Taming the Interoperability Challenges of Complex loT
Systems

Paul Grace, Justan Barbosa, Brian Pickering, Mike Surridge
IT Innovation, University of Southampton, UK
IT Innovation Centre, Gamma House
Enterprise Road, Southampton SO167NS, UK

pjg@it-innovation.soton.ac.uk

ABSTRACT

The Internet of Things is characterised by extreme het-
erogeneity of communication protocols and data formats;
hence ensuring diverse devices can interoperate with one an-
other remains a significant challenge. Model-driven develop-
ment and testing solutions have been proposed as methods
to aid software developers achieve interoperability compli-
ance in the face of this increasing complexity. However,
current approaches often involve complicated and domain
specific models (e.g. web services described by WSDL). In
this paper, we explore a lightweight, middleware indepen-
dent, model-driven development framework to help develop-
ers tame the challenges of composing IoT services that inter-
operate with one another. The framework is based upon two
key contributions: i) patterns of interoperability behaviour,
and ii) a software framework to monitor and reason about in-
teroperability success or failure. We show using a case-study
from the FI-WARE Future Internet Service domain that this
interoperability framework can support non-expert develop-
ers address interoperability challenges. We also deployed
tools built atop the framework and made them available in
the XIFI large-scale FI-PPP test environment.

Categories and Subject Descriptors
D.2.1.12 [Interoperability]: Data Mapping

General Terms
Design

Keywords

Internet of Things, model-driven software engineering, in-
teroperability, software testing, architectural patterns

1. INTRODUCTION

Interoperability remains a fundamental challenge for the
developers of IoT (Internet of Things) systems and applica-
tions. Important characteristics are heterogeneity and scale;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Workshop on Middleware for Context-Aware Applications in the IoT De-
cember 08-12 2014, Bordeaux, France

Copyright 2014 ACM 978-1-4503-3234-7/14/12.
http://dx.doi.org/10.1145/2676743.2676744 ...$15.00.

independently developed devices employ diverse communi-
cation protocols and data formats to interact with one an-
other.

Where significant differences in protocols and data for-
mats exist, how can systems be guaranteed to understand
each other and interact? Standardisation and middleware
are two established methods to achieve interoperability. How-
ever, given the diversity of the Internet of Things it is impos-
sible to rely on global standards or a single common middle-
ware platform employed by all. Instead, interoperability is
typically tackled in an ad-hoc manor: i) per system/protocol
compliance tests, e.g. plug tests for MQTT (MQ Teleme-
try Transport) implementationd’} ii) published API infor-
mation for developers to follow (e.g the Hyper/Cat [1] cat-
alogue of IoT services), and iii) development of mappings
and adapters to broker system differences on a case-by-case
basis (e.g. mappings between data |2], mappings between
middleware [3]). While these solutions help in overcoming
interoperability problems, there remains a significant bur-
den on developers to understand and identify problems and
then implement and test solutions accordingly; hence, in-
teroperability [4] and software service testing [5] are both
multi-billion dollar industries.

Model-driven software development offers a principled ap-
proach for engineering interoperable solutions through the
capture of shared domain knowledge between independent
developers, and automated software generation and testing.
For example, model-driven testing [6] and model-based in-
teroperability testing |7] have demonstrated the potential of
the approach. However, these solutions focus on a single
technology (Web Services) and require detailed models of
the system’s interface syntax (using WSDL) and behaviour
(using BPEL) in order to generate automated tests. We pro-
pose that model-driven approaches are equally well-suited to
addressing interoperability problems in the composition of
IoT software; but they must consider the heterogeneity of
technologies and the need for simpler quick-to-develop and
highly re-usable models.

