
AO-OpenCom: An AO-Middleware Architecture
supporting flexible Dynamic Reconfiguration

Bholanathsingh Surajbali
Smart Research and Development

CAS Software AG
Karlsruhe, Germany

b.surajbali@cas.de

Paul Grace
IT Innovation

University of Southampton
Southampton, UK

pjg@it-innovation.soton.ac.uk

Geoff Coulson

School of Computing
Lancaster University

Lancaster, UK

geoff@comp.lancs.ac.uk

ABSTRACT

Middleware has emerged as a key technology in the construction of

distributed systems. As a consequence, middleware is increasingly

required to be highly modular and configurable, to support

separation of concerns between services, and, crucially, to support

dynamic reconfiguration: i.e. to be capable of being changed while

running. Aspect-oriented middleware is a promising technology for

the realisation of distributed reconfiguration in distributed systems.

In this paper we propose an aspect-oriented middleware platform

called AO-OpenCom that builds AO-based reconfiguration on top

of a dynamic component approach to middleware system

composition. The goal is to support extremely flexible dynamic

reconfiguration that can be applied at all levels of the system and

uniformly across the distributed environment. We evaluate our

platform by the capability in meeting flexible reconfiguration and

the impact of these overheads.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems – Distributed applications; D.2.11 [Software

Engineering]: Software Architectures – Doman-specific

architectures; D2.13 [Software engineering]: Reusable Software –

Reusable libraries

Keywords

Aspect Oriented; Middleware; Dynamic Reconfiguration

1. INTRODUCTION
Dynamic reconfiguration in aspect-oriented (AO) based

middleware is very promising, but under-developed. AOP

addresses these two problems by encapsulating logically

independent pieces of functionality into separate modules known

as aspects. The aspects are then woven into the system (this

weaving process can be performed at compile-time, load-time or

runtime) to build the required behaviour. An aspect defines both

behaviour and composition logic, the latter describing both where

and when the behaviour is executed. The compositional logical

associated with an aspect is often referred to as a pointcut. The

points in a program at which composition occurs, as directed by a

pointcut, are referred to as join points. The declarative approach of

aspect-oriented programming (AOP) is of considerable help to the

developer in terms of facilitating the description and enactment of

dynamic reconfiguration. However, most current AOP middleware

systems [3, 4, 7, 10, 11, 12, 15] are evolutions of earlier systems

that lack reconfiguration flexibility and are focused primarily on

local reconfiguration with limited dynamic reconfiguration

capabilities. The lack of flexibility of AO-middleware can be

categorised in terms of five different dynamic reconfiguration

variability of distributed system such as granular scope

reconfigurability, vertical scope, horizontal scope, performance

and resource overhead. First, granular scope of reconfigurability is

important because it defines the extent to which reconfiguration can

be applied and can be classified in terms of fine-grained and coarse-

grained reconfiguration support. Coarse-grained composition

allows entire system functionality to be added or removed, while

fine-grained composition relates to smaller changes (e.g. changing

protocols from Wi-Fi to Bluetooth technology when there is a drop

in power and vice-versa [5]). Second, vertical scope is an important

issue because many systems allow only application level

reconfigurability and this is insufficient in many cases, where

system infrastructures need to change. For example,

reconfiguration may also be required at the infrastructure level to

add new functionality such as the support for new group

communication or apply updates such as correcting anomalies from

existing infrastructure services. Third, horizontal scope

reconfigurability is crucial as both local and distributed nodes

should be reconfigurable to ensure consistent view of the

middleware service. Finally, performance and resource overhead

are important criteria because if a system is highly reconfigurable

but it runs too slowly or consumes too much resource it is not

acceptable. In particular the platform must allow aspects to be

dynamically woven as needed and unwoven when no longer

necessary. This decreases the resource overhead and performance

of invoking aspects at a join point.

In this paper, we present a novel dynamically reconfigurable

AO-middleware architecture, AO-OpenCom providing a principled

way of dynamic reconfiguration with degrees of flexibility that go

beyond the state of the art by following a component-based,

reflection and AOP design approach. In particular, the architecture

will address the five main areas of deficiency as discussed above

and the design is evaluated by its flexibility and expressiveness in

specifying a range of types of dynamic reconfiguration. In

particular, the platform offers four flexible distributed

reconfiguration operation in terms of support for: i) local pointcut

– local advice; ii) local pointcut- remote aspect; iii), remote pointcut

– local aspect; and iv) remote pointcut and remote aspect.

 The remainder of this paper is structured as follows. First,

Section 2 presents the aspect composition model of AO-OpenCom.

Next, Section 3 presents the concepts and implementation of the

AO-OpenCom middleware architecture which is then evaluated in

Section 5. Then, Section 6 provides a discussion on how the AO-

Opencom meets the requirements based on the experimental

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

CBSE'14: June 30 - July 04 2014, Marcq-en-Bareul, France.
Copyright 2014 ACM 978-1-4503-2577-6/14/06 $15.00.

results, as well as an analysis against related work. Finally, Section

7 draws concluding remarks.

2. AO-CONNECTOR MODEL
Aspects in AO-OpenCom are composed with the base components

(hereafter termed components) within component interfaces/

receptacles using connectors. The AO-OpenCom connector model

have two variants: the Default-Connector which contains the direct

reference of a receptacle to an interface of components (no

aspectual composition); and the AO-Connector is the architectural

element offering aspectual composition (weaving) of aspects

between a receptacle and a provided interface of components.

2.1 Interface/Receptacle AO-Connector
The runtime composition of aspects using an interface/receptacle

AO-Connector is achieved using a proxy that redirects the call or

execution through the chain of advices on the interface or

receptacle as illustrated in Figure 1. A key benefit of the

interface/receptacle aspect composition approach is that it allows

aspects to be composed even when no binding is present.

Figure 1. Aspect Composition execution chain with Semantic

Locus using Interface/Receptacle AO-Connector

2.2 AO-Connector Binder Composition
The AO-Connector composition differs from component to

component connectors by maintaining the metadata containing

references to aspects instances in an advice chain. For example, it

maintains details of all advised aspects and their types and allows

these to be queried to determine the operations they support and the

aspects currently advising them. It also supports the runtime

manipulation of the chain to add new advices, or remove or reorder

aspects in the chain of advices. Figure 2 shows the AO-Connector

connecting two components, the Caller component receptacle to the

Callee component provided interface, containing the advice chain

with advice1 to advicen. The AO-Connector also supports the

inspection and reconfiguration of the woven aspects in the advice

chain. The inspection mechanism allows type checking of the

aspect before it is woven in the advice chain. Furthermore, the

introspection capability allows the detection of conflicts between

the hosting aspects or the CF they belong to.

