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ABSTRACT 

Middleware has emerged as a key technology in the construction of 

distributed systems. As a consequence, middleware is increasingly 

required to be highly modular and configurable, to support 

separation of concerns between services, and, crucially, to support 

dynamic reconfiguration: i.e. to be capable of being changed while 

running. Aspect-oriented middleware is a promising technology for 

the realisation of distributed reconfiguration in distributed systems. 

In this paper we propose an aspect-oriented middleware platform 

called AO-OpenCom that builds AO-based reconfiguration on top 

of a dynamic component approach to middleware system 

composition. The goal is to support extremely flexible dynamic 

reconfiguration that can be applied at all levels of the system and 

uniformly across the distributed environment. We evaluate our 

platform by the capability in meeting flexible reconfiguration and 

the impact of these overheads. 

Categories and Subject Descriptors 

C.2.4 [Computer-Communication Networks]: Distributed 

Systems – Distributed applications; D.2.11 [Software 

Engineering]: Software Architectures – Doman-specific 

architectures; D2.13 [Software engineering]: Reusable Software – 

Reusable libraries 

Keywords 

Aspect Oriented; Middleware; Dynamic Reconfiguration 

1. INTRODUCTION 
Dynamic reconfiguration in aspect-oriented (AO) based 

middleware is very promising, but under-developed. AOP 

addresses these two problems by encapsulating logically 

independent pieces of functionality into separate modules known 

as aspects. The aspects are then woven into the system (this 

weaving process can be performed at compile-time, load-time or 

runtime) to build the required behaviour. An aspect defines both 

behaviour and composition logic, the latter describing both where 

and when the behaviour is executed. The compositional logical 

associated with an aspect is often referred to as a pointcut. The 

points in a program at which composition occurs, as directed by a 

pointcut, are referred to as join points. The declarative approach of 

aspect-oriented programming (AOP) is of considerable help to the 

developer in terms of facilitating the description and enactment of 

dynamic reconfiguration. However, most current AOP middleware 

systems [3, 4, 7, 10, 11, 12, 15] are evolutions of earlier systems 

that lack reconfiguration flexibility and are focused primarily on 

local reconfiguration with limited dynamic reconfiguration 

capabilities. The lack of flexibility of AO-middleware can be 

categorised in terms of five different dynamic reconfiguration 

variability of distributed system such as granular scope 

reconfigurability, vertical scope, horizontal scope, performance 

and resource overhead. First, granular scope of reconfigurability is 

important because it defines the extent to which reconfiguration can 

be applied and can be classified in terms of fine-grained and coarse-

grained reconfiguration support. Coarse-grained composition 

allows entire system functionality to be added or removed, while 

fine-grained composition relates to smaller changes (e.g. changing 

protocols from Wi-Fi to Bluetooth technology when there is a drop 

in power and vice-versa [5]). Second, vertical scope is an important 

issue because many systems allow only application level 

reconfigurability and this is insufficient in many cases, where 

system infrastructures need to change. For example, 

reconfiguration may also be required at the infrastructure level to 

add new functionality such as the support for new group 

communication or apply updates such as correcting anomalies from 

existing infrastructure services. Third, horizontal scope 

reconfigurability is crucial as both local and distributed nodes 

should be reconfigurable to ensure consistent view of the 

middleware service. Finally, performance and resource overhead 

are important criteria because if a system is highly reconfigurable 

but it runs too slowly or consumes too much resource it is not 

acceptable. In particular the platform must allow aspects to be 

dynamically woven as needed and unwoven when no longer 

necessary. This decreases the resource overhead and performance 

of invoking aspects at a join point. 

In this paper, we present a novel dynamically reconfigurable 

AO-middleware architecture, AO-OpenCom providing a principled 

way of dynamic reconfiguration with degrees of flexibility that go 

beyond the state of the art by following a component-based, 

reflection and AOP design approach. In particular, the architecture 

will address the five main areas of deficiency as discussed above 

and the design is evaluated by its flexibility and expressiveness in 

specifying a range of types of dynamic reconfiguration. In 

particular, the platform offers four flexible distributed 

reconfiguration operation in terms of support for: i) local pointcut 

– local advice; ii) local pointcut- remote aspect; iii), remote pointcut 

– local aspect; and iv) remote pointcut and remote aspect. 

 The remainder of this paper is structured as follows. First, 

Section 2 presents the aspect composition model of AO-OpenCom. 

Next, Section 3 presents the concepts and implementation of the 

AO-OpenCom middleware architecture which is then evaluated in 

Section 5. Then, Section 6 provides a discussion on how the AO-

Opencom meets the requirements based on the experimental 
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results, as well as an analysis against related work. Finally, Section 

7 draws concluding remarks. 

2. AO-CONNECTOR MODEL 
Aspects in AO-OpenCom are composed with the base components 

(hereafter termed components) within component interfaces/ 

receptacles using connectors. The AO-OpenCom connector model 

have two variants: the Default-Connector which contains the direct 

reference of a receptacle to an interface of components (no 

aspectual composition); and the AO-Connector is the architectural 

element offering aspectual composition (weaving) of aspects 

between a receptacle and a provided interface of components.  

2.1 Interface/Receptacle AO-Connector 
The runtime composition of aspects using an interface/receptacle 

AO-Connector is achieved using a proxy that redirects the call or 

execution through the chain of advices on the interface or 

receptacle as illustrated in Figure 1. A key benefit of the 

interface/receptacle aspect composition approach is that it allows 

aspects to be composed even when no binding is present. 

 

Figure 1. Aspect Composition execution chain with Semantic 

Locus using Interface/Receptacle AO-Connector 

2.2 AO-Connector Binder Composition 
The AO-Connector composition differs from component to 

component connectors by maintaining the metadata containing 

references to aspects instances in an advice chain. For example, it 

maintains details of all advised aspects and their types and allows 

these to be queried to determine the operations they support and the 

aspects currently advising them. It also supports the runtime 

manipulation of the chain to add new advices, or remove or reorder 

aspects in the chain of advices. Figure 2 shows the AO-Connector 

connecting two components, the Caller component receptacle to the 

Callee component provided interface, containing the advice chain 

with advice1 to advicen. The AO-Connector also supports the 

inspection and reconfiguration of the woven aspects in the advice 

chain. The inspection mechanism allows type checking of the 

aspect before it is woven in the advice chain. Furthermore, the 

introspection capability allows the detection of conflicts between 

the hosting aspects or the CF they belong to. 