In this paper we present a Model-driven engineering frame-
work to simplify the composition of IoT services, and sup-
port interoperability compliance and testing. For example,
where a developer has created a new device to be plugged
into an existing publish-subscribe monitoring application,
e.g. a vehicle within an intelligent traffic management sys-
tem. Such a developer can leverage the framework to ensure
interoperability is correctly achieved. The framework is built

"http:/ /iot.eclipse.org/documents/2014-04-08-MQTT-
Interop-test-day-report.html

upon two core contributions:

o [Interoperability patterns are reusable software artefacts
that model the behaviour of IoT services in a lightweight
and technology independent manner. These models
are used to help developers create and test IoT sys-
tems that correctly interoperate. These patterns are a
combination of architecture specification (i.e. services
and interface dependencies) and behaviour specifica-
tion (using state machines and rule-based transitions
to evaluate protocol events). Importantly, the models
focus only on what is required to interoperate, sim-
plifying the complexity of the model in comparison to
approaches that fully model a system’s behaviour.

e The Interoperability framework captures systems events
(REST operations, middleware messages, data trans-
fers, etc.) and transforms them into a model specific
format that can be used to evaluate and reason against
required interoperability behaviour. The framework
tests monitored systems against patterns to evaluate
interoperability compliance, reporting where interop-
erability issues occur, such that the developer can pin-
point and resolve concerns.

To evaluate the framework we utilize a case study based
approach. FI—WAREEl provides a marketplace of indepen-
dently developed Future Internet Services (approximately
30) that can be composed to build IoT applications; these
are loosely-coupled REST services without formal interface
or behavioural specifications, and hence achieving interop-
erability remains a significant task for developers. The FI-
PPPEI provides a large community of these developers, with
a large-scale testing environment (XIF]EI). We show how
lightweight interoperability patterns can quickly be created
for this domain, and also how the interoperability frame-
work lowers the burden of performing interoperability tests
and identifying the causes of interoperability errors.

The remainder of the paper is structured as follow. In Sec-
tion [2| we present the model-driven interoperability frame-
work focusing on the pattern concept for specifying required
interoperability behaviour. Subsequently, we evaluate the
framework in Section [8] In Section [d] we analyse the work
in comparison to the state of the art; and finally in Section [f]
we draw conclusions and highlight future areas of applica-
tion for the solution.

2. A MODEL-DRIVEN INTEROPERABIL-
ITY FRAMEWORK

Figure[[]provides an overview of the interoperability frame-
work; this is a set of components for performing model-
driven development of interoperable software. Software en-
gineering tools can then leverage the framework’s services
to support developers perform specific tasks:

e Software developers create new IoT applications and
services to be composed with one another. Hence,
they wish to engineer interoperable solutions; testing
that their software interoperates with other services,

2http://www.fi-ware.org/
Shttp://www.fi-ppp.eu/
“https://www.fi-xifi.eu

% Interoperability
({ Patterns) | Knowledge D

Application
development
Interoperability
Tools i
4R Modelling
Pattern Data o
Service Tools
R Rp
R HPE Modelling
Interoperability R ——
Framewark ‘ Pattern Execution
Engine

Figure 1: Model-driven interoperability engineering

and pinpoint the reasons for any interoperability er-
rors that occur. They need to reduce the overall ef-
fort required to deliver, test and maintain correctly
functioning applications. The framework goes beyond
simple interface compliance testing e.g. ensuring that
operations have the correct syntax and data format;
instead it will also identify application behaviour and
data errors e.g. data is not received by system A be-
cause system B has not published to broker, or seman-
tic differences e.g. speed in mph and kmph.

e Domain engineers (these may be the same software
developers) model the interoperability requirements of
service compositions; that is they create interoper-
ability patterns to specify how IoT applications should
behave when composed: what the sequence of mes-
sages exchanged between should be (in terms of order
and syntax), and what data types and content should
form the exchanged information. Importantly, these
models are re-usable abstractions that can be edited,
shared and composed to lower the barrier towards in-
teroperability engineering, i.e. developing and testing
new loT services that interoperate correctly.

