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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Thesis for the degree of Doctor of Philosophy

MODELLING THE COMBINED EFFECTS OF CREEP AND FRICTIONAL HEATING
IN THE DEVELOPMENT OF LANDSLIDES

By: Sujeevan Vinayagamoorthy

In this work, different thermo-poro mechanical models for large scale landslides were
developed to predict the transition between the creep and the catastrophic phases of a
landslide.

First, a refinement was made of an existing thermo-poro-mechanical landslide model,
including a realistic formulation for the dynamics of the moving slide. The model
equations were then solved by using an unconditionally stable numerical scheme and the
results were compared with a similar existing model and data available from landslide case
studies. It was found that the refined model gave different predictions for the slide’s
acceleration and velocity which however were only marginally so in the time window of
realistic run-out distances.

Secondly, a thermo-poro-mechanical model for landslides was developed based on rate
process theory. The model was initially used in an attempt to back-analyse a real landslide
case. It was subsequently used to explore factors that influence the transition from an
initial phase of creep to a final catastrophic phase. It was found that a threshold initial
velocity separates the creep and collapse regimes, beyond which frictional heating leads to
the final failure.

A different thermo-poro-mechanical model for landslides based on a constitutive theory
that combines a thermo-plasticity model with a creep model for soils was also developed.
The model was initially used in an attempt to back analyse a real landslide. It is able to
predict a transition between the creep and collapse phases. Thermal diffusivity of the shear
band material plays a major role on the predicted duration of the creep phase.

Finally a landslide model based on Perzyna’s visco-plasticity theory was also developed. It
was found that the extremely low velocity predicted during the creep phase leads to
insignificant heat dissipation inside the shearband making the prediction of thermal
pressurization and collapse impossible with this model.
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Chapter 1: Introduction

1.1 Background

Large scale landslides are a common geotechnical hazard in many parts of the world. They
may occur in land or under the sea and are a severe danger to human life. There are many
examples that can be quoted as evidence. In 1963, the Vajont Slide that occurred in Italy
moved 2.7 x 108 m® of rock mass into an artificial lake and as a result killed 2600 people.
In 1999, the Jiufengershan slide occurred in Taiwan. It was triggered by the Chi-Chi
earthquake and killed 2400 people. In 1998, a submarine landslide caused the Sissano

Tsunami which killed 2000 people and left 12,000 people homeless.

Many events such as earthquakes, sudden changes in pore pressure, and dissociation of gas
hydrates have been proposed by many authors as causes of initiating large scale landslides.
However, the mechanisms due to which a slide acquires extremely high velocity leading to
catastrophic failure are not clearly understood yet. Frictional heating was identified as a
possible cause of the unexpected velocity and the long run-outs of some large scale
landslides (Anderson, 1980, Habib, 1975, Vardoulakis, 2000, Vardoulakis, 2002a,
Veveakis et al., 2007, Voight and Faust, 1982). Rapid movement of the slide occurs due to
build-up of pore water pressure. Build-up of pore water pressure is explained by expansion
of water due to frictional heat production (Baldi et al., 1988, Hueckel and Baldi, 1990,
Hueckel and Pellegrini, 1991, Modaressi and Laloui, 1997). Furthermore, the elastic
domain of the soil will shrink due to heating and its friction angle may decrease. These

phenomena lead to declining shear resistance at the slipping plane.

Very few landslide models exist in the literature that take into account the effect of
frictional heating. However, these models are one-dimensional, with simple constitutive
relations for the soil and they were used to back analyse particular landslides cases only.
Recently, an improved thermo-poro-mechanical model for landslides was developed
incorporating a realistic constitutive assumption of soils (Cecinato, 2009, Cecinato and
Zervos, 2008, Cecinato and Zervos, 2012, Cecinato et al., 2011, Cecinato et al., 2008).

Using this model, the investigators provided insights on the role of frictional heating,
1



establishing that in the idealised case of an infinite slope, permeability of the soil and the

thickness of the sliding mass dominate the development of catastrophic velocities.

Despite these developments, the thermo-poro-mechanics of catastrophic landslides is still
not understood comprehensively because most of the above mentioned models cover only
the final stage of failure, when catastrophic movement is involved. However, large-scale
landslides may exhibit a creeping phase, possibly followed by catastrophic failure. An
example of a landslide that exhibited such behaviour was the Vaiont landslide that
occurred in Italy, 1963, where the final phase of catastrophic collapse was preceded by

several months of creep (Muller, 1964).

This thesis is concerned with developing models that include both the frictional heating
and the creep-like movement of landslides. Therefore, the above model will be improved
by incorporating the more realistic time dependency behaviour of soils to cover the creep

like criteria of movements in this research.

1.2 Aims and objectives

The aim of the research is to investigate the impact of frictional heating in the lifetime of
catastrophic landslides in slopes of different in-situ conditions.
The individual objectives are;

e A critical review of existing models of landslides, and of the thermo-mechanical
and creep behaviour of soils to determine the range of in-situ conditions and
relevant parameters.

e The development of advanced thermo-poro-mechanical models of the slip zone of
a landslide, allowing for both the stage of creep-like slope movement and an
eventual stage of catastrophic collapse.

e Numerical implementation and validation of each model through some back
analysis of a well-documented catastrophic landslide case history

e A parametric study to systematically investigate the in-situ conditions that are
critical in making a slope prone to catastrophic failure, with particular emphasis on
the lifetime of the resulting landslide.

1.3 Layout of the thesis

A literature review is presented in Chapter 2. A brief description and classification of

landslides is first given to provide the context of this research (Section 2.1). Then a critical



review of a range of constitutive relations (thermo-plasticity of soils, creep behaviour) that
can be used to model soil behaviour in the context of landslides is provided (Sections 2.3
& 2.4). Finally, existing models of large scale landslides are presented and critically

discussed in Section 2.5.

Chapter 3 presents a refined thermo-poro-mechanical model of landslides, developed by
including a realistic formulation for the dynamics of the moving slide in an existing model.
The model equations are then solved by using an unconditionally stable numerical scheme
and the results are compared with a similar existing model and data available for Vaiont
case study. Subsequently, a parametric study is carried out to investigate the influence of

shape and size of the failing mass on the development of the landslide.

A different thermo-poro-mechanical model for landslides is presented in Chapter 4. The
behaviour of the clay is modelled using rate process theory, which is a general theory
quantifying time-dependent soil deformation on the basis of micromechanical
considerations. The model is then validated through the back-analysis of Vaiont case after
generalizing to a uniform infinite slope. Also, the model is used to explore factors that

influence the transition from an initial phase of creep to a final catastrophic phase.

Chapter 5 presents a thermo-poro-mechanical model for landslides based on a refined
constitutive theory that combines a thermo-plasticity model with a creep model for soils.
Subsequently, the governing equations for the landslide model are developed and

discretised, and model is used in an attempt to back analyse the Vaiont case landslide.

In Chapter 6, a landslide model based on Perzyna’s viscoplasticity theory is presented.
First a modification to classical visco-plastic theory is presented to include temperature
effects. Then the landslide equations are modified consistently with the new thermo-
viscoplastic model. Like previous chapters, validation of model is attempted thorough a
back-analysis of the Vaiont case landslide. A parametric study is also carried out to

investigate the behaviour of the model.

In Chapter 7, conclusions from this research are outlined alongside with recommendations

for future research on this subject.






Chapter 2: Literature review

In this chapter, a brief description and classification of landslides is first given to provide
the context of this work. Afterwards, the Vaiont landslide case history is introduced in
details. This case history is used to validate the models presented in the following chapters.
Then a number of constitutive relations that can be used to model soil behaviour in the
context of landslides are reviewed. The constitutive models considered here can be divided
into two broad categories, i.e. those concerned with the thermo-plasticity of soils and those
aimed at modelling creep. Finally, existing models of large scale landslides are presented

and critically discussed.

2.1 Classification of landslides

In general, landslides may occur on land (sub-aerial landslides) or under the sea
(submarine landslides). Both types of landslides are identified as one of the major geologic
hazards in the world. Several studies on landslides and their mechanisms are available in
the literature. Here, it is only focused on a selection of material that is most relevant to the

objectives of this research.

Varnes (1978) classified landslides based on the materials involved and the mode of
movement. Other classification systems that have been proposed incorporate other aspects
of landslides such as the rate of movement and the water, air or ice contents of the sliding
mass (Cruden and Varnes, 1996, Dikau, 1996, Hungr et al., 2001, Hutchinson, 1989, Sidle
and Ochiai, 2006). The most accepted categories of landslides are listed below (Varnes,
1978):

a) Slides: This type of failure occurs when a weak zone of a slope separates the
sliding material from more stable underlying materials. Slides can be further
divided into two types: translational slides and rotational slides. In translational
sliding, the landslide mass moves along a roughly planar surface. Usually, rapid

deformation takes place during translational sliding (Cruden and Varnes, 1996).



b)

d)

Rotational sliding on the other hand takes place on a curved sliding surface (e.g.
cylindrical or circular).

Falls: Falls are characterised by free movement of mass through air, bouncing or
rolling. Fall landslides are always extremely rapid. Separation of mass occurs in
falls due to the existence of fractures, joints and bedding planes.

Topples: A landslide is classified as topple, when the soil or rock mass rotates
forward in a very steep slope about a point below the centre of gravity of the failing
mass.

Flows: Flows can be further divided into five categories: debris flows, debris
avalanches, earth flows, mudflows and creeping flows. A ‘debris flow’ may consist
of a combination of loose soil, rock, organic matter, air and water. A mixture of
these materials mobilizes downward on a slope like slurry. Debris flows are mainly
caused by a sudden supply of surface water, rapid snow melt and heavy rainfall that
erodes the loose soil and rock particles on steep slopes.

A ‘debris avalanche’ is a variant of debris flow when the debris movement is
extremely rapid.

An ‘earthflow’ is another type of debris flow where the materials of the slope
become liquid and start to flow downward by forming a basin at the head of the
slope. This failure occurs on reasonably steep slopes that contain fine grain
materials or clay bearing rocks, and is characterised by the “hourglass” shape that
the flowing mass assumes.

A ‘mudflow’ is a particular type of earthflow where the material contains at least
50% sand-, silt-, and clay sized particles that allow it to flow down when wet
enough. Mudflows and debris flows are often referred to as mudslides.

A ‘creeping flow’ is a slow, steady downward movement of a slope mass that
contains soils or rock. Creep is caused by a constant applied shear stress, lower than
the shear strength of the moving mass. This amount of stress is enough to cause
permanent deformation but not enough to trigger shear failure at the sliding plane.
Generally, three types of creep can be identified. (1) Seasonal creep, where
movement is within the depth of soil affected by seasonal changes in soil moisture
and temperature. (2) Continuous creep, where shear stress continuously increases
and but doesn’t exceeds the strength of the materials and (3) progressive creep,
where slopes reach the point of failure like other types of mass movements.

Lateral Spreads: This type of landslides occurs usually on very gentle or flat
slopes. Unlike natural slope failures, the mass will spread laterally. Liquefaction is

the main cause of this type of mobilization of soil mass.
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All the above types of landslides are depicted in Figure 1.

Rotational landslide Translational landslide Block slide

Debris avalanche

Lateral spread

Figure 1: Graphical illustration of major types of landslides (Varnes, 1978)

2.2 Vaiont case history

2.2.1 Overview

Well documented in the literature is the case of the Vaiont landslide, which occurred in
northern Italy on 9" October 1963. The landslide was preceded by 3 years of creep that

ended with the final collapse of the rock mass.

Approximately, 2.7x108 m® of rock was moved from the northern flank of the Mount Toc

in to an artificial reservoir of about 1.5 x 10® m®impounding the east-west trending Vaiont
7



deep gorge (Figure 3). Nearly 250 m thickness of mass slipped about 400-450 m with the
final slip rate of 25-30 m/s. The reservoir filling (4.7 x 10’ m®) produced a giant wave that
propagated towards down the valley, overflowed the dam and killed more than 2000
people after destroying village of Longarone. (Anderson, 1980, Hendron and Patton,
1985).

Site excavation for the Vaiont dam project began in 1956 in Mountain Toc, Italy and the
construction was completed in 1961. The main purpose of this project was to provide
hydroelectric power for the rapidly-expanding northern cities of Milan, Turin and Modena.
It is the world’s highest thin arch dam measuring 262 m high, 27 m thick at the base, 3.4 m

at the crest, with a chord of 160 m, and a reservoir volume of 115 million m?.

Darﬁ

-~ Landslide deposit

Figure 2: Overview of the Vaiont valley after disaster, photo from Schrefler and Sanavia (2005) and
reproduced from Cecinato (2009)

2.2.2 Geology of the Vaiont slide

The Vaiont slide has been the interest of numerous investigations due to its social and legal
implications. A detailed geological study has been reported in Hendron and Parton (1985),

however, most relevant aspects for this thesis are summarised below.

The Vaiont river flows from east to west, which cuts a large syncline structure which folds
Jurassic and Cretaceous strata (Figure 3). The syncline created an “open chair” and
eventually defined the geometry of the failure surface.

The sliding area consists a succession of limestones and marls. The slide occurred at the

top limestone strata with the thickness greater than 0.5m. The failure surface consisted of
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0.05-0.3m thick strata of limestone and marl with clay-rich layers in between. The failure
slip was confined in 0.5-17.5cm thick continuous clay-rich layers (Figure 4).

Hendron and Patton (1985) proposed two representative cross-sections (Sections 2 and 5),
which are used for the stability analysis by many authors (Figure 5). These cross sections
are located upstream of the dam position at 400 m and 600 m distances. In this research

Section 5 is chosen to investigate the proposed models.

(m) Mt. Salta
2000 —

1500 —

1000 —

500 —

Figure 3: North (Monte Toc) to south (Monte Salta) section showing the general layout of the syncline,
the Vaiont gorge and the position of the ancient landslide (after Semenza and Ghirotti, 2000).
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Figure 4: Stratigraphy of the rocks of the Vaiont sliding surface, the thickness is given at right hand
side.
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Figure 5: Two representative cross-sections of the landslide: (a) Section 2; (b) Section 5 (see the
location in Figure 6) (After Hendron and Patton, 1985)

2.2.3 Events leading to the landslide

Under the supervision of an expert in rock mechanics (L.Miiller-Salzburg), dedicated
geological surveys were carried out since 1958. During the construction between 1958 and
1959, a prehistoric slide was identified which caught the concern of the experts. However,
engineers concluded that deep-seated landslides were highly unlikely because the three test

borings carried out (Figure 6) did not reveal weak zones (Mdiller, 1964, Miiller, 1968).
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Figure 6: Location map of the Vaiont dam and reservoir (Semenza and Ghirotti, 2000)

The first filling of the reservoir started in February 1960 before the completion of the dam

in September 1960. A first crack in the bank was observed when the reservoir level
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reached 130m above the river level by March 1960. While continuing the filling of the
reservoir, inspectors began to monitor the bank movements along with the other necessary

measurements such as rainfall (Figure 7).

In October 1960, the bank movement rapidly increased to 3.5cm/day when reservoir level
reached 170m. At the same time, a continuous M shape crack, as shown in Figure 6, with
1m width and 2.5 km long was observed which suggested that a very large landslide had

been mobilised.

On 4™ November 1960, approximately 700,000 m® of landslide slid in to the lake in the
course of 10 minutes with the reservoir level at 180m. In response to the slide, the reservoir
level was reduced back to 135m. Consequently, the bank movement rate reduced from
8cm/day to 1mm/day. By this time, the landslide had already moved by a distance of
approximately 1m (Figure 8). The following remedies were proposed by the engineers to
stabilise the bank.

¢ Draining the failure mass to prevent or reduce water infiltration
e Removing millions of cubic meters of material from the mass
e Grouting the sliding mass, especially along the failure surface, and

e Building an earthen buttress at the foot of the slide.

However, all of these measures were found to be impractical and the designers decided to
control the landslide movement only by controlling the reservoir water level. Therefore,
the drainage tunnels were constructed to control the rate of landslide movement. In
addition, four standpipe piezometers were installed between July and October 1961 to

record the groundwater table elevation (Figure 6).

The reservoir level was again raised to 185 m on February 1962 and to 235m on November
1962. During this filling the movement rate did not increase substantially, however it
reached 1.2 cm/day at the end of the filling. Therefore, the reservoir level was lowered
back to 185m over a period of four months. Initially, the velocity remained the same but in

December 1962 it started decreasing.

By April 1963, when the reservoir level was at 185m, the movement rate was effectively
zero. On the basis of all the above, the designers considered that the landslide movement
can be controlled by the reservoir elevation. Between April and May 1963, the reservoir
level was again increased rapidly to 231 m and a slight increase in the rate of movement
(always less than 0.3cm/day) is observed. In mid-July the reservoir level was brought to

240 m and some further increase in velocity was observed to 0.5cm/day. The level was
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maintained till mid-August during which time the velocity increased to 0.8 cm/day. The
reservoir level was increased another 5m at the end of August and as a consequence, the
velocity increased to 3.5cm/day at some parts. In late September, the reservoir level was
slowly lowered to bring down the movement under control. However, no reduction in
velocity was observed while the reservoir level was brought down to 235 m. On October 9,
up to 30 cm/day of velocity was recorded before the catastrophic failure occurred at 22:38
GMT (Figure 9).