 

Figure 2. Aspect Composition execution chain with Semantic 

Locus at AO-Connector 

2.3 Local Aspect Composition  
Each AO-Connector is responsible for generating at runtime the 

appropriate advice chain for the set of possible join points that can 

occur at its bound interfaces. Figure 3 illustrates a local AO 

composition whereby the Callee Component has a methodCallee() 

method attached to the AO-Connector aspects with the respective 

locus semantics. It should be noted that the around advice is 

different to that used in AspectJ. The order follows the similar 

semantics as in DyMAC [7] and AspectOpenCom [4], that is: 

before advices or aroundbefore  advices are executed in the order 

in which they are encountered within the chain followed by the 

method execution, then followed by after advices or aroundafter 

advices in the order in which they are encountered within the 

chain. 

For example from Figure 3, a call from the Caller component to the 

Callee component, results in the aspect chain to be invoked in the 

following order:  

 [before0 from Aspect A1] → [around before from Aspect A2] → 

[before1 from Aspect A4] → [before2 from Aspect A5] → 

[methodCallee()]→ [after0 from Aspect A3] → [around after  from 

Aspect A2]. 

 
Figure 3. Aspect Composition execution chain  

In the absence of the locus semantics, then each interface 

(execution join point) and receptacle (call join point) call gets 

redirected through a chain of advices attached through the AO-

Connector as illustrated in Figure 4. When a call takes place from 

the Caller Component the execution follows the following order:   

[Aspect 1] → [Aspect 2] → [Aspect 3] → [methodCallee()] 

 

Figure 4. Aspect Composition without Semantic Locus 

2.4 Remote Aspect Composition  
Aspects can also specify and implement remote method invocations 

and are classified in terms of remote advices. These aspects can be 

used to provide distributed remote AO compositions. Similar to 

local aspect composition, remote aspects support the three locus 

semantics (before, after and around) of aspect execution and their 

references can be attached to the AO-Connector. A key difference 

between remote and local advice is that remote advices implement 

the Serialisable mechanism, e.g. Java Serialisable interface such 

that their method calls and return values can be used on remote CFs. 

A remote aspect is advisable like any other method invocation, and 

can capture both call and execution of components. 

3. AO-OpenCom  
AO-OpenCom is an extension of the OpenCom component model 

and its associated reflective meta-models and component 

framework CF architectures. The extension introduces a novel AO-

meta framework layer on top of the existing underlying component-



based reflective middleware substrate. This approach follows from 

the need of the AO-meta framework to cover the crosscutting 

functionality, and to ensure it preserves the separation concern [9]; 

that is, to ensure the middleware platform keeps separate views for 

better understanding and preservation of modularity within the 

middleware platform. The meta-layer and base-layer of each node 

crosscuts multiple address-spaces, and thus a top-level view 

provides separate viewpoint coverage of the crosscutting concerns 

across multiple address-spaces. This hides the complexity of the 

underlying reflective meta-layer from programmers. Moreover, the 

AO-meta framework is built as an independently-deployable 

service using components throughout the architecture (the AO-

meta framework layer is constructed from components like the rest 

of the underlying reflective component-based middleware 

substrate). This means that the AO-meta framework can advise not 

only distributed applications, but also the underlying middleware 

services and the AO-meta framework layer itself. Being 

independent from the rest of the framework allows the AO-meta 

framework to be dynamically deployed when required and un-

deployed when further reconfiguration is not required in the 

foreseeable future (thus avoiding any overhead when not in use). 

The AO-OpenCom architecture consists of the following main 

entities (see Figure 5): i) Base Framework; ii) Reflective-meta 

Framework; iii) AO-meta Framework; iv) Aspect Repository 

Framework; v) Distribution Framework; and vi) Configurator.  

 

Figure 5. The AO-OpenCom Middleware 

3.1 Base Framework 
The base framework consists of the kernel which provides an API 

allowing new components and aspect-components together with 

the AO-Connectors to be instantiated, loaded, unloaded and 

destroyed. Furthermore, the kernel maintains a causal connection 

with the three meta-models in terms of the distribution meta-model, 

AO meta-model and the reflective meta-model such that any 

changes in the base runtime are reflected to the respective meta-

model. Components, reflection and AO are at the core of this 

architecture, providing a principled approach to dynamic 

reconfiguration. At the base, components are encapsulated units of 

functionality and deployment that interact with other components 

exclusively through interfaces and receptacles. AO-Connectors 

represent the bindings between a single interface and a receptacle. 

Reflection technologies through the meta-models provide 

information about the current system state to inform about 

reconfiguration decisions; next a component-based approach 

allows the composition among components’ provided and required 

interfaces. Next, AOP provides a declarative approach to support 

local and distributed quantification as well as local and remote 

aspect reconfiguration capabilities. 

3.2 Reflective-meta Framework 
The AO-OpenCom reflective-meta framework consists of the 

OpenCom reflective meta-models that provide the inspection, 

reconfiguration and extension of component and aspect-component 

composition with a local CF (e.g. of a component composition that 

represents a middleware platform instance). Each of the three meta-

models can be optionally (and dynamically) deployed whenever 

required, and un-deployed when no longer required. 

3.3 AO-meta Framework 
The AO-meta framework internal architecture comprises a set of 

components that are instantiated into the host DCF. The set of 

components is as follows: 

AO-Manager. This component is responsible for accepting and 

handling the configurator requests that will apply to the host DCF. 

Instances of the AO-Manager may run on more than one node in 

the DCF if desired. The AO-Manager interacts with Pointcut 

Evaluator and Aspect Handler components (see below) to perform 

the requested AO compositions within the DCF. It also caches join 

point information it receives from Pointcut Evaluators in case 

similar behaviour needs be applied in the future.  

