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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

IMAGE TEXTURE ANALYSIS BASED ON GAUSSIAN MARKOV RANDOM

FIELDS

by Chathurika Dharmagunawardhana

Texture analysis is one of the key techniques of image understanding and processing with

widespread applications from low level image segmentation to high level object recogni-

tion. Gaussian Markov random field (GMRF) is a particular model based texture feature

extraction scheme which uses model parameters as texture features. In this thesis a novel

robust texture descriptor based on GMRF is proposed specially for texture segmentation

and classification. For these tasks, descriptive features are more favourable relative to

the generative features. Therefore, in order to achieve more descriptive features, with

the GMRFs, a localized parameter estimation technique is introduced here. The issues

arising in the localized parameter estimation process, due to the associated small sam-

ple size, are addressed by applying Tikhonov regularization and an estimation window

size selection criterion. The localized parameter estimation process proposed here can

overcome the problem of parameter smoothing that occurs in traditional GMRF pa-

rameter estimation. Such a parameter smoothing disregards some important structural

and statistical information for texture discrimination. The normalized distributions of

local parameter estimates are proposed as the new texture features and are named as

Local Parameter Histogram (LPH) descriptors. Two new rotation invariant texture de-

scriptors based on LPH features are also introduced, namely Rotation Invariant LPH

(RI-LPH) and Isotropic LPH (I-LPH) descriptors. The segmentation and classification

results on large texture datasets demonstrate that these descriptors significantly improve

the performance of traditional GMRF features and also demonstrate better performance

in comparison with the state-of-the-art texture descriptors. Satisfactory natural image

segmentation is also carried out based on the novel features. Furthermore, proposed fea-

tures are employed in a real world medical application involving tissue recognition for

emphysema, a critical lung disease causing lung tissue destruction. Features extracted

from High Resolution Computed Tomography (HRCT) data are used in effective tis-

sue recognition and pathology distribution diagnosis. Moreover, preliminary work on

a Bayesian framework for integrating prior knowledge into the parameter estimation

process is undertaken to introduce further improved texture features.
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Chapter 1

Context and Contributions

1.1 Context

Texture is a surface characteristic of an object or a region. It exhibits important in-

formation about the structural arrangements and distributions of primitive elements or

patterns which relate to the formation of the surface appearance. Texture plays a vital

role in human perception of visual objects and scenic regions, together with other visual

cues such as colour, brightness and form (Tuceryan and Jain, 1998).

Texture analysis has its own significance in computer vision with widespread appli-

cations in many fields including medical image processing, remote sensing, document

processing, defect detection, image retrieval, object recognition and computer graphic

generation. In image texture analysis a particular texture is characterized in terms of

texture features. Texture feature extraction mainly aims at formulating effective dis-

criminative texture descriptors. The texture features extracted from the image textures

are subsequently used in texture segmentation, classification or synthesis (Petrou and

Sevilla, 2006; Tuceryan and Jain, 1998).

Texture feature extraction has been extensively studied in recent years and a large num-

ber of texture feature extraction techniques have been developed (Nixon and Aguado,

2008; Varma and Zisserman, 2009). These methods can be roughly grouped into four

main categories, namely statistical, structural, spectral and model based feature ex-

traction techniques (Xie and Mirmehdi, 2008). Statistical methods are based on the

spatial distribution of pixel gray-level values. Structural methods are more focused on

extracting the underlying texture primitives and spatial placement rules of the texture.

Spectral methods are basically filtering techniques which decompose an image into sub

band images. Model based methods use generative models to represent images, with the

estimated model parameters as texture features.

1
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Among the model based methods, Markov Random Field (MRF) is one of the popular

generative texture feature extraction techniques. In MRF theory, a texture is assumed

as a realization of a random process characterized by a specific probability model and its

model parameters. MRFs have proven to offer a powerful framework for image texture

analysis (Petrou and Sevilla, 2006).

Gaussian Markov Random Field (GMRF) is an important subclass of MRF whose joint

probability model is a multivariate Gaussian distribution (Rue and Held, 2005). A

local conditional probability model of GMRF encapsulates spatial dependencies between

a pixel and its neighbours (Zhao et al., 2007). Model parameters of the conditional

distribution of GMRF offer a satisfactory feature set, which successfully enables the

discrimination of many different textures (Chellappa and Chatterjee, 1985; Descombes

et al., 1999).

GMRF is frequently chosen for texture feature extraction over MRF because of its

simplicity in parameter estimation which permits to have an analytically and compu-

tationally efficient feature extraction process (Tuceryan and Jain, 1998). Also GMRF

has a well defined model form with a proper partition function and finite number of

model parameters. Simplicity and efficiency are regarded as the key qualities of success-

ful texture descriptors (Mäenpää and Pietikäinen, 2005). Effective texture segmentation

and classification results have been reported using GMRF descriptors (Manjunath and

Chellappa, 1991; Zhao et al., 2007; Mahmoodi and Gunn, 2011).

GMRF features describe spatial dependency between pixels which is a primary char-

acteristic associated with texture. Even though GMRF descriptors are enriched with

information about spatial interactions of the texture, they ignore the use of some im-

portant structural and statistical information about the texture such as descriptions

of texture primitives and their spatial distributions. Therefore, possibility of further

improvements exist which can lead to better texture descriptors. GMRF based fea-

tures produce good results for homogeneous, fine, stochastic textures, but have been

performed poorly when characterizing more structured and macro textures (Petrou and

Sevilla, 2006).

Model based texture feature extraction methods such as GMRFs are popular in texture

analysis because they are derived based on well established probabilistic models and

provide generative texture features which can be used in texture synthesis. However,

in texture segmentation and classification more descriptive features are favoured than

the generative features unlike in a synthesis problem. Even though successful texture

classification and segmentation over small texture datasets are reported in the literature,

these datasets are hardly adequate to evaluate the generalized performance of GMRF

features (Chellappa and Chatterjee, 1985; Manjunath and Chellappa, 1991; Zhao et al.,

2007). Therefore, their generalized performance on larger texture datasets is of interest
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and further techniques to improve their discriminative power for texture classification

and segmentation tasks are worth giving consideration.

1.2 Scope and Contributions

The scope of this research is restricted to the GMRF model based texture feature extrac-

tion. GMRF feature extraction associates relatively low computational cost compared to

other model based texture feature extraction schemes. Moreover they provide a robust

way of determining spatial dependencies between a pixel and its neighbourhood which

are more favourable and significant features in texture characterization.

The main contribution of this work is to introduce a novel texture descriptor based on

GMRFs which overcomes certain flaws in existing traditional GMRF features. In this

regard, the Local Parameter Histogram (LPH) descriptor is proposed. LPH features

simply integrate both statistical and structural properties of a texture. Traditional

GMRF features represent the model parameter estimates of the GMRF. The parameter

estimation is achieved via Least Square Estimation (LSE). The process of estimation of

GMRF model parameters results in highly over smoothed parameter estimates in respect

of texture. The parameter estimates are spatially constant and thus disregard some of

the important statistical and structural texture information for texture discrimination.

LPH descriptors can overcome the problem of parameter smoothing occurring in tradi-

tional GMRF parameter estimation. The proposed method suggests simple alterations

to the existing GMRF feature extraction technique and achieves significantly better re-

sults. The parameter estimation is performed using the LSE similar to the traditional

GMRF parameter estimation, however we fit localized linear models at each pixel based

on local linear regression. The inconsistencies arising in the local parameter estimation

process are addressed by applying Tikhonov regularization and introducing a rule for

estimation window size selection. The localized process of parameter estimation results

in spatial variations in the parameter estimates which are repetitive with the periodic

texture patterns. The distributions of these local parameters are proposed as a successful

discriminative texture descriptor and referred to as LPH features.

Next we introduce a rotation invariant framework for LPH descriptors to achieve invari-

ant features. Due to the histogram construction procedure, the LPH features are clearly

translation invariant and exhibit scale invariance up to a certain degree. However, they

are not rotational invariant to perform invariant texture analysis. Therefore, LPH fea-

tures are made rotation invariant via a local circular neighbourhood shifting procedure

which leads to Rotational Invariant LPH features (RI-LPH). Another technique based

on Isotropic GMRF (IGMRF) is also suggested to achieve rotation invariance which

leads to Isotropic LPH features (I-LPH). I-LPH feature extraction is relatively faster

and efficient, compared to RI-LPH feature extraction.
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In this research, general texture segmentation and classification on large texture datasets

are performed and generalized performance of proposed features with traditional GMRF

features are evaluated. Commonly used Brodatz (Brodatz, 1966), Outex (Outex Texture

Database, 2007), Curet (Dana et al., 1997), Prague (Haindl and Mikeš, 2008) and UIUC

(Lazebnik et al., 2005) texture datasets are employed. Comparisons against the state-

of-the-art structural and spectral texture feature extraction methods based on local

feature distributions are also carried out, namely with uniform local binary patterns

(Ojala et al., 2002) and spectral histograms (Liu and Wang, 2006). LPH, RI-LPH and

I-LPH descriptors capture both pixel dependencies and their spatial distributions and

thus give a significant performance improvement over traditional GMRF features. Also

comparable results with the state-of-the-art methods are achieved.

Furthermore, natural image segmentation using Berkeley data (Martin et al., 2001) is

performed. The simple k-means clustering algorithm is employed as the segmentation

method and satisfactory segmented results are achieved. Further analysis with natural

images, by integrating colour information and using advanced segmentation algorithms

for better boundary localization is also examined.

Moreover, a real world application in medical image processing is considered. I-LPH fea-

tures are introduced in the diagnosis and quantification of emphysema and its subtypes.

Emphysema is a serious lung disease which fatally disturbs the respiratory process which

is recognized as the fourth leading cause of death in the world (Sørensen et al., 2010).

Results show that the novel texture features can perform well in discriminating different

lung tissues, giving comparative results with the current state of the art texture based

emphysema quantification. Furthermore, supervised lung parenchyma tissue segmenta-

tion is carried out and the effective pathology extents and successful tissue quantification

are achieved.

Finally, a Bayesian framework to integrate prior knowledge into the parameter estima-

tion is considered. Here a posterior model for achieving spatially varying parameters

is introduced for modelling texture. Many computer vision applications exhibit some

prior knowledge in addition to the visual image data. This prior information could be

integrated into the texture descriptors through a Bayesian framework to achieve appli-

cation specific performance improvement. Current study simply uses a smoothing prior

to demonstrate the improvement using prior knowledge integrated texture descriptors.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 gives a general review about image tex-

ture and existing texture feature extraction methods. In Chapter 3, the GMRF model,

parameter estimation and its weaknesses are comprehensively discussed and current

methods of GMRF feature extraction are explored. Chapter 4 introduces the novel
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texture descriptor, the LPH descriptor and Chapter 5 focuses on methods of achieving

rotation invariant features. Chapter 6 and Chapter 7 illustrate the texture segmentation

and classification results respectively. In Chapter 8, the features are applied on to a real

world medical application where emphysema tissue classification and quantification are

carried out. Chapter 9 introduce the Bayesian framework for prior knowledge integra-

tion. Finally in Chapter 10 conclusions of the research are reported and plausible future

work are outlined.

1.4 Publications

Publications based on this research include:

[1 ] Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., and Niranjan, M. (2012).

Unsupervised texture segmentation using active contours and local distributions

of Gaussian Markov random field parameters. In Proc. of British Machine Vision

Conference, pages 88.1-88.11.

[2 ] Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., and Niranjan, M. (2014).

Quantitative analysis of pulmonary emphysema using isotropic Gaussian Markov

random fields. In Proc. of Int’l Conf. on Computer Vision Theory and Applica-

tions, pages 44-53.

[3 ] Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., and Niranjan, M. (2014).

An inhomogeneous Bayesian texture model for spatially varying parameter esti-

mation. In Proc. of Int’l Conf. on Pattern Recognition Applications and Methods,

pages 139-146.

[4 ] Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., and Niranjan, M. (2014).

Gaussian Markov random field based improved texture descriptor for image seg-

mentation. Image and Vision Computing, 32: 884-895.

[5 ] Dharmagunawardhana, C., Mahmoodi, S., Bennett, M., and Niranjan, M. Ro-

tation invariant texture descriptors based on Gaussian Markov random fields for

classification. Pattern Recognition Letters, Preprint, submitted September 17,

2014.





Chapter 2

Texture Analysis

2.1 Texture

Texture can be broadly defined as the visual or tactile surface characteristics and ap-

pearance of an object or a region. A texture exhibits a regular repetition of an element

or a pattern. The patterns can be the result of physical surface properties such as rough-

ness or oriented strands which often have a tactile quality, or they could be the result

of reflectance differences such as the colour on a surface (Tuceryan and Jain, 1998).

Texture contains important information about the structural arrangement of surfaces

and their relationship to the surrounding environment.

Despite its importance and extensive presence in image data, there is no unique and

precise definition of texture (Patil et al., 2013; Nixon and Aguado, 2008; Tuceryan and

Jain, 1998). Tuceryan and Jain (1998) have brought together a multitude of definitions

for texture which has been used in the texture analysis community. Some of these

definitions describe the texture as below.

- “We may regard texture as what constitutes a macroscopic region. Its structure

is simply attributed to the repetitive patterns in which elements or primitives are

arranged according to a placement rule.” (Tamura et al., 1978)

- “A region in an image has a constant texture if a set of local statistics or other local

properties of the picture function are constant, slowly varying, or approximately

periodic.” (Sklansky, 1978)

- “An image texture is described by the number and types of its (tonal) primitives

and the spatial organization or layout of its (tonal) primitives.” (Haralick, 1979)

These definitions provide the primary characteristics of a texture i.e. existence of a

texture building block and the repetitiveness that forms the arrangement patterns. The

7
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(a) (b) 

(d) (c) 

Figure 2.1: Perception of textures. (a) deterministic vs statistical, (b) direc-
tional vs non directional, (c) coarse vs fine, (d) natural vs synthetic.

repeating local structure or the the fundamental building block of the texture is known

as the texture primitive or the texel (Petrou and Sevilla, 2006). The notion of repeating

characteristic contributes to the homogeneity of a texture. The homogeneity implies

that local characteristics of the texture do not depend on the location (Tuceryan and

Jain, 1998).

In view of many definitions of texture, Karu et al. (1996) have established two common

agreeable factors about a texture.

1. Texture has significant variation in intensity levels between nearby pixels. i.e., at

some scale, there is non-homogeneity.

2. Texture has a homogeneous property at some spatial scale larger than the texture

primitive size.

The first statement describes the local appearance of the texture in the texel level and

the second statement defines the global homogeneous attribute of the texture.

Compared with intensity, texture is more of a global property where texture can only

be perceived from an image region which is large enough. Depending on the variations

and structural arrangements on the surfaces, textures may be perceived as being deter-

ministic or statistical, directional or non-directional (isotropic), smooth or rough, coarse

or fine, natural or synthetic, etc. Figure 2.1 illustrates these variations in textures. In

deterministic textures the texel is clearly distinct, however, in stochastic textures find-

ing an exact unique texel is difficult but the local statistical properties still show some

repetitiveness. Furthermore, large primitives give rise to coarse or large textures and

small primitives produce fine textures (Singh and Singh, 2002).
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2.2 Image Texture Analysis

Major issues in texture analysis may be summarized as follows:

[1] Texture feature extraction

Feature extraction is concerned with the quantification of texture characteristics in terms

of a collection of descriptors or quantitative feature measurements, often referred to as

a feature vector. The choice of appropriate descriptive features will radically influence

the reliability and effectiveness of subsequent texture analysis processes (Patil et al.,

2013). There exist invariance requirements for feature extraction, specifically invariance

to position, scale and rotation. Clearly, position invariance is a main requirement of

texture descriptors. Rotation invariance is a preferred characteristic of texture features,

however it is not a strong requirement as position invariance. Scale invariance is the

least strong requirement and its necessity mainly depends on the application (Nixon and

Aguado, 2008).

[2] Texture classification

The goal of texture classification is to design an algorithm to categorize an unknown

texture image as belonging to one of a set of known classes, depending on previously

known training data. The classical pattern classification techniques such as k-nearest

neighbour algorithm, Bayesian classifier, support vector machines etc. are commonly

employed in texture classification (Petrou and Sevilla, 2006; Nixon and Aguado, 2008;

Patil et al., 2013).

[3] Texture segmentation

Segmentation divides the image into different texture regions. Texture segmentation is a

difficult problem because one usually does not know a priori what types of textures exist

in an image, how many different textures there are, and what regions in the image have

which textures. According to how much prior knowledge is involved, this problem can

be divided into three subsets, namely supervised segmentation, semi-supervised segmen-

tation, and unsupervised segmentation. In supervised segmentation, training data are

available and the number of different textures in the image is known. In semi-supervised

segmentation only the number of different textures in the image is known and in unsu-

pervised segmentation non of this information is available (Xia et al., 2006b). The two

general techniques of performing texture segmentation are region-based approaches or

boundary-based approaches. In the region-based approaches, one tries to identify re-

gions of the image which have a uniform texture and in the boundary-based approaches,

region boundaries between different textures are detected (Tuceryan and Jain, 1998).

[4] Texture synthesis

Synthesis generates or fill holes with a texture which is similar to a target texture (Efros

and Leung, 1999). Approaches that synthesize texture are relatively recent compared to

the history of other texture analysis approaches. Texture synthesis is a problem which
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Figure 2.2: General texture analysis system.

is more popular in computer graphics where quality of the rendered scenes are improved

by including texture (Nixon and Aguado, 2008). Both parametric and non-parametric

methods have been developed for texture synthesis. A well-known technique to texture

synthesis is to use a Markov random field (Efros and Leung, 1999; Petrou and Sevilla,

2006; Nixon and Aguado, 2008).

The basic texture analysis system in computer vision is shown in Figure 2.2. The first

stage of any vision system is the image acquisition stage. If the image has not been

acquired satisfactorily then the intended tasks may not be achievable, even with the aid

of some form of image enhancement. Careful structuring of the lighting arrangement

and camera position may be used to enhance the particular features of interest. Next

the texture feature extraction process is performed which is sometimes considered as a

preprocessing stage in certain applications. Finally, texture classification, segmentation

or synthesis is carried out accordingly. In some occasions, before the classification stage,

a feature selection or a feature smoothing process is carried out to improve the results.

Moreover, if necessary, an additional pre-processing stage may be conducted prior to the

feature extraction to enhance the quality of the input image.

In this research, our primary focus is on texture feature extraction for texture classifica-

tion and segmentation purposes. Texture classification and segmentation are fundamen-

tal problems in computer vision with a variety of applications (Liu and Wang, 2003; Tou

et al., 2009; Zhang et al., 2002). Descriptive texture features are extensively employed

in many applications, for example in image retrieval, remote sensing, medical image

processing, object recognition, surface inspection and document processing. Unlike in

a synthesis problem, for texture classification and segmentation, discriminative features

are required rather than reliable modelling of the texture (Zhao et al., 2007).

2.3 Current Methods of Texture Feature Extraction

Texture analysis has a rich history in image processing and computer vision (Nixon

and Aguado, 2008). A large number of texture feature extraction methods have been

developed. These methods have been grouped into different categories in numerous ways

according to some of the basic characteristics. One such categorization is as follows.

[1] Statistical methods

Statistical methods are based on the spatial distribution of pixel gray-level values. They
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are well rooted in the computer vision literature and have been extensively applied to

various tasks. Texture features are computed based on the statistical distribution of

image intensities at specified relative pixel positions. A large number of these features

have been proposed, ranging from first order statistics to higher order statistics.

[2] Structural methods

Structural methods are more focused on extracting the underlying texture primitives

and spatial placement rules of the texture. From the structural point of view, texture is

characterized by the texels or texture primitives, and the spatial arrangement of these

primitives. The texture primitive can be as simple as individual pixels, a region with

uniform gray-levels, or line segments. The placement rules can be obtained through

modelling geometric relationships between primitives or learning their statistical prop-

erties.

[3] Spectral methods

Spectral methods are basically filtering techniques which decompose an image into sub

band images. The texture features can be derived from the spatial domain, the fre-

quency domain and the joint spatial/spatial-frequency domain. In the spatial domain,

the images are usually filtered by gradient filters to extract edges, lines, isolated dots,

etc. Many other features related to frequency spectrum have been derived by filter re-

sponse image. It has been found that the human visual system transforms the retinal

image into sequence of sub band representations which can be mathematically modelled

by convolving the input image with a bank of filters with tuned frequencies and orienta-

tions. Following this notion, spectral features are commonly extracted by applying filter

banks to decompose an image (Movellan, 2002).

[4] Model based methods

Model based methods generally use stochastic and generative models to represent im-

ages, with the estimated model parameters as texture features. This category of methods

are predominantly used in extracting generative features which can be applied in tex-

ture synthesis. However, later on it has been also applied in texture classification and

segmentation tasks (Petrou and Sevilla, 2006).

A large number of texture feature extraction methods have been discussed in broad

surveys by Tuceryan and Jain (1998); Zhang and Tan (2002); Petrou and Sevilla (2006);

Xie and Mirmehdi (2008); Srinivasan and Shobha (2008). Some of the popular texture

feature extraction techniques are reviewed here under the above categorization which

have been used in texture classification and segmentation. Following subsections briefly

review some popular methods providing comprehensive details on the state-of-the-art

methods. Comparisons of the methods are discussed in a separate subsequent section.
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2.3.1 Statistical Methods

The most simple and efficient statistical texture feature extraction technique is the image

intensity histogram. The image intensity histogram is a first order statistical feature that

is not only computationally simple, but also rotation and translation invariant. First

order texture measures are statistics calculated based on individual pixel intensity values

and do not consider pixel neighbourhood relationships. Common features extracted from

intensity histograms include moments such as mean, variance, dispersion, mean square

value or average energy, entropy, skewness and kurtosis (Srinivasan and Shobha, 2008).

Despite their simplicity, histogram techniques have proved their worth as a low cost, low

level approach (Swain and Ballard, 1992; Hadjidemetriou et al., 2003). Nevertheless,

texture analysis based solely on the gray-level histogram suffers from the limitation that

it provides no information about the spatial interactions and arrangements between

pixels. Therefore, higher order feature statistics have been introduced.

Autocorrelation features are a second order feature statistic which measures the cor-

relation between the texture image itself and a translated version of the image with

a given displacement vector. The autocorrelation function can be used to assess the

amount of regularity as well as the fineness/coarseness of the texture present in the

image. However, autocorrelation statistic is sensitive to noise interference. The higher

order correlations relatively perform better than lower order correlations (Coroyer et al.,

1997; Huang and Chan, 2004; Petrou and Sevilla, 2006).

Spatial Gray-Level Co-occurrence Matrices (GLCM) are another well known texture

feature introduced by Haralick et al. (1973). GLCM estimates image properties related

to second-order statistics. These second order statistics are accumulated into a set of 2D

matrices, each of which measures the frequency of occurrence of two gray-levels separated

by a given distance. Haralick et al. (1973) has proposed a number of useful texture

features that can be computed from the GLCM such as energy, entropy, contrast and

correlation. Some shortcomings of GLCM is that when constructing GLCM, the number

of gray-levels should be reduced in order to keep the size of the GLCM manageable. It is

important to ensure the number of entries of each matrix is adequate to be statistically

reliable. For a given displacement vector, a large number of features can be computed,

therefore feature selection procedures are required (Petrou and Sevilla, 2006).

The gray-level run length is introduced by Galloway (1975). A run is defined as con-

secutive pixels with the same gray-level, collinear in the same direction. The number

of pixels in a run is referred to as run length, and the frequency at which such a run

occurs is known as run length value. Some of the statistics commonly extracted from

run length matrices for texture analysis are short run emphasis, long run emphasis, etc.

(Xie and Mirmehdi, 2008).
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Figure 2.3: Local binary patterns. (a) basic construction stages (Pietikäinen,
2010), (b) different texture primitives detected by LBP (Mäenpää and
Pietikäinen, 2005).

2.3.2 Structural Methods

The local binary pattern (LBP) is the currently most popular structural feature ex-

traction technique. LBP texture operator is first introduced as a complementary mea-

sure for local image contrast (Ojala et al., 1996). Later, a more general formulation

was proposed that further allowed for multi-resolution and rotation invariant analysis

(Ojala et al., 2002). The LBPs are obtained by thresholding neighbour pixel values

GP = {gp|p = 0, . . . , P − 1} in a local neighbourhood with respect to the intensity gc of

the centre pixel at (xc, yc) and is given by,

LBPP,R(xc, yc) =
P−1∑
p=0

s (gp − gc) 2p (2.1)

where P is the number of neighbours in a circular neighbourhood situated at a radius

R from (xc, yc), and s(.) is the Heaviside function. LBP are invariant to any monotonic

gray-scale transformation. Fig 2.3a illustrates the basic stages of LBP feature extraction.

Note that, by choosing a fixed reference position on the neighbourhood as the “leading

bit” the thresholded neighbour values can be interpreted as bits and a P bit binary

number can be computed. The LBP measures the local structure by assigning unique

identifiers, the binary number, to various micro-structures or texture primitives in the

image. Different LBP codes assigned to texture primitives are shown in Figure 2.3b.
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By varying the radius and the number of neighbours, the structures are measured at

different scales. Rotation invariant LBP are achieved by rotating the circular neighbour-

hood until the lowest possible binary number is found.

LBP riP,R = min {ROR(LBPP,R, i)|i = 0, 1, . . . , P − 1} (2.2)

where ROR(b, i) performs i circular bit-wise right shifts on P -bit binary number b. It is

observed that certain patterns seem to be fundamental properties of texture, providing

the vast majority of patterns, sometimes over 90% (Mäenpää and Pietikäinen, 2005).

These patterns are called uniform because they have one thing in common, i.e. at most

two one-to-zero or zero-to-one transitions in the circular binary code. The LBP codes

shown in Figure 2.3b are all uniform. The uniformity of a binary number x is defined

by,

U(x) =
P−1∑
p=0

F (x XOR ROR(x, 1), p) (2.3)

where the function F (x, i) extracts the ith bit from a binary number x. Therefore, the

uniform local binary patterns are defined as,

LBP ri2P,R =


P−1∑
p=0

s(gp − gc) U(GP ) ≤ 2

P + 1 otherwise

LBP is a simple yet very efficient texture operator with computational simplicity. LBP

descriptors have been widely used in many fields including texture analysis and is cur-

rently one of the state-of-the-art methods in image feature extraction (Topi et al., 2000;

Liao and Chung, 2007; Ahonen and Pietikäinen, 2008; Sørensen et al., 2010; Guo et al.,

2010; Guo and Zhang, 2010; Waller et al., 2011, 2012).