1960 1961 1962 1963
TIE[M{AIM|1{7|A]s[0[N|D| 1[F|M{AM 1] 1]A|S|0[N[D] J|F[M|A M| 1|1 |A|S|0[N|D[ 1 |F|M|a[M 1] ]]S|0|N[D
200 — a) PRECIPITATION, 10 day increments B
§
L»]
£ 100
E
0
b) RESERVOIR LEVEL
700 — -
Perimeter
crack November
noticed - * 1960 slide
8 650 — B
L .
£ Construction
March 1960 of by-pass
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3] MOVEMENT ~
E 1
0 i,
d) WATER LEVEL IN
700 1| "PIEZOMETERS" P,
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2
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Figure 7: Time histories of precipitation, changes of the water elevation in the reservoir, movement
rates before slide on October 9, 1963; and piezometer measurements (after Muller 1964).
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Figure 8: Accumulated displacements of surface markers (W) in the period 1960—-1963 and its
correlation with reservoir elevation (LL). Seismic events are marked in the time scale (reproduced
from Alonso et al. (2010))
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Figure 9: Relationship between water level in the reservoir and sliding velocity (courtesy of G.
Fernandez) (reproduced Alonso et al. (2010))
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2.2.4 Hypothesis for the instability of the slope and the failure

Muiller (1964, 1968) formulated a hypothesis that the movements were due to the effect of
the saturation of the materials which, for the first time, were inundated by water. The belief
that this phenomenon was the main cause of the observed instability led to the decision to
gradually raise the lake level once again from April 1963. Miller’s hypothesis was
confirmed by the insignificant increase in the slide velocity till July 1963 although the
reservoir level was increased significantly (Figure 7).

Hendron and Patton (1985) suggested that a continuous impermeable layer is formed due
to the pre-existing failure surface and, as a result, it created two aquifers in the slope.
Precipitation and snow melt in the hydro-geological basin fed the lower confined aquifer.
After a large spring thaw or prolonged rainfall, the water level in the lower aquifer may
have gradually reached much higher values than in the upper aquifer. Therefore, the shear
resistance along the failure surface would have decreased significantly, which leads the

instability of the mass.

Despite these all hypothesis, many authors suggested that the frictional heat generated
during the movement could have caused a distinct decrease in the shear resistance of the
material in the failure surface (Habib, 1975, Sultan et al., 2002, Vardoulakis, 2002a, b) .
The potential role of frictional heating in the rapid failure of the Vaiont slide is discussed
in Section 2.2.6 in detail.

2.2.5 Material properties

Hendron and Patton (1985) performed a detailed investigation to identify the geotechnical
properties of the sliding surface. As mentioned earlier, the slip was concentrated in clay-
rich layer. Samples of these clays were tested in different laboratories and found to be high
plastic and the plasticity plot is given in Figure 10. Liquid limits were found to be well in
excess of 50%.

Ring shear experiments by Tika and Hutchinson (1999) on Vaiont slide material showed
that it exhibits velocity and displacement friction softening and reaches a residual value
(Figure 11 and Figure 12). Vardoulakis (2002a) proposed a hyperbolic function for the

mobilized friction angle as follows;

2= g+ (i — ) ——
A=+ (- ) ——~
) T ”
Where, Uy = Uyg + (I’LTS - :qu) 14 a, (Z_C;) 22
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In the above equations, D,, is the shear band thickness, while x,; and v, are displacement

and velocity respectively. The thickness dependent strain and strain rate can be written as

y = ;—d andy = ;—d The other parameters present in the equation are;
b b

Urs, Urd — Static and dynamic residual friction coefficient (limiting values) (u,s =
0.18, u,.q = 0.077)

Up — Initial (peak) friction coefficient (yp = 0.577)

a;, a; — Parameters that control how rapidly the friction coefficient decreases with

displacement and velocity respectively. (a; = 0.114,a, = 0.103s)

30
Atterberg limits without shear
_ strength data
Atterberg limits with shear
60 — + strength data

W — Waterways Experiment Station
~| K - Kenney (1967)
Ny — Nonveiller (1967)

T — Thurber Consultants
Nicto, University

Plasticy Index (PI)
S
|

1 N~ of Ilinois VH & OH
20 —
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Figure 10: Plasticity of clay samples from the Vaiont sliding surface (Hendron and Patton, 1985).
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Figure 11: Displacement softening data from ring shear tests (Tika and Hutchinson, 1999) and
hyperbola law (Vardoulakis, 2002a)
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Figure 12: Velocity softening data from ring shear tests (Tika and Hutchinson, 1999) and hyperbola

law (Vardoulakis, 2002a)

2.2.6 Potential role of frictional heating

It has been proposed by many authors that frictional heating of the slip zone plays a major

role on the failure of large landslides. Firstly, Habib (1975) proposed a mechanism of

pressurization due to vaporization of pore water because of frictional heating to explain the

reduction in the strength of rockslides, notably in the Vaiont landslide. De Blasio and
Elverhoi (2008), Erismann (1979) and Gaziev (1984) described rockslides by using a

concept called “self-lubrication”; it is explained as either crushing in to fine grains or even
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melting of rock particles the shear zone, leading to loss of shear strength. VVoight and Faust
(1982) hypothesised pore water pressure increase due to heating to explain the
catastrophic evolution of large landslides. Moreover,Chang et al. (2005a), Chang et al.
(2005b) developed a block-on-slope thermo-mechanical model that includes thermal

pressurization to back analyse the 1999 Jiufengershan landslide in Taiwan.

A number of thermo-poro-mechanical models for catastrophic landslides were developed
and successfully back analysed the Vaiont slide taking into consideration of frictional heat
generation and build-up of pore water pressure inside the failure zone (Cecinato, 2009,
Cecinato et al., 2011, Pinyol and Alonso, 2010, Vardoulakis, 2002a). All these considered
the final collapse stage only. Veveakis et al. (2007) presented a physically base landslide
model to predict the transition between the creep and the catastrophic phase of Vaiont slide

incorporating the fictional heating effects.

2.3 Review of thermo-plastic constitutive models for soil

In this section, some existing constitutive models of thermo-plasticity of soils are
presented. When frictional heating is considered such constitutive relations are necessary
for determining the mechanical behaviour of soil as a function of temperature. In the
following models for elasto-plastic and thermo-elastoplastic behaviour of soils are

presented.

2.3.1 Elasto-plasticity of soils

The elasto-plastic behaviour of a soil can be described using a yield surface is defined as
function of (effective) stresses. If the stress state remains within the yield surface, then
deformation is fully elastic. When the stress state reaches the yield surface, plastic
deformation will start to occur. Depending on the type of model, the yield surface can

either remain fixed (perfect plasticity) or evolve (hardening plasticity).

Modified Cam-Clay is a particular model used to describe the elasto plasticity of soils. The
yield surface of Modified Cam Clay is defined as a function of mean effective stress (p’),
deviatoric stress (q) and preconsolidation stress(p;) and has elliptical shape (Roscoe and
Burland, 1968). The size of the yield surface is given by the preconsolidation stress. The
change in size of the yield surface is described through a hardening relationship defining
the variation of the preconsolidation stress with volumetric plastic strain. The yield surface
expands with the compactive volumetric strain (hardening) and shrinks with dilative

volumetric strain (softening).
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A “critical state’ is said to have been reached when shearing of the soil can continue
without further change in stress or volumetric strain. Therefore, at the onset of the critical

state;

In the above, y,is the shear distortion, v is the specific volume. Critical states correspond

to failure. For a given soil, all critical state fall on a unique line called the Critical State

Line (CSL) is defined by the following equations in (p’, g, v) space.

q = Mp’
v=T-2AIn(p’)

where M, T & A are soil parameters determined from experiments.

2.4

2.3.2 Hueckel’s constitutive model

Based on experimental test of soils at different temperatures, Hueckel developed a
modification on the critical state soil model. First, modification was done for the drained
conditions (Hueckel and Baldi, 1990, Hueckel and Peano, 1987) (Figure 13).
Subsequently, undrained failure was also interpreted with the inclusion of changes to pore
water pressure due to temperature variations (Baldi et al., 1988, Hueckel and Pellegrini,
1991) (Figure 14).

The volumetric and deviatoric thermo elastic strain in terms of triaxial notation can be

written as follows (Hueckel and Peano, 1987);

!

p
In— — aAB 2.5
S np(,) “

cte =

&g = % (q — q0) 2.6
where

, 01+ 203

PETE

q =01 — 03,

K = bulk modulus of the soil at the reference temperature,

G = shear modulus at the reference temperature,

P, qo = reference values of p’ and q

a = thermal expansion coefficient of soil.

Non-linear changes in soil compressibility and the effect of secondary compression are

ignored. The elliptical yield locus was derived as;
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In the above equation, the apparent preconsolidation stress (p.)y, IS a function of

volumetric strain and temperature and is given as

1

DDy = [c_z exp {/1 e (e, +(1+ eo)ef,p)} + a,A8 + a, sign (AB)AH? ] 238

where Ky = 1f—% + (a; + @, A0)A0

eLP- volumetric thermo plastic strain

A8 — change in temperature

A - slope of the isotropic normal-compression line

a — coefficient with the dimension of pressure

a,, a, - coefficients of thermal sensitivity of the yield surface.
eo, e, - reference void ratio

At yielding, the total strain rate is obtained by adding the elastic and plastic strain rates
(Hueckel and Pellegrini, 1991)

g =&+ &) 2.9
g, = Ele + &F 210

The plastic strain rate can be obtained from the flow rule as follows;

. 0
do

Ais a scalar valued plastic multiplier and g is the plastic potential which is also a function
of p’, q,pg(e,’,’,Ae). The plastic multiplier 4 is obtained from the consistency condition,

stating that during yielding the stress state should lie on the evolving yield surface.

Therefore, the consistency condition is expressed as;

d d af . 0
! .’+—fq+—f9+—f &P =0 212

F=a? Taq T a0" T

Furthermore, Hueckel and Borsetto (1990) proposed two different plastic multipliers

(4»,44) in order to find out the volumetric and deviatoric plastic strain rate with single

plastic potential function. So that;

£P = iva—p, 2.13
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&r =1, =— 214

Substituting the equation 2.12 into flow rule function 2.13, the volumetric plastic

multiplier can be found as

of o Of . Of 4

. _op’? T9q9788° . of 0
i, == C m=2 %9 2.15
a de,P Op
Similarly, the deviatoric plastic multiplier is given as;
L f of
To=h+=0,  fi=so+fir (P a GOn(e), 00)) 2.16
TEe)
0.2 MPa (OCR=I2] -~
Ea
/ {160
o ! s
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Figure 13: Drained heating tests at constant effective stress at various OCR — Remolded Pontida Clay
(Hueckel and Baldi, 1990)
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Figure 14: Undrained heating test on Pontida Clay , water pressure vs axial strain (Hueckel and
Pellegrini, 1991)
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2.3.3 Laloui’s constitutive model

Based on experimental results from triaxial tests with temperature control, Laloui and co-
workers developed a thermoplastic constitutive relation describing separately the isotropic
and deviatoric mechanisms of deformations (Laloui and Cekerevac, 2003, 2008, Laloui
and Francois, 2009, Laloui et al., 2008, Modaressi and Laloui, 1997).

The total strain rate, accounting also for the influence of temperature, can be split into

thermo-elastic and thermo-plastic components; in tensor form:

. _ ste .tp
gj = &j t&; 2.17
The volumetric thermo-elastic strain is a combination of a reversible thermal strain and a

reversible mechanical strain component.

. p
ge="2-Pib, 2.18

where S is the volumetric expansion coefficient of the solid skeleton. It was found that the
thermal expansion coefficient is a function of temperature and the OCR (§) as below
(Laloui and Francois, 2009).

Bs = (Bso + ¢A6)¢ 2.19
The parameter ¢ defines the non-linear dependency to the temperature. B¢, is the value of

Bs at reference temperature, normally taken as the ambient temperature.

The deviatoric (purely mechanical) component is given as

s =L 2.20
4736 '
The elastic bulk and shear moduli are given as
p, n p, n
K = Kref <r_> ’ G = Gref <r_> 2.21
pr‘ef pref

Kyef, Gres are the values of the moduli at the reference pressure py. .

Laloui and Francois (2009) proposed that the total plastic strain increment is a linear
combination of two irreversible processes an isotropic and a deviatoric one. Therefore, the

plastic strain is decomposed as follows;

.t
g.p =

.tp _ .tp .tp
ij + &

&ij = E&ijiso ij,dev 2.22

N

k=1
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Each process is described using a flow rule. Laloui and Francois (2009) proposed two
separate yield surfaces corresponding to the isotropic and the deviatoric mechanisms
respectively. The yield function for the isotropic mechanisms is denoted by f;s, (Figure
15) and describes the influence of temperature on the apparent preconsolidation pressure
on the (p’,0) plane. The yield function for deviatoric mechanisms is denoted by f;., and
coincides with that of the original Cam-Clay constitutive model. fis,, faer @and the way
they are coupled is shown in Figure 16. A general form of flow rule to describe the

isotropic and the deviatoric process can be written as;

0
- Z 2w 29k 2.23
k=1 )
where, g; is the plastic potential corresponding to each mechanism, and A} is the

respective plastic multiplier. k = iso for the isotropic mechanisms and k = dev for the

deviatoric one

|
Y e— \} \
E_O_ - Isotropic yield
= 5 \ limit
U '
3 ; \\/
o Thermo-elastic '
2 domain ~
£ ' ~
Q) ]
- : ~
g pereeeTeeee bbb bbb bbb bbbl >
: ——
P'c(B1) P'B0)
Mean effective stress, p'
Figure 15: Isotropic thermoplastic yield limit (Laloui and Francois, 2009)
2.3.3.1 The isotropic mechanism
The isotropic yield function is given as; (Figure 15)
fiso =D — (pé)(gg' )Tiso 2.24

where, p. the apparent preconsolidation pressure that depends on &%, 8. r;, is the degree of

plastification through which the progressive evolution of the yield function is taken in to

23



account as illustrated in Figure 17. The apparent preconsolidation is given by (Laloui and
Cekerevac, 2003);

(pe) = Peoro [1 —ylog (%)] exp(Be}) 2.25

where y is a material parameter, p_oro iS the initial apparent preconsolidation at ambient
temperature and S is the plastic compressibility modulus. Finally, substituting the above

equation into isotropic yield function, the latter is expressed as

’ r 9 p
fiso =P — Peoro [1 —ylog (9—0>] exp(Bed )iso 2.26

The associative flow rule for isotropic mechanism gives

iso ap’ = Aiso ap’ = Aiso 2.27

2.3.3.2 The deviatoric mechanism

The proposed deviatoric yield function is an extension of the original Cam-Clay model.

: p'd
fdev:q_Mp (1_1n(p_,)>rdev:0 2.28
c

Tqev 1S @gain the degree of plastification but in the deviatoric mechanism. 9 represents the
distance between the critical state line at ambient temperature and the isotropic
consolidation curve for a given temperature. M is the critical state parameter which varies

with temperature as follows;

M =M, — g6 —6,) 2.29
M, is the critical state parameter (CSM) at ambient temperature 8,. The thermal friction
sensitivity parameter g, which gives the rate of friction softening due to temperature, is
calculated using available experimental data (Laloui, 2001). By examining the behaviour
of different soils shown in Figure 18, it can be concluded that the value of g falls in the
range of 1073 < § < 1072
By combining the above equations, the deviatoric yield function becomes;
faev = 4 = Taevd'[Mo — §(6 = 6p)] {1 —In 2 199 =0 230
Peoro |1~ v10g (g-) | exp(Bel)

By applying the associative deviatoric flow rule, it was found that the deviatoric mechanics

contributes to both volumetric and deviatoric strain rates as shown below.

. 094 0fq q
gizﬂj,d = AZev apfv = Agev aperv = Agev Mp' (M - ?) 2.31
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dev aq = Adev aq = devM_pr 2.32

Finally, Laloui and Francois (2009) coupled the above mechanisms using the hardening

variable €/ . As shown above, the increment in &b results from both mechanisms.

Therefore, the total volumetric strain rate is the sum.

p agi50+ﬂp agdev

éf; :ALSO ap: dev ap/ 2.33

Laloui’s model is validated through the experiments on Bangkok clay carried out by Laloui
and Francois (2009). The numerical simulations and the experimental results for various

cases are illustrated in Figure 19 and Figure 20.

QA

deviatoric
yield limit fy,

Isotropic
thermo - plastic
yield limit fig,

Figure 16: The coupled thermo-plastic yield limit (Laloui and Francois, 2009)
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Figure 17: Isotropic Compression test: Comparison of experimental results and the numerical
simulation (Laloui and Francois, 2009)
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Figure 18: Experimental results for thermal friction sensitivity
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2.3.4 Cecinato’s thermo-mechanical constitutive model
Cecinato (2009), Cecinato et al. (2011) and Cecinato and Zervos (2012) proposed an

improved constitutive model by modifying Laloui’s model. Rather than using the original
Cam-Clay model to describe the deviatoric yield, Cecinato suggested using the Modified
Cam Clay (MCC) model which has advantages when it becomes to numerical

implementation.
Cecinato divided the total strain rate in to three different components.

£ =gme 4 gle 4 gp 234
where superscripts me, te,and p denote mechanical elastic, thermo elastic and plastic

parts.

2.3.4.1 Thermo-elasticity

The thermo elastic strain rate £%€ is proportional to temperature rate .

&e o« 0 235

Hooke’s law then gives

6 = D™& + D9 236
where D™e is the standard fourth-order tensor of elastic moduli, Dt is here called the

thermal tensor and is given as

D' = —B/K& 2.37
where, Bs is the volumetric expansion coefficient of the solid skeleton, & is the Kronecker
delta and K is the stress dependent bulk modulus. The thermo-elastic stress-strain relations
can be written as;

2 .
o= (K - §G) 6E™E + 2GE™° — BK66O 2.38

where, G is stress dependent shear modulus.

2.3.4.2 Thermo-plasticity
The plastic strain rate can be obtained through the (in general non associative) flow rule.

&P — ) 2
& Aaa 2.39

where g is the plastic potential.

From the consistency condition and the flow rule the plastic multiplier is calculated as,
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A‘ — faDmeé + (f@ + ZDtefa)é

f,Dmeg, — fef,’gp’ 2.40
here £, =L and g, = %9
w erefa—da and g, =
The MCC yield function is;
f=q*—M?*p'(pc—p") 2.41

Substituting the equation for the apparent preconsolidation pressure (Equation 2.25) and
the thermal-friction sensitivity (Equation 2.29) from Laloui’s model onto the above MCC
equation, the final yield function becomes
~ ! 0 li

f=4q*—p'[Mo— g6 - 6] {pcom [1 — v log (9—0)] exp(Bey) —p } 2.42
The above deviatoric yield function was coupled with Laloui’s isotropic yield function
(2.26). The resultant shape of yield function in (p’, q, @) space is shown in Figure 21.
Combining both the thermo-elasticity and the thermo-plasticity, the general form of
thermo-elasto-plastic stress-strain rate equation becomes

.0 .
o =D™¢ (e - 7\%) + (D* — c*)0 2.43

1
where cte = 535’6

The model was validated thorough the experimental data from Laloui and Cekerevac
(2003) as given in Figure 22.