Figure 2. Aspect Composition execution chain with Semantic

Locus at AO-Connector

2.3 Local Aspect Composition
Each AO-Connector is responsible for generating at runtime the

appropriate advice chain for the set of possible join points that can

occur at its bound interfaces. Figure 3 illustrates a local AO

composition whereby the Callee Component has a methodCallee()

method attached to the AO-Connector aspects with the respective

locus semantics. It should be noted that the around advice is

different to that used in AspectJ. The order follows the similar

semantics as in DyMAC [7] and AspectOpenCom [4], that is:

before advices or aroundbefore advices are executed in the order

in which they are encountered within the chain followed by the

method execution, then followed by after advices or aroundafter

advices in the order in which they are encountered within the

chain.

For example from Figure 3, a call from the Caller component to the

Callee component, results in the aspect chain to be invoked in the

following order:

 [before0 from Aspect A1] → [around before from Aspect A2] →

[before1 from Aspect A4] → [before2 from Aspect A5] →

[methodCallee()]→ [after0 from Aspect A3] → [around after from

Aspect A2].

Figure 3. Aspect Composition execution chain

In the absence of the locus semantics, then each interface

(execution join point) and receptacle (call join point) call gets

redirected through a chain of advices attached through the AO-

Connector as illustrated in Figure 4. When a call takes place from

the Caller Component the execution follows the following order:

[Aspect 1] → [Aspect 2] → [Aspect 3] → [methodCallee()]

Figure 4. Aspect Composition without Semantic Locus

2.4 Remote Aspect Composition
Aspects can also specify and implement remote method invocations

and are classified in terms of remote advices. These aspects can be

used to provide distributed remote AO compositions. Similar to

local aspect composition, remote aspects support the three locus

semantics (before, after and around) of aspect execution and their

references can be attached to the AO-Connector. A key difference

between remote and local advice is that remote advices implement

the Serialisable mechanism, e.g. Java Serialisable interface such

that their method calls and return values can be used on remote CFs.

A remote aspect is advisable like any other method invocation, and

can capture both call and execution of components.

3. AO-OpenCom
AO-OpenCom is an extension of the OpenCom component model

and its associated reflective meta-models and component

framework CF architectures. The extension introduces a novel AO-

meta framework layer on top of the existing underlying component-

based reflective middleware substrate. This approach follows from

the need of the AO-meta framework to cover the crosscutting

functionality, and to ensure it preserves the separation concern [9];

that is, to ensure the middleware platform keeps separate views for

better understanding and preservation of modularity within the

middleware platform. The meta-layer and base-layer of each node

crosscuts multiple address-spaces, and thus a top-level view

provides separate viewpoint coverage of the crosscutting concerns

across multiple address-spaces. This hides the complexity of the

underlying reflective meta-layer from programmers. Moreover, the

AO-meta framework is built as an independently-deployable

service using components throughout the architecture (the AO-

meta framework layer is constructed from components like the rest

of the underlying reflective component-based middleware

substrate). This means that the AO-meta framework can advise not

only distributed applications, but also the underlying middleware

services and the AO-meta framework layer itself. Being

independent from the rest of the framework allows the AO-meta

framework to be dynamically deployed when required and un-

deployed when further reconfiguration is not required in the

foreseeable future (thus avoiding any overhead when not in use).

The AO-OpenCom architecture consists of the following main

entities (see Figure 5): i) Base Framework; ii) Reflective-meta

Framework; iii) AO-meta Framework; iv) Aspect Repository

Framework; v) Distribution Framework; and vi) Configurator.

Figure 5. The AO-OpenCom Middleware

3.1 Base Framework
The base framework consists of the kernel which provides an API

allowing new components and aspect-components together with

the AO-Connectors to be instantiated, loaded, unloaded and

destroyed. Furthermore, the kernel maintains a causal connection

with the three meta-models in terms of the distribution meta-model,

AO meta-model and the reflective meta-model such that any

changes in the base runtime are reflected to the respective meta-

model. Components, reflection and AO are at the core of this

architecture, providing a principled approach to dynamic

reconfiguration. At the base, components are encapsulated units of

functionality and deployment that interact with other components

exclusively through interfaces and receptacles. AO-Connectors

represent the bindings between a single interface and a receptacle.

Reflection technologies through the meta-models provide

information about the current system state to inform about

reconfiguration decisions; next a component-based approach

allows the composition among components’ provided and required

interfaces. Next, AOP provides a declarative approach to support

local and distributed quantification as well as local and remote

aspect reconfiguration capabilities.

3.2 Reflective-meta Framework
The AO-OpenCom reflective-meta framework consists of the

OpenCom reflective meta-models that provide the inspection,

reconfiguration and extension of component and aspect-component

composition with a local CF (e.g. of a component composition that

represents a middleware platform instance). Each of the three meta-

models can be optionally (and dynamically) deployed whenever

required, and un-deployed when no longer required.

3.3 AO-meta Framework
The AO-meta framework internal architecture comprises a set of

components that are instantiated into the host DCF. The set of

components is as follows:

AO-Manager. This component is responsible for accepting and

handling the configurator requests that will apply to the host DCF.

Instances of the AO-Manager may run on more than one node in

the DCF if desired. The AO-Manager interacts with Pointcut

Evaluator and Aspect Handler components (see below) to perform

the requested AO compositions within the DCF. It also caches join

point information it receives from Pointcut Evaluators in case

similar behaviour needs be applied in the future.

Aspect Repository. The Aspect Repository holds a set of

instantiable aspect-components. Actually, the Aspect Repository is

itself a (sub) CF which supports the configuration of repository

functionality in a variety of ways. The sub-CF consists of a Front

End component and a back-end Database component. This simple

architecture enables a wide range of configurations; e.g. different

Front Ends can apply different load balancing strategies and some

Database components can be simple proxies to other Front Ends.