One of the other frequently used structural texture feature extraction method is texton

features. Textons were first introduced by Julesz (1981) as the fundamental image

structures and they are considered as atoms of pre-attentive (unconscious) human visual

perception. Leung and Malik (2001) adopted a discriminative model to describe textons.

Each texture image is analysed using a filter bank composed of 48 Gaussian filters with

different orientations, scales and phases. Thus, a high dimensional feature vector is

extracted at each pixel position. K-means is used to cluster those filter response vectors

into a few mean vectors which are referred to as textons. Varma and Zisserman (2002)

also adapted a similar technique to extract textons, where instead of filter responses

they have used image patches which are closely described by a non-parametric Markov

random field. Zhu et al. (2005) also present a generative image model for learning

textons from texture images. Blostein and Ahuja (1989) examine the response of the

Laplacian of Gaussian (LoG) filter at multiple scales to extract texture primitives.
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2.3.3 Spectral Methods

Different kind of filters have been used separately to filter images and extract features.

Some popular filters are Laws operators, difference of Gaussians filters, derivative of

Gaussian filters, Laplacian of Gaussian filters, steerable filters, Gabor filters (Laws, 1980;

Tuceryan and Jain, 1998; Leung and Malik, 2001; Tou et al., 2009; Lowe, 2004; Varma

and Zisserman, 2009; Griffin and Lillholm, 2010). Specially designed multi-channel filter

banks are a popular technique used for texture feature extraction (Jain and Farrokhnia,

1990; Bosnjak et al., 1998; Zhang et al., 2002; Varma and Zisserman, 2002; Recio R.

et al., 2005; Lee et al., 2006; Sagiv et al., 2006; Bianconi and Fernandez, 2007; Tou

et al., 2007; Olowoyeye et al., 2009; Veni, 2010).

Pyramid based methods are employed to extract texture features over multiple scales.

The pyramid of filter responses based on a certain type of selected filters is employed

to achieve this task. The nth level image In of the pyramid is usually constructed by

down-sampling (or up-sampling) the filter response of the image in the previous level

In+1. Features derived based on the filter pyramid have been used as multi-scale texture

features. The Gaussian pyramid is one of the simplest multi-scale transforms. The finest

scale layer (first level) is the original image. As each level is a low pass filter version of the

previous level, the low frequency information is repeatedly represented in the Gaussian

pyramid (Xie and Mirmehdi, 2008). The Laplacian pyramid introduced by Burt and

Adelson (1983) which use Laplacian of Gaussian filter bank instead of Gaussian filters.

The oriented pyramid is another multi-scale technique which decomposes an image into

several scales and different orientations. Unlike the Laplacian pyramid where there is

no orientation information in each scale, in an oriented pyramid each scale represents

textural energy at a particular direction. One way of generating an orientated pyramid is

by applying derivative filters to a Gaussian pyramid or directional filters to a Laplacian

pyramid (Xie and Mirmehdi, 2008). A steerable pyramid is another way of analysing

texture in multiple scales and different orientations (Simoncelli and Freeman, 1995).

The power spectrum is another spectral feature extraction technique. The power spec-

trum represents the energy distribution in the frequency domain. It is commonly gen-

erated using the discrete Fourier transformation. The radial distribution of energy in

the power spectrum reflects the coarseness of the texture, and the angular distribution

relates to the directionality. Thus, the power spectrum can be used to characterise tex-

tures. Commonly used feature extraction techniques include applying ring filters, wedge

filters, and peak extraction algorithms on the power spectrum (Gonzalez et al., 2004).

Spectral histogram is another popular and efficient choice in spectral feature extraction.

A spectral histogram is a feature vector consisting of the marginal distribution of filter

responses. Given a texture image I and a bank of filters {F(α), α = 1, 2, . . . ,K}, for

each filter F(α) a sub band image I(α) through linear convolution is computed. i.e. at a
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Figure 2.4: (a) Different orders of neighbourhoods, from left first order, second
order and eighth order neighbourhoods, (b) all required clique types for MRF
models up to the eighth order (Blunsden, 2004).

pixel location v,

I(α)(v) = F(α) ∗ I(v) =
∑
u

F (α)(u)I(v − u) (2.5)

The histogram of I(α) is defined as,

H
(α)
I (z) =

1

|D|
∑
v

δ(z − I(α)(v))

Where δ() is dirac delta function. The spectral histogram with respect to the given

filters is then given by,

HI = (H
(1)
I , H

(2)
I , . . . , H

(K)
I ) (2.6)

The spectral histogram is translation invariant which is often a desirable property in

texture analysis and with a sufficient number of filters it can uniquely represent any

image up to a translation (Liu and Wang, 2003). The spectral methods capture macro

level non uniform information relatively better than structural methods.

2.3.4 Model based methods

Markov random fields (MRF) are one of the key model based texture analysis techniques.

They have been used as a tool for image and texture synthesis. Features extracted from

MRF are both descriptive and generative. Thus they have been found to be useful in

texture classification, segmentation and other computer vision applications (Held et al.,

1997; Wang, 1999; Huang et al., 2003; Xia et al., 2006b; Gomez and Salinas, 2006; Li,

2009). A texture can be considered to be generated by a certain random process. MRF is

a probability model which provides a convenient way to model local spatial interactions

among entities such as pixels. In MRF texture modelling to model a texture is to specify

the corresponding conditional probabilities and estimating their parameters.
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In MRF models, an image is represented by a finite rectangular lattice S within which

each pixel is considered as a site s ∈ S. From the Markov property it is assumed

that the intensity of a pixel is conditionally dependent upon the local neighbourhood

N and independent of the rest of the image. Figure 2.4a illustrates some example

neighbourhoods of MRFs. An MRF can be characterized by a Gibbs distribution. The

Gibbs distribution is usually defined with respect to cliques. A clique is defined as a

subset C in an image lattice S where every pair of distinct pixels in C are neighbours

of each other. A set of cliques C is shown in Figure 2.4b. The Gibbs distribution with

respect to a given neighbourhood N is given by,

p(I) =
1

Z
exp {−E(I)} (2.7)

where Z is the normalization factor called partition function and E(I) is the energy

function. The E(I) is given by sum of clique potentials VC(s) as,

E(I) =
∑
C∈C

VC(s) (2.8)

VC(s) is a function of pixels belong to the clique C. Usually single site and pair site clique

potentials are used in texture modelling (Tuceryan and Jain, 1998; Li, 2009; Petrou

and Sevilla, 2006). p(I) defines the joint probability model of MRF. Because of the

assumption of local dependency, the joint probability model for a random field could be

factorized into clique potentials. This reduces the complexity of a global image modelling

problem and lead to the local probability model. One can model the texture either

globally by specifying the total energy of the lattice or model it locally by specifying the

local interactions of the neighbouring pixels in terms of the conditional probabilities.

Depending on how the energy function is selected, there exist different types of MRFs,

for example, auto-models, multi level logistic model etc. A comprehensive discussion of

different types of MRFs can be found in Li (2009) and we will explain GMRFs in detail

in the next chapter.

Although the parametric MRF texture analysis has a well defined mathematical model,

parameter estimation is a computational expensive process. Also the partition function

of MRFs is usually difficult to find and approximations are needed. The GMRF and

isotropic Gaussian MRF have been suggested which are powerful tools of texture mod-

elling which involve significantly less computational expense (Chellappa and Chatterjee,

1985; Kashyap and Khotanzad, 1986).

A non parametric MRF model introduced by (Varma and Zisserman, 2009) is another

approach of overcoming the computational difficulties while employing effective MRF

concepts. This model associates a supervised scheme where a texton dictionary is first

learnt which is then used to develop a conditional distribution to describe the texture.

Other non parametric MRF model based approaches have been also introduced and
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efficiently used in texture analysis (Efros and Leung, 1999; Blunsden, 2004; Kwatra

et al., 2005; Blunsden and Torrealba, 2005).

2.3.5 Comparisons

There have been many studies comparing various subsets of texture features. The results

in most of these work much depend on the data set used, the set of parameters used for

the methods examined, and the application domain (Xie and Mirmehdi, 2008).

Ohanian and Dubes (1992) compared the fractal model, GLCM, the MRF model and

Gabor filtering for texture classification. The GLCM features generally outperformed

other features in terms of classification rate. Singh and Singh (2002) have also shown

that GLCM perform better than other statistical texture features. GLCM has also

performed better than some structural texture features, given that higher number of

features derived from GLCM are employed (Patil et al., 2013).

In another related work, Pichler et al. (1996) reported superior results using Gabor

filtering over other wavelet transforms such as pyramidal and tree structured wavelet

transforms. Spectral methods are very popularly used in the recent years, especially

the Gabor filters. Although this method requires selection of a proper filter set, the

accuracy achieved is good and usually outperform simple statistical techniques (Zhang

and Tan, 2002; Patil et al., 2013). Spectral histograms and pyramid based methods have

been successfully employed in texture classification, segmentation and also in texture

synthesis (Heeger and Bergen, 1995; Zhu et al., 1998; Liu and Wang, 2002, 2003; Long

and Younan, 2006; Liu and Wang, 2006).

Structural methods specially LBP method has been shown superior texture classification

performances compared to model based GMRF features and GLCM features (Ojala

et al., 2001, 2002). Varma and Zisserman (2002) demonstrated superior performance

of texton clustering and distribution features constructed using Gaussian, Laplacian

of Gaussian and oriented filter responses. However, compared to texton, construction

of LBP is efficient and does not require any training data in the feature construction

process. The LBP method has been widely used in texture analysis because of its

excellent property of gray-scale invariance and the high discriminative power despite of

the theoretical simplicity (Mäenpää and Pietikäinen, 2005).

In general, statistical approaches are generally better suited to micro textures, and struc-

tural methods are better perform on textures that exhibit a regular macro-structure.

Spectral methods generally perform well for all types of textures, however, there is no

unique way of selecting a optimal filter set. Model based approaches support different
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kinds of textures depending on the nature of the model. In conclusion, spectral his-

tograms and LBP features have been widely employed in texture analysis with satisfac-

tory performances and can be considered as the current state-of-the-art texture features.

It is interesting to note that these methods are based on local feature distributions.

Although model based features such as MRF, GMRF, isotropic Gaussian MRF have

been reported to produce successful results on small scale selected texture datasets, in

general, model based techniques have shown lower performance compared to other non-

model based techniques specially in texture classification and segmentation (Ojala et al.,

2001; Singh and Singh, 2002; Xie and Mirmehdi, 2008). Also model based techniques

associate relatively higher computational costs.

2.4 Conclusions

Texture feature extraction is an important task in image processing and computer vision.

Among numerous texture feature extraction methods introduced in the literature, LBP

and spectral histogram features have shown a superior texture discriminative power

and have been extensively used in texture analysis. In general, statistical, structural

and spectral methods provide more efficient descriptive features relative to the model

based generative texture features. These non-model based techniques are very popular

in texture classification and segmentation and have also been adapted for use in texture

synthesis in recent years. However, model based texture features such as GMRF features

are less popular due to their limited discriminative power and later developed more

efficient discriminative non-model based features. Comparisons between GMRF and

other non-model based features have been carried out and due to its poor performance

GMRF features are hardly used in the present except in a few application specific tasks.

This motivates the current research to analyse weaknesses in GMRF features and to

develop their potential for better texture segmentation and classification. GMRFs are

mathematically well established modelling tools in probability and statistical theories

which can model contextual dependencies in an image. Local dependencies could be one

of the key properties for texture recognition and GMRF provides the statistical means

for quantifying local interdependencies. However, GMRF features lack the ability to

capture some of the important structural and statistical features in its current method

of formulation. Therefore, GMRF features could be further improved to achieve better,

meaningful and competitive texture features.





Chapter 3

Gaussian Markov Random Fields

3.1 Random Fields and Markov Random Fields

A two dimensional (2D) random field is a collection of random variables which are

arranged in 2D space. An image for example, is a random field on a 2D regular lattice

Ω. Each lattice point or a pixel location is generally referred to as a site s = {i, j},
s ∈ Ω. If a site s is associated with a random variable ys for example, intensity value,

then the random field Y is given by,

Y = {ys|s ∈ Ω} (3.1)

A random field, in other words, also represents a stochastic process where instead of in

time the random variables are arranged in space. For the sake of probabilistic interpre-

tation, Y is represented by a multidimensional random vector Y = [ys1 , ys2 , . . . , ysK ]t

where K number of random variables signify the lattice (Bouman, 2009). Therefore,

the joint probability model of the random field can be represented as p(Y ) and the full

conditional probability model can be written as p(ys|yt, t 6= s, t ∈ Ω).

Markov Random Field (MRF) is a type of random field which exhibits the Markovian

property. The Markovian property states that the value of a pixel is conditionally

independent from all the other pixels of the random field except for its neighbouring

pixels (Petrou and Sevilla, 2006). Using the Markovian property the full conditional

probability model of the random field can be narrowed down to the following,

p(ys|yt, t 6= s, t ∈ Ω) = p(ys|ys+r, r ∈ N) (3.2)

where the set N defines the relative coordinates of the neighbourhood set with respect

to the site s. The equation (3.2) implies the dependency of a random variable ys on

its neighbours. From the point of view of a texture, because of the repetitive nature,

21
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Figure 3.1: The texel of a deterministic texture.

a texture has the dependency on the local characteristics. For example, considering a

deterministic texture, a pixel value in the texture will only depend on its neighbours who

are located in the texel (See Figure 3.1). Thus, the MRF model is greatly appropriate

for texture modelling and has been widely used in stochastic modelling of textures (Kim

et al., 2006; Cesmeli and Wang, 2001).

MRFs provide a convenient way of statistical modelling of texture, globally by means

of joint probability distributions and locally by conditional probability distributions. A

particular MRF model means a particular probability function specified by a particular

functional form and its parameters (Li, 2009). The joint probability distribution of

the MRF is implicitly fully define by its conditional probability distributions (Rue and

Held, 2005). Therefore, the local conditional model of the MRF model has become more

popular in texture feature extraction, compared to the global joint probability model

because of the computational efficiency and relative mathematical simplicity (Manjunath

and Chellappa, 1991; Zhao et al., 2007). The parameters can be locally estimated and

can be computed in a massively parallel manner (Li, 2009).

3.2 Conditional Gaussian Markov Random Fields

Gaussian Markov Random Field (GMRF) is an important subclass of MRFs having a

finite dimensional random vector Y with the joint distribution p(Y ) which is a multi-

variate Gaussian probability density function (Rue and Held, 2005). The conditional

probability distribution of GMRF model, which also takes the Gaussian form, encapsu-

lates the spatial dependencies between a pixel and its neighbours (Zhao et al., 2007).

The model parameters of the conditional GMRF is widely employed in characterizing

image textures (Descombes et al., 1999). In this study we are basically focused on the

conditional GMRF model also known as the local model.

Let Ω = {s = (i, j)|1 ≤ i ≤ H, 1 ≤ j ≤W} represents the set of grid points on a H ×W
regular lattice corresponding to an image region. The image region on Ω is pre-processed

to have zero mean. The intensity value of the pixel at the location s is given by ys and

N denotes the set of relative positions of its neighbours. Then the local conditional
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Figure 3.2: Square neighbourhoods of n = 3 and n = 5, and their corresponding
asymmetric neighbourhoods

probability density function has the form,

p(ys|ys+r, r ∈ N) =
1√

2πσ2
exp

− 1

2σ2

(
ys −

∑
r∈N

αrys+r

)2
 (3.3)

where αr is the interaction coefficient which measures the influence on a pixel by a

neighbour intensity value at the relative neighbour position r. For simplicity only the

square neighbourhoods of size n×n pixels are used in this study for N and n is a positive

odd integer value. The neighbourhood size, n is referred to as the model order.

The pixels in symmetric positions about pixel s are assumed to have identical parameters

(Petrou and Sevilla, 2006; Bouman, 2009). i.e. αr = α−r with r ∈ Ñ where Ñ is

the asymmetric neighbourhood such that if r ∈ Ñ , then −r /∈ Ñ and N = {r|r ∈
Ñ} ∪ {r| − r ∈ Ñ} (Zhao et al., 2007). The square neighbourhoods of n = 3 and

n = 5, and their corresponding asymmetric neighbourhood set are shown in Figure 3.2.

Therefore, the number of interaction parameters in the model is halved and is equal to

(n2 − 1)/2.

The reduced model is given by,

p(ys|ys+r, r ∈ N) =
1√

2πσ2
exp

− 1

2σ2

ys −∑
r∈Ñ

αrȳs+r

2 (3.4)

where ȳs+r = (ys+r + ys−r).

For a model based approach to be successful, specially in texture classification and

segmentation domains, there must exist a reasonably efficient and appropriate parameter

estimation scheme, and the model itself should be parsimonious, i.e. use small number
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of parameters. The conditional GMRF model employs a finite number of parameters to

characterize a texture (Zhao et al., 2007). The advantage of employing GMRF model

over MRF model is that the GMRF model is more simple and provides simplified ways

of parameter estimation with less computational burden compared to that of MRF

model (Rue and Held, 2005; Manjunath and Chellappa, 1991).

3.3 Parameter Estimation

The model parameters of the conditional GMRF model are estimated using least squares

estimation (LSE) or maximum likelihood estimation (MLE) (Mahmoodi and Gunn,

2011; Manjunath and Chellappa, 1991). Note that for a GMRF model, it can be shown

that MLE and LSE lead to the same set of equations (Myung, 2003; Petrou and Sevilla,

2006).

The choice of using LSE for parameter estimation was suggested by Manjunath and

Chellappa (1991) which has been followed by many subsequent researchers in the field

due to its fast computation properties (Stan et al., 2002). Therefore, here the LSE

technique is employed for the parameter estimation. The main assumption behind the

LSE method is that because the probability distribution in equation (3.4) is Gaussian,

the estimated value of ys, ŷs is more probable to be the mean value of the function

(Petrou and Sevilla, 2006). Therefore, the error or the residual will be,

εs = ys − ŷs = ys −
∑
r∈Ñ

αrȳs+r (3.5)

For least squares fitting, given a stationary texture, sample neighbourhoods of the tex-

ture are extracted by linear scanning of the region Ω. Overlapping neighbourhoods are

also allowed (Li, 2009). Let the interaction parameter vector be α = col[αr|r ∈ Ñ ] and

the neighbour value vector at the location s be ȳs = col[ȳs+r|r ∈ Ñ ]. col stands for a

column of elements. Then the least square solution is,

α̂ = arg min
α

∑
s∈Ω

ε2s = arg min
α

∑
s∈Ω

(
ys −αT ȳs

)2
(3.6)

The minimization problem in equation (3.6) is a convex optimization problem where

analytical solutions can be easily deduced. Analytical solutions are often more efficient

than equivalent numeric implementations and this is a major advantage of using GMRFs.

By setting the first derivative of the residual sum of squares to zero the parameter values

can be obtained as,

α̂ =

[∑
s∈Ω

ȳsȳ
T
s

]−1 [∑
s∈Ω

ȳsys

]
(3.7)
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The variance parameter of the model is then calculated by,

σ̂2 =
1

|Ω|
∑
s∈Ω

(
ys − α̂T ȳs

)2
(3.8)

where |Ω| is the number of sample neighbourhoods used in the estimation process, or

in other words number of overlapping n× n regions extracted from the image region Ω,

called the estimation window. The model parameters α̂ and σ̂ are constant over the

domain Ω for a particular stationary texture. The model parameter vector f = [α̂T , σ̂]T

characterizes the texture inside the region of Ω. The interaction parameters α̂, signify

the spatial inter dependencies of a pixel with its neighbours and the variance parameter

σ̂ indicates the roughness of the texture.

The model parameters of the conditional GMRF, i.e. interaction parameters and the

variance parameter, have been employed as an effective texture feature set in texture seg-

mentation and classification tasks. These features are called the classical or traditional

GMRF features (TGMRF) (Zhao et al., 2007; Cesmeli and Wang, 2001).

In the texture classification problem, some instances of texture images are available.

A texture feature vector for each given texture image is extracted separately using

the above parameter estimation process. The Ω region will comprise the entire image

instance. The extracted feature vectors are used to develop the training and testing sets

and classification is performed subsequently.

In a texture segmentation problem, however, an image comprising different texture re-

gions is available. According to how much a priori knowledge is involved, this problem

can be divided into three subtypes, supervised, semi-supervised, and unsupervised seg-

mentation. Feature-based segmentation algorithms can be briefly regarded as consisting

of two successive processes, feature extraction and feature clustering. For each pixel,

a feature vector is generated based on the local texture content over a window centred

on that pixel which is called the estimation window (Xia et al., 2006b; Li, 2009). In

this research a square estimation window of size w is employed. Thus, the Ω region

discussed in the estimation process will become the area inside the estimation window

of size w × w pixels. The parameter estimation process is then carried out using the

samples extracted from the estimation window. These TGMRF features, fs are referred

to as adaptive TGMRF descriptors (Xia et al., 2006b; Zhao et al., 2007).

The texture inside the estimation window should be homogeneous and properly represent

the complete texture pattern. Thus, larger texture patterns require larger estimation

windows. Furthermore, to obtain consistent estimates the number of samples should be

sufficiently greater than the number of model parameters (Petrou and Sevilla, 2006).

This means the estimation window size should be large enough to provide adequate

number of neighbourhood samples. Hence, using larger estimation window sizes is more

common in extracting adaptive TGMRF feature sets (Zhao et al., 2007; Descombes
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et al., 1999). Using large estimation windows in construction of TGMRF features has

its own disadvantages which is one of the key area of consideration in the current research

which will be comprehensively examined in later sections of this chapter and in the next

chapter.

3.4 GMRF Texture Feature Extraction

In this section, existing GMRF feature extraction methods are briefly reviewed, specifi-

cally focusing on texture segmentation and classification. Also techniques suggested to

improve the TGMRF features are also considered. Studies on this direction are rare and

the datasets used in these studies are relatively small or application specific. Neverthe-

less, exciting developments have been proposed despite the increase of computational

cost.

3.4.1 TGMRF Descriptors

In 1985 Chellappa and Chatterjee (1985) introduced the conditional GMRF features for

texture classification. The least square estimates of model parameters have been used

as texture features achieved from a fourth order GMRF. The classification experiment

on a texture dataset based on Brodatz textures (Brodatz, 1966), which includes seven

different texture classes with 16 samples for each class, reported 99.1% classification

accuracy. Comparison with sample correlation features, which gives 93% accuracy for the

considered dataset, demostrates the better performance of GMRF features. Minimum

distance classifier has been used. Convincing texture synthesis have also been performed

based on statistical fine textures.

Manjunath and Chellappa (1991) extract adaptive GMRF descriptors for unsupervised

texture segmentation. Usually segmentation of textured scenes into different classes is

a challenging task in computer vision where prior knowledge is unavailable. Manjunath

and Chellappa (1991) have used model parameters of second order GMRF model es-

timated using LSE on non overlapping sub images of size 32 × 32 as texture features.

After extracting the texture features, a two stage segmentation algorithm which per-

forms a crude segmentation via k-means clustering algorithm and further applies a fine

segmentation process by a relaxation method has been employed. They report convinc-

ing segmentation results and show that second order GMRF features are a good feature

representation of real textures like wood, wool, water etc. which follow the Gaussian

notion.

Xia et al. (2006b) have performed semi supervised texture segmentation where the num-

ber of texture patterns is known but the information about their properties is absent.
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Adaptive second order GMRF features are employed which are constructed using an es-

timation window of size 21× 21. They have proposed an iterative segmentation scheme

which simultaneously performed parameter re-estimation and segmentation. For seg-

mentation 12 different Brodatz textures are employed (Brodatz, 1966). By combining

these textures with each other, 66 two-region mosaic images and 495 four-region mosaic

images are constructed for the segmentation experiments. The segmentation error rate

of 2.38% and 5.84% have been achived for the two-region and four-region mosaic image

datasets respectively. They have also demostrated that the technique can be also used

in successful natural image segmentation.

Mahmoodi and Gunn (2011) introduce GMRF features in an active contour based seg-

mentation framework. The second order GMRF parameters estimated using MLE are

employed. In this method simultaneous parameter estimation and segmentation is per-

formed. Mosaic images comprising Brodatz textures (Brodatz, 1966) have been used

in segmentation experiments. Convincing unsupervised segmentation results with an

average segmentation error of 1.51% are achieved. They have shown that second order

GMRF features from a single resolution scheme are adequate for successful segmentation

via active contours algorithm.

The conditional GMRF model parameter estimates have been also used as successful

texture features in real world application such as urban area extraction from Synthetic

Aperture Radar (SAR) images and online defect detection systems (Xia et al., 2006a;

Huang et al., 2011).

Based on the existing literature, the model parameter estimates of conditional GMRF

model, which we referred to as TGMRF features, provides a discriminative texture

feature in classification and segmentation. However, large scale texture evaluations are

rarely performed including many different types of textures. Large estimation window

sizes are involved in the estimation process and lower order GMRFs are more common

due to the computational expenses. Also advanced segmentation techniques are adapted

to achieve better boundary localization in segmentation tasks.

3.4.2 Improved GMRF Descriptors

Improved GMRF feature extraction methods aim to address certain weaknesses in

TGMRF features. These techniques attempt to enhance the discriminative power of

TGMRF features either by modifying the parameter estimation process, or construct-

ing features derived based on TGMRF features which may achieve rotation and scale

invariant features.

- Priority Sequence GMRF descriptors

The TGMRF descriptors assume that all of the neighbouring pixels, which are treated

equally, interact on the centre pixel simultaneously. However it is rational to think that
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neighbours have influence on center pixel in a priority sequence. i.e. closer neighbours

have a higher priority to influence the centre pixel. Following this idea Zhao et al. (2007)

suggest a step by step least square method to estimate model parameters. Parameters

are estimated through level by level fashion from lower levels to higher levels where a

level is composed of a group of pixels located similar distances away from centre pixel.

