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Abstract. Given a Galois cover of curves over Fp, we relate ε-constants

appearing in functional equations of Artin L-functions to an equivariant Eu-

ler characteristic. Our main theorem generalises a result of Chinburg from

the tamely to the weakly ramified case. We furthermore apply Chinburg’s

result to obtain a ‘weak’ relation in the general case.

Introduction

Relating global invariants to invariants that are created from local data is a
fundamental topic in number theory. In this paper, we will study this local-
global principle in the context of curves over finite fields. More precisely,
our goal is to relate ε-constants appearing in functional equations of Artin
L-functions to an equivariant Euler characteristic of the underlying curve.

Let X be an irreducible smooth projective curve over Fp, let k denote
the algebraic closure of Fp in the function field of X and let G be a finite
subgroup of Aut(X/k). We consider the equivariant Euler characteristic

χ(G, X̄,OX̄) :=
[
H0(X̄,OX̄)

]
−
[
H1(X̄,OX̄)

]
of X̄ := X ×Fp F̄p as an element of the Grothendieck group K0(G, F̄p) of all
finitely generated modules over the group ring F̄p[G]. We recall, if k = Fp,
then H0(X̄,OX̄) is the trivial representation F̄p and H1(X̄.OX̄) is isomor-
phic to the dual H0(X̄,ΩX̄)∗ of the canonical representation of G on the
space H0(X̄,ΩX̄) of global holomorphic differentials on X̄.
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On the other hand, for any finite-dimensional complex representation V
of G, we consider the ε-constant ε(V ) appearing in the functional equation
of the Artin L-function associated with V and the action of G on X. It is
known that ε(V ) ∈ Q̄. We denote the standard p-adic valuation on Q̄×P by vp,
we fix a field embedding jp : Q̄ ↪→ Q̄p, we identify the classical ring K0(C[G])
of virtual complex representations with K0(Q̄[G]) and we let jp denote also
the isomorphism K0(Q̄[G]) →̃ K0(Q̄p[G]) induced by jp. We then define
the element E(G,X) ∈ K0(Q̄p[G])Q := K0(Q̄p[G])⊗Q by the equations

〈E(G,X), jp(V )〉 = −vp(jp(ε(V ∗))), for V as above,

where 〈 , 〉 denotes the classical (character) pairing on K0(Q̄p[G]). It
may be worth pointing out that the element E(G,X) does not depend on jp;
furthermore, it follows from Frobenius reciprocity and the definition of Artin
L-functions and ε-constants that, when restricted to a sugroup H of G, the
element E(G,X) becomes E(H,X).

In Section 5 (which from the logical point of view does not depend on
the earlier sections), we will prove the following general relation between the
global invariant χ(G, X̄,OX̄) and the invariant E(G,X) created from local
data. Let d : K0(Q̄p[G])→ K0(G, F̄p) denote the (surjective) decomposition
map from classical modular representation theory.

Theorem (‘Weak’ Formula). We have

d(E(G,X)) = χ(G, X̄,OX̄) in K0(G, F̄p)Q.

While we do not assume any condition on the type of ramification of the
corresponding projection

π : X → X/G =: Y

for this formula, it is only a ‘weak’ formula in the sense that it does not de-
scribe E(G,X) itself, but only the image of E(G,X) in K0(G, F̄p), which for
instance, if the order of G is a power of p, captures only the rank of E(G,X).
The weakness of this formula may also be explained by recalling that two
F̄p[G]-modules whose classes are equal in K0(G, F̄p) are not necessarily iso-
morphic but only have the same composition factors.

The main object of this paper is to establish a ‘strong’ formula. For
this, we assume that π is weakly ramified, i.e. that the second ramification
group Gp,2 vanishes for all p ∈ X. We recall that, by the Deuring-Shafarevic
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formula, this condition is always satisfied if X is ordinary, i. e. that this con-
dition holds in a sense generically. Let X̄w denote the set of all points P
in X̄ such that π̄ is wildly ramified at P . We furthermore define the sub-
set Ȳ w := π̄(X̄w) of Ȳ := Y ×Fp F̄p and the divisor D̄w := −

∑
P∈X̄w [P ] on X̄.

By [Kö], the equivariant Euler characteristic χ(G, X̄,OX̄(D̄w)) of X̄ with val-
ues in the invertible G-sheaf OX̄(D̄w) is then equal to the image c(ψ(G, X̄))
of a unique element ψ(G, X̄) in the Grothendieck group K0(F̄p[G]) of all
finitely generated projective F̄p[G]-modules under the Cartan homomorphism
c : K0(F̄p[G]) → K0(G, F̄p). Furthermore, for every Q ∈ Ȳ , we fix a
point Q̃ in the fibre π̄−1(Q), we denote the decomposition group of π̄ at Q̃
by GQ̃ and we denote the trivial representation of rank 1 by 1. Finally, let

e : K0(F̄p[G])→ K0(Q̄p[G]) denote the third homomorphism from the classi-
cal cde-triangle. The following relation between ψ(G, X̄) and E(G,X) is the
main result of Section 4 and of this paper.

Theorem (‘Strong’ formula). If π is weakly ramified, we have

(1) E(G,X) = e(ψ(G, X̄)) +
∑
Q∈Ȳ w

[
IndGGQ̃(1)

]
in K0(Q̄p[G])Q.

In particular, E(G,X) belongs to the integral part K0(Q̄p[G]) of K0(Q̄p[G])Q.

While the ‘strong’ formula is a generalisation of the (first) main theorem
in Chinburg’s seminal paper [Ch] (applied to curves), the ‘weak’ formula is
basically a corollary of it. More precisely, using Artin’s induction theorem
for modular representation theory, one quickly sees that it suffices to prove
the ‘weak’ formula only in the case when G is cyclic and p does not divide
the order of G. That case is even more restrictive than the tamely ramified
case considered in [Ch].

In order to prove the ‘strong’ formula, we follow an approach different to
that used in [Ch]. The idea and some of the steps of this alternative approach
for tamely ramified covers of curves have been sketched in Erez’s beautiful
survey article [Er], but the preprint [CEPT5] cited there and authored by
Chinburg, Erez, Pappas and Taylor seems to have not been published.

We now give an overview of our proof of the ‘strong’ formula (1). As
already explained earlier, the left-hand side of (1) is compatible with restric-
tion to any subgroup of G. Using Mackey’s double coset formula, we will see
that the added induced representations on the right-hand side ensure that
also the right-hand side is compatible with restriction, in the obvious sense.
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We need to show that both sides of (1) are equal after pairing them with
jp(V ) as above. As usual, the classical Artin induction theorem implies that
it suffices to assume that G is cyclic and V corresponds to a multiplicative
character χ. In that case (and in fact also in the slightly more general case
when G is abelian), both sides can be explicitly computed as follows.

Let r denote the degree of k over Fp and let gYk denote the genus of the
geometrically irreducible curve Y/k. Furthermore, let Y t (respectively Y w)
denote the set of all points q ∈ Y such that π is tamely ramified (respectively
wildly ramified) at one (and then all) point(s) p ∈ X above q. For q ∈ Y t,
we restrict the character χ to the inertia subgroup Iq̃ for some q̃ ∈ π−1(q)
and compose it with the norm residue homomorphism from local class field
theory to obtain a multiplicative character χk(q) on the residue field k(q)
and to obtain the Gauss sum τ(χk(q)) ∈ Q̄. In Section 3, we will prove
the following explicit formula which essentially computes the right-hand side
of (1). We will actually prove a more general formula that applies not only
to Dw but to all divisors D =

∑
p∈X np[p] on X for which, for all p ∈ X, the

coefficient np is congruent to −1 modulo the order of the (first) ramification
group Gp,1.

Theorem (Equivariant Euler characteristic formula). We have

(2) 〈e(ψ(G, X̄)), jp(χ)〉 = r(1− gYk)−
∑
q∈Y t

vp(jp(τ(χk(q))))−
∑
q∈Y w

deg(q).

The main ingredient in the proof of this theorem is the explicit description
of ψ(G, X̄) given in [Kö]. After plugging that explicit description into the
left-hand side of (2), it then takes somewhat lengthy calculations to arrive at
the right-hand side of (2). At the end of these calculations we use a variant of
Stickelberger’s formula for the valuation of Gauss sums that will be developed
in Section 1 using local class field theory, particularly Lubin-Tate theory.

On the other hand, we will prove the following formula for ε(χ) in Sec-
tion 2. We will actually prove a more general formula which applies to the
general case when no condition on the type of ramification of π is assumed.