Aspect Repository. The Aspect Repository holds a set of 

instantiable aspect-components. Actually, the Aspect Repository is 

itself a (sub) CF which supports the configuration of repository 

functionality in a variety of ways. The sub-CF consists of a Front 

End component and a back-end Database component. This simple 

architecture enables a wide range of configurations; e.g. different 

Front Ends can apply different load balancing strategies and some 

Database components can be simple proxies to other Front Ends.  

Pointcut Evaluator. The Pointcut Evaluator supports the parsing 

of pointcut expressions provided by the AO-Manager component 

and to return to the latter a list of all the matching join points found 

within the local address space. The supporting quantification by the 

Pointcut Evaluator component are DCF signatures, operation 

signatures, interface and receptacle signatures, component types 

and instances as well as dynamic properties of the CF runtime 

instances. An instance of the Pointcut Evaluator is present in each 

address space and consists of the following four sub-components:  

 DCF Parser component, serves to evaluate DCF signatures. 

 Expression Parser component, evaluates component 

instances, types as well as interface and receptacle signatures. 

 Method Parser component provides the parsing of method 

signatures of associated components.  

 Dynamic Properties Parser component serves to parse the 

respective key, value pairs of the associated component types 

and instances in the runtime.  

 Pointcut Matcher component compares the given pointcut 

specification against the corresponding identified runtime 

instances that are retrieved from the Distribution meta-model 

and Meta Architecture components. 

Moreover, the Pointcut Evaluator component also supports the 

remote pointcut functionality to evaluate join points located in 

remote address spaces. To do so, it connects to the distribution 

framework to locate the appropriate join points in remote CFs. The 

inclusion of CFs in the list of quantifiable entities means that 



distribution is inherently supported in a network-independent 

manner. In addition, it can evaluate dynamic context properties 

associated for corresponding component instances that are stored in 

the AO-OpenCom runtime kernel and aspect-components by 

evaluating their dynamic properties from the Aspect Repository. 

Finally, the Pointcut Evaluator evaluates pointcuts and returns a list 

of matching join points within the local node in case it is a local 

pointcut, and for remote pointcuts, the lists of matching join points 

in each DCF. 

Aspect Handler. This is also present in each address space. Its role 

is to act on instructions from the AO-Manager to weave advice at 

join points in its address space. The weaving is accomplished using 

the above-mentioned AO-Connector connector type which enables 

advices (i.e. an operation supported by an aspect) to be inserted 

between a pair of bound components. As well as purely address-

space-local AO-Connectors, distributed AO-Connectors are also 

supported that can use distributed framework endpoints as well as 

local receptacle and interface pointers. This enables the AO-

Connector to support the invocation of aspects that are resident in 

other address spaces.  Finally, the Aspect Handler on receiving the 

join points and advice instances, performs advice weaving at 

specified join points in its CF, according to the advice specification. 

3.4 Distribution Framework 
The AO-OpenCom DCF architecture is illustrated in Figure 6 

following a generic component approach to support various 

communication protocols (e.g. TCP, UDP, Multicast, JGroups, 

Broadcast, group protocols such as SCAMP [5]).  Each CF 

maintains a basic architecture of the distribution framework, as well 

as a distribution meta-model containing contents of the CF as well 

as other instances of the DCF. The distribution module functions as 

a hub to the communication protocol choosing the desired 

communication protocol required to ensure reliable communication 

among the CFs’. For non-remote method invocation, based on the 

chosen communication protocol, the Distribution module 

component translates the outgoing messages using a message 

handler and then stores in the Queue component. The sender 

module extracts queued messages and sends them according to the 

outgoing protocol. On the receiving side the Receiver module 

component is responsible for receiving messages. Received 

messages are placed in the buffer component, which is then read by 

the Distribution module to update the distribution meta-model 

accordingly. Importantly, this communications service of the AO-

OpenCom DCF is realised as a pluggable component, meaning that 

the service can replace the basic service (which is unreliable and 

does not support any ordering semantics) with a range of alternative 

communications services chosen according to the reliability and 

scalability requirements under which the DCF is deployed. 

 

Figure 6. AO-OpenCom Distribution Framework  

3.5 Configurator 
Each Configurator interacts with its local Pointcut Evaluator and 

Advice Handler to carry out either a reconfigure or a reorder 

reconfiguration on its local node. The reconfigure operation 

provides the coarse-grained reconfiguration of aspects (add, 

remove and replace) at a join point and the reorder operation 

provides fine-grained reconfiguration, that is allowing aspects to be 

reordered at a join point. Consequently, AO-OpenCom provides 

granularity scope of reconfigurability requirements. Furthermore, 

the Configurator also interacts with other peer Configurators, for a 

distributed reconfiguration across multiple DCFs’. This allows the 

platform to provide for horizontal scope reconfigurability.  

4. AO-OpenCom PROGRAMMING MODEL 

4.1 AO-OpenCom Kernel API 
The AO-OpenCom platform is supported using the minimal kernel 

API that is offered by each DCF. The intention of these operations 

is to provide the minimum functionality required to create instances 

and connect them. The key operations supported by the kernel API 

are shown in Figure 7 comprising of the eight main operations.  

 

Figure 7. AO-OpenCom Kernel Base-level operations 

The load() method loads a named component type from the 

component repository and aspects from the Aspect Repository, and 

the unload() method unloads an existing component type and 

aspect type from the runtime respectively. The instantiate() method 

provides the instantiation of aspects and component. Furthermore, 

a component or aspect can be instantiated multiple times if desired, 

with each having a different unique identifier. The connect() 

method connects a provided interface with a required interface of 

another. The getprop() returns a reference of associated entities 

(aspect types, component types, aspects, components, interfaces 

and receptacles) dynamic properties in the form of <name, value> 

tuples. The putprop() method writes into the registry the respective 

entities tuples. Finally, the notifyCall() method provides the 

callback operations whenever one of the methods in the kernel 

base-level system gets called causing call to be updated in the meta-

model layers. It should be noted that the reconfiguration does not 

need to use the lower level AO-OpenCom base-level operations to 

reconfigure the platform. The base-level operations are available 

and can be used by the middleware developer. To perform any 

reconfiguration, the reconfiguration developer makes use of the 

configuration API that is described in the next section.  