Parameters in lower level neighbourhoods (near to center pixel) are computed indepen-

dent of those in the higher levels and parameters of higher levels are computed based

on parameters of lower level. Adaptive texture segmentation on high resolution remote

sensing data is carried out to segment six land-cover classes including crop areas and

residential areas. The fourth order conditional GMRF model is employed. An esti-

mation window of size 17 × 17 is used to trade-off between achieving better boundary

localization and achieving a stationary parameter estimation process. The overall ac-

curacy achieved using TGMRF features is reported as 41% while the proposed features

give 87.3% accuracy. This is a significant improvement over TGMRF features. However,

feature selection is required to select the optimal subset of features and an iterative re-

laxation algorithm has to be employed in parameter estimation which leads to relatively

higher computational burden.

- Hierarchical formulation

In order to improve discriminative power of TGMRF descriptors Kim et al. (2006) con-

sidered a hierarchical formulation of the features. The model parameters estimated

from conditional GMRF model inherits a certain degree of fluctuation for a given tex-

ture depending on the estimation window size. This will negatively affect the subsequent

segmentations. Kim et al. (2006) consider interaction coefficients of GMRF model as an-

other random field called Random Spatial Interaction (RSI) model and use its parameter

estimates as features. They have stated that parameter estimates on RSI model have

less fluctuations independent of the choice of estimation window size. The segmentation

results on Brodatz textures (Brodatz, 1966) illustrate slightly improved segmentation

performance. Nevertheless, the computational cost is doubled in this process.

- Mixture of Gaussian model

Another technique used to improve the discriminative power of TGMRF features is

mixture of Gaussian modelling. Peng et al. (2005) propose to model a mosaic texture

image that composed of more than one texture class using a mixture of Gaussian (MOG)

distribution. Peng et al. (2005) model unifies GMRF model and MOG model for tex-

ture segmentation. Model parameters are estimated using Expectation Maximization

(EM) algorithm. Four mosaic images created using Brodatz texture (Brodatz, 1966)

are segmented using the proposed features and have achieved acceptable segmentations.

However, further experiments have not been carried out to achieve generalized perfor-

mance.
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- Features derived based on TGMRF descriptors

Instead of using model parameters directly as features, features derived from the es-

timated model parameters are suggested by Cesmeli and Wang (2001). The proposed

features behave as variances in four neighbour directions. Second order GMRF model is

employed and nine mosaic images are employed in segmentation. These features derived

based on TGMRF descriptors have been able to perform relatively better compared to

TGMRF descriptors.

- Multi-resolution GMRF descriptors

The drawback in some of the improved GMRF based features are the parameter es-

timation associates iterative optimization methods, for example, simulated annealing,

which is a stochastic relaxation technique and is computationally very demanding. One

way of reducing this computational burden is using multi-resolution techniques (Krish-

namachari and Chellappa, 1997). Computational complexity is reduced because much

of the work is done at coarse resolutions, where there are significantly fewer pixels to

process. Also examining image in coarser resolution with a given smaller neighbourhood

size also implies decisions are based on much larger neighbourhoods, without increasing

computational complexity which would result by using larger neighbourhoods at origi-

nal image resolution. It also leads the way to utilizing information at various scales and

relax the problem of model selection (Comer and Delp, 1999). Krishnamachari and Chel-

lappa (1997) propose multi-resolution GMRF with application to texture segmentation.

In this method a given image at the fine resolution is modelled by a GMRF and coarser

resolution images are obtained by sub sampling the fine resolution data and modelled

by approximated GMRF models. There are a number of other Multi-resolution GMRF

techniques reported in the literature (Comer and Delp, 1999).

The improved methods of GMRF features discussed here achieve relatively better per-

formance compared to TGMRF features. However, the price paid for improving the

performance is higher computational cost and complexity in the proposed algorithms.

Nevertheless, small scale datasets are associated with the experiments and the general-

ized performance is not properly inspected. Despite the introduction of improved GMRF

features, the original TGMRF features have been more commonly employed in recent

GMRF literature. Therefore, current research examines TGMRF features in depth and

focus on improving TGMRF descriptors using other means which are simple and effec-

tive. Large scale evaluations on descriptive power are conducted to bring up generalized

conclusions and well-establish the improved descriptors.

3.5 Issues of TGMRF Descriptors

The traditional model parameter estimation process of GMRF can be considered as a

global parameter estimation scheme. This is because the estimated parameter vector
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tries to characterize the global texture appearance rather than the local structures of the

texture. The parameter estimation process usually depends on a fairly large estimation

window capturing the complete homogeneous texture. Relatively large sample sizes are

achieved by sampling the estimation window. These samples carry the local structural

information about the texture, however the global parameter estimation process results

in more generalized estimates that tend to over-smooth the local information about a

texture. The Gaussian notion and global parameter estimation in GMRFs leads to over

smoothed models of texture, specially deterministic texture. The parameters of over-

smoothed models have a lower discrimination power as texture features. On the other

hand, the GMRF model selection further affects the quality of the GMRF parameter

estimates which are employed as texture features. We will look at these aspects in detail

in the following subsections.

3.5.1 Model Checking

GMRF is widely popular because it avoids the difficulties in parameter estimation

and therefore makes the process analytically and computationally efficient (Besag and

Kooperberg, 1995; Rue and Held, 2005; Manjunath and Chellappa, 1991). Using a Gaus-

sian model is a valid assumption for texture modelling because most of the real textures

obey the Gaussian notion (Manjunath and Chellappa, 1991). GMRF based features pro-

duce good results for homogeneous, fine, stochastic textures, but poorly perform when

characterizing more structured and macro textures (Petrou and Sevilla, 2006; Bosnjak

et al., 1998).

The main reasons for the poor performance is the parameter smoothing caused by under-

fitted GMRF models. This causes loosing of much information contributing to the better

description of the texture, specially the local texture characteristics. The Gaussian

assumption, which leads to linear models, itself leads to an under-fitted model with the

large sample size extracted from a larger estimation window. To elaborate this fact here

we consider a model checking process.

The parameter estimation with LSE in the GMRF, which is defined by the Gaussian

form and the linear dependency on neighbours, can be considered as a multiple linear

regression problem. To assess how well the regression model describes the relationship

between the neighbour pixels (explanatory variables) and a considered pixel (dependent

variable) we use the analysis of residuals. The residuals represent the variations in the

data that are not explained by the model. If the residuals are approximately normally

distributed and have a constant variance it generally implies that the model is well fitted

to the data.

Figure 3.3 shows the scatter plots of the standardized residuals against the standardized

estimated value (ŷs), for four textures. The main observation that can be seen from
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Figure 3.3: Scatter plots of standardized residuals of residual (ys − ŷs) for four
textures. 95% confidence interval is given by dash lines. The extracted TGMRF
feature vector f is used to calculate ŷs at each pixel. n = 3 is used.

scatter plots of Figure 3.3 is that the residuals have not properly followed a normal

distribution. To satisfy the normal condition, the residuals should be randomly spread

in a band clustered around the horizontal line through zero. The spread is not totally

random in the scatter plots appear in Figure 3.3 and have many outliers beyond the 95%

confidence interval (Marked in dash lines). To have a constant variance, the residuals

should exhibit no pattern and there should be no observed relationship in the graph.

However, the residual plots in Figure 3.3 clearly do not have a constant variance (het-

eroscedasticity) as they have differnt variations with different ŷs. These facts indicate

that the linear model fit to the data is not a proper fit and thus may not model the

texture properly. Hence the Gaussian and the linear assumption may lead to estimates

that characterize under-fitted models. This kind of parameter smoothing could cause

the loss of important structural information about the texture.

3.5.2 Model Selection and Smoothing Effect

The previous subsection explained how the Gaussian form and the linear dependency

in TGMRF texture modelling lead to over smooth models which negatively effect the

texture feature extraction process. Further to this fact, model selection in the traditional

GMRF also contributes to inaccurate parameter estimates which ultimately results in

poor texture features.
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n=11 
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n=7 

(a) (b) (c) (d) 

Figure 3.4: Synthesized images using TGMRF feature vector f achieved by
employing different model orders.

Model selection in this context refers to the neighbourhood size (model order) selection

in GMRFs. In TGMRF feature extraction, the analysis of spatial interactions is limited

to a relatively small neighbourhood. i.e. the usage of small neighbourhood sizes or low

model orders (Liu and Wang, 2003). If the model order is freely increased to follow the

pattern size, the number of interaction parameters in the model increases quadratically.

Such an increase in the model parameters leads to a computationally more expensive

estimation process. During the parameter estimation however, model order should be

approximately equal to the pattern size. Such a model order preserves the Markovian-

ity (Stan et al., 2002). But the pattern size is usually unknown and the selected small

model orders may not always be adequate to properly characterize the texture.

These difficulties have been reported before however, many studies in the literature have

been persuaded to choose manually fixed small neighbourhood sizes (Manjunath and

Chellappa, 1991; Chellappa and Chatterjee, 1985; Cesmeli and Wang, 2001; Mahmoodi

and Gunn, 2011; Deng and Clausi, 2004). As a result, the adequacy of these features

to characterize textures of various types and pattern scales is rarely checked (Liu and

Wang, 2003).

In Figure 3.4 some examples of synthesized images using GMRF parameters are illus-

trated. A Gibbs sampler is used to synthesize the images from an initial Gaussian noise
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image (Li, 2009)(see Appendix B). The synthesized image will be considered as the esti-

mated image (Ŷ ). The true original images (Y ) are shown in the first row and the model

parameters are estimated with different neighbourhood sizes. The estimated model pa-

rameters from different size neighbourhoods are then used to synthesize the new texture

images.

By going down along each column of Figure 3.4 we observe that when the neighbourhood

size, n increases the synthesized image gets more similar to the original. Actually there

exists a correct value of n which provides better synthesised images (Petrou and Sevilla,

2006). However, the synthesized image even using a larger neighbourhood size (n = 11)

does not look similar to the original (for example Figure 3.4b). Also deterministic and

large textures are more likely to be poorly modelled than fine and stochastic texture

(Figure 3.4a,b). More examples of synthesized images similar to the ones in Figure 3.4

generated by TGMRF parameters can be found in Petrou and Sevilla (2006). Thus, the

improper model selection also have an impact on the ability of the parameter estimates

to describe the texture.

3.6 Conclusions

GMRFs have been widely selected over MRFs due to its well defined model form with

finite number of model parameters which can be efficiently estimated. Parameter es-

timation of GMRF conditional model is achieved using LSE and the model parameter

estimates have been used as texture features. These features have performed success-

fully in small scale texture discrimination tasks and application specific tasks. However,

the global parameter estimation process involving large estimation windows results in

highly biased model parameter estimates which have poor texture discriminative power

in texture segmentation and classification. The Gaussian notion and the linear model

assumption in GMRFs lead to over smoothed models of texture. The residual analysis of

GMRFs applied to texture suggests that most of the variations and non-linearities in the

complex structure of texture are not properly characterized by GMRF model parameter

estimates. Also there is no specific way introduced in the literature for selecting the

model order of GMRFs. Usually lower model orders are assumed to lower the computa-

tional cost and to avoid curse of dimensionality. However, this further affects the quality

of GMRF parameter estimates. Therefore, both factors, i.e. the Gaussian formulation

with the linear dependency and the choice of lower model orders, cause smoothed es-

timates of model parameters which poorly model the texture. This affects negatively

in TGMRF texture feature extraction because the estimates of model parameters are

explicitly used as texture features. However, methods of overcoming these problems are

rarely investigated. The solution introduce in this research, which will be discussed in
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the next chapter, uses a flexible non-parametric GMRF based method to capture com-

plicated data structures in texture rather than using the model dependent parametric

GMRFs.



Chapter 4

Local Parameter Histograms

(LPH) Descriptor

4.1 Introduction

The GMRF parameter smoothing discussed in the previous section is a major problem

that leads to loss of important structural information of the texture. Especially when the

texture is deterministic and structured (Petrou and Sevilla, 2006). In the texture feature

extraction domain this is a significant drawback in constructing discriminative texture

features. Comparative studies have shown that the GMRF texture features inherit

a reduced discriminative ability in large scale empirical texture evaluations, including

many deterministic textures (Ojala et al., 2001; Hadjidemetriou et al., 2003; Pietikäinen

et al., 2000; Petrou and Sevilla, 2006).

Some of the methods in GMRF based literature which have been proposed to enhance

the discriminative power of traditional GMRF features were discussed in the Chapter

3. However, these techniques are mostly application oriented and have not been used

to perform large scale texture classification or segmentation to illustrate the generalized

performances.

On the other hand, drifting away from the GMRF community for texture analysis,

more solutions addressing the linear regression problem have been discussed in other

fields of research. Specially in the economic and finance community, methods such as

the autoregressive conditional heteroskedasticity (ARCH) model have been introduced

which can deal with the non constant variance (Engle, 2001). Moreover, other alternative

techniques such as non-linear regression can also be used.

In this research we aim to preserve the simplicity of GMRF parameter estimation and

to maintain the resemblance with the GMRF feature extraction process as much as

possible when finding a new solution to the problem. The main objective is to harness

35
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more discriminative texture features based on GMRFs in the texture feature extraction

process. To find a solution to the GMRF smoothing problem, we investigate the per-

formance of locally estimated GMRF features based on local linear regression. i.e. by

using a localized estimation process rather than a global parameter estimation process.

Local regression, also referred to as the kernel regression, is a non-parametric method

that depends on data itself rather than relying on a specific pre-selected model (Hastie

et al., 2013). This framework gives a rich mechanism for computing point-wise estimates

with minimal assumptions about the global model. For the local regression the underly-

ing model may remain totally unspecified. The local linear regression, a variant of local

regression, fits many localized linear models to describe any signal (Hastie et al., 2013).

Here, we use the local linear regression to simplify the estimation process over the local

regression and to maintain the direct link to the GMRF parameter estimation.

The concept of localized parameter estimation has been used as an effective tool for

image de-noising, interpolation and other image processing tasks (Takeda et al., 2007;

Zhu et al., 2012; Gupta et al., 2008; Portilla et al., 2003). However, the local parameter

estimation in the GMRF based texture feature formulation has not been addressed

before.

Furthermore, recent studies on texture and object recognition have demonstrated that

image representation based on distributions of local features are surprisingly effective

(Zhang et al., 2007; Pietikäinen et al., 2000). Distributions of local features such as local

binary patterns, spectral histograms and non parametric MRF methods have demon-

strated impressive results in texture classification and segmentation (Ojala et al., 2002;

Liu and Wang, 2003; Zhang et al., 2007; Ojala et al., 2001; Pietikäinen et al., 2000).

Following this in the present study, we investigate the performance of distributions of

local parameter estimates. The distributions of local parameter estimates capture the

local dependencies of the texture through the localized parameter estimation stage and

the global appearance through the histogram construction stage. Also locally estimated

models are partial representatives of the texel or texture patterns. Hence, they are not

only enriched with spatial interaction information, they also carry structural informa-

tion about the texture primitives. Furthermore, histogram construction captures the

statistical properties about the distribution of primitive characteristics defined by local

models.

Small neighbourhood sizes are generally more favourable for constructing local feature

distributions. This is because it enables fitting localized models easily into a localized

area. Therefore, local parameter estimation is suitable when small neighbourhood sizes

are involved and hence relax the requirement for proper model selection.
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4.2 Local Linear Regression

The benefits of a GMRF model are its simplicity and ease of parameter estimation.

GMRF represents the conditional expectation via a linear model which is the weighted

sum of neighbour values (see equation (3.4)). The parameter estimation procedure

therefore becomes a linear least square regression problem where analytical solutions

simply exists.

However, in the case where a linear regression function does not capture the underlying

true model of data, estimates are biased and are over-smoothed leading to poor results

(Gupta et al., 2008). This happens in texture modelling with GMRFs, specially where

texture inside the estimation window is more structured and deterministic (Petrou and

Sevilla, 2006). This is a major drawback in GMRF linear regression parameter estima-

tion.

As a solution, a localized version of the model fitting can be employed by using local

linear regression technique, a non parametric method with more flexibility in estimating

regression functions (Hastie et al., 2013). Local linear regression exploits the fact that

any sufficiently smooth arbitrary function can be well approximated by locally straight

lines or hyper-planes (in higher dimensions) fitted over a small enough local subset of

the domain (Gupta et al., 2008). i.e. relaxation from a globally linear model to one that

is locally linear. The local linear regression closely models the underlying function by

fitting a different but simple model separately at each pixel. This method belongs to a

category of regression techniques known as kernel smoothing techniques (Hastie et al.,

2013). Here, the kernels are mostly used as a device for localization.

In GMRF feature extraction, the difference between linear regression and the local linear

regression (sometimes referred to as small model estimation here) is the selection of the

estimation window size. This is explained by an example in Figure 4.1 for a model with

one predictor. The continuous blue line shows the linear regression fit and dashed red

line illustrate the local linear regression fit. It can be clearly seen from Figure 4.1 that the

coefficients of ordinary linear regression represent an over-smoothed model. In a texture

feature extraction task this is a great disadvantage because it misses out some important

structural information about the texture. Unlike in a synthesis problem, discriminative

features are required rather than reliable modelling of the texture in classification and

segmentation problems. Therefore, in this study we explore the performance difference

that can be achieved by non-parametric localized linear regression models.

4.2.1 GMRF Small Model Estimation

We name the process of localized parameter estimation using local linear regression as

small model estimation because the individual models are constructed based on a smaller
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Figure 4.1: Linear regression and local linear regression model fitting. w -
estimation window size. In local linear regression estimated value of y at x0 is
found by fitting a local linear model at x0 using the samples inside w2.

localized area. Here, rather than fitting a linear model to the entire set of observations

in Ω, local linear regression fits a simple model to only a small subset of observations in

a region Ωs local to each pixel minimizing the local error,

α̂s = arg min
αs

∑
t∈Ωs

ε2t = arg min
αs

∑
t∈Ωs

(
yt −αsT ȳt

)2
(4.1)

leading to,

α̂s =

[∑
t∈Ωs

ȳtȳ
T
t

]−1 [∑
t∈Ωs

ȳtyt

]
(4.2)

and the variance parameter of the model,

σ̂2
s =

1

|Ωs|
∑
t∈Ωs

(
yt − α̂sT ȳt

)2
(4.3)

The estimation window is now Ωs instead of Ω. When Ωs approaches Ω, TGMRF pa-

rameters can be achieved and parameter dependence on the linear assumption increases.

The adaptive TGMRF parameter estimation can be easily adjusted to local linear regres-

sion parameter estimation by reducing the estimation window size, w while addressing

computational inconsistencies that can arise by smaller estimation windows. Note that

this is equivalent to using a uniform kernel or in other words a weighting function where

samples inside Ωs are weighted by a factor one and samples outside Ωs are weighted by

a factor zero (Hastie et al., 2013).
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From the viewpoint of a homogeneous texture, TGMRF feature extraction assumes that

the linear regression coefficients are constant over a homogeneous texture. However, pa-

rameters estimated at each pixel by local linear regression have a higher spatial variation

and suggest that there are multiple spatially adjacent distinct linear models contributing

to form a texture.

Figure 4.2: (a) Synthetic deterministic texture (b) texel of the texture in (a)
and two n=7 neighbourhoods posing different interactions on their centre pixels.

Furthermore, the spatial variations in parameter estimates are much higher when a se-

lected model order, n is inadequate to describe the texture. For example, in Figure 4.2

the chosen neighbourhood size, n is smaller than the actual texel size. The pixel A and

pixel B have different interactions with their corresponding n = 7 neighbourhoods (Fig-

ure 4.2b). For that reason interaction parameters should be able to have some degree of

spatial variations when low order GMRFs are involved. In such a situation the localized

modelling can better describe the underlying process which minimizes the smoothing

incurred by parameter estimation with larger sample sizes. Localized parameter estima-

tion overcomes the strong dependence on choice of the model order, n. It enables low

order GMRF models more suitable for texture description preserving spatial variations,

spatially when relatively large texture patterns are defined by lower model orders.

The model parameter vector fs = [α̂s
T , σ̂s]

T at a pixel characterizes the locally fitted

GMRF model simply referred to as the small model. These local parameters can better

describe any complex texture compared to the TGMRF global features.

4.3 Concerns in Small Model Estimation

4.3.1 Estimation Window Size

The size of the region Ωs plays a significant role in the local estimation results. The

region Ωs corresponds to the estimation window of size w×w pixels or a uniform kernel

with weights equal to one. In our study we suggest smaller sizes of the estimation window

w to achieve the localized estimation process. However, smaller estimation window size

provides fewer samples for the estimation process. Therefore, the issues arising from

small sample sizes in the estimation process should be carefully considered.
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First and foremost we need to have a sample size at least greater than the number of in-

teraction parameters (explanatory variables). When the number of samples is less than

the number of model parameters, an infinite number of solutions can exist. This is be-

cause when the number of samples are equal to the number of independent variables the

observation space can be fully explained and any additional variables will cause variable

redundancy. Usually the generalized inverse could be useful in such a situation which

results in a unique solution which is the least squared solution as well as the minimum

norm solution (Sullivan and Liu, 1984; Penrose, 1956). However, the generalized inverse

is relatively expensive.

Therefore, when constructing the texture features, despite the fact that we need to

localize the estimation process, we make sure the estimation window size is large enough

to provide the required number of samples to obtain unique solutions in the parameter

estimation. A heuristic rule is used to select the estimation window size which makes

sure the number of samples are always more than the number of model parameters.

In GMRF model, the number of interaction parameters depends on the size of the

neighbourhood and is equal to (n2−1)/2. Since the samples are extracted from a region

inside the w × w estimation window, the number of overlapping samples that can be

sampled from the estimation window is equal to (w− n+ 1)2. Thus, we deduce a value

for w as follows.

The number of samples must be greater than or equal to the number of interaction

parameters. Therefore,

(w − n+ 1)2 ≥ (n2 − 1)/2 (4.4)

Next we select the case which is well above the equality criteria, that is the number of

samples is equal to n2.

n2 ≥ (n2 − 1)/2 (4.5)

This gives roughly twice the number of samples than the number of interaction param-

eters. If this is the case, the number of samples is equal to n2, which is,

(w − n+ 1)2 = n2 (4.6)

leading to the value of the estimation window w,

w = 2n− 1 (4.7)

which is small enough to fit localized models while providing unique solutions to the least

squares problem. The value for size w selection is illustrated in Fig 4.3. Therefore, in

this study for local linear regression the estimation window size is selected as w = 2n−1.
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The size of w is a function of the neighbourhood size n and thus we only need to specify

n in the parameter estimation process.

Figure 4.3: Estimation window size selection. The estimation window size be-
come w = 2n− 1 when number of samples extracted from it is equal to n2.

4.3.2 Handling Ill Posed Inverse Problem

When reducing the size of the estimation window, the number of samples for the estima-

tion process becomes limited. This situation further causes two major related problems.

One is that the estimation process can become inconsistent or an ill-posed problem be-

cause the matrix inversion involved with the estimation of interaction parameters (see

equation (4.2)) can become non invertible. This non-invertiblity issue can occur when

several of the explanatory variables (here the neighbour values) have dependency on

each other. The other major problem is that too few training samples can result in

regressions with incorrectly fitted models when outliers exist giving unacceptable large

values for the estimates.

The ill-conditioned problem has been extensively studied by statisticians in the domain

of approximation theory (Björkström, 2001). Several techniques have been suggested to

overcome this problem and it has been shown that in many practical contexts, Tikhonov

regularization, also know as the ridge regression perform well in finding approximate

solutions to ill-conditioned problem (Björkström, 2001; Hastie et al., 2013). Tikhonov

regularization minimizes both the squared error term plus the Euclidean norm of the

interaction parameter vector αs.

Therefore, the Tikhonov regularization is applied as below to regularize the local error

minimization process and estimate model parameters at pixel s.

α̂s = arg min
αs

∑
t∈Ωs

(
yt −αsT ȳt

)2
+ c2αs

Tαs (4.8)
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where c is a constant and is called the regularization parameter which controls the trade-

off between minimizing the error and penalizing the magnitude of the parameters. The

regularized local linear regression estimation results in,

α̂s =

[∑
t∈Ωs

ȳtȳ
T
t + c2I

]−1 [∑
t∈Ωs

ȳtyt

]
(4.9)

where I is the identity matrix. From equation (4.9) it can clearly observed that in

Tikhonov regularization a value c2 is added to the elements on the diagonal of the matrix

to be inverted making it a diagonal dominant matrix. The diagonally dominant matrices

are non singular and therefore the non-invertiblity issue is solved in the case that the

matrix inversion in equation (4.2) is ill-conditioned (Björkström, 2001). Also it can be

seen from equation (4.8) that because the euclidean norm of αs is also minimized it

reduces the values of the estimates of interaction parameters towards zero appropriately

(given c is chosen correctly). This helps to overcome the over-fitting problem when

outliers exist in the selected sample and avoid unacceptable large estimate values. The

value for c is selected experimentally.

By ensuring the number of samples is greater than the number of model parameters (w

selection) and by applying Tikhonov regularization, we can achieve a well posed unique

localized parameter estimation process using local linear regression.

After estimating the interaction parameter vector in this way, next the variance param-

eter is obtained according to equation (4.3). The entire least square estimation process

with the w selection and the regularization is referred by the name small model estima-

tion as introduced before. In a localized parameter estimation environment the small

model estimation is suitable for estimating local parameters.

Figure 4.4: Local parameter histogram construction and associated variables.

4.4 Local Parameter Distributions

Distributions of locally extracted features are a popular choice in many texture feature

extraction techniques (Ojala et al., 2002; Liu and Wang, 2003; Zhang et al., 2007).

Small model estimation provides local texture features describing local interactions and

local structures of a texture. Therefore, the distributions of local parameters achieved

by small model estimation is employed as a novel improved texture descriptor. These

features are named as local parameter histograms (LPH) descriptors.
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The small model estimation is performed over each pixel of the given texture image

by the sliding window estimation technique. The estimation of small models at each

pixel results in a parameter vector at each pixel describing the local dependencies. If

one of the parameters from the parameter vector is considered in the spatial domain, a

parameter image, Fj can be defined as Fj = {fs(j)|s ∈ Ω} where fs(j) ∈ fs. Therefore,

for all the parameters in fs we get separate parameter images leading to a parameter

image stack F = {Fj |j = 1, . . . , (n2 + 1)/2} (see Figure 4.5). Note that (n2 + 1)/2 is the

number of model parameters in fs including the variance parameter.
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Figure 4.5: Parameter images and bin images result from local parameter esti-
mation and local histogram construction respectively. For the local parameter
estimation, a sliding window of size w and for the histogram calculation a sliding
window of size b are employed.