Theorem (ε-constant formula). Up to a multiplicative root of unity we have

(3) ε(χ−1) = |k|gYk−1 ·
∏

τ(χk(q)) ·
∏
|k(q)|

where the first product runs over all q ∈ Y such that χ is tamely ramified
(but not unramified) at q and the second product runs over all q ∈ Y such
that χ is wildly ramified at q.
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The main ingredient in the proof of (3) is the Deligne-Langlands descrip-
tion of ε(χ) as a product of local ε-constants, see [De]. To be able to apply
the Deligne-Langlands formula we need to compute the Tamagawa measure
on the ring AK(Y ) of adeles of the function field K(Y ) of Y and we need to
construct an additive character on AK(Y ) that vanishes on K(Y ). The former
is accomplished by a Mittag-Leffler type argument and the latter by using
the theory of residues and in particular the residue theorem. To complete
the proof of (3) we compute some local p-adic integrals.

The Euler characteristic formula (2) and the ε-constant formula (3) finally
imply the ‘strong’ formula (1) after observing that the difference between the
set Y w and the set of all points q ∈ Y such that χ is wildly ramified at q is

accounted for by the sum
∑

Q∈Ȳ w

[
IndGGQ̃(1)

]
.

Notations. Let p be a prime and let Qp denote the p-adic completion
of the field Q of rational numbers. We fix an algebraic closure Q̄p of Qp and
denote the residue field of Q̄p by F̄p, an algebraic closure of the field Fp with
p elements. In particular, we have a well-defined reduction map from the
ring of integers of Q̄p to F̄p which we denote by ηp. If q is a power of p,
the unique subfield of F̄p with q elements is denoted by Fq. Furthermore, let
Q̄ denote the algebraic closure of Q inside the field C of complex numbers.
Throughout this paper, we fix a field embedding jp : Q̄ → Q̄p. The unique
extension of the standard p-adic valuation on Q to Q̄p will be denoted by vp
and takes values in Q.

For any finite group G and field F , the Grothendieck group of all finitely
generated projective modules over the group ring F [G] will be denoted by
K0(F [G]) and the Grothendieck group of all finitely generated F [G]-modules
by K0(G,F ). The isomorphism K0(G, Q̄) → K0(G, Q̄p) induced by the em-
bedding jp (and other homomorphisms induced by jp) will be denoted by jp
as well. We have a canonical ismomorphism between K0(G, Q̄) and K0(G,C)
and identify these two groups with the classical ring of virtual characters of G.
The group of nth roots of unity in F will be denoted by µn(F ). If furthermore
H/F is a Galois extension, the corresponding trace map is denoted by TrH/F
or just by Tr.

For any r ∈ R, the integral part brc and fractional part {r} are related
by brc = r − {r}.

A point in a scheme will always mean a closed point.
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1 Some Local Class Field Theory

Let L/K be a finite abelian Galois extension of local fields with Galois
group G. The multiplicative group k× of the residue field of K and the
‘tame subquotient’ G0/G1 of G are related in two natural ways: on the one
hand, the norm residue homomorphism from class field theory induces a nat-
ural epimorphism γL/K from k× to G0/G1; on the other hand, the natural
representation of the inertia subgroup G0 of G on the ‘cotangent space of L’
induces a monomorphism χL/K from G0/G1 to k×. In Proposition 1.1 below
we compute the endomorphism χL/K ◦ γL/K of the cyclic group k×. We use
this later in Corollary 1.3 to reformulate a well-known formula for the p-adic
valuation of the Gauss sum τ(χ) associated with a multiplicative character χ
of G0/G1.

We denote the valuation rings of L and K by OL and OK , the maximal
ideals by mL and mK and the residue fields by l and k, respectively. The
characteristic of k and l is denoted by p > 0 and the cardinality of k is
denoted by q = pr. We write Gi = Gi(L/K) and Gi = Gi(L/K) for the ith

higher ramification group of L/K in lower and upper numbering, respectively.
Furthermore, let et = et

L/K = ord(G0)/ord(G1) be the tame part of the

ramification index e = eL/K = ord(G0) of L/K, and let ew = ew
L/K = ord(G1)

denote the wild part of e. In other words, ew is the p-part of e and et is the
non-p-part of e.

We re-normalise the norm residue homomorphism ( , L/K) : K× → G
defined in Chapters IV and V of [Ne] by composing it with the homomorphism
that takes every element to its inverse and denote the resulting composition
by

γL/K : K× → G.

By definition, the map γL/K is surjective and maps every prime element of
OK to a pre-image of the inverse of the Frobenius automorphism x 7→ xq

under the canonical epimorphism G → G/G0
∼= Gal(l/k). Furthermore,

by Theorem V(6.2) in [Ne], it maps the group O×K of units of OK onto the
subgroup G0 of G and the subgroup 1 + mK of O×K onto the subgroup G1 of
G1. Thus, the norm residue homomorphism γL/K induces the epimorphism

γL/K : k× = O×K/(1 + mK) // // G0/G
1

(denoted γL/K again). Hence G1 = G1, the tame part et of e divides |k×| =
q − 1 and the cyclic group k× contains all (et)th roots of unity.
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The one-dimensional l-representation mL/m
2
L of G0 defines a multiplica-

tive character from G0 to l× which we may view as a homomorphism

χL/K : G0/G1 → k×

because G1 is a p-group and because k× contains all (et)th roots of unity; in
fact χL/K is injective by Proposition IV.2.7 in [Se1].

Proposition 1.1. The composition χL/K ◦ γL/K raises every element of k×

to the power q−1
et
· 1
ew

.

Here, exponentiating with 1
ew

just means the inverse map of exponentiat-
ing with ew, as usual. This is the identity map if ew is a power of q which in
turn holds true for instance if q = p or if ew = 1.

Proof. Let π be a prime element of OK and let

K ⊆ L1 ⊆ L2 ⊆ . . .

denote the corresponding Lubin-Tate extensions. We recall (see §V.5 in [Ne])
that the finite extension Ln/K is obtained from K by adjoining the πn-
division points F (n) associated with a Lubin-Tate module F over OK .
By Korollar V(5.7) in [Ne] we may embed L into the compositum K̃Ln of a
finite unramified Galois extension K̃ and a Lubin-Tate extension Ln of K.
We now consider the diagram

k×
γK̃Ln/K // G0(K̃Ln/K)/G1(K̃Ln/K)

χK̃Ln/K //

����

k×

eK̃Ln/L
��

k×
γL/K // G0(L/K)/G1(L/K)

χL/K // k×.

The left-hand square of this diagram commutes by functoriality of the norm
residue homomorphism (see Satz IV(5.8) in [Ne]). From the definition of
χK̃Ln/K and χL/K we easily obtain that the right-hand square commutes as

well. It therefore suffices to prove Proposition 1.1 for K̃Ln over K. Replacing
in the lower row of the above diagram the extension L/K with the extension
Ln/K we obtain similarly that it suffices to show Proposition 1.1 for L = Ln
over K.

In order to prove Proposition 1.1 for L = Ln we need to show that the
composition χLn/K ◦ γLn/K is the identity map because et

Ln/K
= q − 1 and
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ew
Ln/K

= qn−1 by [Ne, Theorem V(5.4)]. By loc. cit., every λ ∈ F (n)\F (n−1)

is a prime element of Ln and, by [Ne, Theorem V(5.5)], we have(
γLn/K(u)

)
(λ) = [u]F (λ)

for every unit u ∈ O×K , where [u]F denotes the endomorphism of F (n) asso-
ciated with u via the Lubin-Tate module structure of OK on F (n). Further-
more we have

[u]F (λ) ≡ uλ mod (λ2)

by definition of a formal OK-module [Ne, Definition V(4.4)]. This shows that
the composition χLn/K ◦ γLn/K : k× → k× is the identity map, as was to be
shown.

For any d ∈ Z we define

SL/K(d) :=

{{
dpi

et

}
: i = 0, . . . , r − 1

}
,

where {x} = x − bxc denotes the fractional part of any x ∈ R. Although
we have used set brackets in the definition of SL/K(d), we rather consider
SL/K(d) as an unordered tuple, i.e., multiple entries of the same rational
number are allowed. As et divides q − 1 = pr − 1, we have

SL/K(dpN) = SL/K(d) for any N ∈ N.

Let now χ̄ : G0/G1 → F̄×p be a multiplicative character. (We will later
define the character χ : G0/G1 → Q̄× corresponding to χ̄.) Furthermore we
fix a field embedding β : k ↪→ F̄p of k into the algebraic closure F̄p of Fp. As
χL/K is injective, there exists a unique integer d(χ̄) ∈ {0, . . . , et − 1} such
that χ̄ is the d(χ̄)th power of the composition

G0/G1
� �

χL/K // k× �
� β // F̄×p .

