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ABSTRACT
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Doctor of Philosophy

CONTROL OF ATOMIC FORCE MICROSCOPES

by Umar A. A. Khan

Atomic force microscopes or AFMs are instruments which use a mechanical probe to

scan a sample and estimate surface topography with nanometer accuracy. The term

atomic force originates from the fact that the imaging process relies upon the existence

of the inter-atomic interaction force between the mechanical probe and sample surface.

These instruments have established themselves as a vital cutting edge tool for inves-

tigation of matter at the nanometer scale. Their widespread usage is due not only to

their superior resolution but also because they can operate in any medium namely air,

liquid and vacuum. Another major advantage is that, unlike their predecessor instru-

ments AFMs do not require their samples to be conductive.This fact alone has enabled

in situ imaging of biological samples with unprecedented resolution and without sample

alteration. Other instruments like scanning electron microscopes (SEMs) can also view

biological samples, however they require the samples to be prepared and dried. While

some sample structure may be preserved, AFMs have no such limitation.

Despite the fact that AFMs offer all these advantages, the usage of a mechanical probe

for image generation causes them to be inherently reliant upon a feedback control loop.

This is because, the probe motion must be controlled in a suitable manner to avoid

letting its motion dynamics distort the sample image. In addition, since the mechanical

probe must be sequentially moved over the sample point by point, the imaging times

are long and range from a few seconds to in excess of ten minutes.

Given that feedback control is an integral part of AFM operation, the end users are

forced to manually tune Proportaional-Integral (PI) controllers which are used in most

commercial AFMs. Since the vast majority of scientists using AFMs do not necessarily

possess a knowledge of feedback control, they do this tuning though a manual trial and

error procedure which consumes valuable research time. Although the control systems

community has taken considerable interest in AFM control, the methods suggested often

require high order controllers and are tested for a specific experimental set up.
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The primary objective of this research is therefore to develop a novel automated con-

troller synthesis mechanism which has the potential of being used in a diverse range

of AFM setups. The method of choice for this research is Multiple Model Adaptive

Control (MMAC). The motivation for this decision as well as experimental verification

is provided in detail in this thesis. Given the wide commercial usage of PI controllers,

the same are used as a starting point for this work. The applicability of the method

suggested is however by no means restricted to them, and in the future can be extended

to incorporate more sophisticated controllers, for instance robust controllers.

The second objective of this research is to investigate two novel methods which have the

potential of substantially reducing the AFM imaging time. The first one suggests coarser

scan trajectories to save time, and then estimates the sample image using a relatively

new signal processing method called Compressive Sensing. The second method suggested

uses the AFM’s mechanical probe in a novel manner that can also substantially reduce

imaging time.
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Nomenclature

Vx X piezo voltage

Vy Y piezo voltage

Vz Z piezo voltage

vT Normalised PSD voltage for transverse bending

vL Normalised PSD voltage for lateral bending

vA Quadrant A PSD voltage

vB Quadrant B PSD voltage

vC Quadrant C PSD voltage

vD Quadrant D PSD voltage

ℎ Controller signal

vSP Set-point voltage

ASP Amplitude set-point

Ao Cantilever free vibration amplitude

fD Dither piezo drive signal

dTM Tapping mode deflection signal

A Amplitude signal

H Hammaker constant

R Tip radius

d Tip sample separation

ao Inter-atomic separation

Etip Tip elastic modulus

Esample Sample elastic modulus

�tip Tip Poisson ratio

�sample Sample Poisson ratio

E∗ Effective modulus of elasticity

Fts Tip-sample interaction

Fnc Non-conservative component of the tip-sample interaction force

Fb Force acting on cantilever beam due to base movement

F Total force acting on cantilever beam

Fi Total force corresponding to the itℎ eigenmode

� Sample viscosity

Xw W coordinate frame X axis
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xii NOMENCLATURE

Yw W coordinate frame Y axis

Xu U coordinate frame X axis

Yu U coordinate frame Y axis

q Tip deflection in coordinate frame U

Z Z piezo height in coordinate frame W

y Dither piezo height in coordinate frame W

Y Total cantilever base height in coordinate frame W

Zi Z piezo height for the itℎ eigenmode

yi Dither piezo height for the itℎ eigenmode

Yi Total cantilever base height for the itℎ eigenmode

qi Tip deflection corresponding to the itℎ eigenmode

mi Cantilever mass corresponding to the itℎ eigenmode

ki Cantilever stiffness corresponding to the itℎ eigenmode

ci Damping corresponding to the itℎ eigenmode

!i Resonance frequency corresponding to itℎ eigenmode

T Sample topography height

T̂ Estimated sample topography height

kZ Calibration constant for Z piezo voltage

Abase Cantilever base vibration amplitude

! Cantilever base vibration frequency

E Cantilever beam modulus of elasticity

I Cantilever beam moment of inertia

L Cantilever beam length

w Beam displacement in frame W

u Beam displacement in frame U

�c Cantilever beam mass per unit length


 Cantilever beam hydrodynamic damping coefficient

�i itℎ eigenmode

�̄i Normalized itℎ eigenmode

mtip Tip mass

m̄tip Normalized tip mass

K Cantilever transfer function gain

Q Cantilever transfer function quality factor

!n Cantilever transfer function resonance frequency

!p Cantilever frequency response peak frequency

!L Cantilever frequency response lower half power frequency

!H Cantilever frequency response upper half power frequency

Amax Cantilever frequency response peak amplitude

Mp Peak amplitude of normalised second order transfer function

Lscan Scan length in simulated AFM experiment

Tscan Scan duration in simulated AFM experiment



NOMENCLATURE xiii

Tℎ Sample feature height in simulated AFM experiment

Kp PI controller proportional gain

Ki PI controller integrator gain

e AFM control loop error for simulated and experimental results

S Signal space

Tt Truncation operator

ℛ�,t Restriction operator

U Plant input space

V Plant output space

Ue Extended plant input space

Ve Extended plant output space

uo, yo Plant input and output disturbances

u1, y1 True plant input and output

u2, y2 Measured input and output

P Plant

C Controller

Pp∗ True plant

Pp ptℎ plant in the plant set

Ap, Bp, Cp, Dp State space matrices corresponding to ptℎ plant in plant set

Σ Kalman estimator covariance matrix

rp Residual corresponding to the ptℎ plant

x̂ System state as estimated by the Kalman estimator

ỹ System output as estimated by the Kalman estimator

Δ EMMSAC system delay

qf Switching signal

Di
j Data subset corresponding to the itℎ sample and jtℎ trail controller

Gij Least residual plant corresponding to the itℎ sample and jtℎ trail controller

Ck Best controller corresponding to the ktℎ sample

�ij Performance metric for the itℎ sample using the jtℎ trial controller

D Complete data set containing all data subsets

G Complete plant set containing all least residual plants

ℝ Residual matrix

G Mean residual matrix

Φp Mapping from data subset to least residual plant

Φc Mapping from all data sub sets in a cluster to the best performance controller

Φq Mapping from the true plant’s measured input and output to the switching signal

pi Weight for the itℎ basis vector

s Sparse signal

ŝ Estimated sparse signal

 i itℎ basis vector

� Measurement matrix
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 Transformation matrix

Ξ Image data matrix

ΞD Discretized image data matrix

Q Mapping from the image data matrix to the discretized image data matrix

M Cantilever FEM global mass matrix

C Cantilever FEM global damping matrix

K Cantilever FEM global stiffness matrix

Mi Mass matrix for the itℎ cantilever FEM element

Ci Damping matrix for the itℎ cantilever FEM element

Ki Stiffness matrix for the itℎ cantilever FEM element

X⃗ State vector for the cantilever FEM model

F⃗ Forcing vector for the cantilever FEM model

yi, �i Displacement and deflection of the cantilever at the itℎ node

fi, �i Force and torque acting on the itℎ tip

NT Number of tips on the cantilever beam for full beam AFM

NS Number of laser spots for full beam AFM

NE Number of elements in the cantilever FEM model

e⃗ Error vector for full beam AFM

�⃗sp Set-point deflection vector

�⃗sp True deflection vector

Zc Control signal for full beam AFM
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Chapter 1

Introduction

Atomic Force Microscopes or AFMs are instruments which can observe microscopic

features on a material surface, with a resolution in nanometers. The term atomic force

originates from the fact that the imaging process relies upon the existence of the inter-

atomic interaction force between the mechanical probe and sample surface.

AFMs generate images by moving a mechanical probe over the sample surface. The

mechanical probe in this case is a small rectangular beam approximately 200 �m in

length. The beam is fixed at one end and free at the other, and is often referred to as a

Cantilever. The free end has a pyramid shaped structure with a sharp apex (or tip) that

faces the sample surface. As the cantilever tip moves or flies a few nanometers above the

sample, it feels the sample surface through the inter-atomic interaction force between

tip and sample. For instance, if the tip moves over a bump in the sample surface, the

tip deflects due to a change in the tip-sample interaction force. A controller measures

this deflection though an optical motion detection mechanism, and moves the cantilever

base up. When the bump has passed, the controller which is constantly monitoring tip

deflection pushes the cantilever base down to its original height. The control signal, once

calibrated serves as the estimate of the sample topography in the direction of motion.

The entire sample is rastered in this manner line by line and the calibrated control

signal is saved. The control signal for all the lines are then stacked to form the sample

image. The precise meanings of the terms rastered, line and stacked will be explained

in detail in the next chapter which focusses on modelling the AFM dynamics.

Given the ability of AFMs to operate in any medium on samples composed of any

material, they have become a valuable tool for a wide cross-section of the scientific

community. The purpose of this chapter is two-fold. Firstly to elucidate the factors

behind the wide usage of this instrument. Secondly, to briefly address the limitations of

the current AFMs and how these can be alleviated using control theory methods.

1
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1.1 Why Atomic Force Microscopy?

Ever since the development of the first AFM in 1986 by Binnig and Quate (1986) these

microscopes been utilized in a diverse range of applications. This popularity of AFMs

is partly due to the fact that they were built in response to a limitation of their prede-

cessor the Scanning Tunnelling Microscope (STM). These devices functioned by passing

a tunnelling current through the sample being viewed and estimated the surface topog-

raphy by regulating its value. The limitation of this approach was that it worked for

conducting samples only. In contrast to this approach, the AFM utilizes the interaction

forces present between materials in close proximity. This eliminates the dependence on

the conductivity of the sample being viewed. Furthermore, AFMs can be operated in

air, fluid and vacuum which greatly widens their applicability. Finally the ability to

detect features in the nanometer range is also significant. A comparison of AFMs to

three other forms of microscopy Transmission Electron Microscopy (TEM), Scanning

Electron Microscopy(SEM) and Optical Microscopy is given in Table 1.1.

AFM TEM SEM Optical

Max Resolution Atomic Atomic 1’s nm 100’s nm

Typical Cost(×103 USD) 100-200 500 or higher 200-400 10-50

Imaging Environment air, fluid, vacuum vacuum vacuum air, fluid

Sample preparation Easy Difficult Easy Easy

Table 1.1: Comparison of AFM and other microscopy techniques (Agilent).

While optical microscopes are the least costly, they can operate in any medium and their

sample preparation is also easy, they have the lowest resolution. Scanning and trans-

mission electron microscopes are costly and the sample needs to be placed in vacuum.

The fact that AFMs are capable of atomic resolution was first illustrated by the devel-

oper of the instrument in his contribution titled Atomic Resolution with Atomic Force

Microscope (Binnig et al. (1987)). The author was able to generate images of a graphite

surface which revealed the lattice structure with a resolution of 2.5Å. A very recent

example of the resolving power of AFMs was demonstrated through the work of IBM

researchers in Zurich (Gross et al. (2009)). The authors were able to image a single

Pentacene molecule. As mentioned in the same contribution the significance of this de-

velopment lies in the fact that while STMs can image atomic sized features of sample

surfaces, the resolving of individual atoms in a molecule is still a challenge. The images

obtained are provided below.



Chapter 1 Introduction 3

Figure 1.1: (a) Ball-and-stick model of the Pentacene molecule. (b) STM im-
age (c and d) AFM images (Reprinted with permission from The American
Association for the Advancement of Science.)

The top left image provides the Ball-and-stick model of the Pentacene molecule. Here

the larger grey balls represent Carbon atoms, whereas the smaller white ones illustrate

the Hydrogen atoms. The sticks illustrate the covalent bonds. The top right image is

generated using a STM and clearly cannot resolve the structure of the molecule. The two

bottom images are generate using an AFM. The particular mode used here is the Non

Contact Frequency Modulation mode. This means that instead of keeping the cantilever

static, it is vibrated at a fixed frequency and moved over the sample surface. During

this movement, the frequency shifts in cantilever vibration are recorded, and these are

then used for image generation.

AFMs have found substantial usage for the study of biological materials. An example

is provided through the work of (Seelert et al. (2000)) as published in Nature.

A B C 

D E 

Figure 1.2: a) Narrow and wide ring structures. (b and c) Wide ring struc-
tures showing 14 subunits. (d and e) Narrow ring structures. (Reprinted with
permission from the Nature Publishing Group.)
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Figure 1.2 (a) illustrates the wide and narrow ring proton turbine structures in the two

surfaces of an Adenosine Triphosphate (ATP) synthase. As mentioned in the same con-

tribution, ATP synthases are enzymes which can catalyse the synthesis and breakdown

of ATP.

Figures 1.2 (b) shows the wide ring structures. It was previously believed that the

proton turbine has 12 subunits however this study using an AFM revealed that the

number is 14. This is significant since any insight into the proton turbine structure

has implications into understanding the corresponding molecular mechanisms and the

efficiency of energy conversion. The bottom Figures 1.2 (c) illustrates the narrow ring

structure. The topography variation range in these images is 2nm.

AFMs have also been used in the study of the activity of single molecules e.g RNA

polymerase (Guthold et al. (1994), Kasas et al. (1997)), the motion of molecular mo-

tors such as Myosin V (Kodera et al. (2010)), cancerous cells (Iyer et al. (2009)) and

nanomechanical analysis of cells (Yang et al. (2011)). Although these applications are

significant, relatively lesser progress has been made to view these processes in real time

as they happen. As a result many dynamic processes are still unobserved (Schitter and

Rost (2008)).

Another field that has benefited from the development in AFMs is material science.

AFMs are being used for the study of material forces e.g, adhesion force (Dos et al.

(2010)), alteration of surfaces as in the case of the etching process (Morita et al. (2010)),

interface between materials as in the case of nanocontacts (Grodzicki et al. (2009)) and

also in the study of friction, lubrication and wear (Martnez-Martnez et al. (2009)).

In addition to this, the atomic force microscopy principle is not just restricted to viewing

surface topography or measurement of other material properties, it can also be used for

the purpose of nanomanipulation as mentioned in Yang and Jagannathan (2006) and

lithography Dauksher et al. (2004). Finally, the concept is being investigated at IBM for

the development of data storage devices which can store up to 1Tb/in2. This research

is being conducted under the IBM Millipede project. The name originates from the fact

that instead of having a single cantilever, the data storage device operates an array of

cantilevers in parallel.

The purpose of this brief discussion is to elucidate the fact that the AFM device itself and

the concept as well is pertinent to the research being conducted by a wide cross-section

of researchers. Any automation that makes its usage easier or enhances its performance

especially in terms of speed is certain to have far reaching consequences.
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1.2 Performance Limitations in Current AFMs

While AFMs have a few advantages over other instruments, they have two key perfor-

mance limitations namely,

∙ They require a substantial amount of time for generating an image.

∙ Furthermore, their usage demands that the end users have a basic understanding of

feedback control theory.

Time limitations occur due to the fundamental nature of AFM operation, which requires

a mechanical probe to scan the sample surface point by point in a sequential manner.

Typical imaging times range from a few seconds for a small scan area to tens of minutes

for larger area. Sample scan areas range from 100× 100 nm to 20× 20 �m.

As will be explained in the next chapter, the probe motion needs to be controlled using a

feedback control mechanism. Commercial AFMs rely upon the rudimentary proportional

integral (PI) controllers for correct functioning. These controllers must be tuned by the

end users of these devices. Given the fact that AFMs find usage in a diverse range of

fields from microbiology, material science to nano interrogation, the end users need to

develop some understanding of control principles in order to use the device effectively.

It is clear that if the control tuning procedure can be automated, the usage of AFMs

will become easier and hence these microscopes will become accessible to a wider group

of scientists. The primary objective of this research therefore is to automate this tuning

process. Although this thesis focuses on controller tuning alone, the concept investigated

here can also be applied to more sophisticated control mechanisms for instance robust

and adaptive controllers.

In addition to focusing on the automation of the AFM controller synthesis, this research

will also investigate the second major problem facing AFMs today i.e, speed of operation.

Current AFMs fall far short of the demands for operation speeds placed upon them,

particularly by molecular biologists. This group of scientists is interested in viewing the

interaction of biological molecules in real time, for instance DNA motors as illustrated in

Kodera et al. (2010). This in turn requires that AFMs be able to view samples at frame

rates as high as 30 frames per second, however currently this speed is mostly limited to

close to a minute per single frame (Schitter and Rost (2008)). The second objective of

this research is therefore to investigate means that can reduce the imaging times. Two

promising methods that will be investigated for speed improvement during the course

of this research are Compressive Sensing and a novel approach Full Beam atomic force

microscopy. Furthermore it will also be explained how the automated tuning is vital for

the compressive sensing approach.
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This research has been reported through the following contributions,

∙ Khan, U., Chong, H., French, M. (2013) Automated controller tuning for Atomic

Force Microscopes using Estimation Based Multiple Model Switched Adaptive Control.

In: IEEE Conference on Decision and Control, 10 December 2013.

∙ Khan, U., Chong, H., French, M. (2013) Real time controller implementation for

an atomic force microscope using a Digital Signal Processor. In: IEEE International

Conference on Applied Electronics, 10 September 2013.

∙ Khan, U., Chong, H., French, M. (2013) Full beam Atomic Force Microscopy. In:

IEEE International Conference on Automation and Computing, 14 September 2013.

The next section provides an outline of the work done in this dissertation.

1.3 Thesis Objectives and Outline

In the context of the information presented in the previous sections this thesis has two

distinct objectives given below,

∙ The first objective is to develop an automated controller tuning mechanism that can

remove the burden of manual gain tuning from the end user. This mechanism should

be able to retrofit around existing commercial AFMs easily with minimal hardware

intervention.

∙ The second objective of the thesis is to investigate novel ideas which have the potential

of reducing imaging times in an AFM.

The remaining part of this section provides the thesis outline.

Chapter 2 discusses in detail the operating principles of a commonly used atomic force

microscopy set up and generates the necessary models for controller synthesis. It also

provides a literature review of the contributions made so far to address the limitations

of AFMs, identifies potential limitations of these contributions and provides justification

for the method of choice for this research. As it will be explained in the chapter, an Es-

timation Based Multiple Model Switched Adaptive Control (EMMSAC) method provides

a promising solution to the control problems associated with atomic force microscopy.

Chapter 3 introduces the EMMSAC method, applies the same for a simulated atomic

force microscopy experiment using the model developed in Chapter 2 and provides the

simulation results.

Chapter 4 illustrates the experimental results obtained using a commercial AFM. In

these experiments the EMMSAC algorithm was used to generate sample images with no

manual tuning involved.
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Chapter 5 explains two novel methods for reduction in AFM imaging times. The first

one suggests sparse trajectories for scanning the sample and then using Compressive

Sensing for estimating the sample topography. Compressive sensing is a relatively new

development in the field of signal processing which attempts to reconstruct signals which

have been sampled at sub Nyquist rates. The exact manner in which this is achieved,

as well as how it is relevant for AFMs will be explained in detail in the chapter. The

second method referred to as Full Beam atomic force microscopy, uses the AFM probe

in a novel manner to scan the sample faster.

Chapter 6 concludes the work done in this research and highlights directions for possible

future work.





Chapter 2

AFM Fundamentals

This chapter outlines the functioning of the atomic force microscope (AFM). This in-

cludes a description of the AFM set-up followed by modelling of the tip sample inter-

action, optical lever, description of the piezo-actuators, the optical detection system,

simulation results of the AFM control loop and finally a literature review.

The motivation behind understanding and modelling AFM dynamics is that it is nec-

essary for automated controller generation. In practice AFM users must work with a

diverse range of AFM experimental set-ups, and each time they must manually tune

the controller using a trial and error procedure. However if the AFM dynamics for a

sufficiently large set of experimental set-ups is known a priori, it is possible to determine

the closest model and suggest an appropriate controller. This can substantially reduce

the time needed for controller tuning and make AFM usage easier. The model close-

ness is measured using deterministic Kalman filter residuals and is described in detail

in Chapter 3.

2.1 AFM Setup

The set-up of an AFM as illustrated in Figure 2.1 consists of a cantilever, a piezo-

actuator, an optical detection system, a controller and the sample. The typical can-

tilever has a length of 100-200 �m and is usually made of silicon oxide or silicon nitride

(Sebastian (2004)). The cantilever has a sharp pyramid shaped tip which is meant

to probe the surface. The other side of the cantilever i.e. the base is mounted on a

piezo-actuator that can translate vertically This piezo-actuator is referred to as the Z

piezo-actuator. The sample lies on top of a fixed base. The cantilever tip is then brought

in close proximity of the sample, usually within approximately 100nm and is then forced

to raster over the sample laterally. The rastering movement is made possible by the

XY piezo-actuator block, as illustrated in the same figure. For this purpose, VX and

9
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VY are selected to be a triangular and ramp signals as explained in Section 2.4. Here

VX and VY are voltage input signals for the XY pizeo actuator block. As the rastering

occurs the cantilever tip deflects due to the interaction force between the tip and the

sample. Detailed explanations about the interaction force are provided in Section 2.2.

The deflections are detected by an optical detection system which consists of a laser

beam incident upon the cantilever tip and a split photo diode that detects the reflected

laser. The split photo diode is a four quadrant sensor. The reflected laser spot must

remain at the centre of the four quadrants. The voltages of the top two and bottom two

quadrants are added. The difference between the two sums normalized by the sum of all

the four voltages generates the final output of the photo diode, which is referred to as

vT . The controller measures the photo-diode voltage vT and regulates the height of the

cantilever base so that this voltage remains at a reference value vsp. This in turn ensures

that the distance between the tip and the sample is regulated. The controller can change

the height of the cantilever base by altering the input voltage of the Z piezo-amplifier

ℎ. This is then amplified to VZ and sent to the piezo-actuator. Finally, the sample to-

pography is obtained by recording the control voltage ℎ applied to the Z piezo-amplifier

and scaling it with the actuator’s calibration constant in nanometers/volts. This mode

of AFM operation is referred to as Contact Mode Atomic Force Microscopy.

vT VZ 
Laser Source 

Photo Diode 

CONTROLLER 
PIEZO 

AMPLIFIER 

Sample 

Z  Piezo 
vSP 

Estimated Sample Topography 

XY Piezos 
VX 

VY 

h 

Figure 2.1: The AFM experimental setup (Contact Mode).

Although this form of atomic force microscopy is easy to understand, it has the disad-

vantage of greater contact between the tip and the sample. This is so because it wears

the tip and can also damage soft biological samples. As a consequence an alternate form

was developed and is known as Dynamic Mode Atomic Force Microscopy. Some authors

refer to the same mode as Tapping Mode AFM since cantilever tip taps the sample sur-

face. As illustrated in Figure 2.2 the only difference is that the cantilever base is excited

by an additional piezo-actuator, namely the dither piezo-actuator.

The dither piezo-actuator is provided a sinusoidal voltage signal fD at a frequency

close to the first resonance frequency of the cantilever. This causes the cantilever tip

to vibrate. Then as previously done, the vibrating cantilever tip is rastered over the

sample. This time, owing to changes in the tip-sample interaction force due to variation
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Figure 2.2: The AFM experimental setup (Dynamic Mode).

in sample topography the amplitude of tip vibration is altered. The purpose of the

controller now is to regulate the height of the sample to keep the amplitude of tip

vibration constant. This is achieved by extracting the amplitude A of the photo-diode

signal dTM using a lock-in amplifier and comparing it against a set point amplitude

Asp. The subscripts TM stand for tapping mode. The dTM signal is a high pass filtered

version of the photo-diode’s voltage signal vT . The high pass filtering extracts the high

frequency cantilever vibration component of vT . This dissertation is based only on this

later case i.e, dynamic atomic force microscopy. The set up illustrated in Figure 2.2 is

implemented using the CryoView 2000 AFM from Nanonics Imaging R⃝ available in the

Nanogroup at the University of Southampton (illustrated in Figure 2.3 below).

   AFM Chamber 

PID Controller 

Camera A 

B 

I        D        P 

Figure 2.3: The Nanonics CV2000 AFM. Inset A:Cantilever as seen from the
camera. Inset B: PID controller.
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The figure illustrates the Nanonics CV 2000 AFM. The AFM chamber is a pot like

ensemble with a hatch on top. The hatch contains the X, Y, Z, and dither piezo-

actuators. It also has a window through which a laser beam can pass. In addition it

also allows for viewing the cantilever and the laser spot using the camera at the top of

the instrument. Inset A illustrates the view typically seen by the camera during AFM

operation. As can be seen, the laser spot is close to the base of the cantilever. The user

must then move the spot manually to the tip of the cantilever indicated by the cross

hairs. The right side of the figure illustrates the analog electronics hardware provided

by the manufacturer. Inset B illustrates the PID control panel.

As can be seen, these can only be tuned manually. This led to the necessity of making

a customized hardware using a Digital Signal Processor (DSP), which can be interfaced

directly with an automated tuning algorithm running on a desktop.

The remaining sections 2.2-2.5 of this chapter describe in detail the components of

atomic force microscopy outlined here. Section 2.6 provides simulation results for the

closed loop AFM system and the last section provides a literature review of the existing

control methods used for AFM control.

2.2 Tip Sample Interaction

The tip sample interaction force is the interaction force between the cantilever tip and

the sample surface. It consists of long range attractive and short range repulsive forces

as mentioned in Garcia and Paulo (1999). This force has a conservative component that

depends only on tip sample separation d and a non-conservative one that depends on

the tip velocity ḋ (Melcher et al. (2008b)). The force is dominated by van der Walls

force (Israelachvili (1985)) between two atoms if the tip sample separation is greater than

inter-atomic distance for the sample ao. If the separation is less than ao the interaction is

determined by the adhesion force given by the Dejarguin-Muller-Toporov(DMT) theory.

The conservative component of the interaction force can thus be given as,

Fts =

{
−HR

6d2
if d > ao;

−HR
6a2o

+ 4
3E
∗√R(ao − d)

3
2 if d ≤ ao.

(2.1)

where R is the tip radius, H is the Hammaker constant and E∗ is the effective elastic

modulus of the sample. One possibility of modelling the non-conservative component of

the interaction force is to use the Kelvin-Vigot viscoelastic contact damping model as

suggested by Melcher et al. (2008b). Using this model the non-conservative component

can be given as,
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Fnc(d, ḋ) = −�ḋ
√
R(ao − d) (2.2)

Here � is the sample viscosity. The current simulation neglects the non-conservative

component and its effect remains to be explored.

The following Figure 2.4 illustrates the conservative component of the tip-sample inter-

action force for Hammaker constant H = 7.1 × 10−20J , tip radius R = 10nm, inter-

molecular distance ao = 0.16nm and effective elasticity modulus E = 1.3GPa.
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Figure 2.4: Tip Sample Interaction Force.