The local parameter estimates on a parameter image, Fj contain more spatial variations

than adaptive TGMRF parameters. A few sample parameter images are shown in Figure

4.6 for a mosaic image. In these parameter images we observe spatial repetitiveness of

local parameters according to the repetitive pattern of a given homogeneous texture

(Figure 4.6).

(a) (b) (c) (d) 

Figure 4.6: Parameter images. (a) A mosaic texture image, (b)-(d) parameter
image corresponding to horizontal interaction parameter, vertical interaction
parameter and variance parameter, respectively.

The texture segmentation problem involves mosaic texture images comprising many

textures. For texture segmentation purposes, the texture features at each pixel are

required. Therefore, on each parameter image, the normalized parameter histograms,
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hs(j) are constructed by sliding another window of size b × b pixels to formulate the

local histogram at each pixel. The concatenated LPH descriptor at pixel s is then given

by,

hs = [hs(1)T , . . . , hs(j)
T , . . . , hs((n

2 + 1)/2)T ]T (4.10)

The local parameter histogram construction is graphically illustrated in Figure 4.4 and

the resulting parameter and bin images are explained in Figure 4.5. In segmentation,

the choice of histogram calculation window size ideally should be roughly equal to or be

greater than the texel size of the largest pattern in the texture. This will lead to a perfect

homogeneous texture descriptor. Typically, size b is selected independent of the size w.

Furthermore, b should be large enough to provide a sufficient number of samples (equals

to b2), given the number of bins, in order to construct a proper histogram. Frequently

used rule of thumb for constructing histograms is that the number of samples should be

roughly equal to or be greater than the square of number of bins (b2 ≥ bins2). Therefore,

once the number of bins is known, the value of b should be roughly the number of bins

or greater than that to achieve a good performance. However, the value of b cannot be

increased unnecessarily in texture segmentation because of the increase in the boundary

localization error. In this study the effect of b on segmentation error is experimentally

analysed in section 6.3.3 and a range of suitable b values are suggested. Therefore, the

value of b used in this work is roughly equal to the number of bins or higher in texture

segmentation experiments.

On the other hand, texture classification involves images comprising one specific tex-

ture. For texture image classification, features at each pixel is not required. Thus,

the histogram of the whole parameter image Fj is directly used as the LPH descriptor.

i.e. b = imageSize is used for constructing the distributions giving one concatenated

histogram h per image.

The LPH construction is illustrated in Figure 4.4. The number of bins is manually fixed.

For example, if n = 3 is selected, there are five different model parameters governing

the GMRF model, i.e. (n2 − 1)/2 = 4, four interaction parameters and the variance

parameter. If 10 bins for the histogram is employed, then there will be a 50 dimensional

feature vector.

In conclusion, for the construction of LPH descriptors, a predefined neighbourhood size

n for GMRF representation and a histogram calculation window size b for construct-

ing local histograms should be predefined. For a texture classification task histogram

calculation window size b is same as the image size.
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4.4.1 Effect of Local Parameters on LPH descriptors

When the estimation window size w is smaller, estimated local parameters have more

spatial variations visible on the parameter images. This gives a higher information

content to the histograms of local parameter estimates. However, to meet the consistency

criteria we have bound the minimum size of w to w = 2n − 1 which depends on the

model order, n, as explained in section 4.3.

In Figure 4.7, the entropy of the local parameter histogram with changing estimation

window size is shown. Here, the entropy of the histogram depicts its ability to capture

spatial variations in the parameter estimates associated with the texture. Higher entropy

values suggest the presence of more spatial variations and vice versa. When w increases,

entropy gradually drops implying that spatial variations are progressively smoothed out

by the estimation process. Therefore, smaller estimation windows are also preferable to

construct local feature distributions.

Figure 4.7: Entropy of the histogram of horizontal interaction parameter of the
given texture image in top right corner with changing estimation window size
w (n = 5 is used).

4.5 Comparison to TGMRF Features

LPH features consider the distributions of GMRF local parameters achieved using a

comparatively smaller estimation window to that of adaptive TGMRF features. How-

ever, these modifications can lead to a significant performance improvement. This is

because the smoothing effect is reduced by the local model fitting and important struc-

tural information are preserved within the parameter estimate space.

Figure 4.8 illustrates LPH descriptors of horizontal and vertical interaction parameters

and the variance parameter of GMRF model belonging to two different homogeneous
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Figure 4.8: LPH descriptors of vertical, horizontal and variance parameters.
(a) original images, (b) horizontal interaction parameter histogram, (c) vertical
interaction parameter histogram, (d) variance parameter histogram, Dash lines
represent parameter values estimated by adaptive GMRF method (n = 5 is
used).

textures. The estimated parameter values from the TGMRF method are shown by the

dashed lines in Figure 4.8. The TGMRF features have small differences between the two

textures even though the displayed textures have large visual dissimilarities. In contrast,

LPH descriptors demonstrate a significant difference in their distributions.

Figure 4.9 presents the pixel-wise adaptive features extracted from both methods for

two sample mosaic images. The dimensions of the original feature vectors are reduced

to two dimensions using principal component analysis (PCA) for illustration purposes.

Each data point in the Figure 4.9 represents the reduced-dimension feature vector at a

pixel.

In the estimation process of constructing TGMRF descriptors, the texture contained in

the estimation window should be homogeneous and therefore, large estimation windows

are employed. However near texture boundaries, non-homogeneity can occur leading to

inaccurate features which cause boundary localization problems, especially when large

estimation window sizes are involved (Xia et al., 2006b; Dharmagunawardhana et al.,

2012). This means that in TGMRF feature extraction process the boundary localization

problem is more prominent. Therefore, TGMRF descriptors have a larger overlap and

a smaller separability (inter-class distance) between the two texture classes compared

to LPH descriptors (Figure 4.9b,c). Also LPH descriptors have more local information

about the texture than the TGMRF features leading to a tighter dispersion in class fea-

tures, conveying lower intra-class variation (Figure 4.9c). From Figure 4.9 it is observed

that LPH descriptors are better descriptive features compared to TGMRF features.
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Figure 4.9: Feature vectors in 2D for two-texture mosaic images. (a) original
images (b) texture features from adaptive TGMRF method (n = 5, w = 21),
(c) texture features from adaptive LPH method (n = 5, b = 21). PCA is used
to reduce dimensionality. L-tex = pixels belongs to left side texture and vice
versa.

4.6 Conclusions

LPH descriptor is introduced in this chapter as an improved GMRF based texture fea-

ture. The construction of LPH descriptors has two main stages namely, a local parameter

estimation process called small model estimation and a histogram construction stage.

The small model estimation process estimates local model parameters using local lin-

ear regression which is a non-parametric method. Local linear regression is flexible in

modelling complex data structures and has a lower bias to the model assumptions. The

localized estimation process is achieved by selecting smaller estimation window sizes.

An estimation window size selection criterion is proposed in this chapter based on the

number of samples which can be obtained from the estimation window and the number

of parameters in the model. The local estimation process encounters inconsistencies due

to the small sample size used in the estimation process. These difficulties are overcome

by using Tikhonov regularization. After the local parameter estimation, the histogram

construction stage is carried out to formulate a homogeneous texture descriptor. The

small model estimation captures the structural properties of the texture such as local

interactions and local roughness of the texture. On the other hand, histogram construc-

tion captures statistical properties of the texture such as distributions of local features.
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Compared to the TGMRF features, LPH features can produce a more discriminative

reliable texture description.



Chapter 5

Rotation Invariant Descriptors

The LPH descriptors can be considered as scale invariant features up to some degree due

to the histogram construction. This is due to the scale invariance property of histogram

features. However, they are not rotation invariant. This chapter considers techniques

to achieving rotation invariant texture features based on LPH descriptors.

5.1 Background

The majority of existing texture analysis methods make the explicit or implicit assump-

tion that the texture images are acquired from the same viewpoint, i.e. the same scale

and orientation. Although the texture features are not view point invariant, these non-

invariant texture features have been widely applied in texture analysis covering many

fields including medical image processing and defect detection processes (Zhang and

Tan, 2002).

However, in many other practical applications such as object recognition and image

retrieval where more than one image is involved, it is very difficult or impossible to ensure

that the associated texture components have the same translations, rotations or scaling

across the image instances. Also from the perspective of natural image segmentation a

specific texture component in a given image may have different physical surface rotations

(see Figure 5.1). Based on the cognitive theory and our own perceptive experience, given

a texture image, no matter how it is changed under translation, rotation and scaling, it

is always perceived as the same texture image by a human observer (Zhang and Tan,

2002; Matthews et al., 2013). Therefore, invariant texture analysis is desirable for both

the practical and experimental applications.

Over the last few decades an increased amount of attention has been given to invari-

ant texture analysis, and several methods for achieving the rotation invariance have

49
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(a) (b)

Figure 5.1: Encounters of rotation variations in textures. (a) rotated versions
of texture images occuring in texture classification, (b) rotation variation en-
countered in texture segmentation (texture of zebra).

been proposed. In this subsection, some of the general techniques of achieving rotation

invariance are reviewed under two categories.

5.1.1 Omnidirectional Texture Features

Omnidirectional texture features are constructed independent of the direction. The

simplest approach of achieving rotation invariance in this way is by using invariant or

isotropic statistics such as mean, variance and intensity histogram. However, their per-

formance is poor because of the limited amount of information captured by them. Haral-

ick et al. (1973) propose computing omnidirectional features from directional measures

by averaging the GLCM based features over four directions. Mayorga and Ludeman

(1994) employ isotropic texture edge statistics based on circular levels or neighbour-

hoods. In their study the circularly averaged differences in gray-level and the correlation

along the circular levels are used as the texture features. The features extracted from

filter responses achieved via isotropic filter kernels are also belong to rotational invari-

ant omnidirectional features. They have been widely used in texture analysis providing

higher texture classification rates (Porter and Canagarajah, 1997; Zhang et al., 2002).

Furthermore, model based approaches such as Circular Simultaneous Auto Regression

(CSAR) simply average all the pixels on the unit circle neighbourhood into a single

value associated with a single parameter, producing a model containing no directional

information (Kashyap and Khotanzad, 1986). Mao and Jain (1992) extend this method

to circular neighbourhoods with larger radii called, Multiresolution Rotation Invariant

Simultaneous Auto Regression (MR-RISAR) model. An isotropic model parameter es-

timated from each circular level which represents the averaged neighbour interactions

with the central pixel is used as the texture feature.

The problem with these approaches is that the directionality, an important characteristic

of the texture, is lost when an isotropic feature is formulated. Thus, these features are

more favourable with isotropic textures.
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5.1.2 Rotation Invariant Directional Texture Features

This category of features includes texture features that measure directional characteris-

tics of texture, yet are rotation invariant. A popular method of directional texture fea-

ture extraction is using a bank of oriented filters (Zhang and Tan, 2002). After obtaining

the responses of directional filters, techniques such as maximum response (Ahonen and

Pietikäinen, 2009; Varma and Zisserman, 2005), Fourier transform (Greenspan et al.,

1994), polar transform (Haley and Manjunath, 1995), etc. have been used to achieve

rotational invariant features.

Polar plots and polarogram is another approach based on polar transformation (use the

polar coordinate system). Here the polarogram is a function of orientation. Therefore,

a rotation in the original texture image results in a translation in polarogram. The

features computed from the polarogram are invariant to rotation (Davis, 1981). Discrete

Fourier transformation (DFT) is another popular choice of achieving rotation invariance.

Because the magnitude of the DFT is invariant to translation, by performing DFT on

a feature vector containing features from different orientations results in a rotation

invariant feature. For example, Deng and Clausi (2004) use the DFT of the estimated

interaction parameter vector that represents the influence of neighbours in different

orientations which is extracted from An-isotiopic Circular GMRF (ACGMRF) model.

Furthermore, feature distributions of locally invariant features such as linear symmetric

auto correlation measures, related covariance measures, rotation invariant local binary

patterns and gray level difference have been successfully employed as rotation invariant

features (Pietikäinen et al., 2000). The local features are made invariant based on

neighbourhood operations such as circular shifting.

Unlike, omnidirectional features, these features preserve directional information. Never-

theless, they are generally computationally expensive than the omnidirectional features.

5.2 Achieving Rotation Invariance with LPH Descriptors

Two techniques belonging to previously discussed two categories of achieving rotation

invariance are employed here. One way is by using circular shifted neighbours to achieve

the rotation invariance and the other method is by using the Isotropic GMRF (IGMRF)

model. Circular neighbourhoods are considered to construct rotation invariant features.

A neighbourhood is defined by equally spaced neighbour pixel values located on a circle

with a radius r. The neighbour values are achieved using bilinear interpolation similar

to Ojala et al. (2002). The number of neighbours in a resolution is referred by p.
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5.2.1 Circular Shifted Neighbour Method

The rotation invariant features ahieved by circular shifting of neighbour values is named

as Rotation Invariant Local Parameter Histogram (RI-LPH) features.

A circular shifting process of neighbour values is performed on each neighbour vector

extracted from the circular neighbourhoods. The neighbour pixel values in the neighbour

vector ỹs = col[ys+r|r ∈ N ] is circularly shifted based on the neighbour difference vector

ds = col[|ys+r − ys| |r ∈ N ]. The difference value is the absolute difference between a

neighbour value and the considered centre pixel. The number of circular shifts to perform

is calculated from the ds by counting the shifts until the first element of the ds vector

becomes the maximum difference value. Once the number of circular shifts are figured

out using ds the neighbour vector of the considered pixel is circularly shifted by that

amount. This process causes rotating the entire circular neighbourhood according to the

direction of maximum difference value.This leads to a rotation invariant neighbour set

zs at location s. The algorithm for circular shifting neighbours is shown in Algorithm

5.2.1.

Algorithm 5.2.1: Circular Shifting Neighbour Values()

shftSize=1;

shftCount=0;

while ds(1, 1) 6= max(ds)

ds = circShift(ds, shftSize);

shftCount=shftCount+1;

end

zs = circShift(ỹs, shftCount)

= 

Figure 5.2: Rotation invariance by circular shifting.

The circular shifting process is graphically illustrated in Figure 5.2. Subsequently, usual

localized estimation process is carried out as proposed in Chapter 4. It is rewritten here
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Table 5.1: Different attributes associated in construction of LPH and RI-LPH
descriptors. n- neighbourhood size, w-estimation window size, b-histogram cal-
culation window size, r-radius of circular neighbourhood, p-number of neigh-
bours in the circular neighbourhood.

attribute LPH RI-LPH

neighbourhood square circular
neighbourhood size n (r, p)
estimation window size w = 2n− 1 w = 4r + 1
histogram calculation window size b b
rotation invariance no yes

with the notation of rotation invariant neighbour set.

αs =

[∑
s∈Ωs

z̄sz̄
T
s + c2I

]−1 [∑
s∈Ωs

z̄sys

]
(5.1)

where z̄s = col[zs+r + zs−r|r ∈ Ñ ] according to the symmetric assumption and I is the

identity matrix. The variance parameter of the model,

σ2
s =

1

|Ωs|
∑
s∈Ωs

(
ys −αsT z̄s

)2
(5.2)

The estimation window size w is selected similar to the LPH descriptors discussed in the

Chapter 4. When r is given, the value of n can be written as n = 2r + 1 and therefore,

w = 2n − 1 becomes w = 4r + 1 in terms of r. The differences between associated

variables of constructing square neighbourhood based LPH descriptors and the circular

neighbourhood based RI-LPH descriptors are shown in Table 5.1.

After performing localized parameter estimation, the histogram of each parameter im-

age is constructed and concatenated to form the final feature vector. The process is

graphically illustrated in Figure 5.3.

5.2.2 Isotropic GMRF Method

The second method we analyse here to achieve rotation invariance is by using IGMRF,

called Isotropic Local Parameter Histogram (I-LPH) descriptors. IGMRF is a special

case of GMRF also known as circular symmetric GMRF and further simplify the GMRF

model (Kashyap and Khotanzad, 1986). IGMRF models the non directional isotropic

textures in a simplified rotational invariant framework with only two model parameters.

The parameter estimation is simple and fast compared to other MRF models because

solutions for parameters can be found analytically and without requiring any matrix
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Figure 5.3: Construction of RI-LPH descriptors.

inversion. IGMRF model is given by,

p(ys|ys+r, r ∈ N ;α, σ) =
1√

2πσ2
exp

− 1

2σ2

(
ys − α

∑
r∈N

ys+r

)2
 (5.3)

where α and σ are the model parameters to be estimated. ys+r are the neighbours in the

circular neighbourhood of ys. The circular neighbourhoods are employed here similar to

RI-LPH descriptors defined by (r, p). At each pixel, the localized estimation procedure

is carried out similar to RI-LPH descriptors with the estimation window size w = 4r+1.

LSE is used here for estimating α parameter of the model. As discussed before the main

assumption behind the LSE method is that because (5.3) is Gaussian, the estimated

value of ys is more probable to be the mean value of the function (Petrou and Sevilla,

2006). Therefore, from the linear least square sense the local residual will be,

εs = ys − αs
∑
r∈Ns

ys+r (5.4)

For least square fitting, given a stationary texture, sample neighbourhoods of the texture

are extracted by linear scanning of the estimation window w. Overlapping neighbour-

hoods are also allowed similar to the parameter estimation in LPH and RI-LPH feature

extraction. Then the local least square solution is,

α̂s = arg min
αs

∑
t∈Ωs

ε2t = arg min
αs

∑
t∈Ωs

(
yt − αs

∑
r∈N

yt+r

)2

(5.5)
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where Ωs corresponds to the inside region of estimation window of size w. The regu-

larization is not used here because the ill-conditioned problem due to the matrix non-

invertibility does not occur here. By setting the first derivative to zero the local param-

eter value can be obtained as,

α̂s =

∑
t∈Ωs

(
yt
∑
r∈N

yt+r

)
∑
t∈Ωs

(∑
r∈N

yt+r

)2 (5.6)

The variance parameter of the model is then calculated by,

σ̂2
s =

1

|Ωs|
∑
t∈Ωs

(
yt − α̂s

∑
r∈N

yt+r

)2

(5.7)

The simple forms of the solutions obtained for model parameters given by (5.6) and (5.7)

can be easily implemented and efficiently computed. Estimating the parameter vectors

fs = [α̂s, σ̂s]
T , for all the pixels in Ω results in two parameter images corresponding to

the two model parameters. The normalized histograms of each parameter image are

then concatenated into one long vector which is used as the feature vector of the texture

image.

5.3 Conclusions

Depending on the required output, some vision applications may need rotation invariant

texture features. Rotation invariant features can be categorized as one of the omnidi-

rectional features or the rotation invariant directional features. In this chapter methods

of achieving rotation invariant features with the LPH descriptors are considered. Two

descriptors, namely RI-LPH and I-LPH features are introduced which belong to the

rotation invariant directional features and the omnidirectional features respectively. RI-

LPH descriptors achieve rotational invariance via a circular shifted neighbour method

and I-LPH features consider the IGMRF model to produce isotropic features. The per-

formance of these features in texture segmentation and classification will be investigated

in subsequent chapters.





Chapter 6

Texture Segmentation

This chapter considers the texture segmentation performance of the proposed texture

descriptors. Texture segmentation involves dividing an image into different regions based

on the texture characteristics. Texture discrimination as well as the region boundary

localization are two main considerations in texture segmentation. This chapter deals

with evaluating local parameter histogram descriptors in texture segmentation.

6.1 Default Variable Setting

The texture feature extraction process relies on few pre-defined variables which need to

be adjusted manually. The values assigned for these variables are kept constant in all

the experiments reported throughout this chapter unless stated otherwise.

For the formulation of LPH descriptors a neighbourhood size n should be defined. The

neighbourhood size is kept as small as possible and set to n = 3 in this study. This is

same as using a second order neighbourhood system with GMRFs which is commonly

used in the GMRF literature. The estimation window size is selected as w = 2n− 1 to

achieve consistency as discussed in Chapter 4. Thus, w = 5 is used when n = 3.

For RI-LPH and I-LPH descriptors, the radius r = 1 and the number of neighbours

p = 8 is used. The estimation window size is calculated similar to the LPH descriptors.

When r is given the value of n is n = 2r + 1. Therefore, the estimation window size in

terms of r is w = 4r + 1 and here it is w = 5 when r = 1.

The local histogram construction window size b should be properly selected to minimize

boundary localization errors while maximizing texture discrimination. Our experiments

indicate that a window size in the range of b = 9 to b = 23 works well for fine to compar-

atively large texture patterns. Hence, b = 11 is selected for the following experiments.

The number of bins for constructing a parameter histogram is fixed to bins = 10. The
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bin images are smoothed using an average filter of size 7× 7 as an additional post pro-

cessing stage. The regularization parameter is set to c = 1. For extracting adaptive

TGMRF features n = 3 and w = 21 is used following GMRF literature.

For semi-supervised segmentation, the k-means clustering algorithm is employed with a

given number of clusters k. The k-means clustering algorithm is used here to empha-

size the discriminative power of the texture descriptors alone, without inquiring much

reinforcement from the segmentation method to the resulting segmented images. The

L1-norm distance metric between histograms is used to measure the difference of two

local parameter histograms. The k-means clustering algorithm disregards the spatial de-

pendency property of adjacent neighbour labellings. Therefore, the spatial coordinates

of the pixels are also used as two additional features which is a common technique used

to overcome the negligence of spatial adjacency with k-means clustering based segmen-

tation (Jain and Farrokhnia, 1990). The number of texture regions k is input by the

user according to the number of texture types observed on the mosaic image.

The percentage error rate se is calculated as the ratio between the number of incorrectly

segmented pixels and the total pixels in the image as given by the equation (6.1).

se =
no. of incorrectly segmented pixels

total pixels in the image
× 100% (6.1)

6.2 General Texture Segmentation

6.2.1 Texture Datasets

For general texture segmentation mosaic datasets are employed to achieve quantitative

evaluations of the proposed features. The mosaic images are constructed using four

commonly used texture databases namely, Brodatz (Brodatz, 1966), Prague (Haindl and

Mikeš, 2008), CUReT (gray) (Dana et al., 1997) and UIUC (Lazebnik et al., 2005). Gray-

scale mosaic images comprising four different texture regions are constructed. We refer

to these datasets as BRODATZ, PRAGUE, CURET and UIUC respectively, throughout

this chapter. Some sample mosaic images from each dataset are shown in Figure 6.1.

BRODATZ, PRAGUE, CURET and UIUC mosaic datasets are comprised of 15, 60,

1380 and 240 mosaic images respectively. BRODATZ and CURET datasets contain fine

to medium textures. PRAGUE and UIUC datasets contain fine to relatively large scale

textures. CURET dataset contains many isotropic and similar looking texture classes.

6.2.2 Comparison to TGMRF Descriptors

One of the main objectives of this research is to demonstrate that by formulating local

parameter distributions, improved descriptive texture descriptors compared to TGMRF
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Figure 6.1: Sample mosaic images based on (a) BRODATZ, (b) PRAGUE, (c)
CURET, and (d) UIUC textures.

Table 6.1: Segmentation error, se(%) for general texture segmentation.

Dataset se(%)
TGMRF LPH RI-LPH I-LPH

BRODATZ median 28.2 2.31 1.66 2.16
IQR 9.01 0.92 1.08 1.85

CURET median 27.9 4.33 2.47 2.55
IQR 10.6 2.80 2.36 2.14

PRAGUE median 32.6 5.20 7.55 10.9
IQR 11.2 5.01 7.73 10.8

UIUC median 36.0 7.84 7.69 10.3
IQR 7.22 7.88 8.08 6.91

features can be constructed. Another objective is to examine the generalized perfor-

mance of current TGMRF features on large datasets containing a variety of textures,

specially medium to large scale texture patterns and deterministic textures.

First of all, the texture features are extracted from the mosaic images and then seg-

mented using k-mean clustering algorithm. Next the se of each segmented mosaic image

is calculated. The median of se and the interquartile range (IQR) are then calculated

for each of the datasets. The results are shown in Table 6.1. The median is a more ro-

bust measure than the mean in this situation where texture segmentation is performed,

because outlier values can effect the calculation of the mean. Outlier values which

correspond to undesirably high se values may occur in the individual mosaic image

segmentation tasks depending on the degree of difficulty of discriminating component

textures in the mosaic image.
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From Table 6.1, it is clearly observed that the local parameter distribution based fea-

tures, LPH, RI-LPH, I-LPH descriptors outperform the discriminative power of adap-

tive TGMRF features. Among the local parameter distribution based features, the

RI-LPH features perform slightly better than the other two descriptors. On average

se of TGMRF descriptors is generally high and compared to BRODATZ and CURET

datasets, the PRAGUE and UIUC datasets have a higher se. This may occur because the

PRAGUE and UIUC datasets in general have relatively large texture patterns than the

BRODATZ and CURET datasets. The small model order n = 3 used to construct the

TGMRF descriptors may be inadequate to characterize the larger texture patterns. Also

the PRAGUE dataset has challenging similar-looking component textures which could

not be clearly differentiated by TGMRF descriptors which undergo an over-smoothed

estimation process.

Considering the local parameter distribution based features, higher se are reported for

PRAGUE and UIUC datasets compared to the BRODATZ and CURET datasets similar

to the TGMRF descriptors (see Table 6.1). However, the se is significantly lower than

the that obtained for TGMRF descriptors. The IQR values are also comparatively lower

than that of TGMRF descriptors conveying more stable and robust segmentation results.

The PRAGUE and UIUC datasets in general have many directional texture patterns

compared to BRODATZ and CURET datasets that are comprised of relatively fine and

isotropic textures. Thus, I-LPH descriptors, which are suitable for more isotropic tex-

ture discrimination, perform well on BRODATZ and CURET datasets, however produce

increased se for PRAGUE and UIUC datasets (see Table 6.1). A similar scenario can

be observed on RI-LPH descriptors suggesting that the procedure of achieving rotation

invariance may tend to affect negatively on the discriminative power of the features.