While d(χ̄) depends on the embedding β, the unordered tuple SL/K(d(χ̄))

does not. Indeed, any other such embedding is equal to β ◦ FN = β(pN ) for
some N ∈ N, where F : k → k, x 7→ xp, denotes the Frobenius homomor-
phisms. Thus, choosing a different embedding amounts to multiplying d(χ̄)
with a power of p and therefore does not change SL/K(d(χ̄)).
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Furthermore, there exists a unique integer c(χ̄) ∈ {0, . . . , q−2} such that
the composition

k×
γL/K // // G0/G1

χ̄ // F̄×p

is the c(χ̄)th power of β.

Corollary 1.2. We have the following equality of unordered tuples:

SL/K(d(χ̄)) =

{{
c(χ̄)pi

q − 1

}
: i = 0, . . . , r − 1

}
.

Proof. By definition of c(χ̄) and of d(χ̄) and by Proposition 1.1 we have

βc(χ̄) = χ̄ ◦ γL/K = (β ◦ χL/K)d(χ̄) ◦ γL/K = βd(χ̄)· q−1

et
· 1
ew .

Hence

c(χ̄) ≡ d(χ̄)(q − 1)

et
· q

N

ew
mod q − 1

with N chosen big enough so ew divides qN . This implies{
c(χ̄)

q − 1

}
=

{
d(χ̄)

et
· q

N

ew

}
and finally

SL/K(d(χ̄)) = SL/K

(
d(χ̄)

qN

ew

)
=

{{
c(χ̄)pi

q − 1

}
: i = 0, . . . , r − 1

}
,

as was to be shown.

We recall that ηp : µet(Q̄p)
∼−→ µet(F̄×p ) denotes the reduction map

modulo p and that we have fixed an emebedding jp : Q̄ ↪→ Q̄p. There
obviously exists a unique character χ : G0/G1 → Q̄× such that ηpjpχ = χ̄.
Composing with the norm residue homomorphism defines the multiplicative
character

χk := χ ◦ γL/K : k× → Q̄×.

Let ζp := e
2πi
p ∈ Q̄ ⊂ C. We define the additive character

ψk : k → Q̄×, x 7→ ζTr(x)
p = exp

(
2πi

p
Trk/Fp(x)

)
,
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where Tr : k → Fp denotes the trace map. Furthermore we define the Gauss
sum

τ(χ) :=
∑
x∈k×

χk(x)−1 · ψk(x) ∈ Q̄.

The p-adic valuation of τ(χ) is usually described using fractions with denom-
inator q − 1 = ord(k×), see the proof of Corollary 1.3 below. By definition,
our χk factorises through G0/G1; this allows us to give a formula using frac-
tions with denominator et, as follows.

Corollary 1.3. We have:

(4) vp (jp (τ(χ))) =
r−1∑
i=0

{
d(χ̄)pi

et

}
.

Proof. By Corollary 1.2, the right-hand side of (4) is equal to

r−1∑
i=0

{
c(χ̄)pi

q − 1

}
.

Let s(c(χ̄)) denote the sum of digits of the p-adic expansion of c(χ̄). Then
the previous term is equal to

s(c(χ̄))

p− 1

by the first two lines of the proof of the Lemma on page 96 in [La, IV, §4].
This in turn is equal to the left-hand side of (4) by Theorem 9 in [La, IV,
§3] or by Theorem 27 in [Fr]. (Note that our τ(χ) is equal to τ(χ−1) in
[La], that the distinguished character χϕ in [La] corresponds to our β−1 via
composing with ηpjp and that the p-adic valuation of the number ω−1 in [La]
is (p− 1)−1. Similar remarks apply when Theorem 27 in [Fr] is applied.)

2 Computing ε-Constants

Let X be a smooth projective curve over some finite field k of characteris-
tic p. We assume that X is geometrically irreducible over k, i.e. that k is
algebraically closed in the function field K(X) of X. Furthermore, let G be
a finite subgroup of Aut(X/k) of order n. For any Q̄-representation V of G,
let ε(V ) denote the ε-constant associated with X, G and V , as defined in
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Sections 3.11 and 5.11 of [De] (and equal to ε(V ∗) defined in the introduc-
tion, see Section 4). The goal of this section is to explicitly describe ε(V ) up
to a multiplicative root of unity when G is abelian and the representation V
corresponds to a multiplicative character χ : G→ Q̄×.

Let
π : X → X/G =: Y

be the canonical projection, let K := K(Y ) denote the function field of Y
and let AK denote the ring of adeles of K. We start by explicitly describing
additive characters ψ : AK → Q̄× and by computing the Tamagawa measure
on AK .

For any q ∈ Y let ÔY,q denote the completion of the local ring OY,q at q,

let k(q) denote its residue field and let Kq denote the field of fractions of ÔY,q,
i.e. Kq is the completion of the function field K := K(Y ) of Y at q. The
ring AK of adeles of K is then the restricted product, over all q ∈ Y , of the
fields Kq relative to the subrings ÔY,q. We embed K into AK diagonally and
endow AK with its usual topology.

In the next few paragraphs we construct a non-trivial continuous additive
character ψ : AK → Q̄× that is trivial on K. (The construction outlined in
Exercises 5 and 6 on pp. 299-300 in [RV] seems to contain some flaws.) By
Proposition 7-15 on p. 270 in [RV], any other such character ψ̃ is then given
by ψ̃(x) = ψ(ax) for some unique a ∈ K. While there is a so-called standard
character if K is a number field (e.g. see Exercise 4 on p. 299 in [RV]), it
seems not to be possible to single out a standard character if K is a function
field. There is however a natural way to parameterize all characters ψ as
above with meromorphic differentials (rather than with field elements as in
the number field case).

Let ΩK denote the module of differentials of K over k, a vector space of
dimension 1 over K. For each q ∈ Y let ΩKq denote Kq ⊗K ΩK , a vector
space over Kq of dimension 1. This module may be viewed as the ‘universally
finite’ module of differentials of Kq over k in the sense of §11 in [Ku]. For
each q ∈ Y let

resq : Ωq → k

denote the residue map at q defined e.g. in [Ta], see also Theorem 7.14.1 on
p. 247 in [Ha]. It can be computed as follows. Let πq ∈ OY,q be a local
parameter and let x dπq ∈ ΩKq . We write x =

∑∞
k=−∞ ãkπ

k
q with ‘digits’

ãk ∈ OY,q representing ak ∈ k(q). Then we have

resq(x dπq) = Trk(q)/k(a−1) in k.
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For each meromorphic differential ω ∈ ΩK we now define the additive char-
acter

ψω : AK → Q̄×, (xq)q∈Y 7→ exp

(
2πi

p
Trk/Fp

(∑
q∈Y

resq(xqω)

))
.

Note that the sum on the right-hand side is finite because xq ∈ ÔY,q for
almost all q and because ω has at most finitely many poles.

Proposition 2.1. For each ω ∈ ΩK the additive character ψω is trivial on K.

Proof. This follows from the residue theorem, see Corollary on p. 155 in [Ta]
or Theorem 7.14.2 on p. 248 in [Ha].

The quotient AK/K is compact by Theorem 5-11 on p. 192 in [RV]. The
following proposition computes its volume. Let gY denote the genus of Y .

Proposition 2.2. For each q ∈ Y let dxq be that Haar measure on the

additive group Kq for which the volume of ÔY,q is equal to 1. Then the volume
of AK/K with respect to the measure

∏
q∈Y dxq on AK is equal to |k|gY −1.

Proof. LetMY denote the sheaf of meromorphic functions on Y , i.e.MY is
the constant sheaf associated with K. The canonical short exact sequence

0→ OY →MY →M/OY → 0

induces the long exact sequence of cohomology groups

0→ H0(Y,OY )→ H0(Y,MY )→ H0(Y,MY /OY )

→ H1(Y,OY )→ H1(Y,MY )→ . . .

Since Y is geometrically irreducible, the canonical inclusion k ↪→ H0(Y,OY )
is bijective and Serre duality (see Remark 7.12.2 on p. 246 in [Ha]) shows
that dimkH

1(Y,OY ) = gY . Furthermore the sheaf MY is constant as a
presheaf because Y is noetherian, so H0(Y,MY ) ∼= K and H1(Y,MY ) = 0.
Finally, the canonical map from the sheaf MY /OY to the direct product of
sky scraper sheaves associated with K/OY,q, q ∈ Y , has its image within the
direct sum and then obviously becomes an isomorphism, hence

H0(Y,MY /OY ) ∼= ⊕
q∈Y

K/OY,q.