Pointcut Evaluator. The Pointcut Evaluator supports the parsing

of pointcut expressions provided by the AO-Manager component

and to return to the latter a list of all the matching join points found

within the local address space. The supporting quantification by the

Pointcut Evaluator component are DCF signatures, operation

signatures, interface and receptacle signatures, component types

and instances as well as dynamic properties of the CF runtime

instances. An instance of the Pointcut Evaluator is present in each

address space and consists of the following four sub-components:

 DCF Parser component, serves to evaluate DCF signatures.

 Expression Parser component, evaluates component

instances, types as well as interface and receptacle signatures.

 Method Parser component provides the parsing of method

signatures of associated components.

 Dynamic Properties Parser component serves to parse the

respective key, value pairs of the associated component types

and instances in the runtime.

 Pointcut Matcher component compares the given pointcut

specification against the corresponding identified runtime

instances that are retrieved from the Distribution meta-model

and Meta Architecture components.

Moreover, the Pointcut Evaluator component also supports the

remote pointcut functionality to evaluate join points located in

remote address spaces. To do so, it connects to the distribution

framework to locate the appropriate join points in remote CFs. The

inclusion of CFs in the list of quantifiable entities means that

distribution is inherently supported in a network-independent

manner. In addition, it can evaluate dynamic context properties

associated for corresponding component instances that are stored in

the AO-OpenCom runtime kernel and aspect-components by

evaluating their dynamic properties from the Aspect Repository.

Finally, the Pointcut Evaluator evaluates pointcuts and returns a list

of matching join points within the local node in case it is a local

pointcut, and for remote pointcuts, the lists of matching join points

in each DCF.

Aspect Handler. This is also present in each address space. Its role

is to act on instructions from the AO-Manager to weave advice at

join points in its address space. The weaving is accomplished using

the above-mentioned AO-Connector connector type which enables

advices (i.e. an operation supported by an aspect) to be inserted

between a pair of bound components. As well as purely address-

space-local AO-Connectors, distributed AO-Connectors are also

supported that can use distributed framework endpoints as well as

local receptacle and interface pointers. This enables the AO-

Connector to support the invocation of aspects that are resident in

other address spaces. Finally, the Aspect Handler on receiving the

join points and advice instances, performs advice weaving at

specified join points in its CF, according to the advice specification.

3.4 Distribution Framework
The AO-OpenCom DCF architecture is illustrated in Figure 6

following a generic component approach to support various

communication protocols (e.g. TCP, UDP, Multicast, JGroups,

Broadcast, group protocols such as SCAMP [5]). Each CF

maintains a basic architecture of the distribution framework, as well

as a distribution meta-model containing contents of the CF as well

as other instances of the DCF. The distribution module functions as

a hub to the communication protocol choosing the desired

communication protocol required to ensure reliable communication

among the CFs’. For non-remote method invocation, based on the

chosen communication protocol, the Distribution module

component translates the outgoing messages using a message

handler and then stores in the Queue component. The sender

module extracts queued messages and sends them according to the

outgoing protocol. On the receiving side the Receiver module

component is responsible for receiving messages. Received

messages are placed in the buffer component, which is then read by

the Distribution module to update the distribution meta-model

accordingly. Importantly, this communications service of the AO-

OpenCom DCF is realised as a pluggable component, meaning that

the service can replace the basic service (which is unreliable and

does not support any ordering semantics) with a range of alternative

communications services chosen according to the reliability and

scalability requirements under which the DCF is deployed.

Figure 6. AO-OpenCom Distribution Framework

3.5 Configurator
Each Configurator interacts with its local Pointcut Evaluator and

Advice Handler to carry out either a reconfigure or a reorder

reconfiguration on its local node. The reconfigure operation

provides the coarse-grained reconfiguration of aspects (add,

remove and replace) at a join point and the reorder operation

provides fine-grained reconfiguration, that is allowing aspects to be

reordered at a join point. Consequently, AO-OpenCom provides

granularity scope of reconfigurability requirements. Furthermore,

the Configurator also interacts with other peer Configurators, for a

distributed reconfiguration across multiple DCFs’. This allows the

platform to provide for horizontal scope reconfigurability.

4. AO-OpenCom PROGRAMMING MODEL

4.1 AO-OpenCom Kernel API
The AO-OpenCom platform is supported using the minimal kernel

API that is offered by each DCF. The intention of these operations

is to provide the minimum functionality required to create instances

and connect them. The key operations supported by the kernel API

are shown in Figure 7 comprising of the eight main operations.

Figure 7. AO-OpenCom Kernel Base-level operations

The load() method loads a named component type from the

component repository and aspects from the Aspect Repository, and

the unload() method unloads an existing component type and

aspect type from the runtime respectively. The instantiate() method

provides the instantiation of aspects and component. Furthermore,

a component or aspect can be instantiated multiple times if desired,

with each having a different unique identifier. The connect()

method connects a provided interface with a required interface of

another. The getprop() returns a reference of associated entities

(aspect types, component types, aspects, components, interfaces

and receptacles) dynamic properties in the form of <name, value>

tuples. The putprop() method writes into the registry the respective

entities tuples. Finally, the notifyCall() method provides the

callback operations whenever one of the methods in the kernel

base-level system gets called causing call to be updated in the meta-

model layers. It should be noted that the reconfiguration does not

need to use the lower level AO-OpenCom base-level operations to

reconfigure the platform. The base-level operations are available

and can be used by the middleware developer. To perform any

reconfiguration, the reconfiguration developer makes use of the

configuration API that is described in the next section.

4.2 Configurator API
Aspect configuration and reconfiguration in AO-OpenCom can be

specified in terms of an XML-based independent pointcut

languages as well as programmatically which enables pointcuts

signatures to be defined in terms of: i) capsules/hosts/DCF address

expression; ii) a component type expression; iii) a component

instance expression; iv) an interface/ receptacle type expression; v)

a method type expression; and vi) metadata that can be attached to

any of the foregoing. The main API provided by the AO-OpenCom

enabled CF and DCF for AO composition and reconfiguration are

shown in Table 1. The configuration specification containing the

pointcut and advice specification is passed to AO-OpenCom

Configurator. The configurator supports both programmatic and

XML specifications to be sent to it following the BNF specification

[14]. Note, that the Configurator API protects the reconfiguration

developer from the low level details of actually managing and

weaving the aspects among distributed nodes. Hence, facilitating

the usability of the platform to support reconfiguration and to

deploy new aspects, the programmer can use a deployment script

similar to components deployment.