The region where the tip-sample separation is greater than ao is referred to as the

attractive region. The other one is known as the repulsive region. In the former the tip

is attracted towards the sample surface, whereas in the later tip starts penetrating the

sample surface and is repulsed.

The effective elasticity modulus E∗ can be determined from the elasticity moduli of the

tip Etip and sample Esample and the Poisson ratios for tip, �tip and sample, �sample using

the relation (Melcher et al. (2008b)),
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E∗ =

[
1− �2

tip

Etip
+

1− �2
sample

Esample

]−1

(2.3)

2.3 Optical Lever Model

The purpose of this section is to derive a model for the optical lever dynamics (can-

tilever), which will subsequently be used for application of control principles. It con-

cludes by experimental identification of the actual cantilever used in this research, and

a comparison between the true and estimated system response.

The optical lever can be modelled as a cantilever beam which is excited at the base (the

fixed end) and the free end has a tip mass attached. The tip end is nearly atomically

sharp i.e, there is only one atom at the apex and is effected by the tip sample interaction

forces described in section 2.2. The cantilever is an infinite degree of freedom system

(DOF) where a single DOF corresponds to an eigenmode of the beam.

The derivation starts by representing the cantilever dynamics using the Euler Bernoulli

beam equation and then uses Galerkin discretization to obtain a spring mass damper

system that is equivalent to the first eigenmode. Two assumptions are made. Firstly, it

is assumed that cantilever is vibrating in air. Secondly, it is assumed that the base is

excited with a sinusoid at a frequency close to the resonance of the first eigenmode.

Figure 2.5 illustrates the cantilever beam beam being modelled and the equivalent spring

mass damper system.

T 

Y(t) = Z(t)+y(t) 

q(t) 

d(t) 

ki 

mi 

Yi = Zi(t)+yi(t) 

qi(t) 

d(t) 

T 
Xw 

Yw 

Xu 
Yu 

ci 

qW(t) qWi(t) 

Figure 2.5: Euler Bernoulli beam and spring mass system equivalence.

Here Z(t) and y(t) are the movements of the cantilever base due to the action of the

Z and dither piezo-actuators respectively at time t. The actual movement Y (t) is then

simply the sum of the two. These quantities are represented in the global coordinate

frame W . Since the dither piezo is actuated by a sinusoidal signal fD, the resulting

movement is also sinusoidal and can be written as follows,
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y(t) = Abase cos!t (2.4)

where ! is the excitation frequency in rads−1 and Abase is the amplitude of the cantilever

base movement due to the action of the dither piezo. The height of the sample surface

feature is denoted by T and the tip sample separation by d(t). For the purpose deriving

the cantilever dynamics a separate coordinate frame U is attached to the base of the

cantilever. In this frame the tip deflection is denoted by q(t). The tip height in the

frame W is referred to as qW (t) where,

qW (t) = T + d(t) (2.5)

Lastly, mi, ki, ci, qi, qWi and Yi represent the mass, spring constant, damping constant,

tip deflection, tip height and base movement for equivalent spring-mass-damper system

corresponding to the itℎ eigenmode.

The derivation is carried out in three steps as done by Melcher et al. (2011). First the

base excitation force is converted into an equivalent force that acts uniformly on the

entire length of the beam. In the second step the Euler Bernoulli equation is solved

for the case with no damping, base excitation and tip sample interaction to obtain the

eigenmodes of the beam. Finally the Galerkin discretization procedure is applied to get

an equivalent spring mass system that explains the dynamics of a single eigenmode of

the beam. The remaining part of this section provides the derivation.

The dynamics of the cantilever using the Euler Bernoulli equation can be written as,

EI
∂4w(x, t)

∂x4
+ �c

∂2w(x, t)

∂t2
+ 


∂w(x, t)

∂t
= Fts(d)�(x− L) (2.6)

where x is the axial coordinate, E, I, L and �c are the beams elastic modulus, moment

of inertia, length and mass per unit length respectively, 
 is the hydrodynamic damping

coefficient and w(x, t) represents the beam deflection as a function of axial displacement

and time. Fts is the tip sample interaction force that acts at the tip of the beam as

indicated by the Dirac Delta operator �(x− L).

The beam deflection w(x, t) in the frame attached to the base W has three contributing

factors, i.e w(x, t) = Z(t) + y(t) + u(x, t). Here u(x, t) is the beam deflection in the

frame attached to the cantilever U, and q(t) = u(L, t) is the tip deflection. Writing

u(x, t) in terms of the three components, bringing all terms with ẏ, ÿ, Ż, Z̈ to the right

and assuming
∣∣Ż(t)

∣∣ < ∣∣ẏ(t)
∣∣ and

∣∣Z̈(t)
∣∣ < ∣∣ÿ(t)

∣∣, we get,
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EI
∂4u(x, t)

∂x4
+ �c

∂2u(x, t)

∂t2
+ 


∂u(x, t)

∂t
= Fts(d, ḋ)�(x− L)− �cÿ(t)− 
ẏ(t) (2.7)

Now letting,

Fb(x, t) = −�cÿ(t)− 
ẏ(t) (2.8)

where Fb is the base excitation force, the equation becomes,

EI
∂4u(x, t)

∂x4
+ �c

∂2u(x, t)

∂t2
+ 


∂u(x, t)

∂t
= Fts(d, ḋ)�(x− L) + Fb (2.9)

Before the Galerkin discretization procedure can be applied, the Euler Bernoulli equation

needs to be solved for the undamped and unforced case to derive the eigenmodes. For

this case the Euler Bernoulli equation becomes,

EI
∂4u(x, t)

∂x4
+ �c

∂2u(x, t)

∂t2
= 0 (2.10)

The solution to this equation can be obtained using the separation of variables approach.

The reason for doing this is that vibrating the beam always exhibits linear combinations

of unique profiles. These profiles do not change shape, only their amplitudes change

with time (Meirovitch (2001)). These profiles are the eigenmodes of the beam. There

can be multiple eigenmodes and for each one there exists one corresponding solution.

The solution corresponding to the itℎ eigenmode can therefore be written as,

ui(x, t) = �i(x)qi(t) (2.11)

where �i(x) is the itℎ eigenmode and qi(t) is its amplitude. Substituting this solution

into (2.10) we get for each value of i,

− EIqi(t)
d4�i(x)

dx4
= �c�i(x)

d2qi(t)

dt2
(2.12)

Now using the standard argument in the method of separation of variables (Meirovitch

(2001)) both sides of the equality must be equal to a constant. Since all the quantities

appearing in equation are real therefore the constant must also be real. Let the constant

be !2
i , then it can be shown

− EI

�c�i(x)

d4�i(x)

dx4
=

1

qi(t)

d2qi(t)

dt2
= !2

i (2.13)
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and therefore we get the following two equations,

d2qi(t)

dt2
+ !2

i qi(t) = 0 (2.14)

and

d4�i(x)

dx4
−
(�i
L

)4
�i(x) = 0; �4

i :=
!2
i �cL

4

EI
(2.15)

The first (2.14) has a solution of the form,

qi(t) = c1 sin!it+ c2 cos!it (2.16)

Here c1 and c2 are constants that can be determined from the initial position profile

u(x, 0) and velocity profile u̇(x, 0). The second (2.15) has a solution of the form,

�i(x) = A sin
(�ix
L

)
+B cos

(�ix
L

)
+ C sinh

(�ix
L

)
+D cosh

(�ix
L

)
(2.17)

The constants A,B,C and D can be found by applying the boundary conditions. For

the current problem there are four conditions, two for the fixed end and two for the free

end. The boundary conditions for the fixed end are given by,

u(0, t) = 0 (2.18)

d

dx
u(x, t)

∣∣∣
x=0

= 0 (2.19)

The first condition implies that the fixed end does not move in the co-ordinate frame

attached to the base, and the second one relates to the fact that the beam has no slope

with respect to the x -axis at the fixed end. The boundary conditions for the free end

are as follows,

d2

dx2
u(x, t)

∣∣∣
x=L

= 0 (2.20)

EI
d3

dx3
u(x, t)

∣∣∣
x=L

= mtipü(L, t) (2.21)

where mtip is the mass of the cantilever tip.

Now applying the solution ui(x, t) = �i(x)qi(t) into the boundary conditions we get,
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u(0, t) = 0 =⇒ �i(0)qi(t) = 0 =⇒ �i(0) = 0 (2.22a)

∂

∂x
u(x, t)

∣∣∣
x=0

= 0 =⇒
[
d

dx
�i(x)

]
qi(t) = 0 =⇒ d

dx
�i(x)

∣∣∣
x=0

= 0 (2.22b)

∂2

∂x2
u(x, t)

∣∣∣
x=L

= 0 =⇒
[
d2

dx2
�i(x)

]
qi(t) = 0 =⇒ d2

dx2
�i(x)

∣∣∣
x=L

= 0 (2.22c)

∂3

∂x3
u(x, t)

∣∣∣
x=L

= mtipü(L, t) =⇒ EI
d3

dx3
�i(x) + !2

imtip�i(L) = 0 (2.22d)

The last relation can be obtained as follows,

EI
∂3

∂x3
u(x, t)

∣∣∣
x=L

= mtipü(L, t)

EI
d3

dx3
�i(x)

∣∣∣
x=L

qi(t) = mtip�i(L)q̈i(t)

(2.23)

Since q̈i(t) = −!2
i qi(t) as mentioned in (2.14),

Therefore,

EI
d3

dx3
�i(x)

∣∣∣
x=L

+ !2
imtip�i(L) = 0 (2.24)

Now applying the boundary condition in (2.22a) into (2.17) we obtain,

�i(0) = B +D = 0 (2.25)

therefore,

D = −B (2.26)

The boundary condition in (2.22b) results in the following expression,

d�i(x)

dx

∣∣∣
x=0

=
�i
L

(
A cos

�ix

L
−B sin

�ix

L
+ C cosh

�ix

L
+D sinh

�ix

L

)
= 0 (2.27)

after setting x = 0 we get,

C = −A (2.28)
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Now using the boundary condition in (2.22c) and eliminating C and D we get,

d2

dx2
�(x)

∣∣∣
x=L

=
�2
i

L2
(−A sin�i −B cos�i −A sinh�i −B cosh�i) = 0 (2.29)

=⇒ A(sin�i + sinh�i) +B(cos�i + cosh�i) = 0

Repeating the same procedure for the last boundary condition (2.22d), eliminating C

and D and substituting mtip = m̄tip�cL we get,

[(cos�i + cosh�i)− �m̄tip(sin�i − sinh�i)]A+ . . . (2.30)

[(− sin�i + sinh�i)− �m̄tip(cos�− cosh�i)]B = 0

Here �c is the linear density of the cantilever beam, and m̄tip is the tip mass normalized

with respect to the beam mass.

Combining the last two equations in matrix form we get,

[
 11  12

 21  22

][
A

B

]
=

[
0

0

]
(2.31)

where

 11 = sin�i + sinh�i (2.32)

 12 = cos�i + cosh�i

 21 = (cos�i + cosh�i)− �im̄tip(sin�i − sinh�i)

 22 = (− sin�i + sinh�i)− �im̄tip(cos�i − cosh�i)

For a non-trivial solution it is clear that the solution

[
A

B

]
lies in the null space of the

2× 2 matrix, which therefore must be rank deficient and its determinant must be zero.

The simplified determinant is set equal to zero to give the following equation,

cos�i cosh�i + 1 + m̄tip�i(cos�i sinh�i − sin�i cosh�i) = 0 (2.33)

This relation is known as the dispersion relationship. The derivation for this relation can

be found in Appendix A. The values of �i that solve this relation are used to determine

resonance frequencies of the eigenmodes according to the relation,
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!2
i =

EI�4
i

�cL4
(2.34)

Since the system is rank deficient only one of the constants can be determined, the other

one is chosen arbitrarily. Choosing A = 1 and solving for B we get,

B = − sin�i + sinh�i
cos�i + cosh�i

(2.35)

Substituting all the constants in the general expression for an eigenmode (2.17) we get,

�i(x) = sin
�ix

L
− sinh

�ix

L
−
[

sin�i + sinh�i
cos�i + cosh�i

] [
cos

�ix

L
− cosh

�ix

L

]
(2.36)

Since the cantilever is a linear time invariant system, by using the superposition property

of linear systems the sum of all solutions corresponding to each eigenmode is also a

solution and can be written as,

u(x, t) =
∞∑
i=0

�i(x)qi(t) (2.37)

Equation (2.15) represents a differential eigenvalue problem of the form A�(x) = ��(x),

where A = d4

dx4
is a differential operator, � =

(
�i
L

)4
are the eigenvalues. The eigenfunc-

tions that solve this differential eigenvalue problem span the entire space of solutions

u(x, t) =
∑∞

i=0 �i(x)qi(t). Therefore the solution obtained using the eigenfunctions is

the complete solution.

This is the solution that will be used for the remaining part of this derivation.

The solution to the original equation (2.6) of the Euler Bernoulli beam for the forced and

damped case can now be given using the fact that the normalized eigenfunctions �̄(x)

can be used as the basis for the Galerkin discretization procedure. The discretization

is performed by substituting the solution u(x, t) =
∑∞

i=1 �̄i(x)qi(t) into (2.6) and then

finding the residual and setting it equal to zero to solve for qi(t) as follows,

∫ L

0
�̄i(x)

⎛⎝�c ∞∑
j=1

�̄j(x)q̈j(t) + 
�̄i(x)q̇i(t) + EI

∞∑
j=1

d4

dx4
�̄j(x)qj(t)− F (x, t)

⎞⎠ dx = 0

(2.38)

where,
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�̄i(x) =
�i(x)

�i(Lc)
(2.39)

Moving the summation outside the integral we get,

⎛⎝�c 2∑
j=1

∫ L

0
�̄i�̄jdx

⎞⎠ q̈j+

⎛⎝
 2∑
j=1

∫ L

0
�̄i�̄jdx

⎞⎠ q̇j+

⎛⎝EI 2∑
j=1

∫ L

0
�̄i�̄
′′′′
j dx

⎞⎠ qj =

∫ L

0
�̄iFdx

(2.40)

For the purpose of conserving space the arguments of the eigenfunctions (x), the forcing

function (x, t) are dropped and derivatives with respect to x are indicated with prime.

Equation (2.40) will now be solved for the case where i = 1, 2 and j = 1, 2. The same

solution can be extended for the infinite dimensional case as well. Substituting the

values for i and j we get the following matrix equation,

[
m11 m12

m21 m22

][
q̈1

q̈2

]
+

[
c11 c12

c21 c22

][
q̇1

q̇2

]
+

[
k11 k12

k21 k22

][
q1

q2

]
=

[
F1

F2

]
(2.41)

where,

m11 = �c

∫ L

0
�̄2

1dx, m12 = m21 = �c

∫ L

0
�̄1�̄2dx, m22 = �c

∫ L

0
�̄2

2dx (2.42)

c11 = 


∫ L

0
�̄2

1dx, c12 = c21 = 


∫ L

0
�̄1�̄2dx, c22 = 


∫ L

0
�̄2

2dx

k11 = EI

∫ L

0
�̄1�̄

′′′′
1 dx, k22 = EI

∫ L

0
�̄2�̄

′′′′
2 dx

k12 = EI

∫ L

0
�̄1�̄

′′′′
2 dx, k21 = EI

∫ L

0
�̄2�̄

′′′′
1 dx

F1 =

∫ L

0
�̄1Fdx, F2 =

∫ L

0
�̄2Fdx

Now using the following relationship,

EI

∫ L

0
�̄i�̄
′′′′
j dx = EI

∫ L

0
�̄′′i �̄

′′
jdx− !2

jmtip (2.43)

The terms kij can be written as,
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k11 = EI

∫ L

0
(�̄′′1)2dx− !2

1mtip, k22 = EI

∫ L

0
(�̄2)2dx− !2

2mtip

k12 = EI

∫ L

0
�̄′′1�̄

′′
2dx− !2

2mtip, k21 = EI

∫ L

0
�̄′′1�̄

′′
2dx− !2

1mtip

The detailed derivation for (2.43) can be found in A.2. Substituting k11, k22, k12 and k21

into (2.41) we get,

[
m11 m12

m21 m22

][
q̈1

q̈2

]
+

[
c11 c12

c21 c22

][
q̇1

q̇2

]
+

[
k̃11 k̃12

k̃21 k̃22

][
q1

q2

]
−mtip

[
!2

1 !2
2

!2
1 !2

2

][
q1

q2

]
=

[
F1

F2

]
(2.44)

Here k̃ij is the first part of kij i.e the one obtained from the integration. From (2.14)

we know that !2
j qj = −q̈j , therefore (2.44) becomes,

[
m11 +mtip m12 +mtip

m21 +mtip m22 +mtip

][
q̈1

q̈2

]
+

[
c11 c12

c21 c22

][
q̇1

q̇2

]
+

[
k̃11 k̃12

k̃21 k̃22

][
q1

q2

]
=

[
F1

F2

]
(2.45)

Now using the orthogonality and companion orthogonality conditions for the eigenmodes

(Meirovitch (2001)) given below,

∫ L

0
�c�̄i�̄jdx = −mtip, i, j = 1, 2, . . . ; i ∕= j (2.46a)

EI

∫ L

0
�̄′′i �̄

′′
jdx = 0, i, j = 1, 2, . . . ; i ∕= j (2.46b)

Using these,

m12 = m21 = −mtip +mtip = 0 (2.47)

c12 = c21 =
−
mtip

�c
(2.48)

k̃12 = k̃21 = 0 (2.49)

Equation 2.45 thus becomes,[
m11 +mtip 0

0 m22 +mtip

][
q̈1

q̈2

]
+

[
c11 c12

c21 c22

][
q̇1

q̇2

]
+

[
k̃11 0

0 k̃22

][
q1

q2

]
=

[
F1

F2

]
(2.50)
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For operation in air, the first eigenmode is generally sufficient to model the cantilever

dynamics as mentioned in Melcher et al. (2008a). Therefore only the first eigenmode is

used for the current research, which reduces the system of differential equations (2.50)

to a single differential equation given below,

m1q̈1 + c1q̇1 + k1q1 = F1 (2.51)

where m1 = m11 +mtip, c1 = c11 and k1 = k̃11

The solution of this equation q1(t) gives the deflection of the cantilever tip u(L, t). The

force F1 has two components, namely the tip-sample interaction force Fts and force

acting on the cantilever base due to the action of piezo-actuators Fb. Equation 2.51 thus

becomes,

m1q̈1 + c1q̇1 + k1q1 = Fts(d) + Fb (2.52)

Since the cantilever behaviour can be approximated by a spring mass damper system,

the force on the cantilever base Fb can be given as,

Fb = k1(Y1) (2.53)

Fb = k1(y1 + Z1) (2.54)

where Y1 is the equivalent cantilever base movement corresponding to the first eigen-

mode. y1 and Z1 are the components corresponding to the movement due to the dither

piezo and the Z piezo as illustrated in Figure 2.5. Furthermore Melcher et al. (2007)

shows that m1, c1, k1 and Y1 can be approximated as

m1 =
mc

4
(2.55)

c1 =
m1!1

Q1

k1 = 1.03kc

Y1 = B1Y

Here mc, kc and Q1 are the cantilever mass, stiffness and quality. B1 is referred to

as a modal parameter and approximately equals 1.5 (Prakash et al. (2009)). The base

excitation force can thus be further simplified as,
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Fb = k1(B1y +B1Z) (2.56)

Fb = k1B1(y + Z) (2.57)

Fb = k1B1(Abase cos!t+ Z) (2.58)

where Abase and ! are the amplitude and frequency of the sinusoidal drive signal.

The final block diagram of the AFM system with y(t), Z(t) and sample topography T(t)

as input and tip height qW (t) = qW1(t) as output can be drawn as illustrated in Figure

2.6. It must be noted that this block diagram represents the AFM system in the frame

W . The topography signal is now written as a function of time. This is because, as

the vibrating cantilever rasters above the sample surface the sample surface topography

varies with time.

Tip-Cantilever 
Fb 

Tip-Sample 
Interaction 

+ 

+ 

- 

+ 

T(t) 

qW(t) 

d(t)                Fts 

F1 
k1B1 

Y 

Figure 2.6: AFM block diagram.

2.3.1 Experimental Determination of Cantilever Transfer Function

The cantilever transfer function is determined simply by providing sinusoidal excitation

signals to the dither piezo attached with the cantilever base and measuring the corre-

sponding sinusoidal tip deflection. In this case 300 sinusoidal signals with frequencies

ranging from 60 kHz to 70 kHz are used as input. Each signal has an amplitude of 0.6

V and lasts for 1 ms. The tip deflection dTM is then passed through a lock in amplifier

which extracts the amplitude A(t) for each signal. All experiments in this section were

performed on the CryoView 2000 AFM from Nanonics Imaging. Figure 2.7 illustrates

the frequency responses of the cantilever when it is far from the surface. The term far
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implies that the cantilever tip is at a sufficient distance from the tip so that the tip

sample force is negligible.

This frequency response is next used to determine the transfer function for the cantilever.

Since it is already known that the response of the cantilever can be modelled by a second

order under damped LTI system with no zeros, the form of each transfer function is given

by

Gc(s) =
K!2

n

s2 + !n
Q s+ !2

n

(2.59)

where K is the system gain, !n is the resonance frequency and Q is the quality factor.

The quality factor is determined easily by finding the maximum amplitude Amax, the

frequency at which the amplitude is maximized !p and the two frequencies !L, !H

where the amplitude is Amax√
2

. The quality factor is then simply Q =
!p

!H−!L
. While this

relation for quality factor holds true for a series RLC circuit that has an s term in the

numerator of its transfer function. However since the current system has high Q (low

damping) the relationship is still valid.

Next, the resonance frequency is determined by the relationships given below,

!n =
!p√

1− 2�2
(2.60)

� =
1

2Q

Finally the system gain K is determined using the following relations,

Mp =
1

2�
√

1− �2
(2.61)

K =
Amax
Mp

The finally identified parameters are provided below in table 2.1.

Table 2.1: Identified cantilever transfer function parameters

T.F !n [kHz] Q K

Gc 65.497 199.9 0.0421
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Figure 2.7: Cantilever frequency response far from the surface.

Figure 2.7 also plots the simulated response of the identified transfer function. It is clear

that there is good agreement between the true and simulated cantilever behaviour.

Although the estimated amplitude does not match the true amplitude at greater sepa-

ration from the resonance frequency, this difference makes no difference for the current

application. This holds true because the cantilever is always excited very close to its

first resonance frequency.

2.4 Piezo-Actuators

Piezo-actuators are made of materials which change shape in response to application

of electric potential. This property of these materials is used to make piezo-actuators,

which can generate linear motion upon application of a voltage signal. Since the op-

eration of the AFM requires movement in three translational degrees of freedom, the

piezo-actuators must be used in specially designed constructions to enable the necessary

movement.

One possibility is to use a single tube piezo-actuator developed by Veeco (2006) (illus-

trated in Figure 2.8). This actuator can bend sideways to provide the two lateral degrees

of freedom along the x y axis and can also expand and contract to provide movement

along the z axis. These movements are achieved by applying suitable voltages to inbuilt

electrode pairs, one for each degree of freedom. The Multimode AFM available at the

University of Southampton also employs an AS-130 J tube scanner with an x y range of

125�m × 125�m and a vertical range of 5�m Veeco (2006). The primary disadvantage
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of this actuator is the coupling between the x y and the z directions. As the tube bends

sideways z axis value is also altered. There are two ways in which this problem can be

resolved. The first method is to use the knowledge of the geometry of the actuator and

correct the acquired image through image processing (Abramovitch et al. (2007)).

The second method as illustrated in Figure 2.8 is to use an alternate actuation config-

uration in which movement along each axis is achieved by a separate actuator. Two

of the actuators are placed inside a nano-positioning stage (also referred to as the x y

scanner) for actuation along the x y axis and the z -actuation is done with a separate

actuator.

X 

Y 

X* 

Y* 

Z 
y Actuator 

y Sensor 

x Actuator x Sensor 

Flexure 

Nano-positioning 
Stage 

Figure 2.8: Piezoactuators i) tube actuator (left) (Veeco (2006)) ii) Nanoposi-
tioning stage (right)(Abramovitch et al. (2007))

The rastering of the sample is always done by providing a triangular waveform to the x

axis actuator and a ramp to the other one. If a nano-positioning stage is being used the

inner actuator is chosen to be the x axis since it must move a smaller mass and therefore

is better suited for the triangular movement which has higher frequency content. This

rastering pattern is illustrated in Figure 2.9. If a tube actuator is used rastering can be

done by providing the same waveforms to the x and y electrodes respectively.

Each two consecutive scan lines are referred to as the trace and retrace lines. A trace

line scans the sample from the bottom to top (or left to right) and a retrace scans in

the opposite direction.

Although the rastering pattern just mentioned may appear trivial to execute however

the speed at which this can be done is severely limited by the presence of two factors

namely, i) vibrations ii) modelling uncertainty. The first problem occurs due the presence

of resonant modes of vibrations in the piezo-actuators. The resonance frequency of the
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Figure 2.9: Raster pattern employed in AFMs

first vibration mode is typically in the range of 200Hz to a few tens of kHz (Devasia

et al. (2007)). If the excitation signal contains a frequency that is close to the resonance

frequency, the actuator begins to oscillate and as a result the raster pattern of movement

is distorted. This in turn distorts the image that is generated by the AFM. An example

of this distortion is provided through experimental data by Devasia et al. (2007) and is

illustrated in Figure 2.10.

Figure 2.10: Distortion in ratering pattern as given in Devasia et al. (2007)

As can be seen clearly in addition to the triangular movement the actuator oscillates as

well. In this case the actuator was driven with a triangular wave form with a frequency

of 40 Hz. The first resonant frequency of the actuator is 850Hz. The distortions in this

case are due to the 21st and 23rd harmonics of the triangular waveform which are close

to the first resonance frequency.

Ideally, resonance in any plant may be cancelled by designing an appropriate controller,

however this approach is limited by the second problem associated with piezo-actuators

i.e modelling uncertainty (Abramovitch et al. (2007)). It is difficult to develop a priori
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accurate models of a piezo-actuator (Devasia et al. (2007)). In addition to the un-

certainty, the actuator dynamics change over time due to ageing effects which therefore

requires that current AFM users must calibrate the piezo-actuators every month as men-

tioned in Veeco (2006). Due to these reasons the use of robust, adaptive and learning

control methods has been widely investigated over the past decade.

Another factor that makes the use of such control methods difficult is the limitation on

the maximum sample rate imposed by current hardware. Controllers can be designed

which compensate even for the higher harmonics of the actuators, but as a rule of thumb

according to Abramovitch et al. (2007) the sample rate must be 10-20 times greater than

the highest dynamic of interest. The same author also also gives an example that if a

controller needs to include a 300kHz resonance the sample rate must be 3-6 MHz. This

imposes severe limitations on the complexity of the control algorithm.

The piezo-actuator stage used for the current research is the 3D FlatScanTM from Nanon-

ics Imaging. The piezo stage consists of two piezo-actuators each for actuation in the

lateral X and Y directions, namely X+, X− and the Y +,Y −. The pair of actuators for

each direction are provided voltages with opposite polarity. Thus if one actuator expands

the other contracts, causing movement in the direction of the expanding actuator. The

same applies to actuation in the Z direction with three pairs of piezo-actuators. Figure

2.11 (left) illustrates the piezo-actuators. Figure 2.11 (right) illustrates the 3D view of

the same stage and shows the position of the cantilever.