12



Thus the above long exact sequence shows that we have a natural exact
sequence

0→ k → K → ⊕
q∈Y

K/OY,q → H1(Y,OY )→ 0.

Using the canonical epimorphism

AK � ⊕
q∈Y

K/OY,q

we therefore obtain the commutative diagram

0

��

0

��

0

��

0 // k //

��

∏
q∈Y
OY,q //

��

(∏
q∈Y
OY,q

)/
k //

��

0

0 // K //

��

AK
//

��

AK/K //

��

0

0 // K/k //

��

⊕
q∈Y

K/OY,q //

��

H1(Y,OY ) //

��

0

0 0 0

whose rows and columns are exact. Hence AK/K is the disjoint union of the

|k|gY cosets of
(∏

q∈Y OY,q
)
/k in AK/K, parameterized by H1(Y,OY ), and

we obtain

vol(AK/K) = |k|gY · vol

((∏
q∈Y

OY,q

)/
k

)
.

We now fix a point q0 ∈ Y and a complement V of k in the vector space k(q0)
over k and let nq0,V denote the set of elements x in OY,q0 whose residue class

is contained in V . Then the product
(∏

q∈Y \{q0}OY,q
)
× nq0,V is obviously

a fundamental domain for
(∏

q∈Y OY,q
)/

k in
∏

q∈Y OY,q and its volume is

13



equal to  ∏
q∈Y \{q0}

vol(OY,q)

 · vol(nq0,V ) = vol(nq0,V ) = |k|−1.

Therefore we have

vol(AK/K) = |k|gY · |k|−1 = |k|gY −1,

as was to be shown.

Recall that π : X → Y is a non-constant finite morphism between ge-
ometrically irreducible smooth projective curves over k such that the cor-
responding extension K(X)/K of function fields is a Galois extension with
Galois group G of order n. Henceforth, we assume that G is abelian, we fix
a multiplicative character

χ : G→ Q̄×

and we denote the corresponding ε-constant by ε(χ).
As above, for each q ∈ Y , let dxq be that Haar measure on the additive

group Kq for which the volume of ÔY,q is equal to 1. Furthermore we define

an additive character ψq on Kq that is trivial on ÔY,q but not anymore on m−1
q

where mq denotes the maximal ideal of ÔY,q. To this end we fix a generator
πq ∈ OY,q of the ideal mq and, given any x ∈ Kq, we write x =

∑∞
k=−∞ ãkπ

k
q

with ‘digits’ ãk ∈ ÔY,q representing ak ∈ k(q); we then define

ψq : Kq → Q̄×, x 7→ ψq(x) := exp

(
2πi

p
Trk(q)/Fp(a−1)

)
.

The restriction of the character χ to the decomposition group Gq̃ of some
q̃ ∈ X lying above q is denoted by χq̃. Let ε(χq̃, ψq, dxq) denote the local
ε-constant associated with χq̃, ψq and with dxq, as defined in §4 of [De].

For any two complex numbers w, z we write w ∼ z if there exists a root
of unity ζ (i.e. ζ ∈ exp(2πiQ)) such that w = ζz. Note that this equivalence
relation is finer than the equivalence relation ∼ defined in the Appendix
of [De].

Theorem 2.3. We have

ε(χ) ∼ |k|gY −1
∏
q∈Y

ε(χq̃, ψq, dxq).

14



Proof. We fix a non-zero meromorphic differential ω ∈ ΩK . By Proposi-
tion 2.1, the differential ω determines a non-trivial continuous additive char-
acter

ψω : AK → Q̄×

that is trivial on K. By Proposition 2.2, the measure |k|1−gY ·
∏

q∈Y dxq is
then a Tamagawa measure on AK , i.e. the volume of AK/K is equal to 1. Ac-
cording to (5.11.2) and (5.3) in [De], the ε-constant ε(χ) can be decomposed
as a product of local ε-constants as follows:

ε(χ) = |k|1−gY
∏
q∈Y

ε(χq̃, ψω,q, dxq);

here the local additive character ψω,q is given by

ψω,q : Kq → Q̄×, x 7→ exp

(
2πi

p
Trk/Fp(resq(xω))

)
.

We now write ω = yqdπq with some yq ∈ K× ⊂ K×q . Then we obviously have

ψq(x) = ψω,q(y
−1
q x) for x ∈ Kq.

Recall that the surjective norm-residue homomorphism

γq̃ : K×q � Gq̃

(see Section 1) maps the group Ô×Y,q of units onto the inertia subgroup Iq̃ =
Gq̃,0 of Gq̃. Let now

χ
q̃

: K×q
γq̃ // Gq̃

χq̃ // Q̄×

denote the composition of χq̃ with the norm-residue homomorphism and let
nq denote the valuation of yq at q. By Formula (5.4) in [De] we then have

ε(χq̃, ψω,q, dxq) = χ
q̃
(yq) |k(q)|nq ε(χq̃, ψq, dxq) ∼ |k(q)|nq ε(χq̃, ψq, dxq).

In fact we have equality here whenever π is unramified at q̃ and ω does not
have a pole or zero at q; in particular we have equality for almost all q ∈ Y .
Moreover we have ∑

q∈Y

deg(q)nq = deg(ω) = 2gY − 2

15



by Example 1.3.3 on p. 296 in [Ha]. Thus we obtain

ε(χ) ∼ |k|gY −1
∏
q∈Y

ε(χq̃, ψq, dxq),

as was to be shown.

In the next three propositions we are going to compute ε(χq̃, ψq, dxq). We
distinguish three cases. Recall that the character χ is said to be unramified
at q if χ is trivial on the inertia subgroup Iq̃ = Gq̃,0, it is tamely ramified at q
if χ is trivial on the ramification subgroup Gq̃,1 and it is wildly ramified at q
if χ is not tamely ramified at q.

The first proposition concerns the unramified case and in particular tells
us that the product in Theorem 2.3 is indeed a finite product.

Proposition 2.4. If χ is unramified at q, then

ε(χq̃, ψq, dxq) = 1.

Proof. This is stated in Section 5.9 of [De].

We now assume that χ is tamely ramified at q. Then the character
χ
q̃

: K×q → Q̄× (defined in the proof of Theorem 2.3) is trivial on 1 + mq by

Theorem V(6.2) in [Ne] and hence induces a multiplicative character

χk(q) : k(q)× → Q̄×

on the finite field k(q). Furthermore, as in Section 1, we introduce the
standard additive character

ψk(q) : k(q)→ Q̄×, x 7→ exp

(
2πi

p
Trk(q)/Fp(x)

)
.

and the Gauss sum

τ(χk(q)) :=
∑

x∈k(q)×

χ−1
k(q)(x)ψk(q)(x)

associated with χk(q) and ψk(q).

Proposition 2.5. If χ is tamely ramified at q, then

ε(χq̃, ψq, dxq) ∼ τ(χk(q)).
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Proof. By the previous proposition we may assume that χ is not unramified
at q. Let the character ψ′q be defined by

ψ′q(x) = ψq(π
−1
q x) for x ∈ Kq.

Furthermore let dxq denote that Haar measure on Kq for which the volume
of mq is equal to 1, i.e. dxq = |k(q)| dxq. By Formulas (5.3) and (5.4) and
Section 5.10 in [De] we then have

ε(χq̃, ψq, dxq) = χ
q̃
(πq)ε(χq̃, ψ

′
q, dxq) ∼ ε(χq̃, ψ

′
q, dxq) = τ(χk(q))

because ψ′q obviously induces ψk(q) and the character χk(q) is non-trivial.

In the final proposition we treat the wildly ramified case. If χ is ramified
at q, recall that the conductor cdq = cdq(χ) of χ at q is the smallest number
m such that χ

q̃
: K×q → Q̄× is trivial on 1 + mm

q .

Proposition 2.6. If χ is widly ramified at q of conductor cdq, then

ε(χq̃, ψq, dxq) ∼ |k(q)|cdq−1.

Proof. As χ is not tamely ramified at q, we have cdq ≥ 2. The isomorphisms

mcdq−1
q /mcdq

q →̃ (1 + mcdq−1
q )/(1 + mcdq

q ), a 7→ 1 + a,

and

m−cdq
q /m−cdq+1

q →̃ Hom
(
mcdq−1

q /mcdq
q , Q̄×

)
, γ 7→ (a 7→ ψq(γa)),

show that there exists a γ ∈ m
−cdq
q \m−cdq+1

q , unique modulo m
−cdq+1
q , such

that
χq̃(1 + a) = ψq(γa) for all a ∈ mcdq−1

q .

