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Abstract: A case study on a small-scale laboratory vehicle frame is used to investigate the 
variability of the updated finite element (FE) models that arises from model and measurement
errors and demonstrate the effect of this variability on response predictions. Conventional
weighted modal residuals and recently introduced multi-objective identification methods for
structural model updating are used to provide the entire spectrum of Pareto optimal FE models
consistent with the measured modal data. Similarities and differences between the two model
updating methods are explored and the advantages of the multi-objective identification methods
are emphasized. A significant variability in Pareto optimal models is observed, which is
indicative of the uncertainty in the updated FE models. The dependence of the variability of the
Pareto models on the information contained in the measured data and the size of model and
measurement errors is explored by varying the number of measured modes, number of sensors,
FE mesh discretization sizes, and number of model parameters. The effectiveness of the updated
Pareto optimal models and their predictive capabilities are assessed. Frequency response
functions and fatigue lifetime predictions are used as example of structural performance
variables in order to demonstrate the variability in the response predictions that arises from the
variability in the Pareto optimal models. A large variability in the response predictions is
observed that cannot be ignored in decisions based on updated FE models. The multi-objective
optimization method provides the general framework for properly accounting for model
uncertainty in model-based response predictions consistent with measured data.

1. INTRODUCTION

Structural model updating methods [1] have been proposed in the past to reconcile
mathematical models, usually discretized finite element (FE) models, with experimental data.
The estimate of the optimal model from a parameterized class of models is sensitive to
uncertainties that are due to limitations of the mathematical models used to represent the
behavior of the real structure, as well as the presence of measurement and processing errors in
the data. The number and type of measured modal data used in the reconciling process, as well
as the norms used to measure the fit between measured and model predicted characteristics may
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also affect the estimate of the optimal model. The optimal structural models resulting from
model updating methods can be used for improving the model response and reliability
predictions [2], for assessing structural health and identifying structural damage [3–9] and for
improving effectiveness of structural control devices [10].

Structural model parameter estimation based on measured modal data [3–6] are often
formulated as weighted least-squares estimation problems in which metrics, measuring the
residuals between measured and model predicted modal characteristics, are build up into a single
weighted residuals (WR) metric formed as a weighted average of the multiple individual metrics
using weighting factors. Standard gradient-based optimization techniques are then used to find the
optimal values of the structural parameters that minimize the single WRs metric representing an
overall measure of fit between measured and model predicted modal characteristics. Due to model
error and measurement noise, the results of the optimization are affected by the values assumed
for the weighting factors. One of the purposes of this work is to estimate the variability of the
optimal values of the model parameters resulting from the variability in the weight values. Such
variability clearly defines the uncertainty in the parameter space of the values of the model
parameters that should be considered based on the measured data.

To eliminate the need of using weighting factors for assessing the relative importance of each
metric in the overall measure of fit, the model updating problem has also been formulated in a
multi-objective context [11] that allows the simultaneous minimization of the multiple modal
metrics. The multi-objective parameter estimation methodology provides a complete set of
multiple Pareto optimal structural models, consistent with the data and the residuals used. The set
of Pareto optimal models contains the optimal models obtained by the weighted modal residuals
method for any possible values of the weights [12]. However, additional Pareto optimal solutions
may exist that do not correspond to a solution of the WRs method for any value of the weights.

Theoretical and computational issues arising in multi-objective identification have been
addressed and the correspondence between the multi-objective identification and the WRs
identification has been established [11,12]. Emphasis was also given in addressing computational
issues associated with solving the resulting multi-objective and single-objective optimization
problems. The multi- and single-objective optimization problems are carried out using gradient-
based algorithms. The Normal Boundary Intersection (NBI) method [13], in particular, is used
as the gradient-based method to solve the multi-objective optimization. Efficient algorithms
were introduced for reducing the computational cost involved in estimating the gradients of the
objective functions representing the modal residuals. A computationally efficient method for
estimating the gradient of the objective functions with respect to the model parameters has been
proposed [14] and shown to significantly reduce the computational effort for solving the single-
and multi-objective optimization problems. The method exploits Nelson’s algorithm [15] for
estimating the sensitivity of the eigenproperties with respect to the parameters, requiring the
solution of an adjoint eigen-problem and avoiding the explicit estimation of the gradients of the
modal frequencies and mode shapes. The computational cost for estimating these gradients is
shown to be independent of the number of structural model parameters. The methodology is
particularly efficient to system with several number of model parameters and large number of
degrees of freedom (DOFs), where repeated gradient evaluations are computationally quite time
consuming.

In this work, the applicability and effectiveness of the model updating methods, namely the
multi-objective identification method and the WRs method, is explored by updating FE models of
a small-scale vehicle frame, using experimentally identified modal data. The vehicle frame also
serves as a case study to investigate the variability in the predictions of structural performance
indices from these Pareto optimal models. Issues related to estimating unidentifiable solutions
[16–18] arising in FE model updating formulations are also addressed. A systematic study is
carried out to demonstrate the effect of model error, FE model parameterization, mesh size,
number of measured modes, and number of mode shape components on the Pareto optimal
models and their variability. It is demonstrated that the updated FE models obtained using
measured modal data may vary considerably. Certain similarities and differences between the FE
model updating formulations are revealed. The proposed multi-objective identification method



presents a computationally efficient framework to represent the entire set of updated FE models
as well as to investigate the predictions from these models.

This study is organized as follows. Section 2 overviews the two formulations for FE model
updating based on modal data, namely the weighted modal residuals method and the multi-
objective identification method, establishing the similarities and the differences between the
formulations and the computational requirements. Section 3 introduces the small-scale
laboratory vehicle frame and gives a brief review of the experimental set-up and the modal
identification results. Section 4 presents a series of parametric studies on updating FE models of
the vehicle frame and in estimating the whole set of Pareto optimal FE models consistent with
the measurements. In Section 5 the variability in the predictions of frequency response functions
(FRF) and expected fatigue lifetime, often used as safety index of metallic structures in design, is
investigated based on the variability of the Pareto optimal models. Conclusions are summarized
in Section 6.

2. FE MODEL UPDATING METHODS

2.1. Modal residuals

Let D ¼ fôr; f̂r
2 RN0 ; r ¼ 1; . . .;mg be the modal parameters identified by vibration measure-

ments taken from a structure. The modal data in D consist of modal frequencies ôr and mode
shape components f̂

r
at N0 measured DOFs, where m is the number of observed modes.

Consider a parameterized class of linear structural models used to model the dynamic
behavior of the structure and let y 2 RNy be the set of free structural model parameters to be
identified using the identified modal parameters. The objective in a modal-based structural
identification methodology is to estimate the values of the parameter set y so that the modal
data forðyÞ;fr

ðyÞ 2 RN0 ; r ¼ 1; . . .;mg predicted by the linear class of models at the corres-
ponding N0 measured DOFs best matches the experimentally obtained modal data in D. For
this, let
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ô2
r

and ef
r
ðyÞ ¼

brðyÞfr
ðyÞ � f̂

r

��� ���
f̂

r

��� ��� ; r ¼ 1; . . . ;m ð1Þ

be the measures of fit or residuals between the measured modal data and the model predicted
modal data for the rth modal frequency and mode shape components, respectively, where

jjzjj2 ¼ zTz is the usual Euclidean norm, and brðyÞ ¼ f̂T
r
f

r
ðyÞ=jjf

r
ðyÞjj2 is a normalization

constant that guaranties that the measured mode shape f̂
r
at the measured DOFs is closest to

the model mode shape brðyÞfr
ðyÞ predicted by the particular value of y.