X+ Y+ 

Y- 

Z+ 

X- 

Z+ Z+ 

X+ 

X- 

Y+ 

Y- 

Cantilever 

Figure 2.11: Nanonics piezo-actuator stage (Nanonics Imaging). Top view(left)
3D view(right)

This piezo-stage has no sensors for position measurement and is therefore run in open

loop. As a consequence the piezo movement is calculated by multiplying the piezo input

voltage with a calibration constant.
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2.5 Optical Detection System

The optical detection system consists of a laser source and a four quadrant photo detec-

tor. As illustrated in the Figure 2.12 the purpose of having four quadrants namely A, B,

C and D is to enable the detection of not just the transverse vibration of the beam but

also lateral bending movement. The transverse vibration is detected by summing the

top two and bottom two quadrant voltages and finding their difference. The difference is

then divided by the sum of the voltages from all the quadrants to eliminate the effect of

variation in laser intensity. The final deflection is obtained in the form of a normalized

signal vT as follows,

A B 

C D 

A B 

C D 

Photo Detector Photo Detector 

Laser Laser 

Sample Surface Sample Surface 

Figure 2.12: The AFM optical system for detection of transverse bending (left)
and lateral bending (right).

vT =
(vA + vB)− (vC + vD)

vA + vB + vC + vD
(2.62)

The normalized signal for the detection of lateral bending can be obtained using,

vL =
(vA + vC)− (vB + vD)

vA + vB + vC + vD
(2.63)

The dynamic mode atomic force microscopy uses only the transverse bending of the

cantilever. The lateral bending of the cantilever beam has been investigated for the

determination of the surface friction of a surface (Caron et al. (2004)).

2.6 The AFM Control Loop

The complete AFM control loop will now be illustrated. The purpose of the controller

is to regulate the amplitude of the cantilever vibration. If the topography of the sample
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being rastered beneath the vibrating tip changes, this in turn changes the tip sample

interaction force. As a consequence the amplitude of vibration is altered. The purpose

of the controller is to regulate the height of the vibrating tip by changing the piezo-

actuator input voltage ℎ so that the amplitude of vibration remains the same. Finally

the estimated topography T̂ = kZ × ℎ, where kZ is the calibration constant for the

piezo-actuator with units of nm
V . This concept is illustrated in Figure 2.13.
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Figure 2.13: The AFM control loop.

The control loop illustrated in the figure has been chosen to generate simulation re-

sults for a commonly used AFM experimental set up, i.e Tapping mode atomic force

microscopy. The parameters used for the simulation are illustrated in (Table 2.2). Here

Ao is the amplitude with which the cantilever will vibrate when it is far enough from

the surface so that the tip sample interaction force has no effect. The cantilever quality

factor Q and resonance frequency fn = !n
2� are determined using the system identifi-

cation experiment explained in the previous section. These two parameters along with

cantilever length, width and fluid density and viscosity of air are then used to determine

the cantilever stiffness. This is done by using an analytical method referred to as the

Sader method as mentioned in Sader et al. (1999).

The additional high pass filter is used because only the vibration amplitude of the

cantilever deflection signal is of interest for the AFM operation. This is implemented

using a first order high pass filter with a corner frequency equal to a tenth of the

cantilever resonance.

The excitation signal is a sinusoid with amplitude Abase and frequency f . The excita-

tion amplitude is chosen so that the amplitude of free vibration Ao equals 30nm. The

frequency of the excitation signal is selected be equal to the cantilever resonance fre-

quency so that the amplitude of vibration A exhibits maximum sensitivity to changes in
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sample surface height. The sampling frequency is selected to be 5 MSPS (mega samples

per second), which is more than 75 times the resonance frequency. Thus the sampling

time Ts is 0.2�s. This excessive sampling frequency is motivated purely through empiri-

cal observation and other contributions reporting similar simulation results for instance

Melcher et al. (2008a). A proportional integrator (PI) controller is used in the loop.

This is motivated by the fact that a large number of commercial AFMs use the same

controller and it has been found to be sufficient for sample topography estimation. The

exact values of the controller gains Kp and Ki are selected using an exhaustive search

procedure described in Section 3.2.2. It is assumed that the cantilever material is Silicon

and the sample is made of fused silica SiO2. The material properties for these substances

are obtained from Stark et al. (2004). This control loop was simulated for a sample with

a step profile with a feature height Tℎ of 120 nm. The set point Asp for the controller is

set at 0.8Ao = 24nm. Generally the set point amplitude is selected to be slightly below

Ao. If the set point is selected to be a small fraction of Ao, this will cause the cantilever

tip to be closer to the surface. In a physical AFM system this can cause sample damage

if the sample is soft, or wearing of the tip if the sample is hard.

Two assumptions are made in the simulation, i) the piezo-actuator and optical detector

dynamics are neglected i.e, they have unity transfer functions ii) the optical measurement

noise is neglected. The piezo-actuator dynamics can be neglected because in the current

AFM the scan rate is very low, i.e only 1 scan line per second or 0.5 Hz. Furthermore,

this model is only applicable for the case where both the lateral and vertical movements

are accomplished by the piezo-actuator attached with the cantilever base. This set up

is one of the two common AFM set ups used in practice. In the second one, the sample

is placed on a piezo stage. The stage then moves the sample in the lateral and vertical

directions. The cantilever is attached to a separate dither piezo. Therefore, in one set

up the cantilever is moved, whereas in the other one the sample is moved. The model

used in this research can be easily modified for either case.

Figure 2.14 illustrates the true and estimated topography. The estimated topography

is simply the controller voltage VZ . Since the current implementation neglects piezo-

actuator dynamics the calibration constant is 1nmV . As it is clear that the control signal

can provide an approximation of the true surface, however the accuracy depends on the

tuning of the controller.

The next Figure 2.15 shows the true and the set point amplitudes. As can be seen the

true amplitude oscillates around the desired level however substantial deviations occur

when the topography abruptly changes.
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Parameter Symbol Value

Cantilever

Amplitude of free vibration (nm) Ao 30

Cantilever stiffness(N/m) k 40

Cantilever oscillation mode i 1

Quality factor Q 180

Resonance frequency(kHz) fn 65

Cantilever transfer function gain K 1

Modal parameter Bi 1.5

Scan

Excitation amplitude(nm) Abase 0.10

Excitation frequency(kHz) f 65

Sampling frequency(�s) Ts 0.2

Scan time (s) Tscan 0.05

Scan length (nm) Lscan 10

Proportional gain Kp 0.04

Integral gain Ki 0.007

Tip-Sample interaction

Hamaker constant(J) H 0.2× 10−18

Tip radius(nm) R 20

Elastic modulus (tip) (GPa) Etip 130

Elastic modulus (sample) (GPa) Esample 1.2

Poison ratio (tip) �tip 0.3

Poison ratio (sample) �sample 0.3

Inter-atomic Separation (nm) ao 0.3

Sample topography

Feature profile step

Feature height (nm) Tℎ 120

Table 2.2: AFM simulation parameters.

2.7 Literature Review

Feedback control mechanisms are integral for the functioning of atomic force micro-

scopes. The most important function is the regulation of the vertical tip sample separa-

tion or the cantilever vibration amplitude. As a consequence, ever since the development

of the first AFM in 1986, feedback mechanisms have been developed and investigated

for this purpose. However initially, no controllers were used for regulating the piezo

stages that raster the sample laterally beneath the cantilever. This was instead done

in an open loop manner (Agarwal and Salapaka (2008)). With availability of greater

computational power at the start of the last decade control theorists began applying

modern control methods e.g, robust, model based inverse control and adaptive control

for lateral control as well. The entire body of AFM control literature can be classified

into two groups, lateral and vertical control. In the first case the controller is responsible

for lateral rastering movement of the X and Y piezos. The second group focusses on
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Figure 2.14: Comparison of true vs estimated topography.
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Figure 2.15: True amplitude (A) vs set point amplitude (Asp).

control strategies developed for regulating the cantilever tip deflection or amplitude by

controlling the Z piezo movement. The next section explains the performance measures

used as benchmarks, followed by a description of the control strategies themselves in the

remaining two sections.
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2.7.1 Performance Measures

As mentioned in Chapter 1, the most important limitations of AFM performance are

high scan time, and the difficulty of use. These result in two objectives for any AFM

control design.

The first objective is to generate an image faster. This translates directly into the

scan rate of the lateral X, Y piezos. In control theoretic terms this is the closed loop

bandwidth of the X, Y piezo position control system. The higher the bandwidth, the

greater will be the scan rate and the lesser the time needed to scan a sample.

The second objective is to develop an automatic controller generation mechanism which

results in a controller that maximises the accuracy of the topography estimate. Although

a number of methods have been suggested for controller synthesis, these contributions

would need some a priori knowledge of control theory from the end user. In addition

they would be difficult to retrofit around existing commercial AFMs. The accuracy can

be expressed as the squared 2-norm of the estimation error ∣∣T − T̂ ∣∣22, which should be

minimized.

While this measure is ideal for measuring estimation accuracy, it is practically impossible

to use. The reason is that it needs complete knowledge of the true topography T . An

alternate measure is therefore generally used, which is the error in the quantity being

regulated. For the case of contact mode, it is the squared 2-norm of the difference

between the set point PSD (photo sensitive diode) voltage and the true PSD voltage,

i.e ∣∣e∣∣22 = ∣∣vsp − vT ∣∣22.

For the case of dynamic mode it is the squared 2-norm of the difference between the set

point amplitude Asp and the actual amplitude A, i.e ∣∣e∣∣22 = ∣∣Asp − A∣∣22. While it is

easily measured, the squared 2-norm of the error is not the best metric since a low value

of this metric does not necessarily correspond to a better quality image. This is because

it does not take into account the oscillatory nature of the sample image or the difference

between the trace and retrace scan lines. Ideally there should be no controller induced

oscillations in the control signal and the trace and retrace signals should be as similar

as possible.

The next two sections explain the control strategies developed so far for lateral and

vertical control. The last section concludes the literature review and highlights the

aspects of atomic force microscope control that need to be investigated further and are

the subject of this thesis.
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2.7.2 Lateral Control

The lateral control strategies focus on actuation problems associated with piezo-actuators.

As mentioned previously, there are two performance objectives namely tracking band-

width and the positioning accuracy. The tracking bandwidth determines the highest

frequency up until which the piezo-actuator can follow a reference positioning signal.

Higher bandwidth implies faster scanning and lesser imaging times. The biggest diffi-

culty in this context is the existence of resonant modes in the pizeo-actuator as men-

tioned in Section 2.4. If the exact transfer functions of the piezo-actuators are known,

it would be possible to generate controllers that cancel these resonant modes. However

since there is always an uncertainty in the piezo-actuator transfer functions this is dif-

ficult. Furthermore, the presence of Creep, Hysteresis and position sensor noise have a

detrimental effect of positioning accuracy. The creep phenomenon corresponds to the

gradual drift in piezo position from its steady-state position. This means that if a step

input is provided the piezo will first quickly move towards a steady state position, but

then instead of remaining there it will continue to drift away slowly.

One possible control design tool that provides a systematic method for achieving the

above mentioned performance objectives is H∞ control, which has been investigated by

a number of researchers. This review provides one example (Lee (2010)) that explains

how the H∞ framework is applicable for lateral control. This contribution was selected

because it provides a systematic procedure that is generic and is a good representation of

of the work reported in similar contributions. Figure 2.16 illustrates the nano-positioning

control loop as reported by the same author Lee (2010).

Controller 
 Gr 

Piezo-Actuator 
 Gp 

Reference 
Position - r 

- 
Measured 
Position - y 

Control 
Signal - u 

Error - e 
True  

Position – y* 

Creep- d 

+ 
+ 

+ 
+ 

Sensor 
Noise - s 

Figure 2.16: Nanopositioning control loop.

The author uses the plant Gp to model resonance and hysteresis, whereas creep is con-

sidered to be an external disturbance d. The plant model Gp is obtained by generating

the frequency response of the piezo-actuator with the piezo input voltage as input and

position sensor voltage as output. This modelling method has been followed in general

in all contributions that suggest controllers for piezo-actuators. Here Gr is the suggested

robust H∞ controller.
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The true position y∗ is then measured but it is corrupted with sensor noise s and results

in noisy measurement y. The true system error e∗ can then be defined as,

e∗ = r − y∗ (2.64)

e∗ = r − (
GrGp

1 +GrGp
r − GrGp

1 +GrGp
s+

1

1 +GrGp
d)

e∗ = r − (Tr − Ts+ Sd)

Where S = 1
1+GrGp

is the Sensitivity Function and T =
GrGp

1+GrGp
is the Complementary

Sensitivity Function. Then using the fact that T + S = I where I is the unity transfer

function we get,

e∗ = r − Tr + Ts− Sd (2.65)

e∗ = r(I − T ) + Ts− Sd)

e∗ = Sr + Ts− Sd

e∗ = S(r − d) + Ts

The control design objective then is clearly to minimize e∗. This then translates into de-

signing controllers that minimize S in the frequency range corresponding to the reference

signal r and creep disturbance d, and minimizes T in a frequency range corresponding

to sensor noise s. Furthermore since the sensitivity function also equals dT/T
dG/G the peak

of the sensitivity function ∣∣S∣∣∞ corresponds to the robustness of the closed loop sys-

tem to modelling uncertainty. Therefore another objective of the design procedure is to

minimize the peak of the sensitivity function. The author then describes in detail how

a controller can be designed that meets these requirements.

The next immediate extension to using feedback controllers is to add a feed-forward

controller as illustrated in the figure below,

As reported in Lee and Salapaka (2009), while the feedback controller provides robust-

ness the feed-forward component allows the designer to overcome the algebraic con-

straints associated with designs that have only a feedback controller. The author in this

contribution again uses the H∞ frame work to design both feedback and feed-forward

controllers which enable faster operation of the piezo-actuators. Both approaches are

finally compared in the same contribution. While the feedback only control enables a

closed loop bandwidth of 49.4 Hz, the addition of the feed-forward controller improves

the bandwidth to 214.5 Hz.
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Figure 2.17: Nano-positioning control loop with feed forward controller.

An alternate approach to design the feed-forward controller is to use the inverse model of

the piezo plant dynamics as reported in Clayton et al. (2009). The author reports scan

rates of up to 445 Hz using this method. This however leads to a number of problems

including those arising from model uncertainty, non-minimum phase plants and plants

with an improper inverse. These have been discussed in detail in the same contribution.

The third major direction adopted by researchers is Iterative Learning Control. The

major motivation behind this is the fact that in most AFM applications the scanning

trajectory is periodic. According to Devasia et al. (2007) and Devasia et al. (2007) ILC

controllers have been used to control both piezo-actuator hysteresis and vibration.

2.7.3 Vertical Control

This section provides a review of the various control methods that have been devel-

oped for regulating the height of the cantilever base while the sample is being rastered

underneath the cantilever tip. The performance measure in this context is that the

estimated topography T̂ approximates the actual topography T as closely as possible.

While it would be desirable to have a single number i.e, ∣∣T̂ − T ∣∣2 to compare the ef-

fectiveness of the methods, most contributions report the results graphically. This is

done by testing the proposed solution on a priori known samples (generally calibration

grids), and plotting the estimated topography. Furthermore, numerical comparisons

would be meaningful only if all the contributions imaged the same sample using the

same experimental setup which is not the case.

Before the control design can proceed the AFM system must be modelled. The entire

AFM operation in the vertical direction can be adequately described by modelling three

components i.e, the piezo-actuator connected to the cantilever base, the cantilever and

the tip-sample interaction. The piezo-actuator is modelled using the same procedure

described in the previous section. The cantilever movement is nearly always modelled
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as a linear combination of its eigenmodes. The tip-sample interaction is always mod-

elled using either the Lennard-Jones potential or the Derjaguin-Muller-Toporov (DMT)

model.

Once a model for the AFM system is obtained, a number of control methods can be

applied for Topography estimation. These range from standard methods like H∞ and

robust adaptive control to elaborate ones which use Poincaré sections for controller

generation. The remaining sub sections provide a review of the modelling procedures

and controller synthesis methods reported for control of vertical dynamics in contact

mode and tapping mode.

Contact Mode : The simplest method to model the vertical dynamics in contact mode

is to determine the transfer function between the vertical piezo input voltage and the

PSD output. An example of this method is provided by Sebastian (2004). The tip

sample interaction is then modelled as a disturbance acting on the system. The author

then uses an H∞ norm minimization framework to design the controller. A similar

modelling process is used by Fleming (2009) followed by the design and analysis of a

simple integral controller.

An alternative method for making the non-linear AFM model usable for controller gen-

eration is to model only the first eigenmode of the cantilever as a spring mass damper

system and linearise the non-linear tip sample interaction force around an operating

point as has been done in Rifai and Toumi (2005). A slightly different method is used

by Rifai and Toumi (2007) who first derives the transfer function between the piezo ver-

tical input voltage and the PSD output using elementary bending theory Rifai (2007)

and then identifies the transfer function coefficients using an experimental procedure

that involves sinusoidal excitation of the scanner and approach and retract curves. The

author then proceeds to design the controller using a robust adaptive method.

A similar procedure is used by Fujimoto and Oshima (2008a) where the author first

constructs a spring mass damper system equivalent to the cantilever and the tip-sample

interaction force and then determines the transfer function from the sum of the piezo

height and topography to the PSD voltage. The system parameters are then identified

using the corresponding frequency response. The same procedure is repeated in Fuji-

moto and Oshima (2008b) with the exception that a pseudo disturbance identification

input is used to construct an ARX model. These models are then used for topography

reconstruction using an observer.

Apart from these conventional approaches a different set of methods is followed by a

few researchers and these are described briefly in the remaining part of this section.

Krstic et al. (2006) suggests using a Shear Beam model for the cantilever instead of the

commonly used Euler Bernoulli one. The author then suggests back stepping boundary

control along with change of variables that converts the beam model into a wave equa-

tion. According to the contribution this transformation allows easy stability analysis
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and also makes achievement of the desired performance easier. This is the only excep-

tion where the dynamics of the beam are not explained using a linear combination of its

eigenmodes.

An entirely different approach is used by Li et al. (2009) where the cantilever is assumed

to be clamped to the piezo-actuator on and pinned to the surface. Instead of being

modelled as a clamped free beam, the cantilever is modelled as a clamped pinned beam.

The surface is then modelled as a linear combination of sinusoids.

In addition to these contributions there are two more that propose models for the vertical

dynamics in contact mode and discuss the dynamics exhaustively. These however do

not use the models for control. Stark et al. (2004) proposes a general state space model

for the cantilever dynamics, which contains two states for each mode. The tip-sample

interaction force is linearised at two points, one for the repulsive and attractive regions

each. The dynamics of the system are then discussed for both regions. Lastly Vazquez

et al. (2006) presents a method which starts by modelling the cantilever beam using the

Euler Bernoulli equation as usual, places the linearised tip-sample interaction force as a

boundary condition for the free end and then determines the transfer function between

the force per unit length of the cantilever and the cantilever slope at the free end.

Tapping Mode : The method employed for AFM vertical dynamics in tapping mode

is similar to the one used for the contact mode. All the contributions start by taking

into account the nonlinear tip-sample interaction. They then proceed to simplify the

transient behaviour of the cantilever vibration amplitude using either a linearisation

procedure or a saturation. The factor that makes these simplifications feasible is that as

the vibrating cantilever approaches the sample surface, the vibration amplitude decreases

in a nearly linear manner. Likewise the amplitude increases as the cantilever moves away

from the surface.

The simplest approach has been used by Necipoglu et al. (2010). The author considers

the transfer function between the sum of topography and piezo height to the vibration

amplitude to be unity. The reason stated for this simplification is that the amplitude

response is linear and its dynamics are much faster than the piezo stage. Next, a

repetitive controller is designed. This controller makes use of the fact that two scan

lines over the sample surface are nearly always similar.

In a similar contribution Zhang et al. (2010) the transfer function between piezo input

voltage and the PSD deflection is first approximated using a frequency response method.

A saturation non-linearity is then added to model the fact that the oscillation amplitude

will be zero if the tip sample separation is zero, and amplitude will saturate if the

tip sample separation is greater than a threshold. The threshold in this case equals

the amplitude of free vibration. This model is then used to design a robust adaptive

controller for regulating the cantilever height. A similar model has been used by Shiraishi

and Fujimoto (2009) to design an observer based controller.
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A more systematic approach is adopted by Lee (2010) who models the amplitude dy-

namics using the Krylov-Bogoliubov-Mitropolsky (KBM) procedure and then attempts

to use a linearised version for estimating surface. However the author notes in the dis-

sertation that the model does not perform well at high frequency and finally uses the

DC gain for the linearised model for controller generation. Another systematic approach

is used by Misra et al. (2008). This contribution starts by modelling the AFM dynamics

using Poincaré sections, followed by linearisation and pole placement using a Luenberger

observer.

Apart from these contributions there is one that proposes a control scheme that elimi-

nates the requirement for any simplification of the amplitude dynamics. Yagasaki (2010)

suggests setting the cantilever base velocity proportional to the instantaneous difference

between the desired tip position and the true position. This, according to the author

enables control of cantilever vibrations and also measurement of surface topography.

Finally, there are two contributions that propose complete elimination of any modelling

requirements. Yamasue and Hikihara (2009) suggests a Time Delayed Feedback in which

the control signal is proportional to the change in tip velocity between two consecutive

time steps. Jeong et al. (2006) suggests zero order predictor to regulate the tapping

impulse strength every cycle.

2.7.4 Alternate Methods for Faster Imaging

In addition to the design of better control mechanisms, many researchers have investi-

gated a number of alternate methods to increase the scan rate. The reduction in imaging

times has significant consequences, specifically in the study of biological specimens like

DNA. Conventional imaging times vary from a few seconds to a few minutes, however

the DNA molecules translocate in excess of 10 times per second (Anderson (2007)).

Translocations are mutations in which chromosome segments change position (Cornell

University - Department of Animal Science). This means that while high resolution

images can be obtained, the slow imaging speed still constitutes a bottle neck.

The first possibility that has been investigated is to design piezo-actuators that have

a higher first resonance frequency. This in turn allows the rastering movement to be

performed faster, thus reducing imaging time.

One such example is provided by Schitter et al. (2006). In this contribution the authors

design a piezo actuation stage with a first resonance frequency above 22 kHz. The high

resonance enables scan rates of up to 1030 lines per second. They achieve this by making

the scanner as compact and rigid as possible. The trade off is that the scan size is limited

to 13× 13�m.

In this context, a novel approach to improving the scan speed is to use a completely

different actuator. Picco et al. (2007) suggests using a tuning fork for moving the sample
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along one lateral degree of freedom. In this set up, the sample is placed on an arm of the

tuning fork. The base of the fork is connected to a separate piezo-actuator. The tuning

fork is vibrated and simultaneously, the second piezo-actuator moves the fork base. The

cantilever is connected to a separate tube piezo-actuator and is positioned at a fixed

location above the sample. Since the tuning fork has a high first resonance frequency

up to 100 kHz, the movement along one lateral degree of freedom can be done at high

speed. The second piezo-actuator connected to the fork base simply serves to drag the

sample beneath the cantilever. The authors report they were able to scan an area of

about 500× 500nm at 1000 frames per second.

The second possibility that researchers have investigated is to use specially designed

scan trajectories to reduce imaging time. The problem with the conventionally used

raster scan trajectories is that they attempt to visit every single point on the sample

and in addition require abrupt direction changes at the extremities of the scan region.

Since the raster scan pattern is exhaustive, it consumes a significant amount of time

to generate an image. An immediate solution is to use trajectories that minimize the

number of points scanned and construct the image from this minimal information. One

possibility is to use any coarse scan pattern feasible and estimate the sample image using

Compressive Sensing ( Song et al. (2011)). This relatively new method from the domain

of signal processing can estimate a signal even when it has been sampled at sub Nyquist

frequencies. The only constraint is that the signal should be either sparse itself or in

any transformed domain e.g the DCT (Discrete Cosine Transform) domain. Thus if the

sample has a periodic nature, i.e if it has repeating patterns, it is possible to drastically

reduce the number of points scanned and still construct an image.

The exhaustive raster scan can also be avoided by using a priori information about the

sample. For instance if the sample is long and string like, as in the case of DNA strands,

a curve tracking scanning method can be devised so that the cantilever moves only over

the strands. This possibility has been investigated by Anderson (2007) with potentially

a 25 times reduction in imaging time. The approach however does require a priori sample

knowledge and is suitable for specialized applications.

Lastly, the second problem associated with traditional raster scanning is the abrupt

direction reversals at the scan area extremities. This is problematic because abrupt

changes in commanded motion direction excites higher resonances in the piezo-actuators.

In this context Fleming and Wills (2009) suggest optimal scan trajectories which have

minimal frequency content near the resonance frequency of the piezo-actuator. In the

time domain these trajectories appear visually very similar to the original raster trajec-

tories, however they have softer direction reversals.

Even though non-raster trajectories reduce imaging time, they make controller tuning

difficult. Conventional AFM controller gain tuning methods require the end user to

observe the trace and retrace scans and tune the gains so that the two would be as
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similar as possible. This is intuitive since generally the user has some a priori knowledge

of the sample shape. In case of non-raster scanning it is clearly difficult to compare

trace and retrace scans. In this context it will be clearly feasible to use an automated

tuning mechanism.

The third possible solution for reduction in imaging time is to use the a priori information

that is generated during the scan itself. The fact that is used here is that consecutive

scan lines in any sample image are very often similar. This fact is exploited by Wu

et al. (2009). The authors suggest an Iterative Learning Controller for controlling the

Z actuator. Since the sample that they use has minimal change between two scan lines,

they use the information in one scan line to reduce the number of iterative learning

control iterations for the next scan line. The authors report an eight times speed up

over commercial AFMs using this method.

2.7.5 Conclusion

While a considerable amount of research has been done for making AFMs faster and

more accurate, the methods proposed so far have two major limitations. Firstly, each

of these contributions develop their solutions for a particular cantilever sample pair

and do not take into account that both cantilevers and samples are regularly changed.

In addition AFMs being a versatile tool are operated in different operation modes and

mediums (e.g air, liquid and vacuum). Therefore AFMs inherently have a multiple model

nature. It is clearly difficult to develop a single robust controller or an inverse model

based feed-forward controller etc. which can take into account the vast variations in an

AFM experiment.

The second limitation is that the controller schemes suggested are often complex. This

means that their implementation requires considerable effort. As an example the robust

H∞ suggested in some of the contributions often results in high order controllers. Most

commercial AFMs in contrast, use very simple PI controllers for image generation. While

the sophisticated high order controllers may offer speed advantages over the simple PI

controller, it will be difficult for AFM end users to understand and implement the

H∞ controllers. This holds true because a large number of end users have little or no

knowledge of controller synthesis and its implementation.

This problem has received limited attention in literature so far. One exception is the

work done by Burns (2010). The author’s research aims to make AFMs user independent,

and suggests two novel methods for this end. The first one is to use Active Cantilevers.