By Formula (3.4.3.2) in [De] we have

ε(χq̃, ψq, dxq) =

∫
γÔ×

Y,q

χ−1
q̃ (x)ψq(x)dxq =

∑
b∈k(q)×

∫
γb̃(1+mq)

χ−1
q̃ (x)ψq(x)dxq

where b̃ ∈ Ô×Y,q represents b ∈ k(q)×. For all b ∈ k(q)× and a ∈ m
cdq−1
q we

have

χ−1
q̃ (γb̃(1 + a))ψq(γb̃(1 + a))) = χ−1

q̃ (γb̃)ψq(γb̃)ψq(γ(b̃− 1)a).

17



If b̃ = 1, the function χ−1
q̃ (x)ψq(x) is therefore constant on γb̃(1 + mq) and

we hence obtain∫
γb̃(1+mq)

χ−1
q̃ (x)ψq(x)dxq = χ−1

q̃ (γ)ψq(γ)vol(γb̃+ γmq)

= χ−1
q̃ (γ)ψq(γ)|k(q)|cdq−1.

If b 6= 1, the substitution x = γb̃(1 + a) gives dxq = |k(q)|cdqda and hence∫
γb̃(1+mq)

χ−1
q̃ (x)ψq(x)dxq = χ−1

q̃ (γb̃)ψq(γb̃)|k(q)|cdq

∫
mq

ψq(γ(b̃− 1)a)da = 0

because ψq is a non-trivial additive character on m−1
q /ÔY,q. Hence

ε(χq̃, ψq, dxq) = χ−1
q̃ (γ)ψq(γ)|k(q)|cdq−1 ∼ |k(q)|cdq−1,

as was to be shown.

Corollary 2.7. We have

ε(χ) ∼ |k|gY −1 ·
∏

τ(χk(q)) ·
∏
|k(q)|cdq(χ)−1

where the first product runs over all q ∈ Y such that χ is tamely ramified
(but not unramified) at q and the second product runs over all q ∈ Y such
that χ is wildly ramified at q.

Proof. This immediately follows from Theorem 2.3 and Propositions 2.4, 2.5
and 2.6.

3 Computing Equivariant Euler

Characteristics

Let X be a geometrically irreducible smooth projective curve over Fq, let k
denote the algebraic closure of Fq in the function field K(X) of X and let G
be a finite abelian subgroup of Aut(X/k) of order n. In addition, we assume
in this section that the canonical projection

π : X → X/G =: Y

18



is at most weakly ramified, i.e. that the second ramification group Gp,2 van-
ishes for all p ∈ X. The object of this section to find the multiplicity of
each irreducible character of G in the ‘characteristic-zero versions’ of the
equivariant Euler characteristics associated with certain G-invariant divisors
on X.

For each p ∈ X let ew
p and et

p denote the wild part (i.e., p-part) and tame
part (i.e., non-p-part) of the ramification index ep of π at p, respectively.
Furthermore, let Gp := {σ ∈ G : σ(p) = p}, Ip := ker(Gp → Aut(k(p)))
and Gp,1 denote the decomposition group, inertia group and first ramification
group at p, respectively. We recall that the exponent of Gp,1 is p and that ep =
ord(Ip), e

w
p = ord(Gp,1) and et

p = ord(Ip/Gp,1). We call p tamely ramified, if
ew
p = 1 and we call p wildly ramified if ew

p 6= 1.
Our assumptions imply the following somewhat unexpected statement.

Lemma 3.1. For each p ∈ X we have et
p = 1 or ew

p = 1.

Proof. As π is weakly ramified, the natural action of Ip/Gp,1 on Gp,1\{id} is
free by Proposition 9 in §2, Ch. IV of [Se1]. As G is abelian, this can only
happen if et

p = 1 or ew
p = 1.

Let D =
∑

p∈X np[p] be a G-invariant divisor on X such that np ≡ −1
mod ew

p for all p ∈ X. Let

π̄ : X̄ := X ×Fq F̄p → Y ×Fq F̄p =: Ȳ

denote the morphism induced by π. For any P ∈ X̄ lying above p ∈ X we
write nP for np. Furthermore we put D̄ :=

∑
P∈X̄ nP [P ].

By Theorem 2.1(a) in [Kö], applied to each of the irreducible components
of X̄, the equivariant Euler characteristic

χ(G, X̄,OX̄(D̄)) :=
[
H0(X̄,OX̄(D̄))

]
−
[
H1(X̄,OX̄(D̄))

]
∈ K0(G, F̄p)

of X̄ with values in the G-equivariant invertible OX̄-module OX̄(D̄) lies in
the image of the (injective) Cartan homorphism

c : K0(F̄p[G])→ K0(G, F̄p).

We define ψ(G, X̄, D̄) ∈ K0(F̄p[G]) by

c(ψ(G, X̄, D̄)) = χ(G, X̄,OX̄(D̄)).
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Let
K0(G, Q̄p)

d ''
K0(F̄p[G]) c //

e

77

K0(G, F̄p)

be the so-called cde-triangle and let

〈 , 〉 : K0(G, Q̄p)×K0(G, Q̄p)→ Z

denote the classical character pairing (given by

〈[M ], [N ]〉 = dimQ̄p HomQ̄p[G](M,N)

for any finitely generated Q̄p[G]-modules M , N).
Furthermore, let χ : G → Q̄× be a multiplicative character of G, which

we also consider as a map to the group µn(Q̄) of nth roots of unity in Q̄ and
also as an element of K0(G, Q̄).

The main theorem of this section, see Theorem 3.2 below, will give a
formula for 〈e(ψ(G, X̄, D̄)), jpχ〉, that is the multiplicity of the character jpχ
in the virtual Q̄p-representation e(ψ(G, X̄, D̄)) of G. To state the theorem
we need to introduce further notations.

Let r denote the degree of k over Fq. When viewed as curve over k, the
curve Y becomes geometrically irreducible curve and we denote the genus of
that curve by gYk . For each p ∈ X let

χp : Ip → k(p)×

denote the multiplicative character corresponding to the obvious represen-
tation of Ip on the one-dimensional cotangent space of X at p. Note that,
in contrast to the previous section, the restriction of χ to the decomposition
group Gp is not denoted by χp but by ResGGp

(χ) in this and the next sections.
Furthermore we write

np = (ew
p − 1) + (lp +mpe

t
p)e

w
p

with lp ∈ {0, . . . , et
p − 1} and mp ∈ Z. Note that

lp = 0 and mp = np if π is unramified at p

lp +mpep = np if π is tamely ramified at p

lp = 0 and mp =
np − ep + 1

ep
if π is wildly ramified at p
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by Lemma 3.1. As above, for any P ∈ X̄ lying above p ∈ X we write
mP := mp and lP := lp.

For each q ∈ Y , we let deg(q) := [k(q) : Fq] denote the degree of q, we fix
a point q̃ ∈ π−1(q) ⊂ X and a field embedding αq̃ : k(q̃) ↪→ F̄p and we write
eq := eq̃, e

t
q := et

q̃,mq := mq̃, etc. If π is tamely ramified at q̃, the character
χq̃ is injective by Proposition IV.2.7 in [Se1] and we define dq(χ) to be the
unique integer d ∈ {0, . . . , eq − 1} such that the composition

ResGIq̃(ηpjpχ) : Iq̃
� � // G

χ // µn(Q̄)
jp // µn(Q̄p)

η // µn(F̄p)

is the dth power of the composition

Iq̃
χq̃ // k(q̃)×

αq̃ // F̄p.

Let Y t denote the set of q ∈ Y such that π is tamely but not unramified at q̃.

Theorem 3.2. We have
(5)

〈e(ψ(G, X̄, D̄)), jpχ〉 = r(1− gYk) +
∑
q∈Y

deg(q)mq −
∑
q∈Y t

deg(q)−1∑
i=0

gi(lq, χ)

where gi(lq, χ) denotes the unique rational number in the interval [− lq
eq
, 1− lq

eq
[

that is congruent to dq(χ)qi

eq
modulo Z.