Figure 21: Qualitative shape of the thermo-plastic yield locus at critical state (Cecinato, 2009)
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Figure 22: Validation of Cecinato’s model through experimental data from Laloui and Cekerevac
(2003) (reproduced from Cecinato (2009))

2.3.5 Robinet’s model

Robinet et al. (1996) developed a thermo-mechanical constitutive model based on
Hueckel’s model. This model considered the existence of a threshold temperature. Above
the threshold temperature, both irreversible and reversible dilative strains occur as
temperature increases. Below the threshold temperature, only reversible strains occur.
Therefore, an isotropic yield surface was introduced based on the concept of threshold
temperature in order to calculate the reversible and irreversible thermal strain. In addition,
a different hardening rule was adopted to ensure that no change in the yield locus takes

place while cooling.

For the deviatoric part, MCC was adopted and was coupled with the above isotropic yield
function. Validation of Robinet’s model through some experimental data is given in Figure
23

30



=

§

.y

Y

£

|

L

3

= A 2°C(Bald ot al 199)
= &  95°C(Baldi & al. 1990)
=

= ———  sinmbations

7]

=

40 80 120 160 20

Axial strain(%)

Figure 23: Numerical simulation and experiments of two axial drained paths of over consolidated state
(Robinet et al., 1996)

2.3.6 Sultan’s model
Cui et al. (2000), Delage et al. (2000) and Sultan et al. (2002) developed a thermo-

mechanical model for saturated clays based on experimental results from triaxial tests
under temperature control. The effect of overconsolidation ratio on the volumetric strain
induced due to heating was investigated experimentally. Findings from this study were
used to modify the existing models proposed by Hueckel and Borsetto (1990) for saturated
clays in order to include the effects of over consolidation ratio.

Hueckel proposed that, irreversible thermal contraction occurs only on highly over
consolidated specimens. Unlike Hueckel’s model, Cui et al. (2000) observed
experimentally that, there can be irreversible thermal contraction for low values of OCR. A
new plastic mechanism called “thermal yield” (TY) was introduced by using an additional
yield locus. Then the TY yield locus was coupled with Hueckel’s hardening law to express
more realistically the hardening behaviour of soil. Modified Cam clay was adopted for the
deviatoric part. Validation of Sultan’s model through some experimental data is given in
Figure 24.
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2.3.7 The mechanism of thermal pressurisation

In the context of landslide, the thermal pressurization phenomena can be explained as

follows;

When the slide starts, the heat is produced due to friction within the slip surface due to the
dissipated work. The soil strength reduces as velocity and displacement increases (Tika
and Hutchinson, 1999). At the same time, thermo plastic collapse occurs due to
temperature rise as explained in Laloui and Francois (2009). Furthermore, temperature rise
facilitate the generation of pore water pressure due to thermal expansion of water. As a
consequence, the effective stress at the slip surface is reduced due to rising of pore water
pressure. The resistance to sliding is reduced which lead the collapse.

Thermal pressurisation has been extensively studied, especially when it occurs in rock
leading to shear failure or hydraulic fracturing (Rice, 2006). Sulem et al. (2007) and
Wibberley and Shimamoto (2005) studied about the thermal collapse of clay materials in
fault zones. Vardoulakis (2002a, 2002b) has studied thermal pressurisation in clayey
gouges with application to the dynamic behaviour of rapid landslides. Many experimental
evidence of thermal pressurisation mechanism can be found in the literature notably, Baldi
et al. (1988) Campanella and Mitchell (1968) Ghabezloo and Sulem (2009) Sultan et al.
(2002).

Many attempt has been made to measure or calculate an average value for the key
parameter, pressurisation coefficient im, that gives the pore pressure increase due to a unit
temperature increase under undrained and isochoric conditions (at constant specific
volume). This can be given in terms of the thermal expansion coefficient (a) and the

compressibility coefficient (c¢) as Vardoulakis (2002a)
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_0Op a
- % vol=const C 2.44

undrained

Am

where a@ = a,,, — a.; a,, and «a, are the thermal expansion coefficients of the soil water

mixture and soil skeleton respectively.

Experimental evidence shows that normally consolidated soil exhibits volume contraction
under drained heating. (Hueckel and Baldi, 1990, Laloui and Cekerevac, 2003, Laloui and
Francois, 2009). This is explained as the result of an internal mechanism of microstructural
collapse, due to changes in water absorption by clay particles (Campanella and Mitchell,
1968).

Several authors found that normally consolidated soil exhibits volume reduction during
heating , while over-consolidated soil shows elastic expansion at the initial stage of heating
and plastic contraction with subsequent heating (Baldi et al., 1988, Laloui and Cekerevac,
2003, Modaressi and Laloui, 1997, Sultan et al., 2002). Volume change due to heating for
different OCRs can be plotted as in Figure 25. Under a heating/cooling cycle, volume
changes for different values of OCR are shown in Figure 26. For increasing OCR, a
transition temperature was identified at which plastic contraction starts from dilative elastic

behaviour.
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Figure 25: Experimentally observed thermal volume change of the CM clay (Kaolin) (Laloui and
Cekerevac, 2003)
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Figure 26: Thermal volumetric changes of Boom clay samples at different OCR values.

Based on the above experiments carried out in Boom clay, four major trends of thermal

volume changes were identified as listed below (Sultan et al., 2002)

e The plastic contraction of normally consolidated samples is independent of the
mean effective stress applied.

e The thermal contraction increases when OCR is decreased, leading to pure
contraction for normally consolidated soil.

e The slope of the volumetric strain versus temperature (i.e. thermo-elastic expansion
coefficient) in the cooling stage is independent of the applied mean effective stress.

e The temperature at which the transition between thermal expansion and contraction

occurs decreases with OCR.

For clay, Campanella and Mitchell (1968) found /m = 0.01 MPa/°C, Vardoulakis (2002a)
proposed Am = 0.06 MPa/°C while Sulem et al. (2007) suggested im = 0.1 MPa/°C. For
sandstone, Campanella and Mitchell (1968) proposed Am = 0.05 MPa/°C while Rice (2006)
estimated Am = 0.92 MPa/°C for a 7 km deep fault in rock with intact walls.

2.3.8 Discussion on thermo plasticity on soils

All constitutive models of thermo plasticity of soils have some common characteristics as
well as some drawbacks. Hueckel’s model is the first comprehensive model which is
suitable for numerical implementations. This model was improved by Sultan, Robinet and
co-workers by incorporating a new volumetric mechanism. Moreover, Hueckel’s model
concentrated more on describing volumetric deformation, which is not as important in a

landslide context as shear deformation.

A different model was proposed by Laloui and co-workers to describe the deformation of
soils due to thermal loading. The main drawback of Laloui’s model is that for the

deviatoric mechanism the original Cam Clay yield function was used which, due to its non-
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smooth character, may cause problem in a numerical implementation. Also, this model is

more complex as it contains two separate mechanisms for isotropic and deviatoric.

Cecinato (2009) modified Laloui’s model by adopting the Modified Cam Clay model
instead which is smooth and does not suffer from this problem. Although all the above
models take the temperature into account none includes the time dependent behaviour of

soils present even in isothermal conditions.

In the following section, a critical review on time dependent behaviour of soils (creep) is
made, with the intention of improving the existing thermo-plasticity models of soil so that,
they cover temperature as well as time-dependent behaviour.

2.4 Review of constitutive models of time-dependent
behaviour of soil

In this section, existing models that deal with time dependent behaviour of soils are
reviewed. Creep of soils has been investigated in the laboratory by researchers and is
defined as the progressive, irrecoverable deformation of a soil element under a state of
constant effective stress (Hyde and Brown, 1976, Kuwano and Jardine, 2002, Murayama et
al., 1984).

In general, the entire process of shear creep of a soil can be divided into three stages:
primary, secondary and tertiary creep (Augustesen et al., 2004). Experimental evidence
shows that during the primary creep stage the shear strain rate decreases with time. Then,
during the secondary stage the rate remains constant and finally during the tertiary stage it
increases with time. Failure due to what is called creep rupture is possible during the
tertiary stage (Figure 27). Many authors proposed models for secondary creep only
(Bjerrum, 1967, Borja and Kavazanjian, 1985, Kavazanjian and Mitchell, 1977, Singh and
Mitchell, 1968), although several models for all three stages of creep including rupture
have also been proposed (Feda, 1989, Kuhn and Mitchell, 1993, Mitchell et al., 1968, Ter-
Stepanian, 1975).

Feda (1989) describes that the structural hardening, i.e. particle re-orientation, is
responsible for the primary creep whereas structural softening, i.e. particle disorienting, is
for tertiary creep. The balancing of both softening and hardening occur during secondary
creep. In the context of landslides, the primary and secondary creep can be used to explain
the prolonged slow movement whereas, the tertiary creep can be used to explain the

eventual catastrophic failure.
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In some soils one-dimensional compression continues under constant loading even after
excess pore pressure has dissipated, i.e. after primary consolidation has ceased - this is
called secondary compression or volumetric creep (Lo, 1961, Mesri, 1973). The secondary
compression coefficient C,, is used to describe the magnitude of the volumetric creep as
follows (Figure 28);

Ae = C,Alog(t) 2.45
where Ae change in void ratio and Alog(t) is the change of logarithmic time. The
temperature dependence on volumetric creep strain rate in explained in Section 5.8.1 in
detail.

3 Rupture

1- Primary creep
2- Secondary creep
3- Tertiary creep

:

t

Figure 27: Three stages of creep of soil under constant effective stress

Primary consolidation

Secondary compression

e (void ratio)

log (t)
Figure 28: primary and secondary consolidation in e vs log(t) plot for soils

2.4.1 Bjerrum’s model for volumetric creep

Bjerrum (1967) proposed that the total volume change occurring in clay has two main

components as defined below (Figure 29Db).

a) An ‘instant compression” which occurs simultaneously with the increase in effective
pressure and causes a reduction in void ratio until an equilibrium value is reached at
which the structure effectively supports the applied pressure.
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b) A ‘delayed compression’ representing the reduction in volume at constant effective

stress.

These two components are contrary to the well-known expressions, ‘primary’ and

‘secondary’ compression Figure 29a.

Assuming that the behaviour of soil is governed by a single void ratio e vs log p’ curve, it is
not possible to capture the delayed compression of soils. To overcome this problem,
Bjerrum (1967) introduced a system of e vs log p’ lines called time lines as shown in
Figure 30. Timelines are defined as “lines of constant duration of loading”. Each timeline
represents the compression behaviour after a particular duration of sustained loading. For
example, if applied stress is increased at an interval of 24h, the corresponding e vs log p’

line is called 1-day time line (Bjerrum, 1967).

Figure 30 illustrates the development of delayed compression under constant stress with
time (path A-B). It also should be mentioned that, during delayed compression, void ratio
decreases passing through the successive timelines as shown in Figure 30. Also, the soil

becomes over consolidated with time as the apparent preconsolidation stress , oy .,

increases (point C in Figure 30).

Bjerrum’s model of secondary compression is a relatively simple one that quantitatively
captures some aspects of soil creep although it is only concerned with the volumetric

component.

(a) (b)

Effective
Stress
Effective
Stress

Time Time
c A c
S 2 Instant
3 Primary 7 v
E_ il qé_ N4 _Delayed
© Secondary O ]

Figure 29: (a) Concept of primary and secondary compression (b) Concept of instant and delayed
compression proposed by Bjerrum (1967)
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2.4.2 Singh and Mitchell model

From the experimental studies carried out by Mitchell and Campanella (1964), it was
clearly understood that the time dependent response of a soil depends on various factors
such as soil type, soil structure, stress history, drainage conditions and type of loading

among others.

Singh and Mitchell (1968) proposed a general stress—strain-time equation with parameters
based on drained and undrained triaxial creep tests (Figure 31 and Figure 32). Their model
focused on the creep behaviour of clays subjected to stresses in the range of 30% - 90% of
the initial strength. The axial strain rate — time relationship in this model is;

o =Ae™P (E>m 2.46

t .
where @ = aqg, ad D = q/qmq.. A IS a parameter that represents the composition,
structure and the stress history of the soil, a indicates the stress intensity effect on the creep
rate q indicates the deviatoric stress applied on specimen, t is the time t; is a reference
time. Finally, the parameter m controls the strain rate with time and has a key role: If m >
1; the axial creep strain reaches an asymptotic value over time and if m < 1; the creep

strain increases infinitely with time (Figure 33a).
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2.4.3 Kavazanjian and Mitchell model

Kavazanjian and Mitchell (1977) proposed a different constitutive model for the time

dependent behaviour of soil in the form of a general stress- strain-time relationship.

This model was separately formulated for the volumetric and deviatoric components. Both
components are assumed to have instantaneous and delayed strains as defined in Bjerrum
(1967). Kavazanjian and Mitchell (1977) derived the volumetric part of the strain from the
concept of logarithmic secondary compression law and the deviatoric part from the Singh-
Mitchell model. Even though the Singh-Mitchell model quantifies the axial strain in
triaxial conditions, Kavazanjian and Mitchell (1977), proposed an indirect method for

calculating the deviatoric strain from axial strain.

Borja and Kavazanjian (1985) expanded this model further to calculate creep strains by
employing the normality rule on the modified Cam Clay yield surface. To achieve this, the
total strain was decomposed into three parts as follows;

=&+ &P+ & 247
where superscripts e and p denote time-independent elastic and plastic components
respectively and t denotes the time-dependent component, which is irreversible. Borja and
Kavazanjian (1985) proposed that the preconsolidation pressure p. increases due to two
mechanisms. The first one is due to the strain hardening. The second one is due to aging of
soil as proposed by Bjerrum (1967). The expression for p.(rate of preconsolidation

pressure) is given as (Borja and Kavazanjian, 1985);
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where C, is the coefficient of secondary compression (Equation 2.45), e is the void ratio, A
is the slope of the normal consolidation line, k is the slope of unloading-reloading line, &

is the volumetric strain rate and ¢t is the time.

Borja and Kavazanjian (1985) validated their model against data from drained triaxial

compression test on Weald Clay as shown in Figure 34.
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Figure 34: Comparison of numerical simulations (SPIN 2D) and drained triaxial test on Weald Clay
(Borja and Kavazanjian, 1985)
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Overall, the model proposed by Kavazanjian and Mitchell (1977) and Borja and
Kavazanjian (1985) can be considered as a comprehensive model for the creep of soils as it

describes both the volumetric and the deviatoric creep strain components.

2.4.4 Creep model with strain rate effects

Many studies showed that strain rate also influences the stress-strain behaviour of soil.
This can be demonstrated using the direct shear test carried out at different shearing
velocity. Each velocity will give a different stress strain behaviour (Di Benedetto et al.,
2002, Leroueil et al., 1985, Matesi and Vucetic, 2003, Vaid and Campanella, 1977).

Leroueil et al. (1985), investigated the relationship between stress (o), axial strain(e,),
and strain rate (¢,) on many natural clays. Constant rate of strain tests (CRS) were carried
out for five types of natural clays selected from different sites (Smith and Wabhls, 1969,
Wissa et al., 1971). Using the experimental results, as shown in Figure 35, Leroueil et al.
(1985) suggested a possible framework between g, e, and &, can be described by two

general functions.

The first one gives the preconsolidation pressure as a function of strain rate as follows

Ozpc = f(€q) 2.49
The second one represents the normalized stress-strain relationship

g,

— = g(&g)
Ohme 9l&q 2.50

The above two equations (2.49 and 2.50) can be explained using Figure 36. The

normalized stress-strain curve varies for clays depends on the types structures of the clays.

For a given soil, a unique normalised stress-strain relation can be written from one

dimensional consolidation as follows,

C, Gz'pc> C. ( o, )
g, = In - + In
“ T Tt e <az',0 T+e, \0hpe 2.51

In the above, C. & C, are the compression and the recompression index of the soils, e, is

the initial void ratio and o,, is the initial vertical stress. There is no closed-form
expression for f, in Equation 2.49, recommended by Leroueil et al. (1985). But later,
Leroueil et al. (1996), suggested a linear relationship for the preconsolidation pressure
(f (¢,) in Equation 2.49) as follows;

1
0l pe = A+ (H) ) 252
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where m” and A are constants. Therefore, it is possible to derive a general stress-strain-
strain rate equation after substituting Equation 2.52 into Equation 2.51.
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Figure 35: Rate dependency on one-dimensional compression characteristics of Batiscan clay (After
Leroueil et al. (1985))
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Figure 36: Stress—strain—strain-rate relationship for the strain rate approach: (a) normalized variation
of the preconsolidation pressure with the strain rate (b) normalized effective stress—strain relation (c)
experimental curves obtained at different strain rates (Leroueil et al., 1985)

2.4.5 Soil creep as a rate process

Many authors described creep of soil using rate process theory (Feda, 1989, Kuhn and
Mitchell, 1993, Kwok and Bolton, 2010, Mitchell et al., 1968, Ter-Stepanian, 1975). Rate
process theory is applicable to various materials such as polymer, asphalt, minerals etc.
(Eyring, 1936)

Rate process theory describes creep by considering on the movement of flow units such as
atoms, molecules or particles. The movement of flow units is opposed by an energy barrier
called activation energy which keeps a flow unit in an equilibrium position. If enough
additional energy to exceed the activation energy is applied to the flow unit by an external
source, it will move and cause deformation. This energy source can have different forms
(e.g. a heat source or an applied stress). The complete description of rate process theory

and application to the creep of soils will be discussed in Sections 4.1, 4.2 and 4.3.

2.4.6 Soil Creep models with the influence of temperature

Temperature also affects the creep behaviour soils. Some experimental studies were carried

out by Campanella and Mitchell (1968) to predict the effects of temperature. In this

44



experiment, a conventional triaxial creep test was carried out with step increments of
temperature. Typical results from test for most samples are shown in Figure 37. Using this
experimental results, Mitchell et al. (1968) proposed the following equation.

