og . MRFSimpleFoam”) [” l o c a l cont ”] < 1e−4

e x t r a c t the performance c o e f f i c i e n t s

f o r c e = f o r c e s (”prop”)

J = 1 / (50∗0 . 07)

KT = (f o r c e [3] [−1] + f o r c e [6] [− 1]) / (1027∗50∗∗2∗0 .07∗∗4)

KQ = −(f o r c e [9] [−1] + f o r c e [1 2] [−1]) / (1027∗50∗∗2∗0 .07∗∗5)

eta = (KT∗J) / (2∗3 .14159∗KQ)

68

4.8 Unsteady Simulation Method

Much of the solution set up and execution for the unsteady simulations is the same

as for the steady state simulations. The main differences are that the time dimension

needs to be resolved, which raises the question as to what resolution should be used,

and the geometry needs to rotate to give a realistic representation of the unsteady

flow.

The geometry creation for the unsteady simulations is the same process as for

the steady state simulations. The unsteady rotational movement is imparted at

the meshing stage, although it is theoretically possible to use multiple geometries

and mesh them all separately, this is not an efficient way to model movement; as

a timestep equivalent to 0.5 degrees would require 720 separate geometries and

associated meshes!

4.9 Unsteady Meshing

The unsteady simulation meshes were also created with blockMesh and snappy-

HexMesh, but other meshing programs such as Netgen, Harpoon and Gmsh were

also tried. Harpoon functions in much the same way as snappyHexMesh, starting

with a base hexahedral mesh and refining to a surface level, then snapping to the sur-

face before growing a layer mesh. Harpoon has the advantage of having a Graphical

User Interface (GUI) unlike snappyHexMesh, allowing easy inspection of the mesh

at each stage of generation, however exporting into an OpenFOAM format was not

natively supported in the version tested and thus export had to be preformed via

an intermediate file format.

Conversely, both Gmsh and Netgen start by meshing the surfaces and then ‘grow’

the mesh into the volume. This process has the advantage of capturing surfaces more

accurately, which is important for the unsteady case when meshing of the interface

between rotating and static regions. However, the main problem found with both

Gmsh and Netgen, is that surface imperfections (exempli gratia small surface holes,

perhaps introduced by SolidWorks .stl exporter) caused the meshing to fail.

As it was important to make sure that the interface in the unsteady simulations

was perfectly cylindrical, many parameters were adjusted in snappyHexMesh to

attempt to get the best surface capturing possible. The findings were primarily

that the snapControls dictionary in the file snappyHexMeshDict could be adjusted

to increase the number of snapping iterations, it was also found that a snapping

‘tolerance’ of between 1.0 and 2.0 produced the best surfaces. If more mesh cells are

not undesirable then the refinement level on the interface could be increased, and a

good compromise is found by increasing the maximum refinement level but retaining

a relatively small minimum refinement level. Alternatively, surface capturing could

69

be improved using a third party utility called snapEdge which focusses on making

sure feature edges are well defined in a mesh, although a similar functionality is

natively provided in snappyHexMesh from OpenFOAM version 2.0 onwards.

There are two main ways of creating a mesh with the two coincident patches

required for a sliding interface unsteady simulation. First, the rotating and static

regions of the mesh can be meshed separately and then merged together, preserving

the boundaries between regions. Alternatively, and perhaps preferrably as it only

requires a single mesh generation, the mesh can be generated as a whole with a

rotating region defined in snappyHexMesh. This region can then be used to define a

faceZone which can be converted into two independent patches for the interface. To

do this, two empty patches must be created in the boundary file, called AMI1 and

AMI2 in this work (for Arbitrary Mesh Interface). If the faceZone is called rotor

then the commands to populate the interface patches are as follow:

c r e a t eBa f f l e s −in te rna lFacesOnly −overwr i t e r o t o r ' (AMI1 AMI2) ' | t e e

l og . c r e a t eBa f f l e s

mergeOrSp l i tBa f f l e s − s p l i t −overwr i t e | t e e l og . mergeOrSp l i tBa f f l e s

This method will even work for parallel meshes with the inclusion of the -parallel

flag.

4.9.1 Dynamic Meshing

There are a number of methods for performing dynamic meshing and they are

outlined here, with the reason for choosing a sliding interface over other methods

of dynamic meshing. To begin with, there are simple mesh deformation methods,

where the number and connectivity of cells are unchanged and only the location

is changed. Mesh deformation is not a particularly successful method for large

displacements or rotation as mesh quality, particularly cell skew and aspect ratio,

typically reduces beyond a reasonable level, although it has been made to work for

rotation (Liefvendahl et al., 2010). If the movement is linear, for example a piston,

then the problem of cell aspect ratio changing can be addressed by the addition or

destruction of cells at the boundaries, but this technique is of little use in rotation

as the primary issue is the cell skew at the edge of the rotational region.

Preventing the cells at the blade tips in a rotating geometry becoming too skewed

can be achieved through topological changes where, at a rotating boundary, the

connectivity between cells is cut, moved and reattached. In this way, original mesh

quality is preserved throughout the mesh with the exception of the cells adjacent to

the rotating boundary. However, changing the mesh in this way every time step is

expensive and has the constraint of a 1:1 mapping at each step of rotation (id est

not good for unstructured meshes).

Therefore a sliding mesh interface can be used, such as a Generalised Grid In-

70

terface (GGI, Beaudoin and Jasak (2008)) or Arbitary Mesh Interface (AMI, Farrell

and Maddison (2011)). These weight the flux between cells across the rotational

boundary such that the cells do not need to be directly matched or connected. This

achieves a similar accuracy to a topological change method but allows for hanging

nodes and removes the requirement for the topological detachment and reattach-

ment.

Another option for the dynamic meshing of rotation is using immersed boundary

methods. These have a fixed background mesh through which the boundary moves,

updating the position of the walls within the background mesh at each timestep.

This type of method was not implemented in OpenFOAM at the time of investigation

and although its existence is acknowledged, it is not covered in any further depth

here.

Given all the options for dynamic meshing, the sliding interface method was

chosen as it preserves mesh quality (id est cells do not change size or shape, only

position) and a quicker solution time over a changing topology method.

4.10 Unsteady Solution Set Up for OpenFOAM

The set up for the unsteady simulations proceeds in a similar manner to the steady

state case but with a number of necessary additional parts. The OpenFOAM solver

chosen for the unsteady simulations is pimpleDyMFoam, which uses the SIMPLE

(Semi-Implicit Method for Pressure Linked Equations) and PISO (Pressure Implicit

Splitting of Operators) algorithms to handle pressure-velocity coupling for the inner

(within a timestep) and outer (across timesteps) iterations, respectively. The key

dictionaries which differ to steady state simulation when solving with pimpleDyM-

Foam are fvSchemes, fvSolution and controlDict which are located in the system

directory and also the dynamicMeshDict dictionary located in the constant direc-

tory.

The numerical schemes chosen for the unsteady simulation were initially second

order Gaussian schemes for calculating the gradient, divergence and Laplacian with

a first order discretisation in time. However, while it is typically more stable to

use a first order time discretisation, it is more accurate and less diffusive to use

a second order time discretisation. The backward differencing scheme, listed as a

second order implicit scheme in the OpenFOAM User Guide, was found to be the

most stable second order time discretisation and Figures 4.7a and 4.7b show that

the first order scheme is accurate enough, but the second order scheme works from

the outset and so is chosen for the base case.

For the unsteady simulation the same matrix solvers were chosen, that is Pre-

conditioned Conjugate Gradient (PCG) and Preconditioned Bi-Conjugate Gradient

71

(a) Force History

(b) Torque History

Figure 4.7: Solution histories for Wageningen B4-70 propeller using first and second
order time discretisation schemes.

72

(PBiCG) for symmetric and asymmetric matrices, respectively, except for the pres-

sure which was solved using a generalised Geometric-Algebraic Multi-Grid (GAMG)

solver to speed up convergence. The preconditioning of the solution matrices was

performed using Diagonal Incomplete-Cholesky (DIC) for the PCG solver and Di-

agonal Incomplete-LU (DILU) for the PBiCG solver.

In an unsteady simulation the timestep size is important and has been shown

to be crucial to the final result (Kaufmann and Bertram, 2011). If the timestep

is too large then the solution will diverge, although OpenFOAM has the option to

dynamically change the timestep size to prevent this happening by limiting the

maximum Courant number. As the nominal rotational speed for the unsteady

simulation is 3000 revolutions per minute, this corresponds to a complete single

revolution every 0.02 seconds. A timestep which corresponds to one degree of ro-

tation, as recommended by Kaufmann and Bertram (ibidem), would evaluate to

0.02/360 = 5.5555 × 10−5 seconds. However to give a rounded timestep that is

smaller than this, a timestep of 2× 10−5 seconds was initally chosen. This timestep

was found to be unstable and was later refined to 2× 10−6 seconds, corresponding

to a maximum Courant number of approximately 0.3.

The boundary and initial conditions are almost identical to those of the steady

state simulation, although the mesh rotation and sliding interface must be accounted

for. The boundary condition for the AMI patches was a cyclicAMI, with the corre-

sponding patch specified along with the type in the constant/polyMesh/boundary

file. The other thing that is important to specify on any moving surfaces, is the ve-

locity boundary condition should be a movingWallVelocity, and thus the surface

velocity is calculated from the mesh motion.

4.11 Solving Unsteady Simulations

The solution for the unsteady simulations is the same as for the steady counterpart,

with the replacement of MRFSimpleFoam with pimpleDyMFoam. However, due to the

significantly longer solution times required to resolve the time domain, all simula-

tions were run in batch on the Iridis3 supercomputer. As the solution needs to be

restarted when maximum wall time (the maximum allocated time per supercom-

puter job) is reached, the command that is run is:

pimpleDyMFoam -parallel >> log.pimpleDyMFoam

This appends the output to the same log after the solution is restarted, keeping a

linear log of solution progress. Alternatively, one may wish to write to separate log

files for each restart, which can be achieved by changing the file name at the end of

the command each time it is restarted.

73

74

Chapter 5

Verification and Validation of

Computational Fluid Dynamics

Best practice guidelines for computational fluid dynamics outline a number of pro-

cesses to go through to ensure the quality of the results produced and increase

confidence in the simulation’s representation of reality. Investigations should be

conducted to verify that the results are independent of any increase in mesh res-

olution and any increase in domain size such that there is no benefit to accuracy

from increasing the number of cells. It is also good practice to validate the results

against any available experimental data. If the experimental data are available, then

it is better to validate simulations against field values, comparing distributions of

variables such as velocity and pressure rather than aggregate data such as forces

and torques.

Throughout the verification and validation process a 70mm diameter Wagenin-

gen B4-70 propeller geometry was used, as the geometry and reliable, published

experimental data were available. Therefore all the figures and results within this

chapter pertain to the Wageningen B4-70 propeller, and not either of the rim driven

thruster geometries in this thesis.

5.1 Steady Method Verification

Mesh verification for this work first involved using a reasonable exterior mesh and

some adjustments to the layer mesh to find a good layer mesh at a reasonable y+

value that could be fixed for the remainder of the mesh verification. Initially, the

RNG k-ε turbulence model was used with a high Reynolds number wall function,

requiring the y+ value to lie within the log-law region of the turbulent boundary layer

(see Section 2.3.6). Once a suitable layer mesh was found that yielded results with

acceptable y+ values in the range of 30 ' y+ ' 50, different meshes with increasing

75

Figure 5.1: Mesh dependency study showing the effect of mesh resolution on thrust
calculated.

levels of surface refinement were investigated to find the level of refinement at which

any further increase did not cause any change in the results.

Figure 5.1 shows the results of the mesh dependency study. It can be seen from

this figure that a mesh in excess of 400,000 cells is sufficient and any further increase

in resolution does not change the result. This corresponds to a surface refinement

level of six (id est the base mesh is refined six times), with a base mesh size of

17.5mm this gives a typical edge length of 17.5
26

= 0.2734375mm. To ensure the

surface mesh was sufficient for all explored cases, a surface refinement level of seven

was settled upon. At a refinement level of seven, the typical edge length becomes

0.13671875mm for a base mesh size of 17.5mm. The effect of the surface refinement

level on the represented geometry can be clearly seen by comparing Figures 5.2 and

5.3, where Figure 5.2 shows the coarsest mesh at surface refinement level three and

Figure 5.3 shows the level of acceptable mesh at surface refinement level six.

5.1.1 Boundary Distance Investigation

After the mesh settings at the surface were defined, the size of the computational

domain was investigated. This was done by changing one dimension of the domain

size while keeping the other two dimensions fixed at a baseline size that should be

76

Figure 5.2: Visualisation showing a coarse surface mesh.

Figure 5.3: Visualisation showing a fine surface mesh.

77

Figure 5.4: Computational domain size study showing the effect of distance to
domain walls on thrust calculated.

sufficient based on experience and ‘rule of thumb’ guidelines. The baseline size of

the domain was six propeller diameters to the inlet and radial boundaries and 12

propeller diameters to the outlet boundary. This study was conducted at a single

advance ratio of 0.3, which was selected as this is the advance ratio used in the

design optimisation study conducted later on in Chapter 7.

The first variable investigated and the one that was found to have the most

profound effect on the results was the distance from the propeller tip to the domain

walls (i.e. the radial size of the domain, although the domain is a cuboid, so in this

case the minimum radial size). As can be seen in Figure 5.4, the results oscillate

considerably before settling down to a reasonable value after increasing the compu-

tational domain width above six propeller diameters (420mm). This oscillation is

highly unexpected and unphysical, characterised by thrust values up to ten times

higher than they should be. It is presumed that this phenomenon is due to a com-

bination of the frozen rotor formulation and the boundary condition on the radial

walls producing unphysical pressure waves.

Similarly the effect of the distance from the propeller to the inlet was investi-

gated, although it was found to have a less dramatic impact. Figure 5.5 shows the

results of the study and an inlet distance of six propeller diameters was chosen. Al-

though the results in Figure 5.5 indicate an inlet distance of five propeller diameters

78

Figure 5.5: Computational domain size study showing the effect of distance to
domain inlet on thrust calculated.

is sufficient, six propeller diameters were used to allow for variation in the required

distance away from the verification test case.

When the distance to the oulet was investigated, it seemed to impart little

variability to the results, although using an outlet distance of two propeller diameters

lead to a solution that did not converge. The results in Figure 5.6 indicate an

approximate minimum outlet distance of six propeller diameters. However, as the

required outlet distance may be larger at higher values of the advance ratio than the

test case, it was decided that the baseline outlet distance of 12 propeller diameters

should be used. This should also improve the accuracy of the wake, although this

is not the primary interest in this investigation.

The extremely large variation in the results in Figure 5.4 is interesting and

prompted further investigation. Each case up to seven propeller diameters was

repeated and a number of infill points between five and seven propeller diameters, the

critical transition region, were also included. This was to investigate the transition

from the large oscillations to a steady result and to check that the initial results were

not anomalies. As can be seen in Figure 5.7, the results of the repeated investigation

are the same as those in Figure 5.4 and thus the findings were confirmed.

79

Figure 5.6: Computational domain size study showing the effect of distance to
domain outlet on thrust calculated.

Figure 5.7: Repeated computational domain size study showing the effect of distance
to domain walls on thrust calculated.

80

Figure 5.8: Validation against experimental data for the Wageningen B4-70 propeller
using RNG k-ε turbulence model.

5.2 Steady Method Validation

Once the computational domain size and mesh resolution had been systematically

verified, the work proceeded to investigate other advance ratios, thus allowing a

performance characteristic of the propeller to be built and compared against the ex-

perimental data from MARIN. The results of the validation procedure are displayed

in Figure 5.8. It was originally planned to simulate data points at 0.5 m/s advance

speed intervals, however, the 0 m/s and 0.5 m/s advance speed cases did not con-

verge, prompting further investigation. First, the advance speed was decremented

in smaller 0.1 m/s intervals from the 1 m/s case until divergence occured. These

results are plotted in Figure 5.8 and the slowest converged case was used to try and

inform the reason for solution divergence. Different methods were then attempted

to achieve convergence, as detailed in Section 5.2.1.

5.2.1 Convergence Problems at Low Advance Ratios

Using the RNG k-ε turbulence model at low advance speeds caused problems with

solution convergence. To try and get the solution to converge a number of different

methods were attempted. First, to see whether it was instability due to the use of

second order discretisation schemes, a more diffusive but robust first order scheme

81

Figure 5.9: Validation against experimental data for the Wageningen B4-70 propeller
using k-ω SST turbulence model.

was tried but this did not yield any success. Another approach was to try using

a pre-converged solution (at higher advance speed) to seed the initial conditions of

the flow field, however this also did not yield any success. Similarly, a slow increase

of rotational speed, Ω, was tried with no success. Other numerical parameters were

varied to try and improve the numerical stability including the timestep size and

the relative tolerance (thus the number of inner iterations) but solution convergence

was still not achieved.

One solution to the problem that worked was reducing the advance ratio, J , by

increasing the rotational speed, Ω, rather than reducing the velocity. The solutions

with increased Ω at 6000 rpm and 12000 rpm both converged, granting some insight

into the source of the divergence. As the rotational speed is the dominant speed

(id est larger than the advance speed), the primary difference between a solution at

half the advance speed and a solution at double the rotational speed is the Reynolds

number. At low advance ratios, the propeller blades are typically at a larger angle

of attack to the incident flow, thus at lower Reynolds numbers, where viscous forces

are more dominant, separation is more likely to occur. It was conjectured that it

was this low speed separation that was the source of the instability and the k-ω SST

turbulence model was tried as it handles low speed separation better.

As can be seen in Figure 5.9, the k-ω SST model did indeed succeed in getting

82

converged results at low advance speeds. The validation also shows good agreement

with the experimental data, thus increasing confidence in the capabilities of the com-

putational fluid dynamics method. The slight differences between the experimental

and CFD results can be primarily attributed to subtle differences between the ex-

perimental and computational geometries at the blade tips and the filleting at the

blade roots. There is a large discrepancy between the experimental and numerical

results at the bollard pull (0 m/s advance speed) condition and this is discussed in

further detail in the following Section 5.2.2.

5.2.2 Bollard Pull Condition

Thrust produced when stationary is measured experimentally by a bollard pull test

and the state of statically thrusting is often referred to as the bollard pull condition.

In the validation results in Section 5.2.1, it can be clearly seen that the static

thrust does not match the quoted experimental value. The propeller characteristics

produced by the work of Abramowski et al. (2010) also feature a reduction in thrust

at low advance ratios compared to experimental data. It is conjectured in the

paper that the reason for this is a difference between the computational geometry

and real geometry. However, this is not likely to be the cause as an error from a

geometric discrepancy would be a systematic error, consequently it would reduce

the thrust throughout the entire range of advance ratios and not just at the bollard

pull condition.

A more likely explanation of the observed results is that the computational set

up and boundary conditions do not realistically reflect what is occuring in the real

world flow. As there is no inflow to begin with, the propeller must induce a flow

through itself. However, there is no inflow to feed mass into the computational

domain, thus the induced flow cannot flow out of the domain without violating

mass conservation. The only remaining option is for the flow to recirculate, but this

recirculation would typically require a larger computational domain than a moving

case and thus it is possible that the computational domain is wrongly configured

when extrapolated from a moving case to a static thrust case. As the computational

domain extends a significant distance from the propeller, it is likely that even the

recirculation induced when there is no advance speed should be able to move around

the propeller unimpeded by the computational boundaries.

An alternative theory to the reduction in static thrust is that the experimental

data for a pseudo-static thrust is obtained through either extrapolation or instan-

taneous thrust measurement to get a ‘true’ representation of the thrust at zero

advance ratio. As the induced circulation (shown in Figure 5.10) and local velocity

produced by static thrusting would mean that the local advance ratio is no longer

zero and thus not technically correct despite having a global advance ratio that

83

Figure 5.10: Streamlines showing recirculation about a Wageningen B4-70 propeller
at bollard pull.

is zero. Details of how experimental bollard pull measurements are conducted in

Carlton (2007) give a differentiation between the instantaneous bollard pull value

and a continuous bollard pull value. It is thought that the experimentally reported

values for the bollard pull condition are the instantaneous bollard pull condition,

that is prior to any steady state recirculation being induced, and this is the rea-

son for the difference between experimental data and computational fluid dynamics

simulations, which by definition report the steady state bollard pull value.

5.2.3 Summary

A thorough verification of both mesh resolution and computational domain size

has been conducted and a baseline computational domain for all steady-state sim-

ulations has been set. The required computational domain size for this exercise is

approximately six propeller diameters to the walls, inlet and outlet, although double

the required outlet distance was chosen in anticipation of high advance ratio cases

where more momentum will be advected downstream.

It is interesting to find that this domain size is in excess of some simulations

reported in the literature. For example, the simulations by Huang et al. (2007)

used only a two propeller diameter radius and a total domain length of only five

propeller diameters, less than the length to the inlet in the present work. This

equates to a blockage ratio of 6.25%, higher than the recommended maximum of

1.5%. Similarly, Rhee and Joshi (2005) used only a domain with a radius of 1.43

84

propeller diameters, equating to a blockage ratio of 12.2%, and a total domain length

of only 1.32 propeller diameters. In the work by Bensow and Bark (2010) the domain

only had a domain width 1.5 times the propeller diameter, although in this case, the

reasoning was to match the size of the experimental cavitation tunnel. The blockage

is very significant in this case, a total of 44.4%, although in this situation it was

replicating experimental conditions, which would have suffered the same amount

of flow blockage in the cavitation tunnel. It may be the case that the boundary

conditions used by the above works were more suited to a smaller domain, although

other possibilities include a limitation of computational resources, as a larger domain

would require both more memory and more computing time.

The mesh verification and the required surface resolution to properly represent

the propeller in a computational space is visibly finer than the level of mesh res-

olution used by Celik and Guner (2007). A visual inspection and comparison of

the mesh would suggest that the surface resolution is insufficient, although a trade

off between speed of solution and accuracy must always be made in computational

fluid dynamics, and while the results may not be experimentally accurate, their

conclusions may be still be valid.

5.3 Unsteady Method Verification and Validation

For the purposes of gaining confidence in the numerical simulation, the verification

and validation procedure for the unsteady method was conducted in the same sys-

tematic manner as for the steady state simulations. However as time-accuracy is

also required, the time histories of force and torque are compared for each mesh

level and domain size. As the test case of a Wageningen B4-70 propeller exhibits

no unsteady phenomena, the results of unsteady simulation are rather trivial and

comparable to the steady state. Hence the purpose of this procedure is purely to

confirm the method functions as expected and as a learning process for the necessary

tools.

Mesh level was found to be important to time accuracy as shown in Figures 5.11

and 5.12, although results for the Wageningen B4-70 propeller settle down to the

same steady state result. A mesh level of 7, which corresponds to roughly 500,000

cells and a surface resolution of 0.27mm is almost as accurate as a mesh level of 8

which has roughly 1,200,000 cells and takes significantly longer to solve with only

an increment of surface resolution to 0.14mm, thus a mesh level of 7 is a suitable

compromise, though a higher resolution should be used if practicable.

The result is not as sensitive to distance to the outer boundary as it was for the

steady simulations. It is shown in Figures 5.13 and 5.14 that the boundary need

only be two propeller diameters away and is not severely affected by only being

85

Figure 5.11: Force history for increasing mesh level.

Figure 5.12: Torque history for increasing mesh level.

86

Figure 5.13: Force history for increasing distance to outer boundary.

Figure 5.14: Torque history for increasing distance to outer boundary.

87

Figure 5.15: Force history for increasing distance to inlet boundary.

one propeller diameter away. A full range of propeller diameters were tested in

the verification procedure, however as all the lines between two and ten propeller

diameters are coincident, that is they lie over each other, it is not informative to

plot them in Figures 5.13 and 5.14. A distance of two propeller diameters is also

considered as best practice in experimental procedure and thus chosen as the domain

size for the unsteady simulations.

Distance to the inlet boundary seems to have little impact on the results as shown

in Figures 5.15 and 5.16. Consequently a distance of two propeller diameters to the

inlet boundary was chosen, to allow for the duct flow in the rim driven thruster to

be unaffected.

Outlet boundary distance also does not have much impact on the quantative

value of the results but if it is too small it can lead to solution divergence as shown

in Figures 5.17 and 5.18. As in Figures 5.13 and 5.14, a full range of domain sizes

were tested and the unchanged lines between two and ten propeller diameters were

omitted from Figures 5.17 and 5.18 for clarity. To allow for the wake at higher

advance ratios than the verification test case, an outlet distance of four propeller

diameters was selected.

For the unsteady simulations, with a distance to the boundary of two propeller

diameters, the blockage ratio for this domain size is rather high at 4.9%. However,

88

Figure 5.16: Torque history for increasing distance to inlet boundary.

Figure 5.17: Force history for increasing distance to outlet boundary.

89

Figure 5.18: Torque history for increasing distance to outlet boundary.

as the verification procedure above has shown, this level of blockage has no impact

on the simulation results.

Measurement Pressure Viscous Total Exp. Error (%)

Thrust (N) 21.6021 -0.309489 21.292611 22.254 4.32
Torque (Nm) 0.2135 0.0180987 0.2315987 0.237 2.28

Table 5.1: Validation results for unsteady simulation at an advance ratio of 0.286

To validate the unsteady simulation, the results for the base case are compared

against the experimental data for the same condition in Table 5.1. At a low advance

ratio of 0.286, the error between the calculated thrust and published experimental

data is 4.32% and for torque is 2.28%. This is reasonably close, especially when the

differences between simulation and experiment at low advance ratios are considered,

as previously discussed in Section 5.2.2.

5.3.1 Numerical Start Up of Wageningen B4-70 Propeller

To estimate how many revolutions need to be simulated before a periodic state is

reached, the numerical start up of the Wageningen B4-70 propeller in a quiescent

flow is shown in Figures 5.19 and 5.20. As a general rule of thumb in unsteady

computational fluid dynamics, three revolutions are typically required to remove

90

Figure 5.19: Force history during start up of Wageningen B4-70 propeller at 3000
RPM.

Figure 5.20: Torque history during start up of Wageningen B4-70 propeller at 3000
RPM.

91

any transience. This is also observed in the results for the unsteady simulation

of the Wageningen B4-70 propeller, where a steady state is observed after three

complete revolutions, which is expected as there are no unsteady features in the

flow.

The computational results for the start up of the Wageningen B4-70 propeller

in a quiescent flow shown in Figures 5.19 and 5.20 look incorrect at a first glance

as a slow ramp up to the steady state value is expected. However, when the fact

that immediately after start up there is no induced flow is considered, the results

are more sensible. Without the induced axial flow, the momentary effective angle

of incidence is higher, leading to the higher values of both thrust and torque before

the induction of an axial flow tempers this status to a steady state. In reality the

propeller does not experience such forces, as there is rotational inertia which is not

modelled in the present work. If an inertialess propeller were to exist such that

it would start up at the desired number of revolutions per minute instantaneously

then the present results would be, at the very least qualitatively if not quantitively,

correct. However, as the system takes time to increase rotational velocity, a different

transient path to the steady state is observed in experiment. It is stressed that the

start up observed here is purely a numerical phenomenon and not a representation

of a real process.

92

Chapter 6

Results for Simulation of Rim

Driven Thrusters

6.1 Preliminary Results for 70mm Rim Driven Thruster

After the verification and validation procedures had been completed on the standard

series Wageningen B4-70 propeller geometry, preliminary work began on modelling

the 70mm IntegratedThruster™. Figure 6.1 shows a meshed representation of the

70mm IntegratedThruster™coloured to show rotating (yellow) and static (blue) re-

gions, with a (red) slicing plane to show the meshing of the internal field. This mesh

comprised a total of 1,121,519 cells including 85,046 cells in the surface layer mesh.

As the preliminary results were initially obtained using the RNG k-ε turbulence

model, there was no convergence for low advance ratios as also seen in Section 5.2.1.

However, the results using the RNG k-ε turbulence model are shown in Figure 6.2,

though no torque values are displayed for comparison as the available experimental

data for the 70mm thruster are limited and do not contain torque measurements.

However, it is clear from the thrust values that there is a large difference between the

experimental data and the results from the computational fluid dynamics simulation.

These preliminary results may be improved upon when the k-ω SST turbulence

model is used, and Figure 6.3 shows these results compared against those from the

RNG k-ε turbulence model. It is shown that there is little difference between the

turbulence models and this suggests that the difference between experimental and

numerical results is not due to the turbulence modelling. The solution convergence

at low advance ratios is shown in Figure 6.3 and thus k-ω SST was chosen as the

sole turbulence model henceforth.

There are a number of sources for the difference between the experimental and

computational results, aside from those aforementioned in the validation in Section

5.2, all of which contribute to a greater or less extent. Firstly, the frozen rotor

93

Figure 6.1: Meshed 70mm Integrated Thruster™.

Figure 6.2: Preliminary results for the 70mm Rim Driven Thruster using RNG k-ε
turbulence model.

94

Figure 6.3: Preliminary results for the 70mm Rim Driven Thruster using k-ω SST
turbulence model.

formulation for the interface between rotating and non-rotating reference frames

may not be capturing the rotor-stator interaction correctly, leading to inaccuracies

in the computational results. This phenomenon is covered in more depth in Sections

6.1.1 and 6.7.2, and is shown to be a significant source of error in the steady state

simulation of rim driven thrusters. The way the annulus is modelled and resolved in

the simulation is also another source of discrepancy, as it is a complex region of the

flow and a correct estimation of torque and thrust produced in this region is critical

to performance prediction. Calculating the torque and thrust in the annulus region

whilst keeping computational expense down is covered in further in Section 6.3.

Finally, there is a source of error that does not derive from the use of computa-

tional fluid dynamics and that is the experiments. The lack of torque measurements

and the unexpected step in the thrust trendline observed at an advance ratio of

0.6 in the experimental data, but not in the computational data, seen in Figure 6.2

impart a reduced confidence in the validity of the experimental results. There is

also some evidence, in a project by Nimmo (2011), to suggest that the experimental

method is flawed and may overpredict the thrust by virtue of overestimating the

drag on the supporting structure in the towing tank tests.

95

Figure 6.4: Preliminary results for the 70mm Rim Driven Thruster showing the
pressure distribution on the blades. Units are simulation units of m2/s2 which are
normalised against density due to incompressibility.

6.1.1 Analysis of Preliminary 70mm Rim Driven Thruster Results

Although there are differences between the experimental data and the simulation

results, some insights can be gained from looking at qualitative features of the flow.

Figure 6.4 shows the pressure distribution over the blades of the device, where the

highly negative pressure region at the leading edge of the tip shows that the blade

is working very hard here. The pressure towards the trailing edge of the blades

shows that very little, if any, propulsive force is being generated here. The reason

for this result is partly due to the design of the blade section being symmetric

for bi-directional operation, although the hard working blade tip could be a result

of the duct reducing the inflow velocity at the tip and thus increasing the local

angle of attack. This would suggest that some gain in efficiency could be produced

through optimising the blade pitch distribution for the augmented inflow caused by

the ducting.

One of the reasons for the difference between computational and experimental

results was thought to be due to the ‘frozen rotor’ formulation of the interface in

MRFSimpleFoam, which was discussed previously in Section 6.1. The effect of the

frozen rotor was proven by changing the relative position of the rotor to the stators

96

Figure 6.5: Change in simulation results for thrust, torque and efficiency as rotor
position is varied.

and solving for every 15 degrees. Only six simulations were required as the geometry

is rotationally periodic every 90 degrees and the results of this are shown in Figure

6.5. There is a fluctuation of up to 20% from the average in the results showing

that a single result cannot account for the average performance in the device.

However, if an average is taken of all the individual rotor positions for each ad-

vance ratio, some interesting data can be derived from the steady state simulations.

Figure 6.6 shows the variation of the average components of thrust force, which is

drag when negative, as the advance ratio changes. Similarly, the sources of torque

can be broken down into their component parts as shown in Figure 6.7. Here torque

on the blades is coloured blue, which can be considered as the losses incurred due

to making thrust, and torque on the rim is coloured green, which can be considered

primarily as the hydrodynamic losses in the annulus region.

The parts in Figure 6.7 can be further broken down into pressure based torque,

that is the moment derived from wall normal stresses, and viscous based torque,

that is the moment derived from wall parallel shear stresses. Torque on the blades

is primarily from static pressure acting on the blade and, as expected, the torque

on the rim is predominantly from shear stress, or skin friction.

The reduction of thrust on the blades as the advance ratio increases shown in

Figure 6.6 is simply explained by the moving of the propeller blades away from

97

Figure 6.6: Breakdown of thrust/drag sources of the 70mm Rim Driven Thruster
against advance ratio.

their design condition, thus the blade sections produce less lift, which in turn equals

less thrust. Similarly if the propeller blades were approximated to an actuator

disc, the decrease in thrust would be manifest as a reduction in pressure difference

across the disc and this reduced pressure differential would also be evident on the

rim, thus reducing the rim thrust in proportion with the blades. The increased

rearward pressure caused by the propeller blades also manifests itself on the duct,

contributing to the large forwards thrust at low advance ratios, but this is quickly

swamped by the drag experienced as the advance ratio, and consequently forward

velocity, increases.

6.2 Raw Results for the 100mm Rim Driven Thruster

Following the preliminary work on the 70mm rim driven thruster, it was decided

that the experimental data for the 70mm device were not sufficiently thorough nor

was there sufficient confidence in the accuracy of the data and there were no values

of uncertainty in the experimental data available either. All subsequent work was

conducted using a 100mm thruster geometry as the available experimental data

included estimates of hydrodynamic torque, calculated by subtracting the known

losses in the electrical machine from the total power consumption and then dividing

98

Figure 6.7: Breakdown of torque sources of the 70mm Rim Driven Thruster.

by the rotation rate. The experimental results for the 100mm thruster are considered

to better reflect the actual performance of the device, however there is still likely to

be some overprediction of the thrust as covered in Section 6.1.

The simulations for the 70mm thruster included the annulus region, that is the

axial and radial gap between the rotor rim and ducting, also referred to as the rim

gap. To keep the mesh at a tractable number of cells, and at a resolution in keeping

with the validation study, the transverse (id est wall normal) resolution of the rim

gap was only a total of four cells. Full resolution of the annulus, that is with a

minimum of 40 cells across the gap, in the current geometry would require in the

order of tens of millions of cells as well as additional temporal requirements for the

resulting internal flow regime to reach a steady state (see Batten (2002) for a full

account of computational fluid dynamics modelling of Taylor-Couette flow).

As solution time is ideally to be minimised to reduce optimisation turn-around

time, subsequent simulations for the 100mm thruster were carried out with the

annulus region excluded from the computational fluid dynamics calculation. Instead,

the effect of the annulus region on both the torque and the thrust was modelled

separately, thus reducing the computational cost of the simulations, without any

significant penalty to accuracy as the annulus region was previously not sufficiently

resolved to be considered accurate. The choice of model for the annulus is discussed

99

Figure 6.8: Raw thrust coefficient data for the 100mm Rim Driven Thruster without
annulus models.

further in Section 6.3.

Figures 6.8, 6.9 and 6.10 show the raw computational fluid dynamics data for

the thrust coefficient, torque coefficient and efficiency respectively. They show the

difference between evaluating the performance for one rotor position and averaging

over multiple rotor positions, thus confirming the inaccuracy of a single frozen-rotor

simulation hypothesised in Section 6.1.1. Compared to the experimental data for

thrust and torque, it is clear that averaging over multiple rotor positions generally

produces a more accurate result. Although the change to thrust is marginal, the

torque prediction is closer to the experimental data, however a benefit to efficiency

accuracy is neither clearly nor systematically shown.

It is worth noting here that the efficiency of the 100mm thruster is quite low

at only 20% . This is primarily a function of the size of the device, as it is well

known that larger diameters increase efficiency. The diminuitive size of the 100mm

thruster means a lower Reynolds number flow and consequently the viscous losses

are proportionally higher than for larger propellers.

A deficit of thrust and torque is shown in Figures 6.8 and 6.9 respectively, which

is also expected from the raw data as the annulus models are not included, and

these would augment both the thrust and torque closer to the experimental results.

The effect of the annulus models on the efficiency, as depicted in Figure 6.10, is

100

Figure 6.9: Raw torque coefficient data for the 100mm Rim Driven Thruster without
annulus models.

Figure 6.10: Raw efficiency data for the 100mm Rim Driven Thruster without an-
nulus models.

101

Figure 6.11: Diagram of annulus showing radial and axial gaps.

not possible to predict as it is dependent on the relative magnitudes of thrust and

torque produced in the annulus.

6.3 Analytical Annulus Models

There are a number of effects produced by the annulus flow that need to be captured.

The most important effect relating to device performance is the viscous friction on

the rotor that causes significant torque losses in the device. However, as there is

an axial pressure gradient, there is an axial flow in the thrust direction that is also

subjection to friction losses. However, the friction ‘losses’ in this case resolve to

a force in the axial direction contributing to the thrust in a positive manner and

increasing the performance of the thruster. It is also possible in some cases that the

axial pressure gradient acts to reduce the torque losses in the rim gap (Manna and

Vacca, 2009) by modification of the tangential velocity profile.

Typically analytical models of the annulus either cover the radial gap, which is

a Taylor-Couette flow, or the axial gap (id est the front and back faces of the rotor,

see Figure 6.11) and none have been found that consider the interactivity of the two

flow regimes. Consequently, we shall look at the models for the two areas separately

below.

6.3.1 Radial Gap Models

Three models are defined in this section, the first two for torque estimation and a

third for axial viscous forces. The first model is derived here from the assumption

of a linear velocity profile as a method for derivation of torque based on velocity

profile. The second radial gap model given is the Bilgen and Boulos model, which

is empirically derived and subsequently used as a more accurate model than a lin-

ear velocity assumption. The third model is given to attempt axial viscous force

estimation.

To begin with, an approximation of the torque losses can be made by assuming

102

the velocity profile in the gap is linear. In practice this is not the case, but a linear

approximation gives a best-case scenario, that is the one that gives the minimum

torque out of the possible velocity profiles.

The skin friction, or the wall shear stress, τw, that contributes towards the

torque losses in the annulus, can be found for a Newtonian fluid from the following

relationship:

τw = µ
∂Uθ
∂r

(6.1)

where µ is the dynamic viscosity, Uθ is the rotational velocity and r is the radial

co-ordinate.

As there is an assumption of a linear velocity profile, the velocity gradient at the

wall is equal to the gradient across the rim gap. Using the relationship Uθ = ωr, at

the outer wall (r = r2) the non-slip condition requires that Uθ = 0 and at the inner

wall (r = r1) the velocity is Uθ = ωr1. Also, the change in r between these two

velocity conditions is r2 − r1, which can be substituted into Equation 6.1 to yield

the following:

τw = µ
0− ωr1
r2 − r1

.

From the equation for the wall shear stress, the torque can be derived by multi-

plying by the area, πr1
2, and the moment arm, r1. This yields Equation 6.2 below:

Qrim =
−µωπr14

r2 − r1
(6.2)

where Qrim is the torque on the rotor due to the radial annulus gap.

Perhaps the most comprehensive experimental study on the torque produced

in the annulus of a rotating machine was conducted by Bilgen and Boulos (1973).

By combining their own and other’s experimental data, four regimes based on gap

Reynolds number (Equation (6.3)) were identified and empirical relationships were

derived for each of these. The four regimes and their equations are as follow:

Re =
ρωr1(r2 − r1)

µ
(6.3)

CM = 10(
r2 − r1
r1

)0.3Re−1.0, with Re ≤ 64 (6.4)

CM = 2(
r2 − r1
r1

)0.3Re−0.6, with 64 < Re < 500, (r2 − r1)/(r1) > 0.07 (6.5)

CM = 1.03(
r2 − r1
r1

)0.3Re−0.5, with 500 ≤ Re ≤ 104 (6.6)

CM = 0.065(
r2 − r1
r1

)0.3Re−0.2, with Re > 104 (6.7)

where ρ is the density of the working fluid.

103

For completeness it is necessary to define the moment coefficient in relation to

torque as multiple definitions exist and it is not immediately clear which one is used.

Throughout this work, the definition used in Bilgen and Boulos (1973) will be taken,

and the torque is calculated as in Equation (6.8):

Qrim =
1

2
ρπω2r41LCM (6.8)

where L is the (axial) length of the rim and CM is the moment coefficient.

As there is a pressure differential across the annulus, it follows that an axial flow

is induced, which in turn will exert a shear force on the thruster, both through axial

friction on the rim and friction on the outer casing. An estimate of the contribution

of the annulus to the thrust can be made by first assuming that the pressure differ-

ential is equal to the ratio of shear force to flow area as per Equation (6.9) which

can be rearranged for thrust as Equation (6.10).

∆P = Tgap/Agap (6.9)

Tgap = ∆P/Agap (6.10)

where ∆P is the pressure differential across the annulus, Tgap is the thrust contri-

bution of the annulus and Agap is the flow area through the annulus. To resolve this

in terms of the thruster geometry, the flow area can be expressed as:

Agap = (πr22 − πr21) (6.11)

where r1 and r2 are the inner and outer annulus radii respectively. Finally, if the

blade thrust generation is modelled as an actuator disc, then an expression for

pressure differential can be derived from the pressure thrust on the blades, Tblades,

divided by the blade disc area:

∆P = Tblades/πr
2 (6.12)

Combining Equations (6.10), (6.11) and (6.12) will yield the following equation for

the annulus thrust in terms of geometry and thrust generated by the blades:

Tgap =
r22 − r21
r2

Tblades (6.13)

6.3.2 Axial Gap Models

Two models are also given in this section, with the first again based on a linear

approximation to ascertain a lower bound for torque and the second empirically

derived by Daily and Nece which is more accurate and ultimately chosen.

104

In a similar fashion to the radial gap, a first approximation of the torque contri-

bution of the axial gap can be made by assuming a linear velocity profile. Starting

from Equation 6.1 and apply the non-slip condition at the duct axial wall, Uθ = 0,

and at the rotor axial wall, Uθ = ωr, where r in this case varies along the axial

wall. Then, if the distance to the duct and rotor axial walls are given by l2 and l1

respectively, the equation for the wall shear stress becomes:

τw = µ
0− ωr
l2 − l1

.

To get the force, the wall shear stress must be multiplied by the area, and then

be multiplied by the moment arm to get the torque. However, both the wall shear

stress and moment arms are a function of radius and thus the torque is given by the

following integral:

Qaxial =

∫ r2

r1

−2µωπ

l2 − l1
r3dr

which when evaluated results in:

Qaxial =
−µωπ(r42 − r41)

2(l2 − l1)

where Qaxial is the torque on the rotor due to the axial annulus gap.

Finally, considering that there is both a front and rear axial face on the rotor,

the torque contribution is thusly doubled, leading to Equation 6.14:

Qaxial =
−µωπ(r42 − r41)

l2 − l1
(6.14)

which is very similar to Equation 6.2 which was derived under the same assumptions.

In an attempt to measure the friction on the axial faces of a spinning disc, Daily

and Nece (1960) found four different empirical regimes based on a tip Reynolds

number (Equation (6.15)) and a spacing ratio, which using the present nomenclature

is defined in Equation (6.16).

Rer =
ρωr22
µ

(6.15)

sr = (l2 − l1)/r2 (6.16)

where Rer is the tip Reynolds number and sr is the spacing ratio. As the spacing

ratio is very small and the tip Reynolds number very high, only one regime applies

to the 100mm rim driven thruster, whose moment coefficient is given by Equation

(6.17) below:

CM =
0.16(

l2−l1
r1

)0.167
Re0.25r

(6.17)

105

Figure 6.12: Thrust coefficient for the 100mm Rim Driven Thruster.

6.4 Results for 100mm Rim Driven Thruster Including

Annulus Models

Applying the annulus models to the CFD results for the 100mm rim driven thruster

(Figures 6.8, 6.9 and 6.10) gives the thrust coefficient, torque coefficient and effi-

ciency curves shown in Figures 6.12, 6.13 and 6.14 respectively. The original raw

data, averaged over multiple rotor positions, are included in the Figures for com-

parison.

In Figure 6.12 it is shown that even with the proposed rim thrust model for

the annulus, the increased thrust does not match the experimental data. The dis-

crepancy between the results can be attibuted to either inaccuracy in the thrust

model, computational fluid dynamics simulation or the experimental results, this is

discussed further in Section 6.4.1.

The results including the torque models are shown in Figure 6.13, where the

experimental data lie between the results for the simulation and the results including

the Bilgen and Boulos model alone. With both annulus torque models included, the

results are significantly higher than the experimental results, which can be attributed

to the interactivity between the flows in the radial and axial gaps not being included.

It is also possible that the presence of the axial pressure gradient also affects the

106

Figure 6.13: Torque coefficient for the 100mm Rim Driven Thruster.

Figure 6.14: Efficiency for the 100mm Rim Driven Thruster.

107

flow and this is discussed further in Section 6.4.1.

Finally, Figure 6.14 shows how the efficiency varies with various combinations

of annulus models. All combinations show a similar trend to the experimental

results, but also under-predict the device efficiency. This deficiency in efficiency is

a consequence of the thrust under-prediction shown in Figure 6.12.

6.4.1 Annulus Analytical Modelling Summary

Preliminary results attempted to simulate the annulus flow within the rim driven

thruster, which produced some interesting results, including the ability to break

down the origin of components of thrust and torque losses. However, as the annulus

gap is very narrow, only four cells of resolution spanned the gap, and performance

predictions here will be inaccurate and the complex flow regimes will not be simu-

lated.

Analytical models were chosen to replace the explicit simulation of the annulus,

these have the advantage of ‘capturing’ different flow regimes in the annulus through

regime dependent equations and are also computationally inexpensive to evaluate.

However, as the axial gap and radial gap were studied in isolation of each other

and any thrust producing surfaces, the analytical models do not account well for

the interactivity between the axial and radial gap flows or for the effect of the axial

pressure gradient.

A compromise between the two above solutions is proposed and outlined in the

following Section (6.5), where a separate computational fluid dynamics simulation is

used to exploit the rotational symmetry and evaluate the performance contribution

of the annulus including flow interactivity and the pressure gradient. This method

would be preferable to the ‘brute force’ method of increasing the resolution of the

preliminary results to accurately resolve the annulus region, which is estimated to

require in excess of ten million cells.

6.5 Computational Fluid Dynamics Simulation of the

Annulus

A further method for estimating the performance contribution of the annulus, with-

out the extensive computational resource use of including it within a full simulation,

is to use a separate computational fluid dynamics simulation. Removed from the

simulation of the rim driven thruster, a computational fluid dynamics simulation of

the annulus can exploit its rotational symmetry. In this way, both the interactivity

of the axial and radial gap flows can be accounted for as well inclusion of the effects

of the pressure gradient upon the flow. As the simulation is not trivial (Batten,

108

2002), only a proposed method is outlined here without any verified results having

been obtained.

A computational fluid dynamics simulation of the annulus could be set up as a

pressure driven flow with a single rotating inner wall and one static outer wall. The

rotational symmetry means that only 1/36th of the domain needs to be simulated,

that is a ten degree wedge, although this requires verification. The outlet boundary

condition is a pressure outlet, set to a gauge pressure of zero, and the inlet bound-

ary condition is a pressure inlet, its value derived through reverse engineering the

pressure based thrust on the blades using actuator disc theory as in Equation (6.12).

If a sufficient number of operating conditions are pre-solved for a fixed geometry

of annulus, then a further gain in computational efficiency without significant sacri-

fice of accuracy is possible. Two two-dimensional surrogate models could be created

from pre-solved data points for thrust and torque contributions of the annulus. For

a fixed geometry only two independent variables are required; the pressure differ-

ential and the rotation rate. This allows for a far quicker estimate of the annulus

performance contribution, however accuracy may be reduced in regions where the

flow changes regime.

6.6 Steady State Simulations Summary

It is clear from the results of the steady state simulations that the rotor-stator

interaction is not correctly captured by the frozen rotor formulation in MRFSimple-

Foam. However, the method has been thoroughly verified and validated and some

confidence is gained from the results, if the impact of the rotor-stator interaction is

neglected. Discrepancies at low advance ratios betwen computational and experi-

mental data are considered primarily to be due to differences in methodologies and

whether the induced flow is included as part of the bollard pull condition or not.

The primary contribution of these initial steady-state results is to inform the

parameter selection in future design optimisation studies. It is shown that pitch

distribution, duct profile and rim gap geometry are likely to yield best results when

optimised. The stators also have an unquantified impact, however as they cannot be

modelled satisfactorily using a steady state method, they must be excluded from the

design optimisation study, as full unsteady simulations would be too time consuming

for such an iterative procedure.

As the steady state simulations do not capture the rotor-stator interaction cor-

rectly, this prompted an investigation into the contribution and significance of this

flow feature using the unsteady simulation method, detailed in Section 4.8. The

results of this investigation into unsteady flow features are presented in Section 6.7.

109

6.6.1 Key Design Areas

Although the steady state simulations fall short of accurately predicting the per-

formance of a rim driven thruster, they do provide insights into what parts of the

design should be parameterised for a design optimisation study, once the caveats

and limitations are considered. As the number of simulations required increases

exponentially with the number of parameters, it is important to know what should

and should not be neglected. The selection and elimination of design paramaters

is further discussed in Section 7.1, here we only discuss those that the steady state

simulations show to be important.

Firstly, Figure 6.4 shows an uneven loading distribution that could be improved

through changing the pitch distribution along the blade and the blade section design,

although the blade section must be bi-directional so it is possible there is little to

be gained here. As there is boundary layer growth on the duct and no tip leakage

on a rim driven thruster, the design principles will differ slightly from those for

ducted and unducted propellers, as the blade tips can have more loading without

a tip vortex penalty to efficiency. Although the loading of the blades must not be

so high as to nucleate cavitation, so there is an upper limit to the tip loading from

this, despite the freedom from tip leakage penalties.

Secondly, Figure 6.6 shows that the duct or casing of the rim driven thruster is a

significant contributor to the thrust at low advance ratios and drag at higher advance

ratios. While there are some constraints on the duct design as it must be large

enough to contain the motor stator windings, some shaping could be done to either

minimise its drag or maximise its thrust producing capabilities. The duct profiling,

even for bi-directional operation, is likely to be highly dependent on advance speed,

with a thicker duct for maximising the thrust produced at low advance speeds and

a thinner duct for minimising the profile drag when at a faster design condition.

Finally, the significant contribution of the rim, and the gap flow between it and

the casing, to the torque losses in this propulsor configuration are shown in Figure

6.7. While Lea et al. (2003) experimentally investigated the effect of the size of

the gap, they did not find an optimum and it is possible that this could also be

improved in the current rim driven thruster design. It is certain that the increased

torque compared to an un-rimmed propulsor will lead to a different blade design if

efficiency, that is the ratio of thrust to torque, is to be maximised.

6.7 Unsteady Simulation Results

The results for the unsteady simulations of the 100mm rim driven thruster are in-

vestigated in this section, examining both the start up transient and the rotor-stator

interaction that the unsteady simulation was intended for. A comparison of the un-

110

Figure 6.15: Thrust history during start up of 100mm Rim Driven Thruster at 3000
RPM.

steady simulation to a frozen-rotor pseudo-unsteady methodology is made showing

that frozen-rotor methods do not capture rotor-stator interaction accurately.

6.7.1 Start Up of 100mm Rim Driven Thruster

Application of the unsteady method to the rim driven thruster is substantially more

challenging than the verification case of the Wageningen B4-70 propeller and expe-

riences a different start up flow due to the many components of the device. Figures

6.15 and 6.16 show the thrust and torque for the first quarter revolution of the sim-

ulation and is qualitatively different to the start up of the open water propeller in

Figures 5.19 and 5.20. By the time it has completed one quarter revolution, the open

water propeller has almost reached its steady state thrust and torque values, whereas

the rim driven thruster is still far from the expected 49 N and 1.15 Nm respectively.

The total forces have been broken down into pressure and viscous contributions in

Figures 6.19, 6.20, 6.17 and 6.18 showing the split of forces on the rotating (blades

and rim) and static (stators and casing) parts of the rim driven thruster. Figures

6.17 and 6.18 show little change over time of the viscous contribution to total thrust

and torque and it is indeed the smaller component of the total forces. In contrast,

Figures 6.19 and 6.20 shows that the pressure contribution to the force is still de-

111

Figure 6.16: Torque history during start up of 100mm Rim Driven Thruster at 3000
RPM.

veloping, particularly on the rotating parts of the device. This is because of the

complex rotor-stator interaction during the development of an induced flow.