4.2 Configurator API 
Aspect configuration and reconfiguration in AO-OpenCom can be 

specified in terms of an XML-based independent pointcut 

languages as well as programmatically which enables pointcuts 



signatures to be defined in terms of: i) capsules/hosts/DCF address 

expression; ii) a component type expression; iii) a component 

instance expression; iv) an interface/ receptacle type expression; v) 

a method type expression; and vi) metadata that can be attached to 

any of the foregoing.  The main API provided by the AO-OpenCom 

enabled CF and DCF for AO composition and reconfiguration are 

shown in Table 1. The configuration specification containing the 

pointcut and advice specification is passed to AO-OpenCom 

Configurator. The configurator supports both programmatic and 

XML specifications to be sent to it following the BNF specification 

[14]. Note, that the Configurator API protects the reconfiguration 

developer from the low level details of actually managing and 

weaving the aspects among distributed nodes. Hence, facilitating 

the usability of the platform to support reconfiguration and to 

deploy new aspects, the programmer can use a deployment script 

similar to components deployment. 

Table1. API AO-OpenCom Reconfiguration protocol 

  

4.2.1 Local Reconfiguration 
The local reconfiguration using the AO-OpenCom meta-layer is 

split into four main stages: 

1. Stage I: Reconfiguration Setup 

When a user issues a local reconfiguration request, the 

reconfiguration is initially handled by the Configurator component. 

This component forwards the aspect reconfiguration to the AO-

Manager component. The latter, then checks if a similar 

reconfiguration request has not been performed. If a similar 

reconfiguration request is present, then the cached join point 

information is retrieved and reconfiguration proceeds to Stage IV 

(Aspect Weaving Stage). The AO-Manager maintains a time-out 

cache period, after which any cached reconfiguration from the AO-

Repository is removed. Furthermore, using the base runtime 

notify() operation, any changes made to the runtime are notified to 

the AO-Manager, so that cached requests are removed. 

Additionally, after performing an update, the updated 

reconfiguration is cached by removing the old cached entry. If the 

reconfiguration is not present in the cached repository, then the AO-

Manager component, first submits the pointcut specification to the 

Pointcut Evaluator component (Stage II) followed by submitting 

the advice specification and the join point (received from Stage III) 

to the Aspect Handler component.  

2. Stage II : Join point Lookup 

Next, in case the reconfiguration is a new request that is not present 

in the cache, the AO-Manager component submits to the Pointcut 

Evaluator component the pointcut specification in order to retrieve 

the required join points.  

Stage IIa: Pointcut Specification Parsing. The Pointcut Evaluator 

first uses the Parser CFs components to parse each of the pointcut 

signatures and expressions. If the pointcut specification contains 

dynamic properties signatures, the Dynamic Property Parser 

component is used to parse and extract the associated pointcut 

expressions. Otherwise, the specification is parsed by the 

Expression Parser component to retrieve the appropriate names 

associated for the aspect/component and interface/receptacle 

pointcut signature and the Method Parser component to extract the 

associated operations signatures. The Parser CF then returns the 

parsed signatures back to the Pointcut Evaluator component.  

Stage IIb: Join point Lookup. The Pointcut Evaluator then 

translates the respective parsed signatures/expressions whereby the 

aspects / component expressions are inspected using the 

Architecture meta-model component, followed by the interface and 

operation expressions. For the identified entities in the runtime, the 

respective connectors are returned to the Pointcut Evaluator 

component. In case the connector does not have an aspect then the 

default connector is returned to the AO-Manager component. 

Conversely, the AO-Connectors are returned to the AO-Manager in 

case of already woven aspects-components at the join points. 

3. Stage III : Aspect Instance Retrieval 

On receiving the list of connectors (either default-connector or AO-

Connector), the AO-Manager component then submits the aspect 

specification and the connectors list to the Aspect Handler 

component. On the other hand, if the list of connectors is empty, 

the reconfiguration is not applicable and the reconfiguration is 

aborted. For add or replace, this may involve obtaining the aspect 

from an Aspect Repository. It will also involve weaving the aspect 

according to the specified scope and locus. 

4. Stage IV: Aspect Weaving 

The aspect weaving interaction varies according to the 

reconfiguration command- action.  

1.) Add reconfiguration command-action. 

Before the aspect weaving is performed, the AO-Handler ensures 

the aspects are type compatible by performing type-safety checking 

using the TypeValidator component. That is, it checks if the aspect 

exposes a matching interface and receptacle and its methods 

operations at the callee and caller components. Then, if at the join 

point there is no AO-Connector present, then the default-connector 

must first be replaced by an AO-Connector capable one. To do so, 

the Aspect Handler component, instructs the Quiescent Handler 

component to set the components under reconfiguration as well as 

the default connector to a quiescent state before the connector 

replacement is initiated. That is, the Aspect Handler component 

ensures that the associated components on the default connector are 

in a steady state before any reconfiguration can proceed.  

For this purpose, a read/write lock mechanism is used, such that 

every non-reconfigure operation can access the lock as a reader 

(there can be n readers using the lock at any one time) and for any 

reconfiguration calls an exclusive writer lock is used. Once in a 

quiescent state, the Aspect Handler component then calls the AO-

Connector-Factory (In the simplest form of bindings between 

components, the default-connector-factory component is used to 

instantiate connectors without any interception capability) 

component via the CF load() and instantiate() methods 

respectively. Subsequently, the interface-receptacle pair of the 

reconfigured components are connected by using the CF connect() 

method and parsing the instantiated AO-Connector-Factory factory 

as one of its arguments. Once created, a success message is returned 

to the AO-Manager component. In the case of failure the 

fail_created_AOConnector_Timeout failure message is sent to the 

AO-Manager. The error message signifies that the AO-Connector 

creation reached the reconfiguration timeout. If the AO-Connector 

has successfully been created, then the AO-Manager instructs the 

Aspect Handler to weave the aspects. By default for the add 

reconfiguration command-action the aspect is added in an ordered 

manner in the AO-Connector chain. If the order of the aspect-order 

is specified, then based on the specified order the aspect is woven 

in the AO-Connector chain. 