23XRXT,XT; &T;
= 0 —
(T, —Ty) 810 €T, 2.53

where, E is called activation energy is a constant for a given soil will be discussed in
Section 4.3.1 in detail. ¢, and &, are the strain rate values at the values of absolute

temperature T; and T, respectively. R is the gas constant.
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Figure 37: Typical results of triaxial creep test with step increment of temperature (Campanella and
Mitchell, 1968)

2.4.7 Feda’s creep model

Feda (1989) attempted interpreting the results of ring shear experiments (Figure 38) on the
basis of rate process theory. Moreover, inclusion of primary and tertiary creep was also

attempted in this model which will be more relevant in the context of landslides.

From the basic consideration of rate process theory shear strain rate can be written in the
following form (Feda, 1989);
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2kT Tﬂl UO
p( _) 2.54

V= P\ sk T RT
k = Boltzmann’s constant, 1.38 x 10723J/K
h = Plank’s Constant 6.62 X 10734 s
R = Universal gas constant, 8.31 J/ (mol K)
T = Absolute temperature, K
A, = Distance between successive equilibrium points of two flow units
Uo= Activation Energy, which is a measure of bonding strength, J/mol
T = Applied shear stress
S = Number of bond/m?
Feda (1989) modelled the shear creep of soil by combining the rate process theory and
observations made from ring shear experiments for different specimen of soil.

With some substitutions, Feda (1989) modified the shear strain equation as follows;

V= D exp a1y (i) 255

Tr - Long term strength (tertiary creep occurs at T — T¢)
2kT U,

p==ew(-5)
A

~ 2SkT

In isothermal conditions, the term D is constant, so that shear strain rate, in Equation 2.55,

]

becomes constant with constant applied shear stress. Therefore, it is possible to model only
secondary creep in isothermal condition. In order to include primary creep, where strain
rate decreases with time, Feda (1989) proposed to consider D as time dependent as

follows;

ti\"
D(t)=D (?) 2.56
where t;, is a reference time, t is the natural time and n > 0 is an exponent determines the

rate of shear strain rate. Now it is possible to predict the primary creep by using rate
process theory.

Furthermore, from the experimental data (ring shear test), it was found that, a, obeys the

following equation.

t
AgTr = Ag + bd (t_> 2.57

i
The stage of creep can be obtained by using the following conditions;
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Soil is in primary creep. During this stage, the soil exhibits strain hardening behaviour,
therefore the strain rate diminishes with time.

If b; = 0;

Soil is in secondary creep. During this stage, the soil can be thought of both strain
hardening and strain softening at the same rate therefore the strain rate remains constant
with time,

If b; > 0;

Soil is in tertiary creep, during this stage soil exhibits strain softening behaviour. Therefore

the strain rate increases with time and the soil will eventually fail.
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Figure 38: Results of ring shear creep test on different soils (Feda, 1989)

2.4.8 Ter-Stepanian’s model

Ter-Stepanian (1975) also presented a model of shear creep of clay based on rate process

theory and experimental results (Figure 39) . It is based on the following assumptions.

e The external forces applied to a soil specimen are transferred to the particle
contacts, and each contact force can be resolved in to a normal (r;) and a tangential
(f;) component. It is assumed that the shear strain rate of the soil specimen is
proportional to ‘structure deformability’, defined as the ratio between vectorial sum

of tangential (F = Y.f;) and normal (R = }.r;) forces.



e Each inter-particle contact contains several bonds, which break due to the applied
shear stress. Therefore the lifetime (L) of the interparticle bonds depends on the
applied shear stress (Bjerrum, 1973).

e During primary creep, the strain rate reduces due to reorientation of particles
arrangement, (i.e. soil structure becomes more regular). So that, L is directly
proportional to time but during tertiary creep, the particles become more de-

oriented and L is inversely proportional to time.
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Figure 39: Results of ring shear creep test on Sissian Pliocene diatomaceous deposits
With these assumptions, the following strain rate equation for was proposed for primary

creep.
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. (T—Tp)l
y=a 7 t 2.58

Similarly, during the tertiary creep strain rate becomes;

y=a (T _{Tp) (tz)z 2.59

In Equations 2.58 & 2.59, ¢ is a constant and a is a coefficient that depends on structure
deformability (F/R). The coefficient a is;

— R (5) e (7 ew (52)
a=5\R) 7 FP\Rr )P\ 2kt 2.60

where, K is the coefficient of proportionality with dimension of time and f, is the average

tangential force per flow unit i.e. molecule in the soil. In this model, f;, was assumed

constant for a given soil, and independent of external applied forces.

2.4.9 Visco-plasticity of soils

The concept of visco-plasticity was introduced and developed by Perzyna; it is also
referred to as overstress theory (Olszak and Perzyna, 1966a, b, Perzyna, 1962a, Perzyna,
1962b, 1966). A key assumption in Perzyna’s overstress theory is that viscous effects are
negligible in the elastic region, i.e., no viscous strains occur within the static yield surface,
which corresponds to the traditional yield surface associated with time independent
plasticity (Figure 40). In other words, the elastic strains are time independent whereas the
inelastic strains are time dependent. The total strain rate is additively composed of the
elastic and viscoplastic strain rates:

£=¢E°+ & 2.61
In the theory of elasto-visco-plasticity, the inelastic strain rate represents the viscous and
plastic effects combined. The elastic strain rate is assumed to obey the generalized Hooke’s
law. The static yield function denoted by f, separates the elastic and inelastic strain
regime. f, is consistent with the classical concept of an elasto plastic yield function. If the
stress point lies inside the static yield locus, elastic deformation takes place while if it is
outside, viscoplastic strain would be expected to occur. In contrast to elasto-plastic theory,
in viscoplastic theory, stress states are allowed to go outside the static yield locus and it is
then that viscoplastic strains occur. The overstress function F determines the magnitude of
viscoplastic strain and is defined such that F > 0, F < 0, F = 0 when the stress state P is
outside, within or on f, respectively. While the viscoplastic strain-rate is assumed to obey

the following non-associated flow rule:
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= qu(F) 2.62
U
where y is the fluidity parameter, qb is the viscous nucleus, F is the overstress function, g

is the potential function and a;; is the effective stress state.

A

viscoplastic
regime

L :

Non-viscous
regime

Figure 40: Stress state P is part of the dynamic yield surface f, and overstress F is defined as the
distance between P and the static yield surface fy Furthermore, the viscoplastic strain rate vector is
perpendicular to the plastic potential surface g

The over stress function is a function of viscoplasitc work W"Pand the current stress state

a;; which can be written as

Lo (W™, i)

F(va, O-l,]) X (va)

2.63
where

&y
va =] O-lljglzp
0
and the function f, describes the dynamic loading surface on which the current stress
point P is located (Figure 40) and «, is the hardening parameter. Therefore, the following
constraints are applied to the viscous nucleus ¢ according to the key assumption of flow

rule applied to the dynamic yield function.

for F <0
@EN={3ry forF 50 264

The above constraints can be considered as loading criteria for inelastic deformation. The

direction of viscoplastic strain is assumed normal to the dynamic yield function f,.
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2.4.10 Discussion

The models reported above take different approaches for describing the creep behaviour of
soils. Secondary compression law is the first methodology used to calculate the long-term
settlement of soils under constant loading. However, this method can be used to calculate
the volumetric creep only. Bjerrum’s model is more advanced, in that total strain is
decomposed as instant (primary) and delayed (secondary). Again however, only volumetric
strain can be calculated by using this model.

The Singh and Mitchel model can capture both volumetric and shear creep of soils.
However tertiary creep cannot be simulated, because the strain rate is considered to either
decreases or remain constant with time. The Kavazanjian and Mitchell model is a more
advanced and comprehensive model, as it describes the both volumetric and deviatoric
creep behaviour of soils. One further advantage is that it used the widely uses the Modified

Cam Clay yield surface.

Viscoplasticity is widely used currently to describe the time dependent behaviour of soil.
The one advantage is that, by using this, both the creep (constant stress rate) and the
relaxation process (constant strain rate) can be simulated. In viscoplastic models, the stress
point should be outside the static yield locus in order to create creep strain. However, soil
may undergo deformation under constant stress even though the stress state is in elastic
region. This particular behaviour cannot be predicted by a viscoplastic model. Another
disadvantage is that it lacks the ability to predict the tertiary creep.

Feda’s and Ter-Stepanian’s models were derived based on rate process theory and some

experimental results. Both have some common characteristics;

e Both models focused mainly on shear creep of soil and ring shear tests were carried
out to support them.

e In both cases, time dependent coefficients were used to capture the different stages
(primary, secondary and tertiary) of creep.

e Even though the basic equation for rate process theory contains temperature as a

parameter both models were proposed for isothermal conditions.

In conclusion, most creep models in the literature consider isothermal conditions. A model

considering both creep and temperature dependent soil behaviour is still lacking.
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2.5 Review of existing models of large scale landslides

There are many models available in the literature that deal with large scale landslides.
Some selected models, which include frictional heating, are reviewed here and a discussion

is made on the advantages and disadvantages of each model.

It has been proposed that frictional heating of the slip zone plays a major role on the failure
of landslides. Firstly, Habib (1975) proposed a mechanism of vaporization of pore water
pressure due to frictional heating to explain the reduction in the strength of rockslides in
the Vaiont landslide. De Blasio and Elverhoi (2008), Erismann (1979) and Gaziev (1984)
described the concept of “self-lubrication”, where rock particles crushed the in to fine

grains or even melted in the shear zone, leading to loss of shear strength.

2.5.1 Vardoulakis’s dynamic thermo-poro-mechanical model

Vardoulakis (2002a) presented a comprehensive landslide model by using a thermo-poro-
mechanics approach. In this model, heat generation due to friction, pore pressure build up
due to the production of heat and loss of shear strength due to thermoplastic collapse of the
soil skeleton were taken into account to determine the evolution of a landslide during the
time window of catastrophic acceleration of the sliding mass, but before the sliding mass
starts break into pieces. It considers a rock mass sliding on a thin clay layer (shear band);
the motion of the mass and the deformation of the shear band is derived using energy, mass
and momentum balance. The geometry of the problem is divided into two sections. The
first one is a long thin shear band with thickness of Z,,. Pore pressure u (z,t), temperature
(z,t), and the velocity v (z,t) inside the shear band are functions of time t and depth z .
Furthermore, it was considered that, all deformation and heat production take place inside
this thin shear band. The second section of the geometry is the sliding mass on top of the

shear band (Figure 41).

The shear band thickness plays a major role on the shear strain, strain rate, heat generation
and diffusion of heat and pore water pressure. Vardoulakis selected the shear band
thickness of 1.4mm based on experimental observations (Morgenstern and Tchalenko,
1967, Tika and Hutchinson, 1999).

In the shear band, temperature increases due to frictional heating and pore water pressure
rises due to thermal pressurization. This set of soil behaviour will allow rapid loss of shear
strength; ultimately leading to catastrophic failure. From a constitutive model point of

view, it was assumed that, the soil inside the shear band follows with the Mohr-Coulomb
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failure law (Figure 42). Some material strain and strain rate softening also were taken in to
consideration (Tika and Hutchinson, 1999).

A set of three governing equations were derived in order to calculate the pore water
pressure, temperature and the velocity/displacement profiles.

The first equation is the heat diffusion-production equation, and is an energy balance

equation as follows;

90 920 (o' +u(z, )\ .
2.65

§=Kmﬁ+ﬂ(%)’) 0

The first term on the RHS of Equation 2.65 accounts for heat diffusion and the second is
heat generation. Other parameters are defined are defined below;

K= Kelvin’s coefficient of thermal diffusivity of the soil-water mixture

A, y) lo'wo +ulz, t)ly = D, is the dissipation term, equal to the plastic work done
inside the shear band,

A(y,y) is the strain and strain rate dependent friction coefficient,

j(pC)m = Cy is the thermal constant of the soil water mixture

The second equation is the pore water pressure equation, derived from mass balance

together with Darcy’s law as follows;
du 0 ( (e)au)_l_/1 00
ot 9z\""""az) T "ot

where c,, is the temperature dependent consolidation coefficient and A,, is the temperature

2.66

and pore pressure dependent pressurization coefficient. The first term on the RHS of
Equation 2.66 accounts for pore water pressure diffusion and the second term for
generation of excess pore water pressure due to thermal pressurization.

The third equation is the dynamics equation derived from the momentum balance of the
material inside the shear band. The velocity profile inside the shear band is described as

follows;

ov 1] .6u+H|, N tlazu
it o av.v) 5 0o + Uz, )] 7 2.67

where H = g—]’: is called as frictional rate sensitivity. After integration of Equation 2.67,
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Figure 42: Scheme of constitutive model (Vardoulakis 2002)

Vardoulakis (2002a) found that the resulting spatial velocity profile is close to linear form,

so that following equation is adopted instead of equation 2.67.

v =1,4(t) (Z%) 268
where z is the spatial coordinate inside the shear band, Z,, is the thickness of the shear
band. v, (t) is the velocity at the upper boundary of the shearband which coincides with
the velocity of the sliding mass and is governed by;

dv
—2 = Rw} <A(um) +

2.69

uq(t)
dt

Pe(tim)

where w3 & R are constants depending on the geometry, A and p, are model parameters,
and are functions of mobilised friction coefficient and u, is the excess pore water pressure

at the interphase between the shear band and sliding mass.

This model was applied to back analyse the Vaiont landslide, successfully reproducing its

catastrophic acceleration phase.

2.5.2 Cecinato’s model

Cecinato (2009), Cecinato et al. (2011) and Cecinato and Zervos (2012) improved
Vardoulakis’s model by incorporating some additional aspects. First, a more realistic
constitutive approach was adopted than in Vardoulakis’s model based on thermo-plasticity
and covering wider range of thermal behaviour of soil. As Modified Cam-Clay is used in

Cecinato’s thermo-plasticity constitutive model, a superposition of thermal softening was
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made in the critical state parameter (M) in addition to the Vardoulakis’s assumption of

displacement and velocity softening. Final expression for M yields as:

M(y,7,0) = M(y,y) = §(6 = Oref) 2.70
where 6 is the temperature, 6,..f is the reference temperature and g is thermal sensitivity.

Vardoulakis (2002a) used the Mohr-Coulomb failure law in constitutive point of view
which is temperature independent. Therefore, the pressurization coefficient 4,,, is proposed
based on the available experimental evident. However, Cecinato developed a thermo-
plasticity constitutive model that can capture the thermal behaviour of soils (Section 2.3.4).
Therefore an expression for 4,, is derived which is consistent with the proposed thermo

plasticity framework which is given by;

1 =/1—rc YK _2p
" Ac (1+e)6 (1 —vylog (6%)) ’

2.71

In the above, 1 is the slope of the normal consolidation line, k is the slope of the
unloading-reloading line, c is the compressibility of soils, y is a material parameter
defining the rate of decrease of preconsolidation stress with 6. 6 is the temperature and 6,

is reference temperature normally taken as ambient temperature.

AG_(AM) 20u Ao (A

Figure 43: Effective stress path of material point inside the shear band (Cecinato, 2009)

Cecinato (2009), Cecinato et al. (2011) and Cecinato and Zervos (2012) assumed that the

stress lies at critical state. The stress path during entire process of a landslide illustrated in
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Figure 43; path 1 to 2 occurs due to thermal softening (2.25), path 2-3 occurs due to
existences of excess pore water pressure, which reduces by 2Au in preconsolidation
pressure and path 3-4 occurs due to frictional softening where M reduces according to

thermal friction sensitivity equation. But, all processes actually occur at the same time.

Using this model, Cecinato (2009) was also able to reproduce the catastrophic phase of the
Vaiont Slide. Cecinato’s findings further show that, thermal friction softening is less
important as a destabilising mechanism than the strain and strain rate softening for the
development of catastrophic acceleration, also that thermal pressurization will cause

thicker sliding masses to accelerate faster.

2.5.3 Thermo-poro-mechanics of creeping landslides (Veveakis et
al, 2007)

Veveakis et al. (2007) presented a physically based landslide model with the inclusion of a
creeping phase. This model also was finally applied to the Vaiont landslide for validation.
As confirmed from the geological data, the Vaiont landslide was preceded by 3 years of
creep and ended with the catastrophic collapse of a rock mass with velocity of about 30
m/s. Using the concepts of thermal softening and velocity hardening of soil, Veveakis et al.
(2007) proposed that a balancing of these two mechanisms was responsible for the

creeping phase of the slide.

The proposed expression for the frictional coefficient at critical state combined thermal

softening and velocity hardening as follows.

. N

Y —M(6—

Ues = Uref < > e~ M(6-61) 2.72
Yref

where N, M are the frictional rate sensitivity and the thermal sensitivity parameters
respectively. Catastrophic acceleration is triggered, when a critical pressurization
temperature is reached inside the shear zone, at which temperature thermal pressurization
controls the acceleration of the rigid sliding mass. Even before the pressurization
temperature is reached, however, the slide becomes critical because dissipation of heat
progressively localizes inside an ever shrinking shear zone with time. This model was
applied to the Vaiont slide and compared with the real values obtained from the case

studies.
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2.5.4 Goren and Aharonov‘s Thermo-poro-elastic model

Goren and Aharonov (2007, 2009) developed a model for large scale landslides using a
thermo-poro-elastic approach. Frictional heating and thermal pressurization, were taken as
possible mechanisms explaining catastrophic failure as well as slow movement. In this
model also, governing equations were proposed based on the mass, energy and momentum
balances. The results from this model show that the permeability of sliding mass is the
dominant factor on the behaviour of landslides. Low permeability leads to catastrophic
failure, while high permeability leads to slow movement (creep like movement) due to

rapid dissipation of pore water pressure.