6.7.2 Unsteady 100mm Rim Driven Thruster Results

After three complete revolutions, a periodic unsteady regime is reached, and is shown

in Figures 6.21 and 6.22. These Figures show the thrust and torque variation over

one complete revolution, normalised against the average thrust and torque to enable

direct comparison of the variation between the frozen rotor and unsteady methods.

As there are four blades, the unsteady results are split into four equal 90 degree

periods and overlaid to show that there is little variation between the passing of

each blade. The frozen rotor results were only measured for one quarter revolution

as they are steady state and thus the periodicity does not need to be confirmed.

Comparing the unsteady results with the data from multiple frozen-rotor simu-

lations at different rotor positions, Figure 6.21 shows the force variation and Figure

6.22 shows the torque variation. To enable direct comparison of the fluctuation

without any systematic errors, the results are normalised against the average value.

While there is some qualitative agreement in the trends between the two simulation

methodologies in the thrust prediction in Figure 6.21, the torque prediction in Figure

112

Figure 6.17: Viscous thrust history during start up of 100mm Rim Driven Thruster
at 3000 RPM.

Figure 6.18: Viscous torque history during start up of 100mm Rim Driven Thruster
at 3000 RPM.

113

Figure 6.19: Pressure thrust history during start up of 100mm Rim Driven Thruster
at 3000 RPM.

Figure 6.20: Pressure torque history during start up of 100mm Rim Driven Thruster
at 3000 RPM.

114

Figure 6.21: Normalised thrust over one period of 100mm Rim Driven Thruster at
3000 RPM.

6.22 differs significantly in character and does not capture the rotor-stator interac-

tion like the unsteady simulations. It can therefore be concluded that frozen-rotor

simulations cannot be used to capture the rotor-stator interaction.

The major drawback with the rotation formulation in MRFSimpleFoam is that

the interfaces between static and rotating regions are frozen in place. Consequently

the outflow from the static region is passed unchanged to the rotating region and

vice versa. This does not pose a problem in situations where the inflow and outflow

geometries are axi-symmetric as the frozen rotor method is valid here. It can also

be argued that, if the flow velocity in the axial direction is significantly larger than

the rotational velocity, such that an embedded particle in flow traversing the rotor

would not perceive a significant movement, then the frozen rotor would be a good

approximation. However, for the rim driven thruster in this case, even at the hub

where the radial velocity of the rotor is low, a typical speed ratio at 1.5 metres per

second advance and 3000 revolutions per minute is:

Va
ωr

=
1.5

314.15× 0.01
= 0.477.

One option for the treatment of the interface, and one most often used in com-

mercial software, is to treat the interface between static and rotating regions as

115

Figure 6.22: Normalised torque over one period of 100mm Rim Driven Thruster at
3000 RPM.

a mixing plane, circumferentially averaging the velocity vectors to provide an axi-

symmetric inflow. Applying a similar reasoning to the above, this is a good ap-

proximation if a particle traversing the rotor with the flow in the axial direction

experiences the effects of many blades of the rotor. This is the converse of the

frozen rotor simulation and thus requires rotational velocity to be much larger than

axial velocities. Using the above condition and inverting the ratio, ωr / Va is ap-

proximately 2 at the hub and exceeds 10 at the blade tips. Thus it should be noted

that in most cases of rotor-stator interaction a mixing plane will produce a better

approximation than a frozen rotor despite not being a physically accurate depiction.

Caveats considered, there can still be some information gleaned from frozen

rotor results in simulations where rotor-stator interaction is important, such as

those performed by Li and Wang (2007). However, for the present simulations, the

rotor-stator interaction inhibits the rapid analysis of device performance, requiring

either an expensive transient simulation or omission of the phenomenon entirely. For

the continuing purpose of simulating rim driven thrusters to optimise their design, it

was decided that the latter should occur and the stators be excluded from the model.

Consequently, the simulations in Chapter 7 do not feature the stators and are thus

completely axi-symmetric, making the frozen-rotor formulation a valid assumption

to make.

116

6.7.3 Origins of the Unsteady Force Variations

To take a closer look at the origins of the variation in thrust and torque, the stream-

lines past a stator and onto a blade at two different points in time, with 45 degrees

phase difference, are depicted in Figures 6.23 and 6.24. It can be seen between these

two points that the flow past the stators is deflected by different amounts and thus

there is a significant variation in the effective angle of attack of both the stators and

the blades. This is the major driver behind the fluctuation of the thrust and torque

seen in Figures 6.21 and 6.22.

The cause of the experienced oscillation is the passage of the low pressure region

on the blade back (the suction side) past the rear of the stator. As the low pres-

sure region approaches the stator (from the left in Figures 6.23 and 6.24), it sucks

the flow past the stators towards it, leading to an increased effective inflow angle.

When the low pressure region has passed the stator, it acts as suction in the other

direction, reducing the effective inflow angle here. A similar effect in reverse, caused

by the higher pressure on the blade face, is experienced by the downstream stators,

although it is a lesser effect in this device as the trailing edge of the bi-directional

section is not as hard working as the leading edge.

This varying load has significant implications for noise and fatigue analysis,

particularly for the stators which are experiencing a cyclic load with the passing

of every blade. A consequence of this is that the stators must not be made too

thin, although as they support the shaft and bearings of the device, this structural

requirement is already met. Similar design considerations also apply to the rotor as

the observed interaction is mutual.

117

Figure 6.23: Streamlines past stator of 100mm Rim Driven Thruster at 3000 RPM.

118

Figure 6.24: Streamlines past stator of 100mm Rim Driven Thruster at 3000 RPM,
one half period later.

119

120

Chapter 7

Design Optimisation Study of

the 100mm Rim Driven

Thruster

This chapter details the design optimisation study carried out on the 100mm rim

driven thruster, including parameterisation, surrogate modelling, infill strategy and

an examination of the results. Throughout this chapter, stators are excluded from

the model, and to compare like for like, a simplified model of the 100mm with

very similar performance characteristics is used as the baseline device. The design

condition at which the optimisation takes place is at an advance speed of 1.5 m/s

and rotation rate of 3000 revolutions per minute in imitation of the peak efficiency

of the baseline device.

7.1 Parameterisation and Parameter Selection

To be able to change the design geometry without introducing too many dimen-

sions into the design space, the geometry must be parameterised and bounded. The

parameterisation must be chosen such that a sufficient number of different design

possibilities are explored, without wasting analysis time on designs that are not

physically feasible. For the rim driven thruster there are many possible design pa-

rameters, some with negligible effect and others profoundly affecting the operational

envelope of the device.

The selection of initially explored parameters for the rim driven thruster were

informed from previous computational fluid dynamics analysis in Section 6. To

reduce the analysis time and to remove any ambiguity caused by the rotor-stator

interaction, the stators were omitted through the entirety of the design optimisation

process. This left three primary regions of interest for parameterisation: the duct,

121

the blades and the hub. The rim-gap is also a region of interest, but as the design of

the rim gap also affects the electromagnetic efficiency of the motor, this region was

omitted from the parameterisation. Parameterisation of the duct was performed

with three variables, one governing each of duct length, width and shape. These

variables were the duct radius, duct extra length and a parameter for shaping the

ends of the duct, called the radial bias. Implementation of the extra length and

radial bias was done by placing a co-ordinate at the requisite distance and radial

position and interpolating using a Bezier spline from the duct base shape.

In the case of propeller blades, there are many possible variables to choose from.

The thickness, chord, pitch and blade section all need to be specified and the dis-

tribution of these along the blade can also vary. To maintain the bi-directionality

of the device, the blade section was fixed with the commercial bi-directional blade

section. The remaining variables of thickness, chord and pitch were allowed to vary

along the length of the blade and thus a quadratic distribution was chosen for each.

To specify a quadratic distribution requires three parameters, which for this study

were the value at the root, 50% radius and blade tip, giving a total of nine parame-

ters to define the blade geometry. Finally, there may be some hydrodynamic benefit

to changing the hub, so the hub diameter was also chosen as a design parameter to

investigate. The complete set of initial parameters are illustrated in Figure 7.1.

Investigation of infeasible designs is prevented by selecting upper and lower

bounds to the parameters. Table 7.1 shows the selected design parameters and

the chosen bounds. For the duct, the lower bound of the diameter is limited by

the size of the motor enclosed in the rim and while there is not a physical upper

bound, a diameter greater than 60% larger then the propeller diameter was chosen

as the maximum duct diameter. As for the end shaping of the duct profile, the

radial bias, as a normalised parameter, has a clear bounding between zero and one

referring to a radial bias towards and away from the centre respectively. The lower

bound of the duct extra length is also zero, corresponding to a flat duct end profile.

For the upper bound of the duct extra length, a maximum of one quarter of the

propeller diameter was chosen. Thus there are 13 design parameters and these are

summarised in Table 7.1 along with their upper and lower bounds.

The range of pitch distribution, given as a pitch to diameter ratio, is bounded

between a ratio of 0.5 and 1.5 as this is the practical range for most propellers

(Gerr, 2001). Minimum blade thickness is governed by structural requirements,

thus a lower bound was chosen at 0.03 and an upper bound of 0.12 was imposed,

although theoretically designs thicker than this are possible, they are unlikely to be

efficient designs. The range for the chord distribution was selected by looking at

the range of chord distributions used on current rim driven propulsors, which range

from 0.22 to 0.33, and was expanded to 0.15 to 0.35 to include a bit more of the

122

Figure 7.1: Diagram illustrating the parameterisation of a rim driven thruster.

theoretical design space.

A lower limit for the hub diameter was selected as 0.15 of the propeller diameter,

as this is the smallest radius at which the blade generation program creates sections.

A maximum was selected at 0.35 of the propeller diameter, giving a good range of

diameters while still keeping a large blade disc area.

To reduce the number of dimensions and isolate those that have little or no

impact, or those that have a linear relationship and thus need to be either minimised

or maximised, the thirteen initial parameters were swept along their dimension to see

their response. In each sweep the other twelve parameters were fixed at the baseline

point as listed in Table 7.1. Performing a sensitivity analysis in this way has a

drawback in that the interactivity of the parameters is excluded. Consequently, the

effect of parameters that may otherwise seem inactive on other parts of the device

is not captured in the sensitivity analysis.

The effect on performance that the variation of the chord at the root, mid-blade

and tip is shown in Figures 7.2, 7.3 and 7.4 respectively. In all cases some variation

in thrust is observed, often with a large increase at a c/D value of approximately

0.275, which may be attributed to the Reynolds number sensitivity of the blade

section. The only reasonable conclusion that can be drawn on the chord, from

Figure 7.2, is that the root chord should be minimised to reduce the torque.

123

Parameter Baseline Lower Bound Upper Bound

Root P/D (quadratic) 1.0 0.5 1.5
Halfway P/D (quadratic) 1.0 0.5 1.5
Tip P/D (quadratic) 1.0 0.5 1.5
Root c/D (quadratic) 0.25 0.15 0.35
Halfway c/D (quadratic) 0.25 0.15 0.35
Tip c/D (quadratic) 0.25 0.15 0.35
Root t/D (quadratic) 0.045 0.03 0.12
Halfway t/D (quadratic) 0.045 0.03 0.12
Tip t/D (quadratic) 0.045 0.03 0.12
Hub Diameter [m] 0.022 0.015 0.035
Duct Outer Diameter [m] 0.149 0.14 0.16
Duct End Length [m] 0.0055 0.0 0.025
Duct Radial Bias 0.5 0.0 1.0

Table 7.1: Table of initial design parameters and their bounds.

Figure 7.2: Variation of performance with root chord/diameter ratio.

124

Figure 7.3: Variation of performance with halfway chord/diameter ratio.

Figure 7.4: Variation of performance with tip chord/diameter ratio.

125

Figure 7.5: Variation of performance with root thickness/diameter ratio.

Figure 7.6: Variation of performance with halfway thickness/diameter ratio.

126

Figure 7.7: Variation of performance with tip thickness/diameter ratio.

How the performance is affected by the thickness of the blades at the root,

mid-blade and tip is shown in Figures 7.5, 7.6 and 7.7 respectively. There is some

variation in performance from the thickness at the root, with two apparent local op-

tima due to changing thrust seen in Figure 7.5. Figure 7.6 shows what is intuitively

expected to happen with increased thickness that is proportional to torque and to

a lesser extent thrust, causing a reduction in efficiency with increasing thickness.

From this, the classic engineering trade-off of wanting to make blade sections as

thin as possible for hydrodynamic reasons and wanting to make them as thick as

possible for structural strength would be a logical conclusion. However, most inter-

estingly, Figure 7.7 shows an unexpected result that while torque still increases with

thickness at the tip, thrust increases (initially) at a greater rate leading to a peak

in efficiency at a thickness of approximately 0.08 (normalised by the diameter).

Figures 7.8, 7.9 and 7.10 show the performance in relation to the pitch ratio at

the root, mid-blade and tip respectively. Both Figure 7.9 and 7.10 show an expected

response to pitch ratio. As the pitch ratio (and thus the local angle of incidence)

increases, both the thrust and torque increase (as ‘lift’ and drag on local sections

inceases) until the local blade section stalls and does not produce any further thrust.

However, the pitch ratio at the root does not seem to follow this pattern in Figure

7.8 and instead shows the torque decreasing with increasing pitch with the thrust

127

Figure 7.8: Variation of performance with root pitch ratio.

Figure 7.9: Variation of performance with halfway pitch ratio.

128

Figure 7.10: Variation of performance with tip pitch ratio.

peaking at a pitch ratio of approximately 0.7. Another unexpected anomaly is found

in Figure 7.9 where the thrust reduces with increased pitch ratio at low pitch-ratios.

Both these cases highlight the interesting response of performance with pitch found

in rim-driven thrusters.

The results for the sensitivity analysis of the duct diameter are shown in Figure

7.11 and are as expected with efficiency decreasing with increasing diameter pre-

dominantly due to the increased drag of the larger duct frontal area, manifested

in the graph as reducing thrust coefficient. An interesting point to note is the in-

teractivity of the duct flow with the blade flow showing an increase in torque at

the lowest diameter but this does not offset the increased drag of the larger duct.

Consequently, for this operating condition, maximum efficiency is obtained when

duct diameter is minimised but might have a non-trivial optimum at lower advance

speeds or in the bollard pull condition. It is also worth noting that increasing the

duct outer diameter without increasing the blade tip diameter introduces different

physics into the study.

The effect of the duct profile end shaping on performance can be seen in Figures

7.12 and 7.13. Figure 7.12 shows the effect of extra length which does not seem to

have a substantial conclusive impact. Similarly, the effect of the radial bias of the

end profile on performance shown in Figure 7.13 is noisy and has no obvious trend.

129

Figure 7.11: Variation of performance with duct outer diameter in metres.

Figure 7.12: Variation of performance with duct extended length in metres.

130

Figure 7.13: Variation of performance with duct radial bias.

Figure 7.14: Variation of performance with hub diameter in metres.

131

However, these parameters will almost certainly have some interactivity between

them and, as previously discussed for the duct diameter, might be more significant

at lower advance ratios or at the bollard pull condition.

Finally, the hub diameter has two possible optimum performance points shown

in Figure 7.14, one at the lowest diameter and one at a diameter of approximately

0.0275. Additionally it is expected that the size of the hub will impact the inflow

to the blade root and consequently exhibit an interaction with the root pitch ratio

parameter, p0.

Consequently, the initial thirteen parameters can be reduced to only those that

are likely to yield a significant improvement in efficiency and these are the pitch

ratio, thickness and hub diameter. To further reduce the dimensionality of the

design space, it was decided that the thickness distribution should be represented

by a linear function rather than a quadratic one, varying in the blade spanwise (id

est radial) direction. From the sensitivity analysis of the initial parameters, it is

reasonable to expect that the design optimisation will improve the efficiency by at

least 0.02 over the baseline case, which corresponds to a percentage improvement of

approximately 14%.

7.2 Surrogate Modelling

As the evaluation of the objective function takes too much time for the direct op-

timisation of the geometry, a surrogate model can be used to represent the design

landscape and thus speed up the optimisation process. A generalised flow diagram

for the optimisation procedure using surrogate modelling is depicted in Figure 7.15.

A Kriging surrogate model based on Forrester et al. (2008) was primarily used and

the code is listed in Appendix D. In converting the code from MATLAB®to the

Python language, the code was also refactored into an object oriented paradigm so

that multiple surrogate models could exist under different namespaces, rather than

storing the data of all models in the global namespace.

7.2.1 Kriging

Kriging is a surrogate modelling technique named after Daniel Krige, its inventor,

whom used it as a statistical approach for the valuation of mines in South Africa

(Krige, 1951). Later work by Sacks et al. (1989) applied the method to engineering

design through the approximation of computational results. The core of the Kriging

method is a basis function of the form:

ψ(i) = exp−

 k∑
j=1

θj |x(i)j − xj |
pj

 (7.1)

132

Figure 7.15: Generalised flow diagram for optimisation procedure.

133

where ψ(i) is the value of the basis function, k is the number of dimensions, and θj

and pj are tuning parameters in the jth dimensions. It is worth noting that if pj = 2

for all j and θj is constant for all j then the Kriging basis function is equivalent to

the Gaussian basis function:

ψ(r) = exp

(
−r2

2σ2

)
(7.2)

where r is the radial distance and σ is the tuning parameter in this case.

As a surrogate modelling technique, Kriging has a number of advantages. Over

simple linear and polynomial radial basis functions, it has better gradient capture

where the objective function does not have a polynomial behaviour. It also performs

better over a Gaussian radial basis function as it is directionally tunable, something

that is particularly important where the rate of change in one dimension is unlikely

to be similar to the other dimensions. The better estimation of Kriging does come

at a cost computationally in both memory and time, and the tuning of parameters

requires an internal optimisation with the Kriging itself that may not be able to

find a suitable parameter set depending on the bounds given.

Another key, albeit not exclusive, advantage of Kriging is the ability to apply

statistical analysis to estimate the mean squared error (Sacks et al., 1989) and

subsequently explore the design space based on the likelihood of finding an improved

design. A simple way of doing this is to minimise the statistical lower bound:

LB(~x) = ŷ(~x)−Aŝ(~x) (7.3)

where LB is the lower bound, ŷ is the estimate of the function, ŝ is the mean squared

error and A is a constant that controls the degree of exploration. As A in Equation

7.3 tends to 0 there is pure exploitation, and as A→∞ there is pure exploration.

An improvement on the statistical lower bound is the expected improvement

where the expected value of the probability distribution of the error at some point

~x is compared with the value of the current minimum in the data. Formulaically,

the expected improvement can be expressed as:

E[I(~x)] = (ymin − ŷ(~x))

[
1

2
+

1

2
erf

(
ymin − ŷ(~x)

ŝ
√

2

)]
+ ŝ

1√
2π

exp

[
−(ymin − ŷ(~x))2

2ŝ2

]
(7.4)

where E[I(~x)] is the expected improvement, ymin is the current minimum value

and erf() is the error function, the implementation of which is documented within

Appendix D. As E[I(~x)] = 0 when ŝ = 0, it can be shown that an infill procedure

based on maximising expected improvement will eventually find the global optimum.

134

7.2.2 Optimisation Strategy

There are a number of strategies that can be used for a design optimisation study

and the selection of strategy is a balance of exploitation, that is improving designs

within a local design space, and exploration, searching the global design space for

better designs. For a given number of design evaluations, there must also be some

weighted allocation between the initial sample plan and infill points whose location

is based on whether exploitation or exploration is required.

The plan for the initial sampling of the design space was generated as a random

six-dimensional latin hypercube. To find a latin hypercube that covered as much of

the design space as possible, 500 were randomly generated and compared using the

Morris-Mitchell criterion (Morris and Mitchell, 1995). The number of points in the

initial sample plan was selected by using the rule of thumb of using ten times the

number of dimensions.

For the infill points a hybrid strategy was chosen, such that the surrogate could

be used to understand the design space as well as exploit it. The maximum number

of evaluations was selected as 100 with 60 of these allocated to the initial sample

plan, 61 including the baseline case in the initial sample plan also, this left 39 to be

used for infill points. As there are three parameters of interest, the thrust, torque

and efficiency, it was decided that the surrogate should have infill points based on

each of these. It is worth noting that while the thrust and torque surrogates are

used to decide infill points and gain insight into the effects of design parameters,

they are not treated as optimisation objectives, thus goal of the optimisation is still

solely to maximise the efficiency, η.

For the thrust, the maximum value is of interest, therefore three infill points

were chosen based on the maximum thrust, the maximum statistical upper bound

of thrust and the maximum expected improvement of thrust. Similarly for the

efficiency, three infill points were selected for the maximum value, statistical up-

per bound and expected improvement. However, for the torque, the final three

infill points were chosen based on the minimum value of torque, minimum statisti-

cal lower bound and maximum expected improvement, the expected improvement

always being maximised for the correct inversion of the response surface. Four suc-

cessive rounds of nine infill points were allocated to this hybrid exploration and

exploitation strategy, sufficient to start to draw some conclusions about the design

space and the three remaining infill points were used for pure maximisation of the

efficiency. Ideally, maximisation of the efficiency should continue until the expected

improvement of the surrogate model tends to zero, but with a limited number of de-

sign evaluations, the best design after reaching the maximum number of evaluations

must be taken.

135

Figure 7.16: Visualisation of efficiency against normalised root pitch and hub diam-
eter, pivoted about the base design.

7.2.3 Surrogate Model Visualisation

Some understanding of the design landscape can be gleaned through its visualisation

or, in this case, the visualisation of the surrogate model. To visualise the design

landscape, two parameters are plotted on the x and y axes, with a third dimension

for the objective function added through the use of colour. This enables us to explore

only the two plotted parameters and how they vary about a fixed point, or pivot,

in the design space. However this does allow insight into the interactivity between

design parameters, and multiple pivots, that is the points at which the unplotted

parameters are fixed, can be investigated to further increase understanding.

Examining Figure 7.16, which shows how efficiency changes when root pitch ratio

and hub diameter are varied within their bounds, while all other design parameters

are kept at their baseline value, it is clear that some gain in efficiency is possible

through a slight reduction in both root pitch and hub diameter. With the rest of

the parameters fixed at the baseline, it is apparent that hub diameter should be

minimised, while the root pitch has some optimum value near a normalised value of

0.2. This also holds true when the remaining parameters are fixed at the optimum,

as shown in Figure 7.25.

Analysing the variation of efficiency with root and tip pitch, with all other pa-

rameters fixed at their baseline values, as shown in Figure 7.17, shows that there

is a distinct optimum value of normalised root and tip pitch ratios at 0.2 and 0.6,

136

Figure 7.17: Visualisation of efficiency against normalised root pitch and tip pitch,
pivoted about the base design.

Figure 7.18: Visualisation of efficiency against normalised root thickness and tip
thickness, pivoted about the base design.

137

respectively. There is also a more general trend of increasing efficiency with in-

creasing tip pitch ratio and decreasing efficiency with increasing root pitch ratio.

Interestingly, this observation is not immediately manifest when examining how the

torque and thrust coefficients vary across the same parameters (Figures 7.20 and

7.23, respectively) which primarily show a variation with tip pitch ratio only.

Perhaps the most dynamic design landscape is the one where root and tip thick-

ness are varied, again with the other design parameters fixed at their baseline values,

as shown in Figure 7.18. While there may be an adage in hydrodynamics that thin-

ner is always better, thus placing fluid dynamics in eternal conflict with structural

mechanics where thicker is always stronger, in this case of a bi-directional rim-

driven thruster the best (hydrodynamic) design is not at the minimum thickness.

The thickness at the root in particular shows substantial peaks and troughs in ef-

ficiency as it is changed and the tip thickness has a maximum efficiency at a value

that depends on root thickness.

The source of this peculiar efficiency landscape is not from the changes in thrust

output, which is shown in Figure 7.21 and despite having a central peak for root

thickness, predominantly shows a strong increase in thrust with tip thickness. How-

ever, further insight is gained from considering the torque, as shown in Figure 7.24,

which shows that the increased thrust with increasing tip thickness is coupled with

an increase in torque. Furthermore, the torque can vary substantially with small

changes in tip and root thickness. This suggests that the efficiency changes are

based largely upon the drag on the blades, and thus arises from the changing flow

field around the blade sections as the effective thickness to chord ratio is varied.

Figure 7.19 shows the variation of thrust coefficient when changing hub diameter

and root pitch ratio, with all other parameters fixed at their baseline values. There

is a clear peak at a normalised pitch ratio of approximately 0.6 and maximum hub

diameter, but the variable that has the most impact on thrust here is the pitch ratio.

Subsequently, Figure 7.20 shows that the tip pitch ratio has much more effect on

the thrust than the root pitch ratio, with peak thrust being produced at minimum

root and maximum tip pitch ratios.

It is very interesting to compare Figures 7.19 and 7.20 with Figures 7.28 and

7.29 respectively. These show that changing the pivot point, that is the values

to which the remaining parameters are fixed, changes the way the performance

responds to changes in the design. Conversely to Figure 7.19, Figure 7.28 shows a

more significant variation in thrust with hub diameter, with the addition of the peak

thrust being produced at a minimum hub diameter rather than at the maximum.

It should however be noted, that the magnitude of variation is much smaller, with

a difference of 0.0324 across the range of both parameters, compared with 0.072 in

Figure 7.19.

138

Figure 7.19: Visualisation of thrust coefficient against normalised root pitch and
hub diameter, pivoted about the base design.

Figure 7.20: Visualisation of thrust coefficient against normalised root pitch and tip
pitch, pivoted about the base design.

139

Figure 7.21: Visualisation of thrust coefficient against normalised root thickness and
tip thickness, pivoted about the base design.

Similarly Figure 7.29 shows an increased significance of root pitch ratio, when

compared to Figure 7.20, with a peak thrust now at minimum root pitch ratio, al-

though still at maximum tip pitch ratio. Finally comparing the thrust landscapes

between Figures 7.21 and 7.30, we can see it changing from almost a linear land-

scape, where thrust is proportional to tip thickness, to a complex landscape with

peak thrust produced in the corner of maximum tip thickness and minimum root

thickness.

Analysing Figure 7.22, which shows the variation of torque coefficient against

normalised root pitch and hub diameter with all other parameters kept at their

baseline values, very little variation of torque can be seen and the prevailing effect

is due to root pitch that peaks at a normalised value of 0.3. Contrasting this with

Figure 7.31, which shows the same but fixes all remaining parameters at the optimum

point, there is much more change of torque with root pitch in the latter, with the

peak torque shifting to occur at a normalised root pitch of 0.7. Both Figures show

that hub diameter does not have much effect on the torque.

Due to the superior moment arm, it is not surprising to see a greater effect

on torque by changing the tip pitch than by changing the root pitch as shown in

Figure 7.23. The proportional relationship between tip pitch and torque is also as

one might expect. However, when comparing this with the same slice of parameters

but fixing the remaining parameters at their optimum values, as per Figure 7.32,

there is a much greater impact on torque by the root pitch, which concurs with the

140

Figure 7.22: Visualisation of torque coefficient against normalised root pitch and
hub diameter, pivoted about the base design.

Figure 7.23: Visualisation of torque coefficient against normalised root pitch and
tip pitch, pivoted about the base design.

141

Figure 7.24: Visualisation of torque coefficient against normalised root thickness
and tip thickness, pivoted about the base design.

observations on Figure 7.31.

Similar to the thrust landscapes shown in Figures 7.21 and 7.30, the torque vari-

ation with tip and root blade thickness, shown in Figures 7.24 and 7.33 respectively,

is a complex landscape with multiple peaks. As can be expected, as it has a greater

moment arm, the thickness at the tip has a more profound effect on the torque than

the root thickness, and a general trend of greater thickness leading to greater section

drag resulting in a greater torque is observed. However, this general trend is aug-

mented by the foil hydrodynamics, with the large peaks in torque most likely to be

due to flow separation, which is why the root thickness has such a significant effect

as the local Reynolds number is lower and thus the flow more likely to separate.

The variation in efficiency with root pitch and hub diameter with all other pa-

rameters kept at the optimum value shown in Figure 7.25, is qualitatively similar to

the landscape observed about the baseline parameters that is shown in Figure 7.16.

It should be noted that, quantatively, the values in Figure 7.25 are much higher

and the lowest efficiency in Figure 7.25 is still higher than the highest efficiency in

Figure 7.16.

The same comparison of qualitative similarity but quantitative increase can be

made between efficiency plots for pitch variation, pivoted about the baseline and

optimum points in Figures 7.17 and 7.26 respectively.

Plotting the efficiency variation with blade thickness does have a significant

alteration of landscape between the baseline case (Figure 7.18) and the optimum

142

Figure 7.25: Visualisation of efficiency against normalised root pitch and hub diam-
eter, pivoted about the optimum design.

Figure 7.26: Visualisation of efficiency against normalised root pitch and tip pitch,
pivoted about the optimum design.

143

Figure 7.27: Visualisation of efficiency against normalised root thickness and tip
thickness, pivoted about the optimum design.

case (Figure 7.27). While there is still a general quantitative increase across the

entire landscape for the latter, which is to be expected as all other parameters

are at their optimum values, the central peaks seen in Figure 7.18 are diminished

in Figure 7.27 and the overall peak value has clearly moved to a minimum root

thickness. In practice, depending on the application of the rim driven thruster,

it may be better to use a design at the local optimum seen at a normalised root

thickness of approximately 0.4 and normalised tip thickness of approximately 0.2,

as the increased root thickness will be structurally superior.

144

Figure 7.28: Visualisation of thrust coefficient against normalised root pitch and
hub diameter, pivoted about the optimum design.

Figure 7.29: Visualisation of thrust coefficient against normalised root pitch and tip
pitch, pivoted about the optimum design.

145

Figure 7.30: Visualisation of thrust coefficient against normalised root thickness and
tip thickness, pivoted about the optimum design.

Figure 7.31: Visualisation of torque coefficient against normalised root pitch and
hub diameter, pivoted about the optimum design.

146

Figure 7.32: Visualisation of torque coefficient against normalised root pitch and
tip pitch, pivoted about the optimum design.

Figure 7.33: Visualisation of torque coefficient against normalised root thickness
and tip thickness, pivoted about the optimum design.

147

Figure 7.34: Thrust estimated by Kriging surrogate model against thrust calcu-
lated by computational fluid dynamics, where the estimated point is left out of the
surrogate model construction. R2 = 0.921

7.2.4 Surrogate Modelling Validation

As surrogate models are another kind of computational model, that may or may

not be giving an accurate answer when interrogated, it is worthwhile validating the

modelling method, which in this case is Kriging, to see how well the modelled data

fits the computational fluid dynamics output. Perhaps the best way of doing this is

to construct what is known as a ‘leave one out plot’, where each point in a dataset

is excluded in turn, a response surface is constructed and an estimate of the point

is made, which is plotted against its actual value. This has been done for thrust,

torque and efficiency (Figures 7.34, 7.35 and 7.36 respectively) and allows us to see

how close a value predicted by the surrogate model is to its value calculated by

computational fluid dynamics, with a perfect surrogate model having all points on

the y = x line.

Looking at the estimated thrust compared to the ‘actual’ thrust, or in this

case the thrust predicted by the computational fluid dynamics which is assumed

to mirror reality for the purposes of this validation, Figure 7.34 shows us that the

Kriging generally has a good agreement. Almost all points lie within 0.1 of the

actual value, and greater agreement exists at points in the landscape where thrust

148

Figure 7.35: Torque estimated by Kriging surrogate model against torque calcu-
lated by computational fluid dynamics, where the estimated point is left out of the
surrogate model construction. R2 = 0.801

149

Figure 7.36: Efficiency estimated by Kriging surrogate model against efficiency cal-
culated by computational fluid dynamics, where the estimated point is left out of
the surrogate model construction. R2 = 0.793

150

is higher, due to the greater density of points making up the model in these regions

as this is where the optimisation is focussed.

The agreement between Kriging predicted and ‘actual’ torque, shown in Figure

7.35, at first glance seems to be considerably worse. However, aside from a number

of outlying points which skew perceptions, the majority of points are estimated

to within 0.01 of their ‘actual’ values. This is a good achievement considering

the undulating, sharp gradiented landscape that is being captured as portrayed in

Figures 7.24, 7.32 and 7.33.

The correlation between prediction and measurement of device efficiency de-

picted in Figure 7.36 shows an interesting trend of increasing agreement with in-

creasing efficiency. This can be expected of a Kriging model that has been used to

optimise efficiency, as the higher efficiency regions of the design landscape would

be the focus of exploitation infill points and thus the higher number of points, the

better the local tuning and thus predictive accuracy.

To quantify the agreements seen in Figures 7.34, 7.35 and 7.36, the root-mean-

square error was taken from the results. The values for KT , KQ and η were 0.0451,

0.0151 and 0.0286 respectively. Which, taking into account the relative magnitudes

of each of the coefficients, results in a percentage error of approximately 10%. This is

not a perfect fit, which is perhaps in part due to the noise that comes with numerical

simulations and distorts any attempts to fit a surrogate model to it. However, the

calculation of root-mean-square error values also includes the outliers that are in

the regions where designs are not particularly feasible, thus the fit of the surrogate

model is better than first quantified in the regions of interest that are being exploited

and explored and worse elsewhere.

The optimisation history in Figure 7.37 tells an interesting story, and at first the

optimisation seems to have no convergence, but the first 60 iterations are purely a

space filling sample plan and thus any design improvements here (of which there are

two) are simply co-incident to the exploration of the design space and subsequent

building of a surrogate model. From iteration number 61 onwards, during the update

stage, there are only four further improvements on the best design found in the initial

sample. The random efficiencies found in the initial sample stage also continue to

manifest, although this is not due to a poor optimisation, but an infill strategy

that also tries to build a good surrogate model for understanding the design space

away from the optimum (see Section 7.2.2). The effects of pure exploitation on

the optimisation results can be seen in the last ten iterations, where the evaluated

efficiencies are all above 0.22, apart from two outliers.

A criticism of the optimisation performed is that the update strategy may not be

the most efficient use of iterations. In terms of producing the best design possible,

this is definitely true, however the surrogate model should be a better fit through-

151

Figure 7.37: Optimisation history of CFD function values.

out the design domain because of the varied update scheme. It is also arguable that

the initial sample size is larger than necessary, even though it complies with the

‘ten times the number of dimensions’ rule of thumb. If an infill strategy based on

purely a maximised expected improvement were to be used, then less coverage of an

initial sample is required as maximum expected improvement balances both explo-

ration and exploitation and will reach the global optimum given enough iterations,

therefore it does not need such a detailed initial surrogate model.

It is also seen in the optimisation history in Figure 7.37 that most of the design

improvement came from the random exploration of the initial sample plan. This

suggests that further improvement could be obtained by continuing the optimisation

for more iterations, which would also refine the surrogate model further.

The Kriging model does not fit the data perfectly, as shown in the leave-one-out

plots in Figures 7.34, 7.35 and 7.36, which could suggest that it is a poor choice

of model or method. However, if the converse were true and the surrogate model

fit the data perfectly, there would not be any need for further infill points as the

optimum of the surrogate model would be the optimum of the data being modelled.

Thus the general trend of agreement and improvement of agreement in regions of

interest (id est high efficiency regions) means that the fit of the surrogate model is

suitable for this purpose.

152

7.3 Results from Design Optimisation

A 100mm rim driven thruster design was optimised using the method outlined in the

previous sections. From a base geometry that was similar to that of the experimental

device, albeit without stators, the optimisation process increased the propulsive

efficiency, at the design condition of 3000 revolutions per minute and 1.5

m/s

advance speed, from 18.5% to 24.5%; an absolute increase of 6%. The baseline and

optimised geometries are outlined and compared in this section.

The baseline geometry had a non-dimensional co-ordinate of (0.5, 0.5, 0.5, 0.167,

0.167, 0.35). This corresponds to a linear pitch/diameter ratio distribution of 1.0

along the blade, a constant thickness/diameter ratio of 0.045 and a hub diameter

of 0.022m. At the design condition, the propulsive efficiency was 18.5% with the

complete performance curve shown in Figure 7.40.

After one hundred iterations of designs, an optimal design was found at a non-

dimensional co-ordinate of (0.4418, 0.8543, 0.6870, 0.0007, 0.3479, 0.01). This corre-

sponds to a geometry with a pitch diameter ratio distribution that is quadratic with

a value of 0.9418 at the origin, 1.3543 halfway to the tip and 1.1870 at the blade tip.

The thickness/diameter ratio was linearly distributed from a value of 0.030063 at

the origin to a value of 0.061311 at the tip and the hub diameter is 0.0152m. At the

design condition, the propulsive efficiency was 24.5% with the complete performance

curve shown in Figure 7.40.

7.3.1 Device Performance

The optimisation was of a single operating point of the device, but in reality the

performance of the device over a range of advance ratios is important. Thus the

characteristics of the optimised device are compared against the baseline device as

well the experimental data for the 100mm rim driven thruster in Figures 7.38, 7.39

and 7.40 showing the thrust coefficient, torque coefficient and efficiency respectively.

Figure 7.38 shows the thrust coefficient against advance ratio for the three afore-

mentioned cases. The optimised device has a significantly higher thrust across the

range of advance ratios than the baseline design, which in turn has a higher thrust

than the experimental data for the device it is emulating, but this is in part due to

the omission of stators from the CFD modelling.

Plotting the torque coefficient against advance ratio in Figure 7.39 shows a sim-

ilar hierarchy to the thrust coefficient with the optimised design being higher than

the baseline and experimental designs. This is counter-intuitive, as for a greater

efficiency, the torque should be lower, so higher torque should yield a lower effi-

153

Figure 7.38: Thrust performance of experimental, baseline and optimised 100mm
Rim Driven Thrusters.

Figure 7.39: Torque performance of experimental, baseline and optimised 100mm
Rim Driven Thrusters.

154

Figure 7.40: Efficiency of experimental, baseline and optimised 100mm Rim Driven
Thrusters.

ciency. However, when examining the efficiency against advance ratio in Figure

7.40, the optimised device is clearly more efficient, as the efficiency is the ratio of

thrust to torque and it therefore has increased the thrust proportionally more than

the increase in torque to yield a greater efficiency.

It is interesting to note that the advance ratio for peak efficiency of the optimised

device is different to that of the baseline design and thus different to the design

condition. This is further evidence that the optimisation performed is sub-optimal

and greater increase in efficiency could be gained from performing more iterations,

which should also shift the peak efficiency advance ratio to the design condition if

the global optimum design is found.

Further insight can be gained by examining how the contributions of each part

vary between the baseline and optimised designs. By decomposing the thrust, torque

and efficiency on a component-wise basis, the mechanisms by which the optimised

device achieves a greater efficiency can be exposed. It should be noted here that

when derived for an individual component, the listed efficiency is not a ‘contribution’

to efficiency per se, but the ratio of its thrust contribution to its torque requirement.

The primary contributors to thrust are the blades and the duct, and thus their

contribution in both baseline and optimised designs are shown in Figure 7.41. The

general trend observed here is that the optimised device produces a higher thrust

155

Figure 7.41: Comparison of decomposed thrust performance between baseline and
optimised 100mm Rim Driven Thrusters.

Figure 7.42: Comparison of decomposed torque performance between baseline and
optimised 100mm Rim Driven Thrusters.

156

Figure 7.43: Comparison of decomposed component efficiency between baseline and
optimised 100mm Rim Driven Thrusters.

on both the blades and the duct, the latter possibly as a consequence of the former.

Approximating the blades to an actuator disk, an increase in thrust would equate

to an increased pressure difference, also resulting in an increased pressure difference

on the duct, thus the net force in the forward direction is increased for both parts.

Torque losses occur on either the blades, rim or hub, but the latter losses are

negligible due to the smaller moment arm. Thus the primary concern is with only

the torque on the blades and rim, which are shown in Figure 7.42. To some extent,

the torque on the blades can be interpereted as the losses involved in producing

thrust, whereas the torque on the rim is purely detrimental. The significantly greater

torque in the optimised device can then be seen as expected, given the much greater

thrust produced, and the reduced torque on the rim is also the intuitive direction

to proceed. It is notable that the ratio of rim torque to blade torque is significantly

smaller in the optimised design than the baseline design, where rim losses exceed

50% of the total torque above advance ratios of 0.36.

Finally, looking at how component efficiency varies for the blades and rim in

Figure 7.43 shows that component efficiency for the rim is very small because very

little thrust is produced compared to its torque loss. It is also shown in Figure 7.43

that the component efficiency of both the blades and the rim are increased in the

optimised device which, in tandem with the increased thrust on the duct, leads to

157

Figure 7.44: Plot of pressure against x co-ordinate on the blades for base and opti-
mised designs at 50% radius.

the performance gains seen in Figure 7.40.

7.3.2 Blade Pressure Profiles

Figures 7.44 and 7.45 show the pressure distribution around the blade for both the

baseline and optimised designs. Figure 7.44 shows the pressure around a section

halfway along the blade and Figure 7.45 shows the pressure around a section closer

to the tip, at 70% along the blade. In both these figures, the leading edge is located

at x/c = 0 and the trailing edge is consequently at x/c = 1. Furthermore, the line

for each case that is in the negative region towards the leading edge is the blade

face pressure and the line that is in the positive region towards the leading edge

corresponds to the pressure on the blade back.

It can be seen from Figures 7.44 and 7.45 that the improvement in performance

from the optimised design originates from harder working blades. The optimised

design shows overall higher pressures around the blade, as well as a slightly increased

area of working section, that is the region where the pressure on the back of the

blade exceeds that of the face.

158

Figure 7.45: Plot of pressure against x co-ordinate on the blades for base and opti-
mised designs at 70% radius.

7.3.3 Cavitation

While cavitation has been excluded from the analyses in this work, as the typical

operating conditions of the rim driven thruster are at depths where cavitation is

unlikely, it is informative to check the cavitation performance of the optimised design

in comparison with the baseline case. This is done from the computational fluid

dynamics results by finding the locations within the flow that are below the vapour

pressure of water. Although this only highlights the origins of cavitating flow and

makes no attempt to model its subsequent transport, it is still informative.

In the original design specification for the device, the operating static pressure

condition was defined as 10 metres below sea level (Sharkh et al., 2003). Therefore

two operating conditions are considered in this analysis, surface operation at an

absolute pressure of 100kPa (Figures 7.46, 7.47, 7.48 and 7.49) and subsurface oper-

ation at approximately 10 metres depth, represented by a static pressure of 200kPa

(Figures 7.50 and 7.51).

For a given vapour pressure of Pv = 2.34kPa, taken from ITS-90 (International

Temperature Scale of 1990) for a temperature of 20 degrees Celcius, the gauge

pressure at which cavitation occurs is given by Equation (7.5).

Pgauge = Pv − Pref (7.5)

159

Figure 7.46: Surface pressure plot on base design, front view with cavitation shown
for surface propulsion case.

where Pref is the reference pressure, id est the absolute pressure at which gauge

pressure is zero, which is 100kPa or 200kPa for surface or subsurface operation

respectively. Similarly, if we approximate the pressure profile for a depth to be a

linear profile of surface pressure (100kPa) plus 10kPa per metre of depth, d, then if

the minimum pressure in a flow field, Pmin, is known the cavitation free operating

depth is given by Equation (7.6).

d =
1

10
(Pv − Pmin − 100) . (7.6)

Figure 7.46 shows cavitation on the front (thus the blade face) of the base design

in the 100kPa absolute pressure case. There is minor cavitation on the blade face,

whereas the blade back has no cavitation in Figure 7.47. The optimised design in

the surface propulsion condition shows heavier cavitation in Figure 7.48 and even

includes unexpected cavitation occuring on the blade back in Figure 7.49. However,

in the original design condition at a 10 metre depth for cavitation free operation,

Figures 7.50 and 7.51 show that the optimised design is not expected to cavitate,

thus making the optimised design a successful one in that respect.

160

Figure 7.47: Surface pressure plot on base design, rear view with cavitation shown
for surface propulsion case.

Figure 7.48: Surface pressure plot on optimised design, front view with cavitation
shown for surface propulsion case.

161

Figure 7.49: Surface pressure plot on optimised design, rear view with cavitation
shown for surface propulsion case.

Figure 7.50: Surface pressure plot on optimised design, front view with cavitation
shown for 10 metre depth case.

162

Figure 7.51: Surface pressure plot on optimised design, rear view with cavitation
shown for 10 metre depth case.

163

164

Chapter 8

Conclusions and Future Work

In summary, the primary original contributions of this thesis are:

• Insights into the unsteady rotor-stator interaction in rim driven thrusters and

recommendations on the simulation thereof.

• Design insights into the best pitch and thickness distribution for rim driven

thrusters.

• An improved design of 100mm rim driven thruster which is 6% more efficient.

• A robust and automated design optimisation methodology and extensible

framework that is suitable for complex design landscapes.

8.1 Conclusions

A thorough mesh verification and validation procedure has been conducted for both

steady and unsteady computational fluid dynamics methods outlined in this work.

It was found that for steady state simulations using MRFSimpleFoam a domain

size extending five propeller diameters to the inlet and six propeller diameters in

the radial direction is sufficient. Unsteady simulations using pimpleDyMFoam were

found to require a smaller domain with a distance of two propeller diameters to

any domain wall being sufficient. This provides domain size independence despite a

relatively high blockage ratio. Both MRFSimpleFoam and pimpleDyMFoam solvers

were validated using a Wageningen B-Series propeller geometry and reported per-

formance to within 5% of experimental results across a range of advance ratios.

A discrepancy between experimental and computational data was apparent at low

advance ratios, but this was attributed to the simulating the sustained bollard pull

condition, rather than the instantaneous bollard pull condition that is given in the

experimental data.

165

For solving low advance ratio flows of marine propulsors, the k-ω SST turbu-

lence model was found to be more robust due to its better performance in adverse

pressure gradients and separation handling. The RNG k-ε turbulence model was

also investigated and was found to produce good agreement with experimental data

except at low advance ratios whereupon the solutions diverged.

MRFSimpleFoam was found to be unsuitable as a program for the complete

modelling of a rim driven thruster due to the inaccurate capture of rotor-stator

interaction by the ‘frozen rotor’ treatment of the interface between rotating and

stationary reference frames. A pseudo-unsteady simulation of the interaction can

be made with MRFSimpleFoam by performing multiple steady-state simulations at

different rotor positions. This can improve the accuracy of results if an average

of these rotor positions is subsequently taken, however, this is not an accurate

description of the flowfield. The ‘frozen rotor’ formulation of MRFSimpleFoam

does make it a better solver for pre-solution of unsteady simulation compared to

contemporary mixing plane methods.

Results from unsteady simulation of the rotor-stator interaction concurred with

the hypothesis that the flowfield is not accurately captured. The unsteady results

also showed thrust loading varies by up to 40% of the mean through one rotation

and torque loading varies by 5% of the mean. Further investigation of the unsteady

results showed flow oscillation around the stators, subsequently affecting the angle

of incidience of the incoming flow to the blades, thus identifying the cause of such a

significant variation which could be mitigated by increasing the gap between stator

and rotor.

From the steady-state results, it is possible to deduce the components of the rim

driven thruster which are most likely to yield improvements in a design optimisation

study. This is helpful in informing the dimensions that need to be parameterised,

as the number of parameters should ideally be kept to a minimum. The pitch

distribution could be improved for the special case of rim mounted blades in a duct

as boundary layer development on the duct reduces the inflow speed at the blade

tips. Viscous torque on the rim is shown to contribute to approximately a third of

the hydrodynamic losses in a rim driven thruster so any reduction here would be

beneficial to efficiency. A significant portion of thrust at low advance ratios, and

drag at higher advance ratios, is attributed to the casing and so there is scope here

for the casing to be optimised to a particular operating regime, whether it be low

speed manouevering or high speed propulsion. Finally, there may be some benefit

to shaping the stators to improve the interacting rotor-stator flow.

To find an accurate estimate of the losses in the annulus between the rim and

casing, a combination of established analytical models have been tested as well as a

theoretical minimum bound based on a linear velocity profile. The Bilgen & Boulos

166

and Daily & Nece models were found to overpredict torque in combination, which is

due to not accounting for the interactivity between regions or the effect of the axial

pressure gradient. A need to investigate this in future work been identified and a

proposed computational method to approach this problem is outlined in Section 6.5.

An iterative design optimisation of a 100mm rim driven thruster has been facili-

tated through the automation of geometry and mesh generation as well as subsequent

post processing to calculate and return an objective function. In the process, some

useful libraries of functions that create geometry, write files in stereolithographic

(.stl) format and interface with OpenFOAM via the command line have been cre-

ated. Due to their modular design, these allow the subsequent automation of design

optimisation studies for cases beyond that of rim driven thrusters or even marine

propulsion.

Surrogate modelling techniques have been applied to not only allow the search

and optimisation of the design space, but to also enable efficient parametric inter-

rogation to allow visualisation and understanding of the produced response surface.

In particular this has highlighted the sensitivity of the bi-directional foil section,

as small changes in thickness can have a significant impact on the section hydro-

dynamics and consequently on the overall performance of the device. Therefore an

optimum thickness must be selected with consideration of the operating condition,

in particular the Reynolds number experienced by the blade sections.

Search, optimisation and update of the surrogate model was performed using a

genetic algorithm, to reach an improved device design. The improved design differs

from the baseline case by having increased pitch, in particular at the tip of the blade,

also combined with an increased blade thickness at the tip, and a minimised hub

diameter to allow a greater working area. Due to the lack of tip leakage losses, the

blade tips of a rim driven thruster are able to work harder without incurring the

efficiency penalty of their rimless counterparts. A general predisposition towards

greater thrust in a rim driven thruster is also desirable due to the significant torque

losses on the rim which must be mitigated.

Overall, a computational fluid dynamics simulation method has been investi-

gated, verified, validated and employed in a design optimisation study. As a result

of the optimisation of the surrogate model, insight has been gained into the hydro-

dynamic design of rim driven thrusters and design with a theoretical improvement

of efficiency of 6% was found. A robust framework has been created for the de-

sign optimisation of rim driven thrusters that is easily employed, interrogated and

extended for future works.

167

8.2 Suggestions for Future Work

It is the nature of research projects that they are extensible and can take many tan-

gents, and this thesis represents only one of many trajectories of investigation. The

avenues that were left unexplored, or that have consequently opened up, constitute

the final section of this thesis so that they may be pursued by those that follow.

In terms of the modelling and simulation of rim driven thrusters, the key un-

known is the power lost to viscous torque in the annulus region. A potential future

computational study of this region was outlined in Section 6.5 with the interactivity

of the end effects and axial pressure gradient posing questions that are unanswered

here. The simulation could also be further extended to compare the unsteady RANS

calculation with a large eddy simulation of the rotor-stator interaction, to ascertain

the validity of unsteady RANS in this application.

The optimisation conducted in this work could also be extended, firstly through

further iteration of the existing study and secondly through extension of the frame-

work to investigate other questions. Two key things to implement and investigate

are functional constraints and different optimisation strategies including gradient

based methods, which could be compared to the original work here. Further ex-

tension could be the implementation of either multi-objective optimisation (exempli

gratia increase efficiency while minimising minimum pressure) or multi-fidelity mod-

els using the computationally expensive unsteady simulations to include the effects

of rotor-stator interaction as the higher fidelity model.

168

References

T. Abramowski, K. Zelazny, and T. Szelangiewicz. Numerical analysis of influence

of ship hull form modification on ship resistance and propulsion characteristics -

part III - influence of hull form modification on screw propeller efficiency. Polish

Maritime Research, 17(1):10–13, 2010.

N. Alin, R. E. Bensow, C. Fureby, T. Huuva, and U. Svennberg. Current capabilities

of DES and LES for submarines at straight course. Journal of Ship Research, 54

(3):184–196, 2010.

M. Auvinen, J. Ala-Juusela, N. Pedersen, and T. Siikonen. Time-accurate turbo-

machinery simulations with open-source CFD; flow analysis of a single-channel

pump with OpenFOAM. In Fifth European Conference on Computational Fluid

Dynamics, Lisbon, Portugal, 2010.