To proceed with the model updating formulation, the measured modal properties are
classified next into two groups. The first group contains the modal frequencies while the second
group includes the mode shape components for all modes. For each group, a norm is introduced
to measure the residuals of the difference between the measured values of the modal properties
involved in the group and the corresponding modal values predicted from the model class for a
particular value of the parameter set y. For the first group, the measure of fit I1ðyÞ is selected to
represent the difference between the measured and the model predicted frequencies for all
modes. For the second group, the measure of fit I2ðyÞ is selected to represent the difference
between the measured and the model predicted mode shape components for all modes.
Specifically, the two measures of fit are given by
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Alternative measures of fit [3,19–22] can easily be accommodated in the proposed
formulation. In particular, it is straightforward to show that I2ðyÞ ¼
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jjÞ is the modal assurance criterion between the experimentally



identified and model predicted mode shapes for the rth mode. Thus, the residuals I2ðyÞ are
exactly the same as alternative measures of fit based on MAC values defined in the literature [3].

2.2. WR method

The parameter estimation problem is traditionally solved by minimizing the single objective

Iðy; wÞ ¼ w1I1ðyÞ1w2I2ðyÞ ð3Þ

formed by the two objectives IiðyÞ, using the weighting factors wiX0, i5 1,2, with w11w2 5 1.
The objective function Iðy;wÞ represents an overall measure of fit between the measured and the
model predicted characteristics. The relative importance of the residual errors in the selection of
the optimal model is reflected in the choice of the weights. The results of the identification
depend on the weight values used. The optimal solutions for the parameter set y for a given w
are denoted by ŷðwÞ.

Conventional WR methods select specific weight values to carry out the parameter
estimation. One such choice is w1 5w2 5 1/2, referred herein as the equally weighted residuals
(EWR) method. A more rational choice, however, is to select the weights to be inversely
proportional to the values of the modal group residuals obtained from the optimal model
associated with these weight values. That is, the optimal values ŵi of the weights are selected to
be ŵi ¼ ai=IiðŷoptÞ, i ¼ 1; 2, where a1 5m and a2 5mN0 are selected to be the number of modal
properties in the two modal groups, and ŷopt � ŷðŵÞ is the optimal value of the model
parameters that minimizes the optimally WRs Iðy; ŵÞ in (3) that corresponds to the weight
values ŵ. In this way, modal groups with larger residual errors are given less weight than modal
groups with smaller residual errors. This choice guarantees that the optimal model is not biased
from measured modal properties that contain significant measurement error or measured modal
properties that cannot be well represented by the selected model class. Following such an
approach, it has been shown in [12] that the optimal values ŷopt of the structural parameters are
obtained by minimizing the sum of the logarithm of the modal residuals

ÎðyÞ ¼
Xn

i¼1

ai ln IiðyÞ ð4Þ

with respect to the parameter set y and then computing the optimal weights ŵ from
ŵi ¼ ai=IiðŷoptÞ. This method is referred in this work as the optimally WRs (OWR) method. It is
worth pointing out that the logarithmic estimator in (4) has also been shown to arise from a
Bayesian statistical identification point of view [23].

The single objective identification method is computationally attractive since conventional
minimization algorithms can be applied to solve the problem. The optimization of Iðy;wÞ in (3)
with respect to y for a given w or the optimization of ÎðyÞ in (4) with respect to y can readily be
carried out numerically using any available algorithm for optimizing a nonlinear function of
several variables. However, these single objective optimization problems are often highly non-
convex that may involve multiple local/global optima. Global optimization algorithms are also
available to address cases with multiple local/global solutions [12,24–26].

2.3. Multi-objective identification (MOI) method

The problem of identifying the model parameter values that minimize the modal residuals in (2)
can also be formulated as a multi-objective optimization problem stated as follows [11]. Find the
values of the structural parameter set y that simultaneously minimizes the objectives

y ¼ IðyÞ ¼ ðI1ðyÞ; I2ðyÞÞ ð5Þ

where y ¼ ðy1; . . .; yNy Þ 2 Y is the parameter vector, Y is the parameter space, y ¼ ðy1; y2Þ 2 Y is
the two-dimensional objective vector and Y is the objective space. For conflicting objectives I1ðyÞ
and I2ðyÞ there is no single optimal solution, but rather a set of alternative solutions, known as
Pareto optimal solutions, that are optimal in the sense that no other solutions in the parameter
space are superior to them when both objectives are considered. The set of objective vectors



y ¼ IðyÞ corresponding to the set of Pareto optimal solutions y is called Pareto optimal front.
The characteristics of the Pareto solutions are that the residuals in the modal frequencies cannot
be improved without deteriorating the residuals in the mode shapes. The multiple Pareto
optimal solutions are due to modeling and measurement errors [12].

Introducing a monotonically increasing scalar function g(x)40, with x40 and defining the
new objectives JiðyÞ ¼ gðIiðyÞÞ, i5 1,2, the Pareto solutions obtained by solving (5) can
equivalently be obtained by solving the multi-objective optimization problem

J ðyÞ ¼ ðJ1ðyÞ; J2ðyÞÞ ð6Þ

It can be readily shown that the Pareto solutions are invariant to the selection of g(x).
Selecting in particular gðxÞ ¼

ffiffiffiffiffiffiffiffiffi
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p
, the new objective functions take the form
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representing the average fractional errors between the measured and model predicted
eigenvalues (square of the modal frequencies) and mode shapes over all considered modes,
respectively. The average fractional errors in the modal frequencies and the mode shapes are
more direct measures of the discrepancies between measured and model predicted modal
properties. Specifically, in the case of equal modal frequency errors eo1

ðyÞ ¼ . . . ¼ eomðyÞ, the
first objective function takes the form J1ðyÞ ¼ eor ðyÞ for any mode r and is directly related to the
fractional error in each modal frequency. A similar interpretation holds for J2ðyÞ.

The set of Pareto optimal solutions can be obtained using available multi-objective
optimization algorithms. A very efficient algorithm for solving the multi-objective optimization
problem is the Normal-Boundary Intersection (NBI) method [13]. For completeness, the idea of
the NBI method is briefly illustrated geometrically in Figure 1 for a two-dimensional objective
space. For this, let ŷðiÞ, i5 1,2, be the global optimal values of the model parameters that
minimize the individual objectives JiðyÞ, i5 1,2, respectively. The Pareto points Ĵ ðiÞ ¼ J ðŷðiÞÞ,
shown in Figure 1, determine the location of the boundaries of the Pareto front in the objective
space. These edge points of the Pareto front are estimated using single-objective optimization
algorithms. The utopia point J� ¼ ½Ĵ1; Ĵ2�T, shown in Figure 1, is introduced as the point in the
objective space with coordinates the individual minima Ĵi ¼ Jiðŷ

ðiÞÞ, i5 1,2, of the objectives. Let
F be the 2� 2 matrix with the ith column equal to the vector Ĵ ðiÞ. The set of points in the
objective space that are convex combinations of Ĵ ðiÞ � Ĵ , obtained by the points
fFb : b 2 R2;b11b2 ¼ 1; biX0g, is referred to as the Convex Hull of Individual Minima
(CHIM). These points are all points along the line segment AB in Figure 1. The Pareto points lie
on the intersection of the boundary @Y of the objective space Y and the normal initiating from
any point in the CHIM and pointing towards the origin of the objective space.