2.5.5 Puzrin’s model (shear band propagation)

Puzrin and co-workers presented a model for the growth of a shear band leading to
catastrophic failure (Puzrin et al., 2010, Puzrin and Germanovich, 2005, Puzrin and
Schmid, 2011, Puzrin and Sterba, 2006). Initially, the Palmer-Rice (PR) fracture mechanics
was used to explain the propagation of the shear band. The original PR fracture mechanics
was proposed for over consolidated soil only. Puzrin and Schmid (2011) attempted to
develop a general approach based on the fracture mechanics, which is applicable to a wider
range of soils such as saturated and unsaturated-normally and over consolidated soils.
Finally, shear band propagation was studied with different approaches such as limiting
equilibrium, linear elastic fracture mechanics, energy balance and the process zone
technique. Among these approaches, energy balance was identified as the most

conservative method.

Puzrin and Germanovich (2005) explained the different types of failure (progressive,
catastrophic and delayed failure) using fracture mechanics. Puzrin et al. (2010) explained
the shear band propagation of submarine landslides using the energy balance approach.
Finally, this model was applied to back analyse the Storegga slides, the Western Goleta
slide, and the Lake Lucerne slide submarine landslides. Velocity and acceleration were
calculated and compared. Findings show that, stiffness of the soil, the viscosity of water
and any yearly precipitation (pore water pressure) play main role on velocity and

acceleration of landslides.

2.5.6 Alonso’s thermo-hydro-mechanics of rapid landslide
Another model was developed by Alonso et al. (2010) and Pinyol and Alonso (2010) using

the thermo-hydro-mechanics approach to explain the final stage of the failure of Vaiont
landslide. The same thermal pressurization concept was used here as well, to explain the

heat induced pore pressure build-up. Alonso et al. (2010) also derived a set of governing
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equations using the energy, mass and momentum balances with some assumptions as listed

below;

1. Pore water pressure changes due to thermal pressurization only.
2. The heat produced cannot escape through the band boundaries. The final failure of
Vaiont is considered so quick, that conductive heat transfer is assumed negligible

within the shear band.

Finally, pore water pressure isochrones, velocity and displacement profiles were plotted
and compared with real geological results of Vaiont slide. The parameters selection was
made based on Hendron and Patton (1985). Permeability was identified as one of the key

parameters controlling failure.

2.5.7 Discussion on presented models of large scale landslides

Even though the Vardoulakis model is comprehensive some drawbacks were identified as

listed below.

e The constitutive model adopted for the soil (simple Mohr-Coulomb failure line) does
not capture the full range of temperature dependent behaviour of soils, such as thermal
hardening and decrease in friction angle with temperature.

e The model cannot be easily generalized to two and three dimensions.

e The model covers catastrophic failure phase only. However slow creep-like movement

of slopes for long periods of time is also known to often precede that.

Although Cecinato (2009) made improvements over Vardoulakis’s model, still creep-like
movement of the landslides is not included in that model either. Furthermore, Cecinato’s
model assumes a shear band of infinite length. In reality, the shear band initiates at a given
location and propagates with time till global failure occurs. Growth of the shear band is not

included in this model.

Creep-like movement was on the other hand included in Veveakis et al. (2007) thermo-
poro-mechanical model. This model considered that the balancing of velocity hardening
and thermal softening mechanisms keeps the slide in the creep stage. However, there is
experimental evidence of velocity softening in clays (Tika and Hutchinson, 1999).
Therefore one can conclude that, this model does not cover the full range of the behaviour
of soil during the entire life time of a landslide either. Also, creep-like movement is

observed in soils even in isothermal conditions, where thermal softening is irrelevant.
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Absence of some possible mechanism can also be seen in Goren and Aharonov’s model. In

particular;

e Inelastic soil behaviour such as hardening, strain softening, and strain rate softening
mechanisms are not included.
e Although energy balance is used, the heat advection term is neglected.

e Thermal dependence of parameters such as the friction angle is not included.
Similar drawbacks are also presented in the model developed by Alonso et al. (2010).

e This model also does not cover the creeping phase of a landslide.
e Thermal conductivity was assumed as zero. In reality, it is possible to conduct the heat

through the boundary.

Although a number of models are available in the literature, a comprehensive model
covering all aspects of material behaviour at all stages of a landslide is still lacking. Due
to the above reasons, more improvements are still needed to cover the wide range of

possible mechanism of landslides

2.6 Further developments

In this Chapter, a comprehensive review of existing constitutive models on soils and

landslide model was presented.

In the next chapter, a refined dynamic thermo-poro-mechanical landslide model is
developed based on that developed by Cecinato (Cecinato, 2009, Cecinato and Zervos,
2012, Cecinato et al., 2011). Here a more realistic formulation for the dynamics of the

moving slide is included.

In chapters 4, 5 & 6, Different thermo-poro-mechanical models are developed to simulate
the transition between the creep and the catastrophic stages of a landslide. Three different
types of model have been selected out of all reviewed creep models to represent the soil

behaviour.

The first model is rate process theory which is based on activation of flow units (Section
2.4.5). Moreover, flow units can be activated by thermal energy as well as externally
applied stress. Therefore, it should be possible to use it to model the creep like movement
of landslides, as it incorporates the time dependent behaviour of soils and also the concept

of thermal activation is inherently included.
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The second one is the model proposed by Borja and co-workers (Section 2.4.3). This
model explains the time dependent behaviour of soils in the context of Modified Cam-
Clay. Moreover, Cecinato’s thermo-plasticity explains the thermo-mechanical behaviour
of soils with MCC. Therefore, it possible to combine the models developed by Borja’s and

Cecinato’s to describe the both temperature and time-dependent behaviour of soil.

The third one is viscoplasticity of soil proposed by Perzyna and co-workers which
explains the time dependent behaviour of soils (Section 2.4.9). It also can be combined
with the Laloui’s thermal softening law (applied to static yield locus) to include the

thermal dependency on the soil behaviour in it.
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Chapter 3: A refined thermo-poro-mechanical
model for landslides

As described in section 2.5.2, Cecinato developed a two dimensional landslide model that
Is based on an advanced constitutive model describing the thermo-plasticity of soils
(Cecinato, 2009, Cecinato and Zervos, 2008, Cecinato and Zervos, 2012, Cecinato et al.,
2011, Cecinato et al., 2008). A limitation of this model, however, is that when formulated
for a circular slip surface, the dynamic equation assumes a constant driving moment
throughout the entire movement history of the landslide. In other words, the fact that the
distance of the centre of gravity of the sliding mass from the centre of the slip circle, and
therefore the driving moment, changes during sliding, has been ignored . In reality, the
change of lever arm reduces the driving moment as displacement progresses. In this
chapter, this landslide model is further refined by considering the change in the driving
moment. First, the dynamic equation is modified, and then it is coupled with the same heat
and pore pressure equations proposed by Cecinato (2009). Numerical results are

subsequently presented and discussed.

3.1 Modified dynamic equation

The dynamic equation describes the velocity of the sliding mass over time. Cecinato
(2009) and Vardoulakis (2002) assumed that the landslide mass rotates as a rigid body with
respect to the centre of the predefined failure circle. Furthermore, the net driving moment
was assumed constant. This assumption is a gross one as the net driving moment changes

significantly during rotation of the mass. A more refined formulation is derived below.

A schematic diagram for the friction circle method is shown in Figure 44. With reference

to Figure 44, the driving moment M,,, can be written as
Mdrv = DRD 31

The term D in Equation 3.1 is the resultant driving force, and R}, is the lever-arm from the
centre of the failure circle. Angular displacement is measured from the initial position of
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limiting equilibrium. From Taylor’s friction circle theorem, R, (at the initial position) is
written as; (Taylor, 1948)

Rp = Ry singp 3.2
where, @ is the friction angle of the material inside the shear band at incipient failure and
R is the radius of failure circle. R, depends on displacement, therefore a general

expression for Ry, can be written as;

Rp = KRy sin(pp — 6,4)

a 3.3
K. =
V2(1—cosa)
(Ro)y _
- (Ro); -
< = Rt ;

A

//((Pf)z
,/

A\ 4

Figure 44: Schematic diagram schematic diagram representing friction circle method

where, 6, is the angular displacement of the sliding mass, a is the opening angle of the
failure arc, and K, is a correction factor proposed by Taylor (1948). The resultant of
normal reaction (a,,,) and tangential stress (due to friction) acting along the failure arc is at
an obliquity of R, sin(@r — 6,) to the centre of the failure arc. The circle drawn with this
obliquity , Rf sin(@r — 68y), is called the friction circle. However, depending on the type of
normal reaction (a,,) distribution (uniformly, sinusoidal etc.), there is a deviation of

tangency to the friction circle. In order correct this tangency, a factor K, is used which
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depends on the opening angle of the failure arc. Factor K. shown in Equation 3.3 is
proposed for uniformly distributed load. Therefore the final expression for driving moment

can be written as;

a

R sin(@r — 0,)
V2(1 = cosa) ! B 34

The above result is valid only if the direction and magnitude of the resultant driving force

Mgp, =D

are unchanged with time. This is plausible in cases where the magnitude of the seepage
force is very small compared to the weight of the sliding mass, and it is the assumption

made here.

Motion is resisted by the total friction force that develops along the failure circle. This
depends on the friction angle and the normal effective stress. Assuming that the normal

effective stress is constant along the failure circle, at any time it is given by

, D

Oy = cos(pr —6,4)
no Rey/2(1 — cosa) g ‘ 3.5

Therefore the resisting moment can be written as;

Myes = [O-rILORfa - def(a - al)].URf 3.6

where u = tan ¢,,, (¢,, is the mobilized friction angle of the shear band material) and
a, = (@ — ay) is the opening angle of the part of the failure circle that is below the
phreatic surface. p, is the excess pore water pressure generated by thermal pressurization

at the interface between the shear band and the moving rigid mass.

Balance of angular momentum gives

dw
pl, dt = Mgry — Myes 3.7

where pl, is the polar moment of inertia of the sliding mass (p is the density of the mass
and I, the second moment of area) and w is its angular velocity. Substituting the

corresponding expressions for M., and M,..¢ yields

ol C;—‘: T <A + p‘;(:)> 3.8

Ao %(1 _ tangy, ) 3.9
Vslp tan(@r — 64)

Yy 1 3.10

c

B R} (a— aj)tanop,
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According to Equation 3.9, if tan ¢, = tan(¢r — 6,) the slide will be stable, whereas
if tan ¢, < tan(@r — 6,) the slide will be unstable. The sliding velocity is calculated

from the angular velocity as follows.

Vg = wa(t) 3.11

To make this consistent with the constitutive relationship used by Cecinato (2009), the

mobilized and incipient friction angles should be expressed in terms of a critical state

parameter (M). Since ¢’ = arctan(u) and M = /3 sin ¢'in plane strain, M is written as;

M = +/3sin(arctan(p)) 3.12
From Equation 3.12
(M
U =tan {arcsm (ﬁ)} 313

Using the trigonometric identity

arcsin(y) = arctan<

Y
J1 —yz) 3.14

and substituting y = M /+/3 gives

= ———=tan
o 3.15
The term tan ¢,, in Equation 3.9 can be replaced with Equation 3.15 to obtain the

dynamic equation in terms of the critical state parameter.

3.1.1 Computational results for the dynamic equation

To gain insights on the behaviour of the system, the dynamic equation was solved on its
own by assuming that excess pore water pressure is zero. Strain and strain rate friction
softening were taken into account. Friction strain and strain rate softening was reported by
Tika and Hutchinson (1999) in ring shear experiments, and Vardoulakis (2002a) proposed
simple hyperbolic expressions to describe the friction angle as a function of displacement

and velocity.

In the analysis, the parameters given in Table 1 were chosen; they correspond to the
dynamic analysis of Section 5 of Vaiont slide (Hendron and Patton, 1985) carried out by
Vardoulakis (2002a) and Cecinato (2009). Peak mobilized friction angle was taken equal
to the incipient failure angle(¢r). However, setting the two values equal will result to no
movement, because the initial acceleration will be zero. In order to trigger the landslide,

om Was taken 1% lower than the incipient failure angle ¢.
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Results with the assumption of constant driving moment are also reported here for
comparison. For constant driving moment, the acceleration of the slide reaches 2.25 m/s?
and remains constant (Figure 46a). But for varying driving moment, the acceleration of the
slide reaches 2.15 m/s?, then decreases and becomes negative (deceleration), from which
time onwards the resultant driving moment acts in the opposite direction of movement
(Figure 46Db).

Velocity and displacement of the slide are given in Figure 47 and Figure 48 respectively.
For constant driving moment, the velocity of the slide increases linearly, reaches 100 m/sec
after 45 sec and is predicted to increase even further (Figure 47a). For varying driving
moment, the velocity increases initially and reaches a peak value of 32.5ms™?! then
gradually decreases (Figure 47b). The sliding mass eventually becomes stable at about 45

sec at which stage tan ¢,, is equal to tan(@y — 64).

For varying driving moment, the displacement increased rapidly up to 20 sec then started
to level off due to deceleration, reaching a total predicted run-out of 900 m at 45 sec
(Figure 48b). But for constant varying moment, the displacement increases continuously

and reaches 2250 m after 45 sec.

The plots of velocity and displacement within 1sec are found to be identical for constant
and varying driving moment (Figure 47 and Figure 48). Therefore, the respective plots of
friction angle against time coincide and are given in Figure 45. The mobilized friction
angle starts at 22.3° then decreases over time due to strain and strain rate friction softening,

and reaches a residual value of 4.6° within 1sec from triggering.

Although the results allow the effect of varying driving moment to be assessed, these
predictions are not realistic. Before the total run out reaches 900m for varying driving
moment or 2250m for constant driving moment, the sliding mass will have ceased to
behave as rigid block. The total length of the analysed section 5 of Vaiont slide is 1500 m.
When the slide reaches a displacement of 900 m (60 % of the total length of the slip arc),
the sliding mass should have broken in to pieces (Figure 47b). Also, the actual run out for

the Vaiont slide was observed nearly 200m (Hendron and Patton, 1985).

67



Table 1: Material parameters chosen for dynamic analysis

Soil density p 2.44 x 103 kg/m3
Unit weight of the soil s 23.89 x 103 N/m3
Polar moment of inertia of the slide I 0.511 km?*
Resultant driving force D 3.94 GN/m
Opening angle of failure circle a 62 degrees
Incipient failure angle Or 22.3 degrees
Static residual friction angle Prs 10.15 degrees
Dynamic residual friction angle Pra 4.4 degrees
Peak failure angle ®p 22.277 degrees
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3.2 Heat equation
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The heat equation provides the temperature variation and evolution inside the shear band

with time and consists of a heat diffusion equation with a dissipation term. It is written as;
(Cecinato, 2009).

where

99 = D.az_t9 ._vd(t)
at lazz l Zb
k
D = ——ee
1— (MO-C) Fl
2C;
F o= (Mp)?Fy
"7 20 — (Mp)?F
2K Bsf;
}?1 = fb - i;s z
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H=Kf}+3Gf} —for 390

b Gty
> \V3H

Equation 3.16 is derived using the thermo-plastic constitutive model developed by

3.21

Cecinato (2009) (Section 2.3.4). Factor D; is a nonlinear diffusivity term that depends on
temperature and pore pressure. F;, F;, F, are coefficients that depend on the temperature
and pore pressure. The second term of the non-linear heat diffusion equation (3.16)

describes the dissipation of heat inside the shear band. Other parameters are given as

follows;

va(t) - Velocity at the interface between the shearing zone and the landslide mass.
M - Critical state parameter

Cr - Thermal constant of soil

De - Preconsolidation pressure

fo . fq fp and fsg — Derivative of yield locus with respect to temperature, g and p and

volumetric plastic strain

K,G - Bulk and shear modulus of soils
k, - Thermal diffusivity of soils
Bs - Plastic contraction coefficient

3.2.1 Critical State parameter (M)

In critical state soil mechanics the friction angle at critical state is always constant.
However, Vardoulakis (2002a) proposed a relationship to incorporate the reduction as well
as strain and strain rate dependence of friction angle from its critical state to a residual
value (Section 2.2.5).

The critical state parameter M for plane strain is written in terms of the friction coefficient

A

i as;

M = ‘E%ﬁz 3.22

Laloui’s thermal friction softening law (2.29) can also be modified to include the effects of
displacement and velocity as;

M(,7,6) = M, 7) — §(6 — bref) 3.23

where 6, is the reference temperature, and g is the rate of decrease of the critical state

parameter M with temperature. This simple linear law allows the possibility that the value

of M may become unrealistically small or even negative. Therefore, the value of M was
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not allowed to become lower than M,;, which corresponds to the dynamic friction

coefficient p,4.

3.3 Pore pressure equation

The pore pressure equation gives the variation and the evolution of excess pore water
pressure inside the shear zone and its surroundings with time and it is given by

du 0 ou a6

5 =37 (%5) Hinge 3.24
where ¢, is the consolidation coefficient and A,,is the pressurization coefficient. Different
authors have proposed different expressions for the consolidation and pressurization
coefficients (Sections 2.2.5 and 2.3.7). In the following subsection the formulations

proposed by different authors for pressurization coefficients are discussed in detail.

3.3.1 Consolidation coefficient

The consolidation coefficient of soil is a function of soil permeability and compressibility,
and it can be written as;
p— kW

gpwc 3.25

Cv

where c is the soil compressibility, g is the acceleration of gravity, p,, is density of the
pore-fluid and k,, is the Darcy permeability coefficient. k,, is an increasing function of
porosity and pore-fluid density and decreasing function of dynamic viscosity. Vardoulakis
(2002a) proposed that pore-fluid density and dynamic viscosity are functions of
temperature. In particular, viscosity is a decreasing function of temperature. Therefore, the
consolidation coefficient is temperature dependent. Delage et al. (2000) suggested that the
consolidation coefficient can be written as a function of temperature based on experimental

results (Figure 49) as;

0
‘v = Coo €XP (a_c) 3.26

where ¢, is the value of consolidation coefficient at the temperature of 0°C. 6. is a
reference temperature.  Nevertheless, Equation 3.26 shows that the consolidation
coefficient is a weakly increasing function with temperature. Therefore, based on
experimental evidence Vardoulakis (2002) suggested using a mean value for the
consolidation coefficient of Vaiont clay.