P. Batten, U. Goldberg, O. Peroomian, and S. Chakravarthy. Recommendations and

best practice for the current state of the art in turbulence modelling. International

Journal of Computational Fluid Dynamics, 23(4):363–374, 2009.

W. M. J. Batten. Numerical Predictions and Experimental Analysis of Small Clear-

ance Ratio Taylor-Couette Flows. PhD thesis, University of Southampton, School

of Engineering Sciences, August 2002.

W. M. J. Batten, N. W. Bressloff, and S. R. Turnock. Transition from vortex to wall

driven turbulence production in the Taylor-Couette system with a rotating inner

cylinder. International Journal for Numerical Methods in Fluids, 38:207–226,

2002.

W. M. J. Batten, S. R. Turnock, N. W. Bressloff, and S. M. Abu-Sharkh. Turbu-

lent Taylor-Couette vortex flow between large radius ratio concentric cylinders.

Experiments in Fluids, 36:419–421, 2004.

M. Beaudoin and H. Jasak. Development of a generalized grid interface for tur-

bomachinery simulations with OpenFOAM. In Open Source CFD International

Conference, 2008.

169

E. Benini. Multiobjective design optimization of B-screw series propellers using

evolutionary algorithms. Marine Technology, 40(4):229–238, 2003.

E. Benini. Significance of blade element theory in performance prediction of marine

propellers. Ocean Engineering, 31:957–974, 2004.

R. E. Bensow and G. Bark. Implicit LES predictions of the cavitating flow on a

propeller. Journal of Fluids Engineering, 132, 2010.

S. Berger, M. Druckenbrod, M. Greve, M. Abdel-Maksoud, and L. Greitsch. An

efficient method for the investigation of propeller hull interaction. In Proceedings

of the 14th Numerical Towing Tank Symposium, 2011.

E. Bilgen and R. Boulos. Functional dependence of torque coefficient of coaxial

cylinders on gap width and Reynolds numbers. Transactions of ASME, Journal

of Fluids Engineering, 95(1):122–126, 1973.

J. M. Bousquet and P. Gardarein. Improvements on computations of high speed

propeller unsteady aerodynamics. Aerospace Science and Technology, 7:465–472,

2003.

T. E. Brockett. On the maximum efficiency of some marine propulsors in open

water. International Shipbuilding Progress, 50:147–169, 2003.

Q.-M. Cao, F.-W. Hong, D.-H. Tang, F.-L. Hu, and L.-Z. Lu. Prediction of loading

distribution and hydrodynamic measurements for propeller blades in a rim driven

thruster. Journal of Hydrodynamics, 24:50–57, 2012.

S. Carcangiu, A. Fanni, and A. Montisci. Computational fluid dynamics simulations

of an innovative system of wind power generation. In Proceedings of the 2011

COMSOL Conference in Stuttgart, 2011.

J. Carlton. Marine Propellers and Propulsion: Second Edition. Elsevier, 2007.

M. R. Castelli, P. Cioppa, and E. Benini. Influence of turbulence model, grid res-

olution and free-stream turbulence intensity on the numerical simulation of the

flow field around an inclined flat plate. World Academy of Science, Engineering

and Technology, 64:192–197, 2012.

E. B. Caster. Ducted propeller designs for improved backing performance. In Sym-

posium on Ducted Propellers, number 7, 1973.

F. Celik and M. Guner. Energy saving device of stator for marine propellers. Ocean

Engineering, 34:850–855, 2007.

170

J. E. Choi, K.-S. Min, J. H. Kim, S. B. Lee, and H. W. Seo. Resistance and propul-

sion characteristics of various commercial ships based on CFD results. Ocean

Engineering, 37:549–566, 2010.

G. Coriolis. Sur les équations du movement relatif des systèmes de corps. J. Ec.

Polytech., 15:142–154, 1935.

D. Corson, R. Jaiman, and F. Shakib. Industrial application of RANS modelling:

Capabilities and needs. International Journal of Computational Fluid Dynamics,

23(4):337–347, 2009.

L. Da-Qing. Validation of RANS predictions of open water performance of a highly

skewed propeller with experiments. In Conference of Global Chinese Scholars on

Hydrodynamics, pages 520–528, 2006.

J. W. Daily and R. E. Nece. Chamber dimension effects on induced flow and fric-

tional resistance of enclosed rotating disks. Journal of Fluids Engineering, 82:

217–230, 1960.

F. Di Felice, M. Felli, M. Liefvendahl, and U. Svennberg. Numerical and experi-

mental analysis of the wake behaviour of a generic submarine propeller. In First

International Symposium on Marine Propulsors, 2009.

M. Drela. XFOIL: An analysis and design system for low Reynolds number airfoils.

In Conference on Low Reynolds Number Airfoil Aerodynamics, University of Notre

Dame, 1989.

J. W. English and S. J. Rowe. Some aspects of ducted propeller propulsion. In

Symposium on Ducted Propellers, number 3, 1973.

P. E. Farrell and J. R. Maddison. Conservative interpolation between volume meshes

by local Galerkin projection. Computer Methods in Applied Mechanics and En-

gineering, 200:89–100, 2011.

A. Forrester, A. Sobester, and A. Keane. Engineering Design via Surrogate Mod-

elling. Wiley, 2008.

I. Funeno. Hydrodynamic optimal design of ducted azimuth thrusters. In First

International Symposium on Marine Propulsors, June 2009.

M. M. Gaafary, H. S. El-Kilani, and M. M. Moustafa. Optimum design of B-series

marine propellers. Alexandria Engineering Journal, 50:13–18, 2011.

D. Gerr. Propeller Handbook. International Marine, 2001.

171

A. N. Hayati, S. M. Hashemi, and M. Shams. A study on the effect of the rake

angle on the performance of marine propellers. Proceedings of the Institution of

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 226:

940–955, 2012.

A. N. Hayati, S. M. Hashemi, and M. Shams. A study on the behind-hull per-

formance of marine propellers astern autonomous underwater vehicles at diverse

angles of attack. Ocean Engineering, 59:152–163, 2013.

S. Huang, X.-Y. Zhu, C.-Y. Guo, and X. Chang. CFD simulation of propeller and

rudder performance when using additonal thrust fins. Journal of Marine Science

and Application, 6(4):27–31, 2007.

A. W. Hughes, S. R. Turnock, and S. M. Sharkh. CFD modelling of a novel electro-

magnetic tip-driven thruster. In Proceedings of the Tenth International Offshore

and Polar Engineering Conference, volume 2, pages 294–298, 2000.

D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive

black-box functions. Journal of Global Optimization, 13:455–492, 1998.

J. Kaufmann and V. Bertram. Comparison of multi-reference frame and sliding

interface propeller models for RANSE computations of ship-propeller interaction.

In Proceedings of the 14th Numerical Towing Tank Symposium, 2011.

J. E. Kerwin, S. A. Kinnas, J.-T. Lee, and W. Z. Shih. A surface panel method for

the hydrodynamic analysis of ducted propellers. Transactions of the Society of

Naval Architects and Marine Engineers, 95, 1987.

S. A. Kinnas, S.-H. Chang, L. He, and J. T. Johannessen. Performance prediction

of a cavitating rim driven tunnel thruster. In First International Symposium on

Marine Propulsors, 2009.

A. N. Kolmogorov. Equations of turbulent motion of an incompressible fluid. Izvestia

Academy of Sciences, USSR; Physics, 6(1–2):56–58, 1942.

N. Kornev, A. Taranov, and E. Shchukin. Development of hybrid URANS-LES

methods for flow simulation in the ship stern area. In Proceedings of the 14th

Numerical Towing Tank Symposium, 2011.

T. Koronowicz, Z. Krzemianowksi, T. Tuszkowska, and J. A. Szantyr. A complete

design of contra-rotating propellers using the new computer system. Polish Mar-

itime Research, 17(1):14–24, 2010.

D. G. Krige. A statistical approach to some basic mine valuation problems on

the witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of

South Africa, December 1951.

172

G. Kuiper. The Wageningen Propeller Series. MARIN, 1992.

W. Lam, D. J. Robinson, G. A. Hamill, S. Raghunathan, and C. Kee. Simulation

of a ship’s propeller wash. In Proceedings of the Sixteenth (2006) International

Offshore and Polar Engineering Conference, pages 457–462, 2006.

B. E. Launder and B. I. Sharma. Application of the energy dissipation model of

turbulence to the calculation of flow near a spinning disc. Letters in Heat and

Mass Transfer, 1(2):131–138, 1974.

M. Lea, D. Thompson, B Van Blarcom, J. Eaton, J. Friesch, and J. Richards.

Scale model testing of a commercial rim-driven propulsor pod. Journal of Ship

Production, 19(2):121–130, 2003.

S. Leone, C. Testa, L. Greco, and F. Salvatore. Computational analysis of self-

pitching propellers performance in open water. Ocean Engineering, 64:122–134,

2013.

Y. Li and F. Wang. Numerical investigation of performance of an axial-flow pump

with inducer. Journal of Hydrodynamics, 19:705–711, 2007.

M. Liefvendahl, N. Alin, M. Chapuis, C. Fureby, U. Svennberg, and C. Troeng. Ship

and propulsor hydrodynamics. In Fifth European Conference on Computational

Fluid Dynamics, 2010.

H.-C. Lin, B.-C. Chen, and Y.-F. Chen. The lowest stability and bifurcation in

supercritical Taylor vortices. International Journal of Computational Fluid Dy-

namics, 24(6):227–233, 2010.

H. Liu, Y. Ren, K. Wang, D. Wu, W. Ru, and M. Tan. Research of inner flow

in a double blades pump based on OpenFOAM. Journal of Hydrodynamics, 24:

226–234, 2012a.

Y. Liu, P. Zhao, Q. Wang, and Z. Chen. URANS computation of cavitating flows

around skewed propellers. Journal of Hydrodynamics, 24:339–346, 2012b.

T. P. Lloyd, S. R. Turnock, and V. F. Humphrey. Unsteady CFD of a marine current

turbine using OpenFOAM with generalised grid interface. In Proceedings of the

14th Numerical Towing Tank Symposium, 2011.

N.-X. Lu, R. E. Bensow, and G. Bark. LES of unsteady cavitation on the delft

twisted foil. Journal of Hydrodynamics, 22(5):742–749, 2010.

M. Manna and A. Vacca. Torque reduction in Taylor-Couette flows subject to an

axial pressure gradient. Journal of Fluid Mechanics, 639:373–401, 2009.

173

F. R. Menter. Review of the shear-stress transport model experience from an in-

dustrial perspective. International Journal of Computational Fluid Dynamics, 23

(4):305–316, 2009.

M. D. Morris and T. J. Mitchell. Exploratory designs for computational experiments.

Technometrics, 33:161–174, 1995.

C. S. Morros, J. M. F. Oro, and K. M. A. Diaz. Numerical modelling and flow

analysis of a centrifugal pump runnning as a turbine: Unsteady flow structures

and its effects on the global performance. International Journal for Numerical

Methods in Fluids, 65:542–562, 2011.

S. Muntean, H. Nilsson, and R. F. Susan-Resiga. 3D numerical analysis of the

unsteady turbulent swirling flow in a conical diffuser using FLUENT and Open-

FOAM. In 3rd IAHR International Meeting of the Workgroup on Cavitation and

Dynamic Problems in Hydraulic Machinery and Systems, number C4, pages 155–

164, 2009.

M. Nimmo. CFD of a rim driven thruster. 3rd Year Individual Project, University

of Southampton, 2011.

C. Pashias, S. R. Turnock, and S. M. Sharkh. Design optimisation of a bi-directional

integrated thruster. In Proceedings of the Propellers/Shafting Symposium, pages

1–13, 2003.

O. Petit, M. Page, M. Beaudoin, and H. Nilsson. The ERCOFTAC centrifugal pump

OpenFOAM case-study. In 3rd IAHR International Meeting of the Workgroup on

Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, 2009.

O. Petit, A. I. Bosioc, H. Nilsson, S. Muntean, and R. F. Susan-Resiga. A swirl

generator case study for OpenFOAM. In 25th IAHR Symposium on Hydraulic

Machinery and Systems, 2010.

A. B. Phillips, S. R. Turnock, and M. Furlong. Comparisons of CFD simulations and

in-service data for the self propelled performance of an autonomous underwater

vehicle. In 27th Symposium on Naval Hydrodynamics, 2008.

S. H. Rhee and S. Joshi. Computational validation for flow around a marine propeller

using unstructured mesh based Navier-Stokes solver. JSME International Journal,

Series B, 48(3):562–570, 2005.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of

computer experiments. Statistical Science, 4(4):409–423, November 1989.

174

F. Salvatore, H. Streckwall, and T. van Terwisga. Propeller cavitation modelling

by CFD - results from the VIRTUE 2008 Rome workshop. In First International

Symposium on Marine Propulsors, 2009.

S. M. Sharkh, S. R. Turnock, and G. Draper. Performance of a tip-driven electric

thruster for unmanned water vehicles. In Proceedings of the International Offshore

and Polar Engineering Conference, volume 2, pages 321–324, 2001.

S. M. Sharkh, S. R. Turnock, and A. W. Hughes. Design and performance of

an electric tip-driven thruster. In Proceedings of the Institution of Mechanical

Engineers, Part M: Journal of Engineering for the Maritime Environment, volume

217, 2003.

P. R. Spalart. RANS modelling into a second century. International Journal of

Computational Fluid Dynamics, 23(4):291–293, 2009.

F. Vesting and R. Bensow. Propeller blade optimisation applying response surface

methodology. In Proceedings of the 14th Numerical Towing Tank Symposium,

2011.

J. Wang, J. Piechna, and N. Muller. A novel design of composite water turbine

using CFD. Journal of Hydrodynamics, 24:11–16, 2012.

D. C. Wilcox. Reassessment of the scale determining equations for advanced tur-

bulence models. American Institute of Aeronautics and Astronautics Journal, 26

(11):1299–1310, 1988.

D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, 1994.

V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale. Devel-

opment of turbulence models for shear flows by a double expansion technique.

Physics of Fluids A, 4(7):1510–1520, 1992.

A. Y. Yakovlev, M. A. Sokolov, and N. V. Marinich. Numerical design and exper-

imental verification of a rim-driver thruster. In Second International Symposium

on Marine Propulsors, 2011.

J. Ye, Y. Xiong, F. Li, and Z. Wang. Numerical prediction of blade frequency noise

of cavitating propeller. Journal of Hydrodynamics, 24:371–377, 2012.

Z. Zeng and G. Kuiper. Blade section design of marine propellers with maximum

cavitation inception speed. Journal of Hydrodynamics, 24:65–75, 2012.

D. Zhang, W. Shi, B. Chen, and X. Guan. Unsteady flow analysis and experimental

investigation of axial-flow pump. Journal of Hydrodynamics, 22:35–43, 2010.

175

Z.-R. Zhang, H. Liu, S.-P. Zhu, and F. Zhao. Application of CFD in ship engineering

design practice and ship hydrodynamics. In Conference of Global Chinese Scholars

on Hydrodynamics, pages 315–322, 2006.

B. Zhu, H. Wang, L. Wang, and S. Cao. Three-dimensional vortex simulation of

unsteady flow in hydraulic turbines. International Journal for Numerical Methods

in Fluids, 69:1679–1700, 2012.

Z. Zhu and S. Fang. Numerical investigation of cavitation performance of ship

propellers. Journal of Hydrodynamics, 24:347–353, 2012.

176

Appendix A

Propeller Blade Surface
Co-ordinate Generating
Program

This is a collection of Python functions written to automate the generation of co-
ordinate data for the geometry of a propeller, with particular focus on replicating
the data for a Wageningen B4-70 propeller with section data and radial distributions
obtained from Kuiper (1992).

”””
a jb l ade s . py

Prope l l e r blade func t i on s package ,
Generates a s e t o f x , y , z co−o rd ina t e s f o r a p r op e l l e r blade
based on blade p r o f i l e s at r a d i a l s t a t i o n s .

Written to be e a s i l y extendable to any type o f p r o p e l l e r .

(c) copyr ight Aleksander Dubas 2011−2013
”””

def bladegen (sec t i on , chord , th i cknes s , pitch , D, rake=0, edge f a c to r =1.0) :
”””
Function to generate blades , takes arguments o f four f unc t i on s and the
p r op e l l e r diameter , r e tu rns 11 l i s t s o f l i s t s which are x , y , z co−o rd ina t e s
at r a d i a l s t a t i o n s o f 0 .15 to 1 , with var i ed steps ,
i . e . r02 =[[xs] , [ys] , [z s]] at r a d i a l s t a t i on o f r /R = 0.2

Parameters
−−−−−−−−−−
s e c t i on : func t i on

A func t i on that r e tu rns a normal i sed s e t o f co−o rd ina t e s
o f the blade s e c t i on
inputs are r /R

chord : func t i on
A func t i on that r e tu rns the abso lute chord
inputs are r /R and D

th i ckne s s : f unc t i on
A func t i on that r e tu rns the abo lute th i ckne s s
inputs are r /R and D

pi tch : func t i on
A func t i on that r e tu rns the p i t ch angle in degree s
inputs are r /R

rake : number (d e f au l t 0)
Rake angle in degrees , de f ined as p o s i t i v e a f t

edge f a c to r : number (d e f au l t 1 . 0)
Factor by which to s c a l e the outer po in t s .
e . g . doming (0 . 9 9) / s l i c i n g (1 . 0 1) to c r ea t e the de s i r ed blade t i p .

Returns
−−−−−−−
r015 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 15% blade s e c t i on .
r02 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 20% blade s e c t i on .
r025 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 25% blade s e c t i on .
r03 : n length l i s t o f 3D co−o rd ina t e s

177

Points f o r the 30% blade s e c t i on .
r04 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 40% blade s e c t i on .
r05 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 50% blade s e c t i on .
r06 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 60% blade s e c t i on .
r07 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 70% blade s e c t i on .
r08 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 80% blade s e c t i on .
r09 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the 90% blade s e c t i on .
r10 : n length l i s t o f 3D co−o rd ina t e s

Points f o r the t i p blade s e c t i on .

Co−o rd ina t e s assume z+ as the thrus t d i r e c t i o n .
”””
from math import tan , rad ians

gene ra t e s e c t i o n geometry and s t o r e in zs , xs
note L .E. i s +z , T.E. i s −z and s u c t i o n i s +x , p r e s s u r e i s −x
r015zs , r015xs = s e c t i on (0 . 1 5)
r02zs , r02xs = s e c t i on (0 . 2)
r025zs , r025xs = s e c t i on (0 . 2 5)
r03zs , r03xs = s e c t i on (0 . 3)
r04zs , r04xs = s e c t i on (0 . 4)
r05zs , r05xs = s e c t i on (0 . 5)
r06zs , r06xs = s e c t i on (0 . 6)
r07zs , r07xs = s e c t i on (0 . 7)
r08zs , r08xs = s e c t i on (0 . 8)
r09zs , r09xs = s e c t i on (0 . 9)
r1zs , r1xs = s e c t i on (1 . 0)

gene ra t e s e c t i o n ys
r015ys = []
r02ys = []
r025ys = []
r03ys = []
r04ys = []
r05ys = []
r06ys = []
r07ys = []
r08ys = []
r09ys = []
r1ys = []
for z in r015zs :

r015ys . append (0 . 5∗D∗0 .15)
for z in r02zs :

r02ys . append (0 . 5∗D∗0 . 2)
for z in r025zs :

r025ys . append (0 . 5∗D∗0 .25)
for z in r03zs :

r03ys . append (0 . 5∗D∗0 . 3)
for z in r04zs :

r04ys . append (0 . 5∗D∗0 . 4)
for z in r05zs :

r05ys . append (0 . 5∗D∗0 . 5)
for z in r06zs :

r06ys . append (0 . 5∗D∗0 . 6)
for z in r07zs :

r07ys . append (0 . 5∗D∗0 . 7)
for z in r08zs :

r08ys . append (0 . 5∗D∗0 . 8)
for z in r09zs :

r09ys . append (0 . 5∗D∗0 . 9)
for z in r1z s :

r1ys . append (edge f a c to r ∗0 .5∗D)

gene ra t e chord and mu l t i p l y geometry z s by chord
r015zs = map(lambda x : x∗ chord (0 . 1 5 , D) , r015zs)
r02zs = map(lambda x : x∗ chord (0 . 2 , D) , r02zs)
r025zs = map(lambda x : x∗ chord (0 . 2 5 , D) , r025zs)
r03zs = map(lambda x : x∗ chord (0 . 3 , D) , r03zs)
r04zs = map(lambda x : x∗ chord (0 . 4 , D) , r04zs)
r05zs = map(lambda x : x∗ chord (0 . 5 , D) , r05zs)
r06zs = map(lambda x : x∗ chord (0 . 6 , D) , r06zs)
r07zs = map(lambda x : x∗ chord (0 . 7 , D) , r07zs)
r08zs = map(lambda x : x∗ chord (0 . 8 , D) , r08zs)
r09zs = map(lambda x : x∗ chord (0 . 9 , D) , r09zs)
r1z s = map(lambda x : x∗ chord (1 . 0 , D) , r1z s)

gene ra t e t h i c k n e s s and mu l t i p l y xs by t h i c k n e s s
r015xs = map(lambda x : x∗ th i ckne s s (0 . 1 5 , D) , r015xs)
r02xs = map(lambda x : x∗ th i ckne s s (0 . 2 , D) , r02xs)
r025xs = map(lambda x : x∗ th i ckne s s (0 . 2 5 , D) , r025xs)
r03xs = map(lambda x : x∗ th i ckne s s (0 . 3 , D) , r03xs)
r04xs = map(lambda x : x∗ th i ckne s s (0 . 4 , D) , r04xs)
r05xs = map(lambda x : x∗ th i ckne s s (0 . 5 , D) , r05xs)
r06xs = map(lambda x : x∗ th i ckne s s (0 . 6 , D) , r06xs)
r07xs = map(lambda x : x∗ th i ckne s s (0 . 7 , D) , r07xs)
r08xs = map(lambda x : x∗ th i ckne s s (0 . 8 , D) , r08xs)

178

r09xs = map(lambda x : x∗ th i ckne s s (0 . 9 , D) , r09xs)
r1xs = map(lambda x : x∗ th i ckne s s (1 . 0 , D) , r1xs)

gene ra t e p i t c h ang l e and r o t a t e co−o r d i n a t e s about t h i s ang l e
i f L .E . (+z) f a c e s r i g h t w i th s u c t i o n f a c e (+x) on top
then p o s i t i v e p i t c h i s c l o c kw i s e
r015zs , r015xs = rotatecw (r015zs , r015xs , p i t ch (0 . 1 5))
r02zs , r02xs = rotatecw (r02zs , r02xs , p i t ch (0 . 2))
r025zs , r025xs = rotatecw (r025zs , r025xs , p i t ch (0 . 2 5))
r03zs , r03xs = rotatecw (r03zs , r03xs , p i t ch (0 . 3))
r04zs , r04xs = rotatecw (r04zs , r04xs , p i t ch (0 . 4))
r05zs , r05xs = rotatecw (r05zs , r05xs , p i t ch (0 . 5))
r06zs , r06xs = rotatecw (r06zs , r06xs , p i t ch (0 . 6))
r07zs , r07xs = rotatecw (r07zs , r07xs , p i t ch (0 . 7))
r08zs , r08xs = rotatecw (r08zs , r08xs , p i t ch (0 . 8))
r09zs , r09xs = rotatecw (r09zs , r09xs , p i t ch (0 . 9))
r1zs , r1xs = rotatecw (r1zs , r1xs , p i t ch (1 . 0))

app l y p r o p e l l e r rake
i f rake != 0 :

r015zs = map(lambda x : x − (0 . 15∗0 . 5∗D) ∗ tan (rad ians (rake)) , r015zs)
r02zs = map(lambda x : x − (0 . 2∗0 . 5∗D) ∗ tan (rad ians (rake)) , r02zs)
r025zs = map(lambda x : x − (0 . 25∗0 . 5∗D) ∗ tan (rad ians (rake)) , r025zs)
r03zs = map(lambda x : x − (0 . 3∗0 . 5∗D) ∗ tan (rad ians (rake)) , r03zs)
r04zs = map(lambda x : x − (0 . 4∗0 . 5∗D) ∗ tan (rad ians (rake)) , r04zs)
r05zs = map(lambda x : x − (0 . 5∗0 . 5∗D) ∗ tan (rad ians (rake)) , r05zs)
r06zs = map(lambda x : x − (0 . 6∗0 . 5∗D) ∗ tan (rad ians (rake)) , r06zs)
r07zs = map(lambda x : x − (0 . 7∗0 . 5∗D) ∗ tan (rad ians (rake)) , r07zs)
r08zs = map(lambda x : x − (0 . 8∗0 . 5∗D) ∗ tan (rad ians (rake)) , r08zs)
r09zs = map(lambda x : x − (0 . 9∗0 . 5∗D) ∗ tan (rad ians (rake)) , r09zs)
r1z s = map(lambda x : x − (1 . 01∗0 . 5∗D) ∗ tan (rad ians (rake)) , r 1 z s)

wrap co−o r d i n a t e s onto a c y l i n d r i c a l s e c t i o n
r015xs , r015ys = map2cyl (r015xs , r015ys)
r02xs , r02ys = map2cyl (r02xs , r02ys)
r025xs , r025ys = map2cyl (r025xs , r025ys)
r03xs , r03ys = map2cyl (r03xs , r03ys)
r04xs , r04ys = map2cyl (r04xs , r04ys)
r05xs , r05ys = map2cyl (r05xs , r05ys)
r06xs , r06ys = map2cyl (r06xs , r06ys)
r07xs , r07ys = map2cyl (r07xs , r07ys)
r08xs , r08ys = map2cyl (r08xs , r08ys)
r09xs , r09ys = map2cyl (r09xs , r09ys)
r1xs , r1ys = map2cyl (r1xs , r1ys)

make l i s t o f l i s t s
r015 = [r015xs , r015ys , r015zs]
r02 = [r02xs , r02ys , r02zs]
r025 = [r025xs , r025ys , r025zs]
r03 = [r03xs , r03ys , r03zs]
r04 = [r04xs , r04ys , r04zs]
r05 = [r05xs , r05ys , r05zs]
r06 = [r06xs , r06ys , r06zs]
r07 = [r07xs , r07ys , r07zs]
r08 = [r08xs , r08ys , r08zs]
r09 = [r09xs , r09ys , r09zs]
r1 = [r1xs , r1ys , r1z s]

return r015 , r02 , r025 , r03 , r04 , r05 , r06 , r07 , r08 , r09 , r1

def ou tpu tb470 f i l e s (D) :
”””
Writes the co−ord inate f i l e s f o r a B4−70 p r op e l l e r with diameter D.

Parameters
−−−−−−−−−−
D: number

Diameter o f B4−70 p r op e l l e r .

Returns
−−−−−−−
None
”””
ge t co−o r d i n a t e s
r015 , r02 , r025 , r03 , r04 , r05 , r06 , r07 , r08 , r09 , r1 =\

bladegen (b4567s , b470c , b4t , b4p10 , D, rake=15)

open f i l e s
f015 = f i l e (” r015 . txt ” , ”w”)
f02 = f i l e (” r02 . txt ” , ”w”)
f025 = f i l e (” r025 . txt ” , ”w”)
f03 = f i l e (” r03 . txt ” , ”w”)
f04 = f i l e (” r04 . txt ” , ”w”)
f05 = f i l e (” r05 . txt ” , ”w”)
f06 = f i l e (” r06 . txt ” , ”w”)
f07 = f i l e (” r07 . txt ” , ”w”)
f08 = f i l e (” r08 . txt ” , ”w”)
f09 = f i l e (” r09 . txt ” , ”w”)
f1 = f i l e (” r1 . txt ” , ”w”)

wr i t e co−o r d i n a t e s

179

sep = ” , ”
for i in range (len (r015 [0])) :

f015 . wr i t e (str (r015 [0] [i])+sep+str (r015 [1] [i])+sep+str (r015 [2] [i])+”\n”)
for i in range (len (r02 [0])) :

f02 . wr i t e (str (r02 [0] [i])+sep+str (r02 [1] [i])+sep+str (r02 [2] [i])+”\n”)
for i in range (len (r025 [0])) :

f025 . wr i t e (str (r025 [0] [i])+sep+str (r025 [1] [i])+sep+str (r025 [2] [i])+”\n”)
for i in range (len (r03 [0])) :

f03 . wr i t e (str (r03 [0] [i])+sep+str (r03 [1] [i])+sep+str (r03 [2] [i])+”\n”)
for i in range (len (r04 [0])) :

f04 . wr i t e (str (r04 [0] [i])+sep+str (r04 [1] [i])+sep+str (r04 [2] [i])+”\n”)
for i in range (len (r05 [0])) :

f05 . wr i t e (str (r05 [0] [i])+sep+str (r05 [1] [i])+sep+str (r05 [2] [i])+”\n”)
for i in range (len (r06 [0])) :

f06 . wr i t e (str (r06 [0] [i])+sep+str (r06 [1] [i])+sep+str (r06 [2] [i])+”\n”)
for i in range (len (r07 [0])) :

f07 . wr i t e (str (r07 [0] [i])+sep+str (r07 [1] [i])+sep+str (r07 [2] [i])+”\n”)
for i in range (len (r08 [0])) :

f08 . wr i t e (str (r08 [0] [i])+sep+str (r08 [1] [i])+sep+str (r08 [2] [i])+”\n”)
for i in range (len (r09 [0])) :

f09 . wr i t e (str (r09 [0] [i])+sep+str (r09 [1] [i])+sep+str (r09 [2] [i])+”\n”)
for i in range (len (r1 [0])) :

f 1 . wr i t e (str (r1 [0] [i])+sep+str (r1 [1] [i])+sep+str (r1 [2] [i])+”\n”)

c l o s e f i l e s
f015 . c l o s e ()
f02 . c l o s e ()
f025 . c l o s e ()
f03 . c l o s e ()
f04 . c l o s e ()
f05 . c l o s e ()
f06 . c l o s e ()
f07 . c l o s e ()
f08 . c l o s e ()
f09 . c l o s e ()
f1 . c l o s e ()

return

def b4567s (rR) :
”””
Sect ion generat i on func t i on o f the Wageningen B4−70

Parameters
−−−−−−−−−−
rR : number

Normalised r a d i a l l o ca t i on , between 0 (root) and 1 (t i p) .

Returns
−−−−−−−
x f s : l i s t

L i s t o f x co−o rd ina t e s .
y f s : l i s t

L i s t o f y co−o rd ina t e s .
”””

s e t t r a i l i n g and l e a d i n g edge t h i c k n e s s e s
t t e = 0.001
t l e = 0.001
tmax = 1

cr e a t e l i s t s
ps = [−1.0 , −0.95 , −0.9 , −0.8 , −0.7 , −0.6 , −0.5 , −0.4 , −0.2 , 0 ,

0 . 2 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 85 , 0 . 9 , 0 . 95 , 1]
yts = []
ybs = []

f i n d ys in terms o f ps
for p in ps :

i f p < 0 :
ybs . append (bv1 (rR , p) ∗(tmax−t t e))
yts . append ((bv1 (rR , p)+bv2 (rR , p)) ∗(tmax−t t e)+t t e)

i f p >= 0:
ybs . append (bv1 (rR , p) ∗(tmax−t l e))
yts . append ((bv1 (rR , p)+bv2 (rR , p)) ∗(tmax−t l e)+t l e)

f i n d a/c and b/c
a , b = b4567ab (rR)

s c a l e ps in terms o f xs
xs = []
for p in ps :

i f p < 0 :
xtemp = (1−b) ∗p
xtemp = xtemp + (a − b)

i f p >= 0:
xtemp = b∗p
xtemp = xtemp + (a − b)

xs . append (xtemp)

add a d d i t i o n a l an t i−peanut po i n t a t l e a d i n g and t r a i l i n g edge s

180

r t e = 0 .5∗ (yts [0] − ybs [0])
yte = 0 .5∗ (yts [0] + ybs [0])
xte = xs [0] − r t e
r l e = 0 .5∗ (yts [−1] − ybs [−1])
y l e = 0 .5∗ (yts [−1] + ybs [−1])
x l e = xs [−1] + r l e

cr e a t e and ou tpu t s i n g l e l i s t o f co−o r d i n a t e s
from l e a d i n g edge over top s u r f a c e in ant i−c l o c kw i s e f a s h i on
x f s = [x l e] + xs [: : −1] + [xte] + xs + [x l e]
y f s = [y l e] + yts [: : −1] + [yte] + ybs + [y l e]

remove d u p l i c a t e p o i n t s
for i in range (len (x f s)−1) :

i f x f s [i] == x f s [i +1] and y f s [i] == y f s [i +1] :
print ”Removing dup l i c a t e po int at ” + str (x f s . pop (i)) ,
print ” , ” + str (y f s . pop (i)) + ” at rad ius ” + str (rR)

return xfs , y f s

def b470c (rR , D) :
”””
Returns the abso lute chord length o f a B4−70 prop .

Parameters
−−−−−−−−−−
rR : number

Normalised r a d i a l l o ca t i on , between 0 (root) and 1 (t i p) .
D: number

Diameter o f B4−70 p r op e l l e r .

Returns
−−−−−−−
c : number

Absolute chord length .
”””
cZDA = b4567c (rR)
return cZDA∗D∗0 . 7/4 . 0

def b4t (rR , D) :
”””
Returns the abso lute th i ckne s s o f a 4 bladed B−S e r i e s p r op e l l e r .

Parameters
−−−−−−−−−−
rR : number

Normalised r a d i a l l o ca t i on , between 0 (root) and 1 (t i p) .
D: number

Diameter o f B4 p r op e l l e r .

Returns
−−−−−−−
t : number

Absolute th i ckne s s .
”””
i f rR < 0 . 2 :

t = 0.045 − (0 .0084∗ rR /0 . 2)
i f rR >= 0.2 and rR < 0 . 3 :

t = 0.0366 − (0 . 0042∗ ((rR−0.2) /0 . 1))
i f rR >= 0.3 and rR < 0 . 4 :

t = 0.0324 − (0 . 0042∗ ((rR−0.3) /0 . 1))
i f rR >= 0.4 and rR < 0 . 5 :

t = 0.0282 − (0 . 0042∗ ((rR−0.4) /0 . 1))
i f rR >= 0.5 and rR < 0 . 6 :

t = 0.024 − (0 . 0042∗ ((rR−0.5) /0 . 1))
i f rR >= 0.6 and rR < 0 . 7 :

t = 0.0198 − (0 . 0042∗ ((rR−0.6) /0 . 1))
i f rR >= 0.7 and rR < 0 . 8 :

t = 0.0156 − (0 . 0042∗ ((rR−0.7) /0 . 1))
i f rR >= 0.8 and rR < 0 . 9 :

t = 0.0114 − (0 . 0042∗ ((rR−0.8) /0 . 1))
i f rR >= 0 . 9 :

t = 0.0072 − (0 . 0062∗ ((rR−0.9) /0 . 1))

return t ∗D

def p10 (rR) :
”””
Returns the p i t ch angle in degree s f o r a square wheel prop (P/D = 1 . 0) .

Parameters
−−−−−−−−−−
rR : number

Normalised r a d i a l l o ca t i on , between 0 (root) and 1 (t i p) .

Returns
−−−−−−−
p : number

Pitch angle in degrees .
”””

181

from math import atan , degrees , p i

return degrees (atan (p i ∗rR /1 . 0))

def b4p10 (rR) :
”””
Returns the p i t ch angle in degree s f o r a square wheel B4 s e r i e s prop .

Parameters
−−−−−−−−−−
rR : number

Normalised r a d i a l l o ca t i on , between 0 (root) and 1 (t i p) .

Returns
−−−−−−−
p : number

Pitch angle in degrees .
”””
from math import atan , degrees , p i

i f rR > 0 . 5 :
P = 1.0

i f rR <= 0 . 5 :
P = 0.7 + 0.6∗ rR

return degrees (atan (p i ∗rR/P))

def bv1 (rR , P) :
”””
Returns V1 f o r a B−S e r i e s p r op e l l e r f o r a given r /R and P.
”””

cr e a t e l ookup t a b l e , f i r s t index i s P, second i s r /R
v1tab = [[0 , 0 , 0 . 0 5 2 2 , 0 . 1 4 6 7 , 0 . 2 3 0 6 , 0 . 2 5 9 8 , 0 . 2 8 2 6 , 0 . 3] , # P = −1.0

[0 , 0 , 0 . 0 4 20 , 0 . 1 2 , 0 . 2 0 4 , 0 . 2 3 72 , 0 . 2 6 3 , 0 . 2 8 24] , # P = −0.95
[0 , 0 , 0 . 0 3 3 , 0 . 0 9 72 , 0 . 1 7 9 , 0 . 2 1 1 5 , 0 . 2 4 , 0 . 2 6 5] , # P = −0.9
[0 , 0 , 0 . 0 1 9 , 0 . 0 6 3 , 0 . 1 3 33 , 0 . 1 6 51 , 0 . 1 9 67 , 0 . 2 3] , # P = −0.8
[0 , 0 , 0 . 0 1 , 0 . 0 3 95 , 0 . 0 9 43 , 0 . 1 2 46 , 0 . 1 5 7 , 0 . 1 9 5] , # P = −0.7
[0 , 0 , 0 . 0 04 , 0 . 0 214 , 0 . 0 623 , 0 . 0 899 , 0 . 1 207 , 0 . 1 610] , # P = −0.6
[0 , 0 , 0 . 0 0 12 , 0 . 0 1 16 , 0 . 0 3 76 , 0 . 0 579 , 0 . 0 88 , 0 . 1 2 8] , # P = −0.5
[0 , 0 , 0 , 0 . 0 0 44 , 0 . 0 202 , 0 . 0 35 , 0 . 0 592 , 0 . 0 955] , # P = −0.4
[0 , 0 , 0 , 0 , 0 . 0 033 , 0 . 0 084 , 0 . 0 172 , 0 . 0 365] , # P = −0.2
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] , # P = 0
[0 , 0 , 0 , 0 , 0 . 0 027 , 0 . 0 031 , 0 . 0 049 , 0 . 0 096] , # P = 0.2
[0 , 0 , 0 , 0 . 0 033 , 0 . 0 148 , 0 . 0 224 , 0 . 0 304 , 0 . 0 384] , # P = 0.4
[0 , 0 , 0 . 0 0 08 , 0 . 0 0 9 , 0 . 0 3 , 0 . 0 4 17 , 0 . 0 5 2 , 0 . 0 6 15] , # P = 0.5
[0 , 0 , 0 . 0 034 , 0 . 0 189 , 0 . 0 503 , 0 . 0 669 , 0 . 0 804 , 0 . 0 92] , # P = 0.6
[0 , 0 , 0 . 0 0 85 , 0 . 0 3 57 , 0 . 0 7 9 , 0 . 1 0 08 , 0 . 1 1 8 , 0 . 1 3 2] , # P = 0.7
[0 , 0 . 0 0 06 , 0 . 0 211 , 0 . 0 637 , 0 . 1 191 , 0 . 1 465 , 0 . 1 685 , 0 . 1 87] , # P = 0.8
[0 , 0 . 0 0 22 , 0 . 0 3 28 , 0 . 0 8 33 , 0 . 1 4 45 , 0 . 1 7 47 , 0 . 2 , 0 . 2 2 3] , # P = 0.85
[0 , 0 . 0 0 67 , 0 . 0 5 , 0 . 1 0 88 , 0 . 1 7 6 , 0 . 2 0 68 , 0 . 2 3 53 , 0 . 2 6 42] , # P = 0.9
[0 , 0 . 0 1 69 , 0 . 0 778 , 0 . 1 467 , 0 . 2 186 , 0 . 2 513 , 0 . 2 821 , 0 . 3 15] , # P = 0.95
[0 , 0 . 0 3 8 2 , 0 . 1 2 78 , 0 . 2 1 81 , 0 . 2 9 23 , 0 . 3 2 56 , 0 . 3 5 6 , 0 . 3 8 6]] # P = 1.0

i f P < −0.975:
pindex = 0

i f P >= −0.975 and P < −0.925:
pindex = 1

i f P >= −0.925 and P < −0.85:
pindex = 2

i f P >= −0.85 and P < −0.75:
pindex = 3

i f P >= −0.75 and P < −0.65:
pindex = 4

i f P >= −0.65 and P < −0.55:
pindex = 5

i f P >= −0.55 and P < −0.45:
pindex = 6

i f P >= −0.45 and P < −0.3:
pindex = 7

i f P >= −0.3 and P < −0.1:
pindex = 8

i f P >= −0.1 and P < 0 . 1 :
pindex = 9

i f P >= 0.1 and P < 0 . 3 :
pindex = 10

i f P >= 0.3 and P < 0 . 4 5 :
pindex = 11

i f P >= 0.45 and P < 0 . 5 5 :
pindex = 12

i f P >= 0.55 and P < 0 . 6 5 :
pindex = 13

i f P >= 0.65 and P < 0 . 7 5 :
pindex = 14

i f P >= 0.75 and P < 0 . 8 25 :
pindex = 15

i f P >= 0.825 and P < 0 . 8 75 :
pindex = 16

i f P >= 0.875 and P < 0 . 9 25 :
pindex = 17

182

i f P >= 0.925 and P < 0 . 9 75 :
pindex = 18

i f P >= 0 . 975 :
pindex = 19

i f rR >= 0.65 and rR <= 1:
r index = 0

i f rR >= 0.55 and rR < 0 . 6 5 :
r index = 1

i f rR >= 0.45 and rR < 0 . 5 5 :
r index = 2

i f rR >= 0.35 and rR < 0 . 4 5 :
r index = 3

i f rR >= 0.275 and rR < 0 . 3 5 :
r index = 4

i f rR >= 0.225 and rR < 0 . 2 75 :
r index = 5

i f rR >= 0.175 and rR < 0 . 2 25 :
r index = 6

i f rR >= 0 and rR < 0 . 1 75 :
r index = 7

return v1tab [pindex] [r index]

def bv2 (rR , P) :
”””
Returns V2 f o r a B−S e r i e s p r op e l l e r f o r a given r /R and P
”””

cr e a t e l ookup t a b l e , f i r s t index i s P, second i s r /R
v2tab = [[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ,

P = −1.0
[0 . 0 975 , 0 . 0 975 , 0 . 0 975 , 0 . 0 975 , 0 . 0 965 , 0 . 0 950 , 0 . 0 905 , 0 . 0 8 , 0 . 0 725 , 0 . 0 64 , 0 . 0 54] ,

P = −0.95
[0 . 1 9 , 0 . 1 9 , 0 . 1 9 , 0 . 1 9 , 0 . 1 8 8 5 , 0 . 1 8 6 5 , 0 . 1 8 1 , 0 . 1 6 7 , 0 . 1 5 6 7 , 0 . 1 4 5 5 , 0 . 1 3 2 5] ,

P = −0.9
[0 . 3 6 , 0 . 3 6 , 0 . 3 6 , 0 . 3 6 , 0 . 3 5 8 5 , 0 . 3 5 6 9 , 0 . 3 5 , 0 . 3 3 6 , 0 . 3 2 2 8 , 0 . 3 0 6 , 0 . 2 8 7] ,

P = −0.8
[0 . 5 1 , 0 . 5 1 , 0 . 5 1 , 0 . 5 1 , 0 . 5 1 1 , 0 . 5 1 4 , 0 . 5 0 4 , 0 . 4 8 8 5 , 0 . 4 7 4 , 0 . 4 5 3 5 , 0 . 4 2 8] ,

P = −0.7
[0 . 6 4 , 0 . 6 4 , 0 . 6 4 , 0 . 6 4 , 0 . 6 4 15 , 0 . 6 4 39 , 0 . 6 3 53 , 0 . 6 1 9 5 , 0 . 6 0 5 , 0 . 5 8 42 , 0 . 5 5 85] ,

P = −0.6
[0 . 7 5 , 0 . 7 5 , 0 . 7 5 , 0 . 7 5 , 0 . 7 5 3 , 0 . 7 5 8 , 0 . 7 5 2 5 , 0 . 7 3 3 5 , 0 . 7 1 8 4 , 0 . 6 9 9 5 , 0 . 6 7 7] ,

P = −0.5
[0 . 8 4 , 0 . 8 4 , 0 . 8 4 , 0 . 8 4 , 0 . 8 4 26 , 0 . 8 4 56 , 0 . 8 4 15 , 0 . 8 2 65 , 0 . 8 1 39 , 0 . 7 9 84 , 0 . 7 8 05] ,

P = −0.4
[0 . 9 6 , 0 . 9 6 , 0 . 9 6 , 0 . 9 6 , 0 . 9 6 13 , 0 . 9 6 39 , 0 . 9 6 45 , 0 . 9 5 8 3 , 0 . 9 5 19 , 0 . 9 4 46 , 0 . 9 3 6] ,

P = −0.2
[1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1] ,

P = 0
[0 . 9 6 , 0 . 9 6 15 , 0 . 9 6 35 , 0 . 9 6 75 , 0 . 9 6 9 , 0 . 9 7 1 , 0 . 9 7 25 , 0 . 9 7 5 , 0 . 9 7 51 , 0 . 9 7 5 , 0 . 9 7 6] ,

P = 0.2
[0 . 8 4 , 0 . 8 4 5 , 0 . 8 5 2 , 0 . 8 6 6 , 0 . 8 7 9 , 0 . 8 8 8 , 0 . 8 9 33 , 0 . 8 9 2 , 0 . 8 8 99 , 0 . 8 8 75 , 0 . 8 8 25] ,

P = 0.4
[0 . 7 5 , 0 . 7 5 5 , 0 . 7 6 35 , 0 . 7 8 5 , 0 . 8 0 9 , 0 . 8 2 75 , 0 . 8 3 45 , 0 . 8 3 15 , 0 . 8 2 59 , 0 . 8 1 7 , 0 . 8 0 55] ,

P = 0.5
[0 . 6 4 , 0 . 6 4 55 , 0 . 6 545 , 0 . 6 8 40 , 0 . 7 2 , 0 . 7 478 , 0 . 7 593 , 0 . 7 5 2 , 0 . 7 415 , 0 . 7 2 77 , 0 . 7 105] ,

P = 0.6
[0 . 5 1 , 0 . 5 1 6 , 0 . 5 2 65 , 0 . 5 6 15 , 0 . 6 0 6 , 0 . 6 4 3 , 0 . 6 5 9 , 0 . 6 5 05 , 0 . 6 3 59 , 0 . 6 1 9 , 0 . 5 9 95] ,

P = 0.7
[0 . 3 6 , 0 . 3 6 6 , 0 . 3 7 65 , 0 . 4 1 4 , 0 . 4 6 2 , 0 . 5 0 39 , 0 . 5 2 2 , 0 . 5 1 3 , 0 . 4 9 82 , 0 . 4 7 77 , 0 . 4 5 2] ,

P = 0.8
[0 . 2 775 , 0 . 2 83 , 0 . 2 925 , 0 . 3 3 , 0 . 3 775 , 0 . 4 135 , 0 . 4 335 , 0 . 4 265 , 0 . 4 108 , 0 . 3 905 , 0 . 3 665] ,

P = 0.85
[0 . 1 9 , 0 . 1 9 5 , 0 . 2 0 28 , 0 . 2 3 37 , 0 . 2 7 2 , 0 . 3 0 56 , 0 . 3 2 35 , 0 . 3 1 97 , 0 . 3 0 42 , 0 . 2 8 4 , 0 . 2 6] ,

P = 0.9
[0 . 0 9 7 5 , 0 . 1 , 0 . 1 0 5 , 0 . 1 2 4 , 0 . 1 4 8 5 , 0 . 1 7 5 , 0 . 1 9 3 5 , 0 . 1 8 9 , 0 . 1 7 5 8 , 0 . 1 5 6 , 0 . 1 3] ,

P = 0.95
[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0]]

P = 1.0

i f P < −0.975:
pindex = 0

i f P >= −0.975 and P < −0.925:
pindex = 1

i f P >= −0.925 and P < −0.85:
pindex = 2

i f P >= −0.85 and P < −0.75:
pindex = 3

i f P >= −0.75 and P < −0.65:
pindex = 4

i f P >= −0.65 and P < −0.55:
pindex = 5

i f P >= −0.55 and P < −0.45:
pindex = 6

i f P >= −0.45 and P < −0.3:
pindex = 7

i f P >= −0.3 and P < −0.1:
pindex = 8

i f P >= −0.1 and P < 0 . 1 :
pindex = 9

183

i f P >= 0.1 and P < 0 . 3 :
pindex = 10

i f P >= 0.3 and P < 0 . 4 5 :
pindex = 11

i f P >= 0.45 and P < 0 . 5 5 :
pindex = 12

i f P >= 0.55 and P < 0 . 6 5 :
pindex = 13

i f P >= 0.65 and P < 0 . 7 5 :
pindex = 14

i f P >= 0.75 and P < 0 . 8 25 :
pindex = 15

i f P >= 0.825 and P < 0 . 8 7 5 :
pindex = 16

i f P >= 0.875 and P < 0 . 9 25 :
pindex = 17

i f P >= 0.925 and P < 0 . 9 75 :
pindex = 18

i f P >= 0 . 975 :
pindex = 19

i f rR >= 0.875 and rR <= 1:
r index = 0

i f rR >= 0.825 and rR < 0 . 8 75 :
r index = 1

i f rR >= 0.75 and rR < 0 . 8 25 :
r index = 2

i f rR >= 0.65 and rR < 0 . 7 5 :
r index = 3

i f rR >= 0.55 and rR < 0 . 6 5 :
r index = 4

i f rR >= 0.45 and rR < 0 . 5 5 :
r index = 5

i f rR >= 0.35 and rR < 0 . 4 5 :
r index = 6

i f rR >= 0.275 and rR < 0 . 3 5 :
r index = 7

i f rR >= 0.225 and rR < 0 . 2 75 :
r index = 8

i f rR >= 0.175 and rR < 0 . 2 25 :
r index = 9

i f rR >= 0 and rR < 0 . 1 75 :
r index = 10

return v2tab [pindex] [r index]

def b4567ab (rR) :
”””
Returns a/c and b/c f o r a 4 , 5 , 6 or 7 bladed B−S e r i e s P rope l l e r .
I f r /R i s not exac t l y tabulated then the value i s i n t e rpo l a t ed .
”””
i f rR < 0 . 2 :

a = 0.625 − (0 .008∗ rR /0 . 2)
b = 0.35

i f rR >= 0.2 and rR < 0 . 3 :
a = 0.617 − (0 . 0 04∗ ((rR−0.2) /0 . 1))
b = 0.35

i f rR >= 0.3 and rR < 0 . 4 :
a = 0.613 − (0 . 0 12∗ ((rR−0.3) /0 . 1))
b = 0.35 + (0 . 0 01∗ ((rR−0.3) /0 . 1))

i f rR >= 0.4 and rR < 0 . 5 :
a = 0.601 − (0 . 0 15∗ ((rR−0.4) /0 . 1))
b = 0.351 + (0 . 0 04∗ ((rR−0.4) /0 . 1))

i f rR >= 0.5 and rR < 0 . 6 :
a = 0.586 − (0 . 0 25∗ ((rR−0.5) /0 . 1))
b = 0.355 + (0 . 0 34∗ ((rR−0.5) /0 . 1))

i f rR >= 0.6 and rR < 0 . 7 :
a = 0.561 − (0 . 0 37∗ ((rR−0.6) /0 . 1))
b = 0.389 + (0 . 0 54∗ ((rR−0.6) /0 . 1))

i f rR >= 0.7 and rR < 0 . 8 :
a = 0.524 − (0 . 0 61∗ ((rR−0.7) /0 . 1))
b = 0.443 + (0 . 0 36∗ ((rR−0.7) /0 . 1))

i f rR >= 0.8 and rR < 0 . 9 :
a = 0.463 − (0 . 1 12∗ ((rR−0.8) /0 . 1))
b = 0.479 + (0 . 0 21∗ ((rR−0.8) /0 . 1))

i f rR >= 0 . 9 :
a = 0.351 − (0 . 3 5∗ ((rR−0.9) /0 . 1))
b = 0 .5

return a , b

def b4567c (rR) :
”””
Returns c/D.Z/EAR fo r a 4 , 5 , 6 or 7 bladed B−S e r i e s P rope l l e r .
I f r /R i s not exac t l y tabulated then the value i s i n t e rpo l a t ed .
”””
i f rR < 0 . 2 :

c = 1.222 + (0 .44∗ rR /0 . 2)
i f rR >= 0.2 and rR < 0 . 3 :

c = 1.662 + (0 . 2 2∗ ((rR−0.2) /0 . 1))

184

i f rR >= 0.3 and rR < 0 . 4 :
c = 1.882 + (0 . 1 62∗ ((rR−0.3) /0 . 1))

i f rR >= 0.4 and rR < 0 . 5 :
c = 2.050 + (0 . 1 02∗ ((rR−0.4) /0 . 1))

i f rR >= 0.5 and rR < 0 . 6 :
c = 2.152 + (0 . 0 35∗ ((rR−0.5) /0 . 1))

i f rR >= 0.6 and rR < 0 . 7 :
c = 2.187 − (0 . 0 43∗ ((rR−0.6) /0 . 1))

i f rR >= 0.7 and rR < 0 . 8 :
c = 2.144 − (0 . 1 74∗ ((rR−0.7) /0 . 1))

i f rR >= 0.8 and rR < 0 . 9 :
c = 1.970 − (0 . 3 88∗ ((rR−0.8) /0 . 1))

i f rR >= 0 . 9 :
c = 1.582 − (1 . 4 82∗ ((rR−0.9) /0 . 1))

return c

def og i va l (rR) :
”””
Returns blade s e c t i on data f o r an og i va l s e c t i on .
This i s the same as the rR = 1.0 s e c t i on o f a B−s e r i e s p rope l l e r ,
however co−o rd ina t e s are s h i f t e d to be centred on the des ign l i n e .