2.) Replace reconfiguration command-action. 



The reconfiguration to replace an aspect takes place in four 

interaction stages. Similar to the add command-action 

reconfiguration, the reconfiguration is first checked if they are type 

compatible with the interface-receptacles at the join point 

components, followed by placing the join point list of components 

and the AO-Connector aspect components to the quiescent state. 

Next, the Aspect Handler component extracts the execution state 

from the existing reconfigured aspect. This state extraction 

mechanism is optionally supported by aspects, the capability being 

dynamically discovered by the CF member using reflection. Then, 

the old aspect reference is removed and the new-aspect component 

reference added at the AO-Connector chain state is restored to the 

newly replaced aspect. If the old aspect state was extracted the state 

is restored to the newly updated aspect using the State Handler 

component restore-state() method operation. 

3.) Remove reconfiguration command-action. 

The remove reconfiguration command-action takes place in a three 

stage interaction, with the first stage consisting of setting the 

reconfiguration join point to quiescent. Then, in Stage II, the aspect 

reference is removed from the AO-Connector. In the final stage, 

Stage III the quiescence on the AO-Connector is removed, after 

completing the reconfiguration. Moreover, if there is no other 

aspect attached to the AO-Connector, then the AO-Connector is 

replaced by a default-connector. Once the weaving/un-weaving has 

been completed the Aspect Handler returns an acknowledgment 

message to the AO-Manager component. If the reconfiguration is 

successful the updated reconfiguration join point is cached. Finally, 

a reconfiguration ack() message is returned to the Configurator 

informing that the reconfiguration has been completed and the lock 

on the Configurator can be removed, such that the Configurator 

component can accept new reconfiguration requests. 

4.) Reorder reconfiguration command-action. 

The Aspect Reorder Reconfiguration involves the Stage I, II and III 

of the reconfiguration interaction. Stage IV is similar to the aspect 

removal reconfiguration action. However, instead of removing the 

aspect reference, the aspect references are reordered according to 

the specified advice specification. 

4.2.2 Distributed Reconfiguration 
The Configurator.reconfigure() reconfiguration protocol in AO-

OpenCom is as follows: 

1. Configurator.reconfigure() is called on the Configurator of one 

of the nodes supporting the DCF to be reconfigured; in the 

following this node is referred to as the ‘initiator’.  

2. The initiator determines how the specified aspect is to be 

applied. In the case of a per-DCF scope, it instantiates the 

aspect at a suitable node and sends a remote reference to the 

nodes where it is to be woven. Otherwise, the initiator decides 

if it has the specified aspect available locally (or can get it from 

an Aspect Repository) and wants to send it ‘by value’ to the 

nodes where it is to be woven, or if it wants to send the aspect 

‘by reference’ and implicitly instruct the other DCF members 

to obtain the aspect from an Aspect Repository.  

3. The initiator sends a ‘reconfigure’ message to all DCF member 

nodes. This essentially contains the parameters originally 

passed to reconfigure(). By default, the initiator employs the 

DCF’s default communications service for this.  

4. When it receives a ‘reconfigure’ message, each DCF member 

node’s Pointcut Evaluator applies the specified pointcut and 

thereby locates all the target join points within its scope.  

5. If the command is ‘replace’, the Aspect Handler extracts 

execution state from the existing aspect. Similar to local aspect 

reconfiguration, the state extraction mechanism is optionally 

supported by distributed aspects, with the capability being 

dynamically discovered by the DCF member using reflection.  

6. Each member node’s Aspect Handler then actions the ‘add’, 

‘remove’ or ‘replace’ command as appropriate. For ‘add’ or 

‘replace’, this may involve obtaining the aspect from an Aspect 

Repository. It will also involve weaving the aspect according 

to the specified scope and locus (which may involve creating a 

remote binding if per-DCF scope is requested).  

7. Each node replies to the initiator that it has completed the 

reconfiguration locally. 

8. When all nodes have reported completion the initiator node 

returns control to the caller of reconfigure().  

Note in passing that there is considerable scope for optimising this 

protocol in terms of performance. For example, the configuration 

of aspect repositories in the system, and the corresponding choice 

of whether to pass aspects by value or by reference, can have a 

significant influence on performance, as can the use of, and location 

of, remotely accessible per-DCF aspects. 

5. Evaluation 
To evaluate AO-OpenCom approach to offer flexible dynamic 

reconfiguration requirements we use a case-study based 

methodology (described in Section 5.1). Then, in Section 5.2 we 

describe the AO-OpenCom use case solution. Finally, in Section 

5.3 the reconfiguration performance is evaluated.  

5.1 Airport Crisis Management Scenario 
The use-case scenario is inspired by an airport crisis management 

scenario taken from the EU DiVA FP7 STREP project [3]. This 

was chosen because it offers a realistic scenario taken from a real 

project and because it offers sufficient opportunities for dynamic 

reconfiguration. The architecture of the crisis management scenario 

consists of four different domains: the Main Control Room, 

Administration, Sales, and Terminal. The Main Control Room 

centralises all phases of the management of the other three domains 

by determining the different types of dynamic reconfiguration 

necessary to maintain their optimal operation. More specifically, 

the Main Control Room is responsible for identifying any crisis, 

building appropriate crisis management strategies according to the 

nature of the incident, collecting crisis information and providing it 

to all the domains dealing with crisis management. The Main 

Control Room contains human crisis actors and a crisis 

management system offering a messaging system for crisis actors 

so that they can communicate through the exchange of text 

messages. The Main Control Room dynamically reconfigures the 

crisis management system configuration according to the crisis type 

and context. The Administration domain hosts the key stakeholders 

(CEO, Operation Manager, CIO) representing the airport’s decision 

making authority. In case of any crisis they need to be notified 

immediately. In crisis situations, the Sales and Terminal domains 

are notified about incidents and, based on the gravity of the 

incident, the sales of ticket may be stopped and Terminal operations 

(such as boarding) stopped or delayed. 