Cy = 7.3 x 10 T 3.27

This mean value is used in throughout the thesis.
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Figure 49: Variations of consolidation coefficient with temperature (after Delage et al. (2000))

3.3.2 Pressurization coefficient (An)
Based on this experimental evidence (Section 2.3.7) Vardoulakis (2002a) proposed that the
thermal expansion coefficient can be approximated by a bi-linear law incorporating a
critical temperature. Above this critical temperature plastic contraction starts.
a :{dg if@ =< gcrit

© al® if0 = Ocre 3.28
where a¢ and a/? denotes the elastic and elasto-plastic thermal expansion coefficients of
the soil skeleton respectively. The elastic thermal expansion coefficient was considered

constant (slope of A-B in Figure 50) and equal to the thermal expansion coefficient of the

soil-water mixture i.e. a¢ = a,,, calculated as;

aym = (1 —n)ag + na,, 3.29
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Figure 50: Isotropic thermal volumetric deformation of an over-consolidated Boom clay specimen for
OCR=12. Line A-B: Thermo elastic expansion, Line B-C: Thermo plastic collapse and Line C-D:
cooling phase representing thermoelastic contraction. (Vardoulakis, 2002a)

In the above, n is the porosity and a, and a,, are the thermal expansion coefficient of soil
and water respectively. Due to the above assumption, the thermal expansion coefficient
becomes zero below the critical temperature 6.,;; (@ = a,, — a. = 0). Therefore the final

form of the pressurization coefficient was written as (Vardoulakis, 2002a);

0 if 0 < ecrit

Ay =1 —a?
" CC if0 = Ocrie 3.30

where af = —(al? — af)
Subsequently, Cecinato (2009) determined the pressurization coefficient consistently with
the thermo plastic constitutive relation he used. In this model, the thermal contribution of

thermal-mechanical strain rate is defined as;

étep :%a_g— tpa_e

00t ¢ ot 3.31

From, the new constitutive law used, volumetric plastic strain rate is given as

&0 = Fp0 + E, el

3.32
1(pie — 2K
Fy = szé {fpc(Pc)e)( ﬁsfp} 333
Kf
E, = M?p! {7”} 3.34

In Equation 3.32, Fy@ is the thermal contribution of the volumetric plastic strain and F, ™
is the mechanical contribution of that. Therefore, by comparing Equation 3.31 and 3.32

gives
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tp _
a. —Fg

3.35
Substituting the respective definitions on Equation 3.33, a7 is given as,
<A e 25
¢ A (1+e)8(1—ylog(8/8y)) $ 3.36

The above formulation eliminates the critical temperature introduced by Vardoulakis
(2002), allowing for gradual soil skeleton collapse. Finally, the pressurization coefficient

can be written as;

_-al(0)
c 3.37

Am

which is now a function of temperature.

3.4 Numerical implementation

The governing equations 3.8 3.16 and 3.24 can be summarised as;

dw pa(t)
22
pIp i Wy <A + o 338
20 020 v,(t)
o~ Pger g, 339
du _ d ( 0u> 42 a0
ot 0z\7vaz) T 'ma; 3.40

These are non-linear parabolic partial differential equations that need to be solved using
appropriate initial and boundary conditions (Section 3.4.3). The finite difference method
was chosen to solve the above equations. The techniques used as well as stability

conditions of each method are described in detail in the following subsections.
3.4.1 Overview of finite difference scheme

In a finite difference scheme, the solution of a one dimensional time dependent problem is
sought on a number of space and time grid points. The grid points are created by dividing

the space and time domains into a finite number of discrete increments.

A finite difference scheme can be explicit or implicit. Examples are given below in the
context of a simple first order differential equation y’ = f(t,y(t)). A typical explicit
scheme is the first-order forward Euler method. The derivative of y(t) is discretised as

g = YEH8) —y(®)

At
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which yields, after re arrangement;

y(t+At) = y(&) + f(t, y())At 3.42
If t is considered as time, the solution at each time step point can be computed by using the

following recursive formula

Yesnr = Ye + Atf (&, y0) 3.43

Although this explicit method is simple to implement, it has some drawbacks. The solution
(ye+ac) calculated for the end of the interval At, is based on the derivative and the solution
at the beginning of the interval. Any numerical errors will thus propagate and accumulate,
progressively reducing the accuracy of the solution. In order to reduce the accumulated
error, the size of the interval At should be very small which may not be practical for

modelling large domains or long time intervals.

A simple implicit scheme is the first-order backward Euler method. Contrary to Equation

3.41, the derivative y(t) is discretised as

, _y(@®) -yt —At)
y = At = f(t'Y(t)) 3.44

which yields that the solution at each time step should satisfy;

= Atf(t + At,
Yerar = Ve + Atf(t + At, yeiar) 3.45

In an implicit method each recursive formula contains more than one unknown; therefore a
system of discretised equations for the entire domain should be solved simultaneously.
This implicit method is unconditionally stable, i.e. errors do not accumulate indefinitely,

although it needs more computation effort.

The dynamic equation given in Equation 3.38 is a first order differential equation with
respect to time. Backward Euler method is chosen to solve this equation to avoid

accumulation of errors and ensure stability.

The heat and pore pressure equations presented here (Equations 3.38 and 3.39) are
nonlinear parabolic partial differential equations (PDE) containing second order
derivatives in space and first order derivatives in time. Both are discretised as shown in
Figure 51, where, i and j represent the discretisation points in the space and time domains
respectively. Among several numerical methods available to solve PDE, three well known

methods are discussed here; The Forward-time centred space (FTCS) scheme, which is an
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explicit one and the Backward-time centred space (BTCS) and Crank-Nicholson (CN),
schemes, which are both implicit.

The FTCS method employs a forward Euler approximation in time and a centred second
order approximation in space. Let us assume a general diffusion equation given by;

0A(z,t) B 0%2A(z,t)
ot 0z2

for0<z<D0<t<T; 3.46

With reference to Figure 51, the discretised form to calculate the solution at point Q using
the FTCS method can be written as

@fl—g):Bpﬂ —247 +47_)

i+1 i

At Az? 3.47

Solving Equation 3.47 is straightforward as it has one unknown A{“ i.e. the solution at
point Q. Essentially A{ 1 i.e. the solution at the ‘next’ time step, can be calculated using

the values of A{ only, i.e. the solution at the ‘current’ time step only. However, a von-
Newman stability analysis shows that for the FTCS to be stable, the following stability
condition must hold (Yang et al., 2005)

BAt <1
AzZz ~ 2

where Az and At are the spatial discretisation step and the time step respectively.

3.48
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Figure 51: Finite difference grid for a parabolic PDE

The BTCS method, on the other hand, provides the solution employing a backward Euler
approximation in time and a centred second order Euler approximation in space. In BTCS
the discretised form to compute the solution can be written as

(A7 —al) (= aalt 4 A

At Az? 3.49

Solving this equation requires more computational effort as it contains more than one
unknown in each equation. Therefore, a system of equations corresponding to all spatial
points must be formed and solved at each time step. Compared to FTCS this represents
significant additional computational effort. Nevertheless, the BTCS is unconditionally

stable and therefore it can be used with relatively large time steps unlike FTCS.

Finally, the Crank-Nicholson method represents an improvement over FTCS. Here, the
average of centred Euler approximations, at time points jand j + 1 is considered. The
discretised form can be written as;

(4" —a]) _ Bl —247" + A1) | (41, —24] +41 )

At 2 Az? Az2 3.50
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Again, the CN method needs more computational effort than FTCS and still needs to

satisfy the stability condition of 3.48.

Out of the three described methods the BTCS method was selected because it is
unconditionally stable. Therefore, the simulation can be performed with relatively large

time steps.

3.4.2 Parameter selection

For the simulation presented in the following, material parameters relevant to section 5 of
the Vaiont landslide, which are summarized in Table 2, are used. Some of the other

necessary parameters are calculated in the following.

The initial mean effective stress p, can be calculated by using the normal effective stress
oy, acting on the slip plane. In order calculate p, three main assumptions are made as
follows (Vardoulakis, 2002a);

1. Plane strain conditions are assumed

2. Further, odeometric conditions were assumed, so that ,,, = ¢,, = 0 (Figure 52)

3. For simplicity, o, = gy, is assumed (Vardoulakis, 2000)

By using the above assumptions, the initial effective mean pressure p, was found as

2
po =31 +v)oy 3.51
The compressibility of the soil ¢ was calculated by Cecinato (2009) as follows;

_( e ) +21c(1+v)
“T\Ure v T pate 3.52

where; e — void ratio at CSL
c¢,, — Compressibility of water
v —Poisson ratio of the soils
po — Initial mean effective stress

k — Slope of URL line of odeometric test.
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Table 2: Parameters chosen to back analyse the Vaiont slide section 5 (Cecinato, 2009)

Soil density P) 2.44 x 10° Kg/m?®
Unit weight of the soil Vs 23.89 x 103 N/m?3
Unit weight of water Pw 9.81 x 10° N/m?3
Thermal constant Ct 2.84 MPa/°C
Radius of the failure circle R 1493 m
Radius of the “friction circle” Rp 594.8 m
Polar moment of inertia of slide Ip 0.511 km*
Resultant driving force D 3.94 GN/m
Slide geometry parameter wo 8.1 %1072 st
Shearband thickness Zy 1.4 x 1073 m
Reference temperature Oret 12 °C
Soil t_hgrmal diffusivity Ko 145 x 107 m2/s
coefficient
Slope of URL of clay K 1.85x102 | -
Slope of NCL of clay A 016 | @ -
Specific volume intercept of clay r 142 | -
Initial (mean) normal effective o 538 MPa
stress
Soil (drained) Poisson’s ratio v 02 | -
Compressibility of water Cw 493 x 10* MPal
Incipient failure (peak) friction | . |
coefficient Hp 0.410
Static residual friction coefficient Lrs 0179 | -
Dynamic residual friction
coefficient fird 0077 |
Z
va(t)
Z
v(t) = vy(t) X (—) Zy
Zyp
% X
03¢

Figure 52: Scheme of the shearband with axis reference system
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In the above, it was assumed that the soil in the shear band has reached a critical state. The
void ratio at critical state e is calculated by using the parameter I', which is the soil’s
specific volume intercept on v — Inp’ plane at unit mean effective stress. Therefore the

void ratio is given by

e=T—21In(py) 3.53

where, p,, initial effective mean pressure.

The thermo-elastic expansion coefficient S, depends on the temperature and the mean
effective stress. Experimental data show that the temperature dependence on the thermo
elastic expansion coefficient is weak (Laloui and Cekerevac, 2003, Sultan et al., 2002).
Therefore a constant value of 7.41 x 1075 °C is used for 3, in this analysis, in line with
Cecinato (2009), Cui et al. (2000), Delage et al. (2000), Sultan et al. (2002) and
Vardoulakis (2002a).

The critical state parameter M varies with temperature as shown in Equation 2.29. The
thermal friction sensitivity parameter g, which gives the rate of friction softening due to
temperature, is calculated using available experimental data (Laloui, 2001). By examining
the behaviour of different soils shown in Figure 18, it can be concluded that the value of §

falls in the range of 1073 < § < 1072,

13000
= e
12000 —
7 // ——
/| e~
11000 /

10000 /

5 /
o” 9000
B /
o
£ 8000
2 /
7000 /
y= 0
6000 v =0.001
/ y =0.005
5000 y=001 |
{ y = 0.05
r

4000 : : ' : : :
O 20 40 60 8 100 120 140 160 180 200

Temprature (°C)

Figure 53: Pressurization coefficient 4,, with temperature for different values of y
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The thermal softening parameter y plays a critical role in this model as it controls the rate
of change of preconsolidation pressure with temperature. This parameter also affects the
value of the pressurization coefficient A,,, . Therefore, a systematic analysis was carried out
to obtain a value of y which is consistent with plausible values of 1,,,. From Equation 3.37
it can be seen that A, is a function of temperature. Therefore for different values of y, 4,,
was calculated for values of temperature ranging between 12°C and 300°C (Figure 53).
For lower temperature values, 1, is more sensitive to the value of y than for higher
temperature. From this study, an average value of A,, = 0.0122 MPa/°C was established
which is in line with the value of 0.012 MPa/°C , proposed by Vardoulakis (2002a)

3.4.3 Initial and boundary conditions

The final governing equations given in Equations 3.38, 3.39 and 3.40 are solved using the
BTCS scheme. The heat and pore pressure equations are parabolic partial differential
equation describing changes of temperature and pore pressure across the shear band over
time. To solve them, it is necessary to define appropriate initial and boundary conditions.
As boundary conditions, ambient temperature and zero excess pore pressure are assumed
far away from the shear band boundaries. To implement that, the domain was assumed 11
times bigger than the shear band (5 times on each side). Moreover, ambient temperature
and zero excess pore pressure were taken as initial conditions in line with Vardoulakis
(2002a). In summary, initial and boundary conditions can be written as;
u(z,0) =0;  6(z,0) = Orey;

w(keo,8) = 0 O(keo,) = by 3
The velocity profile through the spatial domain can be written as (Figure 52);
Z
v =v,(t) X (Z—> z€[0,Zp] 3.55
b
v = vd(t) ZE€ [ZbJ 00]

It was assumed that the slide is at rest at t = 0, so that the initial condition for the dynamic

equation is

v(z,0) = 0; 3.56
The equations were integrated for a time window of 10 seconds after initiation of
movement which corresponds to a landslide movement less than 110 m. This upper limit of
run out was imposed so that movement of the sliding mass as rigid body without
significant disintegration may be assumed throughout. The numerical results obtained are

presented hereafter.
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3.4.4 Numerical results for the Vaiont slide

First, the results assuming constant driving moment are presented for comparison. Such
analyses were also carried out by Cecinato (2009) using an FTCS numerical integration
scheme. Subsequently, the results for varying driving moment are presented as described in
section 3.1.

The solution of the system of finite difference equations is not straight forward; it is a non-
linear system and hence an iterative procedure with an appropriate initial guess needs to be
employed. MATLAB numerical software was used to solve the non-linear equations using
an in-built algorithm fsolve. The initial guess used is the solution of the previous time step,
or the initial conditions for the first time step.

It is worth noting that the model is no longer valid as soon as the maximum temperature
within the shearband 6,,,, reaches the vaporization limit 6,,,, for the current pore water
pressure. The vaporization threshold can be calculated as follows (Vardoulakis, 2000).

4650
Byap + 273.15

p = 62(6pap +273.15), exp (— 3.57

where, p is the maximum pore water that can be reached, which is equal to the initial
effective normal pressure (2.38 Mpa). By solving the above equation, 8, is found as 210
°C. In all of our simulation, the condition 6,,,, < 6,4, Was always found to hold.
Analyses were run with different combinations of friction law as described below.

1. Analysis with displacement and velocity softening only (hereafter referred to as
“dynamic friction softening only”) i.e. no thermal friction softening was taken in to
account.

2. Analysis with displacement, velocity and thermal frictions softening (will be
referred as “full friction softening”.)

3. Analysis with thermal friction softening only, i.e. no velocity or displacement

softening.

The results are presented in the following subsections.

3.4.4.1 Results for dynamic softening only - constant driving moment

As a first step, It is assumed the displacement and velocity softening only by neglecting
thermal friction softening. This analysis allows us to compare the results with no
pressurization effect as presented in Section 3.1.1. Therefore, in this context the thermal
friction sensitivity parameter § is set to zero. 1% reduction in peak friction angle was

assumed in order to trigger the landslide event.
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Temperature and excess pore pressure isochrones are shown in Figure 54 and Figure 55
respectively. Temperature starts to kick in from 1 sec after landslide initiation and reaches
141.4°C at the end of 10 seconds. During this period, excess pore pressure of 1.82 MPa is
generated due to pressurization. This pore pressure is below the initial normal effective

stress of 2.38 MPa but is significant in proportion.

Velocity and displacement plots are shown in Figure 56 and Figure 57. In this particular
case, the activation point of the catastrophic phase, i.e. the point at which the acceleration
of the sliding mass starts to increase rapidly is observed as 0.5 sec. The mass reaches a
maximum velocity of 22.9 m/sec in 10 sec. This final velocity is about 5% greater than the
velocity obtained without the pressurization effect (Section 3.1.1). Accordingly, the

displacement reaches 106 m, after 10 sec.
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Figure 54: Temperature isochrones within the shearband and its surroundings shear band area is
shaded (case of constant driving moment, dynamic softening only)

83



0.0154 o
sec
0.014 1 sec
— 25secC
0.0126 —  3sec
0.0112 G - ‘5" sec
sec
0.0098 \Q 6 sec
= 7 sec
E 0.008a[>~
= > 8 sec
=% —— 9sec
2 0.007
(@] // —— 10 sec
0.0056 f
0.0042 [/ZZ
0.0028
0.0014
0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Porewater pressure (MPa)

Figure 55: Pore water pressure isochrones within the shearband and its surroundings shear band area
is shaded (case of constant driving moment, dynamic softening only)
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Figure 56: Velocity plot for the case of constant driving moment and dynamic softening only

84



120

100 /

) /
‘ /

v

20 -
/

0 1 2 3 4 5 6 7 8 9 10
Time(s)

Figure 57: Displacement plot for the case of constant driving moment and dynamic softening only
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3.4.4.2 Results for dynamic softening — variable driving moment

Here, again the results for dynamic friction softening are presented but with the modified
dynamic equation that assumes variable driving moment. Temperature and pore pressure
isochrones across the shearband and its surroundings are given in Figure 58 & Figure 59.
In this case, the temperature reaches a value of 141.2°C which is practically equal to the
temperature obtained with constant driving moment. Moreover, the generated pore

pressure is also practically the same (1.81MPa), as well as the “activation point” (0.5 sec).