Proof. We have a well-defined pairing

〈 , 〉 : K0(F̄p[G])×K0(G, F̄p)→ Z

given by
〈[P ], [M ]〉 = dimF̄p HomF̄p[G](P,M)

for any finitely generated projective F̄p[G]-module P and any finitely gener-
ated F̄p[G]-module M . By [Se2, 15.4b)] we have

〈e(x), y〉 = 〈x, d(y)〉

for all x ∈ K0(F̄p[G]) and y ∈ K0(G, Q̄p).
Hence the left-hand side of (5) is equal to

(6) 〈ψ(G, X̄, D̄), d(jpχ)〉.
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For any point P of X̄ let IP denote the inertia group of π̄ at P . Recall that
IP is equal to the decomposition group GP = {σ ∈ G : σ(P ) = P} and
that eP = ord(IP ) is the ramification index. The multiplicative character
χP : IP → F̄×P afforded by the representation of IP on the 1-dimensional
cotangent space at P is given by

χP (σ)tP ≡ σ(tP ) mod (t2P )

where σ ∈ IP and tP is a local parameter at P . For any d ∈ Z, the dth (tensor)
power of χP is denoted by χdP .

By Theorems 4.3 and 4.5 in [Kö], applied to each of the r irreducible
components of X̄, we have

(7)

ψ(G, X̄, D̄)

=− 1

n

∑
P∈X̄

etP−1∑
d=1

ew
P d
[
IndGIP

(
Cov(χdP )

)]
+
∑
Q∈Ȳ

lQ̃∑
d=1

[
IndGIQ̃

(
Cov(χ−d

Q̃
)
)]

+

r(1− gYk) +
∑
Q∈Ȳ

mQ̃

 [F̄p[G]] in K0(F̄p[G]);

here, Q̃ ∈ X̄ denotes a fixed preimage of Q ∈ Ȳ under π̄, and “Cov” means
“projective cover of”; note that, despite the fraction 1

n
, the first of the three

summands above is an element of K0(F̄p[G]), see Theorem 4.3 in [Kö].
By definition of the decomposition map d, the element d(jPχ) is equal to

the class of the 1-dimensional F̄p-representation ofG given by the composition

G
χ // µn(Q̄)

jp // µn(Q̄p)
ηp // µn(F̄×p ).
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Hence (6) is equal to

(8)

− 1

n

∑
P∈X̄

etP−1∑
d=1

ew
P d
〈
IndGIP

(
Cov(χdP )

)
, ηpjpχ

〉
+
∑
Q∈Ȳ

lQ̃∑
d=1

〈
IndGIQ̃

(
Cov(χ−d

Q̃
)
)
, ηpjpχ

〉

+

r(1− gYk) +
∑
Q∈Ȳ

mQ̃

〈F̄p[G], ηpjpχ
〉
.

If H is a subgroup of G, P a finitely generated projective F̄p[H]-module and
M a finitely generated F̄p[G]-module, then we have

〈IndGH(P ),M〉 = dimF̄p HomF̄p[G]

(
F̄p[G]⊗F̄p[H] P,M

)
= dimF̄p HomF̄p[H]

(
P,ResGH(M)

)
= 〈P,ResGH(M)〉,

i.e., the map IndGH : K0(F̄p[H]) → K0(F̄p[G]) is left adjoint to the map
ResGH : K0(G, F̄p) → K0(H, F̄p) with respect to the pairings 〈 , 〉. Hence
(8) is equal to

(9)

− 1

n

∑
P∈X̄

etP−1∑
d=1

ew
P d
〈
Cov(χdP ),ResGIP (ηpjpχ)

〉
+
∑
Q∈Ȳ

lQ̃∑
d=1

〈
Cov(χ−d

Q̃
),ResGIQ̃(ηpjpχ)

〉
+ r(1− gYk) +

∑
Q∈Ȳ

mQ̃.

It is well-known that, if R is the group ring of a finite group over a field and if
J denotes the Jacobson radical of R, then JM = 0 and Cov(M)/JCov(M) ∼=
M for any simple R-module M . As the characters ResGIP (ηpjpχ) and χdP are
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simple, we hence obtain〈
Cov(χdP ),ResGIP (ηpjpχ)

〉
= dimF̄p HomF̄p[IP ]

(
Cov(χdP ),ResGIP (ηpjpχ)

)
= dimF̄p HomF̄p[IP ]

(
χdP ,ResGIP (ηpjpχ)

)
=

{
1 if χdP = ResGIP (ηpjpχ)
0 else

for all P ∈ X̄ and d ∈ Z.
For each P ∈ X̄, let GP,1 denote the first ramification group of π̄ at P . As

GP,1 is a p-group, every character from IP to F̄×p factorises modulo GP,1. The
character χ̄P : IP/GP,1 → F̄×p induced by χP is injective by Proposition IV.2.7
in [Se1] and hence generates the group Hom(IP/GP,1, F̄×p ). In particular,
there is unique integer d(χP , χ) ∈ {0, . . . , et

P − 1} such that

χ
d(χP ,χ)
P = ResGIP (ηpjpχ).

For instance, d(χP , χ) = 0 if et
P = 1.

For each Q ∈ Y we now write eQ := eQ̃, mQ := mQ̃, etc.
All this allows us to rewrite (9) in the following way:

(10)

− 1

n

∑
P∈X̄

ew
P d(χP , χ)

+
∣∣{Q ∈ Ȳ : d(χQ̃, χ) ≥ et

Q − lQ
}∣∣

+ r(1− gYk) +
∑
Q∈Ȳ

mQ.

For each point p ∈ X, we have a canonical bijection between the set

HomFq(k(p), F̄p)

of Fq-embeddings of the residue field k(p) into F̄p and the fibre in X̄ above p.
Then, if P ∈ X̄ lies above p ∈ X and α : k(p) → F̄p corresponds to P , we
have IP = Ip and the character χP is equal to the composition

Ip
χp // k(p)× α // F̄×p .
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Hence (10) is equal to

(11)

− 1

n

∑
p∈X

∑
α∈HomFq (k(p),F̄p)

ew
p d(α ◦ χp, χ)

+
∣∣{Q ∈ Ȳ : d(χQ̃, χ) ≥ et

Q − lQ
}∣∣

+ r(1− gYk) +
∑
q∈Y

deg(q)mq.

For each σ ∈ G and p ∈ X, the character χσ(p) is equal to the composition

Iσ(p)
∼ // Ip

χp // k(p)× σ // k(σ(p))×

where the first map is given by conjugation with σ and the last map is
the inverse of the isomorphism induced by the local homomorphism σ# :
OX,σ(p) → OX,p. It is also easy to check that the character ResGIσ(p)(ηpjpχ) is

equal to the composition

Iσ(p)
∼ // Ip

ResGIp (ηpjpχ)
// F̄×p

where again the first map is given by conjugation with σ. In particular we
have

d(α′ ◦ χσ(p), χ) = d(α′ ◦ σ ◦ χp, χ)

for every α′ ∈ HomFq(k(σ(p)), F̄p). Furthermore, if α′ runs through the set
HomFq(k(σ(p)), F̄p), then α = α′ ◦ σ runs through HomFq(k(p), F̄p).

Recall that q̃ ∈ X denotes a (fixed) point above q ∈ Y . We have π−1(q) =
{σ(q̃) : σ ∈ G/Gq̃} and hence |π−1(q)| = n

eqfq
where fq = fq̃ = [k(q̃) : k(q)]

denotes the inertia degree of π at q̃. Furthermore, we recall that d(α◦χq̃, χ) =
0 if q 6∈ Y t (by Lemma 3.1). Thus (11) is equal to

(12)

−
∑
q∈Y t

∑
α∈HomFq (k(q̃),F̄p)

1

eqfq
d(α ◦ χq̃, χ)

+
∑
q∈Y t

1

fq

∣∣{α ∈ HomFq(k(q̃), F̄p) : d(α ◦ χq̃, χ) ≥ eq − lq
}∣∣

+ r(1− gYk) +
∑
q∈Y

deg(q)mq.
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Now let q ∈ Y t. The norm residue homomorphism induces a surjective
homomorphism

γq : k(q)× → Iq̃,

see Section 1. We recall that this implies that eq divides |k(q)| − 1 and that
the multiplicative group k(q)× contains all eth

q roots of unity. As in Section 1,
we now consider the character χq̃ : Iq̃ → k(q̃)× as a map

χq̃ : Iq̃ → k(q)×

from Iq̃ to the subgroup k(q)× of k(q̃)×. All Fq-embeddings α : k(q̃) ↪→ F̄p
which extend a given Fq-embedding β : k(q) ↪→ F̄p therefore yield the same
composition with χq̃. For each β there are fq such extensions α. Therefore
(12) is equal to

(13)

−
∑
q∈Y t

1

eq

∑
β∈HomFq (k(q),F̄p)

d(β ◦ χq̃, χ)

+
∑
q∈Y t

∣∣{β ∈ HomFq(k(q), F̄p) : d(β ◦ χq̃, χ) ≥ eq − lq
}∣∣

+ r(1− gYk) +
∑
q∈Y

deg(q)mq̃.