As a crisis situation is initiated from the Main Control Room, 

alerts sent to the different crisis actors within the airport are logged 

to keep track of events and can be studied later on for service 

improvement. Alerts are logged during both crisis and non-crisis 

situations. In a non-crisis situation, all crisis actors send their logs 

to the main control room. Under a crisis situation only crisis actors 

involved in the crisis are logged.  

5.2 AO-OpenCom based solution 
From the use-case scenario, the MessageHandler and the 

Communication modules as shown in Figure 8a are two main 



entities responsible for the transmission of messages among nodes 

before reconfiguration and after reconfiguration in Figure 8b. The 

Messager module is responsible to transmit messages based and 

requires an IMesageHandler interface which takes as parameters 

the MessageType, DCF, port id and communication mode. Figure 

9 illustrates the MessageHandler code fragment implementation. 

From Figure 9, Line 1 implements the IMessageHandler interface 

to handle the message communication to the Communication 

component. Line 2 specifies the receptacle reference of the 

MessageHandler component to the Communication component and 

Line 3 details the reference to the AO-OpenCom runtime base-level 

kernel. Lines 4-7 contain the constructor for the MessageHandler 

component. Lines 8-12 detail the call to the sendMsg operation of 

the Communication component. In the use-case scenario, the alert 

logging is a crosscutting concern that is tangled across multiple 

nodes. In order to facilitate the reconfigurability the application 

developer needs to untangle this functionality from the component 

implementation. Another requirement from the use-case scenario is 

the need to provide secure transmission of the logs. To do so an 

encryption module is needed and since the encryption module is 

crosscutting similar to the alert logging module, it needs to be 

applied as an aspect (as shown in Figure 8c). 

 

 

Figure 8. Reconfiguration for use case scenario.  

 

Figure 9. Code extract of the Message Handler  
 

 

The code-fragment of the local Logger aspect implementation is 

illustrated in Figure 10 and that of the remote Logger aspect in 

Figure 11. 
 

 

Figure 10. Code extract of the Local Logger Aspect  

5.3 Evaluating Reconfiguration Protocol  
To measure the reconfiguration protocol a small network of five 

standalone workstations has been employed: a 1.8 GHz Core Duo 

2 PC with 3GB RAM; a 3.4 GHz Pentium IV PC with 1GB of 

RAM; a 2.8GHz Pentium IV PC with 1 GB of RAM; a 1.33 GHz 

Core Duo 2 laptop with 2GB of RAM; and a MacBook 2.4 GHz 

Core Duo 2 laptop with 4GB RAM. Two of the machines ran 

Ubuntu 12.04, two ran Windows XP with service pack 3, one ran 

Windows 7 SP1 and the other ran OS X Mavericks. All of these are 

connected via a 100Mbps local area network. While this network is 

small in terms of physical nodes, each physical node is used to host 

multiple instances of the framework and in this way the evaluation 

environment was able to scale to support the equivalent of 100 

nodes (frameworks) under four Java VMs per machine. Each 

evaluation machine was installed with the AO-OpenCom 

framework which was executed on a Java 1.7 virtual machine 

(VM). Note that the different machines used to perform the 

experimental setup demonstrate the capability of AO-OpenCom of 

being deployed independently in various operating system 

environments and with different hardware resources as long as 

these machines support the Java VM. Each machine was able to 

scale to support 100 of these configurations as virtual nodes. 

 

Figure 11: Code extract of the Remote Logger Aspect 

5.3.1 Add command-action 
To evaluate the performance overhead of the reconfiguration 

protocol add-command-action, the logger aspect is woven at the 

communication stack. The reconfiguration involves weaving the 

logger aspect at the AO-Connector connecting the Message 

Handler and the Communication Module. To perform this 

reconfiguration, the reconfiguration developer needs to specify the 

reconfiguration request by writing code along the lines of Figure 12 

(the code is simplified for presentational purposes).  
 
 

 
Figure 12. Reconfiguration specification 

 
 

The Configurator.reconfigure() call takes the given pointcut and 

aspect specifications which are as follows: the aspects that need to 

be “added”; the scope of the reconfiguration, stating that this 

reconfiguration need to be applied for all nodes; and that the 

weaving locus should be a before advice weaving. The results of 

the experiment are illustrated in Figure 13. The results confirm the 

expected outcome that as the number of reconfigured nodes 

increases, the amount of time required to perform reconfiguration 

increases linearly. The result shows that on a single node (as would 

be expected) the reconfiguration using the local pointcut and local 

http://en.wikipedia.org/wiki/OS_X_Mavericks


aspect is similar to that of using remote pointcut and local aspect, 

and the reconfiguration using local pointcut and remote aspect is 

similar to that of remote pointcut and remote aspect. The 

differences between LL, RL and LR and RR lie in the remote aspect 

instantiation for LR and RR. This instantiation is an out-of-band 

overhead on the initiator node and if the aspect is already 

instantiated in the aspect repository, then the reconfiguration time 

is decreased, with the overhead comparable to that of LL and RL. 

The results also show that:  

i) For less than 170 nodes LL offers significantly better 

reconfiguration performance than LR. This means the 

instantiation of the local aspect across each node is expensive 

as the number of reconfigured nodes gets above 170 nodes. 

ii) Above 160 reconfigured nodes LL reconfiguration overhead 

gets worse compared to RR. The difference at 10 nodes 

between LR and RR when compared to LL, is due to the remote 

pointcut offering less reconfiguration overhead for RR. 

iii) For less than 220 reconfigured nodes RL offers better 

reconfiguration time compared to RR. This is explained by the 

instantiation of the remote aspect being expensive, and the 

reconfiguration cost offset the instantiation time as more than 

220 nodes are reconfigured.  

iv) When reconfiguring more than 220 nodes RR reconfiguration 

is better compared to LL, LR and RL. This is mainly attributed 

to the instantiation cost while weaving remote aspects as well 

as the method Lookup() operation to ensure remote aspect 

interface compatibility as the remote aspect is woven to the 

AO-Connector chain.  