A point along the Pareto front can be found by solving a single-objective constrained
optimization problem. Given the coordinates b, Fb represents a point on the CHIM and Fb1tn,

Figure 1. Geometric illustration of the NBI method in a two-dimensional objective space.



where tAR and n the normal to the CHIM, represents the set of points on the normal to the
CHIM at the point Fb. The point of intersection of the normal and the bounbary @Y, closest to
the origin, is the global solution of the commonly referred NBIb optimization problem [13]:

max
y;t

t ð8Þ

subject to the equality constraints

Fb1tn ¼ J ðyÞ � J� ð9Þ

This requires the computation of the gradients of the constraints and as a consequence the
gradients of the modal residuals J ðyÞ involved in (9).

By solving the optimization problems NBIb for various b values in the set
fb 2 R2:b11b2 ¼ 1;biX0g, a pointwise representation of the Pareto front is efficiently
constructed. The values of the parameters b are selected so that an evenly spread set of
points along the CHIM is obtained, resulting to an evenly spread set of points along the Pareto
front, independently of the scales of the objective functions. This is achieved by selecting the
values of b2 to be uniformly spaced in the interval [0,1] and b1 ¼ 1� b2. More details about the
method can be found in the original paper by Das and Dennis [13].

The NBI optimization method involves the solution of nonlinear constrained optimization
problems using available gradient-based constrained optimization algorithms. The NBI uses the
gradient information to accelerate convergence to the Pareto front. The computational time
required in the NBI method is of the order of the number of points used to represent the Pareto
front multiplied by the computational time required to solve a single-objective NBIb problem
for computing each point on the Pareto front. The convergence of the NBI method can be
greatly accelerated by selecting the Pareto optimal solution obtained from the current NBIb
problem to be used as starting value for solving the next NBIb problem.

2.4. Multi-objective identification versus WRs

Certain similarities and differences between the multi-objective identification and the WRs
methods are next summarized. The optimal solution to the problem (3) for any value of the
weight w is one of the Pareto optimal solutions in (5) [12]. Thus, solving a series of single
objective optimization problems of the type (3) and varying the values of the weights wi from 0
to 1, excluding the case for which the values of all weights are simultaneously equal to zero,
Pareto optimal solutions are alternatively obtained. However, a severe drawback of generating
Pareto optimal solutions by solving the series of weighted single-objective optimization
problems by uniformly varying the values of the weights is that this procedure often results in a
cluster of points in parts of the Pareto front that fail to provide an adequate representation of
the entire Pareto shape. Thus, algorithms dealing directly with the multi-objective optimization
problem and generating points that are uniformly spaced along the entire Pareto front should be
preferred. The advantages of the NBI algorithm are that it produces evenly spaced points along
the Pareto front, even for problems for which the relative scaling of the objectives are vastly
different.

Another advantage of the multi-objective identification methodology is that all admissible
solutions in the parameter space that simultaneously minimize the two objectives are obtained.
In particular, it should be noted that there may exist Pareto optimal solutions that do not arise
from the solutions of the single-objective weighted modal residuals problem for any value of the
weight vector w [12]. Thus, varying the weights in the WRs method does not guarantee the
estimation of the entire Pareto front since there may exist extra points on this front that do not
correspond to solutions of the single-objective weighted modal residuals problem obtained for
all possible values of the weights.

Finally, it should also be pointed out that the Pareto optimal points generated by the
WRs norm in (3) can equivalently be obtained by the same WRs norm with IiðyÞ replaced
by JiðyÞ ¼ gðIiðyÞÞ for i5 1,2. The selection of g(x) depends on the user preference in the



multi-objective identification to evenly space points along the Pareto front in the objective space
J ¼ ðJ1; J2Þ instead of the original objective space I ¼ ðI1; I2Þ.

3. SMALL-SCALE LABORATORY VEHICLE FRAME AND MODAL IDENTIFICATION

The model updating methodologies are applied to update FE models of an experimental small-
scale vehicle-like body, shown in Figure 2(a). The vehicle structure is housed at the Machine
Dynamics Laboratory of the Department of Mechanical Engineering in Aristotle University.
It is designed to simulate the frame substructure of a vehicle in a small scale of length 2m, width
1m and height 1.4m. This small-scale laboratory structure consists of frame substructures
(base, connections and top parts in Figure 2(b)) that are welded together. Figure 2(b)
presents details of the geometrical dimensions of the frame. The frame structure is made of steel
with Young’s modulus E ¼ 2:1� 1011 N=m2, Poison’s ratio n5 0.3 and density r5 7850 kg/m3.
The lower part of the frame is made of hollow rectangular sections with dimensions
100mm� 50mm� 3mm, while the upper part of the frame is also made of hollow rectangular
sections with dimensions 50mm� 50mm� 2mm. These two parts are connected together at
four points through steel angles with the two faces made of plates with dimensions
300mm� 100mm� 10mm and 200mm� 100mm� 10mm, as shown in Figure 2(b). More
details can be found in [27]. Figure 2(a) also shows an overview of the experimental set up, while
the measurement points are indicated in Figure 3. Measurements are collected from 72
locations. The sensor locations have been chosen in such a way so as to gather as much
information as possible about the structure’s modal response.

Using the available acceleration sensors to measure the vibrations induced by applied impulse
forces, the FRF of the measured DOFs are estimated. These FRFs are used to estimate the
modal properties using the PolyMAX frequency domain method [28]. The values of the modal
frequencies, modal damping ratios and mode shape components were estimated in the 0 to
approximately 100Hz frequency range. Ten modes were clearly identified with values of modal
damping ratios of the order of 0.1–0.5%, which correspond to relatively low damping values.
The identified values of the ten modal frequencies and the modal damping ratios are reported in
Table I. The identified mode shapes have also been recorded so that they can be used for
updating the FE models.

Figure 2. (a) Scaled vehicle model with experimental set up and (b) Dimensions of the model.



4. FE MODEL UPDATING OF THE VEHICLE FRAME

4.1. FE models

Detailed FE models of the vehicle frame were created based on the geometric details and the
material properties of the structure. The structure was first designed in CAD environment and
then imported in the COMSOL Multiphysics [29] FE modelling environment. The FE models
for the vehicle were created using three-dimensional triangular shell FEs to model the whole
structure.

A fine mesh model consisting of 15 202 FEs and having 45 564 DOF was chosen for a detailed
modelling of the experimental vehicle. This model is shown in Figure 4(a) and is referred to as

Figure 3. Measurement and stress points on the vehicle frame.

Table I. Identified and nominal FE model predicted modal frequencies and damping ratios, along with 
percentage errors and MAC values.