Parameters
−−−−−−−−−−
rR : number

Normalised r a d i a l l o ca t i on , between 0 (root) and 1 (t i p) .

Returns
−−−−−−−
xs : l i s t

X co−o rd ina t e s o f o g i va l .
ys : l i s t

Y co−o rd ina t e s o f o g i va l .
”””

return map(lambda x : x+0.5 , b4567s (1 . 0) [0]) , b4567s (1 . 0) [1]

def p i tchvar (root , ha l f , seven , t i p) :
”””
Creates a func t i on to de s c r i b e a va r i ab l e p i t ch d i s t r i bu t i on ,
with P/D r a t i o s s e t at :
root (r /R = 0) ,
h a l f (r /R = 0 . 5) ,
seven (r /R = 0 . 7) ,
t i p (r /R = 1 . 0) .

Parameters
−−−−−−−−−−
root : number

Pitch at root .
h a l f : number

Pitch halfway up the blade .
seven : number

Pitch at 70% s e c t i on .
t i p : number

Pitch at t i p .

Returns
−−−−−−−
p i t ch func : func t i on

Function that c a l c u l a t e s a p i t ch based on r /R parameter .
”””

def p i t ch func (rR) :
from math import degrees , atan , p i
i f 0 .0 <= rR <= 0 . 5 :

PDR = ((rR−0.0) /0 . 5) ∗(ha l f−root)+root
i f 0 .5 < rR <= 0 . 7 :

PDR = ((rR−0.5) /0 . 2) ∗(seven−ha l f)+ha l f
i f 0 .7 < rR <= 1 . 0 :

PDR = ((rR−0.7) /0 . 3) ∗(t ip−seven)+seven
return degrees (atan (p i ∗rR/PDR))

return p i t ch func

def pitchquad (root , ha l f , t i p) :
”””
Creates a func t i on to de s c r i b e a quadrat i c p i t ch d i s t r i bu t i on ,
pass ing through po in t s at the root , h a l f way and t i p .

Parameters
−−−−−−−−−−
root : number

Pitch at root .
h a l f : number

Pitch halfway up the blade .
t i p : number

Pitch at t i p .

185

Returns
−−−−−−−
p i t ch func : func t i on

Function that c a l c u l a t e s a p i t ch based on r /R parameter .
”””
from numpy import p o l y f i t
p f i t = p o l y f i t ([0 . 0 , 0 . 5 , 1 . 0] , [root , ha l f , t i p] , 2)

def p i t ch func (rR) :
from math import degrees , atan , p i
PDR = p f i t [0] ∗ (rR∗∗2)+p f i t [1] ∗ (rR)+p f i t [2]
return degrees (atan (p i ∗rR/PDR))

return p i t ch func

def constchord (cD) :
”””
Creates a func t i on to de s c r i b e a constant chord d i s t r i bu t i on ,
with input o f cD , the chord/diameter r a t i o .

Parameters
−−−−−−−−−−
cD : number

Chord/diameter r a t i o .

Returns
−−−−−−−
chordfunc : func t i on

Function that c a l c u l a t e s abso lu te chord based o f r /R and D.
”””

def chordfunc (rR , D) :
return cD∗D

return chordfunc

def chordquad (root , ha l f , t i p) :
”””
Creates a func t i on to de s c r i b e a quadrat i c chord d i s t r i bu t i on ,
with an input o f chord/diameter r a t i o at the root , h a l f way and t i p .

Parameters
−−−−−−−−−−
root : number

Chord/diameter r a t i o at root .
h a l f : number

Chord/diameter r a t i o halfway up the blade .
t i p : number

Chord/diameter r a t i o at t i p .

Returns
−−−−−−−
chordfunc : func t i on

Function that c a l c u l a t e s abso lu te chord based o f r /R and D.
”””
from numpy import p o l y f i t
p f i t = p o l y f i t ([0 . 0 , 0 . 5 , 1 . 0] , [root , ha l f , t i p] , 2)

def chordfunc (rR , D) :
cD = p f i t [0] ∗ (rR∗∗2)+p f i t [1] ∗ (rR)+p f i t [2]
return cD∗D

return chordfunc

def cons t th i ck (tD) :
”””
Creates a func t i on to de s c r i b e a constant th i ckne s s d i s t r i bu t i on ,
with input o f tD the th i ckne s s / diameter r a t i o .

Parameters
−−−−−−−−−−
tD : number

Thickness / diameter r a t i o .

Returns
−−−−−−−
th i ck func : func t i on

Function that c a l c u l a t e s abso lu te th i ckne s s based o f r /R and D.
”””

def th i ck func (rR , D) :
return tD∗D

return th i ck func

def t h i c k l i n e a r (root , t i p) :
”””

186

Creates a func t i on to de s c r i b e a l i n e a r th i ckne s s d i s t r i bu t i on ,
with input o f the th i ckne s s / diameter r a t i o at the root and t i p .

Parameters
−−−−−−−−−−
root : number

Thickness / diameter r a t i o at the root .
t i p : number

Thickness / diameter r a t i o at the t i p .

Returns
−−−−−−−
th i ck func : func t i on

Function that c a l c u l a t e s abso lu te th i ckne s s based o f r /R and D.
”””

def th i ck func (rR , D) :
return (root+(t ip−root) ∗rR) ∗D

return th i ck func

def thickquad (root , ha l f , t i p) :
”””
Creates a func t i on to de s c r i b e a quadrat i c th i ckne s s d i s t r i bu t i on ,
with an input o f th i ckne s s / diameter r a t i o at the root , h a l f way and t i p .

Parameters
−−−−−−−−−−
root : number

Thickness / diameter r a t i o at the root .
h a l f : number

Thickness / diameter r a t i o halfway along the blade .
t i p : number

Thickness / diameter r a t i o at the t i p .

Returns
−−−−−−−
th i ck func : func t i on

Function that c a l c u l a t e s abso lu te th i ckne s s based o f r /R and D.
”””
from numpy import p o l y f i t
p f i t = p o l y f i t ([0 . 0 , 0 . 5 , 1 . 0] , [root , ha l f , t i p] , 2)

def th i ck func (rR , D) :
tD = p f i t [0] ∗ (rR∗∗2)+p f i t [1] ∗ (rR)+p f i t [2]
return tD∗D

return th i ck func

def showb4567s (rR) :
”””
Uses pylab to p lo t a f i g u r e o f the s e c t i on
o f a B4−70 prop at a c e r t a i n r a d i a l l o c a t i o n .
”””
import pylab
xs , ys = b4567s (rR)
pylab . p l o t (xs , ys)
pylab . ax i s ([−1 , 1 , −0.5 , 1 . 5])
pylab . show ()
return

def outputb4567csv (f i l ename) :
”””
Outputs blade s e c t i o n s f o r a B4−70 prop at var i ous r a d i a l s t a t i o n s
in to a . csv f i l e that can be read in to exc e l
and used to generate s e c t i o n s in SolidWorks .
”””

cr e a t e co−o r d i n a t e data
r02x , r02y = b4567s (0 . 2)
r02y = map(lambda x : x∗100 , r02y)
r025x , r025y = b4567s (0 . 2 5)
r025y = map(lambda x : x∗100 , r025y)
r03x , r03y = b4567s (0 . 3)
r03y = map(lambda x : x∗100 , r03y)
r04x , r04y = b4567s (0 . 4)
r04y = map(lambda x : x∗100 , r04y)
r05x , r05y = b4567s (0 . 5)
r05y = map(lambda x : x∗100 , r05y)
r06x , r06y = b4567s (0 . 6)
r06y = map(lambda x : x∗100 , r06y)
r07x , r07y = b4567s (0 . 7)
r07y = map(lambda x : x∗100 , r07y)
r08x , r08y = b4567s (0 . 8)
r08y = map(lambda x : x∗100 , r08y)
r09x , r09y = b4567s (0 . 9)
r09y = map(lambda x : x∗100 , r09y)
r10x , r10y = b4567s (1 . 0)
r10y = map(lambda x : x∗100 , r10y)

187

open f i l e
f out = f i l e (f i l ename+” . csv ” , ”w”)

wr i t e header
l e n s = len (r02x)
fout . wr i t e (str (l e n s) + ” ,R0 . 2 , ” + str (l e n s) + ” ,R0 . 25 , ” + str (l e n s) +

” ,R0 . 3 , ” + str (l e n s) + ” ,R0 . 4 , ” + str (l e n s) + ” ,R0 . 5 , ” +
str (l e n s) + ” ,R0 . 6 , ” + str (l e n s) + ” ,R0 . 7 , ” + str (l e n s) +
” ,R0 . 8 , ” + str (l e n s) + ” ,R0 . 9 , ” + str (l e n s) + ” ,R1.0\n”)

wr i t e remaining data
for i in range (l e n s) :

f out . wr i t e (str (r02x [i])+” , ”+str (r02y [i])+” , ”)
fout . wr i t e (str (r025x [i])+” , ”+str (r025y [i])+” , ”)
fout . wr i t e (str (r03x [i])+” , ”+str (r03y [i])+” , ”)
fout . wr i t e (str (r04x [i])+” , ”+str (r04y [i])+” , ”)
fout . wr i t e (str (r05x [i])+” , ”+str (r05y [i])+” , ”)
fout . wr i t e (str (r06x [i])+” , ”+str (r06y [i])+” , ”)
fout . wr i t e (str (r07x [i])+” , ”+str (r07y [i])+” , ”)
fout . wr i t e (str (r08x [i])+” , ”+str (r08y [i])+” , ”)
fout . wr i t e (str (r09x [i])+” , ”+str (r09y [i])+” , ”)
fout . wr i t e (str (r10x [i])+” , ”+str (r10y [i])+”\n”)

c l o s e ou tpu t f i l e
f out . c l o s e ()

return

def rotatecw (xs , ys , ang le) :
”””
Function to ro ta t e a s e t o f co−o rd ina t e s c l o ckw i s e
about the o r i g i n through an angle o f ang le degrees .
”””
from math import s in , cos , atan2 , rad ians

ge t number o f co−o r d i n a t e s
l e n s = len (xs)

cr e a t e empty ou tpu t l i s t s
x2s = []
y2s = []

for i in range (l e n s) :
ge t t h e t a A
tA = atan2 (ys [i] , xs [i])

c a l c u l a t e t h e t a B
tB = tA − rad ians (angle)

c a l c u l a t e r
r = (xs [i]∗ xs [i] + ys [i]∗ ys [i]) ∗∗0 .5

c a l c u l a t e r o t a t e d co−o r d i n a t e s
x2s . append (r ∗ cos (tB))
y2s . append (r ∗ s i n (tB))

return x2s , y2s

def map2cyl (xs , ys) :
”””
Takes a s e t o f co−o rd ina t e s and maps them onto a c y l i n d r i c a l s u r f a c e .
Uses the f i r s t y value as the rad ius o f the cy l i nd e r about the o r i g i n .
”””
from math import s in , cos , p i

ge t g l o b a l c on s t an t s
r = ys [0]
l e n s = len (xs)

cr e a t e empty ou tpu t l i s t s
x2s = []
y2s = []

check r
i f r == 0 :

print ”Error : cannot operate map2cyl func t i on with 0 rad ius ”
return None

for i in range (l e n s) :
c a l c u l a t e a b s o l u t e ang l e (p o l a r)
t = 0.5∗ pi − xs [i] / f loat (r)

cr e a t e new co−o r d i n a t e s based on t h i s ang l e
x2s . append (r ∗ cos (t))
y2s . append (r ∗ s i n (t))

return x2s , y2s

188

def outputb470st l (D) :
”””
Creates a . s t l f i l e o f a B4−70 p r op e l l e r with P/D r a t i o o f 1 . 0 ,
diameter o f D and hub diameter o f 0 .2∗D; sav ing t h i s as b470 . s t l
”””

import a j s t l

ge t co−o r d i n a t e s
r015 , r02 , r025 , r03 , r04 , r05 , r06 , r07 , r08 , r09 , r1 =\

bladegen (b4567s , b470c , b4t , b4p10 , D, rake=15)

cr e a t e an empty f a c e t s t r i n g
s t l s t r = ””

cr e a t e t h e f i r s t b l a d e
s t l s t r += a j s t l . one face (r02 [0] , r02 [1] , r02 [2])
s t l s t r += a j s t l . twoface (r02 [0] , r02 [1] , r02 [2] , r025 [0] , r025 [1] , r025 [2])
s t l s t r += a j s t l . twoface (r025 [0] , r025 [1] , r025 [2] , r03 [0] , r03 [1] , r03 [2])
s t l s t r += a j s t l . twoface (r03 [0] , r03 [1] , r03 [2] , r04 [0] , r04 [1] , r04 [2])
s t l s t r += a j s t l . twoface (r04 [0] , r04 [1] , r04 [2] , r05 [0] , r05 [1] , r05 [2])
s t l s t r += a j s t l . twoface (r05 [0] , r05 [1] , r05 [2] , r06 [0] , r06 [1] , r06 [2])
s t l s t r += a j s t l . twoface (r06 [0] , r06 [1] , r06 [2] , r07 [0] , r07 [1] , r07 [2])
s t l s t r += a j s t l . twoface (r07 [0] , r07 [1] , r07 [2] , r08 [0] , r08 [1] , r08 [2])
s t l s t r += a j s t l . twoface (r08 [0] , r08 [1] , r08 [2] , r09 [0] , r09 [1] , r09 [2])
s t l s t r += a j s t l . twoface (r09 [0] , r09 [1] , r09 [2] , r1 [0] , r1 [1] , r1 [2])
s t l s t r += a j s t l . one face (r1 [0] [: : − 1] , r1 [1] [: : − 1] , r1 [2] [: : − 1])

ro t a t e b l a d e by 90 de g r e e s
r015 [0] , r015 [1] = rotatecw (r015 [0] , r015 [1] , 90)
r02 [0] , r02 [1] = rotatecw (r02 [0] , r02 [1] , 90)
r025 [0] , r025 [1] = rotatecw (r025 [0] , r025 [1] , 90)
r03 [0] , r03 [1] = rotatecw (r03 [0] , r03 [1] , 90)
r04 [0] , r04 [1] = rotatecw (r04 [0] , r04 [1] , 90)
r05 [0] , r05 [1] = rotatecw (r05 [0] , r05 [1] , 90)
r06 [0] , r06 [1] = rotatecw (r06 [0] , r06 [1] , 90)
r07 [0] , r07 [1] = rotatecw (r07 [0] , r07 [1] , 90)
r08 [0] , r08 [1] = rotatecw (r08 [0] , r08 [1] , 90)
r09 [0] , r09 [1] = rotatecw (r09 [0] , r09 [1] , 90)
r1 [0] , r1 [1] = rotatecw (r1 [0] , r1 [1] , 90)

cr e a t e t h e second b l a d e
s t l s t r += a j s t l . one face (r02 [0] , r02 [1] , r02 [2])
s t l s t r += a j s t l . twoface (r02 [0] , r02 [1] , r02 [2] , r025 [0] , r025 [1] , r025 [2])
s t l s t r += a j s t l . twoface (r025 [0] , r025 [1] , r025 [2] , r03 [0] , r03 [1] , r03 [2])
s t l s t r += a j s t l . twoface (r03 [0] , r03 [1] , r03 [2] , r04 [0] , r04 [1] , r04 [2])
s t l s t r += a j s t l . twoface (r04 [0] , r04 [1] , r04 [2] , r05 [0] , r05 [1] , r05 [2])
s t l s t r += a j s t l . twoface (r05 [0] , r05 [1] , r05 [2] , r06 [0] , r06 [1] , r06 [2])
s t l s t r += a j s t l . twoface (r06 [0] , r06 [1] , r06 [2] , r07 [0] , r07 [1] , r07 [2])
s t l s t r += a j s t l . twoface (r07 [0] , r07 [1] , r07 [2] , r08 [0] , r08 [1] , r08 [2])
s t l s t r += a j s t l . twoface (r08 [0] , r08 [1] , r08 [2] , r09 [0] , r09 [1] , r09 [2])
s t l s t r += a j s t l . twoface (r09 [0] , r09 [1] , r09 [2] , r1 [0] , r1 [1] , r1 [2])
s t l s t r += a j s t l . one face (r1 [0] [: : − 1] , r1 [1] [: : − 1] , r1 [2] [: : − 1])

ro t a t e b l a d e by 90 de g r e e s
r015 [0] , r015 [1] = rotatecw (r015 [0] , r015 [1] , 90)
r02 [0] , r02 [1] = rotatecw (r02 [0] , r02 [1] , 90)
r025 [0] , r025 [1] = rotatecw (r025 [0] , r025 [1] , 90)
r03 [0] , r03 [1] = rotatecw (r03 [0] , r03 [1] , 90)
r04 [0] , r04 [1] = rotatecw (r04 [0] , r04 [1] , 90)
r05 [0] , r05 [1] = rotatecw (r05 [0] , r05 [1] , 90)
r06 [0] , r06 [1] = rotatecw (r06 [0] , r06 [1] , 90)
r07 [0] , r07 [1] = rotatecw (r07 [0] , r07 [1] , 90)
r08 [0] , r08 [1] = rotatecw (r08 [0] , r08 [1] , 90)
r09 [0] , r09 [1] = rotatecw (r09 [0] , r09 [1] , 90)
r1 [0] , r1 [1] = rotatecw (r1 [0] , r1 [1] , 90)

cr e a t e t h e t h i r d b l a d e
s t l s t r += a j s t l . one face (r02 [0] , r02 [1] , r02 [2])
s t l s t r += a j s t l . twoface (r02 [0] , r02 [1] , r02 [2] , r025 [0] , r025 [1] , r025 [2])
s t l s t r += a j s t l . twoface (r025 [0] , r025 [1] , r025 [2] , r03 [0] , r03 [1] , r03 [2])
s t l s t r += a j s t l . twoface (r03 [0] , r03 [1] , r03 [2] , r04 [0] , r04 [1] , r04 [2])
s t l s t r += a j s t l . twoface (r04 [0] , r04 [1] , r04 [2] , r05 [0] , r05 [1] , r05 [2])
s t l s t r += a j s t l . twoface (r05 [0] , r05 [1] , r05 [2] , r06 [0] , r06 [1] , r06 [2])
s t l s t r += a j s t l . twoface (r06 [0] , r06 [1] , r06 [2] , r07 [0] , r07 [1] , r07 [2])
s t l s t r += a j s t l . twoface (r07 [0] , r07 [1] , r07 [2] , r08 [0] , r08 [1] , r08 [2])
s t l s t r += a j s t l . twoface (r08 [0] , r08 [1] , r08 [2] , r09 [0] , r09 [1] , r09 [2])
s t l s t r += a j s t l . twoface (r09 [0] , r09 [1] , r09 [2] , r1 [0] , r1 [1] , r1 [2])
s t l s t r += a j s t l . one face (r1 [0] [: : − 1] , r1 [1] [: : − 1] , r1 [2] [: : − 1])

ro t a t e b l a d e by 90 de g r e e s
r015 [0] , r015 [1] = rotatecw (r015 [0] , r015 [1] , 90)
r02 [0] , r02 [1] = rotatecw (r02 [0] , r02 [1] , 90)
r025 [0] , r025 [1] = rotatecw (r025 [0] , r025 [1] , 90)
r03 [0] , r03 [1] = rotatecw (r03 [0] , r03 [1] , 90)
r04 [0] , r04 [1] = rotatecw (r04 [0] , r04 [1] , 90)
r05 [0] , r05 [1] = rotatecw (r05 [0] , r05 [1] , 90)
r06 [0] , r06 [1] = rotatecw (r06 [0] , r06 [1] , 90)
r07 [0] , r07 [1] = rotatecw (r07 [0] , r07 [1] , 90)
r08 [0] , r08 [1] = rotatecw (r08 [0] , r08 [1] , 90)
r09 [0] , r09 [1] = rotatecw (r09 [0] , r09 [1] , 90)
r1 [0] , r1 [1] = rotatecw (r1 [0] , r1 [1] , 90)

189

cr e a t e t h e f o u r t h b l a d e
s t l s t r += a j s t l . one face (r02 [0] , r02 [1] , r02 [2])
s t l s t r += a j s t l . twoface (r02 [0] , r02 [1] , r02 [2] , r025 [0] , r025 [1] , r025 [2])
s t l s t r += a j s t l . twoface (r025 [0] , r025 [1] , r025 [2] , r03 [0] , r03 [1] , r03 [2])
s t l s t r += a j s t l . twoface (r03 [0] , r03 [1] , r03 [2] , r04 [0] , r04 [1] , r04 [2])
s t l s t r += a j s t l . twoface (r04 [0] , r04 [1] , r04 [2] , r05 [0] , r05 [1] , r05 [2])
s t l s t r += a j s t l . twoface (r05 [0] , r05 [1] , r05 [2] , r06 [0] , r06 [1] , r06 [2])
s t l s t r += a j s t l . twoface (r06 [0] , r06 [1] , r06 [2] , r07 [0] , r07 [1] , r07 [2])
s t l s t r += a j s t l . twoface (r07 [0] , r07 [1] , r07 [2] , r08 [0] , r08 [1] , r08 [2])
s t l s t r += a j s t l . twoface (r08 [0] , r08 [1] , r08 [2] , r09 [0] , r09 [1] , r09 [2])
s t l s t r += a j s t l . twoface (r09 [0] , r09 [1] , r09 [2] , r1 [0] , r1 [1] , r1 [2])
s t l s t r += a j s t l . one face (r1 [0] [: : − 1] , r1 [1] [: : − 1] , r1 [2] [: : − 1])

f i n d maxz and minz
maxz = max([max(r02 [2]) , max(r025 [2]) , max(r03 [2]) , max(r04 [2]) ,

max(r05 [2]) , max(r06 [2]) , max(r07 [2]) , max(r08 [2]) ,
max(r09 [2]) , max(r1 [2])])

minz = min ([min(r02 [2]) , min(r025 [2]) , min(r03 [2]) , min(r04 [2]) ,
min(r05 [2]) , min(r06 [2]) , min(r07 [2]) , min(r08 [2]) ,
min(r09 [2]) , min(r1 [2])])

hubha l f l ength = max([abs (maxz) , abs (minz)])

cr e a t e hub
hubrad = 0.1∗D
tempx = [hubrad]
tempy = [0]
cy lx s = [tempx [0]]
cy l y s = [tempy [0]]
c y l z 1 s = [hubha l f l ength]
cy l z 2 s = [−hubha l f l ength]
for i in range (360) :

tempx , tempy = rotatecw (tempx , tempy , −1)
cy lx s . append (tempx [0])
cy ly s . append (tempy [0])
c y l z 1 s . append (hubha l f l ength)
cy l z 2 s . append(−hubha l f l ength)

s t l s t r += a j s t l . one face (cy lxs , cy lys , c y l z 1 s)
s t l s t r += a j s t l . twoface (cy lx s [:] , c y l y s [:] , c y l z 1 s [:] ,

c y l x s [:] , c y l y s [:] , c y l z 2 s [:])
s t l s t r += a j s t l . one face (cy lx s [: : −1] , cy l y s [: : −1] , c y l z 2 s [: : − 1])

wr i t e t h e s t l f i l e
a j s t l . w r i t e s t l (”b470” , s t l s t r)

def outputnb lades t l (s e c t i on , chord , th i cknes s , pitch , D, rake , n) :
”””
Creates a f i l e b lades . s t l conta in ing the geometry in format ion
f o r an n−bladed p r op e l l e r as made by bladegen .
”””

import a j s t l

ge t co−o r d i n a t e s
r015 , r02 , r025 , r03 , r04 , r05 , r06 , r07 , r08 , r09 , r1 =\

bladegen (sec t i on , chord , th i cknes s , pitch , D, rake)

cr e a t e an empty f a c e t s t r i n g
s t l s t r = ””

c a l c u l a t e number o f d e g r e e s to r o t a t e
rotdeg = 360.0/n

cr e a t e n b l a d e s
for i in range (n) :

add b l a d e to s t l s t r i n g
s t l s t r += a j s t l . one face (r015 [0] , r015 [1] , r015 [2])
s t l s t r += a j s t l . twoface (r015 [0] , r015 [1] , r015 [2] ,

r02 [0] , r02 [1] , r02 [2])
s t l s t r += a j s t l . twoface (r02 [0] , r02 [1] , r02 [2] ,

r025 [0] , r025 [1] , r025 [2])
s t l s t r += a j s t l . twoface (r025 [0] , r025 [1] , r025 [2] ,

r03 [0] , r03 [1] , r03 [2])
s t l s t r += a j s t l . twoface (r03 [0] , r03 [1] , r03 [2] , r04 [0] , r04 [1] , r04 [2])
s t l s t r += a j s t l . twoface (r04 [0] , r04 [1] , r04 [2] , r05 [0] , r05 [1] , r05 [2])
s t l s t r += a j s t l . twoface (r05 [0] , r05 [1] , r05 [2] , r06 [0] , r06 [1] , r06 [2])
s t l s t r += a j s t l . twoface (r06 [0] , r06 [1] , r06 [2] , r07 [0] , r07 [1] , r07 [2])
s t l s t r += a j s t l . twoface (r07 [0] , r07 [1] , r07 [2] , r08 [0] , r08 [1] , r08 [2])
s t l s t r += a j s t l . twoface (r08 [0] , r08 [1] , r08 [2] , r09 [0] , r09 [1] , r09 [2])
s t l s t r += a j s t l . twoface (r09 [0] , r09 [1] , r09 [2] , r1 [0] , r1 [1] , r1 [2])
s t l s t r += a j s t l . one face (r1 [0] [: : − 1] , r1 [1] [: : − 1] , r1 [2] [: : − 1])

ro t a t e b l a d e
r015 [0] , r015 [1] = rotatecw (r015 [0] , r015 [1] , rotdeg)
r02 [0] , r02 [1] = rotatecw (r02 [0] , r02 [1] , rotdeg)
r025 [0] , r025 [1] = rotatecw (r025 [0] , r025 [1] , rotdeg)
r03 [0] , r03 [1] = rotatecw (r03 [0] , r03 [1] , rotdeg)
r04 [0] , r04 [1] = rotatecw (r04 [0] , r04 [1] , rotdeg)
r05 [0] , r05 [1] = rotatecw (r05 [0] , r05 [1] , rotdeg)
r06 [0] , r06 [1] = rotatecw (r06 [0] , r06 [1] , rotdeg)
r07 [0] , r07 [1] = rotatecw (r07 [0] , r07 [1] , rotdeg)

190

r08 [0] , r08 [1] = rotatecw (r08 [0] , r08 [1] , rotdeg)
r09 [0] , r09 [1] = rotatecw (r09 [0] , r09 [1] , rotdeg)
r1 [0] , r1 [1] = rotatecw (r1 [0] , r1 [1] , rotdeg)

wr i t e t h e s t l f i l e
a j s t l . w r i t e s t l (” b lades ” , s t l s t r)

191

192

Appendix B

Stereolithographic Format
Generation and Writing
Program

This is a collection of Python functions written to take co-ordinate data and auto-
matically convert the data into stereolithographic (.stl file) format such that it can
be read as geometry by snappyHexMesh.

”””
a j s t l . py

A c o l l e c t i o n o f f unc t i on s f o r the wr i t ing o f s t e r e o l i t h o g r a ph i c
geometry f i l e s . Output i s in ASCII format . s t l f i l e s .

(c) copyr ight Aleksander Dubas 2012−2013
”””

import r e l e v a n t f u n c t i o n s from numpy
from numpy import append , array , c ross , rad ians
from numpy import s in , cos , arange , ones , sqrt , l i n s pa c e

def wr i t e s t l (name , f a c e t s t r i n g) :
”””
Writes a so l i d , f i l e i s named with name . s t l ,
s o l i d i s named with name . and de f ined by f a c e t s t r i n g .

Parameters
−−−−−−−−−−
name : s t r i n g

Name o f the so l i d , to be saved as <name . s t l>
f a c e t s t r i n g : s t r i n g

St r ing d e t a i l i n g the f a c e t s to make the s t l with .

Returns
−−−−−−−
None

Example
−−−−−−−
>>> wr i t e s t l (”mycube” , cube ([0 , 0 , 0] , 1))
”””
from os import f sync
fout = open(name+” . s t l ” , 'w ')
fout . wr i t e (” s o l i d ”+name+”\n”)
fout . wr i t e (f a c e t s t r i n g)
fout . wr i t e (” endso l i d ”+name+”\n”)
fout . f l u s h ()
f sync (fout . f i l e n o ())
fout . c l o s e ()
return None

def cube (centre , s i z e) :
”””
Takes input o f a cent r e (i t e r a b l e o f l ength 3)
and s i d e l ength s i z e (f l o a t)
and outputs a s t r i n g d e t a i l i n g the t r i a n g l e s
that make up the cube , ready f o r input in to . s t l f i l e .

193

Parameters
−−−−−−−−−−
cent r e : i t e r a b l e

A length 3 i t e r a b l e g iv ing the 3D co−ord inate o f the cube cent r e .
s i z e : number

A number g iv ing how long the s i d e s o f the cube should be .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s f o r the cube .

Example
−−−−−−−
>>> cube ([0 , 0 , 0] , 1)
”””

cr e a t e ou tpu t s t r i n g
out s t r = ””

des i gn co−o r d i n a t e s
hs = 0.5∗ s i z e

Cube l o o k s l i k e t h i s :
G−−−H
/ | / |
C−−−D |
| | | | y z
| E−|−F | /
|/ |/ |/
A−−−B o−−x
Ax = cent re [0]− hs
Ay = cent re [1]− hs
Az = cent r e [2]− hs

Bx = cent re [0]+ hs
By = cent re [1]− hs
Bz = cent re [2]− hs

Cx = cent re [0]− hs
Cy = cent re [1]+ hs
Cz = cent re [2]− hs

Dx = cent re [0]+ hs
Dy = cent re [1]+ hs
Dz = cent re [2]− hs

Ex = cent re [0]− hs
Ey = cent re [1]− hs
Ez = cent r e [2]+ hs

Fx = cent re [0]+ hs
Fy = cent re [1]− hs
Fz = cent re [2]+ hs

Gx = cent r e [0]− hs
Gy = cent r e [1]+ hs
Gz = cent re [2]+ hs

Hx = cent re [0]+ hs
Hy = cent re [1]+ hs
Hz = cent r e [2]+ hs

cr e a t e t r i a n g l e s
f a c e 1 ABCD => ABC BCD; normal = 0 0 −1
out s t r += ” f a c e t normal 0 0 −1\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Ax)+” ”+str (Ay)+” ”+str (Az)+”\n”
out s t r += ” vertex ”+str (Bx)+” ”+str (By)+” ”+str (Bz)+”\n”
out s t r += ” vertex ”+str (Cx)+” ”+str (Cy)+” ”+str (Cz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal 0 0 −1\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Bx)+” ”+str (By)+” ”+str (Bz)+”\n”
out s t r += ” vertex ”+str (Cx)+” ”+str (Cy)+” ”+str (Cz)+”\n”
out s t r += ” vertex ”+str (Dx)+” ”+str (Dy)+” ”+str (Dz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

fac e 2 ABEF => ABE BEF; normal = 0 −1 0
out s t r += ” f a c e t normal 0 −1 0\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Ax)+” ”+str (Ay)+” ”+str (Az)+”\n”
out s t r += ” vertex ”+str (Bx)+” ”+str (By)+” ”+str (Bz)+”\n”
out s t r += ” vertex ”+str (Ex)+” ”+str (Ey)+” ”+str (Ez)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal 0 −1 0\n”
out s t r += ” outer loop\n”

194

out s t r += ” vertex ”+str (Bx)+” ”+str (By)+” ”+str (Bz)+”\n”
out s t r += ” vertex ”+str (Ex)+” ”+str (Ey)+” ”+str (Ez)+”\n”
out s t r += ” vertex ”+str (Fx)+” ”+str (Fy)+” ”+str (Fz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

fac e 3 BDFH => BDF DFH; normal = 1 0 0
out s t r += ” f a c e t normal 1 0 0\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Bx)+” ”+str (By)+” ”+str (Bz)+”\n”
out s t r += ” vertex ”+str (Dx)+” ”+str (Dy)+” ”+str (Dz)+”\n”
out s t r += ” vertex ”+str (Fx)+” ”+str (Fy)+” ”+str (Fz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal 1 0 0\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Dx)+” ”+str (Dy)+” ”+str (Dz)+”\n”
out s t r += ” vertex ”+str (Fx)+” ”+str (Fy)+” ”+str (Fz)+”\n”
out s t r += ” vertex ”+str (Hx)+” ”+str (Hy)+” ”+str (Hz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

fac e 4 CDGH => CDG DGH; normal = 0 1 0
out s t r += ” f a c e t normal 0 1 0\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Cx)+” ”+str (Cy)+” ”+str (Cz)+”\n”
out s t r += ” vertex ”+str (Dx)+” ”+str (Dy)+” ”+str (Dz)+”\n”
out s t r += ” vertex ”+str (Gx)+” ”+str (Gy)+” ”+str (Gz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal 0 1 0\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Dx)+” ”+str (Dy)+” ”+str (Dz)+”\n”
out s t r += ” vertex ”+str (Gx)+” ”+str (Gy)+” ”+str (Gz)+”\n”
out s t r += ” vertex ”+str (Hx)+” ”+str (Hy)+” ”+str (Hz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

fac e 5 ACEG => ACE CEG; normal = −1 0 0
out s t r += ” f a c e t normal −1 0 0\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Ax)+” ”+str (Ay)+” ”+str (Az)+”\n”
out s t r += ” vertex ”+str (Cx)+” ”+str (Cy)+” ”+str (Cz)+”\n”
out s t r += ” vertex ”+str (Ex)+” ”+str (Ey)+” ”+str (Ez)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal −1 0 0\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Cx)+” ”+str (Cy)+” ”+str (Cz)+”\n”
out s t r += ” vertex ”+str (Ex)+” ”+str (Ey)+” ”+str (Ez)+”\n”
out s t r += ” vertex ”+str (Gx)+” ”+str (Gy)+” ”+str (Gz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

fac e 6 EFGH => EFG FGH; normal = 0 0 1
out s t r += ” f a c e t normal 0 0 1\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Ex)+” ”+str (Ey)+” ”+str (Ez)+”\n”
out s t r += ” vertex ”+str (Fx)+” ”+str (Fy)+” ”+str (Fz)+”\n”
out s t r += ” vertex ”+str (Gx)+” ”+str (Gy)+” ”+str (Gz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal 0 0 1\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (Fx)+” ”+str (Fy)+” ”+str (Fz)+”\n”
out s t r += ” vertex ”+str (Gx)+” ”+str (Gy)+” ”+str (Gz)+”\n”
out s t r += ” vertex ”+str (Hx)+” ”+str (Hy)+” ”+str (Hz)+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

return out s t r

def one face (xs , ys , zs) :
”””
Returns a f a c e t s t r i n g f o r a f a c e de f ined by a s e r i e s o f po in t s
with the normal de f ined in a r ight−hand ru l e manner .

Parameters
−−−−−−−−−−
xs : l i s t o f numbers

A l i s t o f number g iv ing the x co−o rd ina t e s o f the f a c e .
ys : l i s t o f numbers

A l i s t o f number g iv ing the y co−o rd ina t e s o f the f a c e .
zs : l i s t o f numbers

A l i s t o f number g iv ing the z co−o rd ina t e s o f the f a c e .

Returns

195

−−−−−−−
out s t r : s t r i n g

The ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s f o r the f a c e .

Example
−−−−−−−
>>> one face ([0 , 1 , 1 , 0] , [0 , 0 , 1 , 1] , [0 , 0 , 0 , 0])
”””
san i t y check s
i f len (xs) != len (ys) or len (ys) != len (zs) :

print (”Error in func t i on one face : ” +
” too many o f one co−ord inate in input ! ”)

return ””

check whether s e r i e s o f p o i n t s i s c l o s ed , and open i f i t i s
i f xs [0] == xs [−1] and ys [0] == ys [−1] and zs [0] == zs [−1] :

xs = xs [: −1]
ys = ys [: −1]
zs = zs [: −1]

de f i n e top and bottom co−o r d i n a t e s
xtops = xs [: len (xs) /2]
xbots = xs [len (xs) / 2 :] [: : − 1]
ytops = ys [: len (xs) /2]
ybots = ys [len (xs) / 2 :] [: : − 1]
ztops = zs [: len (xs) /2]
zbots = zs [len (xs) / 2 :] [: : − 1]

de f i n e array end r e f e r e n c e i n t e g e r
x t l = len (xtops) − 1

make ou tpu t s t r i n g
out s t r = ””

for i in range (x t l) :
Make square ABCD:
B−−−A <− t o p s
|2\1 |
D−−−C <− b o t s
A = array ([xtops [i] , ytops [i] , z tops [i]])
B = array ([xtops [i +1] , ytops [i +1] , ztops [i +1]])
C = array ([xbots [i] , ybots [i] , zbots [i]])
D = array ([xbots [i +1] , ybots [i +1] , zbots [i +1]])

Find normal o f t r i a n g l e 1
n1 = c ro s s (B−A, C−A)
Find normal o f t r i a n g l e 2
n2 = c ro s s (B−C, D−C)

Write t r i a n g l e s to o u t s t r
out s t r += ” f a c e t normal ”+str (n1 [0])+” ”+str (n1 [1])+” ”+str (n1 [2])+”\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (A[0])+” ”+str (A[1])+” ”+str (A[2])+”\n”
out s t r += ” vertex ”+str (B [0])+” ”+str (B [1])+” ”+str (B [2])+”\n”
out s t r += ” vertex ”+str (C [0])+” ”+str (C [1])+” ”+str (C [2])+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal ”+str (n2 [0])+” ”+str (n2 [1])+” ”+str (n2 [2])+”\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (C [0])+” ”+str (C [1])+” ”+str (C [2])+”\n”
out s t r += ” vertex ”+str (B [0])+” ”+str (B [1])+” ”+str (B [2])+”\n”
out s t r += ” vertex ”+str (D[0])+” ”+str (D[1])+” ”+str (D[2])+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

s p e c i a l case i f l e n (x b o t s)> l e n (x t o p s) i . e . odd number o f co−ords
i f len (xbots) > len (xtops) :

Make l a s t t r i a n g l e ABC
A <− t o p s
/ \
B−−−C <− b o t s
A = array ([xtops [x t l] , ytops [x t l] , z tops [x t l]])
B = array ([xbots [x t l +1] , ybots [x t l +1] , zbots [x t l +1]])
C = array ([xbots [x t l] , ybots [x t l] , zbots [x t l]])

Find normal
n1 = c ro s s (B−A, C−A)

Add f i n a l t r i a n g l e to o u t s t r
out s t r += ” f a c e t normal ”+str (n1 [0])+” ”+str (n1 [1])+” ”+str (n1 [2])+”\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (A[0])+” ”+str (A[1])+” ”+str (A[2])+”\n”
out s t r += ” vertex ”+str (B [0])+” ”+str (B [1])+” ”+str (B [2])+”\n”
out s t r += ” vertex ”+str (C [0])+” ”+str (C [1])+” ”+str (C [2])+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

return out s t r

def twoface (f1xs , f1ys , f1zs , f2xs , f2ys , f 2 z s) :

196

”””
Returns a f a c e t s t r i n g f o r a su r f a c e l o f t e d between two f a c e s de f ined by
two equal l ength s e r i e s o f po in t s with the normal de f ined
in a r ight−hand ru l e manner .
For the f a c e t normals to po int outwards from the l o f t e d sur face ,
both f a c e s f1 and f2 should be wr i t t en in an anti−c l o ckw i s e order
when viewed down the ax i s from f1 to f2 .

Parameters
−−−−−−−−−−
f 1x s : l i s t o f numbers

A l i s t o f x co−o rd ina t e s f o r the f i r s t f a c e .
f 1y s : l i s t o f numbers

A l i s t o f y co−o rd ina t e s f o r the f i r s t f a c e .
f 1 z s : l i s t o f numbers

A l i s t o f z co−o rd ina t e s f o r the f i r s t f a c e .
f 2x s : l i s t o f numbers

A l i s t o f x co−o rd ina t e s f o r the second fa c e .
f 2y s : l i s t o f numbers

A l i s t o f y co−o rd ina t e s f o r the second fa c e .
f 2 z s : l i s t o f numbers

A l i s t o f z co−o rd ina t e s f o r the second fa c e .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that l o f t between the two f a c e s .

”””

san i t y check s
i f len (f 1x s) != len (f 1y s) or len (f 1y s) != len (f 1 z s) \

or len (f 1 z s) != len (f 2x s) or len (f 2x s) != len (f 2y s) \
or len (f 2y s) != len (f 2 z s) :
print (”Error in func t i on twoface : ” +

” too many o f one co−ord inate in input ! ”)
print (str (len (f 1x s))+” ”+str (len (f 1y s))+” ”+str (len (f 1 z s))+” ” +

str (len (f 2x s))+” ”+str (len (f 2y s))+” ”+str (len (f 2 z s)))
return ””

check whether s e r i e s o f p o i n t s i s open , and c l o s e i f i t i s
i f f 1x s [0] != f1xs [−1] or f 1y s [0] != f1ys [−1] or f 1 z s [0] != f 1 z s [−1] \

or f 2x s [0] != f2xs [−1] or f 2y s [0] != f2ys [−1] or f 2 z s [0] != f 2 z s [−1] :
try :

f 1x s . append (f1xs [0])
f 1y s . append (f1ys [0])
f 1 z s . append (f 1 z s [0])
f 2x s . append (f2xs [0])
f 2y s . append (f2ys [0])
f 2 z s . append (f 2 z s [0])

except Attr ibuteError :
f 1x s = append (f1xs , f 1x s [0])
f 1y s = append (f1ys , f 1y s [0])
f 1 z s = append (f1zs , f 1 z s [0])
f 2x s = append (f2xs , f 2x s [0])
f 2y s = append (f2ys , f 2y s [0])
f 2 z s = append (f2zs , f 2 z s [0])

de f i n e top and bottom co−o r d i n a t e s
xtops = f2xs [:]
xbots = f1xs [:]
ytops = f2ys [:]
ybots = f1ys [:]
z tops = f 2 z s [:]
zbots = f 1 z s [:]

de f i n e array end r e f e r e n c e i n t e g e r
x t l = len (xtops) − 1

make ou tpu t s t r i n g
out s t r = ””

for i in range (x t l) :
Make square ABCD:
B−−−A <− t o p s
|2\1 |
D−−−C <− b o t s
A = array ([xtops [i] , ytops [i] , z tops [i]])
B = array ([xtops [i +1] , ytops [i +1] , ztops [i +1]])
C = array ([xbots [i] , ybots [i] , zbots [i]])
D = array ([xbots [i +1] , ybots [i +1] , zbots [i +1]])

Find normal o f t r i a n g l e 1
n1 = c ro s s (B−A, C−A)
Find normal o f t r i a n g l e 2
n2 = c ro s s (B−C, D−C)

Write t r i a n g l e s to o u t s t r
out s t r += ” f a c e t normal ”+str (n1 [0])+” ”+str (n1 [1])+” ”+str (n1 [2])+”\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (A[0])+” ”+str (A[1])+” ”+str (A[2])+”\n”
out s t r += ” vertex ”+str (B [0])+” ”+str (B [1])+” ”+str (B [2])+”\n”

197

out s t r += ” vertex ”+str (C [0])+” ”+str (C [1])+” ”+str (C [2])+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

out s t r += ” f a c e t normal ”+str (n2 [0])+” ”+str (n2 [1])+” ”+str (n2 [2])+”\n”
out s t r += ” outer loop\n”
out s t r += ” vertex ”+str (C [0])+” ”+str (C [1])+” ”+str (C [2])+”\n”
out s t r += ” vertex ”+str (B [0])+” ”+str (B [1])+” ”+str (B [2])+”\n”
out s t r += ” vertex ”+str (D[0])+” ”+str (D[1])+” ”+str (D[2])+”\n”
out s t r += ”endloop\n”
out s t r += ” endface t \n”

return out s t r

def hubZc (D, L) :
”””
Writes a f a c e t s t r i n g f o r a p r op e l l e r hub o f diameter D and length L ,
centered at the o r i g in , and a x i a l l y o r i en t ed in the ' z ' d i r e c t i o n .
Hub has f l a t ends − thus a p l a in cy l i nd e r .

Parameters
−−−−−−−−−−
D: number

Diameter o f the hub .
L : number

Length o f the hub .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the hub su r f a c e .

”””

make ou tpu t s t r i n g
out s t r = ””

cr e a t e c e n t r a l c y l i n d e r co−o r d i n a t e s
r = 0.5∗D
cy lx s = r ∗ cos (rad ians (arange (361)))
cy ly s = r ∗ s i n (rad ians (arange (361)))
cy l z 1 s = 0.5∗L∗ ones (361)
cy l z 2 s = −0.5∗L∗ ones (361)

cr e a t e c y l i n d e r
out s t r += one face (cy lx s [:] , c y l y s [:] , c y l z 1 s [:])
ou t s t r += twoface (cy lx s [:] , c y l y s [:] , c y l z 1 s [:] ,

c y l x s [:] , c y l y s [:] , c y l z 2 s [:])
ou t s t r += one face (cy lx s [: : −1] , cy l y s [: : −1] , c y l z 2 s [: : − 1])

return out s t r

def hubZs (D, L) :
”””
Writes a f a c e t s t r i n g f o r a p r op e l l e r hub o f diameter D and length L ,
centered at the o r i g in , and a x i a l l y o r i en t ed in the ' z ' d i r e c t i o n .
Hub has s ph e r i c a l ends .

Parameters
−−−−−−−−−−
D: number

Diameter o f the hub .
L : number

Length o f the hub .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the hub su r f a c e .

”””

make ou tpu t s t r i n g
out s t r = ””

cr e a t e c e n t r a l c y l i n d e r co−o r d i n a t e s
r = 0.5∗D
cy lx s = r ∗ cos (rad ians (arange (361)))
cy ly s = r ∗ s i n (rad ians (arange (361)))
cy l z 1 s = 0.5∗L∗ ones (361)
cy l z 2 s = −0.5∗L∗ ones (361)

cr e a t e hub w i th s p h e r i c a l ends
out s t r += one face (cos (rad ians (89)) ∗ cy lx s [:] ,

cos (rad ians (89)) ∗ cy ly s [:] ,
c y l z 1 s [:]+ r ∗ s i n (rad ians (89)))

for i in range (89 , 0 , −1) :
ou t s t r += twoface (cos (rad ians (i)) ∗ cy lx s [:] ,

cos (rad ians (i)) ∗ cy ly s [:] ,
c y l z 1 s [:]+ r ∗ s i n (rad ians (i)) ,

198

cos (rad ians (i −1)) ∗ cy lx s [:] ,
cos (rad ians (i −1)) ∗ cy ly s [:] ,
c y l z 1 s [:]+ r ∗ s i n (rad ians (i −1)))

ou t s t r += twoface (cy lx s [:] , c y l y s [:] , c y l z 1 s [:] ,
c y l x s [:] , c y l y s [:] , c y l z 2 s [:])

for i in range (0 , 89 , 1) :
ou t s t r += twoface (cos (rad ians (i)) ∗ cy lx s [:] ,

cos (rad ians (i)) ∗ cy ly s [:] ,
c y l z 2 s [:] − r ∗ s i n (rad ians (i)) ,
cos (rad ians (i +1)) ∗ cy lx s [:] ,
cos (rad ians (i +1)) ∗ cy ly s [:] ,
c y l z 2 s [:] − r ∗ s i n (rad ians (i +1)))

ou t s t r += one face (cos (rad ians (89)) ∗ cy lx s [:] ,
cos (rad ians (89)) ∗ cy ly s [:] ,
c y l z 2 s [:] − r ∗ s i n (rad ians (89)))

return out s t r

def rimZ (iD , oD, L) :
”””
Creates a rim or annulus about the o r i g i n in the Z d i r e c t i o n
with inner diameter iD , outer diameter oD and length L .
See a l s o r imZf l a t and rimZcut .

Parameters
−−−−−−−−−−
iD : number

Inner diameter o f the rim .
oD : number

Outer diameter o f the rim .
L : number

Length o f the rim exc lud ing end p r o f i l i n g .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the rim su r f a c e .

”””

make ou tpu t s t r i n g
out s t r = ””

cr e a t e co−o r d i n a t e l i s t s
r s = []
zs = []

c a l c u l a t e some u s e f u l v a r i a b l e s
curvrad = 0 .25∗ (oD − iD)
curvcen = 0 .25∗ (oD + iD)
zcoord = 0.5∗L

cr e a t e c y l i n d e r co−o r d i n a t e s
r s . append (0 . 5∗oD)
zs . append(−zcoord)
r s . append (0 . 5∗oD)
zs . append (zcoord)
for i in range (1 , 180) :

r s . append (curvcen+(curvrad ∗ cos (rad ians (i))))
zs . append (zcoord+(curvrad ∗ s i n (rad ians (i))))

r s . append (0 . 5∗ iD)
zs . append (zcoord)
r s . append (0 . 5∗ iD)
zs . append(−zcoord)
for i in range (1 , 180) :

r s . append (curvcen−(curvrad ∗ cos (rad ians (i))))
zs . append(−zcoord−(curvrad ∗ s i n (rad ians (i))))

r s . append (0 . 5∗oD)
zs . append(−zcoord)

use r e v o l v eZ to c r e a t e ou tpu t s t r i n g
out s t r += revolveZ (rs , zs)

return out s t r

def r imZf l a t (iD , oD, L) :
”””
Creates a rim or annulus about the o r i g i n in the Z d i r e c t i o n
with inner diameter iD , outer diameter oD and length L .
Resu l t ing rim i s f l a t s ided ra the r than having s em i c i r c u l a r end p r o f i l e s .

Parameters
−−−−−−−−−−
iD : number

Inner diameter o f the rim .
oD : number

Outer diameter o f the rim .
L : number

Length o f the rim .

199

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the rim su r f a c e .