Overall it seems that in texture segmentation, RI-LPH descriptors do not have a signifi-

cant advantage over LPH descriptors as in a texture classification task which we will see

in the next chapter. Therefore, features that are not rotation invariant may sometimes

perform as good as its rotation invariant version in texture segmentation tasks.

6.2.3 Comparison to Other Texture Descriptors

In this section, we compare the segmentation performance of proposed features with

other standard texture descriptors. The local binary patterns (LBP) is one of the popular

state-of-the-art structural texture descriptors in texture analysis (Ojala et al., 2002).

Also filter based Gabor texture descriptors are another well known method in texture

analysis which closely relates to the biological vision system (Liu and Wang, 2003). These

methods have been extensively analysed and used in many studies and applications in

image processing and computer vision (Zhang et al., 2002; Sagiv et al., 2006; Liao and

Chung, 2007; Sørensen et al., 2010; Zhu et al., 1998; Ahonen and Pietikäinen, 2008;

Varma and Zisserman, 2009; Waller et al., 2011; Guo et al., 2010). Some studies have also
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pointed out that these texture features can perform better than the TGMRF features

(Ojala et al., 2001; Hadjidemetriou et al., 2003; Pietikäinen et al., 2000; Liu and Wang,

2003). Therefore, rotational invariant uniform local binary patterns (LBP) (Ojala et al.,

2002) and spectral histograms (SH) (Liu and Wang, 2003) are employed in our study

for the comparison. These features represent structural and spectral texture feature

domains respectively and are also constructed based on local feature distributions.

For the filter based approach 52 filters are selected. Finding the correct filter set for the

filter based approach is challenging. The filter set used here includes,

• 36 Gabor filters with six frequencies and six orientations

- frequencies, f = [0.14, 0.20, 0.23, 0.27, 0.30, 0.36] achieved according to fre-

quency selection method proposed by Zhang et al. (2002)

- orientations, θ = [0◦, 30◦, 60◦, 90◦, 120◦, 150◦]

• 8 Gaussian filters

- standard deviation, σ = [
√

2/2, 1, 2, 3, 4, 5, 6, 10]

• 8 Laplacian of Gaussian filters

- standard deviation, σ = [
√

2/2, 1, 2, 3, 4, 5, 6, 10] (Zhu et al., 1998)

The filter responses are contrast normalized according to Varma and Zisserman (2005).

Each response image is converted to the corresponding spectral histogram features. i.e.

the normalized histograms of the filter responses are used as the texture features (Liu and

Wang, 2003). Features at each pixel are required for segmentation and are obtained by

sliding window method. The histogram calculation window size of b = 11 is employed to

calculate the pixel-wise features and coordinates are also used as two additional features,

similar to the local parameter histogram based segmentation.

The rotational invariant uniform local binary patterns are calculated according to Ojala

et al. (2002) and are implemented as in Heikkila and Ahonen (2012). The normalized

histograms of local binary patterns are constructed using a histogram calculation window

of size b = 11. Features from all three resolutions (r, p) = (1, 8), (2, 16), (3, 24) are jointly

used as final feature vector of a pixel. At each resolution, bins = 10, 18, 26 are used

respectively as suggested in Ojala et al. (2002). The coordinates are also used as two

additional features.

Our interest is on the texture features rather than the segmentation algorithm. There-

fore, k-means clustering algorithm is kept constant as the default segmentation algo-

rithm. However, other improved segmentation methods could further improve the seg-

mentation results reported here. Also we have intentionally avoided using intensity
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Figure 6.2: Segmentation error (se%) for mosaic datasets based on,(a) BRO-
DATZ, (b) CURET, (c) PRAGUE and (d) UIUC textures.

information directly in any of the methods considered here and completely focused on

texture based features for segmentation.

Figure 6.2 illustrates the box plots of se achieved for each dataset. In general we see from

Figure 6.2 that LPH, RI-LPH and I-LPH descriptors have performed better compared

to the other methods. BRODATZ and CURET datasets achieve lower se compared to

the PRAGUE and UIUC datasets conveying that all descriptors better perform on more

fine and more isotropic textures. The LBP descriptors achieve higher accuracies in clas-

sification (Ojala et al., 2002), however in these segmentation tasks their performance is

lower than the other methods. The main reason for this may be that LBP features have

less boundary localization quality than other features (Figure 6.3). Figure 6.3 shows

sample segmented images from each of the methods. From Figure 6.3 it is observed

that boundary localization of LBP with k-mean clustering algorithm is comparatively

poor. Considering Figure 6.3e it is further noticed that LBP descriptors are less capable

of capturing larger texture patterns. Also the construction of uniform LBP involves a

small loss of discriminative information compared to rotation invariant LBP (Mäenpää

and Pietikäinen, 2005). SH features perform better compared to LBP (see Figure 6.2),

however larger filter sizes are required to capture larger patterns which in turn cause

boundary localization errors (see Figure 6.3f). Nevertheless, SH features perform better
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on larger textures as well as fine textures compared to LBP descriptors (Figure 6.2).

Compared to LBP and SH descriptors, local parameter distribution based features per-

form better and are more capable of dealing with relatively larger texture patterns.

Furthermore they have achieved a better boundary localization with the simple k-means

clustering algorithm.

Figure 6.3: (a) Three randomly selected mosaic images. Segmented images for
selected mosaic images using, (b) LPH, (c) RI-LPH, (d) I-LPH, (e) LBP and
(f) SH texture descriptors. (se%) is given below each image.

In local parameter distribution based methods, a value for strength of local interactions

are estimated. However, in LBP method a thresholding scheme is used to create binary

signatures for neighbour interactions based on intensity differences. This reason could

explain the better performance of local parameter based features over LBP features.

Also construction of uniform binary patterns loose some texture information because of

the restriction on the number of different patterns (Ojala et al., 2002).

For SH descriptors choosing an optimal filter set may lead to more accurate results.

However, despite using a large filter set, SH descriptors have not performed better than

LPH or RI-LPH descriptors. Therefore, local parameter distribution based features,

specially LPH and RI-LPH features form more robust discriminative features compared

to SH descriptors. Moreover, as seen in previous subsection LPH and RI-LPH descriptors

have almost similar performances in texture segmentation and I-LPH features are more

suitable for fine isotropic textures.
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6.3 Variable Evaluation

Following subsections will examine the behaviour of local parameter distribution based

features with different variables associated with their construction. A randomly selected

subset of BRODATZ and CURET datasets are used for this purpose. All the other

variables are kept in the default setting explained in section 6.1 except for the variable

of interest.

6.3.1 Estimation Window Size

Figure 6.4: Segmentation error se with changing estimation window size w. (a)
LPH on BRODATZ, (b) LPH on CURET, (c)I-LPH on BRODATZ, (d) I-LPH
on CURET.

The estimation window size w is a critical variable in the construction process of local

parameter distribution based features. The value of w should be small enough to cap-

ture structural details about the texture. When the value of w increases the estimates

start to smooth out. Figure 6.4 illustrates how se increases with increasing estimation

window size for LPH and I-LPH descriptors. The higher values of w here does not

correspond to the TGMRF features. These are the segmentation results based on distri-

butions of local parameters. w = 21 corresponds to the setting which TGMRF adaptive

features are estimated. When using the TGMRF features it is seen that the se is around

25−30% for BRODATZ and CURET datasets (see Table 6.1). But Figure 6.4 shows that

constructing histograms of parameter estimates can reduce the se to roughly 5 − 15%.
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Thus, local distribution construction contributes positively towards formulating a bet-

ter texture feature. Additionally, smaller w values further improves the segmentation

performances. Therefore, the rule introduced in Chapter 4 for selection of w to ensures

a localized estimation process has further improved the segmentation results. The in-

consistencies of using small estimation windows are alleviated by regularization. Hence,

smaller w values improve the discriminative power of the local parameter distribution

based features.

6.3.2 Regularization Parameter

Figure 6.5: Segmentation error se with changing regularization parameter value
c. (a) LPH on BRODATZ, (b) LPH on CURET, (c)RI-LPH on BRODATZ, (d)
RI-LPH on CURET.

Regularization is critical in small model estimation where smaller estimation windows

are employed leading to small sample sizes for the estimation process. Regularization

is necessary to overcome the ill-posed problem associated with normal equations as dis-

cussed in Chapter 4. Thus, the main purpose of using regularization here is to assure the

invertibility in least square problem rather than regularization of over-fitting problem.

The default regularization parameter value is previously set to c = 1 heuristically based

on prior knowledge of regularization techniques (Björkström, 2001).

Figure 6.5 demonstrates the effects of changing c on segmentation results achieved by

LPH and RI-LPH descriptors. It is clear from Figure 6.5 that for a large range of c

values segmentation error se remains fairly small. However, there exists a upper limit
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for c value and according to Figure 6.5 it is in the range more than c = 105. Therefore,

a value between 10−1 to 105 could be selected for c. Higher values of c reduce the

estimated values of parameters towards zero. Thus, here c = 1 is an acceptable value

for texture feature construction.

6.3.3 Histogram Calculation Window Size

Figure 6.6: Segmentation error se with changing histogram calculation window
size b. (a) LPH on BRODATZ, (b) LPH on CURET, (c)I-LPH on BRODATZ,
(d) I-LPH on CURET.

Histogram calculation window size b defines the trade off between boundary localization

and discriminative ability. Too small values for b could not capture the homogeneous

characteristics of the texture and does not well represent the texture. Too high values for

b on the other hand can capture the homogeneous texture pattern well, however increase

the errors near the boundaries. Figure 6.6 shows the se with changing b for LPH and I-

LPH features. It is clear from Figure 6.6 that a too small histogram calculation window

size causes higher se because it cannot capture regional properties of the texture well.

Nevertheless, when b is very large there is again a tendency to increase the se due to

boundary localization errors. According to Figure 6.6 there exists a range of suitable b

values. The b values between b = 9 to b = 21 is an acceptable range of b which properly

compromises between discriminative ability and boundary localization problem. The

selected default value, b = 11 for construction of local distribution based features is

therefore a proper choice for histogram calculation window size.
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6.4 Natural Image Segmentation

Natural images have textures that contain more noise and ambiguous variations. They

also contain textured regions as well as smoothed and near piece-wise constant intensity

regions. In human perception of natural scenes both colour and texture are efficiently

processed to give an accurate understanding of the image regions. The dominating

property of region recognition interchanges between colour and texture. For example,

smoothed regions may be predominantly identified by their colour and regions with

patterns are predominantly recognized by texture. Therefore, we integrate the colour

information of the image to the texture features obtained from the gray-scale image.

Colour and texture features are extracted separately.

The gray-scale images are used to extract the texture features. Employing texture

features from the gray-scale version of the image is efficient and sufficient to capture

the required properties of the texture. The default variable setting for LPH, RI-LPH

and I-LPH descriptors are maintained. The color features are based on local averaged

intensity histogram. First the color image is filtered using an averaged filter of size

w × w. This gives the averaged intensity at each pixel which also corresponds to the

mean intensity value subtracted from the estimation window when estimating the small

model parameters (recall that mean zero image region Ωs is used to estimate parameters).

On the averaged filtered image, by sliding a histogram calculation window of size b× b
the local averaged intensity histograms are achieved. The values of w and b are same as

the default values used in calculating the texture features.

When dealing with natural images it is observed that using c = 1 is not a suitable choice

for controlling the regularization. Figure 6.7 illustrates the se with the regularization

parameter c for two sample natural images and a general texture mosaic image. Be-

cause natural images have more variations in the textures and noisy components, the

foreground and background regions have substantial intra-class variations. By control-

ling the regularization process we can penalize some degree of intra-class variations and

still achieve fairly acceptable segmentations for the natural images. This is because the

regularization process reduces the over-fitting quality of the small models and produces

more generalized estimates for the small model parameters.

Considering Figure 6.7(b) it can be observed that for the two natural images, img1

and img2, se is large when c is small suggesting that inhomogeneities in the textures

interfere with the segmentation problem. However, when c is between 10
3
2 to 104 the se

is comparatively small implying intra-class variations have been smoothed out for some

degree to achieve a much better segmentation. Nevertheless, beyond c = 104 the se

again starts to increase conveying that estimates are over regularized and the texture

descriptors no longer have discriminative capabilities. According to the degree of noise

and distortion in the image the value of c can be controlled to obtained a satisfactory

subjective segmented image. For general texture images such as img3 in Figure 6.7,
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Figure 6.7: Effect of regularization parameter c. (a) Segmented images for
different c values, (b) segmentation accuracy with c for three selected images.

the se is small throughout the range of c because the texture patterns are more regular

without much disturbances from the outliers compared to that of natural images.

Thus, the regularization parameter value is increased to c = 100 for natural image

segmentation. This setting performs well on many natural image segmentation problems

where images are acquired under regular camera settings. The remaining variables are

kept at the default setting (section 6.1). The results of colour image segmentation for

sample images from Berkely dataset (Martin et al., 2001) are shown in Figure 6.8. The

segmentations are achieved using LPH, RI-LPH, I-LPH and LBP descriptors. Note that

the segmentation algorithm is the k-means clustering algorithm.

The segmentation results from LPH and RI-LPH descriptors with the averaged colour

intensity histogram perform well compared to other descriptors (see Figure 6.8). I-

LPH has perform well on more isotropic textures including smoothed intensity regions.

Boundary localization is better in LPH and RI-LPH descriptors than that of I-LPH

and LBP. LBP descriptors with the averaged colour intensity histogram have difficulties

in discriminating more similar textures than the other methods. Here our objective
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Figure 6.8: Natural image segmentation results achieved by different texture
features. (a) Original image, (b) LPH (c) RI-LPH (d) I-LPH (e) LBP descrip-
tors.

is to compare the performance of different descriptors under same setting rather than

achieving perfect segmentations. However, using more advanced colour features and

segmentation algorithms may further improve the results. More segmented images are

shown in Figure 6.9.

6.4.1 Comparison to Other Methods

The semi-local region descriptor introduced by Houhou et al. (2009) and integrated

active contours with Gabor features proposed by Sagiv et al. (2006) are used to compare

the natural image segmentation performances. Both of these methods use gray-scale
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Figure 6.9: Colour image segmentation results obtained by using RI-LPH de-
scriptors as texture features and k-mean clustering algorithm for segmentation.

natural images with the active contours as the segmentation algorithm. Therefore, we

exclude the color features from the feature set and use the integrated active contours

segmentation method proposed in Sagiv et al. (2006) for segmentation. Figure 6.10 shows

some segmented results using RI-LPH descriptors with the results reported by semi-

local region descriptors and Gabor feature based integrated active contours methods.
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The results in Figure 6.10 shows that using RI-LPH descriptors are comparable with

the results from semi-local region descriptors and in general better than the Gabor

feature based integrated active contours. Notice that Gabor feature based integrated

active contours and RI-LPH descriptors use the same segmentation algorithm, i.e. the

integrated active contours (Appendix A).

6.5 Supervised Texture Segmentation

The segmentation tasks that has been carried out so far can be considered as semi-

supervised segmentation problems. This is because they do not employ any training

data to classify pixels in the image and use a clustering algorithm instead, which will

divide the pixels into correct class based on the texture features. The segmentation

process is not entirely unsupervised because the number of regions or the number of

clusters need to be manually input by the user. There exist advanced segmentation

algorithms which can automatically understand the number of segments and does not

require user intervention to specify number of clusters. However, here our main concern

is on the feature extraction method therefore such segmentation algorithms are not

considered here.

It is interesting to carry out a supervised segmentation process where the user specifies

the texture of interest and then the texture segmentation algorithm will segment out the

regions in the image containing the texture of interest. Such a method have a practical

value in image processing and worth investigating.

The process is supervised in the sense that a supervised training patch of interested

texture, extracted from the input image itself, is fed into the system to calculate train-

ing data. The global parameters are fixed in the default setting for texture feature

extraction.

The method is illustrated in Figure 6.11. First the supervised patch area is entered by

the user by drawing a rectangular selection area which sufficiently captures the texture

of interest. The coordinates of this area are stored by the algorithm for later use. Next

the texture feature extraction is carried out for the whole image as previously discussed.

RI-LPH descriptors are employed. Once the features are extracted for all pixels, the

previously stored coordinates are used to identify the training feature vectors from the

feature stack. Then the L1 norm distance between a feature vector of a pixel to its

nearest training feature vector is calculated. The calculation of minimum distance to

training models for all the image pixels results in the distance map. Figure 6.12b shows

some distance maps obtained for some sample natural images. On the distance map

lower values mean that the pixel is more probable to belong to the texture of interest.
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(a) (b) (c) 

Figure 6.10: Gray scale natural image segmentation with active contour segmen-
tation algorithm. (a) RI-LPH descriptors (b) Semi-Local Region Descriptors
(Houhou et al., 2009) (b) Gabor Features (Sagiv et al., 2006).
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Figure 6.11: Supervised texture segmentation process.

After achieving the distance map, the integrated active contour segmentation algorithm

is employed to find the boundaries of the region with the texture of interest (Sagiv et al.,

2006). The segmentation results are shown in Figure 6.12c. Figure 6.12c demonstrates

that the supervised segmentation method has been able to select out the regions with

the texture of interest. Results are satisfactory, however it is seen that the final segmen-

tation depends on how good the supervised training patch is. If the texture in the image

have comparatively more variations which are not captured by the supervised training

patch, sometimes the final segmentation have more errors. This problem can be alle-

viated by using more training patches possibly from the same image or other images if

available. This technique is used in Chapter 8 in a medical problem and will be further

examined. However, the proposed supervised segmentation method perform fairly well

on segmenting out a region of specified texture.

6.6 Conclusions

The texture segmentation performance of improved texture descriptors proposed in this

work is evaluated on commonly used general texture datasets and natural images. The

local parameter distribution based features LPH, RI-LPH and I-LPH achieve signifi-

cantly better performance compared to the TGMRF features. RI-LPH and LPH fea-

tures have roughly similar performance in texture segmentation. Furthermore, I-LPH

descriptors relatively perform well on more isotropic textures. Comparisons with LBP

and SH descriptors, which are also based on local feature distributions, illustrate that

LPH and RI-LPH descriptors form more robust discriminative texture features. Success-

ful natural image segmentation can be also achieved using the proposed features. The

segmentation error se with changing size of estimation window w, histogram calculation

window b and the regularization parameter c are also investigated. The error se grad-

ually increases with increasing w because the degree of parameter smoothing increases

with the increasing w. On the other hand, there is a suitable range of values for b and

c which have been used to select the default setting of the variables when constructing

the features.
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(a) (b) (c) 

Figure 6.12: Supervised texture segmentation.(a) Original image (the selected
area for training is marked by red square), (b) distance map, (c) final segmen-
tation.
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Texture Classification

Texture classification categorizes an unknown texture image as belonging to one of a

set of known classes depending on previously known training data. Classification can

explain how well the features will perform in discriminating many texture classes, usually

more than the number associated with a segmentation problem. This chapter focuses

on classification performance of local parameter distribution based texture descriptors.

7.1 Default Variable Setting and Classifier

The default setting describes the pre-assigned variable values required for the feature ex-

traction process and classification. If different values are used, it is explicitly mentioned

in the content of the following subsections.

For construction of LPH descriptors n = 7 is used with w = 2n − 1 which is w = 13.

For RI-LPH and I-LPH descriptors joint features from three resolutions r = 1, 2, 3 with

number of neighbours in each resolution p = 8 is employed. The regularization parameter

is kept as c = 1. For the histogram construction, the whole texture image is used which

is equivalent to b = imgSize. For TGMRF descriptors, a neighbourhood size of n = 7

is employed. The estimation window size, when it is texture classification, usually takes

the size of the image, therefore w = imgSize is used.

In the classification experiments k-nearest neighbour (kNN) classifier with k = 1 is

employed with the L1-norm distance metric. The kNN classifier is the simplest classifier

possible and hence there is no special contribution from the classifier to the classification

task. i.e., if the features give higher classification accuracies with kNN classifier, there

is a higher chance of having even better results by more complex classifiers like support

vector machines. The classification accuracies obtained here are for 100 classification

problems repeated by choosing different training and test sets which are achieved by

randomly dividing the dataset into equal class sizes (Varma and Zisserman, 2009). This

75
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Table 7.1: Summary of texture datasets used for classification.

dataset no. of images total image
name classes per class images size(pxls)

BRODATZ 32 20 640 64× 64
OUTEX 24 180 4320 128× 128
CURET 61 92 5612 200× 200

means that the training set includes rotation and scale variant instances of each texture

class. The mean and standard deviation of accuracies over the 100 iterations are reported

for conveying the statistical significance. Later on, invariant texture analysis is also

considered where training set comprises of one rotated version of texture samples and

the test set contains all texture samples from rest of the rotation angles.

7.2 Texture Datasets

Three commonly used datasets are employed for classification. A subset of Brodatz

textures representing different homogeneous textures in the original Brodatz texture

dataset was selected (Brodatz, 1966; Chen et al., 1995). This subset of Brodatz textures

comprised of 32 texture classes similar to the dataset used in other studies including

Valkealahti and Oja (1998) and Ojala et al. (2001). The full OUTEX TC 00000 dataset

having 24 OUTEX texture classes (Ojala et al., 2002) available from Outex Texture

Database (2007) and full CUReT dataset (Dana et al., 1997) which comprises of 61

different texture classes are also used in the classification experiments. In this chapter,

BRODATZ, OUTEX and CURET are used to refer to the datasets used in classification.

BRODATZ data set was also used as the validation dataset for variable tuning.

The number of texture classes and samples associated with each dataset is shown in

Table 7.1. All the images are histogram equalized before extracting the texture features

as an additional pre-processing stage.

The 32 classes representing BRODATZ dataset are shown in Figure 7.1a and 12 sample

images from two texture classes are shown in Figure 7.1b.

The OUTEX dataset contains textures from 9 different rotation angles and each angle

contains 20 samples, therefore resulting 180 samples per class. The 24 OUTEX texture

classes are shown in Figure 7.2a and 12 sample images from two texture classes are

shown in Figure 7.2b.

The CURET dataset have rotation, scale and illumination variation in a class texture

data. The 61 CURET texture classes are shown in Figure 7.3a and 12 sample images

from two texture classes are shown in Figure 7.3b. Some texture classes are relatively
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(a) 

(b) 

Figure 7.1: BRODATZ Dataset. (a) 32 texture classes, (b) samples from two
random classes.

similar to each other making the classification task a challenging problem. Also CURET

dataset has a large intra-class variation (Figure 7.3b).

These three datasets contain a large diversity of textures including directional, isotropic,

large, fine, stochastic and deterministic characteristics. Thus, they are employed in our

classification experiments to understand the general performance of the proposed texture

descriptors. Only the texture cues are used in classification and direct use of intensity

information are neglected.

7.3 Classification Results

7.3.1 Comparison to TGMRF Descriptors

First of all, the performance of GMRF based texture descriptors with neighbourhood

size is examined. Figure 7.4 illustrates the classification accuracies for TGMRF and LPH

descriptors with n and the classification accuracies for RI-LPH and I-LPH descriptors

with r. From Figure 7.4 a,c and e it can be seen that the accuracy increases in general
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(a) 

(b) 

Figure 7.2: OUTEX Dataset. (a) 24 texture classes, (b) samples from two
random classes.

for three datasets when neighbourhood size n increases for both TGMRF and LPH

features. However, roughly after n = 9 the accuracy does not increase any more and it

either saturates or declines. This conveys that low order features play a main role in

texture characterization. Also LPH descriptors achieve a significant improvement over

TGMRF texture descriptors.

From Figure 7.4 b,d and f on the other hand, a different behaviour can be observed for

RI-LPH and I-LPH descriptors with r. In general for the three datasets, the accuracy

slightly decreases or is the same with increasing r. Here the neighbourhoods represents a

circular ring at r distance from the centre pixel and we assumed p = 8 neighbours in each

level. Therefore, when the distance to the neighbours increases the accuracy decreases.

The nearby neighbour pixels have a higher correlation with considered pixel relative to

the far away neighbours. This implies that nearby neighbours are more important to

formulate the feature descriptors which have stronger interactions with the considered

centre pixel. However, the rate of accuracy reduction with r is small. Furthermore,

Figure 7.4 illustrates that RI-LPH descriptors perform better than I-LPH descriptors.

Figure 7.4 demonstrates that when the features from different neighbourhoods are inte-

grated, a higher classification accuracy can be achieved. Therefore, for RI-LPH and LPH

descriptors r = {1, 2, 3} feature sets are chosen as the texture descriptors. For TGMRF
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(a) 

(b) 

Figure 7.3: CURET Dataset. (a) 61 texture classes, (b) samples from two
random classes.

and LPH however, we are limited to use n = 7 without integrating features from differ-

ent neighbourhood sizes. This is mainly because when n = 7, it gives satisfactory levels

of classification accuracies and it is also necessary to consider the computational cost

associated with large neighbourhood sizes with many neighbours. Table 7.2 illustrates

the classification accuracy of each descriptor under this setting which is also the default

setting mentioned previously.

The results in the Table 7.2 are also graphically illustrated in Figure 7.5. It is seen

from Figure 7.5 that RI-LPH descriptors perform better compared to other features

because it is both rotation invariant and well suited for directional textures. Note that

this experiment does not illustrate rotation invariant capabilities of RI-LPH descriptors

properly, because we have included rotation variant instances in the training data. LPH

and I-LPH descriptors have almost similar performances on each of the three datasets.

As expected, local parameter distribution based features LPH, RI-LPH and I-LPH de-

scriptors have more discriminative ability than TGMRF texture descriptors. The MRFs
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Figure 7.4: Texture classification accuracy with model order n and radius r.
(a-b) BRODATZ, (c-d) OUTEX, (e-f) CURET dataset.

Table 7.2: Classification accuracies: Comparison with TGMRF descriptors.
The mean classification accuracy and the standard deviation achieved from 100
repetitions of classification problem with equal size randomly divided training
and test sets.

Dataset method
TGMRF LPH RI-LPH I-LPH

BRODATZ 68.1 92.4 98.0 94.4
±2.10 ±1.55 ±1.03 ±1.25

OUTEX 79.3 97.6 99.7 99.4
±2.11 ±0.87 ±0.11 ±0.18

CURET 67.4 89.1 95.6 89.4
±0.76 ±0.53 ±0.36 ±0.57

are powerful statistical tools of texture modelling and synthesis, however, a number of

other studies have also reported their poor performance in texture segmentation and

classification (Ojala et al., 2001; Hadjidemetriou et al., 2003). In texture classification

and segmentation features should be more discriminative, and local parameter estima-

tion and their distributions have lead to a solution to improve statistical model based
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Figure 7.5: Texture classification accuracy: Comparison with TGMRF descrip-
tors.

texture features.