Figure 13. Add reconfiguration command-action 

Overall, the experimental results show that there is a large overhead 

while reconfiguring on a single node using LR and RR compared 

to LL and RL. As the number of reconfigured nodes increases, 

reconfiguration using RL and RR offers better performance 

compared to LL and LR. The higher reconfiguration time using LR 

and RR is mainly due to the remote aspect instantiation on the 

initiator node which is on average 147ms. Having the remote aspect 

instantiated will amortise the reconfiguration time as illustrated in 

the dotted lines in Figure 13 for both LR and RR making RR more 

optimum for large scale reconfiguration. The time to set up the 

advice may not be the most important consideration overall, the in-

band overhead would likely be more significant. 

5.3.2 Replace command-action 
Here the Logger aspect is replaced by the Multicast Logger aspect. 

This operation involves a replace operation of the existing Logger 

aspect at the message handler AO-Connector by the Alert Logger 

and the resulting reconfiguration. To measure the reconfiguration 

overhead of the replace command-action the same environmental 

setup as in Section 5.3.1 is used, whereby the woven Logger aspect 

is replaced by a Multicast Logger aspect. The measurement results 

of this experiment are illustrated in Figure 14. The results show an 

increase in the reconfiguration time to perform the replace 

command-action compared to the add command-action. This is due 

to the fact that the replace command-action requires the un-weaving 

of the old aspect component followed by the weaving of the new 

aspect component, while that of the add command-action involves 

only the aspect weaving. The results show: 

i) RL offers better reconfiguration compared to LL, RL and RR 

to reconfigure up to 160 nodes. This is explained by the 

quantification of the pointcut being performed only on the 

initiator node and the instantiation remote aspect on smaller 

number of nodes offers better reconfiguration overhead 

compared to remote aspect instantiation. 

ii) A steeper gradient to reconfigure LR compared to RR as the 

number of reconfigured nodes increases, demonstrating that 

pointcut quantification on each reconfigured node is expensive. 

iii) RR setup offers better reconfiguration time compared to LL, 

LR and RR, similar to the add command-action.  
 

 
Figure 14. Replace reconfiguration command-action 

An additional experiment was performed to measure 

reconfiguration overhead while updating the aspect using cached 

pointcuts by retrieving the pointcut from the AO Repository. The 

use of a cached pointcut avoids the use of the distribution meta-

model to retrieve the join point. The measurements of the 

experiment are shown in Figure 15. The results show a significant 

decrease in the reconfiguration time for all the four reconfiguration 

operations. The decrease in overhead is on average by 30% per 

reconfigured node. It should be noted that the cached pointcut still 

requires the parsing of the XML specification to check if the 

required reconfiguration request matches the ones previously 

retrieved and cached. The results also show that the time needed to 

perform remote aspect is lower than that of local aspect. This is 

explained by the fact that the remote aspect is instantiated only once 

on the initiator node compared to local instantiation on each Aspect 

Repository in the case of LL and RL. 
 

 
Figure 15. Replace command-action using cached pointcut 



5.3.3 Remove command-action 
Finally, the Logger aspect may no longer be necessary, and can be 

removed. The reasons behind a remove reconfiguration command 

include: removing the Logger aspect as the policy associated to it 

has been deleted, or being incompatible (such as semantic 

inconsistencies) and needs to be removed to allow a reconfiguration 

to be completed. This involves a remove reconfiguration command, 

such that the reconfiguration leaves an empty advice chain at the 

join point.  As discussed earlier, an AO-Connector is woven to 

support the advice chain at the appropriate join point. The AO-

Connector component should be removed when no aspect is present 

at the join point. This is because leaving an empty AO-Connector 

will result in an in-band overhead that negatively affects the system 

performance. The results of the remove command-action 

experiment are illustrated Figure 16. The results show a lower 

reconfiguration overhead for un-weaving an aspect compared to the 

weaving or replacing of an aspect. This is because, the un-weaving 

of aspects involves the parsing of the reconfiguration operations 

from the script, locating the join point and setting the reconfigured 

join point to quiescent mode and removing the references of the 

aspect from the AO-Connector. From Figure 16, it can also be 

observed that the un-weaving of an aspect is faster for LL and RL 

compared to LR and RR. This is explained by the reflective calls 

needed to get the aspect operations before its methods are removed 

at the AO-Connector. For the remote aspect, the reflective call 

involves the Lookup() method for the remote aspect causing higher 

performance penalty. The next measurement involved measuring 

the amount of time required to remove an aspect and then remove 

the AO-Connector by reinstalling the default connector. The 

additional reconfiguration time per node is about 10ms for all the 

setup reconfigurations (LL, LR, RL and RR). This lower increase 

is mainly due to the fact no reflective calls are needed with an 

Unload() followed by a Connect() method call executed. 

 

Figure 16. Remove command-action reconfiguration 

5.3.4 Reorder reconfiguration protocol 
A reorder command action may be applied when more than one 

aspect is woven at a join point. To measure the overhead of the 

reorder command action all messages sent are encrypted and then 

logged. This reconfiguration involves the reorder operation which 

reorders the advice chain.  

 

Figure 17. Reorder command-action reconfiguration 

The results of Figure 17 show that the reorder command-action has 

a significantly lower reconfiguration cost than the coarse-grained 

operations. Additionally, it can be observed that the cost of using 

LR and RR to perform the reorder reconfiguration is significantly 

higher (by 50%) compared to LL and RL. The higher overhead is 

explained by the Lookup() reflective method call for remote 

aspects, introducing significantly higher overhead.  