Note, the software components within the framework are
developed as RESTful services such that they can be used to
provide a Software as a Service (SaaS) solution. However,
the framework can also operate as local software e.g. an
IDE plug-in. We now discuss the patterns and framework
implementation in greater detail.

2.1 Interoperability Patterns

Distributed services are typically modelled using interface
description languages, e.g. WSDL, WADL and IDL, to both
describe the operations available and how to execute them
(e.g. using a SOAP or IIOP message). These can then
be complemented with workflow (e.g. BPEL) and choreog-
raphy languages to explain the correct sequence of events
to achieve particular behaviour. With these models it is
then possible to automate the interoperability testing pro-
cesses |7] and better support service composition. However,
these approaches are often tied to a specific technology type
e.g. Web Services or CORBA, and hence the approach is
not well suited to loosely-coupled IoT services that employ
a wide range of technologies and communication protocols.
Furthermore, the models themselves are typically complex
to write, use, and maintain; WSDL and BPEL require ev-
erything to be specified not just aspects related to interop-
erability. Such detail means these models are not widely

deployed; this can already be seen in the Internet Services
domain where RESTful APIs (e.g. Twitter, Facebook, and
others) provide documentation and SDKs to help developers
interoperate without IDLs.

Here, we explore models focusing solely on interoperabil-
ity; that is, the specification of the exchanges between IoT
services with rules defining the required behaviour for in-
teroperability to be guaranteed. An interoperability pattern
is specified as a finite state machine; the general format is
illustrated in Figure A state represents a state of a dis-
tributed application (not an individual service). A transi-
tion represents a change in state based upon an observed
concrete event (e.g. a HTTP message) matching a set of
rules regarding the required behaviour. Hence, the model
represents the series of states that a distributed application
proceeds through in reaction to discrete events (e.g. a mes-
sage exchange, a user input, etc.). If the state machine pro-
ceeds such that there is a complete trace from a start state
to an end state then we can conclude that software within
the distributed system interoperates correctly.

If an event occurs and no transition can be made (because
the event does not fulfil the rules), then the interoperability
pattern identifies a failing condition. Allied with knowledge
regarding why this rule failed, the tool can provide prelimi-
nary information for either correcting the error or deploying
a broker solution to mediate.

In Figure[2] we present a very simple example to illustrate
how a pattern is utilised. Here, we have two services (a client
requesting the temperature of a room sensor, and a con-
text service providing the sensor data) interacting with each
other to complete a single request-response type operation.
There are three states: i) the start state, ii) the state when
the first request message is received by the sensor service,
and iii) the final state where the client received a response
message from the service. The interaction is a REST HTTP
post operation which can contain either XML or JSON (two
transition paths). A number of rules are presented to illus-
trate how rules are attached to transitions; each transition
can specify one or more rules concerning different charac-
teristics of events. These fall into protocol specific or data
specific rules:

e Protocol specific rules. Evaluate events according to
the structure and content of an observed protocol mes-
sage (not the application/data content). For exam-
ple, check the IP address of sender of the message to
verify which services are interacting with each other.
Further, evaluating the protocol type (HTTP, IIOP,
AMQP, etc.), and the protocol message type (HTTP
GET, HTTP POST or an IIOP request) to ensure that
the correct protocol specification is followed. Finally,
checking protocol fields (e.g. a HTTP header field ex-
ists or contains a required value) to ensure that the
message contains the valid protocol content required
to interoperate.

e Application and data specific rules. Evaluate the data
content of protocol messages ensure that services in-
teroperate in terms of their application usage. For ex-
ample, the data content is of a particular type (e.g.
XML or JSON), corresponds to a particular format or
schema, contains a particular field unit (e.g. temper-
ature), etc. Furthermore, rules can make constraints
on the application message operations e.g. ensuring