For each q ∈ Y t let βq denote the embedding

βq : k(q) �
� // k(q̃)

αq̃ // F̄p .

All other embeddings of k(q) into F̄p are then given by

k(q) F i // k(q)
βq // F̄p , i = 1, . . . , deg(q),

where F : k(q)→ k(q), x 7→ xq, denotes the Frobenius automorphism of k(q)
over Fq. Thus we can rewrite (13) as

(14)

−
∑
q∈Y t

1

eq

deg(q)∑
i=1

d((βq ◦ χq̃)
qi , χ)

+
∑
q∈Y t

∣∣∣{i = 1, . . . , deg(q) : d((βq ◦ χq̃)
qi , χ) ≥ eq − lq}

∣∣∣
+ r(1− gYk) +

∑
q∈Y

deg(q)mq.
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For a moment let χ0 = βq ◦ χq̃, χ1 = ResGIq̃(ηpjpχ) and d = d(βq ◦ χq̃, χ).

The defining identity χd0 = χ1 implies

(χq
i

0 )dq
deg(q)−i

= χq
deg(q)

1 = χ
|k(q)|
1 = χ1

because eq divides |k(q)| − 1. Thus we obtain

d((βq ◦ χq̃)
qi , χ) ≡ d(βq ◦ χq̃, χ)qdeg(q)−i mod eq.

When i runs from 1 to deg(q), then deg(q) − i runs from deg(q) − 1 to 0.
Finally, if a and m are any positive integers, then the residue class of a
modulo m in {0, . . . ,m− 1} is given by m{ a

m
}. Therefore (14) is equal to

(15)

−
∑
q∈Y t

deg(q)−1∑
i=0

{
d(βq ◦ χq̃, χ)qi

eq

}
+
∑
q∈Y t

∣∣∣∣{i = 0, . . . , deg(q)− 1 :

{
d(βq ◦ χq̃, χ)qi

eq

}
≥ 1− lq

eq

}∣∣∣∣
+ r(1− gYk) +

∑
q∈Y

deg(q)mq.

As obviously d(βq ◦χq̃, χ) = dq(χ) for every q ∈ Y t, the term (15) is equal
to the right-hand side of (5) and the proof of Theorem 5 is finished.

For q ∈ Y t, let the Gauss sum τ(χk(q)) ∈ Q̄ be defined as in the previous
section.

Corollary 3.3. If q = p, we have

〈e(ψ(G, X̄, D̄)), jpχ〉

= r(1− gYk) +
∑
q∈Y

deg(q)mq −
∑
q∈Y t

vp(jp(τ(χk(q))))

+
∑
q∈Y t

∣∣∣∣{i = 0, . . . , deg(q)− 1 :

{
dq(χ)pi

eq

}
≥ 1− lq

eq

}∣∣∣∣ .
Proof. This follows immediately from Theorem 3.2 (see also (15)) and Corol-
lary 1.3.
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Let now Xw denote the set of p ∈ X such that π is is wildly ramified at p,
let Y w := π(Xw), let Dw denote the divisor

Dw := −
∑
p∈Xw

[p]

and let
ψ(G, X̄) := ψ(G, X̄, D̄w).

Corollary 3.4. If q = p, we have

〈e(ψ(G, X̄)), jpχ〉 = r(1− gYk)−
∑
q∈Y w

deg(q)−
∑
q∈Y t

vp(jp(τ(χk(q)))).

Proof. For the divisor Dw we have lq = 0 for all q ∈ X, mq = −1 for all
q ∈ Y w and mq = 0 for all q ∈ Y \Y w. This corollary is therefore a special
case of Corollary 3.3

4 The Main Theorem

Let X be an irreducible smooth projective curve over Fp, let k denote the
algebraic closure of Fp within the function field K(X) of X and let G be a
finite subgroup of Aut(X/k). As in the previous section, we assume that the
canonical projection

π : X → X/G =: Y

is at most weakly ramified. The object of this section is to prove our ‘strong’
formula stated in in the introduction and in Theorem 4.2 below and relating
the ε-constants associated with X and finite-dimensional complex represen-
tations of G to an equivariant Euler characteristic of X̄ := X ×Fp F̄p.

Remark 4.1. Note that, in this section, our base field is Fp rather than Fq
or k. Euler characteristics of the geometrically irreducible curve X/k (or of
X×k F̄p/F̄p) are finer invariants than the corresponding Euler characteristics
of X/Fp and, as already explained in Remark 5.3 of [Ch], it seems not to
be possible to relate these finer invariants to ε-constants associated with X
and G. In this paper, this becomes apparent in the transition from Theo-
rem 3.2 to Corollaries 3.3 and 3.4. More concretely, if for instance q ∈ Y t is

a k-rational point, the sum
∑deg(q)−1

i=0

{
dq(χ)qi

eq

}
occuring in (15) is reduced to

dq(χ)
eq

and seems not to be related to the p-adic valuation of the corresponding
Gauss sum.
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We use notations similar to those introduced in the previous chapter;
most notably, the element ψ(G, X̄) ∈ K0(F̄p[G]) is defined by the equation

c(ψ(G, X̄)) = [H0(X̄,OX̄(D̄w))]− [H1(X̄,OX̄(D̄w))] in K0(G, F̄p)

where D̄w is the divisor

D̄w = D̄w(G,X) = −
∑
P∈X̄w

[P ]

and X̄w denotes the set of all points P ∈ X̄ := X ×Fp F̄p such that the
induced projection

π̄ : X̄ → Ȳ := Y ×Fp F̄p
is wildly ramified at P . We put Ȳ w := π̄(X̄w). For every representation V
of G and for every subgroup H of G, let V H denote the subspace of V fixed
by H.

The Grothendieck L-function associated with X, G and a finite-dimen-
sional Q̄-representation V of G is

L(V, t) :=
∏
q∈Y

det
(
1− Frob(q̄)tdeg(q)|V Iq̃

)−1
,

where Frob(q̃) ∈ G denotes a geometric Frobenius automorphism at q̄, i.e.
Frob(q̃) induces the inverse of the usual Frobenius automorphism of the
field extension k(q̃)/k(q). We recall that replacing the geometric with the
arithmetic Frobenius automorphism in this definition amounts to defining
the Artin L-function which in turn is equal to the Grothendieck L-function
L(V ∗, t) corresponding to the contragredient representation V ∗ of V , see
[Mi, Exercise V.2.21(h)]. By [De, Théorème 7.11(iii)], the Grothendieck L-
function satisfies the functional equation

L(V, t) = ε(V ) ta L(V ∗,
1

pt
)

with some a ∈ N and with ε(V ) denoting the ε-constant considered in the
previous sections. By [Mi, Theorem VI.13.3] (or by Corollary 1.3 and Artin’s
induction theorem), we have ε(V ) ∈ Q̄. After applying jp : Q̄ ↪→ Q̄p to ε(V ),
we may consider its p-adic valuation vp(jp(ε(V ))). The following theorem
computes this p-adic valuation in terms of the element ψ(G, X̄) introduced
above.
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Theorem 4.2. For every finite-dimensional Q̄-representation V of G we
have

(16) −vp(jp(ε(V ))) = 〈e(ψ(G, X̄)), jpV 〉+
∑
Q∈Ȳ w

dimQ̄(V GQ̃).

In particular, the p-adic valuation of jp(ε(V )) is an integer.

Remark 4.3. Using the notation E(G,X) introduced in the next section,
Theorem 4.2 can obviously be reformulated in the following succinct way.

We have:

E(G,X) = e(ψ(G, X̄)) +
∑
Q∈Ȳ w

[
IndGGQ̃(1)

]
in K0(Q̄p[G])Q,

where 1 means the trivial representation of rank 1. In particular, E(G,X)
belongs to the integral part K0(Q̄p[G]) of K0(Q̄p[G])Q.

Proof. By Artin’s induction theorem [Se2, Corollaire of Théorème 17], every
element of K0(Q̄[G])Q can be written as a rational linear combination of
representations induced from multiplicative characters of cyclic subgroups
of G. It therefore suffices to prove the following three statements.

(a) When applied to the direct sum V1 ⊕ V2 of two finite-dimensional Q̄-
representations V1 and V2 of G, each side of equation (16) is equal to
the sum of the corresponding values for V1 and V2.

(b) Each side of equation (16) is invariant under induction with respect
to V .

(c) Equation (16) is true if G is a cyclic group and V corresponds to a
multiplicative character χ of G.

Statement (a) is obvious for the right-hand side of (16). For the left-hand
side, this follows from (5.2) and (5.11.2) in [De].