Nominal FE
predicted modal
frequency (Hz)

Difference between
identified and FE
predicted modal
frequencies (%)

MAC between
identified and
FE predicted
mode shapes

Mode
Identified modal
frequency (Hz)

Identified modal
damping ratio (%) Fine Coarse Fine Coarse Fine Coarse

1 23.21 0.48 23.23 26.67 0.09 14.89 0.971 0.972
2 42.12 0.36 39.13 41.48 �7.11 -1.52 0.977 0.976
3 42.50 0.23 41.61 46.21 �2.10 8.73 0.979 0.955
4 48.28 0.22 47.29 50.94 �2.03 5.53 0.973 0.953
5 58.16 0.20 57.57 60.60 �1.01 4.20 0.951 0.951
6 69.04 0.23 66.20 69.94 �4.11 1.31 0.975 0.970
7 69.47 0.17 69.05 73.48 �0.60 5.77 0.950 0.945
8 80.04 0.17 80.44 87.26 0.50 9.02 0.950 0.940
9 86.14 0.16 83.25 88.14 �3.36 2.31 0.968 0.959
10 100.24 0.11 101.60 112.97 1.36 12.69 0.979 0.852



model MF. In addition, in order to investigate the sensitivity of the model updating results to
model error arising from FE model discretization, a model with a coarser mesh consisting of
2670 FEs and having 8082 DOF was also considered. This model is shown in Figure 4(b) and is
referred to as model MC. For comparison purposes, Table I lists the values of the modal
frequencies predicted by the nominal FE models MF and MC along with the percentage error
between the experimentally identified modal frequencies and the modal frequencies predicted by
the nominal FE models. Also, Table I reports the MAC values between the experimentally
identified mode shapes and the mode shapes predicted by the nominal FE models. As expected,
the percentage error in the modal frequencies is significantly higher for the coarse model class
MC than it is for the fine model class MF. The MAC values for the nominal model MF are higher
than 0.95, while for the nominal model MC are higher than 0.85. The MAC values of the
nominal model MC are shown to be less than the MAC values of the nominal model MF,
verifying that the finer mesh nominal model fits the data better, as should be expected. Ten
representative mode shapes predicted by the nominal FE model MF for the ten lowest frequency
modes are shown in Figure 5.

4.2. FE model parameterizations

Five different parameterizations of the FE model classes MF and MC of the experimental vehicle
are introduced in order to demonstrate the applicability of the proposed FE model updating
methodologies and point out issues associated with the effect of model error on the Pareto
optimal FE models. The parameterized models consisting of three, six, eight, nine and eleven
parameters are shown in Figure 6 and are denoted respectively by M3, M6, M8, M9 and M11. The
parameters in the set y for each model class are stiffness-related parameters and account for the
modulus of elasticity of the various parts of the experimental vehicle frame, including the lower
and upper parts of the vehicle as well as the connections between these parts. Table II lists for
each model class the correspondence of the stiffness-related parameters to the parts of the
vehicle that they model. The nominal FE models correspond to values of the model parameters
equal to yi ¼ 1 with i ranging from 1 to 11, depending on the number of parameters in each
model class.

4.3. Pareto front and variability of Pareto optimal FE models

The three-parameter FE model class M3;F is updated using the lowest ten identified modal
frequencies and mode shapes shown in Table I. The identified mode shapes include components
at all 72 sensor locations. This example case is used to demonstrate mainly the applicability of
the multi-objective parameter estimation methodology and reveal advantages in relation to the
WRs method.

Figure 4. FE models of the experimental vehicle consisted of (a) 15 202 triangular shell elements and 45 564 
DOF and (b) 2670 triangular shell elements and 8082 DOF.



The results from the multi-objective parameter estimation methodology are shown in Figure 7.
The NBI optimization algorithm was used to estimate 20 Pareto solutions. The Pareto front,
giving the Pareto solutions in the two-dimensional objective space, is shown in Figure 7(a).
Comparing the Pareto optimal solutions in the objective space, it can be said that there is no
Pareto solution that improves the fit in both modal groups simultaneously. Thus, all Pareto
solutions correspond to acceptable compromise structural models trading-off the fit in the modal
frequencies involved in the first modal group with the fit in the mode shape components involved
in the second modal group. The non-zero size of the Pareto front and the non-zero distance of the
Pareto front from the origin are due to uncertainties arising from modeling and measurement
errors. Specifically, the distance of the Pareto points along the Pareto front from the origin is an
indication of how well the model predicted modal characteristics fits the corresponding measured
ones. The size of the Pareto front depends on the size of the model error and the sensitivity of the
modal properties to the parameter values y [12].

Mode 1: 23.23 Hz Mode 2: 39.13 Hz 

Mode 3: 41.61 Hz  Mode 4: 47.29 Hz 

Mode 5: 57.57 Hz Mode 6: 66.20 Hz 

Mode 7: 69.05 Hz Mode 8: 80.44 Hz 

Mode 9: 83.25 Hz    Mode 10: 101.60 Hz

Figure 5. Mode shapes predicted by the fine mesh nominal FE model for the lowest 10 modes.
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Figure 7(b–d) shows the corresponding Pareto optimal solutions in the three-dimensional
parameter space. Specifically, these figures show the projection of the Pareto solutions in the
two-dimensional parameter spaces ðy1; y2Þ, ðy1; y3Þ and ðy2; y3Þ. The Pareto optimal solutions,
quantifying the uncertainties in the model parameter values consistent with measured data, are
concentrated along a one-dimensional manifold in the three-dimensional parameter space. It is
observed that a wide variety of Pareto optimal solutions are obtained, which are consistent with
the measured data and the objective functions used. The variability in the values of the model
parameters, computed as the percentage difference between the highest and lowest value relative
to the average value of each parameter, are of the order of 10, 22 and 6% for y1, y2 and y3,
respectively. This relatively large variability in the Pareto optimal solutions affects the
variability in the predictions from the Pareto optimal models. Such prediction variability is
studied in Section 5.

The optimal solutions computed using the EWR and the optimally weighted residuals
(OWR) techniques are also shown in Figure 7. As expected, these solutions are points along the

Figure 6. Three, six, eight, nine and eleven parameter model classes of the experimental vehicle frame.

Table II. Definition of model parameters yi and percentage variability Dyi of parameter values for the 
three, six, eight, nine and eleven parameter model classes.

Base Connections Top front (Vertical) Top front (Inclined) Top roof Top rear

Model class i Dyi (%) i Dyi (%) i Dyi (%) i Dyi (%) i Dyi (%) i Dyi (%)

M3;F 1 10 2 22 3 6 3 6 3 6 3 6
M6;F 1 9 2 5 3 29 4 19 5 7 6 17
M8;F 1 9 2 5 3 29 4 24 6 7 7 20

5 17 8 20
M9;F 1 10 2 19 6 34 7 7 8 5 9 4

3 14
4 7
5 3

M11;F 1 10 2 17 6 37 7 9 9 6 10 13
3 10 8 9 11 5
4 18
5 8

VARIABILITY OF UPDATED FINITE ELEMENT MODELS



Pareto front. In fact, in this example case, they have been estimated to be very close to each
other in the objective and parameter space. The conventional optimal solution obtained by the
EWR method is demonstrated to be in the vicinity of the Pareto solution 20, which is located
very close to the right identifiable end of the Pareto front. Comparing the entire set of Pareto
optimal solutions and using the proximity of the EWR solution to the Pareto solution 20, it can
be said that the EWR optimal solution for this example case almost coincides with the solution
that one would obtain by minimizing the residuals in the mode shapes only, ignoring the fit in
the modal frequencies. Exactly the same conclusion can be reached for the OWR optimal
solution. However, the complete set of Pareto optimal solutions clearly indicate that there exist
alternative optimal solutions that take into account the fit in the modal frequencies as well. Such
solutions define the uncertainty sub-domain in the parameter space over which the parameters
can take values based on the measured data.

4.4. Unidentifiability issues

It should be noted that in the results presented in Figure 7 for the model class M3;F, only the
useful ‘identifiable part’ of the Pareto front is shown. It will be demonstrated in this section that
the multi-objective identification method is efficient in also estimating the unidentifiable
solutions often arising in model updating techniques.