IPFrom = dient_addr

TP To = service_addr

Protocol = HITP

HTTP.contains X-anth-token
MzgType=POST

DataType = XML

Data[name(/*)] = queryContext
Data[/attributel i st/attribut e]=temperature

[PFrom=service_addr
IP.To = dient_addr
Protocol = HITP

Msg Type = REPLY

HTTP.Code= 200

IPFrom = dient_addr
IPTo = service_addr
Protocol = HITP
HTTP.contans X-anth-token

MsgType =POST

DataType = JSON

Data[Content[5. entities] 0] type attributelist[0]]=temperature

Figure 2: Interoperability Pattern

the operations required are performed in order (e.g. A
sends a subscribe message to B, before C sends a pub-
lish message to B). Data rules are evaluated using data-
specific expression languages; for example we lever-
age XPATHEl and JSONPATHH tools to extract data
fields and evaluate whether a given expression is true
(e.g. arule in the XPATH format: Data[name(/*)] =
queryContext).

2.2 Framework Implementation

The interoperability framework has been implemented as
a set of software components to monitor and evaluate run-
ning distributed applications, focusing solely on interoper-
ability requirements. As illustrated in Figure [1} the frame-
work contains two core elements: i) the Pattern Data service
which supports operations to create and edit interoperability
patterns, which are finite state machines specified in XML
(we are currently developing a GUI tool to all domain mod-
ellers to perform this task graphically before generating the
XML); ii) the Pattern Execution Engine, which monitors
the execution of an application and evaluates it for correct
interoperability.

Without going into implementation details beyond the
scope of the paper, we can explain the operation of the pat-
tern execution engine in terms of two functions:

e Monitoring deployment; the framework takes an in-
teroperability pattern as input and generates a set of
proxy elements that capture message events (these re-
late to all interface points in the application). Hence, if
we observe that a service receives events at a particular
URL, we generate a proxy to capture those events—the
proxy simply reads the message content before redi-
recting the request to the actual service. The cur-
rent implementation is built upon the RESTLET li-
brary ﬂ each incoming HTTP message is transformed
into an abstract representation (all fields of the HTTP
message and its data content) that can be evaluated
against the rules.

e Pattern evaluator; receives each event and evaluates
it against the rules specified by the interoperability

http://www.w3.org/TR/xpath20/
Shttps://code.google.com/p/json-path/
"http://restlet.com/

pattern. The pattern evaluator is protocol indepen-
dent (per protocol plug-ins map concrete messages to
the format understandable within the pattern). The
evaluator creates a report to identify success or fail-
ure to the developer; and where a failure occurs, the
framework performs simple reasoning to pinpoint the
source of the error. In future work we plan to explore
knowledge-based reasoners to provide richer feedback.

The framework is currently made available as a testing
tool within the XIFI large-scale testing environment. XIFI
establishes a pan-European, open federation comprised of
17 data-center nodes to cope with large trial deployments;
there are a broad set of users and experimenters developing
solutions within this FI-PPP initiative. The interoperabil-
ity framework is one of a number of tools to support the
development of software using the FI-WARE collection of
open, restful services. A browser-based GUI tool allows this
community of developers to view and edit interoperability
patterns, and then directly evaluate their application soft-
ware for interoperability issues.

3. EVALUATION

We used a case-study approach to evaluate the ability of
the framework to achieve its primary purpose, i.e., to reduce
the effort required to develop and test the interoperabil-
ity of software composed with independently developed IoT
services. We utilised FI-WARE software as the domain of
our case study. FI-WARE is a growing catalogue of REST-
Ful services implementing open specifications; importantly,
there are no WADL, WSDL specifications on which auto-
mated tool support can be based; instead API information
is provided in free text. These services include: identity
management, context brokering, big data, complex event
processing, and media streaming; and have already been
leveraged to build commercial IoT applications

We hypothesized that the interoperability framework helps
the developers of IoT applications and services during soft-
ware development and testing phases; discovering problems
earlier, reducing the costs, and improving the overall de-
velopment of the application. We also proposed that the
lightweight models offer a suitable abstraction to capture
interoperability information that can be reused across mul-
tiple applications, e.g. a pattern describing how to inter-
operate with a context broker being utilised across multiple
different applications.