Table1. API AO-OpenCom Reconfiguration protocol

4.2.1 Local Reconfiguration
The local reconfiguration using the AO-OpenCom meta-layer is

split into four main stages:

1. Stage I: Reconfiguration Setup

When a user issues a local reconfiguration request, the

reconfiguration is initially handled by the Configurator component.

This component forwards the aspect reconfiguration to the AO-

Manager component. The latter, then checks if a similar

reconfiguration request has not been performed. If a similar

reconfiguration request is present, then the cached join point

information is retrieved and reconfiguration proceeds to Stage IV

(Aspect Weaving Stage). The AO-Manager maintains a time-out

cache period, after which any cached reconfiguration from the AO-

Repository is removed. Furthermore, using the base runtime

notify() operation, any changes made to the runtime are notified to

the AO-Manager, so that cached requests are removed.

Additionally, after performing an update, the updated

reconfiguration is cached by removing the old cached entry. If the

reconfiguration is not present in the cached repository, then the AO-

Manager component, first submits the pointcut specification to the

Pointcut Evaluator component (Stage II) followed by submitting

the advice specification and the join point (received from Stage III)

to the Aspect Handler component.

2. Stage II : Join point Lookup

Next, in case the reconfiguration is a new request that is not present

in the cache, the AO-Manager component submits to the Pointcut

Evaluator component the pointcut specification in order to retrieve

the required join points.

Stage IIa: Pointcut Specification Parsing. The Pointcut Evaluator

first uses the Parser CFs components to parse each of the pointcut

signatures and expressions. If the pointcut specification contains

dynamic properties signatures, the Dynamic Property Parser

component is used to parse and extract the associated pointcut

expressions. Otherwise, the specification is parsed by the

Expression Parser component to retrieve the appropriate names

associated for the aspect/component and interface/receptacle

pointcut signature and the Method Parser component to extract the

associated operations signatures. The Parser CF then returns the

parsed signatures back to the Pointcut Evaluator component.

Stage IIb: Join point Lookup. The Pointcut Evaluator then

translates the respective parsed signatures/expressions whereby the

aspects / component expressions are inspected using the

Architecture meta-model component, followed by the interface and

operation expressions. For the identified entities in the runtime, the

respective connectors are returned to the Pointcut Evaluator

component. In case the connector does not have an aspect then the

default connector is returned to the AO-Manager component.

Conversely, the AO-Connectors are returned to the AO-Manager in

case of already woven aspects-components at the join points.

3. Stage III : Aspect Instance Retrieval

On receiving the list of connectors (either default-connector or AO-

Connector), the AO-Manager component then submits the aspect

specification and the connectors list to the Aspect Handler

component. On the other hand, if the list of connectors is empty,

the reconfiguration is not applicable and the reconfiguration is

aborted. For add or replace, this may involve obtaining the aspect

from an Aspect Repository. It will also involve weaving the aspect

according to the specified scope and locus.

4. Stage IV: Aspect Weaving

The aspect weaving interaction varies according to the

reconfiguration command- action.

1.) Add reconfiguration command-action.

Before the aspect weaving is performed, the AO-Handler ensures

the aspects are type compatible by performing type-safety checking

using the TypeValidator component. That is, it checks if the aspect

exposes a matching interface and receptacle and its methods

operations at the callee and caller components. Then, if at the join

point there is no AO-Connector present, then the default-connector

must first be replaced by an AO-Connector capable one. To do so,

the Aspect Handler component, instructs the Quiescent Handler

component to set the components under reconfiguration as well as

the default connector to a quiescent state before the connector

replacement is initiated. That is, the Aspect Handler component

ensures that the associated components on the default connector are

in a steady state before any reconfiguration can proceed.

For this purpose, a read/write lock mechanism is used, such that

every non-reconfigure operation can access the lock as a reader

(there can be n readers using the lock at any one time) and for any

reconfiguration calls an exclusive writer lock is used. Once in a

quiescent state, the Aspect Handler component then calls the AO-

Connector-Factory (In the simplest form of bindings between

components, the default-connector-factory component is used to

instantiate connectors without any interception capability)

component via the CF load() and instantiate() methods

respectively. Subsequently, the interface-receptacle pair of the

reconfigured components are connected by using the CF connect()

method and parsing the instantiated AO-Connector-Factory factory

as one of its arguments. Once created, a success message is returned

to the AO-Manager component. In the case of failure the

fail_created_AOConnector_Timeout failure message is sent to the

AO-Manager. The error message signifies that the AO-Connector

creation reached the reconfiguration timeout. If the AO-Connector

has successfully been created, then the AO-Manager instructs the

Aspect Handler to weave the aspects. By default for the add

reconfiguration command-action the aspect is added in an ordered

manner in the AO-Connector chain. If the order of the aspect-order

is specified, then based on the specified order the aspect is woven

in the AO-Connector chain.

2.) Replace reconfiguration command-action.

The reconfiguration to replace an aspect takes place in four

interaction stages. Similar to the add command-action

reconfiguration, the reconfiguration is first checked if they are type

compatible with the interface-receptacles at the join point

components, followed by placing the join point list of components

and the AO-Connector aspect components to the quiescent state.

Next, the Aspect Handler component extracts the execution state

from the existing reconfigured aspect. This state extraction

mechanism is optionally supported by aspects, the capability being

dynamically discovered by the CF member using reflection. Then,

the old aspect reference is removed and the new-aspect component

reference added at the AO-Connector chain state is restored to the

newly replaced aspect. If the old aspect state was extracted the state

is restored to the newly updated aspect using the State Handler

component restore-state() method operation.

3.) Remove reconfiguration command-action.