These cantilevers are thermally excited and their movement is sensed using piezo resis-

tive material on the cantilever. This eliminates the requirement for an optical position

detection method, which in turn removes the burden of positioning the laser spot on the

cantilever tip and alignment of the photo diode. While this is not directly related to
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controller design, this innovation does make the usage of AFMs easier. Next, the author

suggests a just in time system identification method for piezo-actuator dynamics. In it

the actuator dynamics are estimated from the sample image as it is being obtained. The

model is then used to compensate for the scanner resonance using a feed-forward model

inversion method. The key advantage of this strategy is that no sensors are required

to measure piezo-actuator movement, and can thus be implemented on existing AFMs.

The limitation however is that the resulting controller can have an order up to six.

While the methods suggested above are promising, it is the observation of this research

that a multiple model adaptive control (MMAC) algorithm fits the atomic force mi-

croscopy control problem very well in general. A MMAC algorithm would be one which

uses a bank of candidate plant models and switches in a controller corresponding to a

plant which best represents the current AFM experiment. The plant set would consist

of plants that represent selected combinations of samples, scanning probes, operating

modes and mediums. Furthermore, given the common usage of PI controllers in com-

mercial AFMs, it will be feasible to initiate the development of the MMAC algorithm

with PI controllers as well.

The final implementation will only need to measure the AFM plant inputs and out-

puts, possibly the Z and dither piezo input voltages and the photo-diodes output. The

algorithm will then determine the closest plant in the plant set and switch in the cor-

responding controller. The closeness of a candidate plant in the plant set to the true

AFM plant is measured using Kalman filter residuals and is described in detail in the

next chapter. The complete mechanism therefore imitates a human user, who constantly

observes the image being generated and tunes the controller gains manually to maintain

the image quality.

An added advantage of this method this that, while the PI controller generating the Z

piezo voltage signal needs to be implemented in real-time, the MMAC algorithm does

not need to be implemented in real- time. It can run in parallel on a desktop PC with

sufficient processing power. It does not have to be real- time since the controller gains

need to be tuned once for a particular AFM experiment. Once the right gains have been

found they suffice for the generating the entire sample image. If the sample exhibits

substantial material property variation in the region being imaged, the gains might need

to be updated a limited number of times.

To conclude, the suggested multiple model control algorithm acts as a recommender

system. If the AFM hardware permits, the recommended gains can be switched in auto-

matically. If this is not possible the user can manually update the recommended gains.

This algorithm can therefore readily be wrapped around most commercially available

AFMs and can make the usage these instruments easier.

Lastly, there is no restriction to use this method only with PI controllers. In the future

if AFM manufactures switch to more complex control designs, the same algorithm can
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be augmented to incorporate robust controllers. This could lead to a reduction of the

plant and controller sets, and reduction in computational requirements.

Given the significance of reduction in imaging time, this research also investigates two

novel methods for faster AFM operation. The first one is to generate images using coarse

scan trajectories and compressive sensing. The second one is to use the entire length of

the cantilever beam for image generation, rather than just the tip. Both methods are

described in detail in Chapter 5.





Chapter 3

Automated Controller Generation

Now that the AFM system dynamics are known, it needs to be determined exactly how

the Estimation based Multiple Model Switched Adaptive Control (EMMSAC) method

can be used for automating the controller parameter tuning. Section 3.1 describes the

functioning of the EMMSAC algorithm, followed by Section 3.2 which describes the

application of EMMSAC for the control of a simulated AFM. In an actual work envi-

ronment such a mechanism can be used to suggest possible controller gains to the user

thus reducing the time spent in trial and error tuning.

3.1 Estimation Based Multiple Model Switched Adaptive

Control (EMMSAC)

The basic concept behind the EMMSAC control method is that it consists of two sets, a

plant set and a controller set. The plant set consists of candidate plants, each of whom

could be a potential approximation of the true plant which needs to be controlled. The

controller set consists of one controller for each plant in the plant set. These controllers

are selected using any suitable controller synthesis procedure for instance LQR, pole

placement. The method used for generating controllers is an exhaustive search procedure

described in detail in Section 3.2.2. Once the sets are known, the input output data

from the true plant is recorded. This data is then used to select a plant from the plant

set which is closest to the true plant. The closeness is measured by a Closeness function

which is described in detail in Section 3.1.4. Once the closest plant has been selected,

the corresponding controller is switched into the control loop.

The remaining parts of this section describe the EMMSAC algorithm.

47



48 Chapter 3 Automated Controller Generation

3.1.1 Preliminaries

For the purpose of this thesis, all signals are defined in discrete time i.e all quantities

are measured at fixed time intervals in the set of integers ℤ. A natural extension is the

concept of a signal space given below,

S := map(ℤ,ℝℎ)

where ℎ ∈ ℕ which is the set of natural numbers, and ℝ is the set of real numbers.

Since it will at times be the case in that only the initial portion of a signal is of interest or

only a window of finite length, two operators need to be defined namely the Truncation

Operator and the Restriction Operator. These are defined below.

The truncation operator is defined as,

Ttv(�) =
{v(�) if 0 ≤ � ≤ t, t ∈ ℤ, v ∈ S

0 otℎerwise
(3.1)

Thus the operator returns the signal values up to time t ∈ ℤ and is zero every where

else.

The restriction operator ℛ�,t : S → ℝℎ(�+1) extracts a window of finite length from

� ≥ 0 as follows,

ℛ�,tv := (v(t− �), . . . , v(t)), v ∈ S (3.2)

thus the operator extracts a window of length � from the signal v.

Although the objective is to control a system where all the signals will have a bounded

2-norm, this cannot be assumed a priori. Therefore two signal spaces are defined V and

Ve. The l2 norm for a vector v ∈ ℝn is defined as,

∣∣v∣∣2 =
√
v2

1 + v2
2 + . . . v2

n (3.3)

For V ⊂ S, let

V := {a ∈ S∣a(−t) = 0,∀t ∈ ℤ; ∣∣a∣∣2 <∞}

Here V does not include a signal v ∈ S such that ∣∣v∣∣2 = ∞. For such signals where

∣∣Ttv∣∣2 → ∞ for t → ∞ a new signal space Ve is defined. However it is still required
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that for any finite t <∞, ∣∣Ttv∣∣2 is bounded. The extended signal space is thus defined

as,

Ve := {v ∈ S∣ ∀t ∈ ℤ : Ttv ∈ V}

The extended signal space thus includes signals that can grow without bound, however

they are bounded for a finite time horizon.

The notation developed so far is now applied to a feedback control system illustrated

below.

Figure 3.1: Control loop.

Let m ∈ ℕ be the dimension of the input space, and o ∈ ℕ be the dimension of the

output space, the input and output signal spaces are defined as,

U := V × ⋅ ⋅ ⋅ × V︸ ︷︷ ︸
m

= Vm, Y := V × ⋅ ⋅ ⋅ × V︸ ︷︷ ︸
o

= Vo

The corresponding extended signal spaces Ue, Ye are defined accordingly. Given a plant,

P : Ue → Ye ∣ P (0) = 0 (3.4)

and controller,

C : Ye → Ue ∣ C(0) = 0 (3.5)

The closed loop system is defined using the following equations
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y1 = Pu1 (3.6)

u0 = u1 + u2 (3.7)

y0 = y1 + y2 (3.8)

u2 = Cy2 (3.9)

w0 = (u0, y0)T ∈ W represents the plant input and output disturbances, w1 = (u1, y1)T ∈
We represents the plants true input and output and w2 = (u2, y2)T ∈ We represents the

plant’s measured input and outputs.

For the purpose of the application of the EMMSAC algorithm, it is necessary that the

closed loop system satisfy two conditions. These are that the closed loop system be Well

Posed and Gain Stable. These terms are defined below.

Definition 3.1. A closed loop system [P,C] given by equations 3.6-3.9 is said to be

well-posed if for all w0 ∈ W there exists a unique solution (w1, w2) ∈ We ×We.

It has been demonstrated previously by Buchstaller (2010) that this property also hold

true for linear switched systems.

Definition 3.2. A closed loop system [P,C] given by equations 3.6-3.9 is said to be gain

stable if there exists an M > 0 such that:

sup
w0∈W,w0 ∕=0

∣∣∣∣ΠP//Cw0

∣∣∣∣
2

∣∣w0∣∣2
= ∣∣ΠP//C ∣∣2 < M <∞ (3.10)

where ΠP//C is the map from the disturbances w0 ∈ W to the plant signals w1 ∈ We,

ΠP//C :W →We ×We : w0 7→ (w1, w2) (3.11)

3.1.2 Plant Set

Before the formal specification of the plant set is provided, it is useful to consider a simple

example of a possible plant set. As an example assume that the process that needs to

be controlled can be represented with a discrete time first order transfer function given

below,

Pp =
p

z − p
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where p is an uncertain parameter in the range 0 < p ≤ 1, a possible set of candidate

plants would then be,

0.1

z − 0.1
,

0.2

z − 0.2
, . . . ,

1

z − 1

For the purpose of this thesis however, all plants in the plant set are always represented

using the state space representation. Let P be the parameter set which represents the

plants. Since state space plants are used, this set can be represented as,

P :=

⎧⎨⎩(A,B,C,D) ∈ ℝn×n × ℝn×m × ℝo×n × ℝo×m
∣∣∣∣∣

(A,B) is controllable

(A,C) is observable

n ≥ 1 n,m, o ∈ ℕ

⎫⎬⎭
Here n is the system order and m, o are number of system inputs and outputs as defined

previously. A single plant Pp in the plant set can be represented as,

Pp : Ue → Ye : up1 7→ yp1 , p = (Ap, Bp, Cp, Dp) ∈ P (3.12)

The mapping from the plant input to output is achieved using the following relations,

xp(k + 1) = Apxp(k) +Bpu
p
1 (3.13)

yp1 = Cpxp(k) +Dpu
p
1 (3.14)

xp(−k) = 0, k ∈ ℕ (3.15)

Here xp is the state vector for plant Pp and k is the discrete time step.

3.1.3 Controller Set

The controller set consists of a controller corresponding to every plant in the plant model

set and is given through the design method K : P → C where C is the parametrised

set of all controllers. The minimal requirement for each plant controller pair is that it

be gain stable. The controllers corresponding to each plant can be generated using any

method feasible for the application for instance LQR, pole placement or an exhaustive

search.

3.1.4 The Closeness Function

Before a controller can be switched into the control loop, it needs to be determined

which plant in the plant model set is closest to the true plant Pp∗. This is achieved



52 Chapter 3 Automated Controller Generation

through a closeness function which returns a residual signal rp(k) for each plant Pp. This

signal is a positive scalar that measures the closeness of plant Pp∗ to Pp using the true

plant’s measured input and output signals w2 = (u2, y2)T . By convention used in this

research, the lower the residual signal the closer is a plant to the true plant. The normal

functioning of the EMMSAC algorithm requires the evaluation of the residual signal

dp(k) for the entire plant model set at each time step k. The controller corresponding to

the plant with the lowest value for rp(k) is switched into the loop. Figure 3.2 illustrates

the true plant, one candidate plant and the corresponding signals.

Figure 3.2: Disturbances and observations (Obtained from Buchstaller (2010)).

The residual signal is evaluated using a disturbance estimator which is described next.

The Disturbance Estimator: The purpose of the disturbance estimator is taken as

input the parameters of the candidate plant Pp and the true plant’s measured signals

w2 = (u2, y2)T and determine the smallest size disturbance signals wpo = (u0, y0)T which

are explain the true plant’s measured signals. The size of the disturbance signals is

measured in terms of the 2-norm and is the required residual. By the term explain

it is meant that disturbance signals be consistent with the measured signals and the

candidate plant, i.e they should satisfy the following relation over the interval [a, b].

(yp0 − y2) = Pp(u
p
0 − u2) (3.16)

Formally, such disturbance signals will be referred to as weakly consistent disturbance

signals and are defined below.

Definition 3.3. Let a ≤ b, a,b ∈ ℕ. The set of weakly consistent disturbance signals

N
[a,b]
p (w2) to a plant Pp, p ∈ P and the observation w2 = (u2, y2)T is defined by,

N [a,b]
p (w2) :=

⎧⎨⎩v ∈ W∣[a,b]
∣∣∣∣∣

∃(upo, ypo)T ∈ W⌉ s.t
ℛb−a,bPp(upo − u2) = ℛb−a,b(ypo − y2),

v = (ℛb−a,bupo,ℛb−a,bypo)

⎫⎬⎭
where We = Ue × Ye and ℛ is the restriction operator.

Estimator Implementation: Now given the plant Pp, p ∈ P, the residual for the

observed signal w2 ∈ We can be given by the residual operator X as follows,
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X(w2)(k)(p) = rAp [k] = inf{r ≥ 0∣ r = ∣∣v∣∣2, v ∈ N [0,k]
p (w2)} (3.17)

Here rp[k] is the residual of the plant Pp at time instant k. The simplest method to

implement this estimator is to formulate the residual determination as a constrained

optimization problem given below.

wpo ∈ inf
{
r ≥ ∣r = ∣∣v∣∣2, v ∈ N [0,k]

p (w2)
}
, a ≤ b ∈ ℕ (3.18)

Clearly it is not feasible to implement X directly because the computational complexity

involved in computing it increases with time.

However as has been demonstrated by Buchstaller (2010), it is not necessary to exhaus-

tively search for the smallest 2-normed disturbance signals which are weakly consistent

with the candidate plant and the true plant’s measured signals. As the author has

demonstrated, the 2-norm of the smallest disturbance signal is equal to the residual

of a Kalman filter corresponding to the candidate plant and the true plant’s measured

signals. This is achieved using the following relations,

x̂(k +
1

2
) = x̂(k) + Σ(k)CTp [CpΣ(k)CTp + I]−1[y2(k)− Cpx̂(k)] (3.19)

Σ(k +
1

2
) = Σ(k)− Σ(k)CTp [CpΣ(k)CTp + I]−1CpΣ(k) (3.20)

x̂(k + 1) = Apx̂(k +
1

2
) +Bpu2(k) (3.21)

Σ(k + 1) = ApΣ(k +
1

2
)ATp +BpB

T
p (3.22)

ỹ(k) = Cpx̂(k) (3.23)

Here k indicates the time step, Ap, Bp, Cp are the state space matrices corresponding

to the system Pp, x̂(k + 1
2) and x̂(k + 1) are the a priori and posteriori estimated state

vectors, Σ(k+ 1
2) and Σ(k+ 1) are the a priori and posteriori error covariance matrices,

u2(k) and y2(k) are the measured input and output signals for the true plant P ∗p and

ỹ(k) is the estimated system output.

The Kalman residual of the plant Pp at time step T is denoted with rp(T ) and defined

as,

rp(T ) =

[
T∑
k=0

∣∣y2(k)− ỹ1(k)∣∣2[CΣ(k)CT +I]−1

] 1
2

(3.24)

The residual is a measure of the closeness of plant Pp to P ∗p . The lower the residual,

the closer the two plants are. The residual is zero if the plants are identical.
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Buchstaller (2010) states the result that the Kalman filter residual equals the size of the

smallest disturbance in the form of the following theorem.

Theorem 3.4. Let p = (Ap, Bp, Cp) ∈ P and suppose Cp is full row rank. The Kalman

filter equations 3.19-3.23 with initial conditions x̂ = 0 and �(0) = �(0)T = 0 describe a

deterministic least-squares filter initialised to zero:

T∑
k=0

∣∣y2(k)− ỹ1(k)∣∣2[CΣ(k)CT +I]−1 = r2
p(T ) = inf

(up0,y
p
0)∈N [0,T ]

p (w2)

(∣∣up0∣∣
2
2 + ∣∣yp0 ∣∣

2
2) (3.25)

3.1.5 The Switching Algorithm

The principle of the switching algorithm is simply to select a plant from the plant model

set that has the least residual. The switching algorithm thus generates a signal qf that

points to the plant with minimal residual and can therefore be written as,

qf (k) := arg min
p∈P

rp[k], ∀k ∈ ℕ (3.26)

Now, at each time instant k the switching signal qf puts a controller corresponding to

the least residual plant into the loop. The complete algorithm is illustrated in Figure 3.3.

The switching can be done at each time instant or after a chosen delay Δ. The purpose

of the delay is to reduce the number of times switching is done, since excessive switching

might reduce closed loop system performance or make it unstable. Interestingly rapid

switching between two stable linear systems can cause instability. Hespanha et al. (2003)

provides an example using two stable LTI systems with intersecting state trajectories.

The author then illustrates that sufficiently fast periodic switching between the two

systems can cause instability.

The current implementation of the EMMSAC uses a fixed delay and will be explained

in the next section.

3.2 Application of EMMSAC for AFM Control

This section illustrates the applicability of the EMMSAC algorithm for AFM control.

This is done through simulation results where the AFM control loop is simulated for

two samples, one metallic and the second one a polymer. The motivation behind this

choice is to demonstrate that separate controllers are needed for the samples and that

the EMMSAC algorithm can detect which sample is being scanned and switch the cor-

responding controller into the loop.
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Δ 

Figure 3.3: The complete EMMSAC algorithm (Obtained and modified from
Buchstaller (2010)).

Before the simulation details can be described it must be made clear that the original

EMMSAC algorithm is modified in two ways to enable usage for AFM control.

Firstly, it is observed that the cantilever plant dynamics vary with a variation in con-

troller gains. This is because of the non-linear variation of the tip-sample interaction

force with respect to the tip-sample separation. If weak gains are switched in, the tip

will mostly vibrate far from the surface or in the attractive region of the tip-sample

interaction force. If strong gains are used, the tip will mostly vibrate in the repulsive

region, i.e it will penetrate the surface. As a consequence, a fixed pre-chosen grid of

trial controllers is simulated for each sample and the cantilever plant input and output

signals are saved. These are used to generate a least residual plant corresponding to

each controller test. Thus a cluster of least residual plants is generated for each sample.

The plant set then consists of all the plants in both clusters.

Next, one Kalman estimator is generated corresponding to each plant in the set. During

AFM operation the residuals for all Kalman estimators are estimated, and the mean

residual for each cluster is determined. The cluster with the lesser mean residual is

considered to be closest to the true AFM plant.

Secondly rather than having one stabilizing controller for each plant, a suitable con-

troller is chosen for each cluster. The suitability of a controller is determined using a

performance metric described in this section. The selected controller is chosen from the
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grid of trial controllers. Since there are two clusters in this case, the final controller set

consists of two controllers one for each sample. During AFM operation, once the cluster

with the lesser mean residual is determined, the controller corresponding to that cluster

is switched into the AFM control loop. A detailed description of this entire procedure

is provided next in this section.

The simulations are performed using the same simplified AFM control loop as illustrated

in Figure 2.13. Two samples are used which have drastically different properties, i.e.

the first one is Fused Silica SiO2 and the second one is a generic soft biological sample.

The material properties as obtained from Stark et al. (2004) and Hoelscher and Schwarz

(2007) respectively are provided in Table 3.1. All remaining simulation parameters are

exactly the same as those illustrated in Table 2.2.

Parameter Fused Silica Biological Sample

Hamaker constant (J) 6.4× 10−20 0.2× 10−18

Elastic modulus (GPa) 70 1

Poison ratio 0.17 0.3

Intermolecular Separation (nm) 0.16 0.3

Table 3.1: Sample material properties.

For the purpose of the current simulation the measured system input u2 = fD, and the

measured system output y2 = dTM . Ideally the cantilever base excitation force Fb should

be used as input. However since in the case of the experimental results explained in the

next chapter, it is not possible to measure Fb. This is because the Z piezo actuator has

no position measurement sensors and its transfer function is not known. This means

that either of ℎ or fD can be used. In this case fD is used. This is because high pass

filtering of the cantilever output implies that control signal ℎ has relatively lesser impact

on the output dTM since ℎ has a much lower frequency as compared to fD.

The generation of the plant and controller sets as described in the next two sections is

done by simulating single line scans for a set of forty trial controllers CT give below,

(Kp,Ki) ∈ CT = [0.01, 0.02, . . . , 0.1]× [0.001, 0.003, 0.005, 0.007] (3.27)

The range and separation for the controller gains in this set is chosen empirically. Each

simulated scan line generates five signals of interest namely, Asp, A, ℎ, fD and dTM .

These are placed in a data set Di
j given below,

Di
j = [Asp, A, ℎ, fD, dTM ] ∈ ℝ250001×5∣1 ≤ i ≤ 2, 1 ≤ j ≤ 40 (3.28)
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Here the superscript i corresponds to the sample material type (i = 1 for Fused Silica

and i = 2 for Polymer) and the subscript j corresponds to the controller number. The

dither piezo input fD equals u2, and cantilever deflection dTM equals y2. Each column

vector in a data subset has a length of 250001. This originates from the fact that, (as

mentioned in Table 2.2) each simulation assumes the scan time T to be 0.05s with a

sample time Ts of 0.2�s (Sample rate of 5MSPS). The term MSPS is an abbreviation

for mega samples per second. The complete data set D is given below,

D =

[
D1

1 D1
2 . . . D1

40

D2
1 D2

2 . . . D2
40

]
(3.29)

The next two subsections illustrate how this data is used for the generation of the plant

and controller sets followed the simulation results for the complete EMMSAC algorithm

in the last subsection.

3.2.1 Plant Set

Once the data set is recorded, the data subsets Di
j ∀ i ∈ [1, 2], j ∈ [1, 2, . . . , 40] are

used to generate corresponding least residual plants Gij , using the mapping procedure

Φp,

Φp : Di
j → Gij ∀ i ∈ [1, 2], j ∈ [1, 2, . . . , 40] (3.30)

For the purpose of clarity, each plant in the plant set which was referred to as Pp shall

now be referred to as Gij . This mapping is done by using the piezo inputs u2 = fD and

cantilever deflection y2 = dTM from the selected data subsets Di
j and then finding the

least residual second order LTI plant Gij given below,

Gij = Pp =
ko!

2
n

s2 + !n
Q s+ !2

n

(3.31)

Here ko is the system gain, wn is the resonance frequency in rads−1 and Q is the quality

factor. The choice of this structure is motivated from the fact that the transfer function

from the piezo input voltage to the cantilever deflection can be well approximated by a

second order LTI system.

For the purpose of implementing the EMMSAC the discrete time state space matrices

corresponding to the transfer function are determined using zero order hold. The sample

time Ts used for this purpose is selected to be 0.2�s. This makes the sample rate 5 MSPS

(mega samples per second). The sample rate is selected to be well above the cantilever
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resonance which is 65.497 kHz as mentioned in Table 2.1. Lower sample rates might be

feasible as well, however this sample rate is used for the current implementation.

Given a data set Di
j the corresponding observations w2 = [u2 y2] are extracted. The

closest plant Gij corresponding to these observations is determined by using the close-

ness function described previously. This is done by solving the following optimization

problem,

Gij = arg min
p
rp(250001) (3.32)

Here the subscript p again refers to the parameters needed to specify a candidate plant.

Since only three parameters need to be specified p is defined as,

p = (Q !n ko) (3.33)

The optimization is subject to the constraints 0 < Q ≤ 500, 2�(6500) < !n ≤ 2�(650, 000),

and 0 < ko ≤ 100. The constraints for the quality factor stem from the fact it is always

positive and most commercially available cantilevers have a quality factor less than 500.

Likewise the upper and lower constrains for the resonance frequency are selected to be a

tenth and ten times the nominal value of 65 kHz. This is done since no a-priori informa-

tion about the effect of tip sample interaction on the resonance frequency is available.

Finally, the limits for gain k0 are empirically selected to be between 0 and 100. The

optimization is performed using the Simplex search algorithm. The final plant set G can

therefore be represented in the following manner,

G =

[
G1

1 G1
2 . . . G1

40

G2
1 G2

2 . . . G2
40

]
(3.34)

The plants in this set are illustrated in Figure 3.4.

As illustrated in the figure, the two samples have distinct least residual plant clusters.

In addition the parameters of the least residual plants are effected by the choice of the

PI controller gains used to generate the scan line data.

3.2.2 Controller Set

The controller set is determined by finding the best controller corresponding to the row

data subsets corresponding to each sample, i.e data sets D1
1, . . . D

1
40 and D2

1, . . . D
2
40.

Ideally the best controller is the one that generates the least squared error between the

amplitude set-point Asp and A. The performance metric is thus simply given as,
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Figure 3.4: Least residual plants for samples one (’x’) and two (’o’).

�ij =
250001∑
k=37501

(
eij(k)

)2
(3.35)

where,

eij = Asp −A

∣∣∣∣∣ ∀ i ∈ [1, 2]

∀ j ∈ [1, 2, 3, . . . , 40]
(3.36)

The upper limit in the summation is the number of elements in the error vector. The

lower limit corresponds to 15% of the vector length. Ideally the summation of the squared

error signal should begin from k = 1, however this will include the initial transient

behaviour of the error signal. Since the objective of the controller is to estimate the

sample topography, therefore the initial 15% of the error signal is excluded from the

computation. This can be done only in the case of a simulated experiment, where it is

known exactly when the sample features of interest begin.

The mapping procedure which maps each data subset to the corresponding best con-

troller is given as,

Φc : Di
j → Ck

∣∣∣∣∣
∀ i ∈ [1, 2]

∀ j ∈ [1, 2, 3, . . . , 40]

∀ k ∈ [1, 2]

(3.37)
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The mapping Φc is done by first extracting the amplitude vector A and the set point

amplitude Asp from the relevant data set Di
j and finding the error eij . Next the best

controller Ck corresponding to the row of data subsets for each as sample is determined

as follows,

Ck = CT (j∗) ∀ k ∈ [1, 2] (3.38)

where,

j∗ = arg min
j
�ij

∣∣∣∣∣ ∀ i ∈ [1, 2]

∀ j ∈ [1, 2, 3, . . . , 40]
(3.39)

and CT is the set of 100 trial controllers as mentioned in Equation 3.27.

The final controller set then consists of two controllers one corresponding to each sample,

and referred to as CE and is illustrated in Table 3.2.

Table 3.2: Controller set.

Sample. No. Kp Ki

1 0.04 0.007

2 0.06 0.007

Figure 3.5 compares the performance of the two controllers for each of the two samples.

The performance improvement in terms of the performance metric � is illustrated in the

same figures.

Here C1 and C2 are the optimal controllers for samples 1(Silica) and 2(Soft Biological

Sample).

These results are obtained using the same control loop as illustrated in Figure 2.13

and using the parameters mentioned in Table 2.2. As illustrated, a separate controller

is needed for each of the two samples. While an optimal controller for one sample can

reconstruct the topography and can do the same for another sample, this generates clear

distortions in the reconstruction.

Even though the effect of using the correct controller is visually and numerically clear

in the case of the simulated results, it is observed during the experimental verification

that the squared error metric alone is not sufficient. In particular two limitations were

observed. Firstly, the metric does not sufficiently take into account the oscillatory nature

of the estimation. While there is a substantial reduction in the squared error � for the

case of the soft sample when the correct controller is switched in, switching in the correct

controller for the first sample reduces the squared error only marginally.

Secondly, it does not take into account the difference between the trace and retrace

estimations. Ideally the trace and retrace topography estimations should be as similar
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Figure 3.5: Controller performance comparison for Sample 1 (top row) and
Sample 2 (bottom row)

as possible. Therefore, two additional constraints are introduced and are explained in

detail in the next chapter which illustrates the experimental results.

3.2.3 Simulation Results

The complete MMAC AFM control simulation is carried out by using the AFM and

Topography parameters as provided in Tables 2.2 and 3.1. The control loop is augmented

with an additional block corresponding to the EMMSAC algorithm as shown in Figure

3.6.