First, in Figure 8(a) is shown the extended set of solutions that were actually computed by the
application of the NBI algorithm for the model class M3;F. Specifically, it is observed that there
is a flat part of the extended set of solutions at the lower right edge of Figure 8(a). This is due to
the unidentifiability problems [12,16–18] encountered in estimating the optimal model
corresponding to the right edge point of the Pareto front. In this case, the right edge point of
the Pareto front is obtained by optimizing the function J2ðyÞ. It turns out that there is a lower
dimensional manifold in the three-dimensional parameter space, shown in the two-dimensional
projection (y1, y2) in Figure 8(b) to extend from point 12 to point 20, that give the same
optimum for J2ðyÞ as it can be seen in Figure 8(a). Depending on the starting values of the
parameter set y, the gradient-based algorithm for optimizing J2ðyÞ converges to one of the
infinite number of optimal models in this lower dimensional sub-manifold.
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Such unidentifiable manifolds have been reported in previous studies [12,16–18] using
simplified models of structures that involve a small number of DOFs and simulated data. This
case study demonstrates that unidentifiability issues arise in updating FE models with a large
number of DOFs, build for realistic structures and using real measurements. As it is noted in
Figure 8(a), the unidentifiable solutions corresponding to the flat horizontal portion (points
12–20) in the objective space and the associated manifold in Figure 8(b) are readily estimated by
the NBI method. From the engineering point of view, the most important point from this flat
portion is the most left point 12 in Figure 8(a) since all other points in the flat portion
deteriorate the fit in the objective function J1ðyÞ without altering the fit in J2ðyÞ. Alternatively,
using Pareto terminology, all points from 13 to 20 are dominated by point 12 and therefore they
are not considered as Pareto solutions. For convenience, the unidentifiable solutions estimated
by the NBI algorithm will be said to form the unidentifiable part of the Pareto front.
Unidentifiability problems usually arise also in the left edge of the Pareto front when the
number of modes to be fitted is less than the number of the parameters to be estimated.
Examples will be presented in Section 4.8.

Note that in order to generate points only on the identifiable portion of the Pareto front for
pre-selected number of points on it (e.g. 20 points as shown in Figure 7(a)), the analyst should
repeat the application of the NBI algorithm with edge points of the Pareto front selected to be
the points 1 and 12 in Figure 8.

Concluding, the present multi-objective identification methodology is capable of estimating
and graphically representing portions of the unidentifiable solutions as well as identifying the
meaningful, from the Pareto terminology point of view, identifiable part of the Pareto front and
the Pareto optimal solutions.

4.5. Comparison between MOI and WR methods

For comparison purposes, the WR method was also used to obtain the Pareto front by
uniformly varying the weights in (3) from 0 to 1 and minimizing the objective function in (3)
with IiðyÞ replaced by JiðyÞ defined in (7). Specifically, dividing the interval [0,1] for the weight w2

into equally spaced sub-intervals using a step Dw, selecting the values of w1 to satisfy w11w2 5 1
and estimating the optimal solutions for the 1/Dw pairs of (w1, w2) values, the Pareto front and
the Pareto solutions are obtained and shown in Figure 9(a, b) for model classM3;F for Dw5 0.05
(1/Dw5 20). It can be seen from Figure 9 that varying uniformly the weight values and
computing the Pareto points using the WR method does not produce uniformly distributed
points along the Pareto front. Instead, it yields a cluster of 19 WR points concentrated between
the NBI-based Pareto solutions 16 to 20. As a consequence, the part of the Pareto front
between Pareto solutions 2 to 15 is misrepresented since it is completely missed. Therefore, a
clear advantage of the multi-objective identification versus the WR method is that it represents
the Pareto front by a number of points that are uniformly distributed in the objective and the
parameter space.
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It should also be noted that using the WR method, a series of i ¼ 1; . . .; 1=Dw single-objective
optimization problems are solved to compute the points along the Pareto front in Figure 9(a).
To accelerate convergence and avoid, to the extent possible, premature convergence to a local
optimum, the starting values of the parameters used to solve the i optimization problem are
selected to be the optimal parameter values obtained from the i–1 optimization problem.
Starting from the left edge point 1 of the Pareto front, the iterative process converges for the last
value of i5 1/Dw to the right edge point 20 of the identifiable part of the Pareto front. For small
enough values of Dw so that the initial estimate of the previous iteration is close to the optimum
estimate of the last iteration, the most probable Pareto point is the point 20, corresponding to
optimizing the objective J2ðyÞ, while points along the non-identifiable part of the Pareto front
(points 13–20 in Figure 8) are not likely to be generated in the last iteration i5 1/Dw. However,
for initial estimates that are far away from the optimum Pareto point 20, such a procedure will
fail to give the Pareto point 20 and will converge to one of the models along the unidentifiable
part of the Pareto front.

Consider next the estimation of Pareto points using the WR method in the reverse order,
starting from the right edge and moving to the left edge. The Pareto point 20, which constitute
the first solution at the right edge, will be missed due to the fact that the initial estimate is
arbitrary and the algorithm will converge to a point along the unidentifiable part of the Pareto
front. The location of the single point on the non-identifiable part of the Pareto front depends
on the starting values used to solve the first optimization problem corresponding to optimizing
the objective J2ðyÞ. For the specific example, the value of y ¼ 1, used as the initial estimate,
resulted in the point denoted by ‘1’ in Figure 9(a). As one moves for the last value of i5 1/Dw
to the left edge point of the Pareto front corresponding to optimizing the objective J1ðyÞ, there is
no guarantee that it will reach the Pareto point 1 due to the fact that the initial estimate for
computing the last point 1, taken as the optimal estimate of the previous iteration (close to
Pareto point 16), may be far away from the optimum estimate (Pareto point 1) and the
algorithm may prematurely converge to a local optimum. Extra difficulties will arise if the
problem of estimating the model parameters based only on the modal frequency residuals is
unidentifiable. Then, the solution will converge to a point along the unidentifiable part of the
Pareto front. Thus, it becomes clear that varying the weight values in the WR method,
important Pareto points such as the boundary points can be missed, especially in the case where
unidentifiable solutions exist. On the other hand, the NBI algorithm is computationally very
efficient to identify the useful part of the Pareto front even if unidentifiable solutions exist for
the two edge points.

4.6. Effect of number of parameters on Pareto front and optimal FE models

The Pareto fronts for the case of the six, eight, nine and eleven parameters and the fine mesh
model MF are shown in Figure 10. Comparing these results with the results in Figure 7(a),
obtained for the case of the three-parameter model, it can be concluded that the model class
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M3;F with three parameters gives a significantly worse fit to the experimental results considering
both objectives J1 and J2. Specifically, the variability in the average fractional error eo 5 J1 in
the modal frequencies drops from values ranging from 0.049 to 0.053 for the model class M3;F

(Figure 7(a)) to values ranging from 0.008 to 0.022 (Figure 10) for the model classes M6;F to
M11;F. Similarly, the variability in the average fractional error ef ¼ J2 in the mode shapes drops
from values ranging from approximately 0.24–0.29 for the model class M3;F(Figure 7(a)) to
values ranging from 0.20 to 0.23 (Figure 10) for the model classes M6;F to M11;F. Using Pareto
terminology, it can be said that all Pareto points for model classes M6;F to M11;F dominate all
Pareto points for model class M3;F.