The remove reconfiguration command-action takes place in a three

stage interaction, with the first stage consisting of setting the

reconfiguration join point to quiescent. Then, in Stage II, the aspect

reference is removed from the AO-Connector. In the final stage,

Stage III the quiescence on the AO-Connector is removed, after

completing the reconfiguration. Moreover, if there is no other

aspect attached to the AO-Connector, then the AO-Connector is

replaced by a default-connector. Once the weaving/un-weaving has

been completed the Aspect Handler returns an acknowledgment

message to the AO-Manager component. If the reconfiguration is

successful the updated reconfiguration join point is cached. Finally,

a reconfiguration ack() message is returned to the Configurator

informing that the reconfiguration has been completed and the lock

on the Configurator can be removed, such that the Configurator

component can accept new reconfiguration requests.

4.) Reorder reconfiguration command-action.

The Aspect Reorder Reconfiguration involves the Stage I, II and III

of the reconfiguration interaction. Stage IV is similar to the aspect

removal reconfiguration action. However, instead of removing the

aspect reference, the aspect references are reordered according to

the specified advice specification.

4.2.2 Distributed Reconfiguration
The Configurator.reconfigure() reconfiguration protocol in AO-

OpenCom is as follows:

1. Configurator.reconfigure() is called on the Configurator of one

of the nodes supporting the DCF to be reconfigured; in the

following this node is referred to as the ‘initiator’.

2. The initiator determines how the specified aspect is to be

applied. In the case of a per-DCF scope, it instantiates the

aspect at a suitable node and sends a remote reference to the

nodes where it is to be woven. Otherwise, the initiator decides

if it has the specified aspect available locally (or can get it from

an Aspect Repository) and wants to send it ‘by value’ to the

nodes where it is to be woven, or if it wants to send the aspect

‘by reference’ and implicitly instruct the other DCF members

to obtain the aspect from an Aspect Repository.

3. The initiator sends a ‘reconfigure’ message to all DCF member

nodes. This essentially contains the parameters originally

passed to reconfigure(). By default, the initiator employs the

DCF’s default communications service for this.

4. When it receives a ‘reconfigure’ message, each DCF member

node’s Pointcut Evaluator applies the specified pointcut and

thereby locates all the target join points within its scope.

5. If the command is ‘replace’, the Aspect Handler extracts

execution state from the existing aspect. Similar to local aspect

reconfiguration, the state extraction mechanism is optionally

supported by distributed aspects, with the capability being

dynamically discovered by the DCF member using reflection.

6. Each member node’s Aspect Handler then actions the ‘add’,

‘remove’ or ‘replace’ command as appropriate. For ‘add’ or

‘replace’, this may involve obtaining the aspect from an Aspect

Repository. It will also involve weaving the aspect according

to the specified scope and locus (which may involve creating a

remote binding if per-DCF scope is requested).

7. Each node replies to the initiator that it has completed the

reconfiguration locally.

8. When all nodes have reported completion the initiator node

returns control to the caller of reconfigure().

Note in passing that there is considerable scope for optimising this

protocol in terms of performance. For example, the configuration

of aspect repositories in the system, and the corresponding choice

of whether to pass aspects by value or by reference, can have a

significant influence on performance, as can the use of, and location

of, remotely accessible per-DCF aspects.

5. Evaluation
To evaluate AO-OpenCom approach to offer flexible dynamic

reconfiguration requirements we use a case-study based

methodology (described in Section 5.1). Then, in Section 5.2 we

describe the AO-OpenCom use case solution. Finally, in Section

5.3 the reconfiguration performance is evaluated.

5.1 Airport Crisis Management Scenario
The use-case scenario is inspired by an airport crisis management

scenario taken from the EU DiVA FP7 STREP project [3]. This

was chosen because it offers a realistic scenario taken from a real

project and because it offers sufficient opportunities for dynamic

reconfiguration. The architecture of the crisis management scenario

consists of four different domains: the Main Control Room,

Administration, Sales, and Terminal. The Main Control Room

centralises all phases of the management of the other three domains

by determining the different types of dynamic reconfiguration

necessary to maintain their optimal operation. More specifically,

the Main Control Room is responsible for identifying any crisis,

building appropriate crisis management strategies according to the

nature of the incident, collecting crisis information and providing it

to all the domains dealing with crisis management. The Main

Control Room contains human crisis actors and a crisis

management system offering a messaging system for crisis actors

so that they can communicate through the exchange of text

messages. The Main Control Room dynamically reconfigures the

crisis management system configuration according to the crisis type

and context. The Administration domain hosts the key stakeholders

(CEO, Operation Manager, CIO) representing the airport’s decision

making authority. In case of any crisis they need to be notified

immediately. In crisis situations, the Sales and Terminal domains

are notified about incidents and, based on the gravity of the

incident, the sales of ticket may be stopped and Terminal operations

(such as boarding) stopped or delayed.

As a crisis situation is initiated from the Main Control Room,

alerts sent to the different crisis actors within the airport are logged

to keep track of events and can be studied later on for service

improvement. Alerts are logged during both crisis and non-crisis

situations. In a non-crisis situation, all crisis actors send their logs

to the main control room. Under a crisis situation only crisis actors

involved in the crisis are logged.

5.2 AO-OpenCom based solution
From the use-case scenario, the MessageHandler and the

Communication modules as shown in Figure 8a are two main

entities responsible for the transmission of messages among nodes

before reconfiguration and after reconfiguration in Figure 8b. The

Messager module is responsible to transmit messages based and

requires an IMesageHandler interface which takes as parameters

the MessageType, DCF, port id and communication mode. Figure

9 illustrates the MessageHandler code fragment implementation.

From Figure 9, Line 1 implements the IMessageHandler interface

to handle the message communication to the Communication

component. Line 2 specifies the receptacle reference of the

MessageHandler component to the Communication component and

Line 3 details the reference to the AO-OpenCom runtime base-level

kernel. Lines 4-7 contain the constructor for the MessageHandler

component. Lines 8-12 detail the call to the sendMsg operation of

the Communication component. In the use-case scenario, the alert

logging is a crosscutting concern that is tangled across multiple

nodes. In order to facilitate the reconfigurability the application

developer needs to untangle this functionality from the component

implementation. Another requirement from the use-case scenario is

the need to provide secure transmission of the logs. To do so an

encryption module is needed and since the encryption module is

crosscutting similar to the alert logging module, it needs to be

applied as an aspect (as shown in Figure 8c).

Figure 8. Reconfiguration for use case scenario.

Figure 9. Code extract of the Message Handler

The code-fragment of the local Logger aspect implementation is

illustrated in Figure 10 and that of the remote Logger aspect in

Figure 11.