After each scan line is simulated the AFM input-output data w2 = [u2 y2] is used to

determine the switching signal q. Here the plant input is the cantilever excitation force

u2 = fD whereas the plant output is the cantilever deflection signal y2 = dTM . The

switching signal is then generated using the mapping procedure �q given below,

Φq : w2 → q ∀ i ∈ [1, 2] ∀ j ∈ [1, 2, . . . , 40] (3.40)
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Figure 3.6: The AFM control loop with automated controller tuning using
EMMSAC.

The mapping is done by computing the residuals corresponding to the plant input-output

w2 for each plant in the plant set G and recording them in a residual matrix ℝ given

below,

ℝ =

[
r1

1 r1
2 . . . r1

40

r2
1 r2

2 . . . r2
40

]
M =

[
m1

m2

]
(3.41)

The mean residual for each row mi is evaluated. Next the residuals which are in excess

of one standard deviation away from the mean are excluded. The row mean is now eval-

uated again and written in a matrix M. This exclusion of outlying residuals is motivated

from the observation that a few residuals are unusually high and do not represent the

actual mean of the residuals in a row. The subscript i in mi now corresponds to the itℎ

row of the residual matrix ℝ. The switching signal q then equals the row index with the

least mean residual.

q = arg min
i
mi ∀ i ∈ [1, 2] (3.42)

Once the switching signal is determined, the corresponding controller is switched into

the loop. The steps involved in the procedure are summarised below,

Step 1 : The first scan line is simulated, and the signals u2 and y2 are saved. The first

scan line is always simulated using the false controller. This means that controller C2 is

used for sample 1 and vice versa.
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Step 2 : The data obtained is used to determine the switching signal q using the mapping

�q as mentioned previously.

Step 3 : The remaining scan lines are simulated using the recommended controller.

Before the simulation results can be presented, the simulations initial conditions and

the EMMSAC delay need to be described.

Initial Conditions: It must be noted that all the scan lines are simulated with the

same initial conditions. The initial cantilever base height Z is always set to be slightly

greater than the amplitude of free vibration Ao. This choice is motivated by the fact

that in a physical AFM experiment the initial cantilever base height is generally greater

than the amplitude of free vibration. Specifically in this case the initial cantilever base

height is set to be 10% greater than Ao. The cantilever tip position and velocity are

also initially zero. The reason for keeping the initial conditions same for each simulated

scan line is that the controller performance varies substantially even for small variations

in initial conditions.

In the case of the hardware implementation described in the next chapter, it is not pos-

sible to exactly set the initial conditions at the start of each line. It is observed that the

controller performance varies from scan line to scan line even when the same controller is

used and the same sample region is scanned. As a consequence the performance results

for the hardware experiments are averaged for a larger number of trials. These results

shall be discussed in detail in Section 4.2.

EMMSAC Delay Δ: For the purpose of the current research, it is observed that

switching controllers is suitable only after an entire scan line has been completed. This

is so because if the controllers are switched in earlier, it will be difficult to estimate

controller performance. This is true because the data of a complete scan line is needed

to determine how well the sample topography has been estimated. Therefore a delay

was not explicitly implemented.

The remaining parts of this section illustrate the performance improvement obtained

using the EMMSAC algorithm.

Figure 3.7 illustrates the performance before and after the first switch for sample one

(Fused Silica). The loop is started with the false controller. As can be seen that there is

an overshoot in the estimated sample topography. After the switch the reconstruction

is clearly better since there is no over shoot and the topography is distorted lesser by

oscillations. This is quantified by a reduction in the summed squared error �.

The next Figure 3.8 illustrates the estimated sample surface. It is clear that only the

first line is distorted because the simulation is initiated with a suboptimal controller.

Figure 3.9 illustrates the sample estimation with the false controller.
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Figure 3.7: EMMSAC scan lines for sample one (Fused Silica).

Figure 3.8: Estimated sample topography for sample one using EMMSAC.

Figures 3.10 and 3.11 illustrate the simulation results for sample two (Biological spec-

imen). Once again the results demonstrate that the EMMSAC determines the correct

controller and improves performance. The last figure 3.12 illustrates the sample recon-

struction with the false controller.

A consistent distortion is observed at the start of the scan line. However once the control

signal settles down, the topography is estimated correctly.
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Figure 3.9: Estimated sample topography for sample one using controller C2.
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Figure 3.10: EMMSAC scan lines for sample two (Biological specimen).

Figure 3.11: Estimated sample topography for sample two using EMMSAC
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Figure 3.12: Estimated sample topography for sample two using controller C1

The next chapter explains the implementation of the EMMSAC algorithm on a com-

mercial AFM, and illustrates the experimental results obtained.



Chapter 4

Application of EMMSAC on

AFM Hardware

This chapter provides the experimental results which verify that the EMMSAC algo-

rithm can be used to generate images of a sample without manual tuning. The existing

commercial AFM used for this purpose has an analog PI control system, with no possibil-

ity of interfacing to a desktop PC. Therefore a customised digital system is implemented.

This is done using a Digital Signal Processor (DSP) from Texas Instruments. The first

section (4.1) provides the implementation details for this hardware.

The verification of the EMMSAC algorithm is first done in an offline manner, where

a large set of experimental data is used for verification of the EMMSAC performance

in the context of a benchmark. The meaning of the term offline and the benchmark

are explained in section 4.2. Lastly, Sections 4.3 and 4.4 present images obtained using

EMMSAC and manual tuning respectively.

In the next chapter towards the end of Section 5.1 it will be explained how the automated

tuning is also useful for reduction in AFM image generation times.

4.1 Controller Implementation Using Digital Signal Pro-

cessor

The sole motivation of developing a custom control system was to enable access to

the control signals. It was determined that there are two possibilities to implement

such a controller namely Digital Signal Processors (DSP) and Field Programmable Gate

Arrays (FPGA). Of these two the first one was selected because of the greater ease

in programming DSPs. DSPs can be programmed in C/C++ whereas FPGAs can be

programmed using two low level programming languages Verilog R⃝ and VHDL R⃝. Both

require greater development time as compared to C/C++.

67
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Amongst the vast range of DSPs available the DSP chosen for the current application

was the TMS320C6713 DSP from Texas Instruments. This decision was made based on a

number of factors namely, relatively low cost, availability in the form of a DSP kit which

eliminates the requirement for making a substantial amount of interface circuitry and

reasonably fast clock frequency of 225 MHz. In addition this DSP allows floating point

operations which greatly simplifies programming over the previously used fixed point

operations. Finally and most importantly, this DSP has a key enabling feature called

Real Time Data Exchange (RTDX). This allows data to be exchanged between the host

PC and the target DSP on the fly, i.e without interrupting real time code execution.

This implies that if a PID controller is running on the processor, the controller gains

can be changed without halting the processor. This is especially important for the

implementation of the EMMSAC algorithm, since it relies on changing the controller

parameters while the controller is functioning.

The remaining parts of this section explain in detail the data acquisition components

used with the DSP kit, details of the digital controller data flow and methods used for

verification of the controller.

4.1.1 Data Acquisition

This section explains in detail all the circuitry assembled for acquiring data from and

sending to the Nanonics AFM. All Nanonics I/O signals are in the range of ±10 V. Fur-

thermore, it is required that the measurement circuit has an input impedance greater

than 10kΩ . In addition the circuit that sends signals to the AFM must have an out-

put impedance no greater than 1 kΩ . The current measurement circuit has an input

impedance of 1013Ω∣∣6pF Texas Instruments (b).

Data is read into the DSP kit using a 4 channel, 16 bit ADC running at 250 kSPS

(kilo samples per second) the ADS 8361 from Texas Instruments. On the output side

the data is written out using the 16 bit DAC 8831 also from the same manufacturer.

This DAC has a maximum update rate of 1 MSPS. Both ADC and DAC are provided by

Texas Instruments in the form of evaluation boards with substantial amounts of interface

circuitry fabricated on them. These boards fit on the DSP kit through an interface board

referred to as the 5-6K Interface Board. The ADC is used without an anti-aliasing filter

because the frequency spectrum of the amplitude signal A(t) which is read by the ADC

is well below the sampling frequency. This is experimentally verified in the section 4.1.3.

Although the evaluation boards have all the necessary components which provide serial

data communication between the ADC/DAC chips and the DSP kit, they lack the nec-

essary signal conditioning circuits that will enable connecting the ADC/DAC evaluation

boards to the Nanonics AFM. The problem is that all Nanonics AFM analog I/O vary

in a ±10 V range, however the ADC is unipolar, i.e it accepts voltages in the 0-5 V
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range. Similarly the DAC output voltage range is limited to ± 2.5V range. In addition

the DAC output needs to be filtered to eliminate the noise generated by the DAC itself.

To compensate for this two circuits were implemented. The first one illustrated in

Figure 4.1(left) (obtained from Texas Instruments (a)) converts a ± 10V signal to a 0-

5V one. The operational amplifier selected for this case is the OPA132 because of its very

high 1013Ω∣∣6pF input impedance. The input circuit has two components. Operational

amplifier labelled A is configured as a differential amplifier. Operational amplifier B a

unity follower. The unity follower takes the 2.5 reference voltage from the ADC and

passes it to the differential amplifier to offset its output by 2.5V. This reference voltage

is also passed to the ADC for use as a reference. The ADC records all voltages greater

than 2.5V as positive and the others as negative. The output of the differential amplifier

then equals

Vo =

(
1 +

R1

R3

)[
R2Vin +R4REFOUT

R2 +R4

]
(4.1)

This expression is obtained through a simple superposition procedure. This procedure

uses the fact that the operational amplifier A’s output is a superposition of inverting

and non-inverting feedback configurations.

The second one Figure 4.1 (right) provides low pass filtering for the DAC output. Both

figures are obtained from the component specification sheets. The low pass filter is a

simple first order system with the DC gain of unity and a cut off frequency of 15 Hz.

While this low pass filtering removes the noise from the DAC output it also severely

constrains the maximum scan rate of the AFM. Since the controller output cannot be

greater than 15 Hz, this means that the sample must be rastered slow enough. Slow

enough in this case means that the frequency content of the topography signal with

respect to time must be substantially below the filter cut off frequency. As an example

if the sample consists of perfect rectangular pits, the scan rate should be slow enough so

that no more than one pit passes beneath the cantilever in a second. This would imply

that the topography signal will be a 1 Hz square wave with respect to time. Given the

fact that a square wave has odd harmonics, the seventh harmonic, which equals 15Hz

will be reconstructible. Since the seventh harmonic can be obtained from the controller

signal, it will be possible to reconstruct the original topography.

The reason for such extreme low pass filtering is that the DAC output is corrupted with

noise at all frequencies. While the magnitude of the noise in any particular frequency

range is relatively low, it is significant for the current implementation because the vari-

ation in the controller signal during a Nanonics AFM scan is no greater than 1
2 volts.

Although the filtering severely constrains the scan speed, this controller does enable

application of the EMMSAC. Furthermore, it must also be taken into account that this

slow scan speed is still slightly faster than the recommended scan speed for this AFM.
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Therefore, while it will be clearly better to investigate scanning at higher frequencies,

the current implementation is sufficient for the current instrument.
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Figure 4.1: ADC (left) and DAC (right) interface circuits.

4.1.2 DSP Controller Data Flow

The entire DSP controller algorithm is Interrupt Driven, i.e the processor waits until

the ADC has read a data sample and it is ready to be read. The ADC reads samples

at the rate of 250 kSPS using timing signals generated by the ADC evaluation module.

Once the ADC has read a sample it generates a signal referred to as an Interrupt. The

processor upon receiving this interrupt runs the control law on the sample and writes

the controller output to the DAC. All these steps are explained in detail below and

illustrated in the data flow graph in Figure 4.2.

The first step is to initialize the processor. This includes the usual procedures including

defining variables, enabling interrupts and initializing the serial interface.

Once the processor is initialized it stays in idle state until the ADC generates an in-

terrupt. This initiates execution of the corresponding Interrupt Service Routine(ISR).

Once control is transferred to the ISR the first step is to read the data from the ADC

and store it in a temporary buffer of the type INT32. The next step is to identify the

ADC channel at which the sample has been read. The ADC has four input channels

(A0,A1,B0,B1) and reads either two or all four channels simultaneously. Currently it is

operated in a mode that allows reading two data channels simultaneously namely A1

and B1, where the AFM amplitude signal is connected to the B1 channel. Channel A1

is not used in this application. This channel identification is done by making use of the
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Figure 4.2: DSP controller data flow.

format in which the data is sent serially from the ADC to the DSP. This is illustrated

in Figure 4.3.
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Figure 4.3: ADC serial data format (Texas Instruments (a)).

The first row indicates the clock cycles and the second lists the purpose of the data bit

transferred at each clock cycle. Here DB is abbreviation for Data Byte. As can be seen

all data transfers between ADC and DSP occur in frames of 20 bits. The first two bits
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serve the purpose of channel identification. Bits 3-18 contain the discretized input signal

value in twos complement form. The last two bits are always zero.

Since the last two bits are always zero they are discarded by executing a bit wise right

shift on the data stored in the buffer. The status of bit 2 is then read by performing a

bit wise AND operation with 0 × 00010000 and comparing with 0 × 00010000. In case

of a match the data is from channel B1. The status of bit 1 is irrelevant since in the

current ADC mode only channels A1 and B1 are read.

Once it is verified that the current sample is from the correct channel, data bits 3-18 are

stored in a data buffer y of type INT16. Next the data is converted to a floating vari-

able using a standard C/C++ casting operation. At this stage the processor reads the

PID controller gain parameters Kp, Ki, using the Real Time Data Exchange (RTDX)

interface. This is implemented simply by using the non-blocking routine provided by

Texas Instruments. The advantage of using a non-blocking routine is that it checks for

new data on the RTDX connection and returns control immediately to the ISR, thus

allowing continued real time execution. On the transmission side the RTDX channel

can be written to directly by Matlab using a very simple interface.

Once both controller parameters and the latest sample have been stored in y, the con-

troller output is determined using the following control law,

e(i) = ysp − y(i) (4.2)

u(i) = Kpe(i) +KiTs

i∑
i=0

e(i)

where ysp is the set point, Ts is the sample time, e is the error between the set point and

the current value, and i is the discrete time variable. It must be noted that no anti-wind

up is implemented with the integrator. This is done because the output range of the

DAC is ±2.5V , which is sufficient to control the piezo-actuator without saturation.

Finally, once the controller output is generated it is converted to the INT16 data type

again and written to the DAC through the serial interface. The DAC is a single channel

device so no channel identification bits need to be added. The only modification that

needs to be made is that since the ADC sends the data in two’s complement form, this

must be compensated for by executing a XOR operation. Before the data is written to

the DAC it is XORed with 0× 8000 and then sent to the DAC.

Figure 4.4 illustrates the final functional block diagram of the entire DSP based controller

setup. While the DSP kit will run the controller, the DAQ will be used to observe the

AFM Height (ℎ), Amplitude (A), dither piezo input (fD) and tapping mode deflection

(dTM ) signals. These will be sent to the PC where the EMMSAC algorithm will use
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the fD and dTM signals to generate the optimal set of controller gains. The Height and

Amplitude signals are used for constructing the sample image and evaluating controller

performance respectively. The set point amplitude Asp is saved into the DSP and PC at

the start of the imaging process. Once the optimal controller gains are determined by

the EMMSAC algorithm running on the PC, they are sent to the DSP using the RTDX

interface. Here McBSP 0 and McBSP 1 refer to the Multi Channel Buffered Serial Port

interface between the ADC/DAC and the C6713 DSP.

Height (h)  Amplitude (A) McBSP 1 
ADC DSP DAC AFM 

DAQ 

PC 

R
TD

X
 

USB 

McBSP 0 

TMS320C6713 DSP Kit 
fd dTM 

Figure 4.4: Functional block diagram.

4.1.3 DSP Controller Verification

The purpose of this section is to describe the procedure used to test the controller

implemented on the DSP and determine how closely it matches the behaviour of an

ideal PI controller. The first step in this this direction is to determine the sample time

Ts of the DSP controller. The sample time in this case is defined as the time between

the acquisition of two data samples. This interval includes the time needed to get the

controller parameters using RTDX, generate the controller output and writing it to the

DAC. All these steps are collectively referred to as Data Processing and assumed to take

time Tp. This is illustrated in Figure 4.5.

The Code Composer Studio used to program the DSP provides a feature to measure the

time interval between two events. This was used to determine the sample time, and in

this case Ts is 7.5�s. A sample time of 7.5�s means a sample rate of 133kSPS. This

sample rate is sufficient for the current application. The reason is that the Amplitude

signal from the AFM, which the DSP controller is meant to measure has its highest

frequency approximately less than 500 Hz. This can be verified using the frequency

spectrum of a second long segment of the Amplitude signal as illustrated in Figure 4.6.

As can be seen in the bottom plot the frequency content is much less than 500 Hz. This
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y(i) 

u(i) 

y(i+1) 

Data Processing 

Tp 

Ts 

Figure 4.5: Sample time Ts.

signal was recorded using a National Instruments DAQ sampling at a rate of 1MSPS

with a resolution of 16 bits.
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Figure 4.6: Frequency spectrum of A(t).

In the next step the two components of the PI controller were verified separately by

generating Bode plots and comparing with plots generated in Matlab using the same
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controller parameters. In all cases a sinusoidal input with unit amplitude was provided

to the DSP controller. Since the DAC can generate no more than 2.5 V, the maximum

gain during the verification procedure is 20log102.5 = 7.95dB. The lowest possible gain

is determined by the resolution of the DAQ card used to measure the response of the

DSP controller. The DAQ can measure voltages in the range of ±10 V with a resolution

of 16 bits. Therefore the gain that can be measured is 20log10
20
216

= −70.30dB. The

frequency range for all plots is from 10 to 1000 Hz. The Bode plots were generated

with out using the low pass filter at the DAC output. The magnitude and phase of the

noise corrupted DAC output was estimated using a regression procedure explained in

this section. These plots are illustrated in Figures 4.7, 4.8 respectively. Each plot shows

the ideal magnitude and phase curves generated by Matlab (solid line) and those from

the DSP controller (dashed line). The maximum gain errors for the P and I controllers

are 0.06 dB and 1.18 dB respectively. In the case of phase the DSP controller’s phase

deviates from the ideal values as frequency increases. This is due to the latency of the

digital processor. However this error is not significant for the current application since

the controller works at a frequency less than 10 Hz. The maximum phase errors for the

P and I controllers is 9.42∘ and 10.1∘ respectively.
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Figure 4.7: Proportional controller Bode plot.

The Bode plots are obtained using a simple procedure. The DSP is sequentially pro-

vided ten sinusoidal signals xi(i = 1, 2, . . . , 10) with unity amplitude and logarithmically

spaced frequencies fi between 10 and 1000 Hz. The corresponding output signals yi are

recorded. Each signal segment lasts one second and all data is generated and recorded

at the rate of 1M samples per second. The amplitude and phase of the input/output

signals are determined using a regression method. The phase of the two signals is then

used to determine the phase shift of the output with respect to the input. This method

assumes that the input and output signals are sinusoids of the form,
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Figure 4.8: Integral controller Bode plot.

xi(t) = Mx cos(2�fit+ �x) + kx (4.3)

yi(t) = My cos(2�fit+ �y) + ky

where t ∈ [0 1] is the time variable, M is the amplitude,� is the signal phase and k is

the signal offset. The method then makes use of the fact that the sinusoidal signals can

also be written as,

xi = Ax cos(2�fit) +Bx sin(2�fit) + kx (4.4)

yi = Ay cos(2�fit) +By sin(2�fit) + ky

This immediately leads to the determination of amplitude and phase of both signals

using the relations

Mx =
√
A2
x +B2

x �x = tan−1 −Bx
Ax

(4.5)

My =
√
A2
y +B2

y �y = tan−1 −By
Ay

The system gain Gi for the itℎ signal is then simply My and the corresponding phase

shift Δ�i is �y − �x. The regression procedure is applied by writing equations 4.4 as

two matrix equations and solving for kx, Ax, Bx and ky, Ay, By respectively.
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[
xi

]
=
[⃗
1 c⃗i s⃗i

]
×

⎡⎢⎣ kx

Ax

Bx

⎤⎥⎦ (4.6)

[
yi

]
=
[⃗
1 c⃗i s⃗i

]
×

⎡⎢⎣ ky

Ay

By

⎤⎥⎦

Here, 1⃗ is a vector with all entries equal to unity and has a length equal to the signal

segments xi and yi, ci = cos 2�fit and si = sin 2�fit

The final step in the verification procedure is to input a pre-recorded AFM amplitude

signal to the DSP controller and compare its output with the output generated using the

Nanonics controller. As can be seen in Figure 4.9 the DSP and the Nanonics controller

signals are similar. The difference however is not relevant since the correctness of the

PI controller has already been verified using Bode plots. This plot is generated to

illustrate the fact that the DSP controller can be used to generate a sample image. The

sample being viewed in this case is a rectangular metallic grid with a 3� m pitch. As

it can been the figure both controllers can extract the sample topography features. The

only addition to get this result was a 15 Hz low pass filter after the DAC output to

remove noise generated by the DAC. The PI gains in the DSP controller were set to

Kp = 0.4 Ki = 7. An additional offset of 0.8[V] had to be added to the DSP output

to bring it close to the output of the Nanonics controller. This offset occurs most likely

due to the Nanonics controllers internal implementation and can be easily compensated

for in the DSP code.
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Figure 4.9: DSP and Nanonics controller outputs.
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Figure 4.10 illustrate the final customized hardware developed. The DSP kit itself is

located right beneath the visible circuitry. The figure illustrates the ADC, DAC modules

along with the op-amp based interface circuit.

DAC 

ADC 
Interface Circuit 

Figure 4.10: The customized controller hardware.

4.2 Offline EMMSAC Verification

The purpose of the offline EMMSAC verification is two-fold. Firstly, to demonstrate

that the EMMSAC switching signal points to the right group of plants. Secondly, it

shows that the EMMSAC based controller provides a better performance as compared

to a fixed controller in the context of a benchmark. The term right plant group refers to

the fact that, the least residual plants generated using more recent AFM data generally

generate lesser Kalman Filter residuals. This is because the AFM plant parameters

vary temporally even when the piezo-actuators, cantilever and sample are not changed.

Therefore, the right group of least residual plants are those which are generated using

AFM data which is temporally closer. This means that if one group of least residual

plants is generated using a year old AFM data, and the other is generated using an hour

old AFM data using the same equipment, the later group will be referred to as the right

group of plants. This is so because the later group of least residual plants is likely to be

a more accurate description of the AFM dynamics.

The offline EMMSAC verification was performed by collecting AFM data on two separate

days using a fixed set of trial controllers CT . Next, a fraction of the data from each

day was used to generate least residual plants. The plants were then tested against the
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remaining data from each day to determine if the least residual plants generated using

data from the same day actually have a lesser residual.

The performance benchmark for this verification is the squared 2-norm of the error

between the set-point amplitude Asp and the actual amplitude A, i.e ∣∣e∣∣22 = ∣∣Asp−A∣∣22.

The remaining part of this section provides a detailed explanation of the offline EMM-

SAC verification procedure. Subsection 4.2.1 describes the experimental set-up used

along with a description of the data recorded. This is followed by an explanation of

the process used to generate the least residual plant set and the corresponding con-

troller set in Subsections 4.2.2 and 4.2.3 respectively. Subsection 4.2.4 illustrates that

the EMMSAC algorithm’s switching signal points to the right group of plants.

4.2.1 Experimental Setup

All experiments have been performed on the Nanonics Imaging CryoView 2000 AFM.

The cantilever obtained from Nanosensors is made of n-silicon with a length of 240�m.

The resonance frequency and quality factor as measured through a separate frequency

sweep experiment are 65.5 kHz and 180.4 respectively. The imaged sample is the TGZ

02 calibration grid from Micro Masch. The calibration grid contains rectangular SiO2

steps on Si wafer with a step height of 120±0.5nm and a pitch of 3.0 �m. The complete

AFM control loop is illustrated in Figure 4.11.
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Laser Source 

Photo Diode 
CONTROLLER 

PIEZO 

AMPLIFIER 

LOCK-IN 

AMPLIFIER 
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Estimated Sample Topography 

Figure 4.11: The AFM experimental setup.

In this figure, ℎ is the height signal generated by the controller. This is amplified by a

piezo-amplifier to generate Vz which is passed to the piezo-actuator. The dither piezo-

actuator is actuated by an excitation signal fD, which is a sinusoid with a frequency

equal to the cantilever resonance frequency and a sufficient amplitude. The meaning of

the term sufficient is explained next.

The excitation from the dither-piezo causes the cantilever tip to vibrate. This vibration is

detected by the optical detection system and is referred to as the tapping mode deflection
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signal dTM . Finally, a lock-in amplifier is used to determine the amplitude A of dTM .

This is compared against the set point amplitude Asp to generate the error signal,

which is provided as input to the controller. Ideally the set point should be specified

in nanometers. However, this is not currently possible with the existing hardware. The

output from the lock-in amplifier has a range of 0 to 10 volts. Here 0 implies a static

cantilever tip and 10 indicates the maximum measurable amplitude. According to the

procedure specified by Nanonics first the tip is driven far from the surface so that there

is no tip sample interaction. Next the amplitude of the excitation signal fD is selected

so that the amplitude A equals 9 volts. Following the manufacturer’s recommendations

the set point amplitude Asp is then always selected to be be 1.6 volts below A. This

means that the set point amplitude is 7.4 volts or approximately 80% of the amplitude

of free vibration A. This selection originates from the fact that if the set point is selected

to be too low for instance 50%, then the tip will vibrate too close to the sample surface.

This will cause the tip to wear down or break. Likewise, if the set point is too high for

instance 95%, the error will be difficult to measure and controller implementation will

not be feasible.

In this case u2 = fD, y2 = dTM . The output disturbance y0 principally originates from

the sample topography. Ideally the effect of the z-piezo input voltage should be taken

into account to calculate the force acting on the cantilever base Fb. Due to the open

loop nature of the current piezo-actuators, their dynamics cannot be determined. As

a consequence only the dither piezo input fD and the photodiode output dTM is used.

The relation between fD and dTM is linear and can be approximated by a second order

transfer function. Due to the relatively simple plant structure, the controller structure

is empirically selected to be a proportional integral controller.

Before the EMMSAC algorithm can be applied for image generation a sufficient amount

of data must be recorded for generation of the plant and controller sets. This is done

in the following manner. A single line of the sample is repeatedly scanned with a one

hundred separate PI controllers belonging to the following trial controller set CT ,

(Kp,Ki) ∈ CT = [0.1, 0.2, . . . , 1.0]× [10, 20, . . . , 100] (4.7)

The line length is selected equal to the pitch of sample i.e, 3�m. This ensures that

sufficient topography variation occurs during each scan. Each line scan requires one

second to complete and all five signals generated in the loop namely, Asp,A,ℎ,fD and

dTM are recorded. This is done with a National Instruments DAQ (NI USB 6356) with

a sample rate of 106 samples per second. The PI controllers are implemented on the

TMS320C6713 DSK from Texas Instruments using 16 bit A/D and D/A converters. The

testing of each controller thus generates a data subset Di
j given below,
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Di
j = [Asp, A, ℎ, fD, dTM ] ∈ ℝ106×5∣1 ≤ j ≤ 100, 1 ≤ i ≤ 10 (4.8)

Here the subscript j indicates that the data subset is generated though trial of the jtℎ

controller from the set CT in the loop. The superscript i refers to the iteration. Each

iteration consists of trials of all the 100 controllers in the set CT .