Application. For this case we developed an application
to monitor and gather data about traffic and transportation
vehicles in Brazil to support safer and optimised payload
delivery. Brazil is a location where FI-WARE software has
been deployecﬂ and 56% of cargo transportation is carried
out by trucks. The application monitors for vehicle and
cargo theft (using context information: location, fuel lev-
els, door opening, detour information, etc.); increasing con-
text data collection when transiting through a high-risk area.
The application also collects context data from multiple ve-
hicles, and performs off-line analysis of delivery performance
to produce optimised routing plans.

Interoperability challenges. The need to integrate
multiple devices (e.g. vehicles) and FI-WARE services into

Shttp://www.fi-ware.org/2013/09/19 /santander-smart-
city-event/
http://www.fi-ware.org/tag/campus-party-brazil /

Application IPto Contextbroker IP
HT

Context broker Pto Application IP
Is HTTP Response

Is Subscribe ok

Contains Subscription id

Context broker IP to Application IP =
Is HTTP Response Is Subscriby
Is Subscribe ok
Contains Subscription id

s
Contains noti fy Application URL
Contains speed & location

VehideIP to CEP IP

Vehide!P to Context broker [P Is HITP Post

Is HTTP Post
Contains speed & location,

Application IPto Context broker IP
Is HTTP POST

s Subscribe Msg

Contains notify Cygnus URL

Context Broker [P to CEP TP
Is ETTP Reply
HTTP Status= 200
Broker IPto $4. Application URL IP
i @

Broker IP to S2.cygnus URL IP
ost

IsHITPPost
Contains speed & location

Context Broker IP to CEP IP
ity

Is HTTP Reply
HTTP Status= 200

Is Notify event

Figure 3: Pattern for Transport Application

this application domain presented interoperability challenges.
This is highlighted by Table [I] which lists a subset of the
services and open interfaces that must interoperate. For ex-
ample: vehicles must interoperate with the NGSI publish-
subscribe interface to post events to the context broker;
the composition of complex event processing prior to event
publications (e.g. events from vehicles being processed to
produce speed and location data that can be published to
the broker); the use of a Flume connector to persist con-
text events such that they can then be post-processed using
big data services; here WebHDFS is the protocom Over-
all, there are a number of complex specifications with dif-
ferent behaviour (streaming, publish-subscribe, and request
response) that had to be understood and developed against.

To reduce the effort required to understand the challenges
of making the software interoperate, we developed an inter-
operability pattern for this domain; a subset of this pat-
tern is presented in Figure Note, for space reasons we
do not include full rules (as in Figure [2)) but instead pro-
vide an overview of the rules. Within the pattern, example
transitions are: i) S1 to S2 where the transport applica-
tion registers a subscription to the context broker to persist
events via the Cygnus flume connector; ii) S3 to S4 where the
application registers a subscription to receive events about
speed and location context for vehicles. iii) S5 to S6 where
a HTTP Post message must be exchanged from the Vehi-
cle to the context broker and the data must have at least
speed and location attributes; iv) S5 to S8 where a vehicle
publishes an event to the CEP service to process the event
before it is published to the broker.

Initial analysis. The software components of the appli-
cation were developed and tested in-line with the pattern
(injecting typical interoperability errors into the software).
In each case the tool identified the failure and which state
and transition in the application the fault occurred. Hence,
with this initial evaluation we believe that the tool has sig-
nificant value to quickly identify interoperability errors in
large-scale complex environments and hence reduce devel-
opment costs. We plan to evaluate the tool further through
community evaluation; we plan to use the FI-PPP commu-
nity of developers, surveying their use of the tools to evaluate
their effectiveness more rigorously.