7.3.2 Comparison to Other Texture Descriptors

The comparison of classification accuracies with accuracies from other texture feature ex-

traction methods are considered here. The results are shown in Figure 7.6. The method

SH uses the spectral histogram features and the method LBP employs the uniform local

binary patterns as explained in Chapter 6. For construction of histograms the whole

texture image is used. i.e., b = imgSize similar to local parameter distribution based

features. Direct intensity information is not employed here, allowing accuracy compar-

isons purely based on texture information. The classification accuracies are illustrated

in Figure 7.6 for each dataset.

Figure 7.6: Texture classification accuracies: Comparison with other texture
descriptors. (a) BRODATZ, (b) OUTEX, (c) CURET dataset.

Referring to Figure 7.6 it shows that RI-LPH features give the best classification ac-

curacies for all datasets. I-LPH descriptors have performed comparatively lower than

RI-LPH, because I-LPH descriptors ignores directional information and is more suitable

for isotropic textures. For SH descriptors a reduction of accuracy is observed. This

may be the case that the filter set we have chosen is not optimal, despite the fact that

it is a fairly large filter set. However, optimal filter selection is a challenging process.
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Table 7.3: Classification accuracies (%) reported in the literature for a verity of
existing texture descriptors.

method dataset
BRODATZ OUTEX CURET

RI-LPH1 98.1 99.7 97.0
TGMRF (7th order) (Ojala et al., 2001) 71.3
LBP (Ojala et al., 2002) 99.5
VZ-joint (Varma and Zisserman, 2009) 97.2
VZ-MR8 (Varma and Zisserman, 2005) 96.3
signed difference (Ojala et al., 2001) 96.8
derivative filters (Tou et al., 2009) 84.7
GLCM (Tou et al., 2009) 85.7
higher order GLCM (Ojala et al., 2001) 94.4
Gabor features (Patil et al., 2013) 91.8
Gabor features (Ojala et al., 2001) 93.6
completed LBP (Guo and Zhang, 2010) 99.1 97.4

1 integrating average intensity histogram as discussed in Chapter 6.

Also we have intentionally avoided using the intensity histogram, which may reduce the

performance of SH descriptors. Nevertheless, LBP descriptors perform well for all the

three datasets. Further comparisons of the texture descriptors including other texture

descriptors are shown in Table 7.3. Clearly TGMRF descriptors have a poor generalized

performance (Table 7.3), however through this research we have been able to formulate

improved GMRF based texture features which produce comparable results with existing

texture descriptors.

7.3.3 Rotation Invariant Analysis

The performance of rotation invariant texture classification with the proposed texture

features is considered next. This experiment can determine whether the extension of

LPH descriptors to the rotation invariance features through RI-LPH and I-LPH de-

scriptors actually achieve robust performance against rotation variation. We use the

OUTEX dataset for this task, which has textures from nine different angles namely,

0, 5, 10, 15, 30, 45, 60, 75 and 90 degrees. Each angle has 20 sample images, hence 180

(= 9 × 20) samples per class (see table 7.1). The texture samples from one particular

angle is used for training and rest of the samples are used for testing. i.e. 20 samples

from each class are used in the training set and 160 samples from each class are used in

the testing set. The classification accuracies are shown in Figure 7.7.

It can be seen from Figure 7.7 that RI-LPH and I-LPH descriptors achieve reasonably

good rotation invariance giving better classification accuracies compared to original LPH

descriptors. The results in Figure 7.7 conveys that the training data from one rotation

angle of the texture can successfully classify the rest of the dataset correctly by using
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Figure 7.7: Classification accuracy with the training angle θ.

Table 7.4: Classification accuracies achieved with different rotation angles as
the training set (maximum and minimum values are in bold font).

training descriptor
angle LPH RI-LPH I-LPH

0◦ 56.7 94.4 94.2
5◦ 60.5 94.2 93.9
10◦ 61.9 93.5 94.5
15◦ 61.7 95.3 94.6
30◦ 47.5 95.2 93.9
45◦ 44.8 90.1 91.4
60◦ 43.0 91.5 92.5
75◦ 46.8 94.1 89.2
90◦ 45.4 89.7 82.7

RI-LPH and I-LPH descriptors. The classification accuracies are also shown in Table

7.4. In general, with the LPH descriptors which are not rotation invariant, the accuracy

remains between 40 − 60% across all the tests with different rotation angles for the

training set. However, with RI-LPH the accuracy maintains between 90 − 95% and

when I-LPH is used the accuracy stays between 80−95%. This means that the RI-LPH

and I-LPH descriptors can obtain good classification performances when the classifier is

trained using one rotation angle of texture and tested on samples from different rotaion

angles other than the one selected to train. Therefore, RI-LPH and I-LPH descriptors

can be employed as rotation invariant texture descriptors.

7.3.4 Time Consumption

In order to analyse the efficiency of each feature extraction method, the time consump-

tion for feature extraction is examined. Here, the time elapsed to extract texture features

from a texture image of size 200 × 200 in a Matlab R2013a environment running on a
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Figure 7.8: Time elapsed to extract texture features from a image of size 200×
200 using different texture feature extraction methods.

2.67 GHz CPU with 12GB RAM is reported. Figure 7.8 highlights the time consump-

tion comparison. From the Figure 7.8 it is observed that LPH, RI-LPH and I-LPH

descriptors are computationally expensive compared to the other features. This is one

of the weaknesses of local parameter distribution based features compared to TGMRF

descriptors. Because local parameter distribution based features involve local parame-

ter estimation at each pixel and additionally have a histogram construction stage, the

computational cost is relatively higher. Nevertheless, the difference between the com-

putation times of TGMRF features and LPH, RI-LPH and I-LPH descriptors are a few

seconds. Therefore, the computation of LPH, RI-LPH and I-LPH descriptors are still

practically reasonable.

7.3.5 Estimation Window Size

Next we look at the classification performance with changing size of the estimation win-

dow, w which is one of the critical variables in estimating small models. Figure 7.9

illustrates the classification accuracy with w for the three datasets BRODATZ, OUTEX

and CURET. Here, RI-LPH and I-LPH descriptors are considered with (r, p) = (1, 8)

setting. The RI-LPH and I-LPH descriptors have better performance when the estima-

tion window size is smallest possible (Figure 7.9) similar to the results from segmentation

in Chapter 6. When the estimation window is small the smoothing of local structural

features is minimum and therefore can achieve better performance with local parameter

distribution based features.
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Figure 7.9: Classification accuracy with estimation window size w. (a) RI-LPH,
(b) I-LPH. (for r = 1, p = 8 resolution).

7.3.6 Regularization Parameter

We have set the value of the regularization parameter manually as c = 1 in all the above

experiments. However, here we analyse the classification accuracy with c. Figure 7.10

shows the variation of accuracy with c for the three datasets achieved using RI-LPH

descriptors. When c is very large, it over smooths the parameter estimation process by

reducing the value of the estimates towards zero. Therefore, the discriminative ability

of the descriptors are slightly reduced. From Figure 7.10 it can be concluded that c = 1

is a proper choice for the regularization parameter for general texture classification with

RI-LPH descriptors similar to general texture segmentation.

Figure 7.10: Classification accuracy with the regularization parameter c for RI-
LPH descriptors (for r = 1, p = 8 resolution). (a) BRODATZ, (b) OUTEX, (c)
CURET dataset.
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7.4 Conclusions

Texture classification can explain how well the features will perform in discriminating

many texture classes, usually more than the number associated with texture segmen-

tation. We have analysed the classification performance of LPH, I-LPH and RI-LPH

features using popular texture datasets. The classification results demonstrate that the

RI-LPH features achieve slightly higher accuracies compared to LPH and I-LPH de-

scriptors. Also these accuracies are significantly higher than that of TGMRF features.

Furthermore, RI-LPH descriptors achieve better classification rates compared to SH fea-

tures and comparable results with LBP descriptors. Comparison with other methods

shows that RI-LPH features can achieve comparable classification rates with the state-

of-the-art performances. Rotation invariant classification results illustrate that RI-LPH

and I-LPH features can be employed as rotation invariant texture descriptors.



Chapter 8

Application to Emphysema

Quantification

In this chapter we apply the local parameter distribution based descriptors on a real

world application. Medical image processing is a key area of study where texture analysis

is highly valued. Here we look at how to perform lung tissue quantification to diagnose a

specific lung disease, given High Resolution Computed Tomography (HRCT) data using

the texture feature extraction method proposed in this study. Emphysema is a critical

lung disease causing extensive lung tissue destruction and is currently emerging as a

worldwide health problem. Here, the I-LPH descriptors are selected as the preferred

choice of texture descriptors because the parameter estimation of IGMRFs is simple

and fast compared to other MRFs and ideally suited for isotropic texture representation

which is the case with the considered medical condition. The approach is used to classify

between healthy lung tissue (NT) and two sub types of emphysema, namely centrilobular

emphysema and paraseptal emphysema. Local parameter distributions are more suitable

in this application because it requires capturing subtle pattern variations which are

crucial in tissue discrimination which may smoothed out by TGMRF descriptors. We

also focus on supervised lung tissue segmentation to achieve lung parenchyma pathology

distributions and quantification of emphysema and its subtypes.

8.1 Emphysema

Emphysema is a common lung disease which fatally disturbs the respiratory process due

to permanent destruction of the lung tissue. Emphysema belongs to a family of lung

diseases called Chronic Obstructive Pulmonary Diseases (COPD) which is defined as

slowly progressive obstructive lung diseases in which the air exchange is impaired by the

narrowing of the lower airways or destruction of alveoli.

87



88 Chapter 8 Application to Emphysema Quantification

28% 

12% 

11% 10% 

10% 

8% 

7% 

6% 

5% 
3% 

Heart disease

Lung cancer

Emphysema/
bronchitis
Stroke

Dementia and 
Alzheimer’s 
Flu/pneumonia

Prostate
cancer
Bowel cancer

Lymphoid
cancer
Throat cancer

20% 

18% 

15% 
10% 

10% 

9% 

7% 

4% 
4% 3% 

Dementia and 
Alzheimer’s 
Heart disease 

Stroke 

Flu/pneumonia 

Emphysema/  
bronchitis 
Lung cancer 

Breast cancer 

Bowel cancer 

Urinary disease 

Heart failure 

(a) (b) 

Figure 8.1: Leading causes of death in England and Wales, 2012. (a) mortality
rate for men, (b) mortality rate for women, in percentages. Produced using
data from Office for National Statistics (2013).

The main symptoms include shortness of breath, coughing, wheezing, weight loss and

the tightness in the chest. If left untreated it may cause respiratory failure or heart

failure. Typically the shortness of breath is worse on exhalation with a notable prolonged

duration and worsens over time. A barrel chest is a characteristic sign of emphysema,

but is relatively uncommon (Wikipedia, 2014; Duck, 2008).

Worldwide, COPD affects 329 million people or nearly 5% of the population. In 2011,

it ranked as the fourth-leading cause of death, killing over 3 million people (Wikipedia,

2014). The number of deaths is expected to increase due to higher smoking rates and the

aging population in many countries. The leading causes of death reported in England

and Wales in the year 2012 is shown in Figure 8.1. This gives a rough idea about the

serious impact of emphysema as a major health issue.

8.1.1 Causes of Emphysema

The main cause of emphysema is tobacco smoke. Of those with emphysema, 80% are

either current smokers or have previously smoked (Data fact sheet, 2003). The likeli-

hood of developing COPD increases with the total smoke exposure. In non-smokers,

secondhand smoking increases the risk of having emphysema.

Poorly ventilated cooking fires, often fuelled by coal or biomass fuels such as wood and

animal dung, lead to indoor air pollution and are one of the most common causes of

COPD in developing countries. Furthermore, people who live in large cities have a higher

rate of emphysema compared to people who live in rural areas (Wikipedia, 2014).

Intense and prolonged exposure to workplace dusts, chemicals and fumes increase the

risk of emphysema in both smokers and non smokers. In some professions the risks have

been estimated as equivalent to that of half to two packs of cigarettes a day.
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Figure 8.2: Structure of the human lungs (By courtesy of Encyclopaedia Britan-
nica, Inc., copyright 2006; used with permission.) (Encyclopaedia Britannica,
2006).

A genetic disorder called Alpa-1-Antitrypsin deficiency (AAT) also leads to emphysema,

but this is less common. The risk is particularly high if someone deficient in alpha 1-

antitrypsin also smokes. In the United States, AAT deficiency is the primary cause of

only 1% to 2% of cases of COPD (Duck, 2008).

8.1.2 Pathophysiology

The American Thoracic Society has define emphysema as ‘the permanent enlargement

of the air spaces, distal to the terminal bronchiole as a result of destruction of alveolar

walls without significant fibrosis’ (Lynch et al., 2000). Emphysema is characterized by

destruction of alveoli, its walls and elastic fibre. A brief explanation about pathophysi-

ology of emphysema is given in this subsection (Hasudungan, 2014).

The respiratory system consists of anatomical structures involved in ventilation and gas

exchange. It allows to breath oxygen and exhale carbon dioxide. The gas exchange

occurs through the alveoli, the tiny sacks-like structures distal to terminal bronchioles

(Figure 8.2).

The toxins in cigarette smoke or polluted air cause an immune response process in the

alveoli which releases chemicals that cause destruction of alveoli walls and the elastic

fibres (Figure 8.3). The destruction of alveoli walls reduce the effective area in the lung

for gas exchange. The elastic fibres allow recoiling during exhalation and inhalation.

The destruction of elastic fibre causes narrowing of bronchioles and reduced recoiling

of the alveoli which leads to trapped air inside the alveoli. The amount of trapped air

inside the alveoli increases with time and results in inflated alveoli. These changes cause
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Figure 8.3: (a) Illustration of normal alveoli and alveoli affected by emphysema
(By courtesy of Encyclopaedia Britannica, Inc., copyright 2013; used with per-
mission) (Encyclopaedia Britannica, 2013), (b) images of the normal lung and
the emphysema lung.

difficulty in breathing and in advance stages of emphysema it may cause hypoxia due to

inadequate oxygen supply.

8.2 Diagnostic Methods

There are mainly two diagnostic approaches for emphysema, namely Pulmonary Func-

tion Test (PFT) also called spirometry and Computed Tomography (CT) image analysis.

Following subsections will discuss these methods in details.

8.2.1 Pulmonary Function Test

Spirometry is the first and most common clinical lung function test to diagnose emphy-

sema. It measures the volume of air and the air flow in exhalation. During the test,

the subject will breathe into a mouthpiece attached to a recording device called the

spirometer.

The more common lung function values measured with spirometry are Forced Vital Ca-

pacity (FV C) and Forced Expiratory Volume (FEV ). The FV C measures the amount

of air the subject exhale with force after inhaling as deeply as possible. The FEV mea-

sures the amount of air the subject can exhale with force in one breath. The amount

of air the subject exhale may be measured at 1 second (FEV1), 2 seconds (FEV2), or 3

seconds (FEV3). The severity of emphysema is achieved based on these measurements,

specially FEV1. Table 8.1 shows the severity stages of emphysema and the corresponding

FEV1 limits.



Chapter 8 Application to Emphysema Quantification 91

Table 8.1: Severity stages of emphysema. (GOLD-Global Initiative on Obstruc-
tive Lung Disease)

stage severity FEV1%

stage 1 mild (GOLD 1) ≥ 80
stage 2 moderate (GOLD 2) 50− 79
stage 3 severe (GOLD 3) 30− 49
stage 4 very severe (GOLD 4) ≤ 30

However even with 30% damaged lung due to emphysema, the spirometry could give

misleading normal diagnosis (Lynch et al., 2000). Also subtype detection and dam-

aged lung tissue qauntification or their spatial distributions can not be analysed using

spirometry.

8.2.2 Pulmonary CT Based Analysis

Medical imaging is an invaluable tool in medicine for pathology diagnosis. Magnetic

Resonance Imaging (MRI), CT, digital mammography, and other medical imaging ap-

proaches provide an effective means for non-invasive mapping of the anatomy of a sub-

ject. Medical imaging has numerous advantages such as early detection of pathologies,

distribution analysis of the diseases, subtype and different pathology detection, quantifi-

cation of tissue volumes, study of anatomical structure, treatment planning and carrying

out computer integrated surgery.

CT imaging, also referred to as Computed Axial Tomography (CAT) scan, is a main

imaging tool for diffuse lung diseases. CT imaging has the unique ability to offer clear

images of different types of tissue. When the CT slice thickness is also involved, the 3D

unit area is known as a voxel. Voxels in a CT scan are displayed in terms of relative

radiodensity. The voxel is represented according to the mean attenuation occurred

in proportion to the density of the tissue in a 3D unit area and is measured using

the Hounsfield units (HU). Water has an attenuation of 0 HU, while air is -1000 HU

(Wikipedia, 2014).

The advantages of CT in pulmonary imaging are numerous. Firstly it is fast, which

is important for patients who have trouble holding their breath. It is painless, non-

invasive, accurate and has been shown to be a cost-effective imaging tool. Also CT

scans provide clear images of lung structure which mainly contains air and give high

contrast images compared to MRI which is more suitable for more liquidized or solid

state tissues and body structures.Furthermore, it can be performed with a patient with

implanted medical devices of any kind inside the body, unlike MRI. High Resolution

CT (HRCT) is an improved technique of CT, which comparatively produces a large

amount of anatomical information which is very much similar to the gross pathological
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(a) (b) 

Figure 8.4: HRCT data (a) a HRCT slice from a normal lung, (b) a HRCT
slice from a emphysematous lung. Data from (Hara et al., 2004; Sørensen et al.,
2013).

specimens or lung slices (Webb et al., 2008). Compared to CT, HRCT produces thinner

slices and therefore offers a higher axial resolution.

These advantages of CT imaging make it ideal for evaluation of parenchymal diseases

(Sluimer et al., 2003). CT image analysis is a sensitive method for diagnosing emphy-

sema, assessing its severity, and determining its sub types. In pulmonary emphysema,

the major advantage of CT analysis over the spirometry approach is that in addition to

providing data concerning overall disease severity, it also identifies the specific locations

in the lung where the alveoli walls have been destroyed. Furthermore, CT analysis can

be also used in sub types analysis (Madani et al., 2001).

In CT analysis, emphysema is characterized by presence of areas of abnormally low

attenuation which can be easily contrasted from surrounding normal tissue. Figure 8.4

shows two HRCT slices illustrating the difference between normal and emphysema lung.

In severe emphysema low attenuated areas which represent the lung destruction can

become confluent and a reduction of blood vessels is clearly visible.

There are three common sub types of emphysema based on anatomical distribution of

area of lung destruction. They are Centrilobular, Panlobular and Paraceptal emphysema

(Sørensen et al., 2010).

Centrilobular emphysema typically begins near the centre of the secondary pulmonary

lobule in the region of the proximal respiratory bronchiole. This is usually seen as small

round black (low attenuation areas) evenly distributed holes with ill defined borders

that may appear in the central portion of the secondary pulmonary lobule (Fig 8.5a).

The resulting area of destruction surrounded by normal tissue allows identification of

key structural lesions. This is the most common subtype of emphysema.
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Figure 8.5: Subtypes of emphysema (a) Centrilobular emphysema, (b) Pan-
lobular emphysema, (c) Paraceptal emphysema. Images from Blackmore et al.
(2014).

Panlobular emphysema also known as panacinar emphysema typically involves the entire

lung and pathologically produces uniform enlargement of all air spaces. The entire lung

appears darker with reduction of blood vessels markings. Lung volumes are increased and

distinct spaces of low attenuation may not be seen (Fig 8.5b). This subtype associates

with the AAT deficiency.

Paraceptal emphysema is located adjacent to the pleura (outermost tissue layer of lung)

and interlobular septa lines with a peripheral distribution within the secondary pul-

monary lobule (Fig 8.5c). It is visible as multiple low-attenuation areas in a single layer

along the pleura often surrounded by interlobular septa that is visible as thin white walls

(Fig 8.5c).

Due to the increased amount of information presented in HRCT, manual CT analysis is

a very expensive and time consuming task even for experienced radiologists. Therefore,

Computer Aided Diagnosis (CAD) of CT scans is widely preferred (Litmanovich et al.,

2009). CAD in emphysema analysis mainly depend on the texture features and the

intensity information present on the CT scans.
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8.3 Current Methods of Computer Aided Emphysema Anal-

ysis

CAD approaches based on lung CT scans for emphysema quantification can be cate-

gorized into intensity (CT density) based methods and texture based techniques. Un-

der intensity based techniques, many studies have been carried out to find an absolute

threshold value below which emphysema is considered to be present. Muller et al. (1988)

introduced a method known as ‘emphysema index’ or ‘density mask’ which measures the

relative amount of lung parenchymal pixels that have attenuation values below -910 HU.

Further studies have obtained the optimal threshold value for emphysema quantifica-

tion as -950HU (Litmanovich et al., 2009). An adaptive thresholding method that also

incorporates the information of pixel locations on the lung has been introduced by Hara

et al. (2004). Another approach has been proposed based on mean lung density and

voxel dimensions (Coxson et al., 1999).

Intensity based CAD techniques usually suffer from problems caused by monotonic in-

tensity changes. This may occur due to several reasons, for example, the influence of

contrast materials and degree of inspiration of the lung while scanning (Muller et al.,

1988). Secondly there is a degree of corruption in the CT image due to noise, arising

from strict limitations on radiation power that can be applied on a patient (Sprawls,

1995). Techniques solely based on intensity are highly sensitive to the noise. Häme

et al. (2013) proposed a hidden Markov measure field model to obtain more promising

emphysema index measures than standard densitometric approaches showing robustness

to noise resulting from reconstruction kernels. However, intensity and texture based in-

tegrated approaches are the better choice for pulmonary lung disease analysis using CT

(Sørensen et al., 2010).

Texture based CAD techniques are a successful methodology to use in assessing the

presence and distribution of emphysema and its subtype patterns. The texture features

can be categorized as statistical, spectral and structural features (Litmanovich et al.,

2009). Uppaluri et al. (1999) used a method known as adaptive multiple feature method

(AMFM) which assessed 22 independent statistical features in order to classify different

lung tissue patterns. This approach is further improved by extending it from 2D to 3D by

Xu et al. (2006), to classify emphysema and early smoking-related pathologies. Mishima

et al. (1999) attempt to detect early emphysema on the basis of fractal analysis. Spatial

Gray Level Dependence Method (SGLDM), Gray Level Run Length Method (GLRLM)

and Gray Level Difference Method (GLDM) have also been used as statistical feature

extraction methods for emphysema diagnosis (Vasconcelos et al., 2010). Depeursinge

et al. (2010) have used the density histogram and quincunx wavelet frame coefficients

with number of pixels belongs to the air component as an additional feature to evaluate

emphysema classification performance with different classifiers. In Kim et al. (2009)
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statistical texture features as well as shape features are also employed in lung disease

classification.

Sluimer et al. (2003) have used Gaussian, Laplacian of Gaussian and first and second

order derivatives of Gaussian filters in different scales and have obtained the histogram

of responses as spectral texture features. Depeursinge et al. (2007) have used Discrete

Wavelet Frame (DWF) to classify lung tissue types including emphysema. However,

filter based methods require selection of an optimal filter set and employing reasonable

sizes for filter kernels.

Structural features encapsulate information on structures of the texture such as arrange-

ments of texture primitives. A texton based method has been introduced in Gangeh

et al. (2010). Sørensen et al. (2010) applied rotational invariant local binary patterns

(LBP) for successful emphysema quantification. This method acquires very compelling

results and can be considered as the current state of the art texture based emphysema

quantification method.

8.4 Results and Discussion

The application of model based statistical features to emphysema quantification is not

commonly used because of the relatively high computational cost. Also the model pa-

rameters of TGMRF descriptors are spatially constant, therefore, subtle pattern varia-

tions which are crucial in tissue discrimination may be smoothed out. Here we employ

I-LPH descriptors to extract tissue texture features because it is comparatively simple

and fast and ideally suited for isotropic texture representation such as lung tissue. The

small model estimation of IGMRF results in spatial variations in the parameter esti-

mates which closely capture structural arrangement patterns in the texture in addition

to the spatial interactions. Therefore, the local parameter distribution based methods

integrate the essence of both the statistical and structural characteristics of a texture

which makes it more suitable for lung tissue classification task.

8.4.1 Dataset

To evaluate the I-LPH descriptor performance on emphysema diagnosis and quantifica-

tion we use the online emphysema dataset from Sørensen et al. (2013) which has been

also used in performance evaluation of LBP and filter based features (Sørensen et al.,

2010). The database comprises 115 HRCT slices of size 512 × 512 and 168 of square

patches of size 61 × 61 obtained from a subset of slices. The HRCT slices belong to a

study group of 39 subjects including non smokers, smokers and smokers with COPD.

Each slice is labeled according to the leading pattern of interest and severity by an expe-

rienced chest radiologist and a pulmonologist. The leading patterns are Normal Tissue
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Figure 8.6: Multi-resolution circular neighbourhood system corresponding to
(r, p) = {(1, 8), (2, 16), (3, 24)}.

(NT), Centrilobular Emphysema (CLE), Paraseptal Emphysema (PSE) and Panlobular

Emphysema (PLE). The severity of each slice is classified as no emphysema (0), mini-

mal (1), mild (2), moderate (3), severe (4) and very severe (5). The Leading pattern of

each patch is also available and there are 59 NT patches, 50 CLE patches and 59 PSE

patches. In this study, only NT, CLE and PSE classes are used. However, clinical test

results on PFT tests are currently unavailable for the dataset. Therefore, correlations of

the results with the diagnosis via visual inspection by experienced radiologists and the

emphysema index are considered.

First, the patch dataset is used in a classification framework to identify the discrim-

inative ability of the texture features. Sørensen et al. (2010) reported satisfactory

classification performance for this dataset with joint LBP using the parameter setting

(r, p) = {(1, 8), (2, 16)} and a region of interest (ROI) of size 31 × 31. The joint LBP

features are constructed from 2D histogram of joint intensity-LBP histogram.