In all two experiments were performed where each experiment consists of five itera-

tions. The final data set thus generated is D is illustrated in Figure 4.12.
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Figure 4.12: Experimental data set.

4.2.2 Plant Set

Once the data set is recorded the data subsets Di
j ∀ i ∈ [1, 6], j ∈ [1, 2, . . . , 100] are

used to generate corresponding least residual plants Gij . Only the data sets collected in

the first iterations in each experiment are used for generation of the least residual plants.

The remaining data sets in each experiment are used for verification of the EMMSAC

procedure as explained in Section 4.2.4.

The least residual plant Gij are obtained from the data sets Dj
i ∀ i ∈ [1, 6], j ∈

[1, 2, . . . , 100] using the mapping procedure Φp,

Φp : Di
j → Gij ∀ i ∈ [1, 6], j ∈ [1, 2, . . . , 100] (4.9)

This is the same mapping procedure described in section 3.2.1. The optimization is

performed subject to the constraints 0 < Q ≤ 500, 2�(1000) < !n ≤ 2�(105), and

0 < ko ≤ 100. The final plant set obtained is provided below.
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G =

[
G1

1 G1
2 . . . G1

100

G6
1 G6

2 . . . G6
100

]
(4.10)

The plants in this set are illustrated in Figure 4.16.
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Figure 4.13: Plant set obtained for experiment one (Blue X) and two (Red O).

4.2.3 Controller Set

The controller set is determined by finding the best controller corresponding to the

data subsets in the first iteration in each experiment, i.e data sets D1
1, . . . D

1
100 and

D6
1, . . . D

6
100. Ideally the best controller is the one that generates the least squared

error between the amplitude set-point Asp and A. The performance metric �ij is thus

defined by as follows,

�ij =

106∑
k=1

(
eij(k)

)2
(4.11)

where,

eij = Asp −A

∣∣∣∣∣∀ i ∈ [1, 6]

∀ j ∈ [1, 2, 3, . . . , 100]
(4.12)

The error signals in each case were sampled at a rate of 106 samples per second (1

MSPS). As illustrated in Figure 4.6, the frequency content of the amplitude signal A(t)

is well below 500 Hz. Clearly the frequency content of the error signal is exactly the
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same. The sample rate is therefore greater than necessary. Given the large number of

error vectors corresponding to each data set, the error vectors were first down sampled

by a factor of 20. This is done to reduce the time needed to determine the controller set.

In addition since the error signal is noisy it is low pass filtered using a 4tℎ− order low

pass Butterworth filter with a cut-off frequency of 100 Hz. The filtering is performed

on the down sampled signals in Matlab. Since the scan rate is low, i.e 0.5 Hz or 1 scan

line per second it is unlikely that any meaningful information can be extracted from the

signal at higher frequencies.

The motivation behind the low pass filtering is that it is difficult to evaluate EMMSAC

performance using a noisy error signal. The final controller set is obtained using the

same mapping procedure Φc described in section 3.2.2. It consists of two controllers one

corresponding to each experiment and is illustrated in Table 4.1.

To conclude two operations are performed on the error signal before performance evalu-

ation, i) Down sampling ii) Low pass filtering. Since the frequency content of the error

signal is well below 500 Hz, the down sampled and filtered metric is identical to the one

originally suggested in Section 3.2.2. These operations are performed only for the case

of the offline EMMSAC verification.

Table 4.1: Controller set.

Exp. No. Kp Ki

1 0.2 90

2 0.9 70

4.2.4 EMMSAC Verification Results

The purpose of this section is to verify that switching signal points to the correct group

of plants in the plant set using the cantilever input (drive signal fD) and output (tapping

mode deflection dTM ). This is done by extracting the signals fD and dTM from all the

data subsets and evaluating the switching signal q using the mapping Φq, given below,

Φq : Di
j → q ∀ i ∈ [1, 2, . . . , 10] ∀ j ∈ [1, 2, . . . , 100] (4.13)

The mapping is done by extracting the signals fD and dTM from all the data subsets and

evaluating the residuals for each plant in the plant set and recording them in a residual

matrix ℝ given below,

ℝ =

[
r1

1 r1
2 . . . r1

100

r6
1 r6

2 . . . r6
100

]
M =

[
m1

m2

]
(4.14)
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The mean residual for each row mi is evaluated next and written in a matrix M. The

subscript i in mi now corresponds to the itℎ row of the residual matrix ℝ. The switching

signal q then equals the row index with the least mean residual.

q = arg min
i
mi ∀ i ∈ [1, 2] (4.15)

Ideally the switching signal generated from a subset in an experiment should point to

the same experiment. For instance the switching signal q generated from data sets

Di
j ∀i ∈ [1, 2, 3, 4, 5] ∀ j ∈ [1, 2, 3, . . . , 100] should equal 1. Likewise for the data

sets Di
j ∀i ∈ [6, 7, 8, 9, 10] ∀ j ∈ [1, 2, 3, . . . , 100] the switching signal should equal

2. Figure 4.14 illustrates the results for the switching signal. As can be seen that

the switching signal is able correctly identify which experiments the data sets belong

too. The implication of this is that the switching signal points to those plants which

correspond to the data most recently collected.
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Figure 4.14: Least residual based identification results.

The fact that the EMMSAC is able to identify correctly every time is due to the relatively

simple nature of the offline experiment. Only one sample is used, and the data for

experiment 1 and 2 is collected on days which were in excess of two months apart. Such

identification results may not occur if the data is collected at a smaller interval or if more

than one samples are used. However the fundamental objective of this experiment is to
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show that Kalman residuals have the ability to detect changes in the dynamics of an

atomic force microscopy experiment. In addition it also reveals that this identification

can be done using a small number of low order least residual plants.

Next, the performance of each controller in the controller set CE is compared against the

EMMSAC recommended controller in Figure 4.15. As can be seen that the EMMSAC

controller performs slightly better than the rest of the controllers. The term slight is

used because while there is a relatively bigger difference between the performance of C1

and CEMMSAC , there is a much lesser difference between C2 and CEMMSAC . This is

quantified using the mean squared errors m1,m2 and mEMMSAC as illustrated in the

Figure 4.15. The mean squared error for the EMMSAC controller mE is still the lowest.

The mean is computed by excluding the performance for iterations 1 and 6. This is

because the data sets collected in these iterations were used to determine controllers C1

and C2.
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4.3 Image Generation Using EMMSAC Algorithm

The purpose of this section is to illustrate the imaging results obtained using the EMM-

SAC algorithm for two samples. The first sample is a calibration grating TGZ01 from

MikroMasch. The grating consists of 1-D arrays of rectangular SiO2 steps on a Silicon

wafer. The step height is 120 nm with a pitch of 3 �m. The second sample is a DVD

which is made of a relatively softer polymer. This sample consists of 1-D tracks which

have a pitch of 0.75 �m. Each scan covers and area of 3 × 1.17�m and the scans are

carried out at a rate of 0.5 Hz i.e. each scan line takes one second for completion. The

relatively small scan area is a consequence of limitations imposed by the AFM and signal

processing hardware. However since the structures being viewed vary periodically and

have a pitch less than or equal to 3 �m, this scan size is sufficient for these samples.

The experimental set up is exactly the same as mentioned in Section 4.2.1. The first

subsection describes the generation of the plant set. Due to the reasons mentioned

in Section 3.2.2, the controller set is generated in a slightly different manner and is

described in the second subsection. The last subsection describes the images obtained

using the EMMSAC algorithm.

4.3.1 Plant Set

The plant set is generated by testing a set of trial PI controllers in the set CT given

below,

(Kp,Ki) ∈ CT = [0.1, 0.2, . . . , 1.0]× [10, 20, . . . , 100] (4.16)

Here Kp and Ki represent the proportional and integral gains of the PI controller used

in the AFM control loop. The range and separation of the gains is chosen empirically.

This combination of P and I gains results in 100 controllers in the trial controller set

CT .

The plant set is determined through a series of data collection experiments, one for

each sample. In each experiment all the controllers given in the trial set CT are tested

twice, once for a trace line and once for a retrace one. The terms trace and retrace

refer to consecutive scan lines in a raster scan pattern. Each scan line takes one second

to execute. During this scan five signals are recorded namely Asp, A, ℎ, fD, dTM . The

testing of each controller generates two data sets Di
jT and Di

jR given below,

Di
jT = [Asp, A, ℎ, fD, dTM ] ∈ ℝ106×5∣1 ≤ j ≤ 100, 1 ≤ i ≤ 2 (4.17)

Di
jR = [Asp, A, ℎ, fD, dTM ] ∈ ℝ106×5∣1 ≤ j ≤ 100, 1 ≤ i ≤ 2
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Here j refers to the controller being tested, i equals the sample. In this case i = 1

corresponds to the TGZ01 calibration grating and i = 2 corresponds to the DVD. The

subscripts T and R correspond to trace and retrace lines respectively. The complete

data D set is thus given as,

D =

[
D1

1T . . . D1
100T D1

1R . . . D1
100R

D2
1T . . . D2

100T D2
1R . . . D2

100R

]
(4.18)

Next, the dither-piezo input fD and cantilever deflection dTM in each data set Di
j are

used to determine the closest second order LTI plant Gij using the same mapping Φp

described in the previous section. Each data set leads to one plant. The final plant set

G can thus be given as,

G =

[
G1

1T . . . G1
100T G1

1R . . . G1
100R

G2
1T . . . G2

100T G2
1R . . . G2

100R

]
(4.19)

Here each column corresponds to the testing of a single controller and each row cor-

responds to one system identification experiment. The set thus contains 400 plants.

Although it would be ideal to use the entire plant set for evaluation of the switching

signal using the mapping Φq, this is computationally infeasible for image generation on

a physical system.

Therefore a reduced plant set GR is used. The set contains only the trace plants, i.e the

plants with the subscript T in the original plant set G. Amongst the trace plants, it uses

only the plants which were generated using the odd controller gain entries. This means

that plants generated using Kp = [0.1, 0.3, 0.5, 0.7, 0.9] and Ki = [10, 30, 50, 70, 90] were

used. The reduced plant set thus has 25 plants in each row, and 50 plants in all.

Figure 4.16 illustrates the reduced plant set. As can be seen, the plants corresponding

to the two sample cluster at slightly different locations.

4.3.2 Controller Set

The system identification data is used once again to select the best controller for each

experiment. This is done by evaluating the error signal for the trace eT = Asp −A and

retrace eR = Asp−A for each controller test in an experiment. The performance metric

� for each controller is then given below,

� =

106∑
k=1

e2
T (k) +

106∑
k=1

e2
R(k) (4.20)
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Figure 4.16: Plant set. (Blue X:TGZ Red O:DVD)

Here eT is the error for the trace line and eR is the error for the retrace line. For each

experiment the controller with the lowest � is selected. However as mentioned previously

in Section 2.7.1 the squared 2-norm of the error signal does not take into account if the

control signal used to construct the sample image is oscillatory and if the trace and

retrace signals are close. As a consequence two constraints need to be used. Firstly,

controllers that result in a large difference between trace and retrace height signals are

discarded. Secondly, controllers that cause significant oscillations in the height signal

are also discarded. Finally, controllers that result in height signals that are nearly flat

i.e., indicating no interaction with the sample are also discarded. These constraints are

imposed by two metrics given below,

TR =
106∑
k=1

(ℎT (k)− ℎR(k))2 (4.21)

where ℎT is the height signal for a trace and ℎR is the height signal for a retrace line.

A higher value of TR indicates greater mismatch between trace and retrace lines. In

addition a very low value implies that the height signals are nearly flat and there is no

significant interaction between the cantilever and the sample.

The second metric PSD is the power spectral density of the height signals for frequen-

cies greater than 10 Hz. This frequency was chosen empirically based on the a priori
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knowledge of the sample topographies used in this contribution and the scan speed. If

a controller results in a height signal with substantial energy in frequencies above 10

Hz, this implies that the gains are too high and are producing erroneous height sig-

nals. Likewise, a very low PSD value again indicates flat height signals and therefore no

significant interaction between cantilever and sample. The measure is given below,

PSD =
500000∑
f=10

∣HT (f)∣2 +
500000∑
f=10

∣HR(f)∣2 (4.22)

Here HT and HR are the Fast Fourier Transforms of the trace and retrace height signals

respectively. The upper frequency limit in the PSD calculation i.e. 500,000 Hz is chosen

to be half of the signal sampling frequency of the DAQ card.

Finally a metric matrix Φ is constructed for each experiment as follows,

Φi =

⎡⎢⎣ �1 �2 . . . �100

TR1 TR2 . . . TR100

PSD1 PSD2 . . . PSD100

⎤⎥⎦ (4.23)

Here the superscript i corresponds to the sample. Now the best controller for the sample

is chosen using the following relation,

Ci = arg min
j
�j

∣∣∣∣∣ TRL < TRj < TRU

PSDL < PSDj < PSDU

∀ 1 ≤ j ≤ 100 (4.24)

here TRL, TRU are the 5tℎ and 80tℎ percentile for all TR values for the itℎ sample.

Likewise PSDL, PSDU are the 5tℎ and 30tℎ percentiles for all PSD values in the itℎ

sample. These limits are chosen empirically and are meant to discard controllers with

unacceptable performance.

The final controller set then consists of two controllers, one corresponding to each sample

and is illustrated in Table 4.2.

Table 4.2: Controller set.

q Kp Ki

0 0 50

1 0.3 90

2 0.4 60

Here q = 0 corresponds to the default controller used to initiate the imaging process

for both sample. The controller is deliberately chosen to be suboptimal. This results in
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poor performance in the first. This is done to determine if the EMMSAC algorithm can

identify the correct sample despite a poorly performing controller.

4.3.3 Image Generation

The complete AFM control loop along with the EMMSAC implementation is illustrated

in Figure 4.17.

Dither Piezo 

Laser Source 

Photo Diode 
CONTROLLER 

PIEZO 

AMPLIFIER 

LOCK-IN 

AMPLIFIER 

Sample 

Z  Piezo 

ASP A h 

fD 

dTM VZ 

EMMSAC 

Figure 4.17: Implementation of the EMMSAC algorithm with the AFM in the
loop.

As illustrated, the entire AFM control loop remains unchanged. The only addition is

the EMMSAC block which uses the cantilever drive signal fD and the tapping mode

deflection dTM as its inputs and generates the switching signal as its output. Due

the computationally intensive nature of the EMMSAC, the algorithm is run at three

uniformly spaced intervals during the scan starting immediately after the first line.

During each EMMSAC run, the dither-piezo input fD and the cantilever deflection

signal dTM for a single trace line are saved. Next the switching signal q is evaluated

using the mapping Φq as described in the previous section.

Finally the controller corresponding to the switching signal is put into the AFM control

loop and is allowed to stay in the loop until the start of the next consecutive EMMSAC

run. During each EMMSAC run a total of 2 × 25 plant residuals are evaluated. This

requires 50 second on an Intel 2.67 GHz desktop. During this interval while the residuals

are being computed the AFM scan is halted, however the DSP continues to Amplitude

signal (A) by controlling the Height (ℎ). The generation of the complete image requires

approximately 10 minutes.

Figure 4.18 illustrate the images obtained and the switching signal after each EMMSAC

run. The TGZ 02 calibration sample consists of SiO2 steps on Si wafer with a height

of 120 nm and pitch of 3�m. In Figure 4.18 a single step can be viewed. Ideally a
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greater scan area is preferable to enable viewing of a greater number of steps, however

the current AFM instrument and the control hardware limit the maximum permissible

scan area to approximately 3× 1.17�m. Each scan consists of 100 scan lines.

q=1

q=1
q=1

Trace

Figure 4.18: TGZ calibration sample image.

Figures 4.19 illustrate the sample heights for a single trace and retrace line. The height

signals are chosen for illustrating the results since the sample feature heights are a priori

known and hence serve as a bench mark. As can be seen, that although there is still a

small amount on noise present in the system, the topography for the TGZ 02 sample

has an error of approximately 20 nm,the trace and retrace signals are fairly similar and

the sample topography is clearly revealed.
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Figure 4.19: TGZ calibration sample single line image.

Finally, Figure 4.20 reveals the controller performance for every line scanned. The

controller used for line 1 is Kp = 0 and Ki = 5. This is a known suboptimal controller.

It is chosen to determine if the EMMSAC can generate an image even when starting
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from a poorly tuned controller. As can be seen the sum squared error � drops after the

first line and remains below the starting value.
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Figure 4.20: EMMSAC controller performance on TGZ sample.

Figures 4.21, 4.22 and 4.23 illustrate the same results for the case of the DVD sample.

q=2

q=2
q=2

Trace

Figure 4.21: DVD sample image.
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Figure 4.22: DVD single line image.
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Figure 4.23: EMMSAC controller performance on DVD sample.
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4.4 Image Generation Using Manual Tuning

This section presents the images generated for the same sample using manual tuning of

the PI controllers. Figures 4.24 and 4.25 illustrate the sample image and a single scan

line respectively.

Figure 4.24: TGZ calibration sample image.
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Figure 4.25: TGZ calibration sample single line image.

The controllers were tuned as the image was being generated by observing the sum

squared error for each line. Figures 4.26 and 4.27 illustrate the squared error and PI

gains which were used during the tuning procedure. The integrator gain in Figure 4.27

has been scaled down by a factor of ten for the purpose of illustration.
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Figure 4.26: Hand-tuned controller performance on TGZ sample.
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Figure 4.27: Manual Kp, Ki gain selection.

While both approaches (automated and manual) can estimate the sample topography,

the advantage of using the automated approach is that it eliminates the manual gain

tuning effort illustrated in Figure 4.27. Although the hand-tuned controller gets a better

performance in terms of the performance metric �, the relevant aspect in this case is

that the EMMSAC controller generates images without any human effort. Clearly the
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performance of the EMMSAC can be improved, however the objective of generating a

sample image without hand-tuning is attained by the EMMSAC system.

4.5 Conclusions

The experimental results presented in this chapter clearly demonstrate that the EMM-

SAC algorithm can automate the controller tuning procedure which otherwise needs to

be performed manually. The algorithm can identify temporal variations in the AFM

system as well as a change of sample. In each case the best controller is switched in,

which is exactly what a human user would do. It takes away the need for manual tuning

of the controller gains and clearly exhibits the potential of making AFM easier to use.

It is clear that the image quality needs to be improved. This can be achieved by making

the generation of the Kalman filter residuals faster and having a higher number of

candidate plants and their controllers. It may also be beneficial to investigate adaptive

plant sets as compared to fixed ones as in the current case.

Lastly, a better performance metric needs to be determined. The current metric of

choice has two limitations which are detailed below.

∙ The first limitation is that the error signal is affected by the system noise. As evident

from the Figures 4.20 and 4.23 in the last two sections, the sum squared error varies

considerably from one scan line to the next even in the same experiment with the same

sample and controller. This makes it difficult to determine the effectiveness of switching

in the best controller. The ideal situation would be one where switching in the false

controller clearly deteriorates the image quality, as illustrated in the simulation results

in Section 3.2.3.

∙ The second limitation is that the metric is not strongly correlated with image quality.

This is due to at least two reasons. Firstly, the tip vibration amplitude A does not vary

linearly with respect to the cantilever base height Z. If Z is reduced, i.e the cantilever

base moves towards the sample surface the amplitude reduces linearly. However if the

base is moved away from the surface, the amplitude increases at first but then saturates.

This is simply because there is a physical limit to the vibration amplitude for any

cantilever. The variation of A with respect to Z is illustrated below,



Chapter 4 Application of EMMSAC on AFM Hardware 97

Ao 
Asp 

Z 

A Amplitude 
Error 

Figure 4.28: Variation of amplitude A and error e with respect to cantilever
base distance (Z) from sample surface.

As illustrated, if the cantilever base moves away from the sample surface, the error

e = Asp − A increases a little and then saturates. Thus if a weak controller is switched

in, the cantilever base will stay relatively far from the sample surface but error will

saturate to a small negative value. It will not reflect the ineffectiveness of the controller

and the estimated topography will be relatively flat.

The second reason why the metric is not correlated well with image quality is that a

strong controller can result in an oscillatory control signal. Since that the image is

generated from the control signal, the oscillations show as distortions which immedi-

ately reduces the image quality. However the current metric does not reflect this in a

substantial manner.

To conclude, the experimental results reported in this chapter demonstrate that EMM-

SAC algorithm can use AFM data to switch in the correct a priori known optimal

controller. While the Kalman residual based identification mechanism works, the per-

formance improvement obtained is marginal. This is however not a limitation of the

algorithm itself but of the performance metric used. In addition the abstract and sub-

jective nature of image quality must also be taken into account. The issue of human

perception of image quality has been addressed previously in literature, for instance by

Wang et al. (2004). The authors note that image quality has traditionally been mea-

sured using the difference between a reference image and a distorted image. This is

often done through metric like the Mean Squared Error(MSE) or the Peak Signal to

Noise Ratio (PSNR). They observe that human vision is adapted for extracting struc-

tural information from a scene. In this context they suggest a Structural Similarity

Index and demonstrate that it can be used as a performance measure for image quality.

Such a performance measure is relevant to the case of AFMs since a reference measure
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is not available and the end users generally have a priori information about the possible

structure that they wish to view.

The next chapter investigates two novel strategies to reduce imaging times in AFMs.

The first one generates sample images using coarse scanning trajectories and compressive

sensing. The second one speeds up imaging by scanning the sample in a parallel manner.

This is done by using the entire length of the beam, instead of just the tip.



Chapter 5

Faster AFM Imaging

While the EMMSAC based automated controller tuning procedure described previously

makes AFMs more accessible to the general scientific community, the issue of long imag-

ing times still needs to be investigated. The purpose of this chapter is to illustrate two

methods that have the potential to reduce AFM imaging times, namely Compressive

Sensing and Full Beam Imaging. The remaining two sections explain these methods in

detail. After the description of the Compressive Sensing method it will also be made

clear that the automated tuning procedure is beneficial to this method as well.

5.1 Compressive Sensing

One key disadvantage associated with AFMs is that the cantilever needs to be moved

sequentially over the entire sample in a raster pattern. For the purpose of generating

a complete image of the sample the raster pattern needs to be fine enough. Coarser

trajectories can be used, but while this will improve imaging speed it will be at the

expense of missed regions in the sample image. However if the sample is periodic in

nature, i.e. it has repeating patterns then it is possible to build a sample image using

relatively coarser trajectories. In this context an emerging signal processing method

called compressive sensing offers a possible solution. This method functions by using

a limiting number of measurements from a sub-sampled signal and searching for the

sparsest equivalent representation in a suitably chosen transformed domain. The sparse

equivalent is then used to generate an estimate of the original sub-sampled signal using

the same transformation. This method is functional even when the sampling rate is

below the minimal limit determined by the Nyquist principle (Baranuik (2007)). The

remaining parts of this section describe the concept of compressive sensing in detail and

how this is used to generate images of AFM samples using coarse trajectories.

According to the Nyquist principle a signal must be sampled at twice the signal band-

width to avoid losing any information. This requires many applications to sample signals

99
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at very high rates, which in turn necessitates greater storage space and the need for

compression. The conventional method therefore is to sample signals at very high rates,

compress them and then continue with storage or transmission. This signal compression

relies on the principle that the signal being measured can be represented in terms of a

set of basis vectors. In addition it is also required that out of this generic set of basis

vectors only a small number of vectors is sufficient to represent the signal. Let the signal

be an N element vector x ∈ ℝN . This can then be represented using a set of N basis

vectors as follows,

x =
N∑
i=1

pi i (5.1)

or in matrix notation,

x =  p (5.2)

where  i ∈ ℝN is the itℎ basis vector,  = [ 1 2 . . .  N ] and p ∈ ℝN is a vector of

weighting coefficients. Signal compression then relies on the fact that the signal can be

represented using only K << N of these coefficients, i.e only K coefficients are non-zero

and the remaining are zero. Once these coefficients are determined, only the K non-

zero ones are either stored or transmitted. Such a signal is referred to as K-Sparse or

Compressible.

Figure 5.1 illustrates the K-sparse concept using a simple illustration. It shows a unity

amplitude one hertz square wave that is reconstructed using three and seven harmonics.

As can be seen that the reconstructions although not, accurate do represent the shape of

the original signal. Even though there are infinitely many harmonics in a square wave,

the signal shape can be approximated using a small number of these and ignoring the

rest.

There is one major disadvantage associated with this procedure. Acquiring a signal at

high sampling rates can be expensive and time-consuming. This is especially true for

the current application. Scanning a topography using an AFM is a slow process, and it

will be very beneficial if the topography can be reconstructed without having to scan the

entire surface. The remaining parts of this section explain what is compressive sensing,

how does it work despite sampling at sub-Nyquist rates and how is this applicable to

atomic force microscopy.

Compressive sensing assumes that the signal of interest is K-Sparse, and defines a new

form of measurement. Instead of measuring a signal sample by sample in the time do-

main, each measurement is a dot product of the complete signal x and the Measurement

Vector �i. Let the itℎ measurement be yi, and let there be M < N measurements. The
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Figure 5.1: Square wave reconstruction using three and seven harmonics.

itℎ measurement is then yi =< x, �i > and the complete vector of M such measurements

can then be written as,

y = �x = � s = As (5.3)

where � is a matrix whose itℎ row is given by �i
T . This matrix is referred to as the

Measurement Matrix. A is an M ×N matrix which results from the multiplication of �,

 and s is the sparse representation of x in the transformed domain so that x =  s. The

next problem is the selection of the appropriate measurement matrix �, basis matrix  

and a method to recover the original signal x from the measurements y. These details

are given below.

Measurement Matrix �: It is now well established (Baranuik (2007)) that any measure-

ment matrix is suitable if the resulting A matrix satisfies the following condition,

1− � ≤ ∣∣Av∣∣2
∣∣v∣∣2

≤ 1 + � (5.4)

where v ∈ ℝN is any arbitrary 3K sparse vector, and � is any constant greater than

zero. This condition is known as the Restricted Isometry Property. Furthermore it is also

possible to prove that a measurement matrix can exhibit the restricted isometry property

with high probability (Candes et al. (2006)) if two conditions are satisfied. Firstly, all

the entries are independent and identicaly distributed random numbers. These should

have a Gaussian probability distribution function with a mean of zero and variance
1
N , i.e. �ij ∼ N (0, 1

N ). Secondly, the number of measurements is sufficient, i.e M ≥
cKlog

(
N
K

)
<< N where c is a small constant. An interesting property of a Gaussian

measurement matrix is that A = � will also be independent identically distributed

Gaussian, thus enabling the usage of any orthonormal basis  .
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Basis Matrix  : The selection of the basis depends entirely on the application and

are selected empirically. For most applications involving imaging of natural scenes the

Discrete Cosine Transform DCT basis is suitable (Taubman and Marcellin (2002)).

Alternatively the use of wavelets and curvelets etc. has also been reported in literature

(Ma (2010)).