Additionally, the pattern itself contains a number of sub-
elements that are highly reusable i.e. common composi-
tion patterns for utilising the FI-WARE services (e.g. con-

Yhttp://archive.cloudera.com/cdh/3/hadoop/webhdfs.html

CEPIP to Contest Broker IP

Service

Interface

Protocol/Data type

FI-WARE Context broker

Open Mobile Alliance’s NGSI-9 and NGSI-10 | HTTP Rest/JSON

FI-WARE Complex Event Processor

FI-WARE CEP specification

HTTP Rest/XML

Apache Flume connector (http://flume.apache.org)

In: NSGI; Out: WebHDFS

HTTP Rest/JSON

FI-WARE Big Data Service

WebHDF'S

HTTP REST/JSON

Table 1: Heterogenous interface specifications

text broker, big data and CEP). Hence, we also quickly
created simple environmental monitoring application types
(with different data and behaviour) atop these sub-patterns.
We saw that the patterns could be quickly composed and
edited (with minimal effort), demonstrating the benefits of
modelling both IoT services and applications to transfer
knowledge between developers.

4. RELATED WORK

Middleware is typically put forward as an ideal solution to
the interoperability problem. Where software is developed
on a common middleware, with communication protocols
that handle many of the heterogeneity issues e.g. Operating
System, Hardware platform and data types differences, cer-
tain interoperability guarantees can be made. CORBA, Web
Services, REST, and others highlight such ability. However,
differences in the way developers use middleware (e.g. data
semantics, application behaviour usage such a operation se-
quences) still result in interoperability issues to address; this
is particularly true of the IoT domain with lightweight mid-
dleware (to operate on resource constrained devices), trans-
porting highly heterogeneous data; there are a number of
IoT middleware solutions, e.g. UbiSOAP (8|, Hydra |9],
DDS middleware [10], and MQTT [11]. Hence, our interop-
erability framework provides added value above middleware
solutions, allowing multiple technologies to be deployed and
then supporting developers address further application and
middleware interoperability problems.

Testing languages are an alternative solution to the prob-
lem; most notably TTCN [12] used for testing of communi-
cation protocols and web services, and RESTAssurecE for
REST services. However, these offer programming solutions
rather than a higher-level abstraction; this makes it difficult
to quickly perform interoperability testing across a composi-
tion of services (indeed the solutions usually target the case
of a single piece of software complying with a standard).

The domain of model-driven engineering has also consid-
ered similar solutions albeit often targeting different prob-
lems. The Motorola case study |13] demonstrated the cost
reduction from model-driven practices, largely focusing on
code generation and automated testing; it also advocates
the need for decoupled models; for example, treating in-
teroperability as a distinct concern. [14] also presents an
approach to model adaptive software development for code
deployed on heterogeneous software (e.g. sensors), leverag-
ing the use of models to reduce effort and cost. Models have
also been leveraged for the development of IoT software [15];
here state machine models are used to support the coding of
web service composition, as opposed to the testing of inter-
operability between independently developed software. All
of these solutions offer a clear indication of the benefits of
models in the domain of IoT.

"https://code.google.com /p/rest-assured /

Finally, model-driven approaches have been put forward
to broker between heterogeneous middleware solutions, es-
sentially automating their interoperability [16,|17]. The ben-
efits of modelling interoperability software shows how such
abstraction can hide many of the technical challenges from
software developers; Starlink’s [17] use of state transition
automata directly inspired the framework methodology in
this paper. However, these solutions focus on brokering
between heterogeneous software as opposed to supporting
the developers of new software requiring interoperability.
Beyond this, Emergent Middleware solutions [18] |19} |20]
have been proposed that dynamically broker interoperability
between systems; these solutions rely on machine-readable
software artefacts, e.g., interface descriptions and ontolo-
gies, being available for run-time analysis. Yet, the reality
is that systems do not typically publish such information and
interoperability remains a significant software development
challenge put back in the hands of software developers.