8.4.2 Emphysema Classification

Following Sørensen et al. (2010) we also use circular neighbourhoods similar to theirs.

The only difference compared to the circular neighbourhoods we used in the previous

chapters for I-LPH descriptors is that the number of neighbours p increase with each

level. This type of neighbourhood system is suggested by Ojala et al. (2002) for con-

structing LBP which has been adapted by Sørensen et al. (2010). The name given to

these neighbourhood systems is multi-resolution circular neighbourhood systems and is

illustrated in Figure 8.6. Bilinear interpolation is used to estimate the neighbour values

at off grid positions similar to Ojala et al. (2002) and Sørensen et al. (2010).

According to Sørensen et al. (2010), the present study also employs 31 × 31 ROIs ex-

tracted from each 61× 61 patches. For histogram calculation bins = {10, 20, 30, 40, 50}
are evaluated and bins = 40 is selected in the following experiments. The α parameter

bin range is set from −1 to +1. The σ parameter bin range is set from 0 to 100.

The leave one subject out classification technique discussed in Sørensen et al. (2010)

with nearest neighbour classifier is used. In leave one subject out classification, in a

trial all the patches belonging to one subject are used as the test set and the rest of the
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Figure 8.7: 2D intensity I-LPH parameter joint histograms. (a) original patches
from the three classes NT, CLE, PSE respectively (31×31), (b) α and intensity
joint histograms , (c) σ and intensity joint histograms. (r, p) = (1, 8) and
bins = 40 in each axis are used.

patches are used as the training set. In each leave one subject out trial, assigned labels

(labels assigned by the classification process) are stored. In the end of all trials, the

assigned labels are matched against the true labels to calculate the accuracy (Sørensen

et al., 2010). The absolute sum of difference between histograms is taken as the distance

metric.

Initially, the performance of I-LPH features with and without integrating intensity in-

formation is examined. The technique in which the local parameter histograms are

constructed without integrating intensity information is referred to as ‘noInt ’ and the

joint intensity-parameter histograms are represented by ‘joint ’. Note that ‘noInt ’ and

‘joint ’ features are based on I-LPH features and not on LPH features. Figure 8.7 shows

the joint features of α and σ parameters of IGMRF for some sample ROIs.

Figure 8.8 shows the classification accuracies obtained for the three class problem, NT,

CLE and PSE for noInt and joint features with various neighbourhood systems (r, p).

The accuracy gradually decreases with the increasing level of the neighbourhood system

suggesting features from lower resolutions, which are close to the centre pixel, are more

significant. The case ‘subset ’ represents the integrated features from multi-resolution

levels of the neighbourhood systems (r, p) = {(1, 8), (2, 16)}.Based only on texture infor-

mation, an accuracy of 77.4% can be obtained for the case ‘subset ’ using noint features.
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Figure 8.8: Leave one subject out classification accuracy for three class problem,
NT,CLE and PSE.

Table 8.2: Comparison with other texture features. Leave-one-subject out clas-
sification is used.

descriptor accuracy (%)

joint(for case subset) 95.8
LBP(for case subset)1 95.2
GFB21 94.0
ICR1 89.3
INT1 87.5

1 LBP: joint 2D LBP and intensity histogram, GFB2: Gaussian filter response histograms,

ICR:Intensity, co-occurrence and run-length, INT: intensity histogram; results reported in Sørensen

et al. (2010).

Table 8.3: Confusion matrices for three class classification problem involving
the classes NT, CLE and PSE. LBP result is obtained from Sørensen et al.
(2010).

noInt joint LBP
NT CLE PSE

NT 37 19 3
CLE 10 40 0
PSE 4 2 53

NT CLE PSE
NT 57 2 0
CLE 2 48 0
PSE 1 2 56

NT CLE PSE
NT 55 0 4
CLE 1 49 0
PSE 2 1 56

However, integrating intensity vastly improves the accuracy to 95.8%. This is compa-

rable with the accuracies reported for LBP features which is 79.2% with only texture

information and 95.2% with joint intensity-LBP features (Sørensen et al., 2010). Table

8.2 illustrates classification accuracies achieved using different texture features. joint

features perform slightly better than state-of-the-art features, the LBP.

The confusion matrices achieved for the three class problem by the I-LPH descriptors

and LBP method are shown in Table 8.3. The LBP results are taken from the joint

intensity-LBP histogram performance reported in Sørensen et al. (2010). The confusion

matrix of noInt features clearly indicate that NT and CLE classes have higher number

of misclassified ROIs as a consequence of disregarding intensity information. The joint
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Table 8.4: Comparison with other GMRF based texture features. Leave-one-
subject out classification is used. Note: the joint features here are obtained
only from (r, p) = (1, 8) resolution.

descriptor descripton accuracy (%)

joint joint intensity & I-LPH histogram 94.6
LPH joint intensity & LPH histogram 94.0
TGMRF concatenated with intensity histogram 62.5

features and joint LBP-intensity features perform comparatively well in discriminating

different lung tissues.

Next the performance with other GMRF based texture features is considered for compar-

ison. Table 8.4 shows the classification accuracies for joint features with (r, p) = (1, 8)

and bins = 20, LPH features with n = 3 square neighbourhood size and bins = 20

and TGMRF features with n = 3, the second order neighbourhood system. Here, the

LPH features are integrated with intensity similar to the joint features. The TGMRF

features are also used in combination with the intensity histogram.

It can be clearly seen that local parameter distributions are more discriminative com-

pared to TGMRF descriptors. The joint and LPH features have a dimensionality of

R2∗bins2 and R5∗bins2 respectively. However, the accuracies for joint features and LPH

features are almost similar implying that for this specific problem IGMRF is sufficient

and additional directional information in LPH features have not been of much use.

Therefore, based on classification performances, joint feature are a preferable efficient

choice for emphysema and its subtype diagnosis. Results could be further improved by

feature selection.

8.4.3 Emphysema Quantification

In this section, we perform lung parenchyma pixel classification of 115 CT slices for

emphysema quantification from a study group comprising 39 subjects. The features

extracted from 31 × 31 labelled ROI dataset used in section 8.4.2 are employed as the

training models. The training models obtained from a subset of PSE ROIs are used.

This subset represents moderate to severe PSE and clearly represent reasonably large

regions of PSE tissue pattern with minimum confusion with NT or CLE class tissue.

These PSE ROIs contain approximately 15% or less near boundary non parenchymal

pixels. This setting of ROIs of PSE class can employ the prior information that PSE

has high probability of occurrence near the boundary of the lung parenchyma (Sørensen

et al., 2010). During the slice pixel classification all the training patches belonging to

the subject of the corresponding slice are left out from the training set.



100 Chapter 8 Application to Emphysema Quantification

The (r, p) = (1, 8) setting is used with bins = 20 to construct joint parameter histogram

features. The 6 slices out of 115 slices which belong to class PLE are not considered

because the patch data is unavailable. The remaining 109 slices with leading patterns

NT, CLE and PSE are employed for tissue quantification. Note that the leading pattern

of each slice is available prior to the quantification based on the visual inspection of

experienced radiologists.

First of all, the local parameter estimates of each lung parenchyma pixel are estimated

according the small model estimation. Then a window of size 31 × 31 is column-wise

scanned on the parameter images and the normalized parameter histograms for each

pixel is constructed. The histograms are vectorized and concatenated to formulate the

I-LPH joint features at each pixel.

The pixels outside the lung parenchyma are directly labelled as the background class by

thresholding. The thresholding is based on the knowledge that the CT density values

of lung parenchyma pixels are usually between −1000HU to −500HU (Coxson et al.,

1999).

Hard and soft classification are performed here. The hard classification assigns each

pixel a class label depending on the nearest training model to its feature vector. The

soft classification finds the probability a pixel belongs to a certain class. We define the

following expression to calculate the class probabilities.

p(ωc/ys) =
exp{−D(hs,Mωc)

2}
C∑
c=1

exp{−D(hs,Mωc)
2}

(8.1)

where ωc represents the class and C is the number of classes. hs is the feature vector of

the considered parenchyma pixel and Mωc is the nearest feature vector in the training

set to hs from class ωc. D(.) is the sum of absolute difference distance metric.

Tissue quantification is then carried out on each slice. Two measures are obtained for

each slice by fusing the results of all the lung parenchyma pixels on it. The relative hard

classification accuracy RCAωc (Sørensen et al., 2010) gives the percentage of lung tissue

belonging to the class ωc. Based on soft classification probabilities we define the soft

relative probability SRPωc for a class ωc according to,

SRPωc =
1

|ΩL|
∑
s∈ΩL

p(ωc/ys) (8.2)

where ΩL is the lung parenchyma area and |ΩL| is the number of pixels in the lung

parenchyma.
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RCAωc is a measure about the spatial extent of the tissue from class ωc. The SRPωc

measure introduced here is sensitive to the severe tissue damages localized in a smaller

area which can not be quantified properly as a higher degree of tissue damage by RCAωc .

Figure 8.9: Tissue quantification with joint features. RCAωc and SRPωc for
each category of slices (NT, CLE and PSE) grouped according to leading pat-
terns labelled by visual inspection judgements. (a) NT tissue quantification,
(b) CLE tissue quantification, (c) PSE tissue quantification. joint features (2D
intensity I-LPH joint histogram) obtained from (r, p) = (1, 8), bins = 20 setting
are used. Note that the error bars are truncated near 0% and 100%.

Figure 8.10: Tissue quantification with joint LBP features. RCAωc and SRPωc

for each category of slices (NT, CLE and PSE) grouped according to leading
patterns labelled by visual inspection judgements. (a) NT tissue quantification,
(b) CLE tissue quantification, (c) PSE tissue quantification. The joint LBP
features (2D intensity-LBP joint histogram) obtained from (r, p) = (1, 8), bin1 =
20, bin2 = 10 setting are used. Note that the error bars are truncated near 0%
and 100%.

The CT slices are categorized into groups according to the leading pattern labellings

given by the radiologists. Then the averages and standard deviations of RCAωc and

SRPωc measurements of each category is calculated separately. Results are shown in

Figure 8.9 achieved by joint features. The RCAωc and SRPωc counts in Figure 8.9 are

consistent with the leading pattern labellings of the CT scans. For example, slices having

leading pattern labelled as NT have a higher RCANT and SRPNT counts and lower

RCACLE , RCAPSE and SRPCLE , SRPPSE counts. i.e. NT labelled lung slices have
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more NT tissue quantity (Figure 8.9a error bars under NTslices) and a lower CLE and

PSE tissue quantities (Figure 8.9b,c error bars under NTslices). Similarly, CLE labelled

lung slices have a higher CLE tissue count and a lower NT and PSE tissue count (Figure

8.9a,b,c error bars under CLEslices). Most of the slices labelled as PSE have minimal

or mild PSE except for one severe PSE slice in the considered slice dataset. Therefore

RCANT count is comparatively high indicating less tissue damage extent from PSE in

PSE labelled slices (Figure 8.9a error bar under PSEslices). However, it is relatively less

than the RCANT for NT labelled slices.

Furthermore, Figure 8.9c indicates that slices belonging to CLE group also have a ten-

dency to contain higher value of PSE tissue. In the real world situations, CLE patients

have a higher chance of co-existence of CLE and PSE. The slices belonging to PSE class

have a relatively higher mis-classifications with CLE tissue giving higher RCACLE and

SRPCLE compared to RCAPSE and SRPPSE (Fig 8.9b and c).

The RCAωc measures have comparatively larger standard deviations (Figure 8.9) com-

pared to SRPωc . This explains the relatively low sensitivity of RCAωc for pathology

quantification where it only takes into account the extent of the disease but not the

strength or the localized severity of the disease.

Figure 8.10 illustrate the NT, CLE and PSE tissue quantifications for labelled slices

achieved using joint intensity-LBP histogram features. In comparison to the tissue

quantifications achieved by joint features illustrated in Figure 8.9, RCA tissue counts

from LBP features also show a similar variation among the labelled slices, however with a

slightly larger standard deviation. i.e. NT labelled slices have higher NT tissue quantity,

CLE labelled slices have higher CLE tissue quantity and PSE labelled slices have higher

PSE tissue quantities (see Figure 8.10). Nevertheless the SRP counts obtained from

soft classification have a very low inter-class variation (Figure 8.10). This may caused

because the dissimilarity between feature vectors from LBP for the classes NTslices,

CLEslices and PSEslices is low and it is lower than that of joint features (see Figure 8.9

and Figure 8.10). Therefore, more effective and discriminative soft classification results,

i.e. SRP measures can be obtained using joint features compared to the LBP features.

Figure 8.11 demonstrates some example lung parenchyma images labelled using the

proposed approach with joint descriptors. The pathology distribution is effectively ex-

pressed. Texture is a regional property, therefore, hard classification achieves relatively

larger areas of emphysematous tissue than from an intensity based thresholding tech-

nique like emphysema index (EI) (Muller et al., 1988). However, the correlation between

total emphysema tissue count (RCACLE+RCAPSE) from proposed method and EI with

−910HU threshold is large, giving a correlation coefficient of 0.84. Note that EI can not

be used in subtype analysis. Moreover, pixels belonging to PSE tissue are often classified

near the boundary of the lung parenchyma agreeing to the PSE location dependency
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Figure 8.11: Lung parenchyma pixel classification with joint. Some example
slices representing NT, CLE and PSE slice groups. Severity is indicated in
parenthesis. (a) original slices, (b) hard classification results, (c) p(ωc = NT/ys)
(d) p(ωc = CLE/ys) and (e) p(ωc = PSE/ys) from soft classification. bg -
background (pixels outside the lung parenchyma). joint features obtained from
(r, p) = (1, 8), bins = 20 setting are used.

near boundary (Figure 8.11b). The likelihood that the CLE subjects also have PSE is

also clearly reflected in these results.

In comparison to Figure 8.11 achieved using joint features, Figure 8.12 illustrates the

same lung parenchyma images labelled using LBP features. The hard classification
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Figure 8.12: Lung parenchyma pixel classification with LBP. Some example
slices representing NT, CLE and PSE slice groups. Severity is indicated in
parenthesis. (a) original slices, (b) hard classification results, (c) p(ωc = NT/ys)
(d) p(ωc = CLE/ys) and (e) p(ωc = PSE/ys) from soft classification. bg -
background (pixels outside the lung parenchyma). LBP features obtained from
2D intensity-LBP joint histogram with (r, p) = (1, 8), bin1 = 20,bin2 = 10
setting are used.

results in Figure 8.12 closely correlate with the results in Figure 8.11, however there

is a higher tendency to label the boundary pixels as belonging to PSE tissue than in

Figure 8.11. Both features joint and LBP perform well in hard classification with good

agreement. However, the soft classification results from LBP significantly differ from
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that of joint features (see Figure 8.11 and Figure 8.12). joint features give promising

soft classification results relating well with the hard classification results. However, the

lower inter-class distances of LBP features between different classes have led to smaller

differences between class probabilities of a pixel. Thus, although there are variations

of class probabilities according to tissue changes, they are not prominent as the results

from joint features. Hence joint features are more suitable for soft classification and

they have a higher discriminative power between three tissue types NT, CLE and PSE

compared to LBP features.

Figure 8.13: Tissue quantification with increasing severity. joint features ob-
tained from (r, p) = (1, 8), bins = 20 setting are used.

Finally, the severity of the slices and their corresponding tissue percentages are evalu-

ated. The NT tissue counts RCANT and SRPNT are shown in Figure 8.13. Severity level

5 only has 2 CT slices and is not considered here. The RCANT and SRPNT measures

in Figure 8.13 gradually reduce with increasing severity. i.e. increase in the severity

reduces the NT tissue quantity in the CT slices. This implies that more and more nor-

mal lung tissues are damaged with the increasing severity of emphysema. Therefore, the

results in Figure 8.13 have a good correlation with the severity labellings assigned by

visual inspection of the slices.

8.5 Conclusions

In this chapter we have applied I-LPH descriptors to solve a real-world medical problem

which is to discriminate and quantify the lung tissue on HRCT data in order to diagnose

Emphysema. Emphysema is a common lung disease which fatally disturbs the respira-

tory process affecting a large proportion of people in the world. I-LPH features are chosen

here because they are computationally more efficient and are suitable for classification

of emphysema and its subtypes. Results show that these texture features can perform

well in discriminating different lung tissues, giving comparative results with the current

state of the art texture based emphysema quantification. Furthermore, supervised lung

parenchyma tissue segmentation is also carried out. The results illustrate convincing

pathology distributions and successful quantification of lung tissues, well correlating

with the class and severity labellings by visual inspection. SRPωc measure obtained
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from soft classification has a higher sensitivity to emphysema pathology quantification

than RCAωc . Evaluations on other emphysema datasets and correlation to clinical test

data need to be considered in future. Also feature selection can be greatly helpful to

reduce the higher dimensionality of the features. Nevertheless proposed features are

effective for lung tissue classification.



Chapter 9

Bayesian Framework for

Integrating Prior Knowledge

9.1 Introduction

In this chapter we formulate a Bayesian framework for LPH construction which has

the ability to integrate prior knowledge into LPH features resulting further improved

descriptors to be used in future applications. The Bayesian formulation allows prior

knowledge about the parameters to be integrated to the local parameter estimation

process. In certain applications a priori knowledge about the local texture characteristics

may exists which could improve the feature extraction process. For example, in medical

image processing, a priori knowledge about more likely locations of existence of a certain

disease may known prior to the feature extraction based on human anatomy. Thus, a

relationship between the location and the local features could be established using a

prior model. Also when handling images contaminated by noise, the smoothing priors

could improve the results.

The original formulation of LPH descriptors does not support the integration of such

prior knowledge. However, a model which considers prior knowledge in texture feature

extraction would be of great use. For the sake of completeness of this research we will

introduce a framework capable of integrating prior knowledge into the feature extraction.

The prime focus is introducing the concept of the basic framework and empirical study

with further developments are left over to the future research work.

Different kinds of prior models can be selected according to the application however, the

current study simply employs smoothing prior for the purpose of simplicity in introduc-

ing the proposed framework. Any other prior model, if available, could easily replace

the smoothing prior in this framework and carry out application specific tasks.

107
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The Bayesian framework discussed here is inspired by the inhomogeneous Bayesian

model discussed in Aykroyd (1998) for image reconstruction. However, our study is

different from theirs because our objective is constructing an inhomogeneous Bayesian

model for texture feature extraction instead of image reconstruction. Therefore, the nov-

elty of this work lies in the likelihood models and prior models introduced here which

are capable of characterizing the texture. Thus, the posterior probability model is dif-

ferent from the model in Aykroyd (1998) and is suitable for texture modelling. After the

hierarchical formulation of the posterior probability distribution, which is named as the

inhomogeneous texture model, the Metropolis-Hastings algorithm is used to estimate

the local parameters. Metropolis-Hastings algorithm is used here instead of the local

linear regression because it allows finding better parameter estimates with complex pos-

terior distributions that may occur due to the selection of different prior models. The

Metropolis-Hastings algorithm is also particularly useful here, because calculating the

necessary normalization factor in the posterior model is not required. Finally, distribu-

tions of local parameter estimates are constructed using normalized histograms.

9.2 Bayesian Texture Model

In this section we introduce the homogeneous texture model which is subsequently ex-

tended to formulate inhomogeneous model for texture. The main difference between

the two models is that the homogeneous texture model is defined by spatially constant

parameters and the inhomogeneous model is described by spatially varying parameters.

The homogeneous texture model is actually the GMRF model discussed in Chapter 3.

However, slight change in the notation has been made for consistency and ease of follow

up explanations.

9.2.1 Homogeneous Texture Model

Let a stationary random field of a texture on an image region Ω be represented by Y .

yi represents the pixel value at a site i and i is the column-wise linear index. The

local conditional model of GMRF describes the relationship between a pixel and its

neighbours yj on a neighbourhood j ∈ Ni using a Gaussian functional form and is given

by,

p(yi|yj ,α, σ, j ∈ Ni) =

1√
2πσ2

exp

− 1

2σ2

yi −∑
j∈Ñi

αj ȳj

2 (9.1)
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The α = [αj |j = 1 . . . R]T are the interaction coefficients which measure the influence

by a neighbour intensity value at the neighbour position j (Petrou and Sevilla, 2006; Li,

2009). R is the number of interaction parameters. The neighbour pixels in symmetric

positions about the considered pixel are assumed to have identical parameters (Petrou

and Sevilla, 2006), therefore ȳj is the sum of two neighbour values situated in symmetric

neighbour positions with respect to the pixel.

Assuming the conditional independence of a pixel value given its neighbours, the joint

distribution can be written as,

p(Y |x) =
∏
i

1√
2πσ2

exp

− 1

2σ2

yi −∑
j∈Ñi

αj ȳj

2 (9.2)

where x = [α, σ]T is the parameter vector of the model. This will be referred to as

the homogeneous model of the texture and it also represents the likelihood of having

the texture Y given the GMRF parameter vector. The model parameters of the above

model do not depend on the location. Therefore one unique set of parameters will char-

acterize the texture. These spatially constant model parameters are unable to capture

the spatial variations in parameters. The homogeneous model, therefore, needs to be

modified to describe spatial variations of parameters. The solution is to formulate the

inhomogeneous model for texture.

9.2.2 Inhomogeneous Model

The inhomogeneous model is characterized by spatially varying model parameters in-

stead of constant parameters. The local parameter estimates obtained from small model

estimation, discussed in Chapter 4 also results in spatially varying parameters. The

advantage of using spatially varying parameters is that they can preserve the spatial

variations in the pixel interactions acting on the texture.

To obtain spatial variations in parameter space, a separate vector of model parameters

for each pixel is defined. In this way, every pixel has its own vector of parameters.

Let the parameter vector for pixel at site i be xi = [xji |j = 1, . . . , R + 1]. Note that

superscript index j where j = 1, . . . , R represents the type of model parameter according

to neighbour position and j = R+1 represents the index to the variance parameter. The

linear index i represents the location of the pixel similar to section 9.2.1. Hence for every

parameter type there will be a corresponding parameter image, Xj , j = 1, . . . , R+ 1, in

spatial domain.

Figure 9.1 shows an example to clearly understand the parameters of the model. Here

the first order neighbourhood system is considered. Therefore three types of model

parameters are involved in characterizing the model, namely, horizontal and vertical
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Figure 9.1: Parameters associated with the GMRF models.

interaction parameters and the variance parameter. In the inhomogeneous model, for

each type of parameter, for example the vertical interaction parameter, the parameter

image is given by Xv which represent the vertical interaction parameter values xvi at

each pixel i ∈ Ω of the spatial domain.

Once the parameters are defined and are assumed to be known, then the likelihood of

the texture image Y can be written as,

p(Y |X) =
∏
i

1√
2πσ2

i

exp

− 1

2σ2
i

yi −∑
j∈Ñi

xji ȳj

2 (9.3)

Here the formulation of the inhomogeneous model involves many model parameters

compared to spatially constant model formulation. But the estimation process can be

easily parallelized using the coding scheme for a much faster estimation process (Petrou

and Sevilla, 2006).

The model parameter values on a parameter image will be repetitive according to the

pattern repetition. Thus, the unique model parameter values on the parameter image

correspond to the parameter values on one texel element. However, the size of the texel

is not clearly identifiable in many types of textures, therefore we have considered a region

of the texture, Ω as above. Then the distribution of the repetitive model parameters

can be used to formulate the texture features.

Next we look at the prior distribution of the model. The prior model on parameters

can also be defined as a GMRF on the parameter space. Here we limit our focus to

smoothing priors. Alternately, any prior knowledge available on the location dependence

of parameters could be associated to the prior model. The prior model for interaction
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parameters can be written as,

p(Xj |γ) =
∏
i

1√
2πγ2

exp

− 1

2γ2

xji − 1

|Ni|
∑
r∈Ni

xjr

2 (9.4)

Ni is the neighbours of site i on the parameter image Xj . |Ni| is the number of neigh-

bours. The above prior model is defined for j = 1, . . . , R. i.e. for interaction parameters.

γ2 is the hyper variance parameter of spatially varying model parameters. It is consid-

ered that the value of γ is same for any interaction parameter Xj for j = 1, . . . , R. The

prior model for the variance parameter is,

p(XR+1|δ) =
∏
i

1√
2πδ2

exp

− 1

2δ2

σi − 1

|Ni|
∑
r∈Ni

σr

2 (9.5)

where δ is a constant which represents the hyper variance parameter of spatially varying

σi parameter. σi is same as the xR+1
i and is used for better readability (Figure 9.1).

9.2.3 Bayesian Formulation

The posterior density for the inhomogeneous texture model can be written as follows.

p(X, γ, δ|Y ) =
p(X, γ, δ, Y )

p(Y )

=
p(Y |X, γ, δ)p(X|γ, δ)p(γ, δ)

p(Y )

We assume the conditional independence between various variables to simplify the above

expression, including the independence between hyper parameters, γ and δ. The poste-

rior density can be then written as,

p(X, γ, δ|Y ) =
p(Y |X)p(X|γ, δ)p(γ)p(δ)

p(Y )

=

p(Y |X)
R∏
j=1

p(Xj |γ) p(XR+1|δ)p(γ)p(δ)

p(Y )

(9.6)

Since there is no prior knowledge about γ and δ uniform distributions for p(γ) and p(δ)

are assumed. All the other densities are defined as in section 9.2.2.

It is important to mention about the local conditional models of the joint models in

equations (9.3), (9.4) and (9.5). A local conditional model tells us about how a pixel

depends on its neighbours. Even though we use the global models in MCMC estimation,
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when calculating acceptance probabilities, all the terms will cancel out, except terms

associated to the local models due to Markovian property given a symmetric proposal

distribution. The local conditional models of joint models in equations (9.3), (9.4) and

(9.5) intuitively become the expressions without the product symbol. But in this study

we use a slightly altered local model for (9.3) as below.

p(yi|Xi) =
m∏
r

1√
2πσ2

i

exp

− 1

2σ2
i

yr − ∑
j∈Ñr

xji ȳj

2 (9.7)

m represents the number of immediate neighbours of site i, for example eight neighbours

around i. This expresses that probability of a pixel value not only depends on its

neighbourhood but also on near by m pixels and their neighbours. It is a localized

version of the likelihood of m samples. Therefore σ2
i represents the variance considering

m local samples which is a localized variation at site i. Prior to using m local samples

their sample mean is set to zero.