Signal Recovery Algorithm: The signal recovery problem now is to simply determine a

sparse N × 1 vector s′ such that y = As′. The classical approach is to determine a

minimal L2 norm solution which yields the solution,

ŝ = argmin∣∣s′∣∣2 s.t y = As′ (5.5)

ŝ = AT
(
AAT

)−1
y

Since attempting to find a minimal L2 norm solution attempts to find a minimal energy

solution, the solution found is usually not sparse and has lot of non-zero elements.

Therefore the minimal L2 norm solution is not feasible.

A natural solution to this problem is to find a solution vector s′ that minimizes the

L0 solution. Since the L0 norm counts the number of non-zero elements in a vector,

it appears to be a suitable choice for finding sparse solution. The solution can thus be

written as,

ŝ = argmin∣∣s′∣∣0 s.t y = As′ (5.6)

While this method can determine a sparse signal, the problem is that the above men-

tioned optimization problem is NP complete (Baranuik (2007)) and therefore very time-

consuming.

The next alternative is find a solution that minimizes the L1 norm, i.e

ŝ = argmin∣∣s′∣∣1 s.t y = As′ (5.7)

The L1 norm minimization algorithm attempts to find the sparse solution in the n−m
dimensional shifted null space of A which is N̄ = N (A) + s. Here N is the null space

of A. Fortunately, this is a convex optimization problem which is much more feasible

computational.

The reason why the L1 norm minimization is well suited for finding sparse solutions

is better understood using the simplified illustration in Figure 5.2 originally reported

in Baranuik (2007). Although the original optimization problem has more then three
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dimensions, the figure attempts to explain the process using a simplified three dimen-

sional illustration. The left part of the figure represents a L2 hypersphere and the right

one illustrates a L1 hypersphere. The point s represents a sparse solution, which lies

in the shifted null space of A represented by the hyperplane. This fact that the solu-

tion is sparse is illustrated by the fact that it lies on a coordinate axis. In general the

hyperplane is likely to be inclined at an angle due to the random nature of A.

The optimization then proceeds by expanding the L2 and L1 hyperspheres until they

intersect with the shifted null space at ŝ. Due to the pointed nature of the L1 hypersphere

it is more likely to intersect with the shifted null space hyperplane N̄ on a coordinate

axis. On the other hand the expanding L2 ball is likely to intersect the hyperplane at a

point that does not lie on any single axis and is instead a linear combination of them.

This makes the solution determined by the L2 norm minimizer less likely to be sparse.

Once s′ is known the original signal x can be recovered using x̂ =  ŝ

𝑠 

𝑠  

𝑠 

𝑁 𝑁 

𝑠  

Figure 5.2: Graphical visualization for L1, L2 norm minimization (Baranuik
(2007)).

5.1.1 Simulation Results

Although the concept of using Compressive Sensing for reducing AFM imaging times was

developed independently during this research, it was reported first by Song et al. (2011).

While the author provides experimental results using rectangular scan trajectories, this

research provides experimental results using spiral scan trajectories. The advantage is

that there are no drastic changes in direction, which in turn reduces the possibility of

exciting the piezo-actuator harmonics. The precise meaning of the term scan trajectories

and an illustration for the spiral scan trajectory shall be provided next in this section.
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Before the concept can be applied it was tested on pre recorded images from AFMs.

The unknown signal x in this case is simply the vectorized image shown in Figure 5.3.

For these simulations a 128 × 128 pixel image of a VGRP-15M calibration sample is

used. In this case x is a 1 × n vector where n = 1282 = 16384. The next step is to

extract m measurements from x and generate the measurement vector y. This is done

by multiplying x with the measurement matrix �.

128 

128 

1 

n = 16384 x 

Figure 5.3: Image vectorization.

The measurement matrix is generated simply by overlaying the selected trajectory over

the image. This is illustrated using a trajectory example in Figure 5.4 . If the trajectory

passes through the region covered by a pixel, that pixel is considered to be known

otherwise it is unknown. The + operator here indicates the overlay operation. The

number of measurements m is then equal to the number of known pixels. The rows

of the measurement matrix are then generated by setting each entry corresponding to

a known pixel equal to one and the others to zero. This will generate a measurement

matrix with all rows identical. It was observed that such a measurement matrix does

not work. A possible cause might be that this measurement matrix does not satisfy the

Restricted Isometry Property. This problem was solved by randomly setting all ones in

the matrix to zero with a probability of 0.5. The motivation behind this solution is to

duplicate the randomness of measurement matrix as is done in the original compressive

sensing algorithm. Clearly this needs to be investigated further. The problem is that

it is not possible to take inner products with the entire unknown signal x therefore the

original Gaussian random measurement matrices cannot be used.

The overlay procedure is described in detail next.

Overlay Procedure : The complete scan data is recorded in the data matrix Ξ given

below,
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+ 

Figure 5.4: Trajectory overlay illustration.

Ξ =

⎡⎢⎢⎢⎢⎣
x1 y1 ℎ1

x2 y2 ℎ2

...
...

...

xN yN ℎN

⎤⎥⎥⎥⎥⎦ (5.8)

The itℎ pair of points xi, yi ∈
[
−L

2
L
2

]
in the first two columns represents the itℎ point

on the trajectory. The corresponding topography at that point is then represented by ℎi.

Here N is the total number of points on the trajectory and L is the length of the square

scan area. Next, the trajectory vectors are discretized. The discretization process maps

each trajectory point to a square grid of np × np pixels. For the current example the

number of pixels np = 128. The discretization map Q is given below,

Q : Ξ→ ΞD (5.9)

where,

ΞD =

⎡⎢⎢⎢⎢⎣
xD1 yD1 ℎ1

xD2 yD2 ℎ2

...
...

...

xDN yDN ℎN

⎤⎥⎥⎥⎥⎦ (5.10)

The itℎ pair of points xDi , y
D
i ∈ [1 np] in the first two columns of ΞD represents the itℎ

discretized point on the trajectory. Both xDi , y
D
i ∈ ℕ ∀ i ∈ [1 N ]. The discretization

map Q can be easily understood through the following figures,

The fact that the discretization map for the vertical coordinate is different from the

horizontal coordinate is due to the fact that during mapping an area onto an image the

origin is shifted to the top left as illustrated in Figure 5.6.
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Figure 5.5: Discretization map Q.
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Figure 5.6: Mapping an area to an image.

In the next step two matrices X, I ∈ ℝnp×np are created with all entries initially equal

to zero. These matrices are used to generate the vector x and the measurement matrix

�. This is done by setting all entries in X corresponding to xDi , y
D
i ∀ i ∈ [1 N ] equal

to ℎi and, all entries in I corresponding to xDi , y
D
i ∀ i ∈ [1 N ] equal to unity. Finally

both matrices are column wise vectorized to yield x and �. The measurement matrix is

then generated using,

� =

⎡⎢⎢⎢⎢⎣
�T1
�T2
...

�Tm

⎤⎥⎥⎥⎥⎦× Γ (5.11)
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where, �1 = �2 . . . �m = �, m is the number of entries equalling unity in I and Γ ∈ ℝm×n2
p

is a random binary matrix. Each entry in Γ is an independent, identically distributed

binary random variable ∼ Binary(1
2 ,

1
2). Thus each entry is either zero or unity with a

probability of 1
2 .

Once the measurement matrix is obtained the measurement vector y is easily obtained.

The next step is to select the appropriate basis matrix  . For the current implementation

the basis is selected to be the Discrete Time Transform basis. This selection was made

empirically by observing the fact that most compressive sensing application have used

it as well, although it must still be investigated if a systematic basis selection procedure

is possible. The basis matrix is constructed using the definition of the DCT transform.

The itℎ transformed element is given as,

xi = w(i)
n∑
j=1

sjcos

(
�(2j − 1)(i− 1)

2n

)
i, j = 1, 2, . . . n (5.12)

where, w(i) = 1√
n

if i = 1 and w(i) =
√

2
n 2 ≤ i ≤ n. This can be written in matrix

form, so that each entry of the  matrix can be given as  ij = w(i)cos
(
�(2j−1)(i−1)

2n

)
.

These steps are illustrated in Figure 5.7. The bottom part of the figure illustrates the

A,s and y matrices that will be provided to the L1 norm minimization algorithm.

The next step is to solve equation 5.7 directly using an L1 norm minimizer L1 Magic

(Candes and Romberg). Figure 5.8 explains the simulation results carried out on a

128× 128 pixel pre recorded image. The original image is shown in the top left corner.

The first row illustrates five trajectories that were experimented with. The next row

presents the images reconstructed using compressive sensing and the last one shows the

images reconstructed using simple linear interpolation.

The interpolation is performed by approximating the unknown values between two given

data points using a straight line. While it may be possible to get better interpolation

results using other interpolation or possibly function approximation methods for instance

splining, regression, weighted regression, kernel based interpolation etc., these are not

the subject of this dissertation.

Table 5.1 provides the number of pixels sampled for each scan pattern, along with the

mean squared errors (MSE) between the original image and each of the reconstructed

images.

It is clear from the results that the compressive sensing has lesser MSE as compared

with interpolation.
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Figure 5.7: Compressive sensing matrix operations.

Raster Random Radial Spiral Lissajos

Number of Pixels 1277 1639 1764 881 2096

MSE (Compressive Sensing) 52.98 115.63 308.31 156.82 91.28

MSE (Interpolation) 95.44 149.61 485.90 299.67 104.98

Table 5.1: Mean Squared Error between the original and reconstructed images.

5.1.2 Experimental Results

The simulation experiments reported in the previous section were extended to the Mul-

tiView 4000 AFM from Nanonics Imaging. The sample used for this purpose is the

VGRP-15M calibration grid. This grid have 180nm square pits with a period of 10�m.

First a simple 256 line raster scan was performed. The probe starts scanning the sample

from the bottom left. Each line upwards is referred to as a trace line and each returning

line is a retrace line. Thus a 256 line scan consists of 128 trace lines and 128 retrace

ones. The complete set of measurements during the scan are overlayed on a grid of

256× 256 pixels. The complete procedure therefore results in a 256 × 256 pixel image.

Figure 5.9 illustrates the result of this scan. As can be seen, each pit appears with a

shadow. The reason for this is that there is a slight shift between the trace and retrace

measurements. This is verified by separating the trace and retrace images as illustrated
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Figure 5.8: Compressive sensing results.

in Figure 5.10. Another phenomenon that can be observed is the fact that the image is

brighter in the top left part and darker in the bottom right. This is due to either sample

tilt or piezo creep, or possibly both acting simultaneously. These scan was completed in

38 minutes.

Figure 5.9: VGRP-15M calibration grid 256 line raster scan.
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Trace Retrace

Figure 5.10: VGRP-15M calibration grid trace and retrace images.

Next a spiral scan was performed which took 3 minutes 16 seconds. The results for

this scan are provided in Figure 5.11. The top left figure shows the trace image used

as the reference. The top right figure shows the spiral scan trajectory. The image

reconstructed using compressive sensing is illustrated in the bottom left figure. The last

figure demonstrates the result obtained simply by interpolating the data obtained from

the spiral scan. As can be seen the compressive sensing method is slightly better than the

interpolation result. Using the raster scan as a reference image, the image reconstructed

using the compressive sensing has a MSE of 1307.7 whereas the interpolated one has an

MSE of 1517.3. Both compressive sensing and interpolation cannot detect all features. A

possible reason is that the spiral trajectory does not pass over these features a sufficient

number of times.

In addition it must also be noted that auto tuning developed previously is necessary for

compressive sensing. This is so because if the trajectory is not in a simple rastering pat-

tern, it becomes difficult for the user to manually tune the controller. In a conventional

scenario, the user constantly compares trace and retrace signals and tunes the controller

so that the two remain as similar as possible. For the case non-raster trajectories the

concept of trace and retrace lines is difficult to implement. Furthermore, in the case

of raster scanning the user can see the image as it is being generated line by line. If

the controller is inadequate, the user has time to adjust the gains. In case of compres-

sive sensing using non raster trajectories, the image is generated only after the scan is

complete.
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Original Image (Trace) Spiral Trajectory

Compressive Sensing Image Interpolated Image

Figure 5.11: Compressive sensing results using MV-4000 for VGRP 15M cali-
bration sample.

5.2 Imaging Using the Entire Cantilever Beam

As mentioned previously the reason for the slow imaging speed in AFMs is that the

cantilever probe needs to be moved sequentially over the sample surface. In the last sec-

tion, it was described how the scan trajectories can be made coarse and that the missing

information can be estimated by using compressive sensing. This section provides an

alternate method to reduce the imaging time. The principle concept suggested here is

that rather than have one tip at the cantilever end and generate sample height mea-

surements point by point, the cantilever can have a large number of tips along its entire

length. This will enable simultaneous measurements across the entire beam length. The

deflection profile along the entire beam length is then used to estimate the sample profile

underneath the beam. The beam is then moved to the next line above the sample, the

same process is repeated until the complete sample image is generated. The fact that a

large number of parallel measurements can be generated along an entire line results in a

substantial reduction in imaging time. This method is referred to as Full Beam Atomic

Force Microscopy and is explained next.

The fundamental principle of the Full Beam atomic force microscopy as illustrated in

Figure 5.12 is that the beam consists of NT tips distributed uniformly across its length.

Contrary to conventional atomic force microscopy where the beam is fixed at one end

and free at the other, in this case the beam is pinned at both ends to a fixed support.
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The sample is placed on a piezo-actuator at a distance Zc below the pinned ends of the

beam. The piezo-actuator enables both lateral and vertical movement of the sample.

𝒙𝟏 𝒙𝟐 𝒙𝒏 

𝑦(𝑥𝑖) 

𝑑(𝑥𝑖) 

𝑇(𝑥𝑖) 

𝒁𝒄 

𝒙 

𝒚 

𝒙𝒊 

Figure 5.12: Full Beam Atomic Force Microscope setup.

The top end of the beam above each tip is illuminated with NS laser spots that enables

measurement of the deflection angle of the beam �i = d�
dx

∣∣
x=xi

for the itℎ tip. For the

purpose of the current contribution NT = NS = n. The vector of deflection angles

�⃗ = [�1, �2, . . . �n]T is used to evaluate the vector of forces and moments acting on the

beam at the location of each tip F⃗ = [f1, �1, f2, �2, . . . fn, �n]T . Here fi is the tip

sample interaction force acting on the itℎ tip and �i is the moment acting on the beam

at the location of each tip.

Once the force vector is known the sample topography can be estimated by inverting

the tip sample interaction relation. This places two constraints on the full beam AFM

set up given below,

ao ≤ ∣d(xi)∣ ≤ dmax ∀ 1 ≤ i ≤ n (5.13)

∣T (xi)∣ ≤ dmax ∀ 1 ≤ i ≤ n (5.14)
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Here ao is the inter atomic separation for the sample material. It is the closest distance

the tip can be from the sample surface without penetrating it. dmax is the maximum

separation between the tip and sample after which the effect of the tip sample interaction

force is too small to be measured. The motivation behind placing this constraint is to

ensure that the tip sample interaction force is explained solely by the Van der Waals

interaction force between tip and sample. The second constraint is a simple extension

of the first one. If the sample topography has a variation greater than dmax then either

some regions of the sample surface will be too far to exert any measurable force on the

beam, or the tips will penetrate the sample. In both cases topography reconstruction

will become impossible. The complete tip sample interaction force is explained by the

following relation,

fi =

{
−HR

6d2i
if di > ao

−HR
6a2o

+ 4
3E
∗√R(ao − di)

3
2 if di ≤ ao.

(5.15)

where di = d(xi) H is the Hammaker constant, R is the tip radius, E∗ is the effective

Young’s Modulus. Figure 5.13 illustrates one possible tip sample interaction force curve

for E∗ = 1.3 GPa, R = 10 nm, ao = 0.16 nm and H = 7.1× 10−20 J.

As is clear from Equation 5.15 if the tip sample distance is greater than ao the interaction

force is explained by a single term which is the Van der Waals force. If the distance

is less than ao i.e, the tip starts penetrating the surface and the interaction force is

explained by an additional term originating from the Derjaguin Muller Toporov (DMT)

mode. In this case dmax is determined by using the fact that current AFMs can measure

a minimum force Fmin of 1 pico Newtons and then inverting the Van der Waals relation

i.e, dmax =
√

−HR
6×Fmin

. Here the negative sign in the root is not a problem since the Van

der Waals force always cause the tip to be attracted towards the surface thus giving

Fmin a negative sign as well. For the current values of H and R, dmax = 15.38 nm.

Finally the complete topography estimation process can be given as a mapping Φ,

Φ : map �i → (fi, yi) ∀ 1 ≤ i ≤ n (5.16)

where yi = y(xi) is the beam deflection at x = xi. Once the tip forces and beam

deflections are known, the topography can be determined by the using the following

relation obtained from Figure 5.12,

Ti = ∣yi − Zc∣ − ∣di∣ ∀ 1 ≤ i ≤ n (5.17)
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Figure 5.13: Tip sample interaction force.

where Ti = T (xi) is the topography at x = xi. Using the constraints which ensure

that the tip sample interaction force is explained only by the Van der Waals force, this

relation becomes,

Ti = ∣yi − Zc∣ −

√
−HR
6× fi

∀ 1 ≤ i ≤ n (5.18)

The mapping Φ can be obtained by using the Finite Element Model (FEM) for the

beam. This is done by using the FEM matrices for the beam namely Mass, Damping

and Stiffness matrices M ,C and K respectively. A detailed description of how the FEM

modelling of a cantilever beam is performed is provided in Appendix B. The complete

matrix equation for the systems can then be written as,

M
¨⃗
X + C

˙⃗
X +KX⃗ = F⃗ (5.19)

where X⃗ = [y1, �1, y2, �2, . . . yn+1, �n+1]T , F⃗ = [f1, �1, f2, �2, . . . fn+1, �n+1]T

and n is the number of elements in the finite element model. The mass, damping

and stiffness matrices can be constructed by using the corresponding mass, stiffness
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and damping matrices for each element namely Mi, Ci and Ki and matrix assembly

procedure. The element matrices used in this contribution are obtained from Meirovitch

(2001) and are given below,

Mi =
mL

420n

⎡⎢⎢⎢⎢⎣
156 22 54 −13

22 4 13 −3

54 13 156 −22

−13 −3 −22 4

⎤⎥⎥⎥⎥⎦ i = 1, 2, . . . , n (5.20)

Ki =
EIn3

L3

⎡⎢⎢⎢⎢⎣
12 6 −12 6

6 4 −6 2

−12 −6 12 −6

6 2 −6 4

⎤⎥⎥⎥⎥⎦ i = 1, 2, . . . , n (5.21)

Here, m is the mass per unit length for the beam, E is the Elasticity Modulus, I is the

moment of inertia through the transverse axis and L is the beam length. The element

matrices are assembled using the assembly procedure mention in Meirovitch (2001) to

obtain M and K. Once these are obtained, the stiffness matrix C is determined as a

linear combination of M and K using Rayleigh Damping.

Assuming that
¨⃗
X and

˙⃗
X are negligible we get,

K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

�1

y2

�2

...

yn+1

�n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

�1

f2

�2

...

fn+1

�n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.22)

This assumption is reasonable if the beam is allowed to settle to a steady state before

the topography estimation can begin.

The purpose of the mapping Φ is to use the known values of the measured deflection

angles �1 �2 . . . �n+1 and determine f1 f2 . . . fn+1 and x1 x2 . . . xn+1. It is already

known that while the tip sample interaction exerts forces on the tip but no moments,

i.e �1 = �2 ⋅ ⋅ ⋅ = �n+1 = 0.

The system of equations 5.22 is rearranged using a permutation matrix P as follows,



116 Chapter 5 Faster AFM Imaging

P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

�1

y2

�2

...

...

yn+1

�n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yn+1

�1

�2

...

�n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ⃗̄X (5.23)

and using the same permutation matrix,

P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

�1

f2

�2

...

...

fn+1

�n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

...

fn+1

�1

�2

...

�n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ⃗̄F (5.24)

This permutation matrix is then used to determine the rearranged system of equations

as follows,

KP−1PX⃗ = P−1PF⃗ (5.25)

PKP−1 ⃗̄X = ⃗̄F (5.26)

K̄ ⃗̄X = ⃗̄F (5.27)

The matrices K̄, ⃗̄X and ⃗̄F are partitioned as follows,

[
Kyy Ky�

K�y K��

][
y⃗

�⃗

]
=

[
f⃗

0⃗

]
(5.28)

Where y⃗ = [y1, y2, . . . yn+1]T and �⃗ = [�1, �2, . . . �n+1]T and f⃗ = [f1, f2, . . . fn+1]T .

Finally, y⃗ can be determined as follows,

y⃗ = −K−1
�y K���⃗ (5.29)
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Once y⃗ is known, f⃗ is determined using Equation 5.28. To conclude the complete image

generation using the full beam approach is accomplished in three steps given below,

Step 1 : In the first scan line the vector of deflection angles �⃗ = [�1 �2 . . . �n]T is

recorded.

Step 2 : Using the mapping Φ mentioned in equation 5.16, the deflection vector y⃗ =

[y1 y2 . . . yn+1]T and the tip force vector f⃗ = [f1, f2, . . . fn+1]T are generated.

Step 3 : The two vectors y⃗, f⃗ and the current value of the control signal Zc are used to

estimate the topography Ti beneath each tip using the relation 5.18.

Step 4 : The beam is moved over the next scan line and steps 1-3 are repeated until the

topography of the entire sample has been estimated.

5.2.1 Full Beam AFM Control Loop

Contrary to the conventional AFM control loop where the AFM plant where both the

control and error signals are time dependent scalars, the full beam AFM requires regu-

lating the sample height Zc as illustrated in Figure 5.12 to keep the vector of deflection

angles �⃗ at a set point vector �⃗sp. The error signal is therefore a vector given as,

e⃗ = �⃗sp − �⃗ (5.30)

The set point vector �sp is selected so that all points along the beam length stay in the

desired region between ao and dmax, i.e,

ao ≤ yi ≤ dmax ∀ 1 ≤ i ≤ n (5.31)

This done by setting Zc to an arbitrarily chosen value between ao and dmax (in this

contribution Zc = −10 nm), letting the surface be flat simulating the beam motion

using Equation 5.19. The beam is assumed to be at rest initially and moves under the

influence of the tip sample interaction force. Eventually, the beam attains a steady state

so that ¨⃗y = ˙⃗y =
¨⃗
� =

˙⃗
� = 0. The value of �⃗ is used as the set point �⃗sp.

The fact that the error signal is a vector gives rise to two problems. Firstly, it needs to

be determined how far the vector �⃗ is from the set point vector �⃗sp. Secondly, given a

measure of how far �⃗ is from �⃗sp, it must also be determined if the sample needs to be

moved towards the beam or away from it.

While the problem of the distance metric can be solved by using the L2 norm of the

error signal vector as done in this contribution, the second problem requires utilization
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of the beam geometry. This is illustrated in Figure 5.14. The figure shows the beam

deflections yi, deflection angles �i and the corresponding errors ei when the beam is too

close to a flat surface, when it is at a distance where �⃗ = �⃗sp and when it is too far from

the surface. For the purpose of this illustration, the figure was generated by setting Zc =

8,10 and 12 nm respectively.

0 50 100 150 200 250

−6

−4

−2

0
x 10

−3

x [µm]

y 
[n

m
]

0 50 100 150 200 250

−2

−1

0

1

2

x 10
−13

x [µm]

θ

0 50 100 150 200 250

−5

0

5

x 10
−14

x [µm]

e

Figure 5.14: Determination of the error metric for three beam positions, near(..),
at setpoint (–) and far(- -).

The top plot in Figure 5.14 illustrates the beam deflections for the three cases. As is

clear from the plot, the beam shows greater deflection when closer to the surface because

the magnitude of the tip sample interaction force is greater. Likewise the beam exhibits

lesser deflection when farther away from the surface. The middle plot illustrates the

deflection angles. For the first half of the beam before the middle point the deflection

angles are all negative since the beam has a negative slope in this region. Likewise

the slopes are positive for the second half of the beam. The third plot illustrates the

deflection angle error. It is can be seen clearly that if the beam is too close to the surface

the error values are positive for the first half of the beam and then negative and vice

versa. This metric is given as follows,
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E = sgn

⎛⎝0.5(n+1)∑
i=1

ei −
n+1∑

i=0.5(n+1)+1

ei

⎞⎠ ∣e⃗∣22 (5.32)

The first term involving the signum function indicates if the surface needs to be moved

towards the beam or away from it. The second term involving the L2 norm is simply used

to measure the size of the error. Finally, the controller attempts to minimize E(t) by

regulating the sample height Zc. This contribution reports the results of using a simple

Proportional controller along with a first order low pass filter to minimize oscillations

in Zc. These results are reported in the next section.

5.2.2 Simulation Results

This section presents simulation results for the case when the sample is moved laterally

at a uniform velocity so that the topography of the entire surface may be estimated. The

system is simulated by using the finite element model given in Equation 5.19. This is

done by converting the M,C and K matrices into the corresponding state space matrices

for the system.

The system is then simulated with a sample time of Ts = 0.2�s. The finite element

model consists of NE = NT = NS = n = 100 finite elements. Table I illustrates all the

remaining simulation parameters for the sample and the beam.

Since there are a 100 tips on a beam with a length of 250� m, the distance between tip

base centres is 2.5� m. While it would be a challenge to fabricate 100 tips in the length

mentioned, the introduction of high aspect ratio tips for imaging narrow trenches in a

sample surface provide a realistic possibility for this end. An example is provided in

the form of the AR5-NCHR probe manufactured by Nano World Imaging Technologies.

The tip in this case has a height of 2 � with an aspect ratio of 7:1.

The initial conditions for the beam are set to zero and Zc is set to -15nm. For the

purpose of this contribution fx = 0 and fy = 10 Hz. The sample surface in this case is a

rectangular grid with pitch of 100�m and a height of 5 nm. The image covers an area of

250× 500�m. Given the scan rate fy, 0.1 seconds are required for recording the image.

If conventional AFM imaging is used with 512 trace retrace line pairs and a scan rate

fx = 10 Hz, 51.2 seconds would be needed to complete the scan. The full beam scanning

in this case is therefore 512 times faster. It is clear that while the speed-up factor may

vary for different values of fx and for a different number of trace retrace line pairs, the

full beam method will always be faster than conventional AFM imaging. This is because

in conventional AFM a single tip must be moved sequentially over the sample where as

in this method a large number of tips are moved over the surface in parallel.
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Table 5.2: Simulation Parameters for Full Beam Scan Simulation

Sample Parameters

Pitch 100 �m
Height 5 nm
Hammaker Constant (H) 7.1 ×10−20 J
Inter-atomic Separation (ao) 0.16 nm
Young’s Modulus (Es) 1.2 GPa
Poisson’s Ratio (�s) 0.3

Beam Parameters

Tip Radius (R) 20 nm
Young’s Modulus (Eb) 130 GPa
Poisson’s Ratio (�b) 0.3
Beam Length (L) 250 �m
Beam Width (w) 35 �m
Beam Thickness (t) 3 �m
Number of Tips (NT ) 100
Number of Spots (NS) 100

Simulation Parameters

Sample Time (Ts) 0.2 �s
Number of Beam Elements (NE) 100

Figure 5.15 illustrates the results of the topography reconstruction. As can be seen

that the sample surface is reasonably estimated, although there are distortions near the

edges. This is due to the fact that since the sample topography is constantly changing,

the assumption that
¨⃗
X and

˙⃗
X are negligible is no longer true. This causes inaccuracies

in estimation of the sample surface. Due to this reason, the topography estimates either

exceed dmax or are lesser than ao at some points. Such estimates are discarded from the

final result. Despite these errors an acceptable reconstruction is still obtained.The error

and controller signals are illustrated in Figure 5.16. The error signal oscillates initially

(as shown in inset) and then converges to zero.