S. CONCLUSIONS AND FUTURE WORK

The increasing scale and complexity of IoT (in terms of
devices, users and software) will continue to add to the chal-
lenge of composing heterogeneous software that interoper-
ates. Excluding PCs, tablets and smartphones [oT is fore-
casted to grow to 26 billion units installed in 2020 (represent-
ing an almost 30x increase from 0.9 billion in 2009); further,
ToT product & service suppliers is estimated to exceed $300
billion, resulting in $1.9 trillion in global economic value-
add through sales into diverse end markets. Within this
landscape, interoperability will pose significant challenges.
There will also be demand for software engineering and mid-
dleware solutions to lower the complexity and reduce costs.

In this paper we have presented the challenges that are
faced by the developers of IoT applications and services in
terms of achieving interoperable software solutions in the
face of highly heterogeneous communication protocols and
data exchanged between IoT elements. We have advocated
and described a lightweight, protocol independent, model-
driven development approach to ensure interoperability in
heterogeneous IoT services. Our key contributions here are:
i) interoperability specific models that are lightweight to cre-
ate, and are re-usable and composable to support a broad
range of applications; ii) an evaluation framework to mon-
itor IoT applications (specifically RESTful interactions in
this paper) and evaluate how this software interoperates in
accordance with the patterns.

We utilised a case-study approach to perform a prelimi-
nary evaluation of the value added to software developers in
terms of helping them address the challenges interoperabil-
ity poses. The FIWARE and FI-PPP domain offers a num-
ber of potential users composing open software elements,
and we have used this to show the potential benefits of the
framework i.e. reducing costs through simplifying interoper-
ability, and capturing and reusing expertise surrounding the

interoperability concern. We plan to use the FI-PPP com-
munity (with its large developer base) further to perform
richer evaluation of the interoperability framework.

We see future work in two key areas. Firstly, the ex-
tension of the framework to move beyond REST and web
services and also include such technologies and MQQT and
XMPP (to increase the applicability of the tools to wider
IoT devices). Secondly, to investigate reasoning technolo-
gies to infer in greater detail why interoperability has failed.
At present, the framework reports where a rule has failed,
and hence a developer can correct accordingly. However, in
larger-scale systems involving complex patterns, the failure
may be much more subtle requiring domain expertise to pin-
point what has gone wrong to make a rule fail. We will also
explore the role of semantic rules within the framework e.g.
where we test messages for semantic interoperability.

6. ACKNOWLEDGMENTS

This work was carried out as part of the XIFI project
(https://fi-xifi.eu). This project received funding from the
European Union’s Seventh Programme for research, techno-
logical development and demonstration under grant agree-
ment No. 604590.

7. REFERENCES

[1] Hyper/Cat. Iot ecosystem demonstrator
interoperability action plan. Technical Report Version
1.1, September 2013.

[2] Yaser A. Bishr, Hardy Pundt, and Christoph Riither.
Proceeding on the road of semantic interoperability -
design of a semantic mapper based on a case study
from transportation. In Proceedings of the Second
International Conference on Interoperating Geographic
Information Systems, pages 203—215, 1999.

[3] Steve Vinoski. It’s just a mapping problem. IEEFE
Internet Computing, 7(3):88-90, 2003.

[4] Massimo Paolucci and Bertrand Souville. Data
interoperability in the future of middleware. J.
Internet Services and Applications, 3(1):127-131, 2012.

[5] Satish Chandra, Vibha Singhal Sinha, Saurabh Sinha,
and Krishna Ratakonda. Software services: A research
roadmap. In Proceedings of the on Future of Software
Engineering, FOSE 2014, pages 40-54, New York, NY,
USA, 2014. ACM.

[6] Antonia Bertolino. Software testing research:
Achievements, challenges, dreams. In FOSE, pages
85-103, 2007.