In Figure 10 it is observed that the Pareto fronts as the number of model parameters is
increased from 6 to 11 move closer to the origin and they do not intersect, indicating that the fit
gets better when the number of parameter increases. It should be made clear that this trend occurs
due to the fact that the model with a fixed number of parameters, say 9, contains the model with
fewer parameters, say 6 and 3, in the sense that the nine-parameter model can make the same
predictions as the 3- and 6-parameter model classes do, but the nine-parameter model has more
parameters and thus more freedom to provide a better fit to the data. However, the improvement
obtained by increasing the number of parameters from six to eleven is not as significant as the
improvement obtained by increasing the number of parameters from three to six.

The corresponding Pareto optimal solutions for the six, eight, nine and eleven parameter
model classes are shown in Figure 11(a–d) as a function of the Pareto points. The variability
Dyi ¼ 200jyi;max � yi;minj=ðyi;max1yi;minÞ in the values of the model parameters, computed as the
percentage difference between the highest value yi;max and lowest value yi;min relative to the
average value ðyi;max1yi;minÞ=2 for each parameter yi, is shown in Table II for the different model
classes, including the three-parameter model class M3;F. It should be noted that a significant
variability in the values of the model parameters is observed for all model classes. The highest
variability of the order of 29–37% is observed for the stiffness of the members located at the
front part (Figure 6) of the vehicle. The lowest variability of the order of 5–7% is consistently
observed in the stiffness of the horizontal members located at the roof of the top part of the
vehicle model. Low variability is also observed in the stiffness of some of the connections
between the lower and upper part of the vehicle.

The percentage error between the experimentally identified values of the modal frequencies
and the values of the modal frequencies predicted by the nominal model, the EWR model, the
OWR model and the Pareto optimal models 1, 10 and 20 are reported as a function of the mode
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number in Figure 12(a, c, e) for the three, six and nine-parameter model classes, respectively.
Similar results for the MAC values are reported in Figure 12(b, d, f). It is observed that the
Pareto model 1 provides the best fit to the modal frequencies in the expense of deteriorating
the fit in the MAC values to values significantly smaller than one. The Pareto model 20 improves
the MAC values to values closer to one in the expense of deteriorating the fit in the modal
frequencies. The Pareto model 10 trades-off the fit in the modal frequencies with the fit in the
MAC values.

Comparing Figure 12(a, c, e), it can be said that the modal frequency errors for all Pareto
optimal solutions for the six and the nine-parameter models do not exceed the values of 2%,
which are significantly smaller than the errors for the three-parameter model class estimated to
be as high as 6%. Comparing Figure 12(b, d, f), the worst MAC values for the six and the nine-
parameter model classes are as low as 0.95, which should be compared to the worst MAC value
of 0.91 for the three-parameter model class. The MAC values for the Pareto solution 20 also
tend to increase overall in relation to the MAC values of the Pareto solution 1. Comparing the
modal frequency errors and the MAC values between the six and the nine-parameter model,
it can be seen that the nine-parameter model class provides a slight improvement in the fit of the
modal characteristics with respect to the six-parameter model class.

Concluding, based on the fit in the modal frequencies and the MAC values for each mode, it
can be said that the six and nine-parameter models give a much better fit to the experimentally
identified modal data than the three-parameter model class. The nine-parameter model class
gives overall a slightly better fit to the data than the six-parameter model class.

4.7. Effect of FE mesh size on Pareto front and optimal FE models

The effect of model error on the FE model updating results is next investigated. The size of
model error is controlled by changing the mesh size in the FE discretization. Specifically, model
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updating results are obtained for the model classes MF and MC corresponding to fine and coarse
meshes, respectively, as shown in Figure 4. The Pareto fronts obtained for the three, six and
nine-parameter models are shown in Figure 13(a) for both fine and coarse mesh model classes
MF and MC.

Comparing the Pareto fronts for the fine and coarse mesh model classes with same number of
parameters, it is observed that the Pareto front corresponding to the fine mesh model class is
consistently closer to the origin of the objective space than the Pareto front corresponding to the
coarse mesh model class. This is due to the fact that the fine mesh model class is a higher fidelity
model, involving less model error, and thus is expected to fit the measured modal data better,
giving smaller residual errors in both modal frequencies and mode shapes.

It is worth noting that for the high fidelity fine-mesh model classes, the Pareto front moves
towards the origin as the number of parameters increases from three to nine. A similar trend is
also observed for the less accurate coarse-mesh model class. However, the size of the Pareto
front in the coarse-mesh model class is significantly increased as the number of parameters
increases, indicating that there is a larger variability of the Pareto optimal models for the less
accurate coarse-mesh model class than the variability of the Pareto optimal models for the fine
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mesh model class. Higher fidelity model classes are expected in general to give smaller variability
as the number of free parameters increases.

An interesting observation that can also be made by comparing the results for the three-
parameter fine mesh model class M3;F with the nine-parameter coarse mesh model class M9;C

is that the Pareto solutions from the coarse model class M9;C do not provide a better fit
simultaneously in both the modal frequencies and mode shapes than the Pareto solutions from
the fine mesh model class M3;F. This is an example demonstrating that increasing the number of
parameters in a model class does not necessarily result in a better fit than a higher fidelity model
class involving fewer number of parameters.

The corresponding variability of the Pareto optimal model parameters for the nine-parameter
coarse model class M9;C is shown in Figure 13(b). Comparing with Figure 11(c) for the nine-
parameter fine mesh model class M9;F, a significantly larger variability is observed for the values
of the parameters of the coarse mesh model class M9;C. This is especially evident for parameters
y6 and y7 related to the stiffness of the top front vertical and inclined members, respectively.
In particular, the variability of the parameter y7 along the Pareto solutions ranges from 2.5 to 1,
which is of the order of 130%. In contrast, the variability of the same parameter y7 for the
higher fidelity model class M9;F is shown in Figure 11(c) to range from 1.85 to 1.75, which is of
the order of 5%. The results in Figures 11(c) and 13(b) suggest that higher fidelity model classes
also tend to reduce the variability of the Pareto optimal solutions. Such variabilities are expected
to affect the variabilities of the system performance predicted using the entire set of Pareto
optimal models.

4.8. Effect of the number of modes on Pareto front and optimal FE models

The nine-parameter FE model class M9;F corresponding to the fine mesh is next updated using
the five and ten lowest identified modes. The Pareto fronts are shown in Figure 14(a) and are
denoted by M9;F-5 and M9;F-10 for the cases of 5 and 10 modes, respectively. As expected, the
modal residuals computed from the Pareto optimal points for the case of 5 modes are smaller
than the modal residuals for the case of 10 modes. This is clearly evident by the closer proximity
of the Pareto front computed for 5 modes to the origin in the objective space. For the M9;F-5
case, it can also be observed that the part of the Pareto front from 1 to 7 constitutes the
unidentifiable part of the Pareto front that arises by minimizing the modal frequency residuals
J1ðyÞ. This unidentifiability is expected since the number of nine free parameters in the model
class is higher than the number of five modal frequencies used in this model updating case and
so there is an infinite number of solutions that can perfectly fit the five modal frequencies.
Also, it should be noted that the modal frequency residuals are zero for Pareto points 1 to 7,
indicating that the fit is perfect. Similarly, the Pareto points 17 to 20 constitute the unidentifiable
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part of the Pareto front that arises by minimizing the mode shape residuals J2ðyÞ. In contrast to
the zero residuals predicted for the unidentifiable part from 1 to 7, the residuals corresponding
to the unidentifiable part from 17 to 20 are non-zero, indicating that there is a discrepancy
between the measured mode shapes and the mode shapes predicted by the optimal set of
unidentifiable models.