5.2.3 Conclusions

This contribution presents a possible solution for reducing imaging times in atomic

force microscopes. The fundamental concept is to use the entire length of the cantilever

beam rather than only the free end. The advantage is that samples can be scanned

faster. There are also implementation challenges that need to be investigated to enable

realization of this concept. The first one is the fabrication of a large number of tips

on the entire beam length. This would require that each tip have a high aspect ratio

and a base length less than a micro meter, as is the case with AFM probe tips from

nanoScience Instruments. The current simulation assumes the fabrication of 100 tips

on a 250 �m beam. The second implementation issue requiring investigation is the
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Figure 5.15: Topography reconstruction for two dimensional scan.

placement of a large number of laser spots on the beam. One possible solution is to use

self sensing piezo resistive mechanisms. Instead of using a single piezo resistive element,

an array could be fabricated on the entire beam length to eliminate the requirement for

optical detection.

As a consequence of these limitations, the pitch of the sample imaged in this simulation

is chosen be be large i.e, 250 �m. This means that only a limited amount of topography

variation can be uniquely determined using the full beam method. If the pitch of the

sample is too small, it is no longer possible to map the topography to the beam deflection

profile in a one to one manner.

An additional implementation difficulty is the requirement of parallel sampling of large

number of channels at a very high sampling rate in excess of 1×106 samples per second.

This clearly exceeds the capabilities of a large number of low cost off the shelf data

acquisition devices and would necessitate the development of analogue circuitry which

can obtain the scalar error signal E from the error vector e⃗.
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Figure 5.16: Control signal Zc (top). Error signal E (bottom).

Lastly, the constraints assumed for maximum sample topography variation may appear

restrictive, however a number of samples of practical interest exhibit topography varia-

tions that fall well within this range. One example is the viewing of biological samples

for instance DNA at a high frame rate. This is important since this can lead to a better

understanding of biological processes at a molecular scale. Earlier Ando et.al observed

the motion of a Myosin V protein molecule using a high speed AFM, which improved

the understanding of such motion mechanisms. In this context the development of a

mechanism that uses the complete length of the cantilever beam for interacting with the

surface will lead to even faster imaging and a better study of biological samples.



Chapter 6

Conclusions and Further Work

The work done so far in this project has resulted in the identification of three promising

directions of research. These are application of the EMMSAC control algorithm for au-

tomated AFM controller generation, usage of compressive sensing and full beam atomic

force microscopy for faster imaging. Given below are the contributions in each of these

directions and possible future work.

6.1 Contributions of this Research

This research addresses the two key problems associated with AFMs namely usage dif-

ficulty due to the necessity of manual tuning and long imaging times. This has led to

the following contributions,

∙ It is demonstrated in this research through simulated and experimental results, that the

EMMSAC algorithm can generate the image without any need for manual tuning. This

is verified though experimental results. In these results a benchmark calibration grating

(TGZ02 from �masch) is imaged using the automatically tuned controller and manual

tuning. As illustrated in the experimental results, both methods generate comparable

images.

The ultimate benefit of the entire automated tuning approach is that it can take the

tuning burden off the human user. Clearly the image quality can be improved, however

the basic objective of making AFMs more accessible has been demonstrated in this

instance.

∙ Two novel methods namely Compressive Sensing and Full Beam Atomic Force Mi-

croscopy are investigated for reduction in AFM imaging times. The feasibility of the

former is demonstrated though simulation and experimental results. It is shown that

the compressive sensing method using a spiral trajectory is more than ten times faster,

and the image is better than the one reconstructed using simple interpolation.
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The speed up advantage offered by the full beam method is demonstrated through

simulation results. It is observed that using this method an entire line can be imaged at

once, which otherwise must be imaged point by point sequentially. Due to this reason a

speed up factor in excess of five hundred is observed. While such a high speed-up might

not be obtained in a physical implementation, it is reasonable to expect that imaging

the sample surface using multiple tips in parallel will be much faster than sequentially

imaging it using a single tip.

6.2 EMMSAC based Automatic Controller Generation

The fact that EMMSAC provides a promising solution for AFM control is evident from

the simulation and experimental results reported in this dissertation. The algorithm

however needs to be substantially improved to reduce the computation time and improve

the plant controller set to include a greater number of possible AFM experimental setups.

In this context the following enhancements can be made,

Reduction in Computation Time: Currently it is observed that given the true AFM

plant input output data, a substantial amount of time is needed to evaluate the residual

for a single plant. One possibility of reducing the computation time is to use a Dynamic

Plant Set (Buchstaller (2010)). A dynamic plant set would be one that starts from

default group of plants and then gradually discards plants which have a higher residual.

Furthermore, new plant models close to those with the lower residuals can be introduced

to find plants with even lower residuals. It is expected, that while the computation time

may be high initially, it will reduced as the EMMSAC algorithm progresses.

Another advantage of a dynamic plant set is that, it offers the possibility of including

a greater number of plants corresponding to a greater number of AFM experimental

setups. For instance, the plant set could contain plant models corresponding to all

possible combinations of different cantilevers, samples, mediums and operating modes.

The plant set could start from a coarse representation of all these possibilities and then

gradually discard the irrelevant plants with high residual and generate more plants in

the vicinity of plants with lower residuals.

The ultimate advantage offered by such a mechanism is that the auto tuning mechanism

can be used with a larger number of real experimental set ups. As the irrelevant plants

are discarded, the computation time would reduce and consecutive lines can be scanned

faster.

Another possible method for reducing the computation time is to reduce the plant set so

that only the plants closer to the cluster centre are used. While useful, this mechanism

will need an appropriate metric that can measure the distance between the plants.
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Robust Control: The problem of the high computation time can also be reduced by

using the principle of robust control theory. This means that it might be possible to

replace an exhaustive plant set with a large number of plants, with a smaller set of

robust plants. Each plant could have a corresponding robust controller of higher order.

While the current implementation has been done entirely for PI controllers, there is no

restriction in the EMMSAC framework that prohibits the inclusion of more sophisticated

controllers.

In addition, as mentioned previously the concept of automated controller synthesis is

also needed for image generation methods which require non-raster trajectories.

6.3 Compressive AFM Imaging

The preliminary simulation and experimental results provided previously clearly demon-

strate that compressive sensing has the potential for reduction in AFM imaging times.

At this point the following directions of research need to be perused,

Determination of a Better Transform: The entire compressive sensing method relies

upon the sparseness of the signal that needs to be sampled. While the current research

has focused on the DCT transform to obtain a sparse representation of an image, it may

not necessarily be the best one. For instance while the DCT is sensitive to the frequency

content in a signal, it might not be able to detect local artefacts. Therefore it might be

better to explore wavelet transforms which can include information about local artefacts

and might provide a better alternate.

Video Generation: Another aspect that needs to be looked into is the usage of compres-

sive sensing for generating videos of physical processes in real time. One area that might

possibly benefit from this research is the observation of crystal growth in real time (The

Sheffield SPM Group). While compressive sensing has the potential to reduce scan times

on any scanning probe microscope, the actual reduction in scan times is dependent on

the limitations of the instruments piezo scanners. This research is motivated by the fact

that crystal growth process have a time scale in minutes which makes them suitable for

viewing using the Nanonics AFMs. Furthermore, improvements in frame rates can help

enhance the understanding of crystal growth processes.

Lastly, compressive AFM imaging still relies on a properly tuned controller. Therefore

it could be beneficial to investigate integration of automated tuning and compressive

imaging.
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6.4 Full Beam Atomic Force Microscopy

The concept of full beam atomic force microscopy suggests that instead of using a single

point on an cantilever for measurement, the entire beam be used for the purpose. This

is motivated by the possibility that a unique force profile acting along the beam length

might lead to a unique deflection profile. It needs to be investigated if a one to one

mapping between force profiles and image profiles exists, and if so how sensitive is the

deflection profile to the variation in sample topography. This idea is similar to the

one originally proposed by Kac (1966) in his contribution Can you hear the shape of

a drum?. It is clearly interesting to investigate if the knowledge of the a cantilever’s

geometry, material and the deflection profile can reveal the sample topography beneath

it. If successful, this method can provide a large speed advantage over the sequential

scanning employed currently.

The main challenge that needs to be overcome is the large number of laser spots on

the beam. This could be solved by scanning a single laser spot along the length of the

beam. Alternatively it might be feasible to investigate the use of active cantilevers.

These cantilevers are coated with a piezo resistive material which eliminates the need

for an optical detection mechanism. Another limitation is the large number of signals

that need to be monitored for generating an image. This will increase the cost of the

data acquisition hardware needed for image generation. However the potential speed up

provided by the method justifies research in this direction.

6.5 “There is plenty of room at the bottom”

The title of this section was originally the title of a talk given by Richard Feynman

on 29 December 1959, during the annual meeting of the American Physical Society

Feynman (1960). While the talk was given more than fifty years ago, the vision is as

applicable today as it was when it was first delivered. This talk explains the potential

for imaging and manipulation of nano structures. It also alludes to the possibility of

instruments that can image and manipulate material at the nano scale. Five decades

later, nano science is an established and expanding field. The instruments predicted in

the lecture, now exist and have even been referred to as the “eyes and fingers required

for nano structure manipulation and measurement” National Science and Technology

Council (NSTC) (2000).

The motivation behind reproducing the above mentioned statements is to elucidate the

fact that the impact of the automated controller synthesis research is by no means limited

to a single AFM mode of operation. The same can be extended to other modes that

include for instance Multi-frequency and Frequency Modulated AFM. As described in a

recent contribution in Nature (Garcia and Herruzo (2012)), in the case of multi-frequency
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AFM the cantilever is excited with two sinusoidal frequencies. As mentioned in the same

contribution, this enables the imaging of sub-surface structures in a sample for instance

in a biological cell. In the second method, namely the frequency modulated AFM the

objective is to regulate both the amplitude and frequency of cantilever vibration. This

methods has been used for generating atomic resolution images (Gross et al. (2009)).

As highlighted by Kilpatrick et al. (2009), gain tuning remains a hurdle in this mode as

well. To alleviate the same problem, the authors suggest a gain determination method

for optimal performance.

Furthermore it must be noted that Atomic force microscopy is not just an imaging

method, it is instead a generic technique that has applications extending well beyond

the range of the traditional imaging applications. As an example the concept of AFM

imaging has now been extended to observe magnetic dipoles using a method referred

to as Magnetic Force Microscopy. This method images the magnetic field above a sur-

face using a specially magnetized tip. This has found use in high density data storage

applications. One application that makes use of this concept is the Centipede project

developed by IBM. This project investigates the use of an array of cantilevers for gener-

ating data storage capabilities up to 1Tb/in2. In addition AFM imaging is not restricted

to topography or magnetic dipole measurements but number of other surface properties

including surface potential and friction. The study of these has led to the development

of Kelvin Force Microscopy and Torsional Force Microscopy. The first one studies the

surface potential by charging the cantilever tip, whereas the second one observes the

cantilever’s torsional deflection to determine the surface friction properties.

To conclude therefore, the control tools and the speed optimization methods being de-

veloped in this research are clearly enabling technologies that will facilitate the evolution

and advancement of this branch of science for a substantial period of time in the future.





Appendix A

The Dispersion Relationship

A.1 Dispersion Relationship

∣∣∣∣∣
[

sin�i + sinh�i cos�i + cosh�i

(cos�i + cosh�i)− �m̄tip(sin�i − sinh�i) − sin�i + sinh�i − �im̄tip(cos�i − cosh�i)

]∣∣∣∣∣ = 0

(A.1)

Let ,

c = cos�i + cosh�i (A.2)

c̄ = cos�− cosh�i

s = sin�i + sinh�i

s̄ = sin�i − sinh�i

The matrix thus becomes,

∣∣∣∣∣
[

s c

c− �m̄tips̄ −s̄− �m̄tipc̄

]∣∣∣∣∣ = 0 (A.3)

The determinant is,

= −s(s̄+ �m̄tipc̄)− c(c− �m̄tipc̄) (A.4)

= −(ss̄+ c2) + �m̄tip(cs̄− sc̄)

Now,
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ss̄ = sin2�− sinℎ2� (A.5)

c2 = cos2�+ cosℎ2�+ 2cos�cosℎ�

ss̄+ c2 = sin2�+ cos2�+ cosℎ2�− sinℎ2�+ 2cos�cosℎ�

∵ cosℎ2�− sinℎ2� = 1

ss̄+ c2 = 1 + 1 + 2cos�cosℎ�

ss̄+ c2 = 2 + 2cos�cosℎ�

(A.6)

Similarly,

sc̄ = (sin�+ sinh�)(cos�− cosh�) (A.7)

sc̄ = sin� cos�− sin� cosh�+ sinh� cos�− sinh� cosh�

cs̄ = (cos�+ cosh�)(sin�− sinh�)

cs̄ = cos� sin�− cos� sinh�+ cosh� sin�− cosh� sinh�

cs̄− sc̄ = 2 sin� cosh�− 2 cos� sinh�

Substituting these into A.4,

− (ss̄+ c2) + �m̄tip(cs̄− sc̄) = 0 (A.8)

−2(1 + cos� cosh�) + 2m̄tip�(sin� cosh�− cos� sinh�) = 0

1 + cos� cosh�+ m̄tip�(cos� sinh�− sin� cosh�) = 0

A.2 Equivalent Stiffness ki

The integral
∫ Lc

0 �̄i(x)�̄′′′′j (x)dx can be solved using integration by parts by using the

identity,

∫
udv = uv −

∫
vdu (A.9)

and letting,

v = �̄′′′j =⇒ dv = �̄′′′′j dx (A.10)

u = �̄i =⇒ du = �̄′idx
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we get,

∫ Lc

0
�̄i(x)�̄′′′′j (x)dx = �̄i(x)�̄′′′j (x)−

∫ Lc

0
�̄′′′j (x)�̄′idx (A.11)

Integrating the second term on the right by parts again and letting,

v = �̄′′j =⇒ dv = �̄′′′j dx (A.12)

u = �̄′i =⇒ du = �̄′′i dx

we get

∫ Lc

0
�̄′i(x)�̄′′′j (x)dx = �̄′i(x)�̄′′j (x)−

∫ Lc

0
�̄′′i (x)�̄′′j (x)dx (A.13)

Finally ,

∫ Lc

0
�̄i(x)�̄′′′′j (x)dx = �̄i(x)�̄′′′j (x)− �̄′i(x)�̄′′j (x) +

∫ Lc

0
�̄′′i (x)�̄′′j (x)dx (A.14)

Substituting the boundary conditions we get,

�̄′i(x)�̄′′j (x)
∣∣Lc

0
= �̄′i(Lc)�̄

′′
j (Lc)− �̄′i(0)�̄′′j (0) = 0 (A.15)

�̄i(x)�̄′′′j (x) = �̄i(Lc)�̄
′′′
j (Lc)− �̄i(0)�̄′′′j (0) = −!2

jmtip

EI

Substituting these into A.14 we get,

∫ Lc

0
�̄i(x)�̄′′′′j (x)dx = −

!2
jmtip

EI
+

∫ Lc

0
�̄′′i (x)�̄′′j (x)dx (A.16)





Appendix B

The Finite Element Method

B.1 Approximation of Beam Deflection using a Cubic Poly-

nomial

The Finite Element Method assumes that the beam is split into n elements. Figure B.1

illustrates the jtℎ beam element of length ℎ. Here for the purpose of simplifying the

derivations in the later sections the original global coordinate x which extends along the

length of the beam is replaced with the local coordinate � (Meirovitch (2001)) . The

transformation between x and � is given below,

� =
(jℎ− x)

ℎ
(B.1)

In addition,

d

dx
=

d

d�

d�

x
= −1

ℎ

d

d�
, dx = −ℎd� (B.2)

As a result x = (j − 1)ℎ transforms into � = 1 and x = jℎ transforms into � = 0.

Furthermore, Yj−1 and �j−1 refer to the beam deflection and rotation respectively at

the left end of the beam element, and Yj , �j refer to the same quantities at the other

end. The rotations here are defined as the derivative of the displacement with respect

to x. Owing to the coordinate transformation mentioned above rotations at any node

for instance the jtℎ node can now be written as ,

�j =
dY (x)

dx
∣x=jℎ = −1

ℎ

dY (�)

d�
∣�=0 (B.3)

The complete vector of nodal displacements aj can be given as,
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aj =

⎡⎢⎢⎢⎢⎣
Yj−1

ℎ�j−1

Yj

ℎ�j

⎤⎥⎥⎥⎥⎦ (B.4)

Yj Y(ξ) Yj-1 

(j-1)h x jh 

𝜃j 

𝜃j-1 

Figure B.1: Finite element for a beam in bending showing the nodal displace-
ments (Meirovitch (2001)).

Approximating the beam deflection Y(�) as a cubic polynomial we get,

Y (�) = c1 + c2� + c3�
2 + c4�

3 (B.5)

At the right end �=0

Y (0) = c1 (B.6)

dY (�)

d�
= c2 + 2c3� + 3c4�

2 =⇒ −ℎ�j = c2 (B.7)

At the left end �=1

Yj−1 = c1 + c2 + c3 + c4 (B.8)

− ℎ�j = c2 + 2c3 + 3c4 (B.9)
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Solving for c1,c2,c3,c4 and substituting in B.5

Y (�) = (3�2−2�3)Yj−1 +(�2−�3)ℎ�j−1 +(1−3�2 +2�3)Yj+(−�+2�2−(�3)ℎ�j (B.10)

Y (�) = �1Yj−1 + �2ℎ�j−1 + �3Yj + �4ℎ�j (B.11)

Where �1,�2,�3,�4 are known as Hermite Cubics. Writing the hermite cubic functions

as a vector �T , the beam displacement Y (�) can be written as,

Y (�) = �Taj (B.12)

B.2 Potential Energy of a Beam Element

Next the potential energy of the beam element is derived. The total potential energy of

all the beam elements can be given as,

PE =
1

2

n∑
j=1

∫ jℎ

(j−1)ℎ
EI(x)

[
d2Y (x)

dx2

]2

dx (B.13)

Using (B.1) and (B.2) we get,

d2Y (x)

dx2
=

1

ℎ2

d2Y (�)

d�2
(B.14)

Similarly the product EI(x) can be written as,

EI(x) = EI[ℎ(j − �)] = EIj(�) (B.15)

The integral can then be written using (B.2) as,

∫ jℎ

(j−1)ℎ
EI(x)

[
d2Y (x)

dx2

]2

dx =

∫ 0

1
EIj(�)

(
1

ℎ2

)2 [d2Y (�)

d�2

]2

(−ℎ) d� (B.16)

=
1

ℎ3

∫ 1

0
EIj(�)aTj

d2�(�)

d�2

d2�T (�)

d�2
aj d�

= aTj Kjaj , j = 1, 2, . . . , n (B.17)
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Now substituting the hermite cubics developed previously Kj can be written as,

Kj =
1

ℎ3

∫ 1

0
EIj(�)

d2�(�)

d�2

d2�T (�)

d�2
d� (B.18)

=
4

ℎ3

∫ 1

0
EIj(�)

⎡⎢⎢⎢⎢⎣
3(1− 2�)

1− 3�

−3(1− 2�)

2− 3�

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

3(1− 2�)

1− 3�

−3(1− 2�)

2− 3�

⎤⎥⎥⎥⎥⎦
T

d� j = 1, 2, . . . , n

If E and Ij are constant over all the elements the integration results in,

Kj =
EIjn

3

L3

⎡⎢⎢⎢⎢⎣
12 6 −12 6

6 4 −6 2

−12 −6 12 −6

6 2 −6 4

⎤⎥⎥⎥⎥⎦ j = 1, 2, . . . , n (B.19)

B.3 Kinetic Energy of a Beam Element

The element mass matrices may be derived using the kinetic energy of the system which

can be given as,

KE =
1

2

n∑
j=1

∫ jℎ

(j−1)ℎ
m(x)Y 2(x)dx (B.20)

=
1

2

n∑
j=1

∫ 0

1
mj(�)Y 2(�)(−ℎ)d�

=
1

2

n∑
j=1

ℎ

∫ 1

0
aTj �(�)�T (�)ajd�

=
1

2

n∑
j=1

aTj Mjaj (B.21)

Substituting the hermite cubics we get,

Mj = ℎ

∫ 1

0
mj(�)

⎡⎢⎢⎢⎢⎣
3(1− 2�)

1− 3�

−3(1− 2�)

2− 3�

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

3(1− 2�)

1− 3�

−3(1− 2�)

2− 3�

⎤⎥⎥⎥⎥⎦
T

d� j = 1, 2, . . . , n (B.22)
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For constant mj , integration results in the following mass matrix,

Mj =
mjL

420n

⎡⎢⎢⎢⎢⎣
156 22 54 −13

22 4 13 −3

54 13 156 −22

−13 −3 −22 4

⎤⎥⎥⎥⎥⎦ j = 1, 2, . . . , n (B.23)

B.4 The Nodal Force Vector

The last step of the final element modelling procedure is to replace the continuous force

f(x, t) acting on the beam element and replace it with an equivalent vector of forces and

moments acting only on the element nodes. The method of doing this is to determine

the work done by the external force f(x, t) acting on the element under the assumption

that the displacement y(x, t) is small. The displacement is then written in terms of the

hermite cubics. This leads to an equivalent force vector that acts on the element nodes.

This is illustrated as follows,

�W =

∫ jℎ

(j−1)ℎ
f(x, t)�y(x, t)dx (B.24)

= ℎ

[∫ 1

0
fj(�, t)�

T (�)d�

]
�aj(t)

= F Tj (t)�aj(t) (B.25)

where,

Fj(t) = ℎ

∫ 1

0
fj(�, t)�(�)d� = ℎ

∫ 1

0
fj(�, t)

⎡⎢⎢⎢⎢⎣
3�2 − �3

�2 − �3

1− 3�2 + 2�3

−� + 2�2 − �3

⎤⎥⎥⎥⎥⎦ d� j = 1, 2, . . . , n (B.26)

Fj(t) is the jtℎ nodal force vector. The effect of the discretization process thus is to

replace the distributed force f(x, t) by the concentrated forces and moments acting

on the nodes. The global force vector can be obtained by adding the bottom two

components of the jtℎ node to the top two components of the j+ 1 node. Reddy (2006)

refers to this vector as the “statically equivalent” forces and moments at the nodes.
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B.5 Equations of Motion for a Beam Element

The equations describing the dynamics of the beam element can now be obtained by

inserting the kinetic, potential energy and the nodal force vector into Lagrange equations

of motion Meirovitch (2001). The final result can be written as,

Mä(t) +Ka(t) = F (t) (B.27)

B.6 Global Matrix Assembly and the Finite Element Model

The solution obtained for the case of single beam element can be extended to n elements

by constructing the global mass and stiffness matrices and the global nodal force vec-

tor. These global matrices can be constructed by observing that the overlapping nodes

between two adjacent beam elements will have the same displacement and rotation. Con-

sider for instance the element i− 1 and it’s adjacent element i. The displacements and

rotations of right node of element i− 1 and the left node of element i will be the same.

Therefore once the equations for the two elements need to be combined, the variables

corresponding to the displacements and rotations for the overlapping nodes need to be

replaced by a single pair of displacement and rotation variables. After this substitution

two additional steps need to be carried out. First, the equation terms corresponding to

the displacement and rotation of the overlapping node need to be added. Secondly, the

forces acting on the overlapping nodes must be added.

These substitutions can be achieved by addition of the bottom right 2 × 2 elements of

the elements of the stiffness and mass matrices for the i − 1 element with the top left

2× 2 elements of the itℎ element. This procedure is illustrated illustrated in the Figure

B.2.
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Figure B.2: Global mass and stiffness matrices (Meirovitch (2001)).



Appendix B The Finite Element Method 139

The global nodal force vector can also be constructed in a similar manner by adding the

bottom two elements of the i− 1 nodal force vector with the top two elements of the itℎ

nodal force vector.

B.7 Application of Boundary Conditions

Finally the four boundary conditions need to be applied to the finite element model. The

first two boundary conditions can be applied by setting the displacement and rotation

of the first node to zero. Let these degrees of freedom (DOF) be referred to as the

constrained DOFs Uc, and the DOFs for the remaining free nodes be Uf .

The finite element matrices can then be partitioned in the following way (Craig and

Kurdila (2006)),

[
Mcc Mcf

Mfc Mff

][
Üc

Üf

]
+

[
Kcc Kcf

Kfc Kff

][
Uc

Uf

]
=

[
Pc

Pf

]
(B.28)

Where Mcc,Mcf ,Mfc,Mff and Kcc,Kcf ,Kfc,Kff are block matrices of suitable dimen-

sions to permit matrix multiplication.

Setting Uc = 0, we get,

Mcf Üf +KaaUf = Pc (B.29)

Mff Üf +KffUf = Pf (B.30)

To obtain the displacement of the free nodes only the second of the above two equations

needs to solved. The first one can be solved if necessary to obtain the reaction forces at

constraints. Therefore for the free nodes only the block matrices Mff ,Kff and Pf are

needed. Alternatively the same result can be achieved by assembling the system matrices

as described previously and removing the first two columns and rows respectively.

The remaining two boundary conditions correspond to the shear force and bending

moment at the last node on the free end. If these were not equal to zero they would

be added to the last two elements of the nodal force vector. Since these are zero no

additions need to be made.
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B.8 The Damping Matrix

Finally the damping matrix can be included in the system as a linear combination the

stiffness and mass matrices. This form of damping is referred to as the Rayleigh damping

(Craig and Kurdila (2006)). The damping matrix D can thus be given as,

C = �oM + �1K (B.31)

The constants �o and �1 depend upon the material properties of the beam and need to

be derived experimentally.

B.9 Simulation Results

This section presents the simulation results obtained for modal analysis of the beam.

Modal analysis simply means the determination of the eigen-frequencies and eigenfunc-

tions of the beam.

For the present case the force acts perpendicular to the beam surface at the free end

and the deflection of the free end is measured as the response. This is illustrated in the

Figure B.3

F 

Modulus of Elasticity (E) =  206800 × 106   N/m2  

Density                              =  7830 kg/m3   

0.01 m 

0.01 m 

Figure B.3: The cantilever beam.

Two methods are used for the purpose mentioned above. The first one is the Analytical

method which uses the expressions for the eigenfunctions derived in the second chapter.

The second method is Finite Element Modelling. The finite element model for the

present method consists of ten elements. The global matrices are generated using the
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method described previously and the simulation is carried out using Matlab and ANSYS.

The remaining sections provide the simulation results.

Figure B.4 provides the first three eigenmodes obtained using the analytical method.

Figure B.5 provides the same modes generated using FEM simulation using Matlab and

ANSYS.
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Figure B.4: Natural modes of vibration using analytical method.
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Figure B.5: Natural modes of vibration using FEM.
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Table B.1 provides the resonance frequencies for these modes.

Method !1 [Hz] !2[Hz] !3[Hz]

Analytical 8.3018 52.0268 145.6765

FEM(Matlab) 8.3000 52.0110 145.6380

FEM(ANSYS) 8.3019 52.0285 145.7136

Table B.1: Resonance frequencies.
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