
Multi-Agent Patrolling under Uncertainty and Threats

Shaofei Chen1,2, Feng Wu2, Lincheng Shen1, Jing Chen1, and Sarvapali Ramchurn2

1 College of Mechatronics and Automation, National University of Defense Technology, China
2 School of Electronics and Computer Science, University of Southampton, UK

Abstract. We investigate a multi-agent patrolling problem in large stochastic
environments where information is distributed alongside threats. The informa-
tion and threat at each location are respectively modelled as a multi-state Markov
chain, whose states are not observed until the location is visited by an agent.
While agents obtain information at a location, they may suffer attacks from the
threat at that location. The goal for the agents is to gather as much information
as possible while mitigating the damage incurred. We formulate this problem as
a Partially Observable Markov Decision Process (POMDP) and propose a com-
putationally efficient algorithm to solve it. We empirically evaluate our algorithm
in a simulated environment, and show that it outperforms a greedy algorithm up
to 43% for 10 agents in a large graph.

Keywords: Multi-Agent Patrolling, Planning under Uncertainty, Partially Ob-
servable Markov Decision Process

1 Introduction

Multi-agent patrolling problems arise in many real-word applications, such as disaster
response and military missions in hostile environments. Previous work has focused on
how to guard the targets [1–6] or how to gather information as much as they can [7,
8]. But in many real scenarios, agents gather information while facing to a number
of threats. Such threats may be natural ones (such as fire and radiation) or adversarial
ones (such as terrorists). For example, when agents visit a building in a disaster area,
the building states (intact, about to collapse, collapsing or collapsed) may correspond
to threat states (levels) for agents, and the threat at each location may be changing
stochastically, such that it switches between “about to collapse” to “collapsed” due to
an aftershock [9]. When patrolling after an earthquake, a team of agents may share
the threats observed at each position and estimate the damage they might suffer of
visiting each position and revise the patrol schedule. In turn, in hostile scenarios, an
adversary may introduce some threats in the environment and continuously change their
distribution stochastically. For example, a group of unmanned aerial vehicles (UAVs)
executing a reconnaissance mission in a specific area may face an adversary that may
setup explosives near each target. As the attack resources may be limited, the adversary
may schedule the distribution dynamically. The information in each environment may
also change dynamically (e.g., a victim may get out of danger or the fire may get close
to a victim).

While research in the area of single mobile agent path planning has considered
threats as a probability and typically try to devise steps to avoid it at all cost [10, 11],



2

they do not consider scenarios where the agents cannot simply avoid threats as above.
Moreover, previous work on information gathering in dynamic environments [8] have
focused on specific environmental phenomena (e.g., monitoring algal bloom growth in
lakes) rather than stochastic events as in our scenarios. [3, 4] consider when an agent
should stop observe in security game.

Against this background, we present a new online multi-agent patrolling algorithm
under uncertainty and threats from the environment. The information and threat at each
location are respectively modelled as a multi-state Markov chain, whose states are not
observed until the location is visited by some agent. When visiting a location in the en-
vironment, agents acquire information corresponding to the information state and reset
the information state variable. Moreover, agents may suffer a level of damage associated
with the threat state (captured by Markov chain that remains unaffected by the actions
of agents). The goal for the agents then to gather as much information as possible and
minimize damage incurred. In more detail, we formulate the problem as a Partially Ob-
servable Markov Decision Process (POMDP) and introduce a belief state of reduced
dimension for the problem. We then propose a predictive heuristic and develop an on-
line single-agent algorithm. Instead of computing a joint policy for multiple agents, our
multi-agent algorithm sequentially computes policies for individual agents. In particu-
lar, we extend the work of [7, 8] in our multi-agent algorithm to account for the cost
of sequentially computing policies for individual agents. Thus, this paper advances the
state of the art in the following ways:

– We propose the first algorithm for multi-agent patrolling under uncertainty and
threats. We model the information and threat as Markov chains at each location in
the environment and cast the problem as a Partially Observable Markov Decision
Process (POMDP).

– We design a predictive heuristic to prune the search space considerably and provide
an online single-agent algorithm. Moreover, we propose a multi-agent algorithm
that sequentially computes policies for individual agents.

– We empirically show that for 10 agents in a large graph, our algorithm outperforms
greedy by more than 43%.

The remainder of this paper is structured as follows. First we model the environ-
ment. We then formulate the decision problem as a POMDP and provide an algorithm
for individual agents. Building upon this, we then present our multi-agent algorithm
and evaluate it in a number of realistic scenarios.

2 The Physical Environment

We model the environment that the agents need to patrol as an undirected graph G =
(V,E). The set of spatial coordinates V is embedded in Euclidean space and edges E
encode the movements that are possible between them. The number of the vertices is
N = |V |. Time is denoted as the set of time steps T = {t1, t2, . . .}.

We assume each vertex holds two states for information and threat. The information
state variable indicates different levels of the new information generated at a given
vertex since the last time it was visited by an agent. The threat state variable reflects how



3

much damage the agent will suffer when visiting this vertex. The two state variables
at each vertex change dynamically as independent, discrete-time multi-state Markov
chains.

To clarify our setting, consider an agent that enters into a building on fire. In our
setting, this is equivalent to the agent visiting a node in the graph. The fire level (threat
state variable) and valuable information about victims and assets (information variable)
changes over time. While exploring the building, the agent may acquire some informa-
tion and suffer some damage due to the fire. We elaborate on the formal model of these
states in the next section.

2.1 Markov Model of Threat and Information

Markov models are widely used to model dynamic states in stochastic environments.
In this paper, we model the threats and information as dynamically changing Markov
chains. At each time step, an agent selects one adjacent location to visit based on the
estimated information value and the prior observation of threat states at each location.
It then obtains a reward based on the value of the information, and suffers a loss which
is associated with the threat state. After that, the information state of the visited vertex
reset immediately.

The threat states for each vertex R = (R1, R2, . . . , RK1
) indicate the threat lev-

els of each vertex v ∈ V . The “damage” that an agent suffers when visiting a vertex
is captured by the formulation h : R → R+. We denote L = [h(R1), . . . , h(RK1)]
as the damage value vector, where h(Ik) corresponds the damage value an agent will
lose if the threat state is Rk and we assume h(k) is increases monotonically with
k ∈ {1, . . . ,K1}. For example, fire level at a vertex has 4 statesR = (R1, R2, R3, R4),
which correspond to 4 level of damage L = (0, 4, 6, 10). Threat states remain unaf-
fected by actions of agents, evolve with time as a Markov chain model independently.
We denote the matrix of transition probabilities for each two of the K1 threat states as:

PR =


pR11 · · · pR1K1

pR21 · · · pR2K1

...
. . .

...
pRK11 · · · pRK1K1

 =


PR1

PR2

...
PRK1

 (1)

Similar to threat states, information states for each location I = (I1, I2, . . . , IK2
)

correspond to K2 stages of information values which agents could get when visiting a
given location. The value of information is determined by the function f : I → R+, and
f(k) increases monotonically with k ∈ {1, . . . ,K2}. We denoteF = [f(I1), . . . , f(IK2

)]
as the information value vector, where f(Ik) corresponds the information value an agent
could get if the information state is Ik. For example, information at a vertex has 4 states
I = (I1, I2, I3, I4), which correspond to 4 information values L = (0, 2, 5, 10). While
the threat state changes without any effect from the actions of agents, the information
state at a given vertex will reset to I1 when there is an agent visiting this vertex (I1 is
the information state which means no new information was generated after last visit),
and then independently evolves as a K2-state Markov chain model with a matrix of



4

transition probabilities for each two of the K2 information states as:

PI =


pI11 · · · pI1K2

pI21 · · · pI2K2

...
. . .

...
pIK21 · · · pIK2K2

 =


PI1
PI2

...
PIK2

 (2)

In this paper, we assume the state transition probabilities of {pIij} and {pRij} are
known.3Having defined the information and threat models, we now need to plan the se-
quential patrolling actions based on the observations and the model of the environment.
In order to minimize the damage incurred by the agents and maximize the information
gained, we next provide a solution to the patrolling actions that agents needs to choose.

3 Single-Agent Patrolling

In this section, we first define the information gathering agents and the POMDP frame-
work. Then we present the belief state of reduced dimension. After that, we propose a
predictive heuristic and an online single-agent algorithm.

3.1 Patrolling Agents

An patrolling agent is a physical mobile entity capable of gathering information, and
maybe damaged by the threat when visiting a vertex. The set of all patrolling agents is
denoted as A = {1, . . . , |A|}. At each time step t ∈ T , each agent is positioned at a
given vertex in graph G. The movement of each agent is atomic, i.e. takes place within
the interval between two subsequent time steps, and is constrained by layout graph G,
i.e. an agent positioned at a vertex v ∈ V can only move to a vertex v′ ∈ adjG(v) that
is adjacent to v in graph G. The speed of the agents is assumed to be sufficient to reach
an adjacent vertex within a single time step.

3.2 The POMDP Framework

The state at time step t is a tuple {v(t), S(t)} = {v(t), [s1R(t), . . . , sNR (t)], [s1I(t), . . . ,
sNI (t)]}, where v(t) is the current position, siR(t) ∈ R and siI(t) ∈ I are the threat
state and information state at vertex. We assume that v(t) is deterministic and only de-
termined by the destination of the action. While, S(t) follows the discrete-time Markov
process with M = KN

1 K
N
2 states. Note that S(t) is not directly observable by the

agent.
In this POMDP framework, the agent selects an adjacent vertex vj ∈ adjG(vi) to

visit in the next time step as an action, where vi is the current position. When visiting
vertex vi at time step t, the agent observes θ(t) = [siR(t), s

i
I(t)], where siR(t) is the

1 In practice, these transition probabilities may be unknown and the threat state maybe even
controlled by an adversary, but it is beyond the scope of this paper.



5

threat state and siI(t) is the information state at the current vertex. The information
state at vi reset to I1 immediately. The instantaneous reward at time t is then:

R(t) = αf(siI(t))− (1− α)h(siR(t)) (3)

where α ∈ [0, 1]. The objective is to choose the movement action sequentially to max-
imize the total expected reward accumulated over |T | steps. We now have a POMDP
since, the environment state S(t) cannot be fully observed due to the limited sensing
ability of agents. Hence, we model the belief vector of the states subsequently.

In our model, the states are not directly observable. The belief vector B(t) =
[b1(t), . . . , bM (t)] is defined as the posterior probability distribution for each state,
where bi(t) the conditional probability the environment state is at the ith state at the
current time step t.

For any t, the belief vector is a sufficient statistic for the design of the optimal action
for next time step [12]. A policy π specifies the action will execute in any given belief
state. An optimal policy π∗ is a policy by which the agent gets the maximum total
expected reward accumulated over |T | steps.

Solving POMDPs is computationally prohibitive except for problems with small
state and action space [13], as the dimension of belief vector increases exponentially
with the number the vertices. Although the optimal policy may be computed offline and
stored before starting the patrol mission, it is still difficult to adapt to changes of the
models of environments. To address this, we propose an online method by introducing
a reduced belief vector and develop a predictive heuristic to reduce the search space
while produce high quality solutions (as we show later).

3.3 Belief State of Reduced Dimension

As the threat state and information state variables at each vertex evolve independently
and v is deterministic, we can find a sufficient statistic for the optimal policy whose
dimension linearly grows with N , similar to [14, 15]. We introduce the reduced belief
state and its transition function in this section.

We define a sufficient statistic belief vector at time t as the conditional probability
(conditioned on the observation and decision history) Ω(t) = [ΩR(t), ΩI(t)] where:

ΩR(t) = (w1
R(t), . . . , w

N
R (t))

wnR(t) = (wnR1(t), . . . , w
n
RK1

(t))
ΩI(t) = (w1

I (t), . . . , w
N
I (t))

wnI (t) = (wnI1(t), . . . , w
n
IK2

(t))

(4)

where wnRk1(t) is the condition probability that the threat state of vertex vn is Rk1 ,
wnIk2(t) is the condition probability that the information state of vertex vn is Ik2 . Then
Ω(t) is a sufficient statistics of optimal decision making. By exploiting the statistical
independence among vertices, we reduce the dimension of the sufficient statistic from
(K1 +K2)

N to (K1 +K2)N . This allows us to reduce the computational and storage
complexity of the optimal patrolling policy significantly.

Initially, we assume that the agent is at a specified vertex v(0), and we have ini-
tial probabilistic information about the state of each of the N vertices [ΩR(1), ΩI(1)].



6

Then, he belief vector Ω(t + 1) and position v(t) for (t > 0) are conditioned on the
observations and the action history. The transition δ (v(t− 1), Ω(t)|a(t), θ(t)) from
position v(t − 1) and belief state Ω(t) upon an action a(t) = vi ∈ adj (v(t− 1)) and
observation θ(t) can be generated as follow:

v(t) = vi

wnR(t+ 1) =

{
PRk if vn = vi, s

i
R(t) = Rk

wnR(t)PR if vn 6= vi

wnI (t+ 1) =

{
PI1 if vn = vi
wnI (t)PI if vn 6= vi

(5)

where Rk ∈ R, Ik ∈ I and vn ∈ V .
Based on the transition function above, a policy π specifies a sequence of actions

π = [π(1), π(2), . . .], where π(t) is a map fromΩ(t) and v(t−1) to v(t) ∈ adjG(v(t−
1)) for time step t. Given this, the optimal policy can be computed:

π∗ = argmax
π

Eπ
[ ∞∑
t=1

γtRπ(t) (Ω(t)|Ω(1), v(0))

]
(6)

where Rπ(t) (Ω(t)) is the reward obtained when the belief state is Ω(t), γ ∈ [0, 1] is
the discount factor.

Although the dimensionality of the belief state is reduced, the problem is still a
POMDP and finding the optimal solution is intractable. Based on this reduced belief
vector, we develop a predictive heuristic and present the online single-agent algorithm
that implements this heuristic in the next section.

3.4 The Predictive Heuristic

Here, we develop a predictive heuristic by: i) introducing the concept of stochastic dom-
inance and add the assumption that the Markov state transition matrixes are monotone
matrixes, ii) based on the monotonicity of the transition matrixes, the relationship of
the belief states between different vertices become “predictable” without observations,
iii) defining the predictive heuristic.

Stochastic Dominance Here, we introduce the concept of stochastic dominance. Stochas-
tic dominance is a central theme in a wide variety of applications in economics, finance
and statistics [17]. Stochastic dominance � between two K dimension probability vec-
tor x, y is defined as x � y, if:

K∑
j=i

x(j) ≥
K∑
j=i

y(j), for i = 2, 3, . . . ,K (7)

Monotonic Assumption We assume that the Markov information model and Markov
threat model are monotonic matrixes, i.e. the matrix of transition probabilities PR and
PI satisfies:

PRK1 � PRK1−1 � . . . � PR1

PIK2
� PIK2−1 � . . . � PI1

(8)



7

If the matrix of transition probabilities PR and PI satisfy the assumption above, then
PR and PI are monotone matrixes [16]. Under this assumption, if wnI (t) � wn

′

I (t),
then wnI (t)PI � wn

′

I (t)PI . From (5), we know that probability vectors for information
states of two vertices keep the relationship of stochastically dominance when no agent
visits any of them. Obviously, if wnI (t) � wn

′

I (t), then wnI (t)F ≥ wn
′

I (t)F , which
means that a stochastically dominant information belief vector is likely to have a higher
information value. The same is true that a stochastically dominant threat belief vector
is likely to have a higher damage value. In particular, as the information state at a given
vertex will reset to I1 when there is an agent visiting this vertex, the belief vector of
information states (1, 0, . . . , 0) is stochastically dominated by the belief vector of any
vertex which is not being visited, so the more recently visited vertex always has a lower
expected information value.

Then given on the Monotonic Assumption, the relationship between the belief states
at different vertices become “predictable” without observations. We can thus predict the
expected reward agents may get from one vertex of the graph when visiting it at a near
future step.

Hence, we denote a feasible policy of lengthD at time t as πD(t) = (πt+1, . . . , πt+D),
which consists of D consecutive deterministic vertices/actions.

Predictive Heuristic Here, we define the predictive heuristic as the predictive expected
future reward E[R̂(πD(t))] for policy πD(t), which is the aggregate of the expected
reward of each step in πD(t) as follows:

E[R̂(πD(t))] =
D∑
i=1

γt
(
αŵ

πt+i

I (t+ i)F

−(1− α)ŵπt+i

R (t+ i)L
) (9)

where, [ŵπt+i

I (t + i), ŵ
πt+i

R (t + i)] is the predictive belief vector at the vertex πt+i
and time t + i. For the step t + 1, we can get the predictive belief vector [ŵπt+1

I (t +
1), ŵ

πt+1

R (t+1)] by the current belief vector Ω(t), current action a(t) and observations
θ(t), i.e. Ω(t+ 1) = δ (Ω(t)|a∗t , θ(t)), which is the belief vector at t+ 1 and obtained
from Equation 5. And for {t+ 2, . . . , t+D}, we get the predicted belief vector based
on a transition which omits observations in Equation 5 as follows:

ŵnR(τ + 1) = ŵnR(τ)PR

ŵnI (τ + 1) =

{
PI1 if vn = πτ
ŵnI (τ)PI if vn 6= πτ

(10)

where τ = {t+ 1, . . . , t+D − 1}.
Given the predictive heuristic and policies that looks ahead D time periods, the

agent compares all feasible paths of length D and chooses the next location to visit
according to the path that gives the highest predictive expected reward gained over that
path. The details of how to use the heuristic in our online single-agent algorithm is
presented in the next section.



8

Algorithm 1 Single-Agent Patrolling
Require: PR: the Markov risk model
Require: PI : the Markov information model
Require: Ω(t): the belief state of current time step
Require: θ(t): the observations at the current position
Require: v(t): current position, i.e a∗(t).
Ensure: a∗(t+ 1): next action of the agent

. Step 0: get all feasible policies ΠD(t);

. Step 1: computing best policy:
1: for πD(t) ∈ ΠD(t) do
. Step 1.1: Get predictive belief state for next D steps:

2: Ω(t+ 1)← δ (Ω(t)|vt, θ(t))
3: for τ ∈ {t+ 1, . . . , t+D − 1} do
4: for vn ∈ V do
5: ŵn(τ + 1)← δ̂ (ŵn(τ)|πτ (τ))
6: end for
7: end for
. Step 1.2: Compute the predictive reward for πD(t):

8: E[R̂(πD(t))] = αw
πt+i

I (t+ i)F + βw
πt+i

R (t+ i)L
. Step 1.3: Compare πD(t) with the stored best policy:

9: if E[R̂(πD(t))] > E[R̂(π∗D(t))] then
10: π∗D(t)← πD(t)
11: end if
12: end for

. Step 2:return the next action from the best policy π∗i
13: return a∗(t+ 1)← π∗t+1

3.5 The Online Algorithm

Based on the predictive heuristic, we propose the online algorithm for single-agent
patrolling problem (Algorithm 1) in this section.

First, we compute ΠD(t), which is the set of all the feasible policies that start from
current position v(t) (step 0). Then, we compute the predictive expected reward for
all the policies. For each policy, the belief state at t + 1 is updated by the belief state,
position and observations at t (line 2) and the predictive belief state at {t+2, . . . , t+D}
is computed by Equation 10 (line 3-7). Given this, we compute the predictive reward
for the policy (line 8). Thus, the best policy is:

π∗D(t) = argmax
πD(t)

E[R̂(πD(t))] (11)

The best next action here is computed as a∗(t+ 1) = π∗t+1, which is the first action of
best policy (line 13).

Having defined the online single-agent algorithm for our formulation of patrolling
under uncertainty and threats, we extend it to compute policies for multi-agent problems
next.



9

4 Multi-Agent Patrolling

In this paper, we assume all the agents can share their collected observations with each
other. Thus, team of agents may not only obtain more information about the environ-
ment, but each agent may also make decisions given threat observations are shared by
other agents. On the other hand, when more than one agent is positioned at one same
vertex, only one information value is obtained for the team but each agent suffers the
same damage as if one agent was visiting. Given the two assumptions above, we design
an online multi-agent algorithm to coordinate the agents in their patrolling tasks.

First, we note that, while the state variable described in Equation 4 can be used to
express the belief state for a multi-agent POMDP, the action space of the POMDP is the
Cartesian product of the action spaces of the individual agents. Hence, in so doing, the
size of the action space grows exponentially with the number of agents |A|, allowing
only the smallest of problem instances to be solved. Instead, sequentially computing
policies for individual agents as in our multi-agent algorithm avoids this problem of
computing a joint policy for the team.

Similar methods have been successfully used to solve multi-agent problems [7, 8].
As these formulations are different from our POMDP, a straightforward application of
their methods is not possible. Hence, we consider how to make up the deficiency of
sequentially computing policies for individual agents in partially observable problem
using our online single-agent algorithm.

When sequentially computing policies for individual agents using our predictive
heuristic, there implicitly exists an order in which the agents make actions; agent 1
completes D step actions of its best policy, agent 2 second, etc.. The expected future
reward of a policy πiD(t) of agent i is conditioned on both position vi(t) belief vector
Ω(t + 1) and the best policies of the previously computed policies of agents A−i =
{1, . . . , i− 1}.

The best online patrolling policy for agent i in a multi-agent setting is recursively
defined as:

π̂∗1 = argmaxπ̂1
R′ (v1(t), Ω(t+ 1))

π̂∗2 = argmaxπ̂2
R′ (v2(t), Ω(t+ 1), π̂∗1)

...
π̂∗i = argmaxπ̂i

R′
(
vi(t), Ω(t+ 1), π̂∗1 , . . . , π̂

∗
i−1
) (12)

where we use π̂∗i denotes the best policy of agent i.
To ensure the reward function only takes into account marginal reward value, we

need to exclude double counting. There are two types of double counting. First, syn-
chronous double counting, which occurs when two agents patrol the same cluster within
the same time step. In this case the reward for patrolling the vertex is received twice.
Second, asynchronous double counting, which occurs when agent i design to visit ver-
tex v at t1, and there was an action of visiting vn by agent j (j < i) at t2 (t1 < t2)
during the D horizon.4

2 Here, the situation is the agent j will visit vertex vn after agent i. For the situation agent j
visits vertex vn before agent i (i.e. t1 ≥ t2) could be dealt with directly when calculating
E[R̂(πD(t))] in Equation 9.



10

Without loss of generality, we consider the situation that only vn in πiD(t) of agent
i has been visited by agent j. If more than one agent of A−i has an action to visit vn,
we assume the time t2 is nearest5to t1. Based on this assumption, we can see that the
expected information reward of agent j for visiting vertex vn is overestimated, as it is
unaware that the i will reset the information at the time t1. Thus, we introduce a penalty
p̂ ∈ R+ for agent i that compensates for the reduction of reward of agent j, as follows:

R′i
(
vi(t), Ω(t+ 1), π̂∗1 , . . . , π̂

∗
i−1
)
= E[R̂(πD(t))]− p̂ (13)

where E[R̂(πD(t))] is the expected reward function defined in Equation 10, and p̂ is the
loss incurred by agent j that will visit the vertex vn after i, which is defined as follows:

p̂ = r̂expected − r̂revised (14)

where the r̂expected ∈ R+ is the item that agent j compute the expected reward of visiting
vertex vn and the r̂revised is the revised expected reward of agent j visiting vertex vn
computed by agent i with considering its own action. We define the revised expected
belief states at vertex vn and between time [t1+1, . . . , t2] are {w̃n(t1+1), . . . , w̃n(t2)}
, which are obtained by the transition Equation 10 based on the predictive belief state
ŵn(t1) and action a(t1) = vn. Then the revised expected reward is as follows:

r̂revised = γt2 (αw̃nI (t2)F − (1− α)w̃nR(t2)L) (15)

Now using the algorithm to compute the policy of length D as before, we obtain an
action for each individual agent. A team action is formed by combining these individual
actions. This team action is not optimal, as the policy of agent i is computed greedily
with respect to the policies of agents A−i. However, we can still bound the the per-
formance guarantees compared with the policy obtained by searching the joint action
space.

We use the following theorem [18] to obtain a bound on the value of the greedily
selected policies:

Theorem 1. Let f : 2E → R be a non-decreasing submodular set function. The greedy
algorithm that iteratively selects the element e ∈ E that has the highest incremental
value with respect to the previously chosen elements I ∈ E:

e = argmax
e∈E\I

f(e ∪ I)− f(I) (16)

until the resulting set I has the desired cardinality k, has an approximation bound f(IG)
f(I∗)

at least 1−
(
k−1
k

)k
, whereI∗ ∈ E is the optimal subset of cardinality k that maximises

f .

For the number of agents |A| in our formulation, the approximation bound of the

greedy algorithm is 1−
(
|A|−1
|A|

)|A|
. [7] showed that this approximation bound is mono-

tonically decreasing with |A|, and Thus, for |A| → ∞, the multi-agent policy yields at
3 Only the nearest one needs to be taken into account and this can be deduced from the transition

Equation 10.



11

least ≈ 63% the reward as the best policy obtained by searching the joint policy space
for |A| agents.

Having formulated the problem and designed both single-agent and multi-agent al-
gorithms, we will evaluate our methods in the next section.

5 Empirical Evaluation

To empirically evaluate our approach, we applied it to a large graph, which contains
350 vertices and 529 edges. In the paper, the single-agent algorithm could be seen as
a special case of the multi-agent algorithm. So we just present the results of the multi-
agent algorithm here. In this graph, we simulated two scenarios:

– Scenario A: we use same Markov information model and threat model for every
vertex;

– Scenario B: we attribute 3 different information models and threat models to dif-
ferent vertices in the graph.

We assume γ = 0.9, α = 0.33, F = [0 1 2 3 4], L = [0 1 2]. In the
Scenario A, we define the two Markov chains as follows:

PR =

0.9 0.1 0
0.4 0.4 0.2
0.0 0.2 0.8

 (17)

PI =


0.8 0.1 0.1 0 0
0.2 0.7 0.0 0.1 0
0.1 0.1 0.7 0.1 0
0 0.0 0.1 0.8 0.1
0 0 0.1 0.1 0.9

 (18)

As we can see, the transition function PR and PI satisfies Monotonic Assumption of
Equation 8. In Scenario B, we attribute several different Markov models to different
vertices.

We measured the total reward of the information value and the damage suffered,
and we benchmark our algorithm against Greedy and Random be more precise:

– Random moves to a random location adjacent to the agents’ current position.
– Greedy moves to the adjacent location with the highest value in the next step. When

more than one agents are positioned at one same vertex, only one information value
is obtained for the team but each agent suffers the same damage as if one agent was
visiting. We assume the greedy algorithm sequentially computes greedy policies
for individual agents to avoid different agents selecting the same vertex, which is
similar to PH-1.

– PH-D is our multi-agent patrolling algorithm and we adjust the lookahead param-
eter D to different values to investigate the value of the extra computation involved
for higher values of D. We illustrated the results of our algorithms of different D.



12

Fig. 1. The result of the scenario with the same model for each vertex.

Fig. 2. The result of the scenario with different models for each vertex.

The initial locations of the agents are randomly distributed in the graph. Agents
patrol continuously for 3000 time steps in the stochastically changing graph. For each
scenario and each algorithm we ran 20 rounds and plotted the results6 in Figures 1
and 2. In both scenarios, random algorithm performs poorly and its total reward never
reaches more than 30% of the reward obtained by the other two algorithms. In Scenario
A, both PH-8 and Greedy perform well, and PH-8 outperforms than greedy algorithm
by at least 5%. However, for the graph with different Markov models in Scenario B, our
algorithm is significantly better than all the other algorithms, and PH-8 outperforms
greedy algorithm by more than 43% for 10 agents and by 21% for 15 agents.

6 Conclusion

In this paper, we developed an online multi-agent patrolling algorithm for large partial
observable stochastic environment where the information are distributed with threats.
A predictive heuristic is defined to evaluate the policies of looking ahead several steps.
For the multi-agent algorithm, we extended the sequential policy computation method
for individual agents to deal with partially observable problems. We empirically showed
that for 10 agents in a large graph, our algorithm outperforms greedy by more than 43%.
As this is the first algorithm for patrolling with uncertainty and threats, we intend to
study a better heuristic and algorithms that provide theoretical performance guarantees
in future work.

6 The error bars depict the 95% confidence intervals around the means. Non-overlapping error
bars invalidate the null hypothesis with α = 0.05.



13

7 Acknowledgements

This work was partially supported by the EPSRC ORCHID project (EP/I011587/1).
Mr. Chen would like to thank the China Scholarship Council for sponsoring his visit-
ing study in University of Southampton, Hunan Provincial Innovation Foundation For
Postgraduate (No.CX2013B013), and National University of Defense Technology for
Outstanding Graduate Innovation Fund (No.B130302).

References

1. Agmon, N., Kraus, S., Kaminka, G. A., and Sadov, V.: Adversarial Uncertainty in Multi-Robot
Patrol. In IJCAI. 1811-1817 (2009)

2. Basilico, N., and Gatti, N.: Automated abstractions for patrolling security games. In: AAAI
(2011)

3. An, B., Kempe, D., Kiekintveld, C., Shieh, E., Singh, S., Tambe, M., and Vorobeychik, Y.:
Security games with limited surveillance. In: AAAI (2012)

4. An, B., Brown, M., Vorobeychik, Y., and Tambe, M.: Security games with surveillance cost
and optimal timing of attack execution. In: AAMAS (2013)

5. Vorobeychik, Y., An, B., Tambe, M., and Singh, S.: Computing Solutions in Infinite-Horizon
Discounted Adversarial Patrolling Games. In: ICAPS (2014)

6. Lin, K. Y., Atkinson, M. P., Chung, T. H., and Glazebrook, K. D.:A graph patrol problem with
random attack times. Morgan Kaufmann. Operations Research (2013)

7. Stranders, R., de Cote, E. M., Rogers, A., and Jennings, N. R.: Near-optimal continuous pa-
trolling with teams of mobile information gathering agents. Artif. Intell. 195,63-105 (2013)

8. Singh, A., Krause, A., and Kaiser, W. J.: Nonmyopic adaptive informative path planning for
multiple robots. In: IJCAI. 1843-1850 (2009)

9. Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., and Ziparo, V. A.:
Towards heterogeneous robot teams for disaster mitigation: Results and performance metrics
from robocup rescue. Journal of Field Robotics. 24, 943-967 (2007)

10. Berger, J., Boukhtouta, A., Benmoussa, A., and Kettani, O.: A new mixed-integer linear pro-
gramming model for rescue path planning in uncertain adversarial environment. Computers
& OR. 39:3420-3430 (2012)

11. Yehoshua, R., Agmon, N., and Kaminka, G. A.: Robotic adversarial coverage: Introduction
and preliminary results. In: IROS. 6000-6005 (2013)

12. Smallwood, R. D., and Sondik, E. J.: The optimal control of partially observable Markov
processes over a finite horizon. Operations Research. 21,1071-1088 (1973)

13. Papadimitriou, C. H.: Computational complexity. John Wiley and Sons Ltd. (2003)
14. Zhao, Q., Tong, L., Swami, A., and Chen, Y: Decentralized cognitive MAC for opportunistic

spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas
in Communications. 589-600 (2007)

15. Ouyang, Y., and Teneketzis, D.: On the optimality of a myopic policy in multi-state chan-
nel probing. Computational complexity. Communication, Control, and Computing (Allerton),
2012 50th Annual Allerton Conference on. 342-349 (2012)

16. Keilson, J., and Kester, A.: Monotone matrices and monotone Markov processes. Stochastic
Processes and their Applications. 5, 231-241 (1977)

17. Sandholm,W. H.: Orders of limits for stationary distributions, stochastic dominance, and
stochastic stability. Theoretical Economics. 5, 1-26 (2010)

18. Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L.: An analysis of approximations for
maximizing submodular set functionsI. Mathematical Programming. 14, 265-294 (1978)