9.2.4 Parameter Estimation

Following Aykroyd (1998) we also use the Metropolis-Hastings (MH) algorithm for pa-

rameter estimation. Therefore, finding normalizing constant of posterior distribution in

(9.6) is no longer needed. Each type of parameters including γ and δ are sequentially

estimated in turns. Approach to the estimation of various groups of model parameters

is the same.

Let model parameters be represented by Θ where Θ = {X, γ, δ}. Let the parame-

ter being considered be θi. A proposed new value is selected from the proposal dis-

tribution q(θ
′
i|θi). The set of parameters containing the proposed value is given by

Θ
′

= {θ1, . . . , θi−1, θ
′
i, θi+1, . . . , θ|Ω|(R+1)+2}. The proposed value of parameter is ac-

cepted and then updated with the acceptance probability,

min

{
1,
p(Θ

′ |Y )q(θ
′
i|θi)

p(Θ|Y )q(θi|θ
′
i)

}
(9.8)

Otherwise it is rejected and the previous value is retained. Doubly exponential dis-

tribution centred on the current value is used as the proposal distribution. The scale

parameter of the proposal distribution q(θ
′
i|θi) is chosen by trial and error technique.

Since the proposal distribution is symmetric the ratio q(θ
′
i|θi)/q(θi|θ

′
i) in (9.8) is can-

celled out. The values of XR+1, γ and δ are chosen to be positive all the time.

Many terms of the ratio in (9.8) will cancel out due to Markovian property. This leads

to vastly simplified expressions. To avoid numerical overflow, the log value of posterior
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ratio is used. The Markov chain is developed with the accepted samples chosen according

to the acceptance probability. The convergence of the chain is monitored graphically.

When the chain is converged the average of samples laying outside the burn-in period

are used as the expected value of the corresponding parameter.

Once the model parameters are estimated in this way, their spatial distributions con-

structed by normalized histograms can be used to formulate discriminative texture fea-

tures.

9.3 Results and Discussion

The Bayesian framework for the textures proposed here can be used to extract spatially

varying model parameters and their spatial distributions can be used as effective texture

features for classification.

In this study, the focus is limited to the first order neighbourhood system of GMRFs.

Therefore, three different types of model parameters, namely horizontal interaction pa-

rameter, vertical interaction parameter and variance parameter characterize the model.

Spatially varying model parameters are estimated by sampling the proposed posterior

probability distribution in (9.6) and then taking the expected values of the samples

excluding the burn-in period. MH algorithm is performed on each individual site to

sample and estimate the parameters at that location. The coding scheme is used to

speed up the process where instead of visiting each site in the image sequentially, a

batch of pixels belonging to the same code is updated in parallel (Petrou and Sevilla,

2006).

Each Markov chain is run for 2000 iterations. The first 500 samples are considered as

the burn-in period. Rest of the samples are used to calculate the expected value of the

parameter.

The scale parameters of doubly exponential proposal distributions are set by trial and

error method for each type of model parameters. For Markov chain updates of interaction

parameters, Xj , j = 1, . . . , R the scale parameter is 0.05 and for the variance parameter

XR+1 it is 0.1. For super parameters γ and δ, 0.05 and 0.1 are used respectively. The

number of local samples for the likelihood model, m is restricted to the five nearest

samples in the proximity of considered site. This parameter setting is kept constant for

all the experiments unless stated otherwise.

In Figure 9.2 examples of estimated parameter images (expected values) achieved using

the inhomogeneous Bayesian framework are shown. Figure 9.2a has two texture regions

and corresponding horizontal and vertical interaction parameter images illustrate the

spatially varying nature of the estimated model parameters. The variance parameter
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Figure 9.2: Parameter images obtained by inhomogeneous Bayesian framework
for parameter estimation. Xh - horizontal interaction parameter, Xv - vertical
interaction parameter, Xσ - variance parameter

clearly indicates a higher variance near the boundary between the two texture regions.

The pattern inside the circular region in Figure 9.2a has more noteworthy horizontal

interactions. The corresponding horizontal interaction parameter image has higher in-

teraction parameter values in respective region. Also the pattern outside the circular

region has a directional pattern closer to the vertical axis. Hence the corresponding

vertical interaction parameter has higher interaction values outside the circular region.

Figure 9.2b shows a partial finger print. The spatially varying parameters are not made

rotational or scale invariant here. Therefore the corresponding spatially varying param-

eters capture the directional differences in the patterns of the finger print. In general,

by looking at Figure 9.2 it can be concluded that spatially varying model parameters

carry more information about the texture.

The Markov chains of super parameters γ and δ of Figure 9.2a are shown in Figure 9.3.

These chains graphically indicate the convergence roughly after 200 iterations. Thus, the

burn-in period and number of iterations mentioned earlier are suitable for the sampling

process. However, to perform 1000 iterations to produce a Markov chain of length of

1000 samples for an image of size 256×256 it require 2533 seconds on a a Matlab R2013a

environment running on a 2.67 GHz CPU. i.e. approximately 42 minutes. Nevertheless,

the speed may be improved by parallel computing which has not been considered here.

The local distributions of these spatially varying parameters can be used to discriminate

texture regions. An evaluation of spatial distributions of spatially varying parameters

is illustrated in Figure 9.4. Four textures are used and their corresponding spatially

varying parameter images are obtained and converted into normalized histograms with

50 bins. The parameter image values are modified to lie between the range 0 to 255

before constructing the histograms. This normalization is done for illustration purposes

only. The intensity histograms of the four textures are given in Figure 9.4c.
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Figure 9.3: Markov Chains of δ and γ parameters for image in figure 9.2a.

Figure 9.4: Histogram comparison. (a) image comprising four textures, (b)
texture labels, and (c) intensity histograms. Histograms of spatially varying
parameter images (d) histograms of Xh (e) histograms of Xv (f) histograms of
σ of each texture.

According to Figure 9.4c it can be seen that discrimination power of the intensity his-

togram is quite low for these four textures. But the histograms of parameter images

represent substantial differences in there distributions. The interaction parameter his-

tograms in Figure 9.4d and e show a negative correlation between the distributions for

a texture. Here we have only two interaction parameters in the model. Therefore, when

the horizontal interaction is dominant, vertical interaction of the respective texture is

much insignificant. However, these distributions of spatially varying model parameters

can be used as a discriminative texture feature in texture analysis.
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Table 9.1: Accuracy comparison with other methods. First order neighbourhood
system is used. bins = 50 is used for IBMF and LPH methods.

method method
BRODATZ OUTEX

IBMF 88.3± 1.57 87.1± 1.75
HBMF 37.9± 2.19 31.7± 2.19
LPH 81.0± 1.13 83.1± 1.99

TGMRF 40.7± 2.02 40.7± 2.59
LBP 81.5± 2.05 84.8± 1.56

9.3.1 General Texture Classification

We perform texture classification using the two datasets used in Chapter 7, namely

BRODATZ, comprising 32 Brodatz textures (Brodatz, 1966) and OUTEX, having 24

OUTEX textures (Ojala et al., 2002). For OUTEX dataset only 20 randomly selected

samples per class are used. Prior to feature extraction all the images are pre-processed

using histogram equalization. Next, parameter estimation is carried out and the distri-

butions of spatially varying parameters are constructed by normalized histograms.

The classification experiments are performed using equal sizes of training and test

datasets randomly partitioned to have equal class proportions. The experiment is re-

peated 100 times with different training and test sets. Accuracies reported here are the

mean accuracy of 100 iterations and its standard deviation. Classification is performed

using nearest neighbour classifier with absolute difference distance metric.

The accuracies are given in table 9.1. The proposed inhomogeneous model based fea-

ture extraction is referred to as IBMF which stands for ‘Inhomogeneous Bayesian Model

based Features’. The feature extraction based on homogeneous Bayesian model is la-

belled as HBMF which stands for ‘homogeneous Bayesian Model based Features’. Four

other methods have been used for performance comparison. The LPH descriptor is

based on the spatially varying model parameters estimated using small model estima-

tion which is discussed in Chapter 4. However, here only the first-order neighbourhood

system is employed in feature extraction. i.e. only horizontal and vertical interaction

parameters are presented (n < 3). TGMRF is the traditional GMRF feature extraction

method with the first-order neighbourhood system (Manjunath and Chellappa, 1991).

LBP represents the rotational invariant uniform local binary patterns features (Ojala

et al., 2002). Only the LBP histograms from (p=4,r=1) are used to get roughly similar

neighbourhood representations as the GMRF setting where the first order neighbour-

hood system is used. Note that we have only used the first-order GMRFs here. By

increasing the neighbourhood size accuracies can be further improved.

It is observed that the IBMF has better accuracy compared to LPH features based

on local linear regression (table 9.1). A comparison between classification accuracies
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Figure 9.5: Comparison between accuracies obtained from IBMF with LBP and
LPH in 100 repetitive classification trials. (a) IBMF with LBP (b) IBMF with
LPH.

obtained in 100 repetitions of classification experiment using LBP and LPH descriptors

with IBMF are shown in Figure 9.5. The IBMF features perform better in most of the

trials than other features (see Figure 9.5).

In the present study, we have employed the local smoothing priors for IBMF method.

Therefore, by integrating appropriate prior information, IBMF features can perform

better than the simple least square estimation based LPH features.

9.3.2 Robustness to Additive Noise

Here we evaluate the performance of LPH feature with additive noise and how prior

knowledge integration can help in this situation. The BRODATZ mosaic dataset used

in Chapter 6 for texture segmentation is employed here. Additive Gaussian noise with

standard deviation σim is added to the dataset images and segmentation is carried out

similar to Chapter 6 with k-means clustering algorithm. The segmentation error box

plots for two situations where σim = 10 and σim = 30 is shown in Figure 9.6.

According to Figure 9.6 it is observed that when image noise σim increases the segmen-

tation error se increases. However, for IBMF where smoothing prior is integrated, the

increase in the se is less than that for LPH features where no prior knowledge has been

assumed. Therefore, by integrating smoothing priors, LPH features can be made more

robust to the image noise.

9.4 Conclusions

This chapter considers building a technique to integrate prior knowledge to the LPH

descriptors. According to the nature of different vision applications there could be re-

lated prior knowledge which would further improve the parameter estimation process.
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Figure 9.6: Segmentation error se for BRODATZ mosaic dataset with additive
Gaussian noise using LPH and IBMF descriptors.

For example, these priors could be explaining the location dependencies, colour depen-

dencies, smoothness etc. The Bayesian formulation allows integrating prior knowledge

about the parameters to the estimation process. The current study uses smoothing pri-

ors to locally smooth the spatially varying parameter space. Therefore, this approach

can reduce the noise present in the spatially varying parameters while preserving the dis-

criminative ability of the features formulated based on them. Our Bayesian framework

for spatially varying parameter estimation is inspired by the inhomogeneous Bayesian

model discussed in Aykroyd (1998) for image reconstruction. However, our study is

different from theirs because our objective is constructing an inhomogeneous Bayesian

model for texture. Therefore, proper likelihood models and prior models are introduced

to capture texture characteristics. After formulating the inhomogeneous texture model,

the Metropolis-Hastings algorithm is used to estimate the spatially varying parameters.

The distributions of spatially varying parameters are then constructed using normalized

histograms. The experimental results show that this approach can produce more dis-

criminative texture features in the presence of noise. However, this method needs to be

extended and analysed using different priors other than smoothing priors which could

show the real value of integrating prior knowledge to the feature extraction process. But

currently there are no application specific data available for this experiment therefore,

it is left for future research.



Chapter 10

Conclusions and Future Work

10.1 Conclusions

The main focus of this research is developing a novel, improved texture descriptor based

on GMRFs and evaluating its performance in texture classification and segmentation.

The TGMRF features have been successfully employed in texture classification and seg-

mentation tasks, however some other studies have reported its decreased discriminative

performance. Therefore, in this study we have analysed the generalized performance

of TGMRF features and examined their weaknesses in order to formulate improved

features. In Chapter 3 the main flaws affecting the discriminative quality of TGMRF

features are discussed. This evaluation demonstrates that the global parameter esti-

mation process associated with TGMRF parameter estimation results in over-smoothed

estimates. These estimates show reduced ability to characterize several important prop-

erties of texture, such as structural information and some local statistical properties of

the texture. Thus, in Chapter 4 a novel texture descriptor named as LPH descriptor is

proposed which can overcome the problems associated with traditional GMRF features.

Here, local linear models are fitted in order to characterize the texture, under specific

restrictions and modifications. This estimation process is referred to as small model

estimation. The small model estimation procedure results in local estimates which are

spatially varying.

Local parameter estimates capture the local structure of the texture, or in other words,

they model local spatial interactions of a texture. Spatially varying local parameter

estimates characterize the partial or complete texture primitives and thus embed the

structural information about the texture. The histogram of these local parameter es-

timates represents the information on the statistical distribution of texture primitives

characterized in terms of local parameter estimates. Therefore, LPH descriptor enables

119
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integration of both statistical and structural information about the texture. LPH de-

scriptors overcome the smoothing problem associated with GMRF feature formulation

and provide more descriptive texture features.

Methods of achieving rotation invariant texture features are discussed in Chapter 5 and

two rotation invariant texture descriptors are introduced, namely RI-LPH and I-LPH

descriptors. The performance of these texture features is investigated on texture segmen-

tation and classification and is illustrated in Chapter 6 and Chapter 7 respectively. The

texture discriminative ability of LPH, RI-LPH and I-LPH features are significantly bet-

ter than TGMRF features. Thus, for texture segmentation and classification where more

descriptive features are favourable compared to generative features, the distributions of

local parameter estimates in the form of LPH, RI-LPH and I-LPH descriptors are highly

recommended over TGMRF features. RI-LPH performs relatively better compared to

LPH and I-LPH descriptors because it is rotational invariant and includes directional

information. I-LPH descriptors on the other hand are more suitable for isotropic texture

and provide efficient feature formulation compared to LPH and RI-LPH features. Com-

parisons with existing state-of-the-art texture features demonstrate that LPH, RI-LPH

and I-LPH descriptors have comparable classification results and improved segmenta-

tion results. In texture segmentation, integrating colour information can improve the

segmentation performance. Furthermore, advanced segmentation methods such as ac-

tive contours improve the final segmentation results compared to the k-mean clustering

algorithm.

The use of I-LPH descriptor on a real world medical application is examined in Chapter

8. Lung tissue classification and quantification for emphysema analysis is performed

using lung HRCT data. I-LPH descriptors are selected for this task because they are

relatively efficient and adequate for discriminating isotropic textures such as textures

of emphysema subtypes. Successful tissue classification and lung parenchyma segmen-

tation results are achieved. The lung tissue classification task involves examination of

localized areas and therefore requires localized texture feature extraction processes. Also

texture features that provide high discriminative capabilities are required. Thus, dis-

tributions of local features such are I-LPH are well suited for this task. Compared to

the current state-of-the-art texture based emphysema quantification method, the joint

LBP-intensity histogram features, I-LPH descriptors give comparable texture classifica-

tion performances and improved tissue quantifications and pathology distributions.

Some preliminary work on prior knowledge integration to local parameter estimation of

LPH is introduced in Chapter 9. A Bayesian framework is proposed to integrate prior

knowledge and the smoothing prior is employed to explain the framework. A smoothing

prior can be used to make LPH descriptors more robust to additive noise present in

the images. By replacing the smoothing prior with application specific different prior

knowledge, the proposed framework can be adapted to integrate different kinds of prior
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knowledge, such as location tendencies, colour dependencies etc. These analyses are left

for future research.

10.2 Future Work

The current work mainly focus on LPH feature extraction and analysing the performance

in classification and segmentation tasks. The following are some of the future directions

to be explored that can contribute to further improvements.

- Texture Synthesis: Texture synthesis is one of the main fields in texture analysis with

many applications. The TGMRF features are generative features which can be directly

use in texture synthesis. In TGMRF feature extraction one set of model parameter

estimates are acquired and the conditional model with estimated parameters can be em-

ployed in texture synthesis via a sampling technique such as Gibbs sampling (Li, 2009).

The features proposed here however, are more descriptive and vary from the original

form of GMRF features. They have the forms of distributions of local parameter esti-

mates. Therefore, different techniques are required to implement texture synthesis. One

plausible suggestion is constructing image pyramids and applying histogram matching.

Pyramid based texture synthesis has been introduced by Heeger and Bergen (1995) em-

ploying filter bank responses. This technique could be successfully employed with the

proposed features for texture synthesis. For example, with LPH features we construct

parameter histograms corresponding to different neighbours in different directions and

different distances from the centre pixel. These histograms could be used to replace

filter response histograms in the pyramid method.

- Prior Knowledge Integration with Bayesian Framework: In this research preliminary

work on a Bayesian framework to integrate prior knowledge into the LPH feature ex-

traction process was discussed in chapter 9. Therefore, we have introduced an inho-

mogeneous Bayesian model suitable for characterizing texture which produces spatially

varying model parameters. Distributions of spatially varying model parameter estimates

are then formulated as the homogeneous texture descriptor. The likelihood and the prior

to derive the posterior model for texture modelling are introduced. Here we have used

smoothing priors to evaluate the proposed model. However, there may exist many other

forms of prior knowledge based on specific applications. For example, in a medical image

problem a specific region where a certain disease could occur with a higher probability

may be pre-known based on the medical records or human physiology. These location

information could be used as the prior knowledge to build a prior probability model.

Similarly colour dependencies, i.e. given a certain colour, occurrence of a certain tex-

ture could be higher, or any other prior data could exist. Therefore, integrating such

prior knowledge into the proposed model should be considered in future. Furthermore,

for the parameter estimation we have employed iterative Metropolis-Hastings algorithm
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which has become a time consuming process when a large number of model parame-

ters are present in the model. Therefore, methods to improve the efficiency should be

considered in future. Nikou et al. (2010) have suggested a faster estimation process in

their Bayesian framework with mixture models. Their technique could lead to finding a

related but different approach to improve the efficiency in parameter estimation in our

proposed Bayesian model.

- Evaluations on Other datasets: We have used a publicly available emphysema dataset

to evaluate the proposed texture features on emphysema quantification and subtype

analysis. However, the performance of these features on other medical datasets is worth

consideration. The proposed texture descriptors could be easily applied for analysis on

other lung diseases, such as Idiopathic Pulmonary Fibrosis (IPF) which is even more

responsive to texture analysis than emphysema. Also these features can be used in other

texture based applications such as remote sensing.

- Integrating Information on Structural Arrangements: The LPH descriptors are based

on constructing histograms on parameter images which are achieved by local parameter

estimation. The histogram construction looses the arrangement patterns revealed on

parameter images. Therefore, better techniques which can capture the arrangement

patterns of local parameter estimates could further improve the performance. However,

even without this information, the LPH descriptors still perform well. Techniques to

improve the efficiency of feature formulation would also be of great use in order to

encourage many studies to select these features in their work.

- 3D Texture Descriptors: Proposed LPH, RI-LPH and I-LPH features could be extended

to 3D texture descriptors to employ in 3D texture analysis. 3D texture descriptors have

been perform better than 2D texture descriptors in 3D texture analysis, for example

with 3D medical data (Xu et al., 2006).



Appendix A

Integrated Active Contours

Integrated Active Contours is a segmentation technique introduced by Sagiv et al. (2006)

for image segmentation including textured images. It is an integrated framework which

combines the boundary and the region information in active contour modality. We

modify the segmentation process of Sagiv et al. (2006) at the curve evolution step, mov-

ing to a technique that increase the performance of curve evolution which is suggested

by Mahmoodi (2009). Here, the shape characteristic function is used in evolution process

instead of the sign distance function. Using active contours for GMRF based texture

segmentation, instead of an optimization via the relaxation methods, provides faster con-

vergence (Mahmoodi, 2009). But with active contours the risk of segmentation being

converged on to local minimums increases due to the gradient based optimization (Mah-

moodi and Gunn, 2011).

Let C be the evolving contour, and Fk
in and Fk

out be the average PL histogram of inside

and outside the contour C. Then the energy functional to minimize is given by,

E(Fk
in,F

k
out, C) = µ

∫
on(C)

h(x, y) dx dy + λin

(n2+1)/2∑
k=1

∫
inside(C)

D(Fk
s ,F

k
in) dx dy

+λout

(n2+1)/2∑
k=1

∫
outside(C)

D(Fk
s ,F

k
out) dx dy (A.1)

where D(., .) denotes the L1 norm distance between PL histogram features at a pixel

and the corresponding average PL histogram. µ, λin and λout are constants which

determine the contribution of each term to the total energy. The functional in equation

(A.1) assumes the texture image consists of two textures. It can be generalized for

images with more than two textures by adapting a multi-phase scheme similar to the

method proposed in Vese and Chan (2002). h is the inverse edge image, where edges, or
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more meaningfully the boundaries between two texture regions, are represented as lower

intensity values. Fk
in and Fk

out are calculated iteratively, as the average PL histograms

of inside and outside of the evolving contour.

Level set method implicitly define the evolving curve C by the zero level of the level

set function φ(x, y) (Vese and Chan, 2001). φ(x, y) is simply the sign distance function

(SDF) of C. Instead of φ(x, y), the shape characteristic function (SCF), χ(x, y), can

also be employed as in Mahmoodi (2009). SCF is defined as,

χ(x, y) = H(φ(x, y)) (A.2)

H is the Heaviside function. The shape-based active contour method to construct the

evolution function has a faster convergence, less memory usage and better performance

in the presence of noise Mahmoodi (2009). By replacing C in equation A.1 by χ, the

terms in the energy functional E are expressed in following way. Let Ω be the image

domain.

E(Fk
in,F

k
out, χ) = µ

∫
Ω
h(x, y)|∇χ(x, y)|dx dy + λin

(n2+1)/2∑
k=1

∫
Ω
D(Fk

s ,F
k
in)χ(x, y) dx dy

+λout

(n2+1)/2∑
k=1

∫
Ω
D(Fk

s ,F
k
out)(1− χ(x, y)) dx dy (A.3)

The h is calculated via the metric of the 2D image manifold (Sagiv et al., 2006; Kim-

mel et al., 1997). Let the ith bin image is represented by Wi = [W i(x, y)|1 ≤ x ≤
Imwidth, 1 ≤ y ≤ Imheight]. Then the metric of the feature space is given by,

g(x, y) =

 1 +
∑L

i=1(W i
x)2

∑L
i=1W

i
xW

i
y

∑L
i=1W

i
xW

i
y 1 +

∑L
i=1(W i

y)
2

 (A.4)

And W i
x and W i

y are partial derivatives w.r.t. x and y. Partial derivatives can be

obtained by finite difference method applied on to ith bin image and L is equal to the

number of total bins in the vector form concatenated PL histogram.

Since the metric g is associated with measuring distances on manifolds its components

represent the rate of change of a given manifold in a specific direction. Hence the

determinant of g has higher values when a strong gradient presents (Sagiv et al., 2006).

Therefore metric g can be used for edge detection. Then the value h(x, y) at (x, y) of

inverse edge image h can be formed as,
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(a) (b)

Figure A.1: (a)Texture image (b)Inverse edge image

h(x, y) =
1

det(g(x, y))
(A.5)

where det() represents taking determinant of a matrix and g(x, y) represent matrix of g

metric for the location (x, y). An inverse edge image obtained in this way for smoothed

PL histogram features is show in figure A.1. In energy functional, given in equation

A.1, the first term associates with the boundary information, extracted by inverse edge

image, while the second and third terms relate to regional information. The evolution

function obtained by applying Euler-Lagrange method for equation A.3 is,

∂χ

∂t
= µ ∗ div

(
h
∇χ
|∇χ|

)
− λin

(n2+1)/2∑
k=1

D(Fk,Fk
in) + λout

(n2+1)/2∑
k=1

D(Fk,Fk
out) (A.6)

The shape based active contour segmentation algorithm proposed by Mahmoodi (2009)

can be briefly stated as follows. The algorithm start with defining an arbitrary initial

non smooth shape characteristic function (SCF) χ0
0 for t = 0. The superscript and

subscript indicate the iteration number and whether the regularization is applied or not.

Next χ0
0 is regularized to achieve χ0

ε . Regularization is done by,

χtε = Gε(x, y) ? χt0 (A.7)

with,

Gε(x, y) =
ε

π(x2 + y2 + ε2)
(A.8)

where ε is the regularizing parameter. Then by equation (A.6) χtcε at iteration t is

calculated. To obtain the discrete version of equation (A.6) the semi implicit finite

difference method discussed in Vese and Chan (2002) is used. Also at iteration t, χt0 is

reconstructed by,
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χt0 = H(χtcε −
1

2
) (A.9)

The regularized SCF for current iteration χtε is obtained by A.7. The regularized SCF

χtε is normalized to obtain χtnε, which is between zero and one, and the zero crossings

of (χtnε − 1/2) is detected, which turns out to be the evolving contour at iteration

t (Mahmoodi, 2009). The algorithm is illustrated as in algorithm A.0.1.

Algorithm A.0.1: ShapeBasedActiveContourEvolution(FeaImgStack)

Initialize χ0
0 for t = 0 and regularize it and then use eq A.6 to calculate χtcε

repeat

Construct χtε by χtcε using results of eq A.9 regularized by eq A.7 and

normalize it to obtain χtnε

Detect zero crossing of
(
χtnε − 1

2) as the evolving contour at iteration t

Compute Fk
in and Fk

out

Using eq A.6 to calculate χt+1
cε of next iteration

t=t+1

until convergence is reached (D(χt0, χ
t+1
0 ) < threshold)



Appendix B

Gibbs Sampling Algorithm

The Gibbs sampling algorithm can be used to synthesize an image Ysyn when the condi-

tional probability distribution of a pixel value given its neighbour values is known. The

Gibbs sampling algorithm is given in Algorithm B.0.2 where L is the gray-levels and M

is the number of sweeps (Li, 2009). In this study L ∈ {0, 1, . . . , 255} and M = 200 is

used.

Algorithm B.0.2: Gibbs Sampler()

% Generating a texture using a Gibbs sampler.

begin

initialize Ysyn to white noise;

for s ∈ S do

compute pl = p(ys = l|ys+r, r ∈ N ; f) for all l ∈ L;

set ys to l with probability pl;

repeat for M times;

end
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