[7] Antonia Bertolino and Andrea Polini. The audition
framework for testing web services interoperability. In
EUROMICRO-SEAA, pages 134-142. IEEE
Computer Society, 2005.

[8] Mauro Caporuscio, Pierre-Guillaume Raverdy, and
Valérie Issarny. ubisoap: A service-oriented
middleware for ubiquitous networking. IEEE T.
Services Computing, 5(1):86-98, 2012.

[9] René Reiners, Andreas Zimmermann, Marc Jentsch,
and Yan Zhang. Automizing home environments and
supervising patients at home with the hydra
middleware: Application scenarios using the hydra
middleware for embedded systems. In 1st Workshop
on Contezt-aware Software Technology and
Applications, pages 9-12, 2009.

[10] Gerardo Pardo-Castellote. Omg data-distribution
service: Architectural overview. In Proceedings of the
2003 IEEE Conference on Military Communications -
Volume I, MILCOM’03, pages 242—247, Washington,
DC, USA, 2003. IEEE Computer Society.

[11] U. Hunkeler, Hong Linh Truong, and
A Stanford-Clark. Mqtt-s; a publish/subscribe
protocol for wireless sensor networks. In COMSWARE
2008, pages 791-798, Jan 2008.

[12] Ina Schieferdecker. Test automation with ttcn-3 - state
of the art and a future perspective. In Proceedings of
the 22Nd IFIP WG 6.1 International Conference on
Testing Software and Systems, ICTSS’10, pages 1-14,
Berlin, Heidelberg, 2010. Springer-Verlag.

[13] Paul Baker, Shiou Loh, and Frank Weil. Model-driven
engineering in a large industrial context; motorola
case study. In Proceedings of the 8th International
Conference on Model Driven Engineering Languages
and Systems, MoDELS’05, pages 476-491, 2005.

[14] Franck Fleurey, Brice Morin, and Arnor Solberg. A
model-driven approach to develop adaptive firmwares.
In 6th Intl. Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 168177,
New York, NY, USA, 2011. ACM.

[15] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer.
Using state machines for a model driven development
of web service-based sensor network applications. In
ICSE Workshop on Software Engineering for Sensor
Network Applications, pages 2-7, New York, NY,
USA, 2010. ACM.

[16] Yérom-David Bromberg, Laurent Réveillere, Julia L.
Lawall, and Gilles Muller. Automatic generation of
network protocol gateways. In ACM/IFIP/USENIX
10th International Middleware Conference, Urbana,
1L, USA,, pages 21-41, 2009.

[17] Yérom-David Bromberg, Paul Grace, Laurent
Réveillere, and Gordon S. Blair. Bridging the
interoperability gap: Overcoming combined
application and middleware heterogeneity. In Kon and
Kermarrec |21, pages 390—409.

[18] Gordon S. Blair, Amel Bennaceur, Nikolaos
Georgantas, Paul Grace, Valérie Issarny, Vatsala
Nundloll, and Massimo Paolucci. The role of
ontologies in emergent middleware: Supporting
interoperability in complex distributed systems. In
Kon and Kermarrec [21], pages 410-430.

[19] Valérie Issarny and Amel Bennaceur. Composing
distributed systems: Overcoming the interoperability
challenge. In 11th International Symposium, FMCO
2012, pages 168-196, 2012.

[20] Paola Inverardi, Romina Spalazzese, and Massimo
Tivoli. Application-layer connector synthesis. In 11th
International School on Formal Methods for the
Design of Computer, Communication and Software
Systems, pages 148-190, 2011.

[21] Fabio Kon and Anne-Marie Kermarrec, editors.
Middleware 2011 - ACM/IFIP/USENIX 12th
International Middleware Conference, Lisbon,
Portugal, December 12-16, 2011. Proceedings, volume
7049 of Lecture Notes in Computer Science. Springer,
2011.

	Introduction
	A model-driven interoperability framework
	Interoperability Patterns
	Framework Implementation

	Evaluation
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