The velocity and displacement plots are given in Figure 60 and Figure 61 respectively. The
velocity reaches a maximum value of 21.4 m/sec while displacement reaches to 102.65 m.
Here, a more noticeable although still small difference in the velocity and the displacement
is seen and it will be discussed later in this chapter in more detail.
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Figure 58: Temperature isochrones within the shearband and its surroundings shear band area is
given between 0.007m and 0.0084m (case of variable driving moment, dynamic softening only)
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Figure 59: Pore water pressure isochrones within the shearband and its surroundings shear band area
is given between 0.007m and 0.0084m (case of variable driving moment, dynamic softening only)
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Figure 60: Velocity plot for the case of variable driving moment and dynamic softening only
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Figure 61: Displacement plot for the case of variable driving moment and dynamic softening only
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3.4.4.3 Results for full friction softening — constant driving moment

In this subsection, constant driving moment analysis is presented, the most general case,
where all possible types of friction softening are taken in to account i.e. velocity,

displacement and thermal friction softening as given in Equation 3.23.

In Figure 62 and Figure 63, temperature and excess pore pressure isochrones inside the
shear band and its surroundings are presented. At the middle of the shear band,
temperature rises to a maximum value of 141.38°C after 10 sec. Excess pore pressure
reaches to 1.82 MPa due to pressurization. Moreover, the “activation point™ is at 0.5 sec as

in the case of dynamic softening only (Section 3.4.4.1).

The velocity and the displacement plots are given in Figure 64 & Figure 65 respectively.
Velocity reaches 23.1m/sec at 10 sec and the landslide moved to a total distance of
107.46m during that time. These values are not far off those corresponding to the case of

dynamic friction softening only, and this will be discussed in more detail later in this

chapter.
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Figure 62: Temperature isochrones within the shearband and its surroundings shear band area is
given between 0.007m and 0.0084m (case of constant driving moment, full softening)
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Figure 63: Pore water pressure isochrones within the shearband and its surroundings shear band area
is given between 0.007m and 0.0084m (case of constant driving moment and full softening)
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Figure 64: Velocity plot for the case of constant driving moment and full softening
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Figure 65: Displacement plot for the case of constant driving moment and full softening

3.4.4.4 Results for full friction softening — variable driving moment

In this subsection, the results for full friction softening are again presented but use the
modified dynamic equation. Temperature and pore pressure isochrones across the shear
band and its surroundings are given in Figure 66 and Figure 67. In this case, temperature
and pore pressure rise to the values of 141.22°C and 1.82 MPa respectively after 10sec,
which are practically equal to the results obtained with the constant driving moment

dynamic equation.

The velocity and displacement plots are given Figure 68 and Figure 69 respectively. The
velocity reaches a value of 21.60 m/sec which is about 4.5 % less than the velocity reached
in the case of constant driving moment and displacement reaches a value of 103.93 m at 10
sec. Here again a more noticeable although still small difference in the velocity and

displacement is seen. Again, the activation point is found here as 0.5sec.
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Figure 66: Temperature isochrones within the shearband and its surroundings shear band area is
given between 0.007m and 0.0084m (case of variable driving moment and full softening)
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Figure 67: Temperature isochrones within the shearband and its surroundings shear band area is
given between 0.007m and 0.0084m (case of variable driving moment and full softening)
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Figure 68: Velocity plot for the case of variable driving moment and full softening
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Figure 69: Displacement plot for the case of variable driving moment and full softening
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3.4.4.5 Results for thermal friction softening only — constant driving moment
As a final case, it is only assumed the thermal friction softening, neglecting velocity and
displacement softening. Therefore, in this context, the expression for the critical state

parameter becomes (Equation 3.23);

M(6) = Myer — §(6 — Oyer) 3.58
where, M,..r = 0.657 is the reference critical state parameter corresponding to the peak
friction angle given in Table 2. The thermal sensitivity parameter § is set to 1072 as
explained in line with Cecinato (2009). This linear law may give a very small or even
negative value of critical state parameter at high temperatures, which is not realistic.
Therefore, a lower limit value of the critical state parameter is considered in this analysis

corresponding to dynamic residual friction coefficient given in section 2.2.5.

In contrast to previous analyses, the “activation point” is seen here to be at nearly 1.8 sec,
while in all previous cases it was 0.5sec. From the temperature isochrones given in Figure
70, it can be seen that the temperature rises to a maximum value of 139.09°C, and Figure
71 shows that excess pore pressure increases to 1.81 MPa. Velocity and displacement plots
are given in Figure 72 and Figure 73 respectively. A significant difference in the final
velocity and displacement is observed compared to previous cases. The velocity reaches to

nearly 19.5 m/sec after 10 sec whereas displacement reaches to 76.822m.
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Figure 70: Temperature isochrones within the shearband and its surroundings shear band area is
given between 0.007m and 0.0084m (case of constant driving moment and thermal softening)
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Figure 71: Pore water pressure isochrones within the shearband and its surroundings shear band area
is given between 0.007m and 0.0084m (case of constant driving moment and thermal softening)
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Figure 72: Velocity plot for the case of constant driving moment and thermal softening
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Figure 73: Displacement plots plot for the case of constant driving moment and thermal softening

3.4.4.6 Results for thermal friction softening only — variable driving moment

In this subsection the results for thermal friction softening only are presented but use the
modified dynamic equation. The same M,..r value was used as described in section 3.4.4.5.
The temperature and pore water pressure isochrones are given in Figure 74 and Figure 75
respectively. The temperature and pore pressure rise were observed same as the previous

case (thermal friction softening - constant driving moment)

The velocity and the displacement plots are given Figure 76 and Figure 77 respectively.
Velocity reaches a value of 18.5m/s at 10 seconds while displacement reaches 75 m.
Difference of 1m/sec in velocity and 1.8m in displacement are observed compared to the
case of thermal friction softening with constant driving moment. However, this difference

is negligible compared to the total run-out reached at 10 sec.
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Figure 74: Temperature isochrones within the shearband and its surroundings shear band area is
given between 0.007m and 0.0084m (case of variable driving moment and thermal softening)
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Figure 75: Pore water isochrones within the shearband and its surroundings shear band area is given
between 0.007m and 0.0084m (case of variable driving moment and thermal softening)
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Figure 77: Displacement plot for the case of variable driving moment and thermal softening
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3.4.5 Discussion of the numerical results

The results presented in the last six subsections (3.4.4.1 to 3.4.4.6) correspond to the
predicted behaviour of section 5 of the Vaiont slide given different assumption. The
magnitude of all results is consistent with the observations reported in Hendron and Patton
(1985).

The results are very similar to those reported by Vardoulakis (2002a) & Cecinato (2009),
despite the fact that they both considered constant driving moment. Using variable driving
moment leads to reduction in the predicted velocity of 5~10%, which however is not

significant given the other uncertainties involved in the model.

More appreciable differences can be seen if the analyses are run for longer; 25 sec after
initiation, the variable driving moment assumption leads to deceleration of the slide, as the

extensive movement of the sliding mass causes the driving moment to change sign.

In contrast, assuming constant driving moment leads to continuing acceleration. However,
by the time the difference becomes appreciable the mass has already displaced by a large
amount (500m), to the point that it can no longer be assumed to move as a rigid body, thus
violating a basic assumption of the model. Hence the maximum time modelled is limited

here to 10 sec.

Moreover, the cases of “full friction softening” and “dynamic softening only” give
practically the same results. Thermal friction softening on the other hand only gives 16.5%
lower velocity than full friction softening. According to the modified dynamic equation,
the velocity of the rotational failure mass depends on the mobilized friction angle. The
lower the friction angle, the higher the velocity of the slide, therefore the rate of change of
friction angle dominates the velocity of the slide. The displacement and velocity softening
law decreases the friction angle more rapidly than the linear thermal friction softening law.
Ultimately, all softening laws reach the same dynamic residual value. So that, in the case
of full friction softening, the effect of dynamic friction softening overtakes the effect of
thermal friction, explaining the similarity of the results for “full friction softening” and

“dynamic friction softening only”.

3.5 The effect of slip circle geometry

In the previous subsections, Section 5 of the Vaiont slide is used to validate the landslide
model. Cecinato (2009) carried out a parametric study on a planar slide to investigate the

effect of the overburden thickness on the slide velocity. It was found that, if thermal
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pressurization is ignored, overburden thickness does not affect slide velocity, but it
becomes important when thermal pressurization is present. In the latter case, a thicker
sliding mass accelerates faster than a thinner slide as shown in Figure 78 (Cecinato, 2009).

Generally, the shape of the failure mass can take different forms other than planar, and one
possibility is a circular slip. In this section, a parametric study is carried out to investigate
the effect of the size of the circular failure mass on the velocity of the slide as well as to
establish the effect of thermal pressurization for slides of different size. For simplicity,

different circular slips on an infinite slope are assumed.

It is acknowledged that circular slip is not generally a relevant failure mode for an infinite
slope, unless particular geological conditions make it possible. On the other hand,
consideration of a general slope would complicate the analysis significantly. The approach
chosen represents a compromise that still allows us to investigate the effects of frictional

heating.

The size of the failure arc is varied in the following two ways, also shown in Figure 79.
e The radius of the circular slip is varied while keeping centre at the same position.
e For constant radius, the distance of the centre from the slope surface is varied.
First, analyses were carried out neglecting the thermal pressurization effect and the
results are compared for each case stated above. Subsequently, analyses taking thermal

pressurization in to account are also performed.
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Figure 78: Effect of overburden thickness of the plannar slide (Cecinato, 2009)
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Figure 79: Slip circle with a) different centre and same radius, b) different radii

3.5.1 Dynamic equation

In this section a general dynamic equation is derived for a circular slip surface on infinite
slope. It is further assumed that ground water flow is parallel to the slope, as in Cecinato
(2009). The material properties of the soil such as mobilized friction angle and density are

assumed uniform.

For the geometry shown in Figure 80, the driving moment can be written as (Vardoulakis,
2002a);

a; .
Rs; sin(@r — (84):)
V2(1 — cos a;) It F @i 3.59

D; is the effective weight, a; & Ry; are the reference opening angle and the radius of the

(Mgy); = D;

failure circle respectively, ¢ is the incipient failure angle which equals the slope angle 5

and (8,); is the angular displacement.
The initial normal effective stress acting on the slip plane can be written as;

i

R cos(pp — (64):)

(0n0)i =
not R;+/2(1 — cos a;) 3.60

Therefore, the resisting moment can be written as;
(Mres)i = Rf;aii((0n0) — Pa) 3.61

where u = tan ¢,, ,@,, 1S the mobilized friction angle of the shear band material and p, is
the excess pore water pressure generated by thermal pressurization at the interface between
the shear band and the moving rigid mass.

Angular momentum balance gives;
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o), (5) = (Marnd: = (e

3.62

where p(lp)i is the polar moment of inertia of the sliding mass, p density of the mass,

(Ip)i the second moment of area, and w is the angular velocity. Substituting the

corresponding expressions for (My,,); and (M,.,); gives

dw\ _ , |\DiRri(Ra)i (- tan ., pa(t)
p(lp)i (dt)i - (wO)l{ Ys(lp)i (1 tan(¢r — (ed)i)> " (pc)i}

where;

. (ys)i(lp)i 1
Pe = R} aitang,

a;

(Ra); = Rg;i sin(@r — (84))

V2(1 —cosa;)

(Rp)i

Figure 80: Reference circular slip surface on an infinite slope

3.63

3.64

¥s is the density of the soil and (w,); = \/g/Ry;. The sliding velocity is calculated from

the angular velocity as follows.
(va)i = Rryw;(t)

3.65

The polar moment of inertia of the sliding mass, shown in Figure 80, can be written as

(Zwillinger, 2002);
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Rf; 2
(Ip)i = (al- —sina; +gsina sin? al-)

3.66
As flow lines are parallel to the slope, the resultant effective weight is;
where y,, is the density of water and A; is the area, given by;
a=t— sina)
i = ) a; Sin a; 3.68

The opening angle ay,,, of circle with the same centre but different radius Ry, can be

written as;

a =2X arccos( il coS (ﬁ)>
new anew 2

3.69
For a circle with the same radius whose centre is at different distance L,,.,, from the slope,
it is proceeded as follows: The relationship between the opening angle and L; can be

written as (Figure 80);

L; = Ry; cos (&)

2 3.70
The new opening angle a,,,, can be written as;
L a;
Apew = 2 X arccos (Z—elw cos (?l)) 371
In the following, the change in perpendicular distance is referred as follows;
(AL)pew = Lpew — L; 3.72

3.5.2 Numerical results

It is now presented the numerical results for each one of the cases stated above with and
without thermal pressurization effects. For the case of “without thermal pressurization”
only velocity and displacement friction softening is included. Full friction softening is
included when thermal pressurization is considered. To trigger the landslide, ¢,, is set to

22.277° which is 1% less than the incipient failure angle ¢p.

The governing equations were discretised and solved using the BTCS scheme. The
equations were integrated for a time window of 10 seconds after initiation of movement.
As reference geometry, section 5 of the Vaiont slide with radius of 1500 m and opening

angle of 62° is used.
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3.5.2.1 Case of different radii

First, the dynamic equation without thermal pressurization was solved numerically for slip
circles of fixed centre (at L; = 1285m) and radius varying between 1300 and 1900 m.
Velocity and displacement plots are given Figure 81 and Figure 82 respectively. The
velocity obtained ranges from 15.5 m/sec to 23 m/sec at 10 sec after initiation for the
selected range of radii and the displacement varies from 75 m to 110 m. No significant

change in the activation point is noticed; all analyses give an activation point of 0.5sec.

Subsequently, analyses were carried out coupling the dynamic equation with the heat and
pore pressure equations. The corresponding velocity and displacement plots are given in
Figure 83 and Figure 84 respectively. The velocity obtained here ranges from 16.5 m/sec to
26.2 m/sec at 10 sec after initiation for the selected range of radii and the displacement

varies from 75.5 mto 125 m.

The plot of velocity at 10 sec versus the radius of the respective circular surface is given in
Figure 85. It can be seen from Figure 85 that, although the predicted velocity in both cases
increases with the radius of the slip circle, the larger the radius is the bigger the influence

of thermal pressurization on the results, as can be seen by the increasing distance between

the two lines.
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Figure 81: Velocity plot for different radius of failure mass- absence of pressurization effect
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Figure 82: Displacement plot for different radius of failure mass- absence of pressurization effect
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Figure 83: Velocity plot for different radius of failure mass coupled with pressurization effect
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3.5.2.2 Case of moving centre

The numerical results for slip circles of the same radius but different centres are presented
in this section. The analyses were carried out by varying the values of AL given in
Equation 3.72. AL is negative when the centre moves away from the reference position and
positive if it moves towards the slope. AL = 0 represents the reference geometry which

corresponds to section 5 of the Vaiont slide.

The velocity and displacement plots when the pressurization effects are ignored given in
Figure 86 and Figure 87. The final velocity at 10 sec varies from 15.5m/sec to 25m/sec for
the range of AL between -200 m and 400 m, whereas the displacement varies from 75m to
123m.

The results when the effects of thermal pressurization are included are given in Figure 88
and Figure 89. In that case the velocity varies from 16.3 m/sec to 28.8 m/sec and
displacement varies from 78m to 140m.

The plot of velocity at 10 sec versus the values of AL is given in Figure 90. It can be seen
from Figure 90, although the predicted velocity in both cases increases with AL, the larger
the AL is, the bigger the influence of thermal pressurization on the results, as can be seen

by the increasing distance between the two lines.
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Figure 86: Velocity plot for moving centre - absence of pressurization effect
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3.5.3 Discussion on numerical results

Cecinato (2009) showed that, in planar slides, the overburden thickness plays an important
role when thermal pressurization effects are considered. A thicker sliding mass accelerates
faster than a thinner slide as shown in Figure 78 (Cecinato, 2009).

Similar analyses were carried out but with circular slip surface rather than a planar one, to
investigate the influence of the size of the circular slip surface on slide acceleration. Both
the radius and the location of the centre of the slip surface were varied. Overall, the results
show that, even without pressurization, size influences significantly the dynamics of the
slide as a slide with larger radius accelerates faster than a slide with smaller one.

The results also show that, for a given radius, slides whose centre is close to slope,

accelerates faster.
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Chapter 4: A thermo-poro-mechanical
landslide model based on rate process theory

The model described in Chapter 3 is applicable to the final phase of catastrophic failure of
a landslide. However, in many landslides, slow creep-like movement is observed before

the slide reaches a catastrophic phase.

Rate process theory is based on activation of flow units (Section 2.4.5). Moreover, flow
units can be activated by thermal energy as well as externally applied stress. Therefore, it
should be possible to use it to model the creep like movement of landslides, as it
incorporates the time dependent behaviour of soils and also the concept of thermal

activation is inherently included.

In this chapter, a new thermo-poro mechanical landslide model is developed on this basis.
First, a preliminary validation of rate process theory was done in isothermal conditions.
Subsequently, a thermo-mechanical formulation for a shear band was developed. Finally, a
complete landslide model, which includes heat production, thermal pressurization and the

dynamics of the slide was developed.