Figure 10. Code extract of the Local Logger Aspect

5.3 Evaluating Reconfiguration Protocol
To measure the reconfiguration protocol a small network of five

standalone workstations has been employed: a 1.8 GHz Core Duo

2 PC with 3GB RAM; a 3.4 GHz Pentium IV PC with 1GB of

RAM; a 2.8GHz Pentium IV PC with 1 GB of RAM; a 1.33 GHz

Core Duo 2 laptop with 2GB of RAM; and a MacBook 2.4 GHz

Core Duo 2 laptop with 4GB RAM. Two of the machines ran

Ubuntu 12.04, two ran Windows XP with service pack 3, one ran

Windows 7 SP1 and the other ran OS X Mavericks. All of these are

connected via a 100Mbps local area network. While this network is

small in terms of physical nodes, each physical node is used to host

multiple instances of the framework and in this way the evaluation

environment was able to scale to support the equivalent of 100

nodes (frameworks) under four Java VMs per machine. Each

evaluation machine was installed with the AO-OpenCom

framework which was executed on a Java 1.7 virtual machine

(VM). Note that the different machines used to perform the

experimental setup demonstrate the capability of AO-OpenCom of

being deployed independently in various operating system

environments and with different hardware resources as long as

these machines support the Java VM. Each machine was able to

scale to support 100 of these configurations as virtual nodes.

Figure 11: Code extract of the Remote Logger Aspect

5.3.1 Add command-action
To evaluate the performance overhead of the reconfiguration

protocol add-command-action, the logger aspect is woven at the

communication stack. The reconfiguration involves weaving the

logger aspect at the AO-Connector connecting the Message

Handler and the Communication Module. To perform this

reconfiguration, the reconfiguration developer needs to specify the

reconfiguration request by writing code along the lines of Figure 12

(the code is simplified for presentational purposes).

Figure 12. Reconfiguration specification

The Configurator.reconfigure() call takes the given pointcut and

aspect specifications which are as follows: the aspects that need to

be “added”; the scope of the reconfiguration, stating that this

reconfiguration need to be applied for all nodes; and that the

weaving locus should be a before advice weaving. The results of

the experiment are illustrated in Figure 13. The results confirm the

expected outcome that as the number of reconfigured nodes

increases, the amount of time required to perform reconfiguration

increases linearly. The result shows that on a single node (as would

be expected) the reconfiguration using the local pointcut and local

http://en.wikipedia.org/wiki/OS_X_Mavericks

aspect is similar to that of using remote pointcut and local aspect,

and the reconfiguration using local pointcut and remote aspect is

similar to that of remote pointcut and remote aspect. The

differences between LL, RL and LR and RR lie in the remote aspect

instantiation for LR and RR. This instantiation is an out-of-band

overhead on the initiator node and if the aspect is already

instantiated in the aspect repository, then the reconfiguration time

is decreased, with the overhead comparable to that of LL and RL.

The results also show that:

i) For less than 170 nodes LL offers significantly better

reconfiguration performance than LR. This means the

instantiation of the local aspect across each node is expensive

as the number of reconfigured nodes gets above 170 nodes.

ii) Above 160 reconfigured nodes LL reconfiguration overhead

gets worse compared to RR. The difference at 10 nodes

between LR and RR when compared to LL, is due to the remote

pointcut offering less reconfiguration overhead for RR.

iii) For less than 220 reconfigured nodes RL offers better

reconfiguration time compared to RR. This is explained by the

instantiation of the remote aspect being expensive, and the

reconfiguration cost offset the instantiation time as more than

220 nodes are reconfigured.

iv) When reconfiguring more than 220 nodes RR reconfiguration

is better compared to LL, LR and RL. This is mainly attributed

to the instantiation cost while weaving remote aspects as well

as the method Lookup() operation to ensure remote aspect

interface compatibility as the remote aspect is woven to the

AO-Connector chain.

Figure 13. Add reconfiguration command-action

Overall, the experimental results show that there is a large overhead

while reconfiguring on a single node using LR and RR compared

to LL and RL. As the number of reconfigured nodes increases,

reconfiguration using RL and RR offers better performance

compared to LL and LR. The higher reconfiguration time using LR

and RR is mainly due to the remote aspect instantiation on the

initiator node which is on average 147ms. Having the remote aspect

instantiated will amortise the reconfiguration time as illustrated in

the dotted lines in Figure 13 for both LR and RR making RR more

optimum for large scale reconfiguration. The time to set up the

advice may not be the most important consideration overall, the in-

band overhead would likely be more significant.

5.3.2 Replace command-action
Here the Logger aspect is replaced by the Multicast Logger aspect.

This operation involves a replace operation of the existing Logger

aspect at the message handler AO-Connector by the Alert Logger

and the resulting reconfiguration. To measure the reconfiguration

overhead of the replace command-action the same environmental

setup as in Section 5.3.1 is used, whereby the woven Logger aspect

is replaced by a Multicast Logger aspect. The measurement results

of this experiment are illustrated in Figure 14. The results show an

increase in the reconfiguration time to perform the replace

command-action compared to the add command-action. This is due

to the fact that the replace command-action requires the un-weaving

of the old aspect component followed by the weaving of the new

aspect component, while that of the add command-action involves

only the aspect weaving. The results show:

i) RL offers better reconfiguration compared to LL, RL and RR

to reconfigure up to 160 nodes. This is explained by the

quantification of the pointcut being performed only on the

initiator node and the instantiation remote aspect on smaller

number of nodes offers better reconfiguration overhead

compared to remote aspect instantiation.

ii) A steeper gradient to reconfigure LR compared to RR as the

number of reconfigured nodes increases, demonstrating that

pointcut quantification on each reconfigured node is expensive.

iii) RR setup offers better reconfiguration time compared to LL,

LR and RR, similar to the add command-action.