It is worth pointing out that the NBI algorithm can compute the unidentifiable solutions that
occur by minimizing either the modal frequency or the mode shape residuals. Special algorithms
have been proposed in the literature [17–18] to estimate such unidentifiable solutions. The NBI
technique offers a computationally efficient alternative to compute such solutions since they are
included in the NBI set of optimal solutions.

The solutions provided by the OWR and the EWR methods for the case of M9;F-5 differ
considerably. The solution provided from the OWR is very close to the left end of the Pareto
front. This solution is nearly the same as the solution that will be obtained by minimizing only
the objective J1ðyÞ in the modal frequencies, ignoring the fit in the mode shape components.
In contrast, the EWR is very close to the right end of the Pareto front. This solution is the same
as the solution that one will obtain by minimizing only the objective J2ðyÞ involving the mode
shape components, ignoring the fit in the modal frequencies. Thus, in this case the OWR
solution, which is the most probable solution from a Bayesian inference point of view [23],
differs significantly from the EWR solution.

The corresponding variability of the Pareto optimal model parameters for the nine-parameter
fine-mesh model class M9;F used to fit the five modes is shown in Figure 14(b). Comparing with
Figure 11(c) for the variability of the nine-parameter fine-mesh model class M9;F used to fit the
10 modes, it is observed that the variability in the values of the parameters along the useful
identifiable part of the Pareto front (solutions 7 to 16) is similar to that observed in Figure 11(c).
For a number of model parameters, this variability for the case of 5 modes is slightly smaller
than the variability for the case of 10 modes due to the smaller set of modal data that have to be
traded-off in the updating.

4.9. Effect of the number of measurements on Pareto front and optimal FE models

The Pareto fronts obtained using 72 and 36 sensors are next compared in Figure 15(a) for the
nine-parameter model classM9;F updated using the ten lowest modes. The reduced number of 36
sensors is a subset of sensors involved in the 72 sensor configuration shown in Figure 3.
The following observations are made. The Pareto solution 1 at the left end of the Pareto front
corresponds to optimizing the objective in the modal frequencies, which is the same for both
sensor configurations. Thus, as observed in Figure 15(a), these two solutions give exactly the
same fit to the modal frequency residuals J1ðyÞ. The size of the identifiable parts of the Pareto
fronts, ignoring the unidentifiable part from Pareto points 17 to 20 for the 36-sensor
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configuration case, have approximately the same length for both cases. For all Pareto points, the
solutions for the 72-sensor configuration seem to provide a better fit to the mode shape residuals
J2ðyÞ. However, this is contrary to intuition since increasing the number of measurements
from 36 to 72, a higher error should be expected for the same number of model parameters.
This observed reduction in the J2ðyÞ value is due to the normalization jjf̂

r
jj of the mode shape

error defined by (1), which is different for the two sensors configuration cases since it depends on
the number of sensors used. Thus, the J2ðyÞ objectives for the two sensor configurations differ
and so a direct comparison of J2ðyÞ values between sensor configurations involving different
number of sensors is not meaningful.

The variability of the Pareto optimal parameter values for the 36-sensor configuration is
shown in Figure 15(b) and should be compared to the corresponding variability of the 72-sensor
configuration shown in Figure 11(c). Comparing the results of the identifiable part of the Pareto
front (Pareto points 1 to 16) in Figure 15(b) with the results in Figure 11(c), it can be seen that
the variability of the Pareto optimal solutions does not significantly depend on the number of
sensors used in this work. The effect of the number of sensors is expected to be more significant
as the number of sensors will decrease considerably.

5. RESPONSE PREDICTION VARIABILITY FROM PARETO OPTIMAL FE MODELS

The purpose of the model updating is to construct faithful structural models, within a selected
model class, that can be used for making improved structural response predictions consistent
with the measured data. The alternative Pareto optimal models obtained along the Pareto front
provide different response predictions that are all acceptable based on the measured data and
the measures of fit employed. The variability of the structural response predictions is next
explored using two structural response performance indices: the FRF and the damage due to
fatigue.

5.1. Variability of FRF predictions

The FRF predicted by the Pareto optimal solutions for the nine and three-parameter model
classes M9;F and M3;F are compared in Figure 16(a, b) to the FRF computed directly from the
measured data at sensor location 72 (see Figure 3) in the frequency range [20, 90Hz]. The FRF
of the initial nominal model is also shown in Figure 16(a, b) to be inadequate to represent the
measured FRF. Compared to the FRF of the initial nominal model, it is observed that the
updated Pareto optimal models from the nine-parameter model class M9;F in Figure 16(a) tend
to considerably improve the fit between the model predicted and the experimentally obtained
FRF close to the resonance peaks. Also, it can be clearly seen that there is variability in the
FRF predicted from the different Pareto optimal models 1, 10 and 20, which is due to the
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variability in the identified Pareto optimal models. This variability in FRF defines the
uncertainty bounds in FRF predicted by the data-consistent Pareto optimal FE models.

Comparing Figure 16(a, b), a significant improvement in the FRF fit is clearly observed for
the nine-parameter model class. The FRF predicted by the Pareto optimal models for the three-
parameter model class M3;F in Figure 16(b) tend to be closer to the FRF predicted by the
nominal model than to the measured FRF. Thus, the Pareto optimal models from the three-
parameter model class fail, in relation to the Pareto optimal models of the nine-parameter model
class M9;F, to give an adequate fit to the measured FRF, missing several of the resonance peaks.

5.2. Variability of fatigue lifetime predictions

Similar variability can be constructed for other structural performance indices. One important
safety-related performance index for a metallic structure is the damage accumulation due to
fatigue. The variability in the fatigue lifetime predictions at selected locations in the vehicle
frame is next considered for stochastic excitation cases modeled by stationary Gaussian
processes. These excitations for vehicles may arise from the spatial variability in road profiles.
Available frequency domain methods based on spectral moments [30,31] are used to predict the
expected damage accumulation due to fatigue using the linear Palmgren–Miner rule [32,33]
and S-N fatigue curves obtained from laboratory experiments on simple specimens that
are subjected to constant amplitude loads. The S-N curves describe the number of cycles
N ðsÞ ¼ cs�a required for failure in terms of the constant amplitude stress level s. The
parameters c and a are constants obtained from fatigue test experiments and depend on the
material and the type of the test specimen.

The frequency domain formulations for fatigue predictions depend on the probability
distribution of stress cycles corresponding to different stress levels in a stress response time
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history. Various expressions for the probability distribution of stress cycles have been proposed
in terms of the spectral moments of the stress process, which are readily obtained from the
power spectral density of the stress components involved. This results in expected fatigue
lifetime expressions in terms of the spectral moments of the stress process. Specifically, for uni-
axial state of stress, the expected fatigue lifetime is given by

Tlife ¼ ½ �Dðl0; l1; l2; l4Þ��1 ð10Þ

where �Dðl0; l1; l2; l4Þ is the expected damage rate, lj ¼
R1
�1 joj

jSsðoÞdo, i5 0,1,2,4, are the
spectral moments of the uni-axial stress s(t) that depend on the power spectral density (PSD)
Ss(o) of the uni-axial stress s(t). For the important case of wide band processes, encountered
often in applications, the widely used Dirlik approximation [34] is considered herein for
modeling the probability of stress cycles in terms of the spectral moments of the stress process.
In this case, the specific form of the expected damage �Dðl0; l1; l2; l4Þ in (10) with respect to the
spectral moments can be found in [31].