4.1 Soil creep as a rate process

Several authors applied rate process theory to explain the creep behaviour of soils
(Andersland and Douglas, 1970, Christensen and Wu, 1964, Kuhn and Mitchell, 1993,
Mitchell, 1964). Rate process theory, developed by Eyring (1936), considers the movement
of flow units such as atoms or molecules. The movement of flow units is opposed by an
energy barrier called activation energy, U, (as shown in Figure 91) which keeps a flow unit
in an equilibrium position. If enough energy to exceed the activation energy is applied to
the flow unit by an external source, it will move and deformation will occur. This energy

source can have different forms, e.g. a heat source or an applied stress.
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Figure 91: Schematic representation of activation energy between two flow units

4.2 Activation frequency

Curve A in Figure 92 represents the potential energy-displacement relationship for a
material at rest. From statistical mechanics, the average thermal energy per flow unit is
given as KT, where k is Boltzmann’s constant (1.38 x 10723JK~1) and T is the absolute
temperature (K). Even though a material is at rest, each flow unit is vibrating with a
frequency of kT/h, (where h is Planck’s constant, 6.624 x 1073*/s~1). In addition, it is
assumed that the thermal energy of a material is divided among flow units following a
Boltzmann distribution. Therefore, at rest, the probability of a given flow unit becoming
activated is given by

Us
p(Uy) = exp (‘ m) 4.1

where N is the Avogadro’s number and Nk = R the universal gas constant
(8.3144 JK~Ymol™1). In other words, the above expression can be interpreted as the
proportion of flow units activated at a single oscillation. Therefore, the frequency of
activation ay is given by
kT U,

ar = Texp <— N_kT> 4.2
If an additional amount of energy is supplied, e.g. through the application of a shear force
f, the energy barrier becomes distorted (curve B in Figure 92). The barrier height will be
reduced by (f4,/2) in the direction of the applied force and increased by the same amount
in the opposite direction; 4, is the distance between two successive equilibrium points of a

flow unit. Due to reduced barrier height, the activation frequency in the direction of the

applied force becomes
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kT N7
=— 4.3
af A exp %T
and in the opposite direction, due to increased barrier height, it becomes,
Uy, fA
ar = n exp T .
Finally, the net activation frequency can be written as;
L 2kT ( Uo).h f
af af = A exp RT Sin kT 45

From the net activation frequency, the shear strain rate can be written in the following
form; (Feda, 1989)

. 2kT ( UO)X'h( TA)
V=T P\ Rr) S skt 4.6

where

k = Boltzmann’s constant, 1.38 x 10723J/K

h = Plank’s Constant 6.62 X 1073%J s

R = Universal gas constant, 8.31 J/ (mol K)

T = Absolute temperature, K

A, = Distance between successive equilibrium points of a flow unit
Uo= Free activation Energy, a measure of bonding strength kJ/mol
T = Applied shear stress

S = Number of bonds/m?
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Figure 92: The distorting effect of a shear force on energy barrier (Mitchell and Soga, 2005)

4.3 Parameter estimation

4.3.1 Activation energy

The activation energy is a measure of bonding strength between two atoms or two

molecules and depends on the type of flow unit considered and the applied shear stress.

It was measured experimentally by several authors for different types of soils using triaxial
tests with temperature control (Campanella and Mitchell, 1968, Mitchell and Campanella,
1964, Mitchell et al., 1969, Mitchell and Soga, 2005) on the basis of the following
equation.

N _g 4.7
2(7)

Equation 4.7 follows from Equation 4.6, if sinh(.) = %exp(.) is considered and standard

algebraic manipulation is carried out.

E=Uo—55 4.8

Different values of E were measured for different applied shear stress. The free activation
energy U, is defined as, the activation energy of a material under zero applied shear stress

and can be obtained by extrapolating the line of E vs 1/T to zero shear stress. Hence, free
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activation energy is a constant for a particular type of soil (Feda, 1989); its value ranges
between 84-190 kJ/mol (Christensen and Wu, 1964, Kuhn and Mitchell, 1993, Kwok and
Bolton, 2010, Mitchell and Soga, 2005, Ter-Stepanian, 1975).

From the studies done by Mitchell and co-workers, four main features of the activation
energy of soil were identified, (Mitchell et al., 1969)

1. Activation energies are relatively large, much higher than for viscous flow of water.

2. Variations in water content (including completely dry soil), consolidation pressure,
void ratio, and pore fluid have no significant effect on the required activation energy.

3. The values for sand and clay are very similar.

4. Clays in suspension with insufficient solids to form a continuous structure deform with

activation energy equal to that of water.

4.3.2 Distance between successive equilibrium points of two flow
units ()

Different values of 4, have been proposed by different authors depending on the type of
flow unit considered. If the flow unit is a single oxygen atom, then creep is considered to
occur due to the displacement of oxygen atoms surrounding silicate mineral, and A; is
taken as the diameter of the oxygen atom (2.8 x 1071% m) (Campanella and Mitchell,
1968, Mitchell et al., 1968). If a hexagonal SiO2 molecule is taken as a flow unit, then 4; is
assumed as the distance between holes of two SiO2 molecules along the cleavage plane of a
mica particle (5.2 x 1071%m) (Erlandsson et al., 1988). These two ways of measuring

distance between successive equilibrium points of two flow units is illustrated in Figure 93.
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Figure 93: Interpretation of A in terms of silicate mineral surface structure (circles represents
configuration oxygen atoms in silicate mineral surface) (modified after Mitchell et al. (1969)

4.3.3 Number of bonds per unit area (S)

Inter-particle bonds are formed due to the normal force applied between two soil particles,
and the number of bonds is proportional to this applied force. Therefore, macroscopically,

the number of bonds can be related to the effective stress applied on the specimen.

Furthermore, the number of bonds per unit area for a particular confining pressure, can be
shown to be constant and independent of particle size. This is because soils with larger
particle size may contain fewer inter-particle contacts per unit volume. However, each
contact forms a greater contact area between particles. In contrast, soils with smaller
particle size contain more inter particle contacts per unit volume, but the corresponding
contact area is smaller. The above can be shown by using Hertz’s contact zone theory

(Johnson, 1987); this is done below.

It is considered, for simplicity, soil particles to be represented by identical spheres
arranged in a regular array (Figure 94a). For contact between two spheres with equal

radius, the area of contact is a circle of radius a (Figure 94b);

2 2 ¢ 4.9
16E* '
where Fy is the applied force between two particles, ¢ is the particle size and
1 1-v] N 1—v?
E - E, E, 4.10



where E; & E, are the elastic moduli and v, & v, are the Poisson's ratios associated with
each sphere. From the definition given in Equation 4.9, the contact area between two

particles can be written as;

1=T

CoN

n particles per
unit length

(a) (b)
Figure 94: (a) Regular assembly of spherical soil particles (b) contact zone between two particles
Let us assume the total normal stress applied on the surface is P, and the number of
particles per unit length is n. Therefore, the applied force between two particles can be
written as;

__PA

Fr = 4.12

n?
where A is the total area of the particle assembly and n the number of particles in each

direction. If a unit area is considered, then A = 1 and Fy becomes as;

P

Fr = 2 4.13

If a unit length is assumed, due to the array being regular
ng =1 4.14

Substituting Equations 4.13 and 4.14 into Equation 4.11 gives

2
W _ (3P )
= (i) a1
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The total number of contacts per unit area is n2. Therefore the total contact area per unit

area of sample is given as;

3p \(3) 116
A=m (16E*> '

which is independent of the particle size ¢p. Moreover, it is predicted to vary with P(E)

using Hertz theory.

Mitchell et al. (1969) proposed a linear relationship between the effective confining
pressure and the number of inter-particle bonds based on experimental results. For a large
value of applied stress, the hyperbolic sine in Equation 4.6 can be approximated by a

simple exponential form. Therefore, the rate process equation becomes

Yy = K(t) exp(aD") 4.17
2kT Uy
k() = Sexp (~7)
o 4.18
@ = 4SkT

where D" is the applied deviator stress in triaxial conditions. Creep tests were carried out
by applying step increments to the deviator stress. Parameter a is a constant for a given
value of effective consolidation pressure and can be calculated from the slope of the stress
vs log strain rate plot. With a known, the ratio A;/S can be calculated as a measure of the
number of interparticle bonds (Mitchell et al., 1969). Three types of soil were tested under
different values of effective consolidation pressure, water content, saturation (between
saturated and completely dry) and OCR. Results show that normally consolidated San
Francisco Bay mud gives 2.3 x 1013 bonds/N (bonds/unit area for a unit of applied
consolidation pressure) (Figure 95). Furthermore, it was observed that the number of inter-
particle bonds is a decreasing function of water content. The explanation of this was that
effective stress decreases with water content leading to the reduction in number of bonds
(nearly 100 times greater for dry than for wet clay). Finally, the number of bonds was

found to be an increasing function of OCR values.

2

It was predicted from Hertz theory that S varies with P(E). Mitchell et al. (1969) found that
S varies linearly with P. Possible reasons for this difference are listed below.
1. It was assumed that soil particles are spherical. In reality, soil particles may have
different shapes depending on their mineralogy.
2. It was assumed that particles are arranged in a regular array form. In reality,

particle arrangement will be more complex.
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3. Hertz contact theory assumes elastic contact only. There is the possibility of plastic
contacts existing between soil particles, which would change the force-area

relationship.
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Figure 95: Number of interparticle bonds as function of consolidation pressure for normally
consolidated San Francisco Bay mud (Mitchell et al., 1969)

4.4 Modelling a ring shear test using rate process theory

As a validation step of the above approach in isothermal conditions, the velocity of ring
shear test was calculated using the rate process equation for different values of the applied
shear stress. The results were compared with ring shear laboratory tests carried out by Tika

and co-workers.

Tika et al. (1996) carried out ring shear tests on various types of soils. The tests were
carried out with constant shear velocity and constant confining pressure. Shear stress
(applied to maintain the constant velocity), and change in pore water pressure were
measured as outputs. The experiments were carried out at two stages of speed, i.e. slow
shearing (0.01-2.0 mm/min) and fast shearing (100-6000 mm/min). Additionally, the

change in temperature of the specimen was also measured during fast shearing.

It is recognised that, in ring shear experiments, strain rate is controlled and shear stress is
measured, whereas the rate process expression gives strain rate as a function of stress, so
that it corresponds a process where the stress is controlled and the strain rate is taken as an

output. Also, the rate process theory is meant to give predictions for steady state strain
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rates that correspond to constant values of temperature and shear stress. In the ring shear,
although the strain rate is constant, shear stress varies during stages of the test before
reaching a steady state. Despite these limitations, comparing rate process theory with ring
shear experiments is a worthwhile exercise because these are the only data available where

particular type of clay sheared and, at the same time, temperature is measured.
The displacement rate v (velocity) at the top of the shearing zone can be written as;

v =yZ, 4.19
where Z,, is the thickness of the specimen and y the strain rate (Equation 4.6) It was
assumed that strain rate and applied shear stress are uniform throughout the deforming

shear zone.

As mentioned earlier, the number of bonds per unit area is proportional to the applied
confining pressure. Kuhn and Mitchell (1993) proposed the following expression for the

number of bonds in terms of confining pressure.

S = S,0. 4.20
Where, S, is the proportionality factor given by the number of bonds per unit area per unit
of effective confining pressure. Mitchell et al. (1969) estimated the value of S; from
different creep tests and it is constant for a given soil ranging from 1 x 108 to 1 x 101°

bonds/N. 3.6 x 108 was selected for the claystone material tested by Tika et al. (1996).

The absolute temperature was assumed as 300 K (i.e.26.85°C), 1, = 2.8 x 1071 m and
U, = 105 kJ/mol in line with the values used by several other authors (Kuhn and Mitchell,
1993, Kwok and Bolton, 2010). The thickness of the shearing zone was selected as 11.2
mm. i.e. equal to the sample thickness. The vertical effective stress (o.) was 495 kPa and
the shear stress required to maintain constant shear strain rate at large strains (z,..s) was 50
kPa.

Using the above values in Equations 4.6 & 4.19, the displacement rate was obtained as
28.35 mm/min. This value is much lower than the displacement rate of 160mm/min
maintained in this ring shear test. However, this is a preliminary validation in isothermal
conditions, but the temperature is expected to play a role on shearing. This temperature rise
would change the velocity in rate process equation 4.6. Therefore, a thermo-mechanical

formulation for a shear zone using rate process theory is developed in the next section.
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4.5 A thermo-mechanical formulation for a shear band

4.5.1 Heat Equation

As some heat can be expected to be produced during shearing, conditions will not be
strictly isothermal and this may affect the behaviour of soil. To include this effect, energy
balance was applied to the deforming shear zone in order to arrive at the heat equation.
(Vardoulakis, 2002a);

00 0% N Ty

In the above, the first term on the right hand side of the equation is a heat diffusion term,
where k,, is Kelvin’s thermal diffusivity coefficient. Vardoulakis (2002a) recommended a
constant value of «,,, equal to 1.47 x 10~7m? /s for a soil water mixture. The second term
is the heat generation term; it is assumed that all plastic work done inside the shear zone is
converted to heat. j(pC),, = C is the thermal constant of the soil water mixture, taken
equal to 2.85MPa/°C (Vardoulakis, 2002a). t is the applied shear stress and y is the shear

strain rate.

Although the expression for shear strain rate based on rate process theory depends on
temperature, it was derived assuming isothermal conditions, i.e. that there is no heat flux
through the material. Also, it explains soil deformation as movement of flow units between
two successive, discrete equilibrium points. However, the heat diffusion equation can be
applied to a material assuming that the heat diffuses through it in a continuous manner. In
order to combine rate process theory with heat diffusion, the former should be derived for
non-isothermal conditions; this will result to a highly non-linear and complex problem.
Therefore, here the isothermal rate process shear stain rate equation is used as a first
approximation. Provided the rate of change of temperature is not high, successive time
steps can be treated as successive isothermal states with different values of temperature.
This assumption will no more be valid, when the temperature rate becomes rapid as is

expected immediately before failure.

On the basis of above description, the isothermal strain rate equation (4.6) is substituted in

Equation 4.21. Thus, the final heat equation can be written as,

oT 0%6 T 2k6

UO T/11
= —— % ) xsinh (—)
ot~ 2 V0. X Th eXp( RO + 273)) XSIoSke + 273)) 422
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The above equation can be solved numerically using a finite difference scheme with

appropriate initial and boundary conditions.

4.5.2 Initial and boundary conditions

In ring shear experiments, all soils exhibit a residual stage at the end of the test, at which
the applied shear stress remains almost constant (Tika et al., 1996, Tika and Hutchinson,
1999). However, before attaining the residual stage, the soil exhibits a peak and then a
softening phase where the applied shear stress decreases (Figure 96). The temperature at
the beginning of the residual stage was assumed as the initial condition for the above
governing heat equation (Equation 4.22).

To find this temperature, heat balance was considered during the softening phase,

assuming a linear reduction of the applied stress over time.

00 0%6 N (Tye — mt) oY
ot M™azz " j(pO)m  Zp 4.23

300 K (i.e.26.85°C) which is the initial temperature of the ring shear system was assumed
as the initial condition(6,., ) for equation 4.23. The temperature increase obtained during
the softening phase was 0.42°C (Figure 97). This temperature value is used as the initial

condition (6,..¢) for Equation 4.22 to model the residual phase. (eref = Orep1 + Ae).

As boundary conditions, the temperature far from the shear band boundaries was taken
constant, in-line with Vardoulakis (2002a). In summary, the initial and boundary

conditions are;

O(Fa,t) = O

6(2,0) = 6y 4.24
The total spatial domain for the heat equation was set to 21 times the specimen thickness.
This represents 10 times the specimen thickness above and below the sample. In practice,
in a ring shear apparatus, the soil specimen is covered by ceramic or metal plates.
However, for simplicity, same specimen soil properties are chosen to model the metal or

ceramic plates.
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Figure 96: Results of fast ring shear test with 160 mm/min displacement rate (Tika et al., 1996)
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Figure 97: Temperature vs time at the mid of the shear zone during softening phase

4.5.3 Numerical results

Equations 4.22 & 4.23 are non-linear parabolic partial differential equations. To solve

them a backward-time centred-space (BTCS) finite difference method was used.

The same parameters were used as in the isothermal formulation (Section 4.4).
Temperature changes were calculated across the domain of the shear zone. Temperature
profiles with depth for different times are given in Figure 98. Furthermore, temperature at
the middle of the shear zone is plotted against time in Figure 99. The total temperature
increment was calculated as 7°C (Figure 99). The shear strain obtained from rate process

theory depends on temperature. In Equation 4.6 all parameters are constant except
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temperature; therefore strain rate would increase throughout the shear zone due to
temperature rise.

The temperature changes obtained from a fast ring shear test are in the range of 0.59- 2.5
°C (Tika et al., 1996) which is less than the temperature predicted using this model (7°C).
The model presented here considers 1-D heat diffusion, assuming adiabatic conditions in
other two directions. However, in the ring shear apparatus there is a possibility that any
heat produced would diffuse in all directions. Therefore the temperature rise would be
lower than the predicted temperature rise using this model.
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Figure 98: Temperature isochrones for applied shear stress of 50 kPa
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55

50

B
[6)]

N
o

w
(&3]

30

F F FF

E

m— 45 kPa
m— 46 kPa
— A7 kPa
48 kPa
m— 49 kPa
50 kpa
== 50.5 kPa
=51 kPa
m— 52 kPa

|| === 53 kPa

\\

\
1\

—

J/
//4

\
L\

1\ W N

10"

Time(s)

125

10°



45 kPa
46 kPa
47 kPa
48 kPa
49 kPa
50 kpa
50.5 kPa /
51 kPa ,

/
52 kPa
53 kPa — // ,é/ /

10°

——

\ \

Velocity (m/s)

10-4 4 5
10 10
Time(s)

Figure 101: Velocity changes for different applied shear stresses

From the strain rate profile, the velocity at the top of the shear zone was calculated. For 50
kPa of applied shear stress, our model velocity reaches a maximum value of 61.06 mm/min
then remains constant, which is still lower than the fast shearing ring shear displacement
rate of 160 mm/min. However, it increased significantly compared to the value obtained

for isothermal conditions.

This velocity cannot be directly compared to the ring shear test because, in the ring shear
test, velocity was kept constant as it is a strain controlled process. In the model on the other
hand, velocity increases with time as it is a stress controlled process.

Subsequently, the model was used to analyse a soil layer under different levels of applied
shear stresses. The temperature at the mid-point and the velocity at the top of the shear

zone are plotted against time in Figure 100 and Figure 101 respectively.

4.5.4 Discussion

The results show that applying a shear stress above 50 kPa gives blow-up in temperature
and also unconstrained acceleration within a time frame of 50,000 seconds. Shear stresses

lower than 50 kpa seem to lead to a steady state, where temperature and velocity stabilise.

Typically soil creep has three stages: primary, secondary and tertiary. The model presented
here, can simulate secondary and tertiary creep as during these two phases the strain rate
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either increases or remains constant. Primary creep cannot be simulated, as during that
stage the strain rate should decrease with time. Therefore, there should be an additional
mechanism to be imposed to include primary creep. For this purpose, Mitchell and co-
workers proposed two assumptions (Mitchell, 1964, Mitchell and Campanella, 1964). The
first one is that the free activation energy is time dependent and increases with time. The
second one is that a time dependent factor (X) must be included before the strain rate
equation to describe the structural changes taking place during primary