”””

make ou tpu t s t r i n g
out s t r = ””

cr e a t e co−o r d i n a t e l i s t s
r s = []
zs = []

c a l c u l a t e some u s e f u l v a r i a b l e s
zcoord = 0.5∗L

cr e a t e c y l i n d e r co−o r d i n a t e s
r s . append (0 . 5∗oD)
zs . append(−zcoord)
r s . append (0 . 5∗oD)
zs . append (zcoord)
r s . append (0 . 5∗ iD)
zs . append (zcoord)
r s . append (0 . 5∗ iD)
zs . append(−zcoord)
r s . append (0 . 5∗oD)
zs . append(−zcoord)

use r e v o l v eZ to c r e a t e ou tpu t s t r i n g
out s t r += revolveZ (rs , zs)

return out s t r

def rimZcut (iD , oD, L , L2) :
”””
Creates a rim or annulus about the o r i g i n in the Z d i r e c t i o n
with inner diameter iD , outer diameter oD and length L .
Also has a cutout f o r a second i n t e r i o r rim with length L2 .

Parameters
−−−−−−−−−−
iD : number

Inner diameter o f the rim .
oD : number

Outer diameter o f the rim .
L : number

Length o f the rim exc lud ing end p r o f i l i n g .
L2 : number

Length o f the cutout s e c t i on .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the rim su r f a c e .

”””

make ou tpu t s t r i n g
out s t r = ””

cr e a t e co−o r d i n a t e l i s t s
r s = []
zs = []

c a l c u l a t e some u s e f u l v a r i a b l e s
curvrad = 0 .25∗ (oD − iD)
curvcen = 0 .25∗ (oD + iD)
zcoord = 0.5∗L

cr e a t e c y l i n d e r co−o r d i n a t e s
r s . append (0 . 5∗oD)
zs . append(−zcoord)
r s . append (0 . 5∗oD)
zs . append (zcoord)
for i in range (1 , 180) :

r s . append (curvcen+(curvrad ∗ cos (rad ians (i))))
zs . append (zcoord+(curvrad ∗ s i n (rad ians (i))))

r s . append (0 . 5∗ iD)
zs . append (zcoord)
add in cu t
r s . append (0 . 5∗ iD)
zs . append (0 . 5∗L2)
r s . append (curvcen)
zs . append (0 . 5∗L2)
r s . append (curvcen)
zs . append (−0.5∗L2)
r s . append (0 . 5∗ iD)
zs . append (−0.5∗L2)
con t inue round p r o f i l e
r s . append (0 . 5∗ iD)

200

zs . append(−zcoord)
for i in range (1 , 180) :

r s . append (curvcen−(curvrad ∗ cos (rad ians (i))))
zs . append(−zcoord−(curvrad ∗ s i n (rad ians (i))))

r s . append (0 . 5∗oD)
zs . append(−zcoord)

use r e v o l v eZ to c r e a t e ou tpu t s t r i n g
out s t r += revolveZ (rs , zs)

return out s t r

def rimZcut2 (iD , oD, L , L2 , e l , rb) :
”””
Creates a rim or annulus about the o r i g i n in the Z d i r e c t i o n
with inner diameter iD , outer diameter oD and length L .
Also has a cutout f o r a second i n t e r i o r rim with length L2 .
Addi t iona l parameters e l and rb shape the curvature o f the duct end
with extra l ength and r ad i a l b i a s r e s p e c t i v e l y .

Parameters
−−−−−−−−−−
iD : number

Inner diameter o f the rim .
oD : number

Outer diameter o f the rim .
L : number

Length o f the rim exc lud ing end p r o f i l i n g .
L2 : number

Length o f the cutout s e c t i on .
e l : number

Extra length to be added to the rim p r o f i l e .
rb : number

Radial b i a s o f end p r o f i l e between 0 and 1 ,
0 denot ing a complete inwards b ia s o f end p r o f i l e ,
1 denot ing a complete outwards b ia s o f end p r o f i l e .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the rim su r f a c e .

”””
t h i s f u n c t i o n shou l d be s im i l a r rimZcut i f e l = 0 .25∗ (oD−iD) and rb = 0 .5

make ou tpu t s t r i n g
out s t r = ””

cr e a t e co−o r d i n a t e l i s t s
r s = []
zs = []

c a l c u l a t e some u s e f u l v a r i a b l e s
curvradu = 0 .5∗ (oD−iD)∗(1− rb)
curvrad l = 0 .5∗ (oD−iD) ∗ rb
curvcen = (0 . 5∗ iD)+curvrad l
zcoord = 0.5∗L

cr e a t e c y l i n d e r co−o r d i n a t e s
r s . append (0 . 5∗oD)
zs . append(−zcoord)
r s . append (0 . 5∗oD)
zs . append (zcoord)
for i in range (1 , 50) :

tempx = i /50 .0
r s . append (curvcen+curvradu ∗(sq r t (1−tempx∗∗2)))
zs . append (zcoord+e l ∗tempx)

for i in range (1 , 49) :
tempx = (50− i) /50 .0
r s . append (curvcen−curvrad l ∗(sq r t (1−tempx∗∗2)))
zs . append (zcoord+e l ∗tempx)

o ld c i r c u l a r ends
#f o r i in range (1 ,180) :
rs . append (curvcen+(curvrad∗ cos (rad i an s (i))))
z s . append (zcoord+(curvrad∗ s i n (rad i an s (i))))
r s . append (0 . 5∗ iD)
zs . append (zcoord)
add in cu t
r s . append (0 . 5∗ iD)
zs . append (0 . 5∗L2)
r s . append (0 . 25∗ (iD+oD)) # o ld curvcen
zs . append (0 . 5∗L2)
r s . append (0 . 25∗ (iD+oD)) # o ld curvcen
zs . append (−0.5∗L2)
r s . append (0 . 5∗ iD)
zs . append (−0.5∗L2)
con t inue round p r o f i l e
r s . append (0 . 5∗ iD)
zs . append(−zcoord)
for i in range (1 , 50) :

tempx = i /50 .0

201

r s . append (curvcen−curvrad l ∗(sq r t (1−tempx∗∗2)))
zs . append(−zcoord−e l ∗tempx)

for i in range (1 , 49) :
tempx = (50− i) /50 .0
r s . append (curvcen+curvradu ∗(sq r t (1−tempx∗∗2)))
zs . append(−zcoord−e l ∗tempx)

o ld c i r c u l a r ends
#f o r i in range (1 ,180) :
rs . append (curvcen−(curvrad∗ cos (rad i an s (i))))
z s . append(−zcoord−(curvrad∗ s i n (rad i an s (i))))
r s . append (0 . 5∗oD)
zs . append(−zcoord)

use r e v o l v eZ to c r e a t e ou tpu t s t r i n g
out s t r += revolveZ (rs , zs)

return out s t r

def rimZcut3 (iD , oD, L , L2 , e l , rb) :
”””
Creates a rim or annulus about the o r i g i n in the Z d i r e c t i o n
with inner diameter iD , outer diameter oD and length L .
Also has a cutout f o r a second i n t e r i o r rim with length L2 .
Addi t iona l parameters e l and rb shape the curvature o f the duct end
with extra l ength and r ad i a l b i a s r e s p e c t i v e l y − us ing a Bez i e r s p l i n e .

Parameters
−−−−−−−−−−
iD : number

Inner diameter o f the rim .
oD : number

Outer diameter o f the rim .
L : number

Length o f the rim exc lud ing end p r o f i l i n g .
L2 : number

Length o f the cutout s e c t i on .
e l : number

Extra length to be added to the rim p r o f i l e .
rb : number

Radial b i a s o f end p r o f i l e between 0 and 1 ,
0 denot ing a complete inwards b ia s o f end p r o f i l e ,
1 denot ing a complete outwards b ia s o f end p r o f i l e .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the rim su r f a c e .

”””
t h i s f u n c t i o n shou l d be s im i l a r rimZcut i f e l = 0 .25∗ (oD−iD) and rb = 0 .5

make ou tpu t s t r i n g
out s t r = ””

cr e a t e co−o r d i n a t e l i s t s
r s = []
zs = []

c a l c u l a t e some u s e f u l v a r i a b l e s
curvcen = (0 . 5∗ iD) +0.5∗(oD−iD) ∗ rb
zcoord = 0.5∗L

c a l c u l a t e co−o r d i n a t e s f o r Bez i e r s p l i n e c o n t r o l p o i n t s
− f r o n t :
f r 0 = 0.5∗oD
fz0 = zcoord
f r 1 = curvcen
f z1 = zcoord+e l
f r 2 = 0.5∗ iD
f z2 = zcoord
− back :
br0 = 0.5∗ iD
bz0 = −zcoord
br1 = curvcen
bz1 = −zcoord−e l
br2 = 0.5∗oD
bz2 = −zcoord

cr e a t e t parameter array and s l i c e o f f end p o i n t s
to p r e v en t d u p l i c a t i o n o f t ==0,1 p o i n t s .
t s = l i n s pa c e (0 , 1 , 101) [1 : −1]

cr e a t e c y l i n d e r co−o r d i n a t e s
r s . append (0 . 5∗oD)
zs . append(−zcoord)
r s . append (0 . 5∗oD)
zs . append (zcoord)
for t in t s :

r s . append ((f r 0 ∗(1− t)∗(1− t))+(2∗ f r 1 ∗ t∗(1− t))+(f r 2 ∗ t ∗ t))
zs . append ((f z0 ∗(1− t)∗(1− t))+(2∗ f z 1 ∗ t∗(1− t))+(f z2 ∗ t ∗ t))

o ld e l l i p t i c p r o f i l e

202

#fo r i in range (1 ,50) :
tempx = i /50 .0
rs . append (curvcen+curvradu ∗(s q r t (1− tempx ∗∗2)))
z s . append (zcoord+e l ∗ tempx)
#f o r i in range (1 ,49) :
tempx = (50− i) /50 .0
rs . append (curvcen−c u r v r a d l ∗(s q r t (1− tempx ∗∗2)))
z s . append (zcoord+e l ∗ tempx)
r s . append (0 . 5∗ iD)
zs . append (zcoord)
add in cu t
r s . append (0 . 5∗ iD)
zs . append (0 . 5∗L2)
r s . append (0 . 25∗ (iD+oD)) # o ld curvcen
zs . append (0 . 5∗L2)
r s . append (0 . 25∗ (iD+oD)) # o ld curvcen
zs . append (−0.5∗L2)
r s . append (0 . 5∗ iD)
zs . append (−0.5∗L2)
con t inue round p r o f i l e
r s . append (0 . 5∗ iD)
zs . append(−zcoord)
for t in t s :

r s . append ((br0∗(1− t)∗(1− t))+(2∗br1∗ t∗(1− t))+(br2∗ t ∗ t))
zs . append ((bz0∗(1− t)∗(1− t))+(2∗bz1∗ t∗(1− t))+(bz2∗ t ∗ t))

o ld e l l i p t i c p r o f i l e
#f o r i in range (1 ,50) :
tempx = i /50 .0
rs . append (curvcen−c u r v r a d l ∗(s q r t (1− tempx ∗∗2)))
z s . append(−zcoord−e l ∗ tempx)
#f o r i in range (1 ,49) :
tempx = (50− i) /50 .0
rs . append (curvcen+curvradu ∗(s q r t (1− tempx ∗∗2)))
z s . append(−zcoord−e l ∗ tempx)
r s . append (0 . 5∗oD)
zs . append(−zcoord)

use r e v o l v eZ to c r e a t e ou tpu t s t r i n g
out s t r += revolveZ (rs , zs)

return out s t r

def rimBlock (D, dz) :
”””
Creates a c y l i n d r i c a l s u r f a c e des igned to block o f f the rim gap
in a rim dr iven th ru s t e r to s imp l i f y the f low .

Parameters
−−−−−−−−−−
D: number

Diameter o f c y l i n d r i c a l s u r f a c e block .
dz : number

Hal f l ength o f the c y l i n d r i c a l s u r f a c e in the ax i a l (Z) d i r e c t i o n .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the c y l i n d r i c a l b lock ing su r f a c e .

”””

make ou tpu t s t r i n g
out s t r = ””

cr e a t e c e n t r a l c y l i n d e r co−o r d i n a t e s
r = 0.5∗D
cy lx s = r ∗ cos (rad ians (arange (361)))
cy ly s = r ∗ s i n (rad ians (arange (361)))
cy l z 1 s = dz∗ ones (361)
cy l z 2 s = −dz∗ ones (361)

ou t s t r += twoface (cy lxs , cy lys , cy l z1s , cy lxs , cy lys , c y l z 2 s)

return out s t r

def rimBlock100mm () :
”””
Creates a rim block f o r 100mm thru s t e r .

Parameters
−−−−−−−−−−
None

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the c y l i n d r i c a l b lock ing su r f a c e .

”””
w r i t e s t l (” rimBlock100” , rimBlock (0 . 1001 , 0 . 017))

203

return

def revo lveZ (rs , zs) :
”””
Creates a revo lved su r f a c e around the Z axis ,
based on a s e c t i on de f ined by co−o rd ina t e s r s and zs
in the r a d i a l and ax i a l d i r e c t i o n r e s p e c t i v e l y .

Parameters
−−−−−−−−−−
r s : l i s t o f numbers

A l i s t o f r a d i a l co−o rd ina t e s to be revo lved .
zs : l i s t o f numbers

A l i s t o f a x i a l co−o rd ina t e s to be revolved ,
should be the same length as r s .

Returns
−−−−−−−
out s t r : s t r i n g

A ' f a c e t s t r i n g ' d e t a i l i n g the t r i a n g l e s
that make up the revo lved su r f a c e .

”””

make ou tpu t s t r i n g
out s t r = ””

make i n i t i a l co−o r d i n a t e s
r s a r ray = array (r s)
z sa r ray = array (zs)

do r e v o l u t i o n
for i in range (360) :

ou t s t r += twoface (r s a r r ay ∗ cos (rad ians (i)) , r s a r r ay ∗ s i n (rad ians (i)) ,
zsarray , r s a r r ay ∗ cos (rad ians (i +1)) ,
r s a r ray ∗ s i n (rad ians (i +1)) , z sa r ray)

re tu rn ou tpu t s t r i n g
return out s t r

def r o t a t e s t l Z (f i l ename , ang le) :
”””
Rotates the su r f a c e in f i l ename by angle degrees
about the Z ax i s and ove rwr i t e s i t .

Parameters
−−−−−−−−−−
f i l ename : s t r i n g

Name o f the . s t l f i l e to be rotated .
ang le : number

Angle through which to ro ta t e the . s t l f i l e in degrees .

Returns
−−−−−−−
None

i f s u c c e s s f u l .
”””
from math import atan2
f i n = open(f i l ename , ' r ')
l i n e s = f i n . r e a d l i n e s ()
f i n . c l o s e ()

ou t s t r = ””

for l i n e in l i n e s :
words = l i n e . s p l i t ()
i f len (words) == 5 :

c a l c u l a t e r o t a t i o n
xcoord = f loat (words [2])
ycoord = f loat (words [3])
tA = atan2 (ycoord , xcoord)
tB = tA − rad ians (angle)
r = (xcoord ∗∗2 + ycoord ∗∗2) ∗∗0 .5
newx = r ∗ cos (tB)
newy = r ∗ s i n (tB)
add s t r i n g
out s t r += words [0] + ” ” + words [1] + ” ”
out s t r += str (newx) + ” ” + str (newy) + ” ” + words [4] + ”\n”

e l i f len (words) == 4 :
c a l c u l a t e r o t a t i o n
xcoord = f loat (words [1])
ycoord = f loat (words [2])
tA = atan2 (ycoord , xcoord)
tB = tA − rad ians (angle)
r = (xcoord ∗∗2 + ycoord ∗∗2) ∗∗0 .5
newx = r ∗ cos (tB)
newy = r ∗ s i n (tB)
add s t r i n g
out s t r += words [0] + ” ”
out s t r += str (newx) + ” ” + str (newy) + ” ” + words [3] + ”\n”

else :

204

out s t r += l i n e

wr i t e s t l
f out = open(f i l ename , 'w ')
fout . wr i t e (ou t s t r)
fout . c l o s e ()

return None

def s c a l e s t l (f i l ename , f a c t o r) :
”””
Sca l e s the su r f a c e in f i l ename by mult ip ly a l l ver tex co−o rd ina t e s by
f a c t o r and then ove rwr i t e s i t .

Parameters
−−−−−−−−−−
f i l ename : s t r i n g

Name o f the . s t l f i l e to be s ca l ed .
f a c t o r : number

Factor by which to s c a l e the . s t l f i l e .

Returns
−−−−−−−
None

i f s u c c e s s f u l .
”””
f i n = open(f i l ename , ' r ')
l i n e s = f i n . r e a d l i n e s ()
f i n . c l o s e ()

ou t s t r = ””

for l i n e in l i n e s :
words = l i n e . s p l i t ()
i f len (words) == 4 :

c a l c u l a t e r o t a t i o n
xcoord = f loat (words [1])
ycoord = f loat (words [2])
zcoord = f loat (words [3])
newx = xcoord∗ f a c t o r
newy = ycoord∗ f a c t o r
newz = zcoord ∗ f a c t o r
add s t r i n g
out s t r += ” ” + words [0] + ” ”
out s t r += str (newx) + ” ” + str (newy) + ” ” + str (newz) + ”\n”

else :
ou t s t r += l i n e

wr i t e s t l
f out = open(f i l ename , 'w ')
fout . wr i t e (ou t s t r)
fout . c l o s e ()

return None

205

206

Appendix C

OpenFOAM Automation
Functions

This is a collection of Python functions written to automate the writing and execu-
tion of OpenFOAM cases, as well as post process the data in such a way that the
functions could be incorporated into a single objective function in an automated
design optimisation study.
”””
ajopenfoam . py

A se t o f OpenFOAM case generat i on and execut ion func t i on s .

(c) copyr ight Aleksander Dubas 2011−2013
”””
import os

def makeCase (casename , ove rwr i t e=False) :
”””
Makes a case with casename and the bas i c d i r e c t o r y s t ru c tu r e f o r an
OpenFOAM case . Changes present d i r e c t o r y to with in the case .

Parameters
−−−−−−−−−−
casename : s t r i n g

Name o f the case d i r e c t o r y .
ove rwr i t e : boolean (d e f au l t Fa l se)

Overwrite the case i f i t i s pre−e x i s t i n g .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

change d i r e c t o r y to $FOAM RUN d i r e c t o r y
os . chd i r (os . path . expandvars (”$FOAM RUN”))

try :
make the main case d i r e c t o r y
os . mkdir (casename)
change to case d i r e c t o r y
os . chd i r (casename)

except :
i f overwr i t e :

t r y chang ing to d i r e c t o r y and emptying i t
try :

os . chd i r (casename)
except :

raise IOError (”makeCase :\
Cannot make d i r e c t o r y or change to i t ! ”)

paranoia check , make sure we ' re not d e l e t i n g any th ing impor tan t !
i f os . getcwd () . s p l i t (”/”) [−1] == casename :

os . system (”rm −r ∗”)
else :

raise IOError (”makeCase :\
Tried to overwr i te , but not sure in c o r r e c t l o c a t i o n . ”)

i f not overwr i t e :
raise IOError (”makeCase : Case a l ready e x i s t s . ”)

make nece s s a r y d i r e c t o r i e s f o r t h e case
os . mkdir (” system”)

207

os . mkdir (” constant ”)
os . mkdir (”0”)
os . mkdir (” constant /polyMesh”)
os . mkdir (” constant / t r i S u r f a c e ”)

return None

def makeDomain(xmin , ymin , zmin , xmax , ymax , zmax , base , s f =1) :
”””
Creates a blockMesh d i c t i ona ry to c r ea t e a domain
s t r e t c h i n g from xmin , ymin , zmin to xmax , ymax , zmax
with a base l ength o f base .

Parameters
−−−−−−−−−−
xmin : number

Minimum x of domain .
ymin : number

Minimum y of domain .
zmin : number

Minimum z o f domain .
xmax : number

Maximum x of domain .
ymax : number

Maximum y of domain .
zmax : number

Maximum z o f domain .
base : number

Approximate cube s i d e l ength o f base mesh c e l l s .
s f : number (d e f au l t 1)

Sca l ing f a c t o r f o r base mesh .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” constant /polyMesh/blockMeshDict ” , ”w”)

b lank space to make code a b i t n ea t e r
sp = ” ”

work out number o f c e l l s in each d i r e c t i o n , based on base l e n g t h .
t h i s s hou l d l e a d to app rox ima t e l y cu b i c c e l l s
x c e l l s = str (int ((xmax−xmin) /base))
y c e l l s = str (int ((ymax−ymin) /base))
z c e l l s = str (int ((zmax−zmin) /base))

conve r t a l l i n pu t s i n t o s t r i n g s ready f o r ou tpu t
xmin = str (xmin)
ymin = str (ymin)
zmin = str (zmin)
xmax = str (xmax)
ymax = str (ymax)
zmax = str (zmax)
s f = str (s f)

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t blockMeshDict ;\n”)
fout . wr i t e (” l o c a t i o n \” constant /polyMesh \”;\n}\n\n”)

wr i t e s c a l i n g f a c t o r
f out . wr i t e (” convertToMeters ” + s f + ” ;\n\n”)

wr i t e v e r t i c e s
f out . wr i t e (” v e r t i c e s \n(\n”)
fout . wr i t e (” (”+xmin+sp+ymin+sp+zmin+”)\n”)
fout . wr i t e (” (”+xmax+sp+ymin+sp+zmin+”)\n”)
fout . wr i t e (” (”+xmax+sp+ymax+sp+zmin+”)\n”)
fout . wr i t e (” (”+xmin+sp+ymax+sp+zmin+”)\n”)
fout . wr i t e (” (”+xmin+sp+ymin+sp+zmax+”)\n”)
fout . wr i t e (” (”+xmax+sp+ymin+sp+zmax+”)\n”)
fout . wr i t e (” (”+xmax+sp+ymax+sp+zmax+”)\n”)
fout . wr i t e (” (”+xmin+sp+ymax+sp+zmax+”)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e b l o c k s
f out . wr i t e (” b locks \n(\n”)
fout . wr i t e (” hex (0 1 2 3 4 5 6 7)\n”)
fout . wr i t e (” (”+x c e l l s+” ”+y c e l l s+” ”+z c e l l s+”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e edge s (empty f o r square domain)
f out . wr i t e (” edges\n(\n) ;\n\n”)

208

wr i t e pa t c h e s
f out . wr i t e (” patches\n(\n”)
fout . wr i t e (” patch xmin\n ((0 4 7 3))\n”)
fout . wr i t e (” patch xmax\n ((2 6 5 1))\n”)
fout . wr i t e (” patch ymin\n ((1 5 4 0))\n”)
fout . wr i t e (” patch ymax\n ((3 7 6 2))\n”)
fout . wr i t e (” patch zmin\n ((0 3 2 1))\n”)
fout . wr i t e (” patch zmax\n ((4 5 6 7))\n) ;\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def makeAnnulus methodA (r , r1 , r2 , l1 , l2 , n , AR=2, dg=10, verbose=False) :
”””
Creates an annulus blockMeshDict us ing method A.
Leaves i n t e r f a c i n g between ax i a l and r ad i a l gaps up to blockMesh .

Parameters
−−−−−−−−−−
r : number

The inner rad ius o f end p l a t e s .
r1 : number

The inner rad ius o f annulus .
r2 : number

The outer rad ius o f annulus .
l 1 : number

The ha l f l ength to inner end .
l 2 : number

The ha l f l ength to outer end .
n : number

Number o f c e l l s in wall−normal d i r e c t i o n .
AR: number (d e f au l t 2)

Aspect r a t i o in wal l t ang en t i a l d i r e c t i o n .
dg : number (d e f au l t 10)

Number o f degrees o f r o t a t i on to be s imulated .
verbose : boolean (d e f au l t Fa l se)

Switch to turn on verbose output .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
from math import s in , cos , radians , p i

v i s u a l i s a t i o n o f domain
y
|
z<−x
r2
| | |
| | | | r1
| | | | |
l2−l 1−−−−|−−−−l 1−l 2 r

f out = f i l e (” constant /polyMesh/blockMeshDict ” , ”w”)

c a l c u l a t e temporary s i n and cos v a r i a b l e s
sd = s in (rad ians (0 . 5 ∗ dg))
cd = cos (rad ians (0 . 5 ∗ dg))

c a l c u l a t e number o f c e l l s in non−normal d i r e c t i o n s
cpx = int (2 ∗ r1 ∗ pi ∗ (dg / 360 .0) / (AR ∗ (r2 − r1) / f loat (n)))
cpy = int (n)
cpz = int (2 ∗ l 1 / (AR ∗ (r2 − r1) / f loat (n)))
apx = int (2 ∗ r1 ∗ pi ∗ (dg / 360 .0) / (AR ∗ (l 2 − l 1) / f loat (n)))
apy = int ((r2 − r) / (AR ∗ (l 2 − l 1) / f loat (n)))
apz = int (n)
i f verbose :

print (”Total c e l l s = ” + str (cpx ∗ cpy ∗ cpz + 2 ∗ apx ∗ apy ∗ apz))

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t blockMeshDict ;\n”)
fout . wr i t e (” l o c a t i o n \” constant /polyMesh \”;\n}\n\n”)

wr i t e s c a l i n g f a c t o r
f out . wr i t e (” convertToMeters 1 ;\n\n”)

wr i t e v e r t i c e s
f out . wr i t e (” v e r t i c e s \n(\n”)
c e n t r a l pa r t
f out . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)

209

f out . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
f r o n t pa r t
f out . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
rear pa r t
f out . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e edge s
f out . wr i t e (” edges\n(\n”)
c e n t r a l pa r t
f out . wr i t e (” arc 0 1 (0 ”+str (r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 3 2 (0 ”+str (r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 4 5 (0 ”+str (r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 7 6 (0 ”+str (r2)+” ”+str(− l 1)+”)\n”)
f r o n t pa r t
f out . wr i t e (” arc 8 9 (0 ”+str (r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 11 10 (0 ”+str (r)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 12 13 (0 ”+str (r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 15 14 (0 ”+str (r2)+” ”+str (l 1)+”)\n”)
rear pa r t
f out . wr i t e (” arc 16 17 (0 ”+str (r)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” arc 19 18 (0 ”+str (r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 20 21 (0 ”+str (r2)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” arc 23 22 (0 ”+str (r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e b l o c k s
f out . wr i t e (” b locks \n(\n”)
c e n t r a l pa r t
f out . wr i t e (” hex (0 1 2 3 4 5 6 7)\n”)
fout . wr i t e (” (”+str (cpx)+” ”+str (cpz)+” ”+str (cpy)+”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
f r o n t pa r t
f out . wr i t e (” hex (8 9 10 11 12 13 14 15)\n”)
fout . wr i t e (” (”+str (apx)+” ”+str (apz)+” ”+str (apy)+”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
rear pa r t
f out . wr i t e (” hex (16 17 18 19 20 21 22 23)\n”)
fout . wr i t e (” (”+str (apx)+” ”+str (apz)+” ”+str (apy)+”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e boundary
boundary naming − cp = c e n t r a l part , f p = f r o n t part , rp = rear pa r t
− f = f r o n t (z+) , r = rear (z−) , i = inner (y−) , o = ou t e r (y+)
− c1 = c y c l i c 1 (x+) , c2 = c y c l i c 2 (x−)
f out . wr i t e (”boundary\n(\n”)
c e n t r a l pa r t
f out . wr i t e (” cpr\n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((2 3 7 6)) ;\n }\n”)
fout . wr i t e (” cpf \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((0 1 5 4)) ;\n }\n”)
fout . wr i t e (” cp i \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((0 3 2 1)) ;\n }\n”)
fout . wr i t e (” cpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((4 5 6 7)) ;\n }\n”)
fout . wr i t e (” cpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch cpc2 ;\n”)
fout . wr i t e (” f a c e s ((1 2 6 5)) ;\n }\n”)
fout . wr i t e (” cpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch cpc1 ;\n”)
fout . wr i t e (” f a c e s ((0 4 7 3)) ;\n }\n”)
f r o n t pa r t
f out . wr i t e (” fp r \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((10 11 15 14)) ;\n }\n”)
fout . wr i t e (” f p f \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((8 9 13 12)) ;\n }\n”)
fout . wr i t e (” f p i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((8 11 10 9)) ;\n }\n”)
fout . wr i t e (” fpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((12 13 14 15)) ;\n }\n”)
fout . wr i t e (” fpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch fpc2 ;\n”)

210

f out . wr i t e (” f a c e s ((9 10 14 13)) ;\n }\n”)
fout . wr i t e (” fpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch fpc1 ;\n”)
fout . wr i t e (” f a c e s ((8 12 15 11)) ;\n }\n”)
rear pa r t
f out . wr i t e (” rpr\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((18 19 23 22)) ;\n }\n”)
fout . wr i t e (” rp f \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((16 17 21 20)) ;\n }\n”)
fout . wr i t e (” rp i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((16 19 18 17)) ;\n }\n”)
fout . wr i t e (” rpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((20 21 22 23)) ;\n }\n”)
fout . wr i t e (” rpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch rpc2 ;\n”)
fout . wr i t e (” f a c e s ((17 18 22 21)) ;\n }\n”)
fout . wr i t e (” rpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch rpc1 ;\n”)
fout . wr i t e (” f a c e s ((16 20 23 19)) ;\n }\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e mergePatchPairs
f out . wr i t e (”mergePatchPairs\n(\n”)
fout . wr i t e (” (fp r cp f)\n (rp f cpr)\n) ;\n\n”)

fout . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def makeAnnulus methodB (r , r1 , r2 , l1 , l2 , n , AR=2, dg=10, verbose=False) :
”””
Creates an annulus blockMeshDict us ing method B.
Manually handles i n t e r f a c e between part s by generat ing 5 separate r e g i on s .

Parameters
−−−−−−−−−−
r : number

The inner rad ius o f end p l a t e s .
r1 : number

The inner rad ius o f annulus .
r2 : number

The outer rad ius o f annulus .
l 1 : number

The ha l f l ength to inner end .
l 2 : number

The ha l f l ength to outer end .
n : number

Number o f c e l l s in wall−normal d i r e c t i o n .
AR: number (d e f au l t 2)

Aspect r a t i o in wal l t ang en t i a l d i r e c t i o n .
dg : number (d e f au l t 10)

Number o f degrees o f r o t a t i on to be s imulated .
verbose : boolean (d e f au l t Fa l se)

Switch to turn on verbose output .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
from math import s in , cos , radians , p i

v i s u a l i s a t i o n o f domain
y
|
z<−x
r2
| | |
| | | | r1
| | | | |
l2−l 1−−−−|−−−−l 1−l 2 r

f out = f i l e (” constant /polyMesh/blockMeshDict ” , ”w”)

c a l c u l a t e temporary s i n and cos v a r i a b l e s
sd = s in (rad ians (0 . 5 ∗ dg))
cd = cos (rad ians (0 . 5 ∗ dg))

c a l c u l a t e number o f c e l l s in non−normal d i r e c t i o n s
cpx = int (2 ∗ r1 ∗ pi ∗ (dg / 360 .0) / (AR ∗ (r2 − r1) / f loat (n)))
cpy = int (n)
cpz = int (2 ∗ l 1 / (AR ∗ (r2 − r1) / f loat (n)))
apx = int (2 ∗ r1 ∗ pi ∗ (dg / 360 .0) / (AR ∗ (l 2 − l 1) / f loat (n)))
apy = int ((r1 − r) / (AR ∗ (l 2 − l 1) / f loat (n)))
apz = int (n)
i f verbose :

print (”Total c e l l s = ” + str (cpx ∗ cpy ∗ cpz +
2 ∗ apx ∗ apy ∗ apz +
2 ∗ apx ∗ cpy ∗ apz))

211

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t blockMeshDict ;\n”)
fout . wr i t e (” l o c a t i o n \” constant /polyMesh \”;\n}\n\n”)

wr i t e s c a l i n g f a c t o r
f out . wr i t e (” convertToMeters 1 ;\n\n”)

wr i t e v e r t i c e s
f out . wr i t e (” v e r t i c e s \n(\n”)
c e n t r a l pa r t
f out . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
upper f r o n t pa r t
f out . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
lower f r o n t pa r t
f out . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
upper rear pa r t
f out . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 2)+”)\n”)
lower rear pa r t
f out . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e edge s
f out . wr i t e (” edges\n(\n”)
c e n t r a l pa r t
f out . wr i t e (” arc 0 1 (0 ”+str (r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 3 2 (0 ”+str (r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 4 5 (0 ”+str (r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 7 6 (0 ”+str (r2)+” ”+str(− l 1)+”)\n”)
upper f r o n t pa r t
f out . wr i t e (” arc 8 9 (0 ”+str (r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 11 10 (0 ”+str (r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 12 13 (0 ”+str (r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 15 14 (0 ”+str (r2)+” ”+str (l 1)+”)\n”)
lower f r o n t pa r t
f out . wr i t e (” arc 16 17 (0 ”+str (r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 19 18 (0 ”+str (r)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 20 21 (0 ”+str (r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 23 22 (0 ”+str (r1)+” ”+str (l 1)+”)\n”)
upper rear pa r t
f out . wr i t e (” arc 24 25 (0 ”+str (r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 27 26 (0 ”+str (r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” arc 28 29 (0 ”+str (r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 31 30 (0 ”+str (r2)+” ”+str(− l 2)+”)\n”)
lower rear pa r t
f out . wr i t e (” arc 32 33 (0 ”+str (r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 35 34 (0 ”+str (r)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” arc 36 37 (0 ”+str (r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 39 38 (0 ”+str (r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e b l o c k s
f out . wr i t e (” b locks \n(\n”)

212

c e n t r a l pa r t
f out . wr i t e (” hex (0 1 2 3 4 5 6 7)\n”)
fout . wr i t e (” (” + str (cpx) + ” ” + str (cpz) + ” ” + str (cpy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
upper f r o n t pa r t
f out . wr i t e (” hex (8 9 10 11 12 13 14 15)\n”)
fout . wr i t e (” (” + str (apx) + ” ” + str (apz) + ” ” + str (cpy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
lower f r o n t pa r t
f out . wr i t e (” hex (16 17 18 19 20 21 22 23)\n”)
fout . wr i t e (” (” + str (apx) + ” ” + str (apz) + ” ” + str (apy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
upper rear pa r t
f out . wr i t e (” hex (24 25 26 27 28 29 30 31)\n”)
fout . wr i t e (” (” + str (apx) + ” ” + str (apz) + ” ” + str (cpy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
lower rear pa r t
f out . wr i t e (” hex (32 33 34 35 36 37 38 39)\n”)
fout . wr i t e (” (” + str (apx) + ” ” + str (apz) + ” ” + str (apy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e boundary
boundary naming − cp = c e n t r a l part , f p = f r o n t part , rp = rear pa r t
− f = f r o n t (z+) , r = rear (z−) , i = inner (y−) , o = ou t e r (y+)
− c1 = c y c l i c 1 (x+) , c2 = c y c l i c 2 (x−)
− u = upper , l = lower
f out . wr i t e (”boundary\n(\n”)
c e n t r a l pa r t
f out . wr i t e (” cpr\n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((2 3 7 6)) ;\n }\n”)
fout . wr i t e (” cpf \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((0 1 5 4)) ;\n }\n”)
fout . wr i t e (” cp i \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((0 3 2 1)) ;\n }\n”)
fout . wr i t e (” cpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((4 5 6 7)) ;\n }\n”)
fout . wr i t e (” cpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch cpc2 ;\n”)
fout . wr i t e (” f a c e s ((1 2 6 5)) ;\n }\n”)
fout . wr i t e (” cpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch cpc1 ;\n”)
fout . wr i t e (” f a c e s ((0 4 7 3)) ;\n }\n”)
upper f r o n t pa r t
f out . wr i t e (” ufpr\n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((10 11 15 14)) ;\n }\n”)
fout . wr i t e (” u fp f \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((8 9 13 12)) ;\n }\n”)
fout . wr i t e (” u fp i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((8 11 10 9)) ;\n }\n”)
fout . wr i t e (” ufpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((12 13 14 15)) ;\n }\n”)
fout . wr i t e (” ufpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch ufpc2 ;\n”)
fout . wr i t e (” f a c e s ((9 10 14 13)) ;\n }\n”)
fout . wr i t e (” ufpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch ufpc1 ;\n”)
fout . wr i t e (” f a c e s ((8 12 15 11)) ;\n }\n”)
lower f r o n t pa r t
f out . wr i t e (” l f p r \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((18 19 23 22)) ;\n }\n”)
fout . wr i t e (” l f p f \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((16 17 21 20)) ;\n }\n”)
fout . wr i t e (” l f p i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((16 19 18 17)) ;\n }\n”)
fout . wr i t e (” l f p o \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((20 21 22 23)) ;\n }\n”)
fout . wr i t e (” l f p c 1 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l f p c 2 ;\n”)
fout . wr i t e (” f a c e s ((17 18 22 21)) ;\n }\n”)
fout . wr i t e (” l f p c 2 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l f p c 1 ;\n”)
fout . wr i t e (” f a c e s ((16 20 23 19)) ;\n }\n”)
upper rear pa r t
f out . wr i t e (” urpr\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((26 27 31 30)) ;\n }\n”)
fout . wr i t e (” urpf\n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((24 25 29 28)) ;\n }\n”)
fout . wr i t e (” urp i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((24 27 26 25)) ;\n }\n”)
fout . wr i t e (” urpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((28 29 30 31)) ;\n }\n”)
fout . wr i t e (” urpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch urpc2 ;\n”)
fout . wr i t e (” f a c e s ((25 26 30 29)) ;\n }\n”)
fout . wr i t e (” urpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch urpc1 ;\n”)
fout . wr i t e (” f a c e s ((24 28 31 27)) ;\n }\n”)
lower rear pa r t
f out . wr i t e (” l r p r \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((34 35 39 38)) ;\n }\n”)
fout . wr i t e (” l r p f \n {\n type wal l ;\n”)

213

f out . wr i t e (” f a c e s ((32 33 37 36)) ;\n }\n”)
fout . wr i t e (” l r p i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((32 35 34 33)) ;\n }\n”)
fout . wr i t e (” l rpo \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((36 37 38 39)) ;\n }\n”)
fout . wr i t e (” l rpc1 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l rpc2 ;\n”)
fout . wr i t e (” f a c e s ((33 34 38 37)) ;\n }\n”)
fout . wr i t e (” l rpc2 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l rpc1 ;\n”)
fout . wr i t e (” f a c e s ((32 36 39 35)) ;\n }\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e mergePatchPairs
f out . wr i t e (”mergePatchPairs\n(\n”)
fout . wr i t e (” (cpf ufpr)\n (cpr urpf)\n”)
fout . wr i t e (” (u fp i l f p o)\n (urp i l rpo)\n”)
fout . wr i t e (”) ;\n\n”)

fout . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def makeAnnulus methodC (r , r1 , r2 , l1 , l2 , n , AR=2, dg=10, verbose=False) :
”””
Creates an annulus blockMeshDict us ing method C.
Manually handles i n t e r f a c e between part s by generat ing 5 separate r e g i on s .
Adapted from method B to not use mergePatchPairs

Parameters
−−−−−−−−−−
r : number

The inner rad ius o f end p l a t e s .
r1 : number

The inner rad ius o f annulus .
r2 : number

The outer rad ius o f annulus .
l 1 : number

The ha l f l ength to inner end .
l 2 : number

The ha l f l ength to outer end .
n : number

Number o f c e l l s in wall−normal d i r e c t i o n .
AR: number (d e f au l t 2)

Aspect r a t i o in wal l t ang en t i a l d i r e c t i o n .
dg : number (d e f au l t 10)

Number o f degrees o f r o t a t i on to be s imulated .
verbose : boolean (d e f au l t Fa l se)

Switch to turn on verbose output .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
from math import s in , cos , radians , p i

v i s u a l i s a t i o n o f domain
y
|
z<−x
r2
| | |
| | | | r1
| | | | |
l2−l 1−−−−|−−−−l 1−l 2 r

f out = f i l e (” constant /polyMesh/blockMeshDict ” , ”w”)

c a l c u l a t e temporary s i n and cos v a r i a b l e s
sd = s in (rad ians (0 . 5 ∗ dg))
cd = cos (rad ians (0 . 5 ∗ dg))

c a l c u l a t e number o f c e l l s in non−normal d i r e c t i o n s
cpx = int (2 ∗ r1 ∗ pi ∗ (dg / 360 .0) / (AR ∗ (r2 − r1) / f loat (n)))
cpy = int (n)
cpz = int (2 ∗ l 1 / (AR ∗ (r2 − r1) / f loat (n)))
apx = int (2 ∗ r1 ∗ pi ∗ (dg / 360 .0) / (AR ∗ (l 2 − l 1) / f loat (n)))
apy = int ((r1 − r) / (AR ∗ (l 2 − l 1) / f loat (n)))
apz = int (n)
i f verbose :

print (”Total c e l l s = ” + str (cpx ∗ cpy ∗ cpz +
2 ∗ apx ∗ apy ∗ apz +
2 ∗ apx ∗ cpy ∗ apz))

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)

214

f out . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t blockMeshDict ;\n”)
fout . wr i t e (” l o c a t i o n \” constant /polyMesh \”;\n}\n\n”)

wr i t e s c a l i n g f a c t o r
f out . wr i t e (” convertToMeters 1 ;\n\n”)

wr i t e v e r t i c e s
f out . wr i t e (” v e r t i c e s \n(\n”)
c e n t r a l pa r t
f out . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 1)+”)\n”)
upper f r o n t pa r t
f out . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str (l 2)+”)\n”)
#fou t . w r i t e (” (”+ s t r (sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (l 1)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (−sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (l 1)+”)\n”)
f out . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str (l 2)+”)\n”)
#fou t . w r i t e (” (”+ s t r (sd∗ r2)+” ”+ s t r (cd∗ r2)+” ”+ s t r (l 1)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (−sd∗ r2)+” ”+ s t r (cd∗ r2)+” ”+ s t r (l 1)+”)\n”)
lower f r o n t pa r t
f out . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str (l 1)+”)\n”)
#fou t . w r i t e (” (”+ s t r (−sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (l 2)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (l 2)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (l 1)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (−sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (l 1)+”)\n”)
upper rear pa r t
#f o u t . w r i t e (” (”+ s t r (−sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (− l 1)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (− l 1)+”)\n”)
f out . wr i t e (” (”+str (sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r1)+” ”+str (cd∗ r1)+” ”+str(− l 2)+”)\n”)
#fou t . w r i t e (” (”+ s t r (−sd∗ r2)+” ”+ s t r (cd∗ r2)+” ”+ s t r (− l 1)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (sd∗ r2)+” ”+ s t r (cd∗ r2)+” ”+ s t r (− l 1)+”)\n”)
f out . wr i t e (” (”+str (sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r2)+” ”+str (cd∗ r2)+” ”+str(− l 2)+”)\n”)
lower rear pa r t
f out . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” (”+str (sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” (”+str(−sd∗ r)+” ”+str (cd∗ r)+” ”+str(− l 2)+”)\n”)
#fou t . w r i t e (” (”+ s t r (−sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (− l 1)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (− l 1)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (− l 2)+”)\n”)
#f o u t . w r i t e (” (”+ s t r (−sd∗ r1)+” ”+ s t r (cd∗ r1)+” ”+ s t r (− l 2)+”)\n”)
f out . wr i t e (”) ;\n\n”)

wr i t e edge s
f out . wr i t e (” edges\n(\n”)
c e n t r a l pa r t
f out . wr i t e (” arc 0 1 (0 ”+str (r1)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 3 2 (0 ”+str (r1)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 4 5 (0 ”+str (r2)+” ”+str (l 1)+”)\n”)
fout . wr i t e (” arc 7 6 (0 ”+str (r2)+” ”+str(− l 1)+”)\n”)
upper f r o n t pa r t
f out . wr i t e (” arc 8 9 (0 ”+str (r1)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 10 11 (0 ”+str (r2)+” ”+str (l 2)+”)\n”)
lower f r o n t pa r t
f out . wr i t e (” arc 12 13 (0 ”+str (r)+” ”+str (l 2)+”)\n”)
fout . wr i t e (” arc 15 14 (0 ”+str (r)+” ”+str (l 1)+”)\n”)
upper rear pa r t
f out . wr i t e (” arc 17 16 (0 ”+str (r1)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (” arc 19 18 (0 ”+str (r2)+” ”+str(− l 2)+”)\n”)
lower rear pa r t
f out . wr i t e (” arc 20 21 (0 ”+str (r)+” ”+str(− l 1)+”)\n”)
fout . wr i t e (” arc 23 22 (0 ”+str (r)+” ”+str(− l 2)+”)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e b l o c k s
f out . wr i t e (” b locks \n(\n”)
c e n t r a l pa r t
f out . wr i t e (” hex (0 1 2 3 4 5 6 7)\n”)
fout . wr i t e (” (” + str (cpx) + ” ” + str (cpz) + ” ” + str (cpy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
upper f r o n t pa r t
f out . wr i t e (” hex (8 9 1 0 10 11 5 4)\n”)
fout . wr i t e (” (” + str (cpx) + ” ” + str (apz) + ” ” + str (cpy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
lower f r o n t pa r t
f out . wr i t e (” hex (12 13 14 15 8 9 1 0)\n”)
fout . wr i t e (” (” + str (cpx) + ” ” + str (apz) + ” ” + str (apy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
upper rear pa r t

215

f out . wr i t e (” hex (3 2 16 17 7 6 18 19)\n”)
fout . wr i t e (” (” + str (cpx) + ” ” + str (apz) + ” ” + str (cpy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
lower rear pa r t
f out . wr i t e (” hex (20 21 22 23 3 2 16 17)\n”)
fout . wr i t e (” (” + str (cpx) + ” ” + str (apz) + ” ” + str (apy) + ”)\n”)
fout . wr i t e (” simpleGrading (1 1 1)\n”)
fout . wr i t e (”) ;\n\n”)

wr i t e boundary
boundary naming − cp = c e n t r a l part , f p = f r o n t part , rp = rear pa r t
− f = f r o n t (z+) , r = rear (z−) , i = inner (y−) , o = ou t e r (y+)
− c1 = c y c l i c 1 (x+) , c2 = c y c l i c 2 (x−)
− u = upper , l = lower
f out . wr i t e (”boundary\n(\n”)
c e n t r a l pa r t
#f o u t . w r i t e (” cpr\n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((2 3 7 6)) ;\n }\n”)
#f o u t . w r i t e (” cp f \n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((0 1 5 4)) ;\n }\n”)
f out . wr i t e (” cp i \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((0 3 2 1)) ;\n }\n”)
fout . wr i t e (” cpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((4 5 6 7)) ;\n }\n”)
fout . wr i t e (” cpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch cpc2 ;\n”)
fout . wr i t e (” f a c e s ((1 2 6 5)) ;\n }\n”)
fout . wr i t e (” cpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch cpc1 ;\n”)
fout . wr i t e (” f a c e s ((0 4 7 3)) ;\n }\n”)
upper f r o n t pa r t
#f o u t . w r i t e (” u f p r \n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((1 0 4 5)) ;\n }\n”)
f out . wr i t e (” u fp f \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((8 9 11 10)) ;\n }\n”)
#fou t . w r i t e (” u f p i \n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((8 0 1 9)) ;\n }\n”)
f out . wr i t e (” ufpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((10 11 5 4)) ;\n }\n”)
fout . wr i t e (” ufpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch ufpc2 ;\n”)
fout . wr i t e (” f a c e s ((9 1 5 11)) ;\n }\n”)
fout . wr i t e (” ufpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch ufpc1 ;\n”)
fout . wr i t e (” f a c e s ((8 10 4 0)) ;\n }\n”)
lower f r o n t pa r t
f out . wr i t e (” l f p r \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((14 15 0 1)) ;\n }\n”)
fout . wr i t e (” l f p f \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((12 13 9 8)) ;\n }\n”)
fout . wr i t e (” l f p i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((12 15 14 13)) ;\n }\n”)
#fou t . w r i t e (” l f p o \n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((8 9 1 0)) ;\n }\n”)
f out . wr i t e (” l f p c 1 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l f p c 2 ;\n”)
fout . wr i t e (” f a c e s ((13 14 1 9)) ;\n }\n”)
fout . wr i t e (” l f p c 2 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l f p c 1 ;\n”)
fout . wr i t e (” f a c e s ((12 8 0 15)) ;\n }\n”)
upper rear pa r t
f out . wr i t e (” urpr\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((16 17 19 18)) ;\n }\n”)
#fou t . w r i t e (” u rp f \n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((3 2 6 7)) ;\n }\n”)
#f o u t . w r i t e (” u rp i \n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((3 17 16 2)) ;\n }\n”)
f out . wr i t e (” urpo\n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((7 6 18 19)) ;\n }\n”)
fout . wr i t e (” urpc1\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch urpc2 ;\n”)
fout . wr i t e (” f a c e s ((2 16 18 6)) ;\n }\n”)
fout . wr i t e (” urpc2\n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch urpc1 ;\n”)
fout . wr i t e (” f a c e s ((3 7 19 17)) ;\n }\n”)
lower rear pa r t
f out . wr i t e (” l r p r \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((22 23 17 16)) ;\n }\n”)
fout . wr i t e (” l r p f \n {\n type wal l ;\n”)
fout . wr i t e (” f a c e s ((20 21 2 3)) ;\n }\n”)
fout . wr i t e (” l r p i \n {\n type patch ;\n”)
fout . wr i t e (” f a c e s ((20 23 22 21)) ;\n }\n”)
#fou t . w r i t e (” l r p o \n {\n type pa tch ;\n”)
#f o u t . w r i t e (” f a c e s ((3 2 16 17)) ;\n }\n”)
f out . wr i t e (” l rpc1 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l rpc2 ;\n”)
fout . wr i t e (” f a c e s ((21 22 16 2)) ;\n }\n”)
fout . wr i t e (” l rpc2 \n {\n type c y c l i c ;\n”)
fout . wr i t e (” neighbourPatch l rpc1 ;\n”)
fout . wr i t e (” f a c e s ((20 3 17 23)) ;\n }\n”)
fout . wr i t e (”) ;\n\n”)

216

wr i t e mergePatchPairs − not needed in method C
#f o u t . w r i t e (” mergePatchPairs\n(\n”)
#f o u t . w r i t e (” (c p f u f p r)\n (cpr u rp f)\n”)
#f o u t . w r i t e (” (u f p i l f p o)\n (u rp i l r p o)\n”)
#f o u t . w r i t e (”) ;\n\n”)

f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def con t ro lD i c t (ap , et , dt , wi=0) :
”””
Creates a con t r o l d i c t i ona ry in the case / system d i r e c t o r y .

Parameters
−−−−−−−−−−
ap : s t r i n g

Appl i cat ion to so l v e with (app l i c a t i on) .
et : number

End time o f the s o l u t i on (endTime) .
dt : number

Des ired time step (deltaT) .
wi : number (d e f au l t wr i t e at et)

How o f t en to wr i t e a save (w r i t e I n t e r v a l)
in number o f time s t ep s (t imeSteps) .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” system/ cont ro lD i c t ” , ”w”)

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t con t ro lD i c t ;\n”)
fout . wr i t e (” l o c a t i o n \” system \”;\n}\n\n”)

c a l c u l a t e w r i t e i n t e r v a l i f none i s s p e c i f i e d .
i f wi == 0 :

wi = int (f loat (et) / f loat (dt))
conve r t numbers to s t r i n g s
et = str (et)
dt = str (dt)
wi = str (wi)

wr i t e c o n t r o lD i c t
f out . wr i t e (” app l i c a t i on ”+ap+” ;\n\n”)
fout . wr i t e (” startFrom latestTime ;\n\n”)
fout . wr i t e (” startTime 0 ;\n\n”)
fout . wr i t e (” stopAt endTime ;\n\n”)
fout . wr i t e (”endTime ”+et+” ;\n\n”)
fout . wr i t e (” deltaT ”+dt+” ;\n\n”)
fout . wr i t e (” wr i teContro l timeStep ;\n\n”)
fout . wr i t e (” w r i t e I n t e r v a l ”+wi+” ;\n\n”)
fout . wr i t e (”purgeWrite 0 ;\n\n”)
fout . wr i t e (”writeFormat a s c i i ;\n\n”)
fout . wr i t e (” wr i t eP r e c i s i on 6 ;\n\n”)
fout . wr i t e (”writeCompression uncompressed ;\n\n”)
fout . wr i t e (”timeFormat gene ra l ;\n\n”)
fout . wr i t e (” t imePrec i s i on 6 ;\n\n”)
fout . wr i t e (” runTimeModif iable yes ;\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def forceFuncObj (name , patches , rho=0, c o f r =[0 , 0 , 0] , o i =1) :
”””
Appends a f o r c e c a l c u l a t i o n to the con t r o l d i c t i ona ry
in the case / system d i r e c t o r y .