5.3.5 Evaluating resource overhead 
This section examines the resource costs (in terms of memory) in 

reconfiguring the middleware platform using a reliable and an 

unreliable communication protocol. Figure 18 shows the resource 

overhead on the initiator node of AO-OpenCom using first a 

reliable communication protocol (JGroups) and then an unreliable 

multicast protocol. The measures represent the resource overhead 

of the Distributed Meta Architecture: i.e. configurations for the 

binding of the case study application and the base elements of the 

AO-OpenCom platform. Furthermore, it can be observed that there 

is an extra memory overhead from the use of reliable 

communications. The additional cost ranges between 3.9% to 

119.2% increase in the amount of memory consumed by each node. 

Additionally, it can be observed there is a linear increase in 

resource overhead as the number of nodes increases. This measure 

demonstrates that a large part of resource overhead is incurred to 

ensure reliable communication and is representative of the increase 

in overhead as applications are reconfigured across a distributed 

system. 

 
Figure 18. Reconfiguration resource overhead  

6. DISCUSSION AND RELATED WORK 
The experiments results demonstrate the flexibility of AO-

OpenCom to robustly support a wide range of dynamic 

reconfiguration variability in terms of i) granular scope 

reconfigurability supporting coarse-grained reconfiguration using 

the reconfiguration command-actions (add, replace and remove and 

operations) provide coarse-grained and fine-grained 

reconfiguration (reorder operation); ii) vertical scope 

reconfigurability allowing both infrastructure services 

reconfigurability as demonstrated and measured in Section 5.3.5 

and application services reconfigurability as the demonstrated in 

Section 5.3.1 to Section 5.3.4; iii) horizontal scope 

reconfigurability supporting both local and distributed 

reconfiguration as demonstrated in Section 5.3.1 to Section 5.3.4; 

and iv) performance; and v) resource overhead with the main 

resource overhead within the AO-OpenCom being from the 

distributed framework which is influenced by the choice of the 

communication protocol. The resource overhead on each node can 

be minimised by creating group nodes and having one node hosting 

the distributed framework of the group of nodes.   

Turning to related work, a number of AO-middleware 

platforms have emerged. Most of the AO-middleware platforms 

offer only coarse-grained reconfiguration. However, 

AspectOpenCom [4] and JAC [10] provide support for fine-grained 

reconfigurability, by allowing the reordering of aspects at a join 

point. Regarding application-level vertical scope of 



reconfigurability most middleware platforms provide support to 

weave and un-weave aspects that are applied to an application at 

runtime. However, with the exception of FAC [11], none of the 

AO-middleware platforms supports infrastructure-level evolution, 

but FAC is limited to local infrastructure-level only. With respect 

to horizontal scope reconfiguration, AO-middleware platforms 

support three types of aspect composition. First aspect composition 

being separate from the distribution model, such that the 

middleware architectures use their own distribution specific 

technologies to provide distribution. Most of the AO-middleware 

platforms (PROSE [13], JBoss-AOP [2], Lasagne [16], DyReS [17] 

and CAM/DAOP [12]) have aspect being separate from the 

distribution model. These AO-middleware platforms use 

distribution technologies to provide distribution. Second, aspects 

abstractions are used with the distribution model, such that the 

middleware architectures use aspect technology to provide 

reconfiguration. DJasCo [1], JAC [10] and ReflexD [15] platforms 

use aspects abstractions with the distribution model by offering the 

remote pointcut functionality. Third, aspect form an integral part 

(i.e. as a first class entity) of the distribution model, such that the 

middleware platforms (DyMAC [7] and Damon [8]) use aspects to 

provide reconfiguration and build the distribution models. The 

DyMAC platform supports both remote advice and remote pointcut 

functionality but the platform only allows remote aspect 

deployment (aspects are non-reconfigurable in the platform). In the 

case of Damon the explicit connector defined for each composition 

makes the composition of distributed aspects non-transparent. 

However, none of the AO-middleware platforms provide for 

flexible distributed reconfiguration with the support of local 

pointcut - local advice; remote pointcut - local advice; local 

pointcut – remote advice; and remote pointcut – remote advice. 

Finally, with respect to performance and resource overhead, 

AO-middleware platforms using byte-code instrumentation 

weaving (DJasCo, JBoss AOP, JAC, Damon, ReflexD) usually 

introduce some level of overhead in the system while performing 

reconfiguration, while CAM/DAOP and Lasagne which use a 

message interception mechanism to invoke aspects introduce 

significant overhead. PROSE uses a two-way weaving mechanism 

such that alternate weaving mechanism can be chosen based on the 

performance need. In DyMAC, since the weaving is done on all 

possible join points at load-time the runtime weaving of aspects is 

not significant. However, similar to AspectOpenCom the use of 

proxy-based interceptors on all join points even those not having 

any aspects behaviour bound to them, introduce an indirection in 

the call invocation for all component communications as the calls 

need to pass through the proxy. In our approach, the use of default-

connector and AO-connector at runtime diminishes consequently 

the indirection when no aspects are present. 

7. Conclusions 
In this paper we have presented an aspect-oriented component 

framework architecture that offers comprehensive AOP support for 

both local and distributed reconfiguration. The AO meta-

framework can be independently deployed such that it imposes no 

overhead when it is not used and can be dynamically deployed/un-

deployed where and when required. In addition, the AO meta-

framework is built using the same programming language 

independent component-based principles as the underlying 

reflective middleware layer, and the overlying application.  

The AO-OpenCom platform provides the development of a 

fully distributed realisation of dynamic aspects. This is achieved by 

layering our AO provision on top of the distribution framework and 

by providing a pointcut language that is inherently distributed in 

nature (i.e. it supports quantification over capsules). In addition, the 

AO-OpenCom middleware supports in a natural way the 

composition of advices that is remote from the advised join points. 

Furthermore, the AO-OpenCom approach significantly decreases 

the complexity of deploying new functionality in a distributed 

environment as compared to the reflective middleware approach. 

Nevertheless, the lower-level reflective APIs are still available to 

the developer should they be required. Additionally, the 

experimental results show that AO-OpenCom is scalable and 

achieves flexibility providing an important step towards the path of 

enhancing dynamic reconfiguration in AO-middleware for real-

world critical distributed applications.  
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