It is well-known that the L-fucntion L(V, t) is invariant under induction
with respect to V . This immediately implies that the left-hand side of (16)
is invariant under induction. We now prove that the right-hand side of (16)
is invariant under induction as well. Let H be a subgroup of G and let
π̄H : X̄ → X̄/H denote the corresponding projection. Furthermore, let W
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be a finite-dimensional Q̄-representation of H. Then the right-hand side of
(16) applied to V = IndGH(W ) is equal to

(17) 〈e(ψ(G, X̄)), jpIndGH(W )〉+
∑
Q∈Ȳ w

〈1,ResGGQ̃(IndGH(W ))〉

where 1 means the trivial representation of dimension 1. By Frobenius reci-
procity [Se2, Théorème 13], this is equal to

(18) 〈e(ResGH(ψ(G, X̄))), jpW 〉+
∑
Q∈Ȳ w

〈ResGH(IndG
Q̃

(1)),W 〉.

For each Q ∈ Ȳ we have a canonical bijection

{HσGQ̃ : σ ∈ G} → π̄H(π̄−1(Q)), HσGQ̃ 7→ π̄H(σ(Q̃)).

Therefore, Mackey’s double coset formula [CR1, Theorem 44.2] implies that
(18) is equal to

(19)

〈e(ResGH(ψ(G, X̄)), jpW 〉+
∑

R∈π̄H(X̄w)

〈IndHHR̃(1),W 〉

= 〈e(ResGH(ψ(G, X̄)), jpW 〉+
∑

R∈π̄H(X̄w)

dimQ̄(WHR̃),

where, of course, R̃ is a point in π̄−1
H (R) and HR̃ := GR̃ ∩H. Let S denote

the set of all points R ∈ X̄/H such that π̄ : X̄ → X̄/G = Y is wildly
ramified at R̃, but π̄H : X̄ → X̄/H is tamely ramified at R̃. Then for each
R ∈ S, the coefficient of the divisor Dw(G, X̄) at R̃ is −1 = (eR(H) − 1) +
(−1)eR(H), where eR(H) denotes the ramification index of π̄H at R̃. Using
[Kö, Theorem 4.5] (see also equation (7)), we now obtain:

ResGH(ψ(G, X̄)) = ψ(H, X̄,Dw(G, X̄))

= ψ(H, X̄,Dw(H, X̄)) +
∑
R∈S

eR(H)−1∑
d=1

[
IndHHR̃(χ−d

R̃
)
]
−
[
F̄p[H]

]
= ψ(H, X̄)−

∑
R∈S

[
IndHHR̃(1)

]
,
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where χR̃ also denotes the restriction of χR̃ : GR̃ → F̄p to HR̃. Therefore
(19) is equal to

(20)

〈e(ψ(H, X̄)), jpW 〉 −
∑
R∈S

dimQ̄(WHR̃) +
∑

R∈π̄H(X̄w)

dimQ̄(WHR̃)

= 〈e(ψ(H, X̄)), jPW 〉+
∑

R∈(X̄/H)w

dimQ̄(WHR̃),

where (X̄/H)w denotes the set of all R ∈ X̄/H such that π̄H is not tamely
ramified at R̃. This finishes the proof of statement (b).

We finally prove statement (c). Let G be cyclic and let χ be a multi-
plicative character of G. Let r denote the degree of k over Fp. By [Ch,
Remark 5.4], the ε-constant of X/Fp is the same as the ε-constant of X
considered as a scheme over k. Hence, by Corollary 2.7 we have

(21) −vp(jp(ε(χ))) = r(1− gYk)−
∑

vp(jp(τ(χk(q))))−
∑

deg(q).

Here the first sum runs over all q ∈ Y such that χ is tamely ramified at q
and the second sum runs over all q ∈ Ȳ such that χ is not tamely ramified
at q̃. These two sets differ from Y t and Y w by the set of those q ∈ Ȳ w such
that χ vanishes on Gq̃,1. For such q we have Gq̃ = Gq̃,1 by Lemma 3.1 and
the corresponding Gauss sum is trivial. Hence (21) is equal to

(22) r(1− gYk)−
∑
q∈Y t

vp(jp(τ(χq)))−
∑
q∈Y w

deg(q) +
∑

q∈Y w:ResGGq̃
(χ)=1

deg(q)

which in turn is equal to

(23) 〈e(ψ(G, X̄)), jpχ〉+
∑
Q∈Ȳ w

〈1,ResGGQ̃(χ)〉

by Corollary 3.4, as was to be shown.

5 A Weak, but General Formula

As in the previous section, let X be an irreducible smooth projective curve
over Fp, let k denote the algebraic closure of Fp in K(X) and let G be a
finite subgroup of Aut(X/k). Without assuming any condition on the type
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of ramification of the associated projection π : X → X/G =: Y we give, in
this section, a ‘weak’ relation between the equivariant Euler characteristic
χ(G, X̄,OX̄) of X̄ := X×Fp F̄p and ε-constants associated with X and finite-
dimensional complex representations of G.

By [De, (5.2)], associating with every finite-dimensional Q̄-representation
V of G the p-adic valuation vp(jp(ε(V ))) of the ε-constant jp(ε(V )) defines
a homomorphism from K0(Q̄[G])Q := K0(Q̄[G]) ⊗ Q to Q. As the classical
character pairing 〈 , 〉 : K0(Q̄p[G]) ×K0(Q̄p[G]) → Z is non-degenerate,
there is a unique element E(G,X) ∈ K0(Q̄p[G])Q such that

〈E(G,X), jp(V )〉 = −vp(jp(ε(V )))

for all finite-dimensional Q̄-representations V of G. It follows for instance
from the definition of L(V, t) that, for every α ∈ Aut(Q̄), we have ε(α(V )) =
α(ε(V )) and that therefore E(G,X) does not depend on the embedding jp.
Recall that

d : K0(Q̄p[G])→ K0(G,Fp)

denotes the decomposition map.

Theorem 5.1. We have

(24) d(E(G,X)) = χ(G, X̄,OX̄) in K0(G, F̄p)Q.

In particular, d(E(G,X)) lies in the integral part K0(G, F̄p) of K0(G, F̄p)Q.

Proof. As the canonical pairing

〈 , 〉 : K0(F̄p[G])×K0(G, F̄p)→ Z

(see the beginning of the proof of Theorem 4.2) is non-degenerate as well
[Se2, §14.5(b)], it suffices to show that

(25) 〈P, d(E(G,X))〉 = 〈P, χ(G, X̄,OX̄)〉

for all finitely generated projective F̄p[G]-modules P . By Artin’s induction
theorem for modular representation theory [Se2, Théorème 40], every ele-
ment in K0(F̄p[G])Q can be written as a rational linear combination of repre-
sentations induced from one-dimensional projective representations of cyclic
subgroups of G. Furthermore, by Frobenius reciprocity and the fact that
ε-constants are invariant under induction, both sides of (25) are invariant
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under induction with respect to P . As in the proof of Theorem 4.2, we
may therefore assume that G is cyclic and that P corresponds to a character
χ : G → F̄×p . The fact that P is projective moreover implies that p does
not divide the order of G. In particular, the projection π is tamely ramified
and we conclude from Theorem 4.2 (or actually already from Theorem 5.2 in
[Ch]) that E(G,X) = e(ψ(G, X̄)). We therefore have

d(E(G,X)) = d(e(ψ(G, X̄))) = c(ψ(G, X̄)) = χ(G, X̄,OX̄),

as was to be shown.

Remark 5.2. If π is weakly ramified, Theorem 5.1 can be derived from
Theorem 4.2 also in the following way:

d(E(G,X)) = d

e(ψ(G, X̄)) +
∑
Q∈Ȳ w

IndGGQ̃(1)


= c(ψ(G, X̄)) +

∑
Q∈Ȳ w

d(IndGGQ̃(1))

= χ(G, X̄,OX̄(D̄w)) +
∑
Q∈Ȳ w

IndGGQ̃(1)

= χ(G, X̄,OX̄).

Here, the first equality follows from Thoerem 4.2, and the last equality follows
from Theorem 3.1 in [Kö] or from the simpler formula [Bo, Théorème 4.10].

We end with the following problem.

Problem 5.3. Describe E(G,X) within K0(Q̄p[G])Q in terms of global geo-
metric invariants of X̄ in a way that generalises Theorem 4.2 from the weakly
ramified situation to the general situation considered in this section and that
proves the conjecture that E(G,X) belongs to the integral part K0(Q̄p[G])
of K0(Q̄p[G])Q.
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