Parameters
−−−−−−−−−−
name : s t r i n g or l i s t o f s t r i n g s

Name o f the f o r c e s c a l cu l a t i on , adds mul t ip l e c a l c u l a t i o n s i f a l i s t .
patches : s t r i n g or l i s t o f s t r i n g s

Name o f patches to inc lude , separated by a space .
I f g iven a l i s t then each s e t o f patches should correspond to the name
given in the name parameter .
i . e . patches [0] w i l l be combined under name [0]

217

rho : number
Value o f the dens i ty , d e f au l t = 0 f o r compres s ib l e f low .

c o f r : l i s t o f numbers
Centre o f r o t a t i on co−o rd ina t e s f o r moment (torque) c a l c u l a t i o n .

o i : number
Output i n t e r v a l in t imeSteps .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” system/ cont ro lD i c t ” , ”a”)

conve r t numer ica l i n pu t s i n t o s t r i n g s
rho = str (rho)
c o f r s = ” (”+str (c o f r [0])+” ”+str (c o f r [1])+” ”+str (c o f r [2])+”) ”
o i = str (int (o i))

wr i t e f u n c t i o n s to c o n t r o lD i c t i f not l i s t
i f type (name) != l i s t :

f out . wr i t e (” func t i on s \n(\n” + name +
”\n{\ntype f o r c e s ;\ nfunct ionObjectL ibs ” +
” (\” l i b f o r c e s . so \”) ;\n”)

fout . wr i t e (” patches (” + patches + ”) ;\n”)
i f rho == ”0” :

fout . wr i t e (”rhoName rho ;\ nrhoIn f 1 . 0 ;\ n”)
i f rho != ”0” :

fout . wr i t e (”rhoName rho In f ;\ nrhoIn f ” + rho + ” ;\n”)
fout . wr i t e (”CofR ” + co f r s +

” ;\ noutputControl timeStep ;\ noutput Inte rva l 1 ;\n}\n) ;\n\n”)

wr i t e f u n c t i o n s to c o n t r o lD i c t i f names are a l i s t
i f type (name) == l i s t :

f out . wr i t e (” func t i on s \n(\n”)
for i in range (len (name)) :

f out . wr i t e (name [i] + ”\n{\ntype f o r c e s ;\ nfunct ionObjectL ibs ” +
” (\” l i b f o r c e s . so \”) ;\n”)

fout . wr i t e (” patches (”+patches [i]+”) ;\n”)
i f rho == ”0” :

fout . wr i t e (”rhoName rho ;\ nrhoIn f 1 . 0 ;\ n”)
i f rho != ”0” :

fout . wr i t e (”rhoName rho In f ;\ nrhoIn f ” + rho + ” ;\n”)
fout . wr i t e (”CofR ” + co f r s +

” ;\ noutputControl timeStep ;\ noutput Inte rva l 1 ;\n}\n”)
fout . wr i t e (”) ;\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def decomposeParDict (nsubs=1, method=” simple ” , n=[1 , 1 , 1] , d e l t a =0.001) :
”””
Creates a p a r a l l e l decomposit ion d i c t i ona ry in the case / system d i r e c t o r y .

Parameters
−−−−−−−−−−
nsubs : i n t e g e r

Number o f subdomains (numberOfSubdomains) ,
i . e . number o f co r e s to use ,
should be equal to nx∗ny∗nz .

method : s t r i n g
Decomposition method , cho i c e o f s imple or h i e r a r c h i c a l .

n : l i s t o f i n t s
L i s t o f s p l i t s between x , y and z d i r e c t i o n s .

d e l t a : number
Delta value .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” system/decomposeParDict” , ”w”)

san i t y check
i f abs (n [0] ∗ n [1] ∗ n [2] − nsubs) > 1e−4:

print ”Error in ajopenfoam . decomposeParDict : ”
print ” Number o f subdomains does not match t o t a l from n ! ”
return −1

conve r t numer ica l i n pu t s i n t o s t r i n g s
nsubs = str (nsubs)
ns t r = ” (”+str (int (n [0]))+” ”+str (int (n [1]))+” ”+str (int (n [2]))+”) ”
de l t a = str (de l t a)

218

make sure s p e l l i n g s are c o r r e c t
i f method [0] == ” s ” or method [0] == ”S” :

method = ” simple ”
i f method [0] == ”h” or method [0] == ”H” :

method = ” h i e r a r c h i c a l ”

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t decomposeParDict ;\n”)
fout . wr i t e (” l o c a t i o n \” system \”;\n”)
fout . wr i t e (”}\n\n”)

wr i t e decomposeParDict
f out . wr i t e (”numberOfSubdomains ” + nsubs + ” ;\n\n”)
fout . wr i t e (”method ” + method + ” ;\n\n”)
fout . wr i t e (” s imp l eCoe f f s \n{\nn ” + nst r + ” ;\ nde l ta ” + de l t a + ” ;\n}\n\n”)
fout . wr i t e (” h i e r a r c h i c a lC o e f f s \n{\nn ” + nst r + ” ;\ nde l ta ” + de l t a +

” ;\ norder xyz ;\n}\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def fvSchemes (ddt=” steadyState ” , grad=”Gauss” , g rad i=” l i n e a r ” , div=”Gauss” ,
d i v i=” l i n e a r ” , lap=”Gauss” , l a p i=” l i n e a r ” , lapsn=” co r r e c t ed ” ,
i n t e r=” l i n e a r ” , sng=” co r r e c t ed ”) :

”””
Creates a f i n i t e volume schemes d i c t i ona ry in the case / system d i r e c t o r y .
Only s e t s d e f au l t parameters to be s o l u t i on neutra l ,
any fu r th e r tweaking should be done manually .

Parameters
−−−−−−−−−−
ddt : s t r i n g (d e f au l t ” s teadyState ”)

Time d i s c r e t i s a t i o n scheme (ddtSchemes) .
grad : s t r i n g (d e f au l t ”Gauss ”)

Gradient c a l c u l a t i o n scheme (gradSchemes) .
g rad i : s t r i n g (d e f au l t ” l i n e a r ”)

Gradient c a l c u l a t i o n i n t e r p o l a t i o n scheme (gradSchemes) .
div : s t r i n g (d e f au l t ”Gauss ”)

Divergence c a l c u l a t i o n grad i ent scheme (divSchemes) .
d i v i : s t r i n g (d e f au l t ” l i n e a r ”)

Divergence c a l c u l a t i o n i n t e r p o l a t i o n scheme (divSchemes) .
lap : s t r i n g (d e f au l t ”Gauss ”)

Laplac ian c a l c u l a t i o n grad i ent scheme (lap lac ianSchemes) .
l a p i : s t r i n g (d e f au l t ” l i n e a r ”)

Laplac ian c a l c u l a t i o n i n t e r p o l a t i o n scheme (lap lac ianSchemes) .
lapsn : s t r i n g (d e f au l t ” co r r e c t ed ”)

Laplac ian c a l c u l a t i o n su r f a c e normal scheme (lap lac ianSchemes) .
i n t e r : s t r i n g (d e f au l t ” l i n e a r ”)

I n t e r p o l a t i o n scheme (inte rpo la t i onSchemes) .
sng : s t r i n g (d e f au l t ” co r r e c t ed ”)

Sur face normal g rad i ent scheme (snGradSchemes) .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” system/ fvSchemes” , ”w”)

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t fvSchemes ;\n”)
fout . wr i t e (” l o c a t i o n \” system \”;\n”)
fout . wr i t e (”}\n\n”)

wr i t e dd t
f out . wr i t e (”ddtSchemes\n{\n de f au l t ” + ddt + ” ;\n}\n\n”)

wr i t e grad
f out . wr i t e (”gradSchemes\n{\n de f au l t ” + grad + ” ” + grad i + ” ;\n}\n\n”)

wr i t e d i v
f out . wr i t e (”divSchemes\n{\n de f au l t ” + div + ” ” + d i v i + ” ;\n}\n\n”)

wr i t e l a p l a c i a n
f out . wr i t e (” lap lac ianSchemes \n{\n de f au l t ” + lap + ” ” + l ap i + ” ”

+ lapsn + ” ;\n}\n\n”)

wr i t e i n t e r p o l a t i o n

219

f out . wr i t e (” inte rpo la t ionSchemes \n{\n de f au l t ” + i n t e r + ” ;\n}\n\n”)

wr i t e snGrad
f out . wr i t e (”snGradSchemes\n{\n de f au l t ” + sng + ” ;\n}\n\n”)

wr i t e f l u x r e q u i r e d
f out . wr i t e (” f luxRequi red \n{\n de f au l t no ;\n p ;\n}\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def f vSo lu t i on (gamg=True , ab s t o l=1e−8, r e l t o l =0.01 , ncor=2, nonorth=0,
p r e f c e l l =0, p r e f v a l =0) :

”””
Creates a f i n i t e volume s o l u t i on d i c t i ona ry in the case / system d i r e c t o r y .
To be s o l u t i on neutra l , makes some assumptions ,
d i c t i ona ry may need fu r th e r mod i f i c a t i on a f t e r c r e a t i on .

Parameters
−−−−−−−−−−
gamg : boolean (d e f au l t True)

Use GAMG fo r p r e s su r e i f True , DICPCG i f Fa l se .
ab s t o l : number (d e f au l t 1e−8)

Absolute t o l e r an c e f o r a l l r e s i d u a l s .
r e l t o l : number (d e f au l t 0 . 01)

Re la t ive t o l e r an c e per t imestep f o r a l l r e s i d u a l s .
ncor : i n t e g e r (d e f au l t 2)

nCorrectors f o r PISO .
nonorth : i n t e g e r (d e f au l t 0)

nNonOrthogonalCorrectors f o r PISO and SIMPLE.
p r e f c e l l : i n t e g e r (d e f au l t 0)

pRefCel l f o r PISO and SIMPLE.
p r e f v a l : number (d e f au l t 0)

pRefValue f o r PISO .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” system/ fvSo lu t i on ” , ”w”)

conve r t numer ica l i n pu t s i n t o s t r i n g s
at = str (ab s to l)
r t = str (r e l t o l)
nc = str (ncor)
no = str (nonorth)
pc = str (p r e f c e l l)
pv = str (p r e f v a l)

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t f vSo lu t i on ;\n”)
fout . wr i t e (” l o c a t i o n \” system \”;\n”)
fout . wr i t e (”}\n\n”)

wr i t e s o l v e r s
f out . wr i t e (” s o l v e r s \n{\n p\n {\n”)
i f gamg :

fout . wr i t e (” s o l v e r GAMG;\n”)
fout . wr i t e (” smoother GaussSe ide l ;\n”)
fout . wr i t e (” cacheAgglomeration on ;\n”)
fout . wr i t e (” agglomerator faceAreaPair ;\n”)
fout . wr i t e (” nCe l l s InCoar s e s tLeve l 100;\n”)
fout . wr i t e (” mergeLevels 1 ;\n”)
fout . wr i t e (” t o l e r an c e ”+at+” ;\n”)
fout . wr i t e (” r e lTo l ”+r t+” ;\n”)

else :
f out . wr i t e (” s o l v e r PCG;\n”)
fout . wr i t e (” p r e cond i t i one r DIC;\n”)
fout . wr i t e (” t o l e r an c e ”+at+” ;\n”)
fout . wr i t e (” r e lTo l ”+r t+” ;\n”)

fout . wr i t e (” }\n\n”)
U
f out . wr i t e (” U\n {\n”)
fout . wr i t e (” s o l v e r PBiCG;\n”)
fout . wr i t e (” p r e cond i t i one r DILU;\n”)
fout . wr i t e (” t o l e r an c e ”+at+” ;\n”)
fout . wr i t e (” r e lTo l ”+r t+” ;\n”)
fout . wr i t e (” }\n\n”)
k
f out . wr i t e (” k\n {\n”)
fout . wr i t e (” s o l v e r PBiCG;\n”)

220

f out . wr i t e (” p r e cond i t i one r DILU;\n”)
fout . wr i t e (” t o l e r an c e ”+at+” ;\n”)
fout . wr i t e (” r e lTo l ”+r t+” ;\n”)
fout . wr i t e (” }\n\n”)
ep s i l o n
f out . wr i t e (” ep s i l o n \n {\n”)
fout . wr i t e (” s o l v e r PBiCG;\n”)
fout . wr i t e (” p r e cond i t i one r DILU;\n”)
fout . wr i t e (” t o l e r an c e ”+at+” ;\n”)
fout . wr i t e (” r e lTo l ”+r t+” ;\n”)
fout . wr i t e (” }\n\n”)
omega
f out . wr i t e (” omega\n {\n”)
fout . wr i t e (” s o l v e r PBiCG;\n”)
fout . wr i t e (” p r e cond i t i one r DILU;\n”)
fout . wr i t e (” t o l e r an c e ”+at+” ;\n”)
fout . wr i t e (” r e lTo l ”+r t+” ;\n”)
fout . wr i t e (” }\n\n”)
fout . wr i t e (”}\n\n”)

wr i t e PISO
f out . wr i t e (”PISO\n{\n”)
fout . wr i t e (” nCorrectors ”+nc+” ;\n”)
fout . wr i t e (” nNonOrthogonalCorrectors ”+no+” ;\n”)
fout . wr i t e (” pRefCel l ”+pc+” ;\n”)
fout . wr i t e (” pRefValue ”+pv+” ;\n”)
fout . wr i t e (”}\n\n”)

wr i t e SIMPLE
f out . wr i t e (”SIMPLE\n{\n”)
fout . wr i t e (” nNonOrtogonalCorrectors ”+no+” ;\n”)
fout . wr i t e (” pRefCel l ”+pc+” ;\n”)
fout . wr i t e (” pRefValue ”+pv+” ;\n”)
fout . wr i t e (”}\n\n”)

wr i t e r e l a x a t i o nFa c t o r s
f out . wr i t e (” r e l axa t i onFac to r s \n{\n”)
fout . wr i t e (” p 0 . 3 ;\ n”)
fout . wr i t e (” U 0 . 7 ;\ n”)
fout . wr i t e (” k 0 . 7 ;\ n”)
fout . wr i t e (” ep s i l o n 0 . 7 ;\ n”)
fout . wr i t e (” omega 0 . 7 ;\ n”)
fout . wr i t e (”}\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def snappyHexMeshDict (s t l s , l v l s , loc ,
mainpars=[” true ” , ” t rue ” , ” t rue ” , ”1e−06” , ”0”] ,
c a s tpa r s =[”2000000” , ”2000000” , ”5” , ”1” , ”30”] ,
snappars=[”3” , ” 1 .0 ” , ”30” , ”5”] ,
l ay1pars=[”3” , ” t rue ” , ” 1 .2 ” , ” 0 .3 ” , ” 0 .1 ”] ,
l ay2pars=[”1” , ”90” , ”5” , ”1” , ”3” , ”10” , ” 0 .5 ” , ” 0 .3 ” ,

”130” , ”0” , ”30” , ”15”] ,
mq=[”60” , ”20” , ”5” , ”80” , ” 0 .5 ” , ”1e−15” , ”−1” ,

” 0 .02 ” , ” 0 .001 ” , ” 0 .02 ” , ” 0 .02 ” , ”−1” , ”4” , ” 0 .85 ”] ,
mqr=[”90” , ”30” , ”8” , ”120” , ” 0 .5 ” , ”1e−30” , ”−1” ,

” 0 .01 ” , ” 0 .0001 ” , ” 0 .01 ” , ” 0 .01 ” , ”−1” , ”6” , ” 0 .8 ”] ,
MRFrotor=False , f e a t u r e s=False) :

”””
Creates a snappyHexMesh d i c t i ona ry in the case / system d i r e c t o r y .

Parameters
−−−−−−−−−−
s t l s : l i s t o f s t r i n g s

L i s t o f s t r i n g s naming requ i r ed . s t l f i l e s .
l v l s : l i s t o f s t r i n g s

L i s t o f s t r i n g s g iv ing min and max \”(min max) \”
su r f a c e re f inement l e v e l s f o r each . s t l s u r f a c e .

l o c : l i s t o f numbers
Co−o rd ina t e s o f a l o c a t i o n with in the meshed reg ion .

Optional Parameters
−−−−−−−−−−−−−−−−−−−
mainpars : l i s t o f s t r i n g s

L i s t o f s t r i n g s f o r the main parameters in the f o l l ow ing order :
caste l latedMesh , snap , addLayers , mergeTolerance , debug .

ca s tpa r s : l i s t o f s t r i n g
L i s t o f s t r i n g s f o r the c a s t e l l a t e d mesh parameters :
maxLocalCells , maxGlobalCells , minRefinementCells ,
nCel lsBetweenLevels , r e so lveFeatureAng le .

snappars : l i s t o f s t r i n g s
L i s t o f s t r i n g s f o r the mesh snapping parameters :
nSmoothPatch , to l e rance , nSo lve I t e r , nRe laxI te r .

l ay1pars : l i s t o f s t r i n g s
L i s t o f s t r i n g s f o r l ay e r add i t i on parameters :
nSurfaceLayers , r e l a t i v e S i z e s , expansionRatio ,

221

f ina lLayerThicknes s , minThickness .
l ay2pars : l i s t o f s t r i n g s

L i s t o f s t r i n g s f o r other l ay e r add i t i on parameters :
nGrow , featureAngle , nRelaxIter , nSmoothSurfaceNormals ,
nSmoothNormals , nSmoothThickness , maxFaceThicknessRatio ,
maxThicknessToMedialRatio , minMedianAxisAngle ,
nBufferCel lsNoExtrude , nLayerIter , nRelaxedIter

mq: l i s t o f s t r i n g s
L i s t o f s t r i n g s f o r mesh qua l i t y c on t r o l s :
maxNonOrtho , maxBoundarySkewness , maxInternalSkewness ,
maxConcave , minFlatness , minVol , minArea , minTwist ,
minDeterminant , minFaceWeight , minVolRatio , minTriangleTwist ,
nSmoothScale , e r rorReduct ion .

mqr : l i s t o f s t r i n g s
L i s t o f s t r i n g s f o r r e l axed mesh qua l i t y c on t r o l s :
maxNonOrtho , maxBoundarySkewness , maxInternalSkewness ,
maxConcave , minFlatness , minVol , minArea , minTwist ,
minDeterminant , minFaceWeight , minVolRatio , minTriangleTwist ,
nSmoothScale , e r rorReduct ion .

MRFrotor : l i s t o f [l i s t o f numbers , l i s t o f numbers , number]
Add opt i ona l c y l i nd e r zone c a l l e d rotor , de f ined with a l i s t o f
three parameters , one (l i s t o f nums) g iv ing the f i r s t
co−ord inate o f the cy l inde r , one (l i s t o f nums) g iv ing the
second co−ord inate o f the cy l i nd e r and the th i rd the rad ius
o f the cy l i nd e r o f the r o t a t i ng reg ion .

f e a t u r e s : i n t e g e r
When not False , uses the s t l s to c r ea t e eMesh f i l e s
v ia the sur faceFeatureExtrac t app l i c a t i on and then uses
f e a tu r e snapping to improve the mesh su r f a c e capture
with f e a t u r e s number o f i t e r a t i o n s .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” system/snappyHexMeshDict” , ”w”)

conve r t numer ica l i n pu t s i n t o s t r i n g s
l o c s t r = ” (”+str (l o c [0])+” ”+str (l o c [1])+” ”+str (l o c [2])+”) ”
i f MRFrotor :

cy l1 = ” (” + str (MRFrotor [0] [0]) + \
” ” + str (MRFrotor [0] [1]) + \
” ” + str (MRFrotor [0] [2]) + ”) ”

cy l2 = ” (” + str (MRFrotor [1] [0]) + \
” ” + str (MRFrotor [1] [1]) + \
” ” + str (MRFrotor [1] [2]) + ”) ”

rad = str (MRFrotor [2])

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t snappyHexMeshDict ;\n”)
fout . wr i t e (” l o c a t i o n \” system \”;\n}\n\n”)

wr i t e main e n t r i e s
f out . wr i t e (” cas te l l a t edMesh ” + mainpars [0] + ” ;\n”)
fout . wr i t e (” snap ” + mainpars [1] + ” ;\n”)
fout . wr i t e (”addLayers ” + mainpars [2] + ” ;\n”)
fout . wr i t e (”mergeTolerance ” + mainpars [3] + ” ;\n”)
fout . wr i t e (”debug ” + mainpars [4] + ” ;\n\n”)

wr i t e geometry sub−d i c t i o n a r y
f out . wr i t e (”geometry\n{”)
for s t l in s t l s :

f out . wr i t e (”\n ” + s t l + ”\n {\n type tr iSur faceMesh ;\n }\n”)
i f MRFrotor :

f out . wr i t e (” ro to r \n {\n type sea rchab l eCy l inde r ;\n”)
fout . wr i t e (” point1 ” + cy l1 + ” ;\n point2 ” + cy l2 + ” ;\n rad ius ”

+ rad + ” ;\n }\n”)
fout . wr i t e (”}\n\n”)

wr i t e c a s t e l l a t e dMe s h sub−d i c t i o n a r y
f out . wr i t e (” cas te l l a t edMeshContro l s \n{\n”)
fout . wr i t e (” locat ionInMesh ” + l o c s t r + ” ;\n”)
fout . wr i t e (” maxLocalCel ls ” + cas tpa r s [0] + ” ;\n”)
fout . wr i t e (” maxGlobalCells ” + cas tpa r s [1] + ” ;\n”)
fout . wr i t e (” minRefinementCel ls ” + cas tpa r s [2] + ” ;\n”)
fout . wr i t e (” nCel l sBetweenLevels ” + cas tpa r s [3] + ” ;\n”)
fout . wr i t e (” reso lveFeatureAng le ” + cas tpa r s [4] + ” ;\n”)
fout . wr i t e (” f e a t u r e s \n (\n”)
i f f e a t u r e s :

for s t l in s t l s :
f out . wr i t e (” { f i l e \”” + s t l [: −4] + ” . eMesh \” ; l e v e l 0 ; }\n”)

fout . wr i t e (”) ;\n”)
fout . wr i t e (” r e f i nementSur f ace s \n {”)
for i in range (len (s t l s)) :

f out . wr i t e (”\n ” + s t l s [i] + ”\n {\n l e v e l ” + l v l s [i] +
” ;\n }\n”)

222

i f MRFrotor :
f out . wr i t e (” ro to r \n {\n l e v e l (0 0) ;\n” +

” faceZone ro to r ;\n” +
” ce l lZone ro to r ;\n zone Ins ide t rue ;\n }\n”)

fout . wr i t e (” }\n”)
fout . wr i t e (” al lowFreeStandingZoneFaces f a l s e ;\n”)
fout . wr i t e (” re f inementRegions \n {\n }\n}\n\n”)

wr i t e snapCont ro l s sub−d i c t i o n a r y
f out . wr i t e (” snapControls\n{\n”)
fout . wr i t e (” nSmoothPatch ” + snappars [0] + ” ;\n”)
fout . wr i t e (” t o l e r an c e ” + snappars [1] + ” ;\n”)
fout . wr i t e (” nSo l v e I t e r ” + snappars [2] + ” ;\n”)
fout . wr i t e (” nRe laxI te r ” + snappars [3] + ” ;\n”)
i f f e a t u r e s :

f out . wr i t e (” nFeatureSnapIter ”+str (f e a t u r e s)+” ;\n”)
fout . wr i t e (”}\n\n”)

wr i t e addLayers sub−d i c t i o n a r y pa r t 1
f out . wr i t e (” addLayersControls\n{\n l a y e r s \n {\n”)
for s t l in s t l s :

f out . wr i t e (” ” + s t l + ” ” + s t l [: −4] +
”\n { nSurfaceLayers ” + lay1pars [0] +
” ;\n }\n”)

fout . wr i t e (” }\n”)
fout . wr i t e (” r e l a t i v e S i z e s ” + lay1pars [1] + ” ;\n”)
fout . wr i t e (” expansionRatio ” + lay1pars [2] + ” ;\n”)
fout . wr i t e (” f ina lLaye rTh i ckne s s ” + lay1pars [3] + ” ;\n”)
fout . wr i t e (” minThickness ” + lay1pars [4] + ” ;\n”)

wr i t e addLayers sub−d i c t i o n a r y pa r t 2
f out . wr i t e (” nGrow ” + lay2pars [0] + ” ;\n”)
fout . wr i t e (” f eatureAng le ” + lay2pars [1] + ” ;\n”)
fout . wr i t e (” nRe laxI te r ” + lay2pars [2] + ” ;\n”)
fout . wr i t e (” nSmoothSurfaceNormals ” + lay2pars [3] + ” ;\n”)
fout . wr i t e (” nSmoothNormals ” + lay2pars [4] + ” ;\n”)
fout . wr i t e (” nSmoothThickness ” + lay2pars [5] + ” ;\n”)
fout . wr i t e (” maxFaceThicknessRatio ” + lay2pars [6] + ” ;\n”)
fout . wr i t e (” maxThicknessToMedialRatio ” + lay2pars [7] + ” ;\n”)
fout . wr i t e (” minMedianAxisAngle ” + lay2pars [8] + ” ;\n”)
fout . wr i t e (” nBufferCel lsNoExtrude ” + lay2pars [9] + ” ;\n”)
fout . wr i t e (” nLayer I te r ” + lay2pars [1 0] + ” ;\n”)
fout . wr i t e (” nRelaxedIter ” + lay2pars [1 1] + ” ;\n}\n\n”)

wr i t e mesh q u a l i t y c o n t r o l s
f out . wr i t e (”meshQual ityControls\n{\n”)
fout . wr i t e (” maxNonOrtho ” + mq[0] + ” ;\n”)
fout . wr i t e (” maxBoundarySkewness ” + mq[1] + ” ;\n”)
fout . wr i t e (” maxInternalSkewness ” + mq[2] + ” ;\n”)
fout . wr i t e (” maxConcave ” + mq[3] + ” ;\n”)
fout . wr i t e (” minFlatness ” + mq[4] + ” ;\n”)
fout . wr i t e (” minVol ” + mq[5] + ” ;\n”)
fout . wr i t e (” minArea ” + mq[6] + ” ;\n”)
fout . wr i t e (” minTwist ” + mq[7] + ” ;\n”)
fout . wr i t e (” minDeterminant ” + mq[8] + ” ;\n”)
fout . wr i t e (” minFaceWeight ” + mq[9] + ” ;\n”)
fout . wr i t e (” minVolRatio ” + mq[1 0] + ” ;\n”)
fout . wr i t e (” minTriangleTwist ” + mq[1 1] + ” ;\n”)
fout . wr i t e (” nSmoothScale ” + mq[1 2] + ” ;\n”)
fout . wr i t e (” errorReduct ion ” + mq[1 3] + ” ;\n”)
fout . wr i t e (” minTetQuality 1e−30;\n”)

wr i t e r e l a x e d mesh q u a l i t y c o n t r o l s
f out . wr i t e (” r e l axed \n {\n”)
fout . wr i t e (” maxNonOrtho ” + mqr [0] + ” ;\n”)
fout . wr i t e (” maxBoundarySkewness ” + mqr [1] + ” ;\n”)
fout . wr i t e (” maxInternalSkewness ” + mqr [2] + ” ;\n”)
fout . wr i t e (” maxConcave ” + mqr [3] + ” ;\n”)
fout . wr i t e (” minFlatness ” + mqr [4] + ” ;\n”)
fout . wr i t e (” minVol ” + mqr [5] + ” ;\n”)
fout . wr i t e (” minArea ” + mqr [6] + ” ;\n”)
fout . wr i t e (” minTwist ” + mqr [7] + ” ;\n”)
fout . wr i t e (” minDeterminant ” + mqr [8] + ” ;\n”)
fout . wr i t e (” minFaceWeight ” + mqr [9] + ” ;\n”)
fout . wr i t e (” minVolRatio ” + mqr [1 0] + ” ;\n”)
fout . wr i t e (” minTriangleTwist ” + mqr [1 1] + ” ;\n”)
fout . wr i t e (” nSmoothScale ” + mqr [1 2] + ” ;\n”)
fout . wr i t e (” errorReduct ion ” + mqr [1 3] + ” ;\n”)
fout . wr i t e (” minTetQuality 1e−30;\n”)
fout . wr i t e (” }\n}\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

i f f e a t u r e s i s enab led , c r e a t e eMesh f i l e s
i f f e a t u r e s :

for s t l in s t l s :
run (” sur faceFeatureExtrac t −inc ludedAngle 150 constant / t r i S u r f a c e /”

+ s t l + ” ” + s t l [: −4] , s i l e n t=True)

223

return None

def MRFZones(reg ion , rpm , o r i g i n =[0 , 0 , 0] , ax i s =[0 , 0 , 1] , nrp=””) :
”””
Creates a MRF (mul t ip l e r e f e r e n c e frame) zones d i c t i ona ry
in the case / constant d i r e c t o r y .

Parameters
−−−−−−−−−−
r eg ion : s t r i n g

Name o f the r o t a t i ng reg ion .
rpm : number

Speed o f r o t a t i on in rpm .
o r i g i n : l i s t o f numbers (d e f au l t [0 , 0 , 0])

Centre o f r o t a t i on .
ax i s : l i s t o f numbers (d e f au l t [0 , 0 , 1])

Axis about which the reg ion r o t a t e s .
nrp : s t r i n g (d e f au l t ””)

nonRotatingPatches separated by a space .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
from math import pi

fout = f i l e (” constant /MRFZones” , ”w”)

conve r t rpm in t o rad / s
omega = str (p i ∗rpm/30 .0)

conve r t numer ica l i n pu t s i n t o s t r i n g s
o r i g i n s t r = ” (”+str (o r i g i n [0])+” ”+str (o r i g i n [1])+” ”+str (o r i g i n [2])+”) ”
a x i s s t r = ” (”+str (ax i s [0])+” ”+str (ax i s [1])+” ”+str (ax i s [2])+”) ”

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t MRFZones ;\n”)
fout . wr i t e (” l o c a t i o n \” constant \”;\n}\n\n”)

wr i t e remainder o f f i l e
f out . wr i t e (”1\n(\n ”+reg ion+”\n {\n”)
fout . wr i t e (” nonRotatingPatches (”+nrp+”) ;\n\n”)
fout . wr i t e (” o r i g i n o r i g i n [0 1 0 0 0 0 0] ”+o r i g i n s t r+” ;\n”)
fout . wr i t e (” ax i s ax i s [0 0 0 0 0 0 0] ”+a x i s s t r+” ;\n”)
fout . wr i t e (” omega omega [0 0 −1 0 0 0 0] ”+omega+” ;\n }\n)\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def RASProperties (model , turb=True , c o e f=True) :
”””
Creates a RAS (Reynolds averaged s imu la t ion) p r op e r t i e s d i c t i ona ry
in the case / constant d i r e c t o r y .

Parameters
−−−−−−−−−−
model : s t r i n g

Turbulence model to use .
turb : boolean

Turbulence on or o f f .
c o e f : boolean

Pr int c o e f f i c i e n t s ?

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” constant /RASProperties ” , ”w”)

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t RASProperties ;\n”)
fout . wr i t e (” l o c a t i o n \” constant \”;\n}\n\n”)

wr i t e data
f out . wr i t e (”RASModel ”+model+” ;\n\n”)

224

i f turb :
fout . wr i t e (” turbu lence on ;\n\n”)

else :
f out . wr i t e (” turbu lence o f f ;\n\n”)

i f co e f :
f out . wr i t e (” p r i n tCoe f f s on ;\n\n”)

else :
f out . wr i t e (” p r i n tCoe f f s o f f ;\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def t r an spo r tP rope r t i e s (nu=1.307e−6) :
”””
Creates a t ranspor t p r op e r t i e s d i c t i ona ry in the case / constant d i r e c t o r y .
Current ly d e f au l t s to a Newtonian t ranspor t model and takes one input
o f dynamic v i s c o s i t y , d e f au l t i n g to that o f sea water .

Parameters
−−−−−−−−−−
nu : number (d e f au l t 1 .307 e−6)

Kinematic v i s c o s i t y in mˆ2/ s .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

fout = f i l e (” constant / t r an spo r tP rope r t i e s ” , ”w”)

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t t r an spo r tP rope r t i e s ;\n”)
fout . wr i t e (” l o c a t i o n \” constant \”;\n}\n\n”)

wr i t e Newtonian t r a n s p o r t
f out . wr i t e (” transportModel Newtonian ;\n\n”)
fout . wr i t e (”nu nu [0 2 −1 0 0 0 0] ”+str (nu)+” ;\n\n”)

c l o s e ou tpu t
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def makeFieldsiKO (Vinit , t u rbu l en t I n t en s i t y =0.1 , tu rbu l en tV i s co s i t yRat i o =10,
wal lFunct ions=True , i n l e t p r e s s u r e =0.1 , rot omega =314.159) :

”””
Creates f i e l d f i l e s f o r an incompre s s ib l e k−omega s imulat ion ,
patches are de f ined based on t h e i r type
in the constant /polyMesh/boundary f i l e .
Patches named i n l e t and ou t l e t
w i l l be t r ea t ed as i n l e t and ou t l e t boundar ies .

Parameters
−−−−−−−−−−
Vin i t : l i s t o f numbers

I n i t i a l / i n l e t v e l o c i t y .
t u rbu l en t I n t en s i t y : number (d e f au l t 0 . 1)

Turbulent i n t e n s i t y .
tu rbu l en tV i s co s i tyRa io : number (d e f au l t 10)

Turbulent v i s c o s i t y r a t i o nut/nu .
wal lFunct ions : boolean (d e f au l t True)

Use wal l f unc t i on s ?
i n l e t p r e s s u r e : number (d e f au l t 0 . 1)

I n l e t p r e s su r e f o r p i n l e t .
rot omega : number (d e f au l t 314 .159)

Omega f o r rotXYZ patches .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
from numpy import sq r t

conve r t numer ica l i n pu t s i n t o s t r i n g s
i f isinstance (Vinit , str) :

V i n i t s t r = Vin i t
Vin i t = [f loat (V i n i t s t r . s p l i t () [0] [1 :]) , f loat (V i n i t s t r . s p l i t () [1]) ,

f loat (V i n i t s t r . s p l i t () [2] [: − 1])]

225

else :
V i n i t s t r = ” (”+str (Vin i t [0])+” ”+str (Vin i t [1])+” ”+str (Vin i t [2])+”) ”

i f t u r b u l e n t i n t e n s i t y i s s p e c i f i e d as p e r c en t a g e conve r t i n t o dec ima l
i f t u rbu l en t I n t en s i t y > 1 :

t u rbu l en t I n t en s i t y = tu rbu l en t I n t en s i t y /100.0

read in boundary f i l e
f i n = f i l e (” constant /polyMesh/boundary” , ” r ”)
boundarywords = f i n . read () . s p l i t ()
f i n . c l o s e ()

e x t r a c t pa t c h e s d i c t i o n a r y
patches = {}
for i in range (len (boundarywords)−3) :

i f boundarywords [i +1] == ”{” and boundarywords [i +2] == ”type” :
patches [boundarywords [i]] = boundarywords [i +3]

read in v i s c o s i t y from t r a n s p o r t P r o p e r t i e s d i c t i o n a r y
try :

f i n 2 = f i l e (” constant / t r an spo r tP rope r t i e s ” , ” r ”)
t h i s i s in case i t ' s a p a r a l l e l d i r e c t o r y
except IOError :

f i n 2 = f i l e (” . . / constant / t r an spo r tP rope r t i e s ” , ” r ”)
transportwords = f i n 2 . read () . s p l i t ()
f i n 2 . c l o s e ()
for i in range (len (transportwords)) :

i f transportwords [i] == ” 0] ” :
nu = f loat (transportwords [i +1] [: −1])

c a l c u l a t e d e r i v e d q u a n t i t i e s
Vmag = sqr t (Vin i t [0] ∗ Vin i t [0]+ Vin i t [1] ∗ Vin i t [1]+ Vin i t [2] ∗ Vin i t [2])
k = (tu rbu l en t I n t en s i t y ∗Vmag) ∗∗2
t k e s t r = str (k)
tvr = turbu l en tV i s co s i t yRat i o /100.0
omega = max([0 . 0 0 001 , k/ f loat (tvr ∗nu)])
omegastr = str (omega)

open ou tpu t f i l e s
fp = f i l e (”0/p” , ”w”)
fU = f i l e (”0/U” , ”w”)
fk = f i l e (”0/k” , ”w”)
fo = f i l e (”0/omega” , ”w”)
fn = f i l e (”0/nut” , ”w”)

wr i t e header s
pr e s s u r e
fp . wr i t e (”FoamFile\n{\n”)
fp . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fp . wr i t e (” format a s c i i ;\n”)
fp . wr i t e (” c l a s s v o l S c a l a rF i e l d ;\n”)
fp . wr i t e (” ob j e c t p ;\n”)
fp . wr i t e (” l o c a t i o n \”0\”;\n}\n\n”)
v e l o c i t y
fU . wr i t e (”FoamFile\n{\n”)
fU . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fU . wr i t e (” format a s c i i ;\n”)
fU . wr i t e (” c l a s s vo lVecto rF i e ld ;\n”)
fU . wr i t e (” ob j e c t U;\n”)
fU . wr i t e (” l o c a t i o n \”0\”;\n}\n\n”)
t u r b u l e n t k i n e t i c energy
fk . wr i t e (”FoamFile\n{\n”)
fk . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fk . wr i t e (” format a s c i i ;\n”)
fk . wr i t e (” c l a s s v o l S c a l a rF i e l d ;\n”)
fk . wr i t e (” ob j e c t k ;\n”)
fk . wr i t e (” l o c a t i o n \”0\”;\n}\n\n”)
s p e c i f i c t u r b u l e n t k i n e t i c energy d i s s i p a t i o n
f o . wr i t e (”FoamFile\n{\n”)
fo . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fo . wr i t e (” format a s c i i ;\n”)
fo . wr i t e (” c l a s s v o l S c a l a rF i e l d ;\n”)
fo . wr i t e (” ob j e c t omega ;\n”)
fo . wr i t e (” l o c a t i o n \”0\”;\n}\n\n”)
t u r b u l e n t v i s c o s i t y
fn . wr i t e (”FoamFile\n{\n”)
fn . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fn . wr i t e (” format a s c i i ;\n”)
fn . wr i t e (” c l a s s v o l S c a l a rF i e l d ;\n”)
fn . wr i t e (” ob j e c t nut ;\n”)
fn . wr i t e (” l o c a t i o n \”0\”;\n}\n\n”)

wr i t e i n i t i a l c o n d i t i o n s
pr e s s u r e
i f ” p i n l e t ” in patches :

fp . wr i t e (” dimensions [0 2 −2 0 0 0 0] ; \ n\n”)
fp . wr i t e (” i n t e r n a lF i e l d uniform {} ;\n\n” . format (0 . 5∗ i n l e t p r e s s u r e))

else :
fp . wr i t e (” dimensions [0 2 −2 0 0 0 0] ; \ n\n”)
fp . wr i t e (” i n t e r n a lF i e l d uniform 0;\n\n”)

v e l o c i t y
fU . wr i t e (” dimensions [0 1 −1 0 0 0 0] ; \ n\n”)

226

fU . wr i t e (” i n t e r n a lF i e l d uniform ”+V in i t s t r+” ;\n\n”)
t u r b u l e n t k i n e t i c energy
fk . wr i t e (” dimensions [0 2 −2 0 0 0 0] ; \ n\n”)
fk . wr i t e (” i n t e r n a lF i e l d uniform ”+tk e s t r+” ;\n\n”)
s p e c i f i c t u r b u l e n t k i n e t i c energy d i s s i p a t i o n
f o . wr i t e (” dimensions [0 0 −1 0 0 0 0] ; \ n\n”)
fo . wr i t e (” i n t e r n a lF i e l d uniform ”+omegastr+” ;\n\n”)
t u r b u l e n t v i s c o s i t y
fn . wr i t e (” dimensions [0 2 −1 0 0 0 0] ; \ n\n”)
fn . wr i t e (” i n t e r n a lF i e l d uniform 0;\n\n”)

wr i t e boundary c on d i t i o n s
beg in w r i t i n g boundaryF i e l d s
fp . wr i t e (” boundaryField\n{\n”)
fU . wr i t e (” boundaryField\n{\n”)
fk . wr i t e (” boundaryField\n{\n”)
fo . wr i t e (” boundaryField\n{\n”)
fn . wr i t e (” boundaryField\n{\n”)
for patch in patches :

wr i t e pa tch common
fp . wr i t e (” ”+patch+”\n {\n”)
fU . wr i t e (” ”+patch+”\n {\n”)
fk . wr i t e (” ”+patch+”\n {\n”)
fo . wr i t e (” ”+patch+”\n {\n”)
fn . wr i t e (” ”+patch+”\n {\n”)
i f patch == ” i n l e t ” :

i n l e t boundary
fp . wr i t e (” type zeroGradient ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type f ixedValue ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type f ixedValue ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type f ixedValue ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type ca l cu l a t ed ;\n”)
fn . wr i t e (” value uniform 0;\n”)

e l i f patch == ” p i n l e t ” :
pre s s u r e i n l e t boundary
fp . wr i t e (” type f ixedValue ;\n”)
fp . wr i t e (” value uniform {} ;\n” . format (i n l e t p r e s s u r e))
fU . wr i t e (” type p r e s s u r e I n l e tVe l o c i t y ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type f ixedValue ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type f ixedValue ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type ca l cu l a t ed ;\n”)
fn . wr i t e (” value uniform 0;\n”)

e l i f patch [: 4] == ”rotX” :
ro t a t i n g wa l l about X boundary
fp . wr i t e (” type zeroGradient ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type ro ta t ingWal lVe loc i ty ;\n”)
fU . wr i t e (” o r i g i n (0 0 0) ;\n”)
fU . wr i t e (” ax i s (1 0 0) ;\n”)
fU . wr i t e (” omega constant {} ;\n” . format (rot omega))
i f wal lFunct ions :

fk . wr i t e (” type kqRWallFunction ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type omegaWallFunction ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type nutkWallFunction ;\n”)
fn . wr i t e (” value uniform 0;\n”)

i f not wal lFunct ions :
fk . wr i t e (” type f ixedValue ;\n”) # TBC
fk . wr i t e (” value uniform 0;\n”) # TBC
f o . wr i t e (” type f ixedValue ;\n”) # TBC
f o . wr i t e (” value uniform 0;\n”) # TBC
fn . wr i t e (” type ca l cu l a t ed ;\n”) # TBC
fn . wr i t e (” value uniform 0;\n”) # TBC

e l i f patch [: 4] == ”rotY” :
ro t a t i n g wa l l about Y boundary
fp . wr i t e (” type zeroGradient ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type ro ta t ingWal lVe loc i ty ;\n”)
fU . wr i t e (” o r i g i n (0 0 0) ;\n”)
fU . wr i t e (” ax i s (0 1 0) ;\n”)
fU . wr i t e (” omega constant {} ;\n” . format (rot omega))
i f wal lFunct ions :

fk . wr i t e (” type kqRWallFunction ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type omegaWallFunction ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type nutkWallFunction ;\n”)
fn . wr i t e (” value uniform 0;\n”)

i f not wal lFunct ions :
fk . wr i t e (” type f ixedValue ;\n”) # TBC
fk . wr i t e (” value uniform 0;\n”) # TBC
f o . wr i t e (” type f ixedValue ;\n”) # TBC
f o . wr i t e (” value uniform 0;\n”) # TBC
fn . wr i t e (” type ca l cu l a t ed ;\n”) # TBC

227

fn . wr i t e (” value uniform 0;\n”) # TBC
e l i f patch [: 4] == ” rotZ” :

ro t a t i n g wa l l about X boundary
fp . wr i t e (” type zeroGradient ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type ro ta t ingWal lVe loc i ty ;\n”)
fU . wr i t e (” o r i g i n (0 0 0) ;\n”)
fU . wr i t e (” ax i s (0 0 1) ;\n”)
fU . wr i t e (” omega constant {} ;\n” . format (rot omega))
i f wal lFunct ions :

fk . wr i t e (” type kqRWallFunction ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type omegaWallFunction ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type nutkWallFunction ;\n”)
fn . wr i t e (” value uniform 0;\n”)

i f not wal lFunct ions :
fk . wr i t e (” type f ixedValue ;\n”) # TBC
fk . wr i t e (” value uniform 0;\n”) # TBC
f o . wr i t e (” type f ixedValue ;\n”) # TBC
f o . wr i t e (” value uniform 0;\n”) # TBC
fn . wr i t e (” type ca l cu l a t ed ;\n”) # TBC
fn . wr i t e (” value uniform 0;\n”) # TBC

e l i f patch == ” ou t l e t ” :
o u t l e t boundary
fp . wr i t e (” type f ixedValue ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type zeroGradient ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type zeroGradient ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type zeroGradient ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type zeroGradient ;\n”)
fn . wr i t e (” value uniform 0;\n”)

e l i f patches [patch] == ”wal l ; ” :
no s l i p w a l l boundary − us ing wa l l f u n c t i o n s
fp . wr i t e (” type zeroGradient ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type f ixedValue ;\n”)
fU . wr i t e (” value uniform (0 0 0) ;\n”)
i f wal lFunct ions :

fk . wr i t e (” type kqRWallFunction ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type omegaWallFunction ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type nutkWallFunction ;\n”)
fn . wr i t e (” value uniform 0;\n”)

i f not wal lFunct ions :
fk . wr i t e (” type f ixedValue ;\n”) # TBC
fk . wr i t e (” value uniform 0;\n”) # TBC
f o . wr i t e (” type f ixedValue ;\n”) # TBC
f o . wr i t e (” value uniform 0;\n”) # TBC
fn . wr i t e (” type ca l cu l a t ed ;\n”) # TBC
fn . wr i t e (” value uniform 0;\n”) # TBC

e l i f patches [patch] == ”symmetryPlane ; ” :
symmetry boundary
fp . wr i t e (” type symmetryPlane ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type symmetryPlane ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type symmetryPlane ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type symmetryPlane ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type symmetryPlane ;\n”)
fn . wr i t e (” value uniform 0;\n”)

e l i f patches [patch] == ” proce s so r ; ” :
proc e s s o r boundary (f o r p a r a l l e l)
fp . wr i t e (” type p roc e s so r ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type p roc e s so r ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type p roc e s so r ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type p roc e s so r ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type p roc e s so r ;\n”)
fn . wr i t e (” value uniform 0;\n”)

e l i f patches [patch] == ”cyclicAMI ; ” :
proc e s s o r boundary (f o r p a r a l l e l)
fp . wr i t e (” type cyclicAMI ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type cyclicAMI ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type cyclicAMI ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type cyclicAMI ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type cyclicAMI ;\n”)
fn . wr i t e (” value uniform 0;\n”)

e l i f patches [patch] == ” c y c l i c ; ” :

228

proc e s s o r boundary (f o r p a r a l l e l)
fp . wr i t e (” type c y c l i c ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type c y c l i c ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type c y c l i c ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type c y c l i c ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type c y c l i c ;\n”)
fn . wr i t e (” value uniform 0;\n”)

e l i f patches [patch] == ”empty ; ” :
empty pa tch
fp . wr i t e (” type empty ;\n”)
fU . wr i t e (” type empty ;\n”)
fk . wr i t e (” type empty ;\n”)
fo . wr i t e (” type empty ;\n”)
fn . wr i t e (” type empty ;\n”)

else :
gene r i c boundary t ype
fp . wr i t e (” type zeroGradient ;\n”)
fp . wr i t e (” value uniform 0;\n”)
fU . wr i t e (” type f ixedValue ;\n”)
fU . wr i t e (” value uniform ”+V in i t s t r+” ;\n”)
fk . wr i t e (” type f ixedValue ;\n”)
fk . wr i t e (” value uniform ”+tk e s t r+” ;\n”)
fo . wr i t e (” type f ixedValue ;\n”)
fo . wr i t e (” value uniform ”+omegastr+” ;\n”)
fn . wr i t e (” type ca l cu l a t ed ;\n”)
fn . wr i t e (” value uniform 0;\n”)

f i n i s h pa tch
fp . wr i t e (” }\n”)
fU . wr i t e (” }\n”)
fk . wr i t e (” }\n”)
fo . wr i t e (” }\n”)
fn . wr i t e (” }\n”)

end w r i t i n g boundaryF i e l d s
fp . wr i t e (”}\n”)
fU . wr i t e (”}\n”)
fk . wr i t e (”}\n”)
fo . wr i t e (”}\n”)
fn . wr i t e (”}\n”)

c l o s e ou tpu t f i l e s
fp . f l u s h ()
os . f sync (fp . f i l e n o ())
fp . c l o s e ()
fU . f l u s h ()
os . f sync (fU . f i l e n o ())
fU . c l o s e ()
fk . f l u s h ()
os . f sync (fk . f i l e n o ())
fk . c l o s e ()
fo . f l u s h ()
os . f sync (fo . f i l e n o ())
fo . c l o s e ()
fn . f l u s h ()
os . f sync (fn . f i l e n o ())
fn . c l o s e ()

return None

def renamePatch (name , nname) :
”””
Renames a patch from name to nname in the constant /polyMesh/boundary f i l e .

Parameters
−−−−−−−−−−
name : s t r i n g

Name o f the patch to be renamed .
nname : s t r i n g

New name f o r patch .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
import re

read the f i l e i n t o a s t r i n g
f i n = f i l e (” constant /polyMesh/boundary” , ” r ”)
f i l e s t r = f i n . read ()
f i n . c l o s e ()

make r e g u l a r e x p r e s s i o n
namepattern = re . compile (r ”\ s ∗”+name+r”\ s ∗\{\ s ∗ type\ s ∗\w+;”)
r eob j = namepattern . search (f i l e s t r)
i f r eob j :

namepattern2 = re . compile (r ”\w+\s ∗\{”)
newstr = namepattern2 . sub (nname+”\n{” , r eob j . group ())

229

else :
return ”Patch not found”

cr e a t e ou tpu t s t r i n g
out s t r = f i l e s t r [: r eob j . s t a r t ()]+newstr+f i l e s t r [r eob j . end () :]

wr i t e ou tpu t s t r i n g
f out = f i l e (” constant /polyMesh/boundary” , ”w”)
fout . wr i t e (ou t s t r)
fout . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def de letePatch (name) :
”””
De l e te s the patch c a l l e d name from constant /polyMesh/boundary f i l e .

Parameters
−−−−−−−−−−
name : s t r i n g

Name o f the patch to be de l e t ed .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
import re

read the f i l e i n t o a s t r i n g
f i n = f i l e (” constant /polyMesh/boundary” , ” r ”)
f i l e s t r = f i n . read ()
f i n . c l o s e ()

make pa tch r e g u l a r e x p r e s s i o n
namepattern = re . compile (r ”\ s ∗”+name+r”\ s ∗\{\ s ∗ type\ s ∗\w+;[\ s\w]∗?\} ”)
namereobj = namepattern . search (f i l e s t r)
i f namereobj :

numpattern = re . compile (r ”\n\d+\n{”)
numreobj = numpattern . search (f i l e s t r)
i f numreobj :

newnum = ”\n”+str (int (numreobj . group ())−1)+”\n{”
else :

return ”Number o f patches not found”
else :

return ”Patch not found”

cr e a t e ou tpu t s t r i n g
out s t r = f i l e s t r [: numreobj . s t a r t ()] + newnum +\

f i l e s t r [numreobj . end () : namereobj . s t a r t ()] +\
f i l e s t r [namereobj . end () :]

wr i t e ou tpu t s t r i n g
f out = f i l e (” constant /polyMesh/boundary” , ”w”)
fout . wr i t e (ou t s t r)
fout . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def changePatchType (name , ptype) :
”””
Changes the type o f patch name to type .

Parameters
−−−−−−−−−−
name : s t r i n g

Name o f the patch to be changed .
ptype : s t r i n g

Type to change the patch to .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””
import re

check f o r ; on p type and add i f not p r e s en t
i f ptype [−1] != ” ; ” :

ptype = ptype + ” ; ”

read the f i l e i n t o a s t r i n g
f i n = f i l e (” constant /polyMesh/boundary” , ” r ”)
f i l e s t r = f i n . read ()
f i n . c l o s e ()

230

make r e g u l a r e x p r e s s i o n f o r pa tch and t ype
patchpattern = re . compile (r ”\ s ∗”+name+r”\ s ∗\{\ s ∗ type\ s ∗\w+;”)
r eob j = patchpattern . search (f i l e s t r)
i f r eob j :

typepattern = re . compile (r ”\w+;”)
newstr = typepattern . sub (ptype , r eob j . group ())

else :
return ”Patch not found”

cr e a t e ou tpu t s t r i n g
out s t r = f i l e s t r [: r eob j . s t a r t ()]+newstr+f i l e s t r [r eob j . end () :]

wr i t e ou tpu t s t r i n g
f out = f i l e (” constant /polyMesh/boundary” , ”w”)
fout . wr i t e (ou t s t r)
fout . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

return None

def f o r c e s (name , time=”0”) :
”””
Extract a l i s t o f the f o r c e s under name and re tu rns them .

Parameters
−−−−−−−−−−
name : s t r i n g

Name o f f o r c e s e t to ex t ra c t from .
time : s t r i n g

Beginning time o f ex t r a c t i on .

Returns
−−−−−−−
T: l i s t o f numbers

Time va lues .
Fxp : l i s t o f numbers

Pressure f o r c e in x d i r e c t i o n .
Fyp : l i s t o f numbers

Pressure f o r c e in y d i r e c t i o n .
Fzp : l i s t o f numbers

Pressure f o r c e in z d i r e c t i o n .
Fxv : l i s t o f numbers

Viscous f o r c e in x d i r e c t i o n .
Fyv : l i s t o f numbers

Viscous f o r c e in y d i r e c t i o n .
Fzv : l i s t o f numbers

Viscous f o r c e in z d i r e c t i o n .
Mxp: l i s t o f numbers

Pressure moment about x ax i s .
Myp: l i s t o f numbers

Pressure moment about y ax i s .
Mzp : l i s t o f numbers

Pressure moment about z ax i s .
Mxv: l i s t o f numbers

Viscous moment about x ax i s .
Myv: l i s t o f numbers

Viscous moment about y ax i s .
Mzv : l i s t o f numbers

Viscous moment about z ax i s .
”””

make f i l e name
f i l ename = name + ”/” + time + ”/ f o r c e s . dat”

read in f i l e
f i n = f i l e (f i l ename , ” r ”)
f l i n e s = f i n . r e a d l i n e s ()
f i n . c l o s e ()

cr e a t e empty l i s t s
T = []
Fxp = []
Fyp = []
Fzp = []
Fxv = []
Fyv = []
Fzv = []
Mxp = []
Myp = []
Mzp = []
Mxv = []
Myv = []
Mzv = []

popu l a t e l i s t s
for f l i n e in f l i n e s :

f l i s t = f l i n e . s p l i t ()
i f f l i s t [0] != ”#” :

T. append (f loat (f l i s t [0]))
Fxp . append (f loat (f l i s t [1] [3 :]))

231

Fyp . append (f loat (f l i s t [2]))
Fzp . append (f loat (f l i s t [3] [: − 1]))
Fxv . append (f loat (f l i s t [4] [1 :]))
Fyv . append (f loat (f l i s t [5]))
Fzv . append (f loat (f l i s t [6] [: − 2]))
Mxp. append (f loat (f l i s t [7] [2 :]))
Myp. append (f loat (f l i s t [8]))
Mzp . append (f loat (f l i s t [9] [: − 1]))
Mxv. append (f loat (f l i s t [1 0] [1 :]))
Myv. append (f loat (f l i s t [1 1]))
Mzv . append (f loat (f l i s t [1 2] [: − 3]))

conve r t to array
#T = array (T)
#Fxp = array (Fxp)
#Fyp = array (Fyp)
#Fzp = array (Fzp)
#Fxv = array (Fxv)
#Fyv = array (Fyv)
#Fzv = array (Fzv)
#Mxp = array (Mxp)
#Myp = array (Myp)
#Mzp = array (Mzp)
#Mxv = array (Mxv)
#Myv = array (Myv)
#Mzv = array (Mzv)

re tu rn ar ray s
return T, Fxp , Fyp , Fzp , Fxv , Fyv , Fzv , Mxp, Myp, Mzp, Mxv, Myv, Mzv

def r e s i d u a l s (name) :
”””
Extracts the r e s i d u a l s from a log f i l e o f name .
Returns the r e s i d u a l s as a d i c t i ona ry where d [key] = l i s t
and the keys are the s o l u t i on va r i a b l e s .

Parameters
−−−−−−−−−−
name : s t r i n g

Name o f the log f i l e to ex t ra c t r e s i d u a l s from .

Returns
−−−−−−−
d : d i c t i ona ry

Dict ionary o f r e s i dua l s , where the keys are s o l u t i on va r i a b l e s
and the va lues are ch r ono l o g i c a l l i s t s o f r e s i d u a l s .

”””
cr e a t e d i c t i o n a r y
d = { 'Time ' : [] , ' l o c a l cont ' : [] , ' g l oba l cont ' : [] , 'cum cont ' : [] }

read in f i l e
f i n = open(name , ' r ')
f l i n e s = f i n . r e a d l i n e s ()
f i n . c l o s e ()

read each l i n e and d ea l w i th each case
for l i n e in f l i n e s :

words = l i n e . s p l i t ()
i f len (words) < 3 :

pass
e l i f words [0] == 'Time ' and words [1] == '= ' :

d ['Time '] . append (f loat (words [2]))
e l i f words [0] == ' time ' and words [1] == ' s tep '\

and words [2] == ' con t inu i ty ' and words [3] == ' e r r o r s ' :
d [' l o c a l cont '] . append (f loat (words [8] [: − 1]))
d [' g l oba l cont '] . append (f loat (words [1 1] [: − 1]))
d ['cum cont '] . append (f loat (words [1 4] [: − 1]))

e l i f words [1] == ' So lv ing ' and words [2] == ' f o r ' :
i f d . ha s k e y (words [3] [: −1]+ ' i n i t ') :
i f words [3] [: −1]+ ' i n i t ' in d :

d [words [3] [: −1]+ ' i n i t '] . append (f loat (words [7] [: − 1]))
d [words [3] [: −1]+ ' f i n a l '] . append (f loat (words [1 1] [: − 1]))

else :
d [words [3] [: −1]+ ' i n i t '] = []
d [words [3] [: −1]+ ' f i n a l '] = []
d [words [3] [: −1]+ ' i n i t '] . append (f loat (words [7] [: − 1]))
d [words [3] [: −1]+ ' f i n a l '] . append (f loat (words [1 1] [: − 1]))

return d

def addAMI() :
”””
Adds an a rb i t r a r y mesh i n t e r f a c e to a mesh .

Parameters
−−−−−−−−−−

Returns
−−−−−−−
None

I f s u c c e s s f u l .

232

”””

return None

def snapSTL(s t l , patch=None) :
”””
Snaps an s t l to the corresponding patch generated by snappyHexMesh ,
or to ' patch ' i f supp l i ed . snapEdge must be i n s t a l l e d and compiled .

Parameters
−−−−−−−−−−
s t l : s t r i n g

Name o f s t l f i l e to snap .
patch : s t r i n g

Optional patch to snap to t h i s s t l .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

open f i l e t o w r i t e snapEdgeDict
f out = open(” constant / snapEdgeDict” , 'w ')

wr i t e f i l e header
f out . wr i t e (”FoamFile\n{\n”)
fout . wr i t e (” ve r s i on 2 . 0 ;\ n”)
fout . wr i t e (” format a s c i i ;\n”)
fout . wr i t e (” c l a s s d i c t i ona ry ;\n”)
fout . wr i t e (” ob j e c t snapEdgeDict ;\n”)
fout . wr i t e (” l o c a t i o n \” constant \”;\n}\n\n”)

wr i t e d i c t i o n a r y c on t en t s
f out . wr i t e (” snapEdgeDict\n{\n\n”)
snapPatches
f out . wr i t e (” snapPatches\n (\n ”)
i f patch :

fout . wr i t e (patch+”\n”)
else :

f out . wr i t e (s t l+” ”+s t l [:−4]+”\n”)
fout . wr i t e (”) ;\n\n”)
snapZones
f out . wr i t e (” snapZones\n (\n) ;\n\n”)
st lF i l eNames
f out . wr i t e (” st lF i l eNames \n (\n ”)
fout . wr i t e (s t l+”\n”)
fout . wr i t e (”) ;\n\n”)
f i t t i n g parameters
f out . wr i t e (” t o l e r an c e 1 . 9 ;\ n”)
fout . wr i t e (” r e l a xa t i on 0 . 1 ;\ n”)
fout . wr i t e (” n I t e r a t i o n s 15 ;\n”)
fout . wr i t e (” i n c l u d e I n t e r i o r yes ;\n”)
fout . wr i t e (” f eatureAng le 30 ;\n”)
fout . wr i t e (” excludeEdgeAngle 60 ;\n”)
fout . wr i t e (” pa r a l l e lAng l e 50 ;\n”)
fout . wr i t e (” f i t F a c t o r 1 .0 e−5;\n”)
fout . wr i t e (”\n}\n”)

c l o s e f i l e
f out . f l u s h ()
os . f sync (fout . f i l e n o ())
fout . c l o s e ()

run snapEdge
run (”snapEdge −overwr i t e ” , True)

op t i on to remove
os . sys tem (”rm 0/ ccx 0/ ccy 0/ cc z 0/ c e l l L e v e l 0/ p o i n t L e v e l 0/meshPhi ”)

return None

def run (command , s i l e n t=False) :
”””
Executes a command in a sh e l l , automat i ca l l y wr i t ing to a log .

Parameters
−−−−−−−−−−
command : s t r

Line to execute .
s i l e n t : bool (d e f au l t Fa l se)

Whether to suppress output to stdout ,
w i l l s t i l l wr i t e to a log even when True .

Returns
−−−−−−−
None

I f s u c c e s s f u l .
”””

233

i f s i l e n t :
os . system (command+” >> l og . ”+command . s p l i t () [0])

else :
os . system (command+” | t ee −a log . ”+command . s p l i t () [0])

return None

234

Appendix D

Optimisation Functions

This is a collection of Python functions written for design search and optimisa-
tion applications, including surrogate modelling methods and a number of genetic
algorithms, that are not provided in the scipy.optimize ‘standard’ optimisation
library for Python.

”””
a jopt . py

A c o l l e c t i o n o f search and opt imi sa t i on func t i on s wr i t t en in Python .

(c) copyr ight Aleksander Dubas 2011−2013
”””
import numpy as np
import numpy . l i n a l g as npla

s t o r a g e f o r v a r i a b l e s f o r wrapper f u n c t i o n s .
op td i c = {}

mode l l i n g c l a s s e s
class Surrogate () :

”””
Base c l a s s f o r a sur rogate model .
”””
def i n i t (s e l f) :

s e l f . xs = []
s e l f . ys = []

def loaddata (s e l f , f i l ename) :
”””
Loads data in to the sur rogate model ,
uses the same data s t ru c tu r e as the savedata func t i on .
Use o f an abso lute path i s recommended .
”””
f i n = open(f i l ename , ' r ')
l i n e s = f i n . r e a d l i n e s ()
f i n . c l o s e ()
for l i n e in l i n e s :

par t s = l i n e . s p l i t ()
s e l f . xs . append ([])
for i in range (len (par t s)) :

i f i < len (par t s)−1:
s e l f . xs [−1] . append (f loat (par t s [i]))

else :
s e l f . ys . append (f loat (par t s [i]))

conve r t xs to array
s e l f . xs = np . array (s e l f . xs)
return None

def savedata (s e l f , f i l ename) :
”””
Saves data from a sur rogate model ,
in the s t ru c tu r e :
xs [0] [0] xs [0] [1] xs [0] [2] . . . xs [0] [−2] xs [0] [−1] ys [0] \ n
xs [1] [0] xs [1] [1] xs [1] [2] . . . xs [1] [−2] xs [1] [−1] ys [1] \ n
Use o f an abso lute path i s recommended .
”””
fout = open(f i l ename , 'w ')
for i in range (len (s e l f . xs)) :

for x in s e l f . xs [i] :
f out . wr i t e (str (x)+” ”)

try :
f out . wr i t e (str (s e l f . ys [i])+”\n”)

235

except IndexError :
f out . wr i t e (”\n”)

fout . c l o s e ()

return None

def i n f i l l (s e l f , f) :
”””
Evaluates any unevaluated po in t s in s e l f . xs array us ing f .
”””
xlen = len (s e l f . xs)
y len = len (s e l f . ys)
i f xlen == ylen :

return None
s e l f . ys = np . hstack ((s e l f . ys , np . z e ro s (xlen−ylen)))
for i in range (ylen , x len) :

s e l f . ys [i] = f (s e l f . xs [i])
return None

class GaussianRBF(Surrogate) :
”””
Constructs a sur rogate model us ing the Radial Bas i s Function in SciPy .
Uses a Gaussian d i s t r i b u t i o n .
”””
def bu i ld (s e l f) :

s e l f . name = ”GaussianRBF”
import s c ipy . i n t e r p o l a t e . rb f as RBFmodule

c r e a t i n g pack ing l i s t f o r pa s s i n g to RBF
pa c k i n g l i s t = []
for i in range (len (s e l f . xs [0])) :

p a c k i n g l i s t . append (s e l f . xs [: , i])
p a c k i n g l i s t . append (s e l f . ys)
s e l f . rb f = RBFmodule . Rbf (∗ tuple (p a c k i n g l i s t))
s e l f . rb f . f unc t i on = ” gauss ian ”

def f (s e l f , xs) :
return s e l f . rb f (∗ tuple (xs))

class MultiQuadricRBF (Surrogate) :
”””
Constructs a sur rogate model us ing the Radial Bas i s Function in SciPy .
Uses a MultiQuadric d i s t r i b u t i o n .
”””
def bu i ld (s e l f) :

s e l f . name = ”MultiQuadricRBF”
import s c ipy . i n t e r p o l a t e . rb f as RBFmodule

c r e a t i n g pack ing l i s t f o r pa s s i n g to RBF
pa c k i n g l i s t = []
for i in range (len (s e l f . xs [0])) :

p a c k i n g l i s t . append (s e l f . xs [: , i])
p a c k i n g l i s t . append (s e l f . ys)
s e l f . rb f = RBFmodule . Rbf (∗ tuple (p a c k i n g l i s t))
s e l f . rb f . f unc t i on = ”mult iquadr ic ”

def f (s e l f , xs) :
return s e l f . rb f (∗ tuple (xs))

class InverseRBF (Surrogate) :
”””
Constructs a sur rogate model us ing the Radial Bas i s Function in SciPy .
Uses an Inve r s e d i s t r i b u t i o n .
”””
def bu i ld (s e l f) :

s e l f . name = ”InverseRBF”
import s c ipy . i n t e r p o l a t e . rb f as RBFmodule

c r e a t i n g pack ing l i s t f o r pa s s i n g to RBF
pa c k i n g l i s t = []
for i in range (len (s e l f . xs [0])) :

p a c k i n g l i s t . append (s e l f . xs [: , i])
p a c k i n g l i s t . append (s e l f . ys)
s e l f . rb f = RBFmodule . Rbf (∗ tuple (p a c k i n g l i s t))
s e l f . rb f . f unc t i on = ” inve r s e ”

def f (s e l f , xs) :
return s e l f . rb f (∗ tuple (xs))

class LinearRBF (Surrogate) :
”””
Constructs a sur rogate model us ing the Radial Bas i s Function in SciPy .
Uses a Linear d i s t r i b u t i o n .
”””
def bu i ld (s e l f) :

s e l f . name = ”LinearRBF”
import s c ipy . i n t e r p o l a t e . rb f as RBFmodule

236

c r e a t i n g pack ing l i s t f o r pa s s i n g to RBF
pa c k i n g l i s t = []
for i in range (len (s e l f . xs [0])) :

p a c k i n g l i s t . append (s e l f . xs [: , i])
p a c k i n g l i s t . append (s e l f . ys)
s e l f . rb f = RBFmodule . Rbf (∗ tuple (p a c k i n g l i s t))
s e l f . rb f . f unc t i on = ” l i n e a r ”

def f (s e l f , xs) :
return s e l f . rb f (∗ tuple (xs))

class CubicRBF(Surrogate) :
”””
Constructs a sur rogate model us ing the Radial Bas i s Function in SciPy .
Uses a Cubic d i s t r i b u t i o n .
”””
def bu i ld (s e l f) :

s e l f . name = ”CubicRBF”
import s c ipy . i n t e r p o l a t e . rb f as RBFmodule

c r e a t i n g pack ing l i s t f o r pa s s i n g to RBF
pa c k i n g l i s t = []
for i in range (len (s e l f . xs [0])) :

p a c k i n g l i s t . append (s e l f . xs [: , i])
p a c k i n g l i s t . append (s e l f . ys)
s e l f . rb f = RBFmodule . Rbf (∗ tuple (p a c k i n g l i s t))
s e l f . rb f . f unc t i on = ” cubic ”

def f (s e l f , xs) :
return s e l f . rb f (∗ tuple (xs))

class QuinticRBF (Surrogate) :
”””
Constructs a sur rogate model us ing the Radial Bas i s Function in SciPy .
Uses a Quint ic d i s t r i b u t i o n .
”””
def bu i ld (s e l f) :

s e l f . name = ”QuinticRBF”
import s c ipy . i n t e r p o l a t e . rb f as RBFmodule

c r e a t i n g pack ing l i s t f o r pa s s i n g to RBF
pa c k i n g l i s t = []
for i in range (len (s e l f . xs [0])) :

p a c k i n g l i s t . append (s e l f . xs [: , i])
p a c k i n g l i s t . append (s e l f . ys)
s e l f . rb f = RBFmodule . Rbf (∗ tuple (p a c k i n g l i s t))
s e l f . rb f . f unc t i on = ” qu in t i c ”

def f (s e l f , xs) :
return s e l f . rb f (∗ tuple (xs))

class ThinPlateRBF (Surrogate) :
”””
Constructs a sur rogate model us ing the Radial Bas i s Function in SciPy .
Uses a Thin Plate d i s t r i b u t i o n .
”””
def bu i ld (s e l f) :

s e l f . name = ”ThinPlateRBF”
import s c ipy . i n t e r p o l a t e . rb f as RBFmodule

c r e a t i n g pack ing l i s t f o r pa s s i n g to RBF
pa c k i n g l i s t = []
for i in range (len (s e l f . xs [0])) :

p a c k i n g l i s t . append (s e l f . xs [: , i])
p a c k i n g l i s t . append (s e l f . ys)
s e l f . rb f = RBFmodule . Rbf (∗ tuple (p a c k i n g l i s t))
s e l f . rb f . f unc t i on = ” th i n p l a t e ”

def f (s e l f , xs) :
return s e l f . rb f (∗ tuple (xs))

class MPSM(Surrogate) :
”””
MPS Method der ived sur rogate model c l a s s ,
known as Mult iPoint Surrogate Model ,
us ing 2nd order Runge−Kutta i n t e g r a t i o n to de r i v e the su r f a c e .
”””
def i n i t (s e l f) :

s e l f . xs = []
s e l f . ys = []
s e l f . r e = 0.25

def s e t r e (s e l f , bounds=False) :
”””
Sets the e f f e c t i v e rad ius to ha l f the maximum distance ,
with opt i ona l s p e c i f i c a t i o n o f the bounds .
”””
t o t a l = 0

237

k = len (s e l f . xs [0])
i f bounds :

for bound in bounds :
t o t a l += (bound [1] − bound [0]) ∗∗2

s e l f . r e = 0.5∗ t o t a l ∗∗0 .5
else :

for i in range (k) :
i t h s l i c e = s e l f . xs [: , i]
t o t a l += (max(i t h s l i c e)−min(i t h s l i c e)) ∗∗2

s e l f . r e = 0.5∗ t o t a l ∗∗0 .5
return

def bu i ld (s e l f) :
”””
Finds the r e l evan t parameters f o r the sur rogate model .
”””
s e l f . name = ”MPSM”
n = len (s e l f . ys)
k = len (s e l f . xs [0])
s e l f . grads = np . z e ro s ([n , k])
for i in range (n) :

n i = 0
t o t a l = np . z e ro s (k)
for j in range (n) :

i f not i == j :
r = npla . norm(s e l f . xs [j]− s e l f . xs [i])
i f r > 0 :

w = s e l f . weight (r)
n i += w
s c a l = w∗(s e l f . ys [j]− s e l f . ys [i]) /(r ∗∗2)
t o t a l += s c a l ∗(s e l f . xs [j]− s e l f . xs [i])

else :
w = 0
ni += 0
s c a l = 0
t o t a l += 0

s e l f . grads [i , :] = (k/ f loat (n i)) ∗ t o t a l
return None

def weight (s e l f , r) :
”””
Weight func t i on .
”””
return max(s e l f . r e / r − 1 , 0)

def f (s e l f , xs) :
”””
Evaluates the sur rogate model at xs .
”””
n = len (s e l f . ys)
k = len (s e l f . xs [0])
f i n d c l o s e s t x
cu r i = 0
cur l en = npla . norm(xs−s e l f . xs [0])
for i in range (1 , n) :

next l en = npla . norm(xs−s e l f . xs [i])
i f next l en < cur l en :

cu r i = i
cur l en = next l en

e x t r a p o l a t e based on g r a d i e n t s
dx = xs − s e l f . xs [c u r i]
newy = s e l f . ys [c u r i]+np . dot (s e l f . grads [cu r i] , dx)

f i n d g r a d i e n t a t new po in t
ni = 0
newgrad = np . z e ro s (k)
for j in range (n) :

i f npla . norm(s e l f . xs [j]−xs) != 0 :
w = s e l f . weight (npla . norm(s e l f . xs [j]−xs))
n i += w
s c a l = w∗(s e l f . ys [j]−newy) /(npla . norm(s e l f . xs [j]−xs) ∗∗2)
newgrad += s c a l ∗(s e l f . xs [j]−xs)

newgrad ∗= (k/ f loat (n i))

re tu rn the f i n a l p o i n t based on average g r a d i e n t
f i n a l g r ad = 0 .5∗ (newgrad+s e l f . grads [cu r i])
return s e l f . ys [c u r i]+np . dot (f i na l g rad , dx)

class MPSM 2PE(MPSM) :
”””
Var iat ion o f the Mult iPoint Surrogate Model to use an average eva luat i on
o f 2 po in t s us ing Euler ian i n t e g r a t i o n .
”””
def f (s e l f , xs) :

”””
Evaluates the sur rogate model at xs .
”””
n = len (s e l f . ys)
f i n d c l o s e s t xs
cu r i = 0
cur2 i = 0

238

cur l en = npla . norm(xs−s e l f . xs [0])
for i in range (1 , n) :

next l en = npla . norm(xs−s e l f . xs [i])
i f next l en < cur l en :

cu r2 i = cu r i
cu r i = i
cur l en = next l en

e x t r a p o l a t e based on g r a d i e n t s
dx = xs − s e l f . xs [c u r i]
dx2 = xs − s e l f . xs [cu r2 i]
y1 = s e l f . ys [c u r i] + np . dot (s e l f . grads [cu r i] , dx)
y2 = s e l f . ys [cu r2 i] + np . dot (s e l f . grads [cu r2 i] , dx2)
return 0 . 5∗ (y1+y2)

class MPSM 2PEB(MPSM) :
”””
Var iat ion o f the Mult iPoint Surrogate Model to use a blended eva luat i on
o f 2 po in t s us ing Euler ian i n t e g r a t i o n .
”””
def f (s e l f , xs) :

”””
Evaluates the sur rogate model at xs .
”””
n = len (s e l f . ys)

f i n d c l o s e s t xs
cu r i = 0
cur2 i = 0
cur l en = npla . norm(xs−s e l f . xs [0])
for i in range (1 , n) :

next l en = npla . norm(xs−s e l f . xs [i])
i f next l en < cur l en :

cu r2 i = cu r i
cu r i = i
cur l en = next l en

e x t r a p o l a t e based on g r a d i e n t s
dx = xs − s e l f . xs [c u r i]
dx2 = xs − s e l f . xs [cu r2 i]
r1 = npla . norm(dx)
r2 = npla . norm(dx)
y1 = s e l f . ys [c u r i] + np . dot (s e l f . grads [cu r i] , dx)
y2 = s e l f . ys [cu r2 i] + np . dot (s e l f . grads [cu r2 i] , dx2)
i f r1 < 1e−8:

return y1
i f r2 < 1e−8:

return y2
return ((r2 ∗y1) /(r1+r2)) + ((r1 ∗y2) /(r1+r2))

class MPSM APB(MPSM) :
”””
Var iat ion o f the Mult iPoint Surrogate Model to use a weighted eva luat i on
o f a l l po in t s us ing Euler ian i n t e g r a t i o n .
”””
def i n i t (s e l f) :

s e l f . xs = []
s e l f . ys = []
s e l f . r e = 0.25
s e l f . l a f = 5

def f (s e l f , xs) :
”””
Evaluates the sur rogate model at xs .
”””
n = len (s e l f . ys)
k = len (s e l f . xs [0])

y = 0

i n i t i a l i s e a r ray s
dxs = np . z e ro s ([n , k])
r s = np . z e ro s ([n])
for i in range (n) :

dxs [i] = xs − s e l f . xs [i]
r s [i] = npla . norm(dxs [i])

renorma l i s e r s so t h a t c l o s e r p o i n t s have h i g h e r we i g h t i n g
use s e l f . l a f t o amp l i f y l o c a l e f f e c t
rmax = max(r s)
r s = (rmax − r s) ∗∗ s e l f . l a f
op t im i s a t i o n to do sum once and use f a s t e r mu l t i p l y i n s t e a d o f d i v i d e
inversersum = 1.0/sum(r s)
for i in range (n) :

y += rs [i]∗ inversersum ∗(s e l f . ys [i] + np . dot (s e l f . grads [i] , dxs [i]))
return y

class MPSM LPB(MPSM) :
”””
Var iat ion o f the Mult iPoint Surrogate Model to use a weighted eva luat i on
o f l o c a l po in t s us ing Euler ian i n t e g r a t i o n .
”””

239

def i n i t (s e l f) :
s e l f . xs = []
s e l f . ys = []
s e l f . r e = 0.25
s e l f . l a f = 5

def f (s e l f , xs) :
”””
Evaluates the sur rogate model at xs .
”””
n = len (s e l f . ys)

ys = []
r s = []

cr e a t e y array
for i in range (n) :

dx = xs − s e l f . xs [i]
r = npla . norm(dx)
i f r < s e l f . r e :

ys . append (s e l f . ys [i] + np . dot (s e l f . grads [i] , dx))
r s . append (r)

in v e r t r s and conve r t ys
r s = (s e l f . r e−np . array (r s)) ∗∗ s e l f . l a f
ys = np . array (ys)
return np . dot (rs , ys) /sum(r s)

class Krig ing (Surrogate) :
”””
A Krig ing sur rogate model , based e n t i r e l y on :
Fo r r e s t e r et a l − Engineer ing Design v ia Surrogate Model l ing (Wiley , 2008) .
”””
def i n i t (s e l f) :

s e l f . xs = []
s e l f . ys = []
s e l f . gapops = 20
s e l f . gagens = 100
s e l f . l n t l b = −7 # eˆ−7 ˜= 10ˆ−3
s e l f . lntub = 5 # eˆ5 ˜= 10ˆ2 as per book

def bu i ld (s e l f) :
s e l f . name = ”Krig ing ”
e x t r a c t s i z e parameters
k = len (s e l f . xs [0])
de f i n e g e n e t i c a l g o r i t hm bounds f o r Theta to be used in b u i l d i n g
Kbounds = []
for i in range (k) :

Kbounds . append ((s e l f . l n t lb , s e l f . lntub))
made bounds a v a r i a b l e so t h ey can be changed

run ga search o f l i k e l i h o o d
s e l f . Theta , s e l f . MinNegLnLikelihood , = \

ga3 (lambda x : s e l f . l i k e l i h o o d (x) [0] , Kbounds ,
s e l f . gapops , s e l f . gagens)

put Cho le sky f a c t o r i s a t i o n o f Psi i n t o namespace
s e l f . NegLnLike , s e l f . Psi , s e l f .U = s e l f . l i k e l i h o o d (s e l f . Theta)
return None

def l i k e l i h o o d (s e l f , the ta s) :
i n i t i a l i s e t he ta , n , one , eps
theta = np . e∗∗np . array (the ta s)
n = len (s e l f . ys)
one = np . ones ([n])
eps = 1000∗np . spac ing (1)
pre−a l l o c a t e memory
Psi = np . z e ro s ([n , n])
bu i l d upper h a l f o f t h e c o r r e l a t i o n matr ix
for i in range (n) :

for j in range (i +1, n) :
Psi [i , j] = np . exp(−sum(theta ∗(s e l f . xs [i]− s e l f . xs [j]) ∗∗2))

add upper and lower h a l v e s and d i a g ona l o f ones
p l u s a sma l l number to reduce i l l c o n d i t i o n i n g
Psi = Psi + Psi .T + np . eye (n) + np . eye (n) ∗ eps

cho l e s k y f a c t o r i s a t i o n
added t r y / e x c e p t b l o c k to cap tu r e e r r o r and implement p ena l t y
try :

U = npla . cho le sky (Psi) .T
except npla . LinAlgError :

return 1000 , Psi , np . z e ro s ([n , n])
For r e s t e r e t a l . have a p ena l t y here i f i l l −c ond i t i o n e d
but t h i s i s not implemented in numpy . l i n a l g . c h o l e s k y

Sum l n s o f d i a g ona l t o f i n d ln (de t (Psi))
LnDetPsi = 2∗sum(np . l og (np . abs (np . diag (U))))

use back−s u b s t i t u t i o n o f Cho le sky i n s t e a d o f i n v e r s e
mu = np . dot (one , npla . s o l v e (U, npla . s o l v e (U. conj () .T, s e l f . ys))) /\

np . dot (one , npla . s o l v e (U, npla . s o l v e (U. conj () .T, one)))
SigmaSqr = (np . dot (s e l f . ys−mu,

npla . s o l v e (U, npla . s o l v e (U. conj () .T, s e l f . ys−mu))) /
f loat (n))

240

NegLnLike = −1∗(−(0.5∗n) ∗np . log (SigmaSqr)−0.5∗LnDetPsi)
return NegLnLike , Psi , U

def f (s e l f , xs) :
i n i t i a l i s e t h e t a
theta = np . e∗∗np . array (s e l f . Theta)
c a l c u l a t e number o f sample p o i n t s
n = len (s e l f . ys)
cr e a t e v e c t o r o f ones
one = np . ones ([n])
c a l c u l a t e mu
mu = np . dot (one , npla . s o l v e (s e l f .U,

npla . s o l v e (s e l f .U. conj () .T, s e l f . ys))) /\
np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U. conj () .T, one)))

i n i t i a l i s e p s i
ps i = np . ones ([n])
f i l l p s i v e c t o r
for i in range (n) :

p s i [i] = np . exp(−sum(theta ∗np . abs (s e l f . xs [i]−xs) ∗∗2))
return mu+np . dot (p s i . conj () .T,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U. conj () .T, s e l f . ys−mu)))

def lb (s e l f , xs) :
i n i t i a l i s e t h e t a
theta = np . e∗∗np . array (s e l f . Theta)
i n t i a l i s e A
i f not hasattr (s e l f , ”A”) :

s e l f .A = 2
c a l c u l a t e number o f sample p o i n t s
n = len (s e l f . ys)
cr e a t e v e c t o r o f ones
one = np . ones ([n])
c a l c u l a t e mu
mu = np . dot (one , npla . s o l v e (s e l f .U,

npla . s o l v e (s e l f .U. conj () .T, s e l f . ys))) /\
np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U. conj () .T, one)))

c a l c u l a t e sigma ˆ2
SigmaSqr = np . dot ((s e l f . ys−mu) ,

npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U. conj () .T,
s e l f . ys−mu))) / f loat (n)

i n i t i a l i s e p s i
ps i = np . ones ([n])
f i l l p s i v e c t o r
for i in range (n) :

p s i [i] = np . exp(−sum(theta ∗np . abs (s e l f . xs [i]−xs) ∗∗2))
c a l c u l a t e p r e d i c t i o n
f = mu + np . dot (p s i . conj () .T,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U. conj () .T, s e l f . ys−mu)))

er ro r
SSqr = SigmaSqr∗(1−np . dot (ps i ,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U. conj () .T,

p s i))))
lower bound
return f − s e l f .A ∗ np . sq r t (SSqr)

def e i (s e l f , xs) :
de f i n e t h e e r r o r f u n c t i o n as i t ' s mi s s ing from python
def e r f (x) :

save t he s i g n o f x
s i gn = 1 i f x >= 0 else −1
x = np . abs (x)

con s t an t s
a1 = 0.254829592
a2 = −0.284496736
a3 = 1.421413741
a4 = −1.453152027
a5 = 1.061405429
p = 0.3275911

A&S formula 7 . 1 . 2 6
t = 1 . 0 / (1 . 0 + p∗x)
y = 1 .0 − (((((a5∗ t + a4) ∗ t) + a3) ∗ t + a2) ∗ t + a1) ∗ t ∗np . exp(−x∗x)
return s i gn ∗y # e r f (−x) = −e r f (x)

i n i t i a l i s e t h e t a
theta = np . e∗∗np . array (s e l f . Theta)
i n t i a l i s e A
i f not hasattr (s e l f , ”A”) :

s e l f .A = 2
c a l c u l a t e number o f sample p o i n t s
n = len (s e l f . ys)
cr e a t e v e c t o r o f ones
one = np . ones ([n])
c a l c u l a t e mu
mu = np . dot (one , npla . s o l v e (s e l f .U,

npla . s o l v e (s e l f .U. conj () .T, s e l f . ys))) /\
np . dot (one , npla . s o l v e (s e l f .U,

npla . s o l v e (s e l f .U. conj () .T, one)))
c a l c u l a t e sigma ˆ2

241

SigmaSqr = np . dot ((s e l f . ys−mu) ,
npla . s o l v e (s e l f .U,

npla . s o l v e (s e l f .U. conj () .T,
s e l f . ys−mu))) / f loat (n)

i n i t i a l i s e p s i
ps i = np . ones ([n])
f i l l p s i v e c t o r
for i in range (n) :

p s i [i] = np . exp(−sum(theta ∗np . abs (s e l f . xs [i]−xs) ∗∗2))
c a l c u l a t e p r e d i c t i o n
f = mu + np . dot (p s i . conj () .T,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U. conj () .T, s e l f . ys−mu)))

y hat = f
er ro r
SSqr = SigmaSqr∗(1−np . dot (ps i ,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U. conj () .T,

p s i))))
f i n d b e s t so f a r :
y min = min(s e l f . ys)
expe c t e d improvement
i f SSqr == 0 :

return 0
else :

e i t e rm1 = (y min−y hat) ∗\
(0 .5+0.5∗ e r f ((1/ np . sq r t (2)) ∗
((y min−y hat) /np . sq r t (np . abs (SSqr)))))

e i t e rm2 = np . sq r t (np . abs (SSqr)) ∗\
(1/np . sq r t (2∗np . p i)) ∗np . exp (−0.5∗((y min−y hat) ∗∗2/SSqr))

return e i t e rm1 + e i te rm2

class f a s tKr i g i ng (Surrogate) :
”””
A Krig ing sur rogate model , based e n t i r e l y on :
Fo r r e s t e r et a l − Engineer ing Design v ia Surrogate Model l ing (Wiley , 2008) .
i n c l ud ing a few opt imi sa t i on changes to reduce bu i ld and eva luat i on time .
”””
def i n i t (s e l f) :

s e l f . xs = []
s e l f . ys = []
s e l f . gapops = 20
s e l f . gagens = 100
s e l f . l n t l b = −7 # eˆ−7 ˜= 10ˆ−3
s e l f . lntub = 5 # eˆ5 ˜= 10ˆ2 as per book

def bu i ld (s e l f) :
s e l f . name = ”Krig ing ”
e x t r a c t s i z e parameters
k = len (s e l f . xs [0])
n = len (s e l f . ys)
s e l f . overn = 1/ f loat (n)
de f i n e g e n e t i c a l g o r i t hm bounds f o r Theta to be used in b u i l d i n g
Kbounds = []
for i in range (k) :

Kbounds . append ((s e l f . l n t lb , s e l f . lntub))
made bounds a v a r i a b l e so t h ey can be changed

run ga search o f l i k e l i h o o d
s e l f . Theta , s e l f . MinNegLnLikelihood , = \

ga3cc (lambda x : s e l f . l i k e l i h o o d (x) [0] , Kbounds ,
s e l f . gapops , s e l f . gagens /20)

put Cho le sky f a c t o r i s a t i o n o f Psi i n t o namespace
s e l f . NegLnLike , s e l f . Psi , s e l f .U = s e l f . l i k e l i h o o d (s e l f . Theta)
return None

def l i k e l i h o o d (s e l f , the ta s) :
i n i t i a l i s e t he ta , n , one , eps
theta = np . e∗∗np . array (the ta s)
n = len (s e l f . ys)
one = np . ones ([n])
eps = 1000∗np . spac ing (1)
pre−a l l o c a t e memory
Psi = np . z e ro s ([n , n])
bu i l d upper h a l f o f t h e c o r r e l a t i o n matr ix
for i in range (n) :

for j in range (i +1, n) :
Psi [i , j] = np . exp(−sum(theta ∗(s e l f . xs [i]− s e l f . xs [j]) ∗∗2))

add upper and lower h a l v e s and d i a g ona l o f ones
p l u s a sma l l number to reduce i l l c o n d i t i o n i n g
Psi = Psi + Psi .T + np . eye (n) ∗ (1+eps)

cho l e s k y f a c t o r i s a t i o n
added t r y / e x c e p t b l o c k to cap tu r e e r r o r and implement p ena l t y
try :

U = npla . cho le sky (Psi) .T
except npla . LinAlgError :

return 1000 , Psi , np . z e ro s ([n , n])
For r e s t e r e t a l . have a p ena l t y here i f i l l −c ond i t i o n e d
but t h i s i s not implemented in numpy . l i n a l g . c h o l e s k y

Sum l n s o f d i a g ona l t o f i n d ln (de t (Psi))

242

LnDetPsi = 2∗sum(np . l og (np . abs (np . diag (U))))

use back−s u b s t i t u t i o n o f Cho le sky i n s t e a d o f i n v e r s e
mu = np . dot (one , npla . s o l v e (U, npla . s o l v e (U.T, s e l f . ys))) /\

np . dot (one , npla . s o l v e (U, npla . s o l v e (U.T, one)))
ysMuTemp = s e l f . ys − mu # on ly c a l c u l a t e t h i s once
SigmaSqr = (np . dot (ysMuTemp,

npla . s o l v e (U,
npla . s o l v e (U.T, ysMuTemp))) ∗ s e l f . overn)

NegLnLike = −1∗(−(0.5∗n) ∗np . log (SigmaSqr)−0.5∗LnDetPsi)
return NegLnLike , Psi , U

def f (s e l f , xs) :
i n i t i a l i s e t h e t a
theta = np . e∗∗np . array (s e l f . Theta)
c a l c u l a t e number o f sample p o i n t s
n = len (s e l f . ys)
cr e a t e v e c t o r o f ones
one = np . ones ([n])
c a l c u l a t e mu
mu = np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U.T, s e l f . ys))) /\

np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U.T, one)))
i n i t i a l i s e p s i
ps i = np . ones ([n])
f i l l p s i v e c t o r
for i in range (n) :

p s i [i] = np . exp(−sum(theta ∗np . abs (s e l f . xs [i]−xs) ∗∗2))
return mu+np . dot (p s i .T,

npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U.T, s e l f . ys−mu)))

def lb (s e l f , xs) :
i n i t i a l i s e t h e t a
theta = np . e∗∗np . array (s e l f . Theta)
i n t i a l i s e A
i f not hasattr (s e l f , ”A”) :

s e l f .A = 2
c a l c u l a t e number o f sample p o i n t s
n = len (s e l f . ys)
cr e a t e v e c t o r o f ones
one = np . ones ([n])
c a l c u l a t e mu
mu = np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U.T, s e l f . ys))) /\

np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U.T, one)))
c a l c u l a t e sigma ˆ2
ysMuTemp = s e l f . ys − mu # on ly c a l c u l a t e t h i s once
SigmaSqr = np . dot (ysMuTemp,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U.T,

ysMuTemp))) ∗ s e l f . overn
i n i t i a l i s e p s i
ps i = np . ones ([n])
f i l l p s i v e c t o r
for i in range (n) :

p s i [i] = np . exp(−sum(theta ∗np . abs (s e l f . xs [i]−xs) ∗∗2))
c a l c u l a t e p r e d i c t i o n
f = mu + np . dot (p s i .T, npla . s o l v e (s e l f .U,

npla . s o l v e (s e l f .U.T, ysMuTemp)))
er ro r
SSqr = SigmaSqr∗(1−np . dot (ps i ,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U.T, p s i))))

lower bound
return f − s e l f .A ∗ np . sq r t (SSqr)

def e i (s e l f , xs) :
de f i n e t h e e r r o r f u n c t i o n as i t ' s mi s s ing from python
def e r f (x) :

save t he s i g n o f x
s i gn = 1 i f x >= 0 else −1
x = np . abs (x)

con s t an t s
a1 = 0.254829592
a2 = −0.284496736
a3 = 1.421413741
a4 = −1.453152027
a5 = 1.061405429
p = 0.3275911

A&S formula 7 . 1 . 2 6
t = 1 . 0 / (1 . 0 + p∗x)
y = 1 .0 − (((((a5∗ t + a4) ∗ t) + a3) ∗ t + a2) ∗ t + a1) ∗ t ∗np . exp(−x∗x)
return s i gn ∗y # e r f (−x) = −e r f (x)

i n i t i a l i s e t h e t a
theta = np . e∗∗np . array (s e l f . Theta)
i n t i a l i s e A
i f not hasattr (s e l f , ”A”) :

s e l f .A = 2
c a l c u l a t e number o f sample p o i n t s
n = len (s e l f . ys)
cr e a t e v e c t o r o f ones
one = np . ones ([n])

243

c a l c u l a t e mu
mu = np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U.T, s e l f . ys))) /\

np . dot (one , npla . s o l v e (s e l f .U, npla . s o l v e (s e l f .U.T, one)))
c a l c u l a t e sigma ˆ2
ysMuTemp = s e l f . ys − mu # on ly c a l c u l a t e t h i s once
SigmaSqr = np . dot (ysMuTemp,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U.T,

ysMuTemp))) ∗ s e l f . overn
i n i t i a l i s e p s i
ps i = np . ones ([n])
f i l l p s i v e c t o r
for i in range (n) :

p s i [i] = np . exp(−sum(theta ∗np . abs (s e l f . xs [i]−xs) ∗∗2))
c a l c u l a t e p r e d i c t i o n
f = mu+np . dot (p s i .T, npla . s o l v e (s e l f .U,

npla . s o l v e (s e l f .U.T, ysMuTemp)))
y hat = f
er ro r
SSqr = SigmaSqr∗(1−np . dot (ps i ,

npla . s o l v e (s e l f .U,
npla . s o l v e (s e l f .U.T, p s i))))

f i n d b e s t so f a r :
y min = min(s e l f . ys)
expe c t e d improvement
i f SSqr == 0 :

return 0
else :

sqrtAbsSSqr = np . sq r t (np . abs (SSqr)) # on ly c a l c u l a t e t h i s once
yDi f f = y min − y hat # on ly c a l c u l a t e t h i s once
e i t e rm1 = yDi f f ∗\

(0 .5+0.5∗ e r f ((0 . 70710678) ∗(yD i f f / sqrtAbsSSqr)))
e i t e rm2 = sqrtAbsSSqr ∗\

(0 .39894228) ∗np . exp (−0.5∗(yD i f f ∗∗2/SSqr))
return e i t e rm1 + e i te rm2

op t im i s a t i o n a l g o r i t hms
def ga1 (f , chroms , pops=20, gens=100 , mutat ionrate =0.6) :

”””
A gene t i c a lgor i thm f o r f i nd i ng the maximum of f . Uses a r o u l e t t e wheel
s e l e c t i o n method and both c ro s s ove r and mutation to int roduce va r i a t i on .
E l i t e s e l e c t i o n i s a l s o used to pre s e rve the best i nd i v i dua l found so f a r .
Defau l t populat ion s i z e i s 20 and number o f g ene ra t i on s i s 100 .
The func t i on f should be such that i t accepts one input o f a l i s t that i s
the chromosome o f the i nd i v i dua l and re tu rns the ' f i t n e s s ' .
The input parameter chroms should be a l i s t o f func t i on input ranges in the
form : [(0 , 1) , (0 , 1)] i f the func t i on has 2 inputs , both cons t ra ined between
0 and 1 .

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be maximised , that takes a s i n g l e argument ,
which may be i t e r a b l e f o r multi−dimens ional f unc t i on s .

chroms : l i s t o f two−tup l e s
A data s t ru c tu r e that d e f i n e s the number o f dimensions by l en (chroms)
and the lower and upper bounds o f each dimension .

pops : number
Number o f i n d i v i du a l s in the populat ion , d e f au l t i s 20 .

gens : number
Number o f g ene ra t i on s o f populat ions , d e f au l t i s 100 .

mutat ionrate : number
Rate o f mutation expressed in the range (0 , 1) , d e f au l t i s 0 . 6 .

Returns
−−−−−−−
i nd i ou t : l i s t o f numbers

The ' chromosome ' o f the f i t t e s t i nd i v i dua l found .
f i t n e s s : number

The f i t n e s s o f the output i nd i v i dua l . i . e . f (i nd i ou t) .
h i s t o r y : l i s t o f numbers

The opt imi sa t i on h i s to ry , tak ing the maximum f i t n e s s in each genera t i on
and thus r e turn ing a l i s t o f l ength gens .

”””
import random

#set−up h i s t o r y
h i s t = []

gene ra t e i n i t i a l g en e r a t i on
parents = []
for i in range (pops) :

i nd i = []
for chrom in chroms :

i nd i . append (random . uniform (chrom [0] , chrom [1]))
parents . append (i nd i)

c a l c u l a t e f i t n e s s e s
f i t s = []
for parent in parents :

f i t s . append (f (parent))

244

h i s t . append (max(f i t s))

beg in main l oop over g en e r a t i o n s
for gen in range (gens−1) :

ch i l d r en = []

e l i t e s e l e c t i o n
e l i t e s = 0
e l i temax = max(f i t s)
for i in range (len (f i t s)) :

i f f i t s [i] == el i temax and e l i t e s < 2 :
ch i l d r en . append (parents [i])

s e l e c t remaining p opu l a t i o n
while len (ch i l d r en) < pops :

r o u l e t t e whee l s e l e c t i o n
p1r = random . random ()
p2r = random . random ()
hack to p r e v en t f a i l u r e i f p a r en t s aren ' t found
p1i = 0
p2i = 1
s o f a r = 0
t o t a l = sum(f i t s)
for i in range (len (f i t s)) :

i f p1r > s o f a r / f loat (t o t a l) :
p1 i = i

i f p2r > s o f a r / f loat (t o t a l) :
p2 i = i

s o f a r += f i t s [i]

cro s s o v e r
cp = int (random . random () ∗ len (chroms))
ch i l d = parents [p1 i] [: cp]+ parents [p2i] [cp :]

mutat ion
i f random . random () < mutat ionrate :

mp = int (random . random () ∗ len (chroms))
ch i l d [mp] = random . uniform (chroms [mp] [0] , chroms [mp] [1])

add to popu l a t i o n
ch i l d r en . append (ch i l d)

pro g r e s s one g en e r a t i on and r e c a l c u l a t e f i t n e s s
parents = ch i l d r en
for i in range (pops) :

f i t s [i] = f (parents [i])

s t o r e h i s t o r y
h i s t . append (max(f i t s))

f i n d b e s t o f f i n a l g en e r a t i on
for i in range (pops) :

i f f i t s [i] == h i s t [−1] :
i nd i ou t = parents [i]

return ind iout , h i s t [−1] , h i s t

def ga2 (f , chroms , pops=20, gens=100 , mutat ionrate =0.6 , o f f s e t =1, seed=False) :
”””
A gene t i c a lgor i thm f o r f i nd i ng the maximum of f . Uses a r o u l e t t e wheel
s e l e c t i o n method and both c ro s s ove r and mutation to int roduce va r i a t i on .
E l i t e s e l e c t i o n i s a l s o used to pre s e rve the best i nd i v i dua l found so f a r .
Defau l t populat ion s i z e i s 20 and number o f g ene ra t i on s i s 100 .
The func t i on f should be such that i t accepts one input o f a l i s t that i s
the chromosome o f the i nd i v i dua l and re tu rns the ' f i t n e s s ' .
The input parameter chroms should be a l i s t o f func t i on input ranges in the
form : [(0 , 1) , (0 , 1)] i f the func t i on has 2 inputs , both cons t ra ined between
0 and 1 .
Adapted from ga1 to inc lude an o f f s e t so that :

a) the func t i on i s minimised in s t ead o f maximised .
b) negat ive va lues o f f i t n e s s are s u i t a b l e .

Also l im i t ed p o s i t i v e va lues such that o f f s e t−f (x) i s capped at 0 .001 ,
thus keeping a smal l chance f o r a l l i n d i v i dua l s to be s e l e c t e d .
Consqeuently the o f f s e t should be s e t to the maximum (+ve) value expected .
Added the opt ion to ' seed ' the i n i t i a l populat ion with the placement
o f a prede f ined i nd i v i dua l .

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be minimised , that takes a s i n g l e argument ,
which may be i t e r a b l e f o r multi−dimens ional f unc t i on s .

chroms : l i s t o f two−tup l e s
A data s t ru c tu r e that d e f i n e s the number o f dimensions by l en (chroms)
and the lower and upper bounds o f each dimension .

pops : number
Number o f i n d i v i du a l s in the populat ion , d e f au l t i s 20 .

gens : number
Number o f g ene ra t i on s o f populat ions , d e f au l t i s 100 .

245

mutat ionrate : number
Rate o f mutation expressed in the range (0 , 1) , d e f au l t i s 0 . 6 .

o f f s e t : number
Amount by which to o f f s e t f i t n e s s to enable minimisat ion .

seed : l i s t o f numbers
A seed i nd i v i dua l to inc lude in the f i r s t populat ion .

Returns
−−−−−−−
i nd i ou t : l i s t o f numbers

The ' chromosome ' o f the f i t t e s t i nd i v i dua l found .
f i t n e s s : number

The f i t n e s s o f the output i nd i v i dua l . i . e . f (i nd i ou t) .
h i s t o r y : l i s t o f numbers

The opt imi sa t i on h i s to ry , tak ing the maximum f i t n e s s in each genera t i on
and thus r e turn ing a l i s t o f l ength gens .

”””
import random

#set−up h i s t o r y
h i s t = []

gene ra t e i n i t i a l g en e r a t i on
parents = []
i f seed :

parents . append (seed)
for i in range (pops−1) :

i nd i = []
for chrom in chroms :

i nd i . append (random . uniform (chrom [0] , chrom [1]))
parents . append (i nd i)

else :
for i in range (pops) :

i nd i = []
for chrom in chroms :

i nd i . append (random . uniform (chrom [0] , chrom [1]))
parents . append (i nd i)

c a l c u l a t e f i t n e s s e s
f i t s = []
for parent in parents :

f i t s . append (max(o f f s e t−f (parent) , 0 . 001))
h i s t . append (o f f s e t − max(f i t s))

beg in main l oop over g en e r a t i o n s
for gen in range (gens−1) :

ch i l d r en = []

e l i t e s e l e c t i o n
e l i t e s = 0
e l i temax = max(f i t s)
for i in range (len (f i t s)) :

i f f i t s [i] == el i temax and e l i t e s < 2 :
ch i l d r en . append (parents [i])

s e l e c t remaining p opu l a t i o n
while len (ch i l d r en) < pops :

r o u l e t t e whee l s e l e c t i o n
p1r = random . random ()
p2r = random . random ()
s o f a r = 0
t o t a l = sum(f i t s)
for i in range (len (f i t s)) :

i f p1r > s o f a r / f loat (t o t a l) :
p1 i = i

i f p2r > s o f a r / f loat (t o t a l) :
p2 i = i

s o f a r += f i t s [i]

cro s s o v e r
cp = int (random . random () ∗ len (chroms))
ch i l d = parents [p1 i] [: cp]+ parents [p2i] [cp :]

mutat ion
i f random . random () < mutat ionrate :

mp = int (random . random () ∗ len (chroms))
ch i l d [mp] = random . uniform (chroms [mp] [0] , chroms [mp] [1])

add to popu l a t i o n
ch i l d r en . append (ch i l d)

pro g r e s s one g en e r a t i on and r e c a l c u l a t e f i t n e s s
parents = ch i l d r en
for i in range (pops) :

f i t s [i] = max(o f f s e t−f (parents [i]) , 0 . 001)

s t o r e h i s t o r y
h i s t . append (o f f s e t−max(f i t s))

f i n d b e s t o f f i n a l g en e r a t i on
for i in range (pops) :

246

i f o f f s e t − f i t s [i] == h i s t [−1] :
i nd i ou t = parents [i]

return ind iout , h i s t [−1] , h i s t

def ga3 (f , chroms ,
pops=20, gens=100 , tournamentSize =0.4 , mutat ionrate =0.6 , seed=False) :

”””
A gene t i c a lgor i thm f o r f i nd i ng the minimum of f . Uses a tournament
s e l e c t i o n method and both c ro s s ove r and mutation to int roduce va r i a t i on .
E l i t e s e l e c t i o n i s a l s o used to pre s e rve the best i nd i v i dua l found so f a r .
Defau l t populat ion s i z e i s 20 and number o f g ene ra t i on s i s 100 .
The de f au l t tournament s i z e i s 40 percent o f the populat ion .
The func t i on f should be such that i t accepts one input o f a l i s t that i s
the chromosome o f the i nd i v i dua l and re tu rns the ' f i t n e s s ' .
The input parameter chroms should be a l i s t o f func t i on input ranges in the
form : [(0 , 1) , (0 , 1)] i f the func t i on has 2 inputs , both cons t ra ined between
0 and 1 .
Inc lude s the opt ion to ' seed ' the i n i t i a l populat ion with the placement
o f a prede f ined i nd i v i dua l .

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be minimised , that takes a s i n g l e argument ,
which may be i t e r a b l e f o r multi−dimens ional f unc t i on s .

chroms : l i s t o f two−tup l e s
A data s t ru c tu r e that d e f i n e s the number o f dimensions by l en (chroms)
and the lower and upper bounds o f each dimension .

pops : number
Number o f i n d i v i du a l s in the populat ion , d e f au l t i s 20 .

gens : number
Number o f g ene ra t i on s o f populat ions , d e f au l t i s 100 .

tournamentSize : number
S i z e o f tournament as a proport ion o f the populat ion , d e f au l t i s 0 . 4 .

mutat ionrate : number
Rate o f mutation expressed in the range (0 , 1) , d e f au l t i s 0 . 6 .

seed : l i s t o f numbers
A seed i nd i v i dua l to inc lude in the f i r s t populat ion .

Returns
−−−−−−−
i nd i ou t : l i s t o f numbers

The ' chromosome ' o f the f i t t e s t i nd i v i dua l found .
f i t n e s s : number

The f i t n e s s o f the output i nd i v i dua l . i . e . f (i nd i ou t) .
h i s t o r y : l i s t o f numbers

The opt imi sa t i on h i s to ry , tak ing the maximum f i t n e s s in each genera t i on
and thus r e turn ing a l i s t o f l ength gens .

”””
import random

se t−up h i s t o r y
h i s t = []

s e t up tournament s i z e as i n t e g e r
nTournament = int (tournamentSize ∗pops)

gene ra t e i n i t i a l g en e r a t i on
parents = []
i f seed :

parents . append (seed)
for i in range (pops−1) :

i nd i = []
for chrom in chroms :

i nd i . append (random . uniform (chrom [0] , chrom [1]))
parents . append (i nd i)

else :
for i in range (pops) :

i nd i = []
for chrom in chroms :

i nd i . append (random . uniform (chrom [0] , chrom [1]))
parents . append (i nd i)

c a l c u l a t e f i t n e s s e s
f i t s = []
for parent in parents :

f i t s . append (f (parent))
h i s t . append (min(f i t s))

beg in main l oop over g en e r a t i o n s
for gen in range (gens−1) :

ch i l d r en = []

e l i t e s e l e c t i o n
e l i t e s = 0
e l i t em in = min(f i t s)
for i in range (len (f i t s)) :

i f f i t s [i] == e l i t em in and e l i t e s < 2 :
ch i l d r en . append (parents [i])
e l i t e s += 1

247

s e l e c t remaining p opu l a t i o n
while len (ch i l d r en) < pops :

tournament s e l e c t i o n
t ou rn i s = random . sample (range (pops) , nTournament)
p1i = tou rn i s [0]
p2 i = tou rn i s [0]
p i c k t h e two b e s t pa r en t s in t h e tournament
for tourn i in t ou rn i s [1 :] :

i f f i t s [t ourn i] < f i t s [p1 i] :
p1 i = tourn i

e l i f f i t s [t ourn i] < f i t s [p2 i] :
p2 i = tourn i

cro s s o v e r
cp = int (random . random () ∗ len (chroms))
ch i l d = parents [p1 i] [: cp]+ parents [p2i] [cp :]

mutat ion
i f random . random () < mutat ionrate :

mp = int (random . random () ∗ len (chroms))
ch i l d [mp] = random . uniform (chroms [mp] [0] , chroms [mp] [1])

add to popu l a t i o n
ch i l d r en . append (ch i l d)

pro g r e s s one g en e r a t i on and r e c a l c u l a t e f i t n e s s
parents = ch i l d r en
for i in range (pops) :

f i t s [i] = f (parents [i])

s t o r e h i s t o r y
h i s t . append (min(f i t s))

f i n d b e s t o f f i n a l g en e r a t i on
for i in range (pops) :

i f f i t s [i] == h i s t [−1] :
i nd i ou t = parents [i]

return ind iout , h i s t [−1] , h i s t

def ga3cc (f , chroms ,
pops=20, cgens=5, tournamentSize =0.4 , mutat ionrate =0.6 , seed=False) :

”””
A gene t i c a lgor i thm f o r f i nd i ng the minimum of f . Uses a tournament
s e l e c t i o n method and both c ro s s ove r and mutation to int roduce va r i a t i on .
E l i t e s e l e c t i o n i s a l s o used to pre s e rve the best i nd i v i dua l found so f a r .
Defau l t populat ion s i z e i s 20 and w i l l cont inue i t e r a t i n g un t i l
no improvement i s seen f o r cgens gene ra t i on s .
The de f au l t tournament s i z e i s 40 percent o f the populat ion .
The func t i on f should be such that i t accepts one input o f a l i s t that i s
the chromosome o f the i nd i v i dua l and re tu rns the ' f i t n e s s ' .
The input parameter chroms should be a l i s t o f func t i on input ranges in the
form : [(0 , 1) , (0 , 1)] i f the func t i on has 2 inputs , both cons t ra ined between
0 and 1 .
Inc lude s the opt ion to ' seed ' the i n i t i a l populat ion with the placement
o f a prede f ined i nd i v i dua l .

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be minimised , that takes a s i n g l e argument ,
which may be i t e r a b l e f o r multi−dimens ional f unc t i on s .

chroms : l i s t o f two−tup l e s
A data s t ru c tu r e that d e f i n e s the number o f dimensions by l en (chroms)
and the lower and upper bounds o f each dimension .

pops : number
Number o f i n d i v i du a l s in the populat ion , d e f au l t i s 20 .

cgens : number
Number o f g ene ra t i on s o f no improvement be f o r e cons ide red converged .
Defau l t i s 5 .

tournamentSize : number
S i z e o f tournament as a proport ion o f the populat ion , d e f au l t i s 0 . 4 .

mutat ionrate : number
Rate o f mutation expressed in the range (0 , 1) , d e f au l t i s 0 . 6 .

seed : l i s t o f numbers
A seed i nd i v i dua l to inc lude in the f i r s t populat ion .

Returns
−−−−−−−
i nd i ou t : l i s t o f numbers

The ' chromosome ' o f the f i t t e s t i nd i v i dua l found .
f i t n e s s : number

The f i t n e s s o f the output i nd i v i dua l . i . e . f (i nd i ou t) .
h i s t o r y : l i s t o f numbers

The opt imi sa t i on h i s to ry , tak ing the maximum f i t n e s s in each genera t i on
and thus r e turn ing a l i s t o f l ength gens .

”””
import random

248

se t−up h i s t o r y
h i s t = []

s e t up tournament s i z e as i n t e g e r
nTournament = int (tournamentSize ∗pops)

gene ra t e i n i t i a l g en e r a t i on
parents = []
i f seed :

parents . append (seed)
for i in range (pops−1) :

i nd i = []
for chrom in chroms :

i nd i . append (random . uniform (chrom [0] , chrom [1]))
parents . append (i nd i)

else :
for i in range (pops) :

i nd i = []
for chrom in chroms :

i nd i . append (random . uniform (chrom [0] , chrom [1]))
parents . append (i nd i)

c a l c u l a t e f i t n e s s e s
f i t s = []
for parent in parents :

f i t s . append (f (parent))
h i s t . append (min(f i t s))

s e t convergence coun te r to 0
convcount = 0

beg in main l oop over g en e r a t i o n s
while convcount < cgens :

increment coun te r
convcount += 1

ch i l d r en = []

e l i t e s e l e c t i o n
e l i t e s = 0
e l i t em in = min(f i t s)
for i in range (len (f i t s)) :

i f f i t s [i] == e l i t em in and e l i t e s < 2 :
ch i l d r en . append (parents [i])
e l i t e s += 1

s e l e c t remaining popu l a t i o n
while len (ch i l d r en) < pops :

tournament s e l e c t i o n
t ou rn i s = random . sample (range (pops) , nTournament)
p1i = tou rn i s [0]
p2 i = tou rn i s [0]
p i c k t h e two b e s t pa r en t s in t h e tournament
for tourn i in t ou rn i s [1 :] :

i f f i t s [t ourn i] < f i t s [p1 i] :
p1 i = tourn i

e l i f f i t s [t ourn i] < f i t s [p2 i] :
p2 i = tourn i

cro s s o v e r
cp = int (random . random () ∗ len (chroms))
ch i l d = parents [p1i] [: cp]+ parents [p2i] [cp :]

mutat ion
i f random . random () < mutat ionrate :

mp = int (random . random () ∗ len (chroms))
ch i l d [mp] = random . uniform (chroms [mp] [0] , chroms [mp] [1])

add to popu l a t i o n
ch i l d r en . append (ch i l d)

pro g r e s s one g en e r a t i on and r e c a l c u l a t e f i t n e s s
parents = ch i l d r en
for i in range (pops) :

f i t s [i] = f (parents [i])

check f o r convergence
currentBest = min(f i t s)
i f currentBest < h i s t [−1] :

convcount = −1

s t o r e h i s t o r y
h i s t . append (currentBest)

f i n d b e s t o f f i n a l g en e r a t i on
for i in range (pops) :

i f f i t s [i] == h i s t [−1] :
i nd i ou t = parents [i]

return ind iout , h i s t [−1] , h i s t

249

def ga3bacc (f , chroms , pops=20, cgens=5,
tournamentSize =0.4 , mutat ionrate =0.6 , seed=False) :

”””
A gene t i c a lgor i thm f o r f i nd i ng the minimum of f .
Designed f o r ob j e c t i v e f unc t i on s accept ing boolean array as an input .
Uses a tournament s e l e c t i o n method and both c ro s s ove r and mutation to
int roduce va r i a t i on .
E l i t e s e l e c t i o n i s a l s o used to pre s e rve the best i nd i v i dua l found so f a r .
Defau l t populat ion s i z e i s 20 and w i l l cont inue i t e r a t i n g un t i l
no improvement i s seen f o r cgens gene ra t i on s .
The de f au l t tournament s i z e i s 40 percent o f the populat ion .
The func t i on f should be such that i t accepts one input o f a l i s t that i s
the chromosome o f the i nd i v i dua l and re tu rns the ' f i t n e s s ' .
The input parameter chroms should be the length o f boolean array that
f takes as input .
Inc lude s the opt ion to ' seed ' the i n i t i a l populat ion with the placement
o f a prede f ined i nd i v i dua l .

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be minimised , that takes a s i n g l e argument ,
which i s an array o f boo leans .

chroms : number
The length o f boolean array that f accepts .

pops : number
Number o f i n d i v i du a l s in the populat ion , d e f au l t i s 20 .

cgens : number
Number o f g ene ra t i on s o f no improvement be f o r e cons ide red converged .
Defau l t i s 5 .

tournamentSize : number
S i z e o f tournament as a proport ion o f the populat ion , d e f au l t i s 0 . 4 .

mutat ionrate : number
Rate o f mutation expressed in the range (0 , 1) , d e f au l t i s 0 . 6 .

seed : l i s t o f numbers
A seed i nd i v i dua l to inc lude in the f i r s t populat ion .

Returns
−−−−−−−
i nd i ou t : l i s t o f numbers

The ' chromosome ' o f the f i t t e s t i nd i v i dua l found .
f i t n e s s : number

The f i t n e s s o f the output i nd i v i dua l . i . e . f (i nd i ou t) .
h i s t o r y : l i s t o f numbers

The opt imi sa t i on h i s to ry , tak ing the maximum f i t n e s s in each genera t i on
and thus r e turn ing a l i s t o f l ength gens .

”””
import random

se t−up h i s t o r y
h i s t = []

s e t up tournament s i z e as i n t e g e r
nTournament = int (tournamentSize ∗pops)

gene ra t e i n i t i a l g en e r a t i on
parents = np . z e ro s ([pops , chroms] , dtype=bool)
i f seed :

parents [0] = seed
for i in xrange (1 , pops) :

for j in xrange (chroms) :
parents [i , j] = random . randint (0 , 1)

else :
for i in xrange (pops) :

for j in xrange (chroms) :
parents [i , j] = random . randint (0 , 1)

c a l c u l a t e f i t n e s s e s
f i t s = np . z e ro s (pops)
for i in xrange (pops) :

f i t s [i] = f (parents [i])
h i s t . append (min(f i t s))

s e t convergence coun te r to 0
convcount = 0

beg in main l oop over g en e r a t i o n s
while convcount < cgens :

increment coun te r
convcount += 1

ch i l d r en = []

e l i t e s e l e c t i o n
e l i t e s = 0
e l i t em in = min(f i t s)
for i in range (len (f i t s)) :

i f f i t s [i] == e l i t em in and e l i t e s < 2 :
ch i l d r en . append (parents [i])
e l i t e s += 1

250

s e l e c t remaining p opu l a t i o n
while len (ch i l d r en) < pops :

tournament s e l e c t i o n
t ou rn i s = random . sample (range (pops) , nTournament)
p1i = tou rn i s [0]
p2 i = tou rn i s [0]
p i c k t h e two b e s t pa r en t s in t h e tournament
for tourn i in t ou rn i s [1 :] :

i f f i t s [t ourn i] < f i t s [p1 i] :
p1 i = tourn i

e l i f f i t s [t ourn i] < f i t s [p2 i] :
p2 i = tourn i

cro s s o v e r
cp = int (random . random () ∗chroms)
ch i l d = np . hstack ((parents [p1i] [: cp] , parents [p2 i] [cp :]))

mutat ion
i f random . random () < mutat ionrate :

mp = int (random . random () ∗chroms)
ch i l d [mp] = bool (random . randint (0 , 1))

add to popu l a t i o n
ch i l d r en . append (ch i l d)

pro g r e s s one g en e r a t i on and r e c a l c u l a t e f i t n e s s
parents = np . array (ch i ld ren , dtype=bool)
for i in range (pops) :

f i t s [i] = f (parents [i])

check f o r convergence
currentBest = min(f i t s)
i f currentBest < h i s t [−1] :

convcount = −1

s t o r e h i s t o r y
h i s t . append (currentBest)

f i n d b e s t o f f i n a l g en e r a t i on
for i in range (pops) :

i f f i t s [i] == h i s t [−1] :
i nd i ou t = parents [i]

return ind iout , h i s t [−1] , h i s t

def de r i va t i v en (f , x , xn , eps=1e−6) :
”””
Ca l cu la t e s the d e r i v a t i v e o f f (x) with r e spe c t to the xnth dimension o f x .
Uses the c en t r a l d i f f e r e n c e method with a step s i z e o f eps , d e f au l t 1e−6.

Parameters
−−−−−−−−−−
f : f unc t i on

Function to c a l c u l a t e the d e r i v a t i v e o f .
x : l i s t or array

Locat ion at which to c a l c u l a t e the d e r i v a t i v e .
xn : i n t e g e r

The dimension on which to c a l c u l a t e the (p a r t i a l) d e r i v a t i v e .
eps : number (d e f au l t 1e−6)

The step s i z e to use in the c en t r a l d i f f e r e n c e method .

Returns
−−−−−−−
dfdxn : number

Pa r t i a l d e r i v a t i v e o f f with r e spe c t to the xnth dimension at x .
”””
cr e a t e c o p i e s o f x
xplus = x [:]
xminus = x [:]
augment c o p i e s o f x
xplus [xn] += eps
xminus [xn] −= eps
c a l c u l a t e and r e t u rn d e r i v a t i v e
return (f (xplus)−f (xminus)) /(2∗ eps)

def de r i va t i v e2n (f , x , xn , eps=1e−6, d1f=de r i va t i v en) :
”””
Ca l cu la t e s the second d e r i v a t i v e o f f (x) with r e spe c t to the xnth
dimension o f x , us ing a c en t r a l d i f f e r e n c e method with a step s i z e o f eps ,
c a l c u l a t i n g the f i r s t d e r i v a t i v e us ing the func t i on d1f ,

Parameters
−−−−−−−−−−
f : f unc t i on

Function to c a l c u l a t e the d e r i v a t i v e o f .
x : l i s t or array

Locat ion at which to c a l c u l a t e the d e r i v a t i v e .
xn : i n t e g e r

251

The dimension on which to c a l c u l a t e the (p a r t i a l) d e r i v a t i v e .
eps : number (d e f au l t 1e−6)

The step s i z e to use in the c en t r a l d i f f e r e n c e method .
d1f : f unc t i on (d e f au l t d e r i va t i v en)

Function to c a l c u l a t e the f i r s t d e rv i va t i v e .

Returns
−−−−−−−
d2fdxn2 : number

Second p a r t i a l d e r i v a t i v e o f f with r e spe c t to the xnth dimension at x .
”””
cr e a t e c o p i e s o f x
xplus = x [:]
xminus = x [:]
augment c o p i e s o f x
xplus [xn] += eps
xminus [xn] −= eps
c a l c u l a t e and r e t u rn d e r i v a t i v e
return (d1f (f , xplus , xn) − d1f (f , xminus , xn)) / (2∗ eps)

def multiNewton (f , i n i t i a l , l im i t s , sweeps=3) :
”””
Optimises a mult id imens iona l func t i on by s e qu en t i a l l y f i nd i ng l i n e a r
optima in each dimension .
N.B. func t i on f i s eva luated a t o t a l o f sweeps∗dimensions ∗6 times .

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be opt imised (minimised) .
i n i t i a l : l i s t or array

I n i t i a l va lue to begin the opt im i sa t i on at .
l im i t s : l i s t o f two−tup l e s

L i s t s the lower and upper bound o f each dimension in a tup le .
sweeps : i n t e g e r (d e f au l t 3)

Number o f t imes to sweep each dimension .

Returns
−−−−−−−
x : l i s t or array

Locat ion o f optimum value .
f (x) : number

Optimum value .
h i s t : l i s t

Optimisat ion h i s t o r y .
”””

de f i n e a f un c t i o n to check whether a proposed x va l u e i s w i t h i n l i m i t s
def che ck l im i t s (x , l im i t s) :

””” Function to check whether x i s with in l im i t s .
− uses a r e c u r s i v e a lgor i thm . ”””
i f len (x) == 0 :

return True
i f x [0] >= l im i t s [0] [0] and x [0] <= l im i t s [0] [1] :

return che ck l im i t s (x [1 :] , l im i t s [1 :])
return False

check i n i t i a l v a l u e i s w i t h i n t h e s e l i m i t s
i f not che ck l im i t s (i n i t i a l , l im i t s) :

print ”Error in func t i on multiNewton , i n i t i a l va lue not with in l im i t s ”
return −1

h i s t = [i n i t i a l [:]]
x = i n i t i a l [:]
perform s t a t e d number o f sweeps
for i in range (sweeps) :

loop over a l l d imens ions
for j in range (len (i n i t i a l)) :

t h i s s e c t i o n cou l d be op t im i s ed to e v a l u a t e f on l y 3 t imes
x [j] −= der i va t i v en (f , x , j) / de r i va t i v e2n (f , x , j)
h i s t . append (x [:])

return x , f (x) , h i s t

sample p lan space f i l l i n g me t r i c s
def sampleplan mean distance (sampleplan) :

”””
Returns the mean d i s tance between po in t s in a sample plan .

Parameters
−−−−−−−−−−
sampleplan : n∗k array

Sample plan to c a l c u l a t e the mean d i s tance o f .

Returns
−−−−−−−
mean distance : number

Mean d i s tance between po in t s in the sample plan .
”””
mean distance = 0
n = len (sampleplan)

252

tota l measured = 0
for i in range (n−1) :

for j in range (i + 1 , n) :
mean distance += npla . norm(sampleplan [i] − sampleplan [j])
tota l measured += 1

mean distance /= tota l measured
return mean distance

def mor r i s m i t c h e l l ph i (sampleplan , q=2, euc l idean=True) :
”””
Ca l cu la t e s the sampling plan qua l i t y c r i t e r i o n o f Morris and Mi tche l l .
From For r e s t e r et a l . Chapter 1 .

Parameters
−−−−−−−−−−
sampleplan : 2d array

An n by k array o f the sample plan . Where n i s the number o f po in t s
and k i s the number o f dimensions .

q : number (d e f au l t 2)
Exponent used in the c a l c u l a t i o n o f the metr ic .

euc l idean : bool (d e f au l t True)
Whether to use the Eucl idean d i s t ance metr ic or r e c tangu la r .

Returns
−−−−−−−
phiq : number

Sampling plan space− f i l l i n g n e s s metr ic .
”””
number o f p o i n t s in samp l ing p lan
n = len (sampleplan)

compute t h e d i s t a n c e s between a l l p a i r s o f p o i n t s
d = np . z e ro s (n∗(n−1) /2 . 0)
for i in range (n−1) :

for j in range (i +1, n) :
d [(i−1)∗n−(i−1)∗ i /2+j−i] i s t h e o r i g i n a l mat lab here
i f euc l idean :

d [(i) ∗n−(i) ∗(i +1)/2+j−i −1] = npla . norm(sampleplan [i] −
sampleplan [j])

i f not euc l idean :
d [(i) ∗n−(i) ∗(i +1)/2+j−i −1] = npla . norm(sampleplan [i] −

sampleplan [j] , 1)

remove mu l t i p l e o c cur r ence s
dd = np . unique (d)

p r e a l l o c a t e memory f o r J
J = np . z e ro s (len (dd))

gene ra t e m u l t i p l i c i t y array
for i in range (len (dd)) :

J [i] = sum(ismember (d , dd [i])) i s t h e o r i g i n a l mat lab here
J [i] = sum(map(lambda x : x == dd [i] , d))

the sampl ing p lan q u a l i t y c r i t e r i o n
phiq = sum(J∗(dd∗∗(−q))) ∗∗ (1 .0/ q)

return phiq

sampl ing p l an s
def randlh (k , n , edges=False) :

”””
Returns an random l a t i n hypercube with k dimensions
and n po int s in a s t ru c tu r e xs [n] [k] .
A l l dimensions are normal i sed between 0 and 1 .

Parameters
−−−−−−−−−−
k : number

Number o f dimensions .
n : number

Number o f po in t s in the l a t i n hypercube .
edges : bool (d e f au l t Fa l se)

Whether or not to use edge po in t s at 0 and 1 .

Returns
−−−−−−−
samplexs : 2d array

An n by k array o f sample po in t s in the given space .

Example
−−−−−−−
>>> randlh (2 , 2)
[[0 . 2 5 , 0 . 2 5] , [0 . 7 5 , 0 . 7 5]]
”””
from random import randint

samplexs = np . z e ro s ([n , k])

cr e a t e k by n d imens iona l samp l ing l i s t − t o be popped a t random .

253

popper = []
for i in range (k) :

popper . append (range (n))

cr e a t e l a t i n hypercube
for i in range (n) :

for j in range (k) :
samplexs [i , j] = popper [j] . pop (randint (0 , len (popper [j]) − 1))
and norma l i s e to 1
i f edges :

samplexs [i , j] /= f loat (n − 1)
e l i f not edges :

samplexs [i , j] = (samplexs [i , j] + 0 . 5) / f loat (n)

return samplexs

def be s t l h (k , n , n hypercubes=50, edges=False ,
s p a c e f i l l i n g n e s s=mor r i s m i t c h e l l ph i) :

”””
Generates a number o f random l a t i n hypercubes
and p i cks the best one based on maximum space f i l l i n g n e s s .

Parameters
−−−−−−−−−−
k : i n t e g e r

Number o f dimensions .
n : i n t e g e r

Number o f po in t s in the l a t i n hypercube .
n hypercubes : i n t e g e r (d e f au l t 50)

Number o f hypercubes to generate to pick the best one .
edges : bool (d e f au l t Fa l se)

Whether or not to use edge po in t s at 0 and 1 .
s p a c e f i l l i n g n e s s : f unc t i on (d e f au l t mo r r i s m i t c h e l l ph i)

Function that d e f i n e s the space f i l l i n g n e s s o f a sample plan .
This i s the ob j e c t i v e that i s maximised .

Returns
−−−−−−−
samplexs : 2d array

An n by k array o f sample po in t s in the given space .
”””
cur rentxs = randlh (k , n , edges)
newxs = randlh (k , n , edges)
i f s p a c e f i l l i n g n e s s (newxs) > s p a c e f i l l i n g n e s s (cur rentxs) :

cur r entxs = newxs [:]
for i in range (n hypercubes − 2) :

newxs = randlh (k , n , edges)
i f s p a c e f i l l i n g n e s s (newxs) > s p a c e f i l l i n g n e s s (cur rentxs) :

cur r entxs = newxs [:]

return cur rentxs

def randsampleplan (k , n) :
”””
Returns a random sample plan .
Al l dimensions are normal i sed between 0 and 1 .

Parameters
−−−−−−−−−−
k : i n t e g e r

Number o f dimensions .
n : i n t e g e r

Number o f po in t s .

Returns
−−−−−−−
samplexs : 2d array

An n by k array o f sample po in t s in the given space .
”””
from random import random
pre v i o u s code (not p r e a l l o c a t i n g memory)
#samplexs = []
#f o r i in range (n) :
samplexs . append ([])
f o r j in range (k) :
samplexs [−1] . append (random ())
#samplexs = np . array (samplexs)
samplexs = np . z e ro s ([n , k])
for i in range (n) :

for j in range (k) :
samplexs [i , j] = random ()

return samplexs

def bestrandplan (k , n , n p lans =50,
s p a c e f i l l i n g n e s s=sampleplan mean distance) :

”””
Generates a number o f random sample plans
and p i cks the best one based on maximum space f i l l i n g n e s s .

254

Parameters
−−−−−−−−−−
k : i n t e g e r

Number o f dimensions .
n : i n t e g e r

Number o f po in t s .
n p lans : i n t e g e r (d e f au l t 50)

Number o f random plans to generate to pick the best one .
s p a c e f i l l i n g n e s s : f unc t i on (d e f au l t sampleplan mean distance)

Function that d e f i n e s the space f i l l i n g n e s s o f a sample plan .
This i s the ob j e c t i v e that i s maximised .

Returns
−−−−−−−
samplexs : 2d array

An n by k array o f sample po in t s in the given space .
”””
cur rentxs = randsampleplan (k , n)
newxs = randsampleplan (k , n)
i f s p a c e f i l l i n g n e s s (newxs) > s p a c e f i l l i n g n e s s (cur rentxs) :

cur r entxs = newxs [:]
for i in range (n p lans − 2) :

newxs = randsampleplan (k , n)
i f s p a c e f i l l i n g n e s s (newxs) > s p a c e f i l l i n g n e s s (cur rentxs) :

cur r entxs = newxs [:]

return cur rentxs

def fu l l 2dsamplep lan (n) :
”””
Returns a f u l l sample plan f o r 2 dimensions with n po in t s per dimension .
Note t h i s i s a t o t a l o f nˆ2 po in t s .
Al l dimensions are normal i sed between 0 and 1 .

Parameters
−−−−−−−−−−
n : i n t e g e r

Number o f po in t s per dimension .

Returns
−−−−−−−
samplexs : 2d array

An n∗n by 2 array o f sample po in t s in the given space .
”””
samplexs = np . z e ro s ([n∗∗2 , 2])
va lues = np . l i n s pa c e (0 , 1 , n)
for i in range (n∗∗2) :

samplexs [i , 0] = va lues [i //n]
samplexs [i , 1] = va lues [i % n]

return samplexs

def f u l l f a c t o r a l s amp l e p l a n (k , n per dim) :
”””
Returns a f u l l f a c t o r a l sample plan f o r k dimensions
with n per dim po int s in each dimension .
N.B. t h i s i s a t o t a l o f n per dim ∗∗k po in t s .
Al l dimensions are normal i sed between 0 and 1 .

Parameters
−−−−−−−−−−
k : number

Number o f dimensions .
n per dim : number

Number o f po in t s per dimension .

Returns
−−−−−−−
samplexs : 2d array

Sample plan o f xs .

Example
−−−−−−−
>>> f u l l f a c t o r a l s amp l e p l a n (2 , 2)
[[0 , 0] , [0 , 1] , [1 , 0] , [1 , 1]]
”””
t o t a l x s = n per dim ∗∗k
samplexs = np . z e ro s ([t o ta lx s , k])
cu r r en t a r r ay = np . z e ro s (k)
i n t e r v a l = 1 .0/ (n per dim − 1)
for i in range (t o t a l x s) :

samplexs [i] = cu r r en t a r r ay [:]
for j in range (k) :

i f cu r r en t a r r ay [−(j +1)] + i n t e r v a l <= 1 . 0 :
cu r r en t a r r ay [−(j +1)] += i n t e r v a l
for l in range (j) :

cu r r en t a r r ay [−(l +1)] = 0 .0
break

else :
pass

255

return samplexs

t e s t f u n c t i o n s and o t h e r u t i l i t i e s
def normdims (k) :

”””
Returns a l i s t o f tup l e s to g ive l im i t s f o r k normal i sed dimensions .
i . e . [(0 , 1)]∗ k

Parameters
−−−−−−−−−−
k : i n t e g e r

Number o f dimensions .

Returns
−−−−−−−
dims : 2d array

An 2 by k array o f normal i sed bounds i . e . [(0 , 1)]∗ k .
”””
return [(0 , 1)]∗ k

def onevar (xs) :
”””
S ing l e va r i ab l e t e s t func t i on .
from Forres te r , Sobester , Keane
− Engineer ing Design v ia Surrogate Model l ing .

Parameters
−−−−−−−−−−
xs : 1d array

Value o f x .

Returns
−−−−−−−
y : number

(6∗x−2)∗∗2 ∗ np . s i n (12∗x−4) .
”””
x = xs [0]
return (6∗x−2)∗∗2 ∗ np . s i n (12∗x−4)

def branin (xs) :
”””
Two va r i ab l e t e s t func t i on .
from Forres te r , Sobester , Keane
− Engineer ing Design v ia Surrogate Model l ing .

Parameters
−−−−−−−−−−
xs : 2 by 1d array

Value o f x .

Returns
−−−−−−−
y : number

Value o f the branin func t i on at x .
”””
conve r t 0 ,1 l i m i t s to x1<−[−5 ,10] , x2 <−[0 ,15]
x1 = 15∗ xs [0]−5
x2 = 15∗ xs [1]

return (x2 − (5 . 1∗ x2) /(4∗np . p i ∗np . p i) + (5∗ x1) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x1)+1) + 5∗x1

def branin10 (xs) :
”””
Ten va r i ab l e t e s t func t i on .
Linear summation o f f i v e two−dimens ional branin func t i on s
from Forres te r , Sobester , Keane
− Engineer ing Design v ia Surrogate Model l ing .

Parameters
−−−−−−−−−−
xs : 10 by 1d array

Value o f x .

Returns
−−−−−−−
y : number

Value o f the branin10 func t i on at x .
”””
conve r t 0 ,1 l i m i t s to x1<−[−5 ,10] , x2 <−[0 ,15]
x1 = 15∗ xs [0]−5
x2 = 15∗ xs [1]
x3 = 15∗ xs [2]−5
x4 = 15∗ xs [3]
x5 = 15∗ xs [4]−5
x6 = 15∗ xs [5]
x7 = 15∗ xs [6]−5
x8 = 15∗ xs [7]

256

x9 = 15∗ xs [8]−5
x10 = 15∗ xs [9]

cr e a t e empty answer v a r i a b l e
ans = 0 .0

ans += (x2 − (5 . 1∗ x2) /(4∗np . p i ∗np . p i) + (5∗ x1) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x1)+1) + 5∗x1

ans += (x4 − (5 . 1∗ x4) /(4∗np . p i ∗np . p i) + (5∗ x3) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x3)+1) + 5∗x3

ans += (x6 − (5 . 1∗ x6) /(4∗np . p i ∗np . p i) + (5∗ x5) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x5)+1) + 5∗x5

ans += (x8 − (5 . 1∗ x8) /(4∗np . p i ∗np . p i) + (5∗ x7) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x7)+1) + 5∗x7

ans += (x10 − (5 . 1∗ x10) /(4∗np . p i ∗np . p i) + (5∗ x9) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x9)+1) + 5∗x9

return ans

b r an i n no i s e s tddev = 10

def bran in no i sy (xs) :
”””
Two va r i ab l e t e s t func t i on .
from Forres te r , Sobester , Keane
− Engineer ing Design v ia Surrogate Model l ing .

Parameters
−−−−−−−−−−
xs : 2 by 1d array

Value o f x .

Returns
−−−−−−−
y : number

Value o f the branin func t i on at x with added no i s e .
”””
from random import normalvar iate
conve r t 0 ,1 l i m i t s to x1<−[−5 ,10] , x2 <−[0 ,15]
x1 = 15∗ xs [0]−5
x2 = 15∗ xs [1]

ans = (x2 − (5 . 1∗ x2) /(4∗np . p i ∗np . p i) + (5∗ x1) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x1)+1) + 5∗x1

return normalvar iate (ans , b r an i n no i s e s tddev)

def bran in10 no i sy (xs) :
”””
Ten va r i ab l e t e s t func t i on .
Linear summation o f f i v e two−dimens ional branin func t i on s
from Forres te r , Sobester , Keane
− Engineer ing Design v ia Surrogate Model l ing .

Parameters
−−−−−−−−−−
xs : 10 by 1d array

Value o f x .

Returns
−−−−−−−
y : number

Value o f the branin10 func t i on at x with added no i s e .
”””
from random import normalvar iate
conve r t 0 ,1 l i m i t s to x1<−[−5 ,10] , x2 <−[0 ,15]
x1 = 15∗ xs [0]−5
x2 = 15∗ xs [1]
x3 = 15∗ xs [2]−5
x4 = 15∗ xs [3]
x5 = 15∗ xs [4]−5
x6 = 15∗ xs [5]
x7 = 15∗ xs [6]−5
x8 = 15∗ xs [7]
x9 = 15∗ xs [8]−5
x10 = 15∗ xs [9]

cr e a t e empty answer v a r i a b l e
ans = 0 .0

ans += (x2 − (5 . 1∗ x2) /(4∗np . p i ∗np . p i) + (5∗ x1) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x1)+1) + 5∗x1

ans += (x4 − (5 . 1∗ x4) /(4∗np . p i ∗np . p i) + (5∗ x3) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x3)+1) + 5∗x3

ans += (x6 − (5 . 1∗ x6) /(4∗np . p i ∗np . p i) + (5∗ x5) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x5)+1) + 5∗x5

ans += (x8 − (5 . 1∗ x8) /(4∗np . p i ∗np . p i) + (5∗ x7) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x7)+1) + 5∗x7

ans += (x10 − (5 . 1∗ x10) /(4∗np . p i ∗np . p i) + (5∗ x9) /(np . p i) − 6) ∗∗2 +\
10∗((1 − 1/(8∗np . p i)) ∗np . cos (x9)+1) + 5∗x9

return normalvar iate (ans , b r an i n no i s e s tddev)

257

def gate s t1 (xs) :
”””
Function to t e s t whether ga i s working ,
takes an input o f a l i s t o f l ength 8 ,
rounds the f l o a t i n g point va lues to in t eg e r s ,
and re tu rns the sum of the l i s t .

Parameters
−−−−−−−−−−
xs : l i s t or array

Value o f x .

Returns
−−−−−−−
y : number

sum(round (xs))
”””
xs = map(round , xs)
return sum(xs)

def gate s t2 (xs) :
”””
A second t e s t func t i on f o r a ga ,
r e tu rns the proximity to 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5

Parameters
−−−−−−−−−−
xs : l i s t or array o f l ength 8

Value o f x .

Returns
−−−−−−−
y : number

proximity to 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 .
”””
return 8 .0 − sum(map(lambda x : abs (x−0.5) , xs))

g a t e s t c r = normdims (8)

def popsweep1 () :
”””
Saves a f i g u r e o f a populat ion s i z e sweep
o f ga1 us ing gate s t2 .
”””
import pylab
for k in range (10 , 101 , 10) :

x , y , h i s t = ga1 (gatest2 , ga t e s t c r , pops=k)
pylab . p l o t (h i s t , l a b e l=str (k))

pylab . legend ()
pylab . s a v e f i g (”popsweep1 . png”)
pylab . c l f ()

def popsweep2 () :
”””
Saves a f i g u r e o f a populat ion s i z e sweep
o f ga1 us ing gate s t2 .
”””
import pylab
aveys = []
for k in range (1 , 101 , 3) :

ys = []
for j in range (20) :

x , y , h i s t = ga1 (gatest2 , ga t e s t c r , pops=k)
ys . append (y)

aveys . append (sum(ys) / f loat (len (ys)))
pylab . p l o t (aveys , l a b e l=”Average f i n a l f i t n e s s ”)
pylab . legend ()
pylab . s a v e f i g (”popsweep2 . png”)
pylab . c l f ()

def gensweep1 () :
”””
Saves a f i g u r e o f a genera t i on number sweep
o f ga1 us ing gate s t2 .
”””
import pylab
aveys = []
for k in range (1 , 101 , 2) :

ys = []
for j in range (50) :

x , y , h i s t = ga1 (gatest2 , ga t e s t c r , gens=k)
ys . append (y)

aveys . append (sum(ys) / f loat (len (ys)))
pylab . p l o t (aveys , l a b e l=”Average f i n a l f i t n e s s ”)
pylab . legend ()
pylab . s a v e f i g (”gensweep1 . png”)
pylab . c l f ()

258

def mrsweep1 () :
”””
Saves a f i g u r e o f a mutation ra t e sweep
o f ga1 us ing gate s t2 .
”””
import pylab
aveys = []
for k in range (1 , 100 , 2) :

ys = []
for j in range (50) :

x , y , h i s t = ga1 (gatest2 , ga t e s t c r , mutat ionrate=k ∗0 .01)
ys . append (y)

aveys . append (sum(ys) / f loat (len (ys)))
pylab . p l o t (aveys , l a b e l=”Average f i n a l f i t n e s s ”)
pylab . legend ()
pylab . s a v e f i g (”mrsweep1 . png”)
pylab . c l f ()

def mntest (xs) :
”””
A simple t e s t func t i on f o r the multiNewton opt imi sa t i on method ,
r e tu rns the proximity to 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5

Parameters
−−−−−−−−−−
xs : l i s t or array

Value o f x .

Returns
−−−−−−−
y : number

proximity to 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 .
”””
return 4 .0 + sum(map(lambda x : abs (x−0.5) ∗∗2 , xs))

mn t e s t i n i t i a l = [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9]
mnte s t l im i t s = normdims (8)

def mntest2 (xs) :
”””
A two dimens ional t e s t f o r the multiNewton funct ion ,
such that the prog r e s s o f r e s u l t s can be p lo t t ed on a graph .

Parameters
−−−−−−−−−−
xs : l i s t or array

Value o f x .

Returns
−−−−−−−
y : number

proximity to 0 . 5 , 0 . 5 .
”””
return ((xs [0] −0 .5) ∗∗4+(xs [1] −0 .5) ∗∗2)

mntes t2 l im i t s = normdims (2)

def vi s2d (f) :
”””
V i s u a l i s e s a 2d func t i on with l im i t s [(0 , 1) , (0 , 1)] .

Parameters
−−−−−−−−−−
f : f unc t i on

Two−dimens ional func t i on to be v i s u a l i s e d .

Returns
−−−−−−−
None
”””
import pylab
xx , yy = pylab . meshgrid (pylab . l i n s pa c e (0 , 1 , 51) , pylab . l i n s pa c e (0 , 1 , 51))
zz = pylab . z e ro s ([5 1 , 5 1])
for i in range (51) :

for j in range (51) :
zz [i , j] = f ([xx [i , j] , yy [i , j]])

pylab . contour f (xx , yy , zz , 100)
pylab . co l o rba r ()
pylab . show ()
pylab . c l f ()

def v i s 2 d s l i c e (f , base , dims) :
”””
V i s u a l i s e s a 2d s l i c e o f func t i on with l im i t s [(0 , 1) ,∗ l en (base)] .
s l i c i n g ac ro s s the dimensions indexed by the l i s t dims ,
keeping a l l other v a r i a b l e s f i x ed at base va lues .

259

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be v i s u a l i s e d .
base : l i s t or array

ba s e l i n e or p ivot po int around which to take a two−dimens ional s l i c e .
dims : l i s t o f l ength 2

The numerical value o f the dimensions to be s l i c e d .

Returns
−−−−−−−
None
”””
import pylab
xx , yy = pylab . meshgrid (pylab . l i n s pa c e (0 , 1 , 51) , pylab . l i n s pa c e (0 , 1 , 51))
zz = pylab . z e ro s ([5 1 , 5 1])
for i in range (51) :

for j in range (51) :
x eva l = base [:]
x eva l [dims [0]] = xx [i , j]
x eva l [dims [1]] = yy [i , j]
zz [i , j] = f (x eva l)

pylab . contour f (xx , yy , zz , 100)
pylab . co l o rba r ()
pylab . show ()
pylab . c l f ()

def s a v e 2 d s l i c e (f , base , dims , x labe l , y labe l , t i t l e , f i l ename) :
”””
V i s u a l i s e s a 2d s l i c e o f func t i on with l im i t s [(0 , 1) ,∗ l en (base)] .
s l i c i n g ac ro s s the dimensions indexed by the l i s t dims ,
keeping a l l other v a r i a b l e s f i x ed at base va lues .

Parameters
−−−−−−−−−−
f : f unc t i on

Function to be v i s u a l i s e d .
base : l i s t or array

ba s e l i n e or p ivot po int around which to take a two−dimens ional s l i c e .
dims : l i s t o f l ength 2

The numerical value o f the dimensions to be s l i c e d .
x l ab e l : s t r i n g

Label f o r the x−ax i s .
y l ab e l : s t r i n g

Label f o r the y−ax i s .
t i t l e : s t r i n g

T i t l e f o r the p lo t .
f i l ename : s t r i n g

Filename to save the p lo t as .

Returns
−−−−−−−
None
”””
import pylab
xx , yy = pylab . meshgrid (pylab . l i n s pa c e (0 , 1 , 51) , pylab . l i n s pa c e (0 , 1 , 51))
zz = pylab . z e ro s ([5 1 , 5 1])
for i in range (51) :

for j in range (51) :
x eva l = base [:]
x eva l [dims [0]] = xx [i , j]
x eva l [dims [1]] = yy [i , j]
zz [i , j] = f (x eva l)

pylab . contour f (xx , yy , zz , 100)
pylab . co l o rba r ()
pylab . x l ab e l (x l ab e l)
pylab . y l ab e l (y l ab e l)
pylab . t i t l e (t i t l e)
pylab . s a v e f i g (f i l ename)
pylab . c l f ()

def comp2d(model , actual , n=51) :
”””
Compares a model o f an ac tua l 2d func t i on and re tu rns the average
RMS e r r o r over nˆ2 po in t s .

Parameters
−−−−−−−−−−
model : f unc t i on

Function f o r the model .
a c tua l : f unc t i on

Actual func t i on that i s being modelled by model .
n : i n t e g e r (d e f au l t 51)

Reso lut ion over which to make the comparison .

Returns
−−−−−−−
e r r o r : number

Average RMS e r r o r .

260

”””
xx , yy = np . meshgrid (np . l i n s pa c e (0 , 1 , n) , np . l i n s pa c e (0 , 1 , n))
zz = np . z e ro s ([n , n])
for i in range (n) :

for j in range (n) :
zz [i , j] = ((model ([xx [i , j] , yy [i , j]]) −

ac tua l ([xx [i , j] , yy [i , j]])) ∗∗2) ∗∗0 .5
return sum(sum(zz)) / f loat (n∗∗2)

wrapper f u n c t i o n s
def exampleRDTwrapper (x) :

”””
A wrapper func t i on to exampleRDT from ajopenfoam .
For use with ga1 . Takes input x , l i s t o f 4 nums de s c r i b i ng p i t ch .
Returns the e f f i c i e n c y at J = 0 . 6 .
N.B. This code i s deprecated , exampleRDT2wrapper i s more accurate .

Parameters
−−−−−−−−−−
x : l i s t o f f our numbers

Values o f p i t ch at root , ha l f , 0 . 7 and t i p .

Returns
−−−−−−−
eta : number

E f f i c i e n c y o f RDT with given p i t ch at J = 0 . 6 .
”””

from a jopen foam s imulat ions import exampleRDT

conve r t to t u p l e f o r d i c t i o n a r y use .
tupledx = (x [0] , x [1] , x [2] , x [3])

check i f s o l v e d b e f o r e .
dep r e ca t ed : i f o p t d i c . ha s k e y (t u p l e d x) :
i f tupledx in op td i c :

return op td i c [tupledx]

so l v e .
KT, KQ, eta = exampleRDT(x [0] , x [1] , x [2] , x [3] , 0 . 6)

s t o r e in o p t d i c f o r f u t u r e r e c a l l .
op td i c [tupledx] = eta

return eta

def exampleRDT2wrapper (x) :
”””
A wrapper func t i on to exampleRDT from ajopenfoam .
For use with ga1 . Takes input x , l i s t o f 4 nums de s c r i b i ng p i t ch .
Returns the e f f i c i e n c y at J = 0 . 6 .

Parameters
−−−−−−−−−−
x : l i s t o f f our numbers

Values o f p i t ch at root , ha l f , 0 . 7 and t i p .

Returns
−−−−−−−
eta : number

E f f i c i e n c y o f RDT with given p i t ch at J = 0 . 6 .
”””

from a jopen foam s imulat ions import exampleRDT2
import time

conve r t to t u p l e f o r d i c t i o n a r y use .
tupledx = (x [0] , x [1] , x [2] , x [3])

check i f s o l v e d b e f o r e .
dep r e ca t ed : i f o p t d i c . ha s k e y (t u p l e d x) :
i f tupledx in op td i c :

return op td i c [tupledx]

so l v e .
s t a r t t ime = time . time ()
KT, KQ, eta = \

exampleRDT2(x [0] , x [1] , x [2] , x [3] , 0 . 6 , r u n s i l e n t=True)
stopt ime = time . time ()

l o g
l ogout = open(”/home/ ajd205 / a j op t l og . csv ” , ”a”)
logout . wr i t e (str (x [0]) + ” , ” + str (x [1]) + ” , ” + str (x [2]) + ” , ” +

str (x [3]) + ” , ” + str (KT) + ” , ” + str (KQ) + ” , ” +
str (eta) + ”\n”)

logout . c l o s e ()
print (” Solved in ” + str (stoptime−s t a r t t ime) + ” seconds ” + str (x) +

” , KT = ” + str (KT) + ” , KQ = ” + str (KQ) + ” , eta = ” + str (eta))

san i t y f i l t e r s

261

i s K T in a r e a s ona b l e and u s e f u l range ?
i f KT < 0 :

print (” So lut i on discounted due to negat ive thrus t ! ”)
eta = 0

i f KT > 1 :
print (” So lut i on discounted due to unphys ica l th rus t ” +

” (probably not converged) ! ”)
eta = 0

i s K Q in a r e a s ona b l e and u s e f u l range ?
i f KQ < 0 or KQ > 0 . 5 :

print (” So lut i on discounted due to unphys ica l torque ” +
” (probably not converged) ! ”)

eta = 0

s t o r e in o p t d i c f o r f u t u r e r e c a l l .
op td i c [tupledx] = eta

return eta

def exampleRDT2wrapper2d (x) :
”””
A wrapper func t i on to exampleRDT from ajopenfoam .
For use with ga1 . Takes input x , l i s t o f 2 nums de s c r i b i ng p i t ch .
Returns the e f f i c i e n c y at J = 0 . 6 .

Parameters
−−−−−−−−−−
x : l i s t o f two numbers

Values o f p i t ch at root , t i p .

Returns
−−−−−−−
eta : number

E f f i c i e n c y o f RDT with given p i t ch at J = 0 . 6 .
”””

from a jopen foam s imulat ions import exampleRDT2
import time

conve r t to t u p l e f o r d i c t i o n a r y use .
tupledx = (x [0] , x [1])

check i f s o l v e d b e f o r e .
dep r e ca t ed : i f o p t d i c . ha s k e y (t u p l e d x) :
i f tupledx in op td i c :

return op td i c [tupledx]

so l v e .
s t a r t t ime = time . time ()
KT, KQ, eta = \

exampleRDT2(0.5+x [0] , 0 .5+0.5∗(x [0]+x [1]) ,
0.5+x [0]+0 . 7∗ (x [1]−x [0]) , 0.5+x [1] , 0 . 6 ,
r u n s i l e n t=True)

stopt ime = time . time ()

l o g − not i n c l u d e d as h o p e f u l l y s t o r e d in a s u r r o g a t e model
#l o g o u t = open (”/home/ ajd205 / a j o p t l o g . c s v ” ,” a ”)
#l o g o u t . w r i t e (s t r (x [0]) +”, ”+ s t r (x [1]) +”, ”+ s t r (x [2]) +”, ”+ s t r (x [3]) +”, ”+
#s t r (KT)+”, ”+ s t r (KQ)+”, ”+ s t r (e t a)+”\n”)
#l o g o u t . c l o s e ()
print (” Solved in ” + str (stoptime−s t a r t t ime) + ” seconds ” + str (x) +

” , KT = ” + str (KT) + ” , KQ = ” + str (KQ) + ” , eta = ” + str (eta))

san i t y f i l t e r s
i s K T in a r e a s ona b l e and u s e f u l range ?
i f KT < 0 :

print (” So lut i on discounted due to negat ive thrus t ! ”)
eta = 0

i f KT > 1 :
print (” So lut i on discounted due to unphys ica l th rus t ” +

” (probably not converged) ! ”)
eta = 0

i s K Q in a r e a s ona b l e and u s e f u l range ?
i f KQ < 0 or KQ > 0 . 5 :

print (” So lut i on discounted due to unphys ica l torque ” +
” (probably not converged) ! ”)

eta = 0

s t o r e in o p t d i c f o r f u t u r e r e c a l l .
op td i c [tupledx] = eta

return eta

exampleRDTlimits = [(0 . 5 , 1 . 5) , (0 . 5 , 1 . 5) , (0 . 5 , 1 . 5) , (0 . 5 , 1 . 5)]

262