Figure 14. Replace reconfiguration command-action

An additional experiment was performed to measure

reconfiguration overhead while updating the aspect using cached

pointcuts by retrieving the pointcut from the AO Repository. The

use of a cached pointcut avoids the use of the distribution meta-

model to retrieve the join point. The measurements of the

experiment are shown in Figure 15. The results show a significant

decrease in the reconfiguration time for all the four reconfiguration

operations. The decrease in overhead is on average by 30% per

reconfigured node. It should be noted that the cached pointcut still

requires the parsing of the XML specification to check if the

required reconfiguration request matches the ones previously

retrieved and cached. The results also show that the time needed to

perform remote aspect is lower than that of local aspect. This is

explained by the fact that the remote aspect is instantiated only once

on the initiator node compared to local instantiation on each Aspect

Repository in the case of LL and RL.

Figure 15. Replace command-action using cached pointcut

5.3.3 Remove command-action
Finally, the Logger aspect may no longer be necessary, and can be

removed. The reasons behind a remove reconfiguration command

include: removing the Logger aspect as the policy associated to it

has been deleted, or being incompatible (such as semantic

inconsistencies) and needs to be removed to allow a reconfiguration

to be completed. This involves a remove reconfiguration command,

such that the reconfiguration leaves an empty advice chain at the

join point. As discussed earlier, an AO-Connector is woven to

support the advice chain at the appropriate join point. The AO-

Connector component should be removed when no aspect is present

at the join point. This is because leaving an empty AO-Connector

will result in an in-band overhead that negatively affects the system

performance. The results of the remove command-action

experiment are illustrated Figure 16. The results show a lower

reconfiguration overhead for un-weaving an aspect compared to the

weaving or replacing of an aspect. This is because, the un-weaving

of aspects involves the parsing of the reconfiguration operations

from the script, locating the join point and setting the reconfigured

join point to quiescent mode and removing the references of the

aspect from the AO-Connector. From Figure 16, it can also be

observed that the un-weaving of an aspect is faster for LL and RL

compared to LR and RR. This is explained by the reflective calls

needed to get the aspect operations before its methods are removed

at the AO-Connector. For the remote aspect, the reflective call

involves the Lookup() method for the remote aspect causing higher

performance penalty. The next measurement involved measuring

the amount of time required to remove an aspect and then remove

the AO-Connector by reinstalling the default connector. The

additional reconfiguration time per node is about 10ms for all the

setup reconfigurations (LL, LR, RL and RR). This lower increase

is mainly due to the fact no reflective calls are needed with an

Unload() followed by a Connect() method call executed.

Figure 16. Remove command-action reconfiguration

5.3.4 Reorder reconfiguration protocol
A reorder command action may be applied when more than one

aspect is woven at a join point. To measure the overhead of the

reorder command action all messages sent are encrypted and then

logged. This reconfiguration involves the reorder operation which

reorders the advice chain.

Figure 17. Reorder command-action reconfiguration

The results of Figure 17 show that the reorder command-action has

a significantly lower reconfiguration cost than the coarse-grained

operations. Additionally, it can be observed that the cost of using

LR and RR to perform the reorder reconfiguration is significantly

higher (by 50%) compared to LL and RL. The higher overhead is

explained by the Lookup() reflective method call for remote

aspects, introducing significantly higher overhead.

5.3.5 Evaluating resource overhead
This section examines the resource costs (in terms of memory) in

reconfiguring the middleware platform using a reliable and an

unreliable communication protocol. Figure 18 shows the resource

overhead on the initiator node of AO-OpenCom using first a

reliable communication protocol (JGroups) and then an unreliable

multicast protocol. The measures represent the resource overhead

of the Distributed Meta Architecture: i.e. configurations for the

binding of the case study application and the base elements of the

AO-OpenCom platform. Furthermore, it can be observed that there

is an extra memory overhead from the use of reliable

communications. The additional cost ranges between 3.9% to

119.2% increase in the amount of memory consumed by each node.

Additionally, it can be observed there is a linear increase in

resource overhead as the number of nodes increases. This measure

demonstrates that a large part of resource overhead is incurred to

ensure reliable communication and is representative of the increase

in overhead as applications are reconfigured across a distributed

system.

Figure 18. Reconfiguration resource overhead

6. DISCUSSION AND RELATED WORK
The experiments results demonstrate the flexibility of AO-

OpenCom to robustly support a wide range of dynamic

reconfiguration variability in terms of i) granular scope

reconfigurability supporting coarse-grained reconfiguration using

the reconfiguration command-actions (add, replace and remove and

operations) provide coarse-grained and fine-grained

reconfiguration (reorder operation); ii) vertical scope

reconfigurability allowing both infrastructure services

reconfigurability as demonstrated and measured in Section 5.3.5

and application services reconfigurability as the demonstrated in

Section 5.3.1 to Section 5.3.4; iii) horizontal scope

reconfigurability supporting both local and distributed

reconfiguration as demonstrated in Section 5.3.1 to Section 5.3.4;

and iv) performance; and v) resource overhead with the main

resource overhead within the AO-OpenCom being from the

distributed framework which is influenced by the choice of the

communication protocol. The resource overhead on each node can

be minimised by creating group nodes and having one node hosting

the distributed framework of the group of nodes.

Turning to related work, a number of AO-middleware

platforms have emerged. Most of the AO-middleware platforms

offer only coarse-grained reconfiguration. However,

AspectOpenCom [4] and JAC [10] provide support for fine-grained

reconfigurability, by allowing the reordering of aspects at a join

point. Regarding application-level vertical scope of

reconfigurability most middleware platforms provide support to

weave and un-weave aspects that are applied to an application at

runtime. However, with the exception of FAC [11], none of the

AO-middleware platforms supports infrastructure-level evolution,

but FAC is limited to local infrastructure-level only. With respect

to horizontal scope reconfiguration, AO-middleware platforms

support three types of aspect composition. First aspect composition

being separate from the distribution model, such that the

middleware architectures use their own distribution specific

technologies to provide distribution. Most of the AO-middleware

platforms (PROSE [13], JBoss-AOP [2], Lasagne [16], DyReS [17]

and CAM/DAOP [12]) have aspect being separate from the

distribution model. These AO-middleware platforms use

distribution technologies to provide distribution. Second, aspects

abstractions are used with the distribution model, such that the

middleware architectures use aspect technology to provide

reconfiguration. DJasCo [1], JAC [10] and ReflexD [15] platforms

use aspects abstractions with the distribution model by offering the

remote pointcut functionality. Third, aspect form an integral part

(i.e. as a first class entity) of the distribution model, such that the

middleware platforms (DyMAC [7] and Damon [8]) use aspects to

provide reconfiguration and build the distribution models. The

DyMAC platform supports both remote advice and remote pointcut

functionality but the platform only allows remote aspect

deployment (aspects are non-reconfigurable in the platform). In the

case of Damon the explicit connector defined for each composition

makes the composition of distributed aspects non-transparent.

However, none of the AO-middleware platforms provide for

flexible distributed reconfiguration with the support of local

pointcut - local advice; remote pointcut - local advice; local

pointcut – remote advice; and remote pointcut – remote advice.

Finally, with respect to performance and resource overhead,

AO-middleware platforms using byte-code instrumentation

weaving (DJasCo, JBoss AOP, JAC, Damon, ReflexD) usually

introduce some level of overhead in the system while performing

reconfiguration, while CAM/DAOP and Lasagne which use a

message interception mechanism to invoke aspects introduce

significant overhead. PROSE uses a two-way weaving mechanism

such that alternate weaving mechanism can be chosen based on the

performance need. In DyMAC, since the weaving is done on all

possible join points at load-time the runtime weaving of aspects is

not significant. However, similar to AspectOpenCom the use of

proxy-based interceptors on all join points even those not having

any aspects behaviour bound to them, introduce an indirection in

the call invocation for all component communications as the calls

need to pass through the proxy. In our approach, the use of default-

connector and AO-connector at runtime diminishes consequently

the indirection when no aspects are present.

7. Conclusions
In this paper we have presented an aspect-oriented component

framework architecture that offers comprehensive AOP support for

both local and distributed reconfiguration. The AO meta-

framework can be independently deployed such that it imposes no

overhead when it is not used and can be dynamically deployed/un-

deployed where and when required. In addition, the AO meta-

framework is built using the same programming language

independent component-based principles as the underlying

reflective middleware layer, and the overlying application.

The AO-OpenCom platform provides the development of a

fully distributed realisation of dynamic aspects. This is achieved by

layering our AO provision on top of the distribution framework and

by providing a pointcut language that is inherently distributed in

nature (i.e. it supports quantification over capsules). In addition, the

AO-OpenCom middleware supports in a natural way the

composition of advices that is remote from the advised join points.

Furthermore, the AO-OpenCom approach significantly decreases

the complexity of deploying new functionality in a distributed

environment as compared to the reflective middleware approach.

Nevertheless, the lower-level reflective APIs are still available to

the developer should they be required. Additionally, the

experimental results show that AO-OpenCom is scalable and

achieves flexibility providing an important step towards the path of

enhancing dynamic reconfiguration in AO-middleware for real-

world critical distributed applications.

Acknowledgement
This research work has been supported by the European FP7 Marie

Curie ITN “RELATE” (Grant Number, 264840).

8. References
[1] Benavides, et al. Explicitly distributed AOP using AWED.

RR INRIA 5882 Technical Report March 2006.

[2] Burke, B. & Fleury, M. ‘JBoss: Aspect-Oriented

Middleware’. Tutorial at AOSD 2004.

[3] DiVA. 2009 - Diva-dynamic variability in complex, adaptive

systems.ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/ssai/proje

ct-diva_en.pdf.

[4] Grace, P., Truyen, E., Lagaisse, B. & Joosen, W. ‘The Case

for Aspect-Oriented Reflective Middleware’. In Proc. of the

6th Workshop on Adaptive and Reflective Middleware 2007.

[5] Grace, P. 2009. ‘Dynamic Adaptation’. In Middleware for

Network Eccentric and Mobile Applications, B. Garbinato,

H. Miranda and L. Rodrigues (Eds.), pp. 285-304, Springer.

[6] Kephart, J.O and Chess, M. 2003. ‘The Vision of Autonomic

Computing.’ In IEEE computer Society Press pg. 41-50.

[7] Lagaisse, B. ‘A Comprehensive Integration of AOSD and

CBSD concepts in Middleware’. Ph.D. Thesis, Department

of Computer Science, K.U.Leuven, Belgium, Dec 2009.

[8] Mondejar, R., García, P., Pairot, C., Urso, P. & Molli, P.

‘Designing a Distributed AOP Runtime Composition

Model’. In 24th ACM Applied Computing, USA 2009.

[9] Parnas, D.L. 1972. ‘On the Criteria to be Used in

Decomposing Systems into Modules’. In Proc. ACM, Vol.15.

[10] Pawlak, R., Seinturier, L., Duchien, L. & Florin, G. 2001.

‘JAC: A Flexible Solution for AOP in Java’. In Proceedings

of the Third International Conference on Metalevel

Architectures and Separation of Crosscutting Concerns.

[11] Pessemier, N. 2007. ‘Unification des approaches par aspects

et a composants’. PhD Thesis, University of Lilles.

[12] Pinto, M., Fuentes, L. & Troya, J.M. 2005. ‘A Component

And Aspect based Dynamic Platform’. The Computer

Journal, Volume 48, Issue 4, 401-420, 2005.

[13] Popovici, A., Gross, T. & Alonso, G. 2001. Dynamic

Homogenous AOP with PROSE. Technical Report, Dept. of

Computer Science, March 2001.

[14] Surajbali, B., Coulson, G., Greenwood, P., and Grace, P.

2007. Augmenting reflective middleware with an aspect

orientation support layer. In Proc. of the 6th International

workshop on ARM 2007, ACM Press, NY, Article 1.

[15] Tanter, E. & Toledo, R. ‘A Versatile Kernel for Distributed

AOP’. In Proceedings of the IFIP Conference on DAIS 2006.

[16] Truyen, E. 2004. Dynamic and context-sensitive composition

in distributed systems. Ph.D. Thesis, Department of

Computer Science, K.U.Leuven, Belgium.

[17] Truyen, E., Janssens, N., Sanen, F., & Joosen W. 2008.

‘Support for distributed adaptations in aspect-oriented

middleware’. In Proc. of the 7th Conference on AOSD, 2008.

http://www.emn.fr/sudholt/papers/rr-inria-5882.pdf
http://www.iks.inf.ethz.ch/publications/publications/proseTR01.ps
http://www.iks.inf.ethz.ch/publications/publications/proseTR01.ps
https://lirias.kuleuven.be/handle/123456789/131302
https://lirias.kuleuven.be/handle/123456789/131302