For bi-axial state of stress, which is the case for the shell elements used in the present
FE formulation, the fatigue lifetime prediction is computed using the equivalent stress
concept introduced in [35]. Specifically, the fatigue lifetime is computed by (10) with the PSD
Ss(o) of the uni-axial stress s(t) replaced by an equivalent PSD of the bi-axial stress tensor,
given by

SequivðoÞ ¼ Ssx ðoÞ1Ssy ðoÞ � Ssxsy ðoÞ13Ssxy ðoÞ ð11Þ

where Ssx ðoÞ, Ssy ðoÞ and Ssxy ðoÞ denote the power spectral density of the bi-axial stress tensor
components sx(t), sy(t) and sxy(t), respectively, while Ssxy ðoÞ denotes the cross power spectral
density matrix between the stress components sx(t) and sy(t).

The aforementioned methodology assumes that the power spectral density of the Gaussian
stress process at a structural location is available. For linear structural behavior and
Gaussian excitations, the components of the stress tensor at a structural location are also
Gaussian processes with spectral moments that can be readily obtained by combining available
random vibration techniques [36] with the FE model used to simulate the behavior of the
structure.

For demonstration purposes it is assumed that the excitations at the four bases of the vehicle
are fully correlated and modeled by a stationary white noise process. For the steel vehicle frame,
the values of the fatigue constants are taken to be c5 4.06� 1088 and a5 9.82. The variability of
the fatigue lifetime predictions is computed at three different locations in the structure shown in
Figure 3. For each location, the predictions of the variability are estimated for the model classes
with three, six and nine parameters. The stress values at these three points are relatively high
with respect to other points in the structure. All results assume modal damping values for all
modes equal to z5 0.02. For comparison purposes, the number of contribution modes in the
fatigue lifetime predictions is kept constant and equal to 10.

Figure 17(a) compares at the three selected stress points the variability of the fatigue lifetime
predictions obtained for the Pareto optimal FE models of the fine-mesh model classes M3, M6

andM9 identified using 10 modes and 72 sensors. Figure 17(b–d) shows results for the variability
of the fatigue lifetime predictions for stress points 1, 2 and 3, respectively. Results in Figure
17(b–d) also include the fatigue lifetime prediction of the Pareto optimal models obtained from
the model class M9 identified using 5 modes and 72 sensors (Case M9-5) and also from the model
class M9 identified using 10 modes and 36 sensors (Case M9-36).

Comparing the variability of the Pareto optimal predictions at the different stress points, it
can be said that the size of the variability depends on the location of the stress point, the
parameterized model class used for predictions as well as on the data used to identify the model
class. In general, the variability of the lifetime fatigue for stress points 1 and 2 is significantly
higher than the variability for the stress point 3. Specifically, for the highest fidelity model class
M9, the variability in the fatigue lifetime predictions is the highest at stress points 1 and 2, while
it is significantly smaller at stress point 3. The predictions of the Pareto optimal models from the
model class M3 as compared to the predictions of all other model classes underestimate the



fatigue lifetime values by almost one order of magnitude for the stress points 1 and 3. Moreover,
the variability in the predictions from the M3 model class is significantly reduced compared
to the variability from the predictions of the highest fidelity model class M9. The predictions
from the model class M6 for the stress points 1 and 3 are closer to the ones obtained from model
class M9, while the predictions for the stress point 2 do not vary significantly along the Pareto
optimal models. The case M9-36 gives almost the same variability in the fatigue lifetime
predictions as the model class M9. The case M9-5 gives predictions that are comparable in values
to those obtained from the model class M9 but the variability in these predictions is significantly
smaller. Compared to the predictions of the Pareto optimal models, the predictions from the
initial nominal FE model underestimate by more than one order of magnitude the fatigue
lifetime at stress points 1 and 3.

The predictions from the optimal models obtained from the OWR and EWR methods
depend on the location of these points along the Pareto front. For all model identification cases
involving 10 modes, these optimal models almost coincide along the Pareto front and therefore
their predictions are shown to be very close in Figure 17. For the model identification case
including 5 modes, the optimal models obtained by the OWR and the EWR methods differ
significantly (Figure 14(a)) and thus their fatigue lifetime predictions are expected to differ as it
is observed in Figure 17(b) for the case M9-5.

Concluding, the fatigue lifetime predictions from the Pareto optimal models may vary
considerably, even by an order of magnitude. This implies that the widely used single (updated)
FE model based on user selected weight values in WR methods is misleading and inadequate to
represent the uncertain variability in the optimal FE models and their corresponding response
predictions. The entire set of Pareto models provides this uncertainty in the optimal FE models
as well as the uncertainty bounds in the predictions from these Pareto optimal models,
consistent with the measured data and the norms used to measure the discrepancies between the
measured modal values and the modal values predicted by the FE models.
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6. CONCLUSIONS

A multi-objective identification method was used to derive the entire set of the Pareto optimal
FE models of a small-scale laboratory vehicle frame using its experimentally identified modal
characteristics. In contrast to conventional WR methods, on which a single optimal FE model is
promoted based on subjective choice of the weight values, the Pareto models contain all
alternative FE models that are also derivable by the conventional WR method by varying the
values of the weights from zero to infinity. The set of Pareto models quantifies the FE model
uncertainty by providing all possible values of the model parameters given the measured data
and the norms used to measure the discrepancies between the measured and model predicted
modal characteristics. The NBI algorithm was demonstrated to be superior to the WR-based
algorithms for solving the multi-objective optimization problem and effectively computing the
useful identifiable part of the Pareto front and the Pareto optimal solution, as well as portions of
the unidentifiable part of the Pareto front manifested at the edge points. The WR has certain
disadvantages in adequately representing the Pareto front since for the same computational
effort it may either miss significant portion of the Pareto front or promote non-interesting
unidentifiable solutions encountered at the Pareto end points.

A wide variety of Pareto optimal structural models was obtained for the vehicle frame that
trade-off the fit in the measured modal frequencies and mode shapes. This variability in the
Pareto optimal solutions is due to model and measurement errors. The updated uncertain set of
FE models was demonstrated to concentrate along certain manifolds in the parameter space.
Using model-based simulations, the uncertainty in FE models can be propagated to predict the
corresponding uncertainty in the response predictions simulated from the Pareto models. A
parametric study on the vehicle structure has demonstrated that the variability in the Pareto
optimal models depend, among other factors, on the size of the FEs selected to model the
structure, the parameterization scheme used to define the number and type of parameters to be
updated and the information contained in the measured data (number of sensors and the
number of measured modes). Reducing the size of the FEs and increasing the number of model
parameters results in higher fidelity models that tend to reduce the variability in the Pareto
optimal models and improve the fit between FE model predicted and measured modal
characteristics. The observed variability in the Pareto optimal vehicle models affects
considerably the variability in the response predictions. FRFs and fatigue lifetime predictions
have demonstrated that such variability may be significant and thus it should be taken into
consideration in the decisions made based on the updated FE models. The use of a single model
promoted by the conventional WR method is misleading and does not properly account for the
uncertainty quantified by the entire set of data-consistent Pareto optimal solutions. The
proposed multi-objective identification method provides the general framework for properly
accounting for model uncertainty in response predictions based on measured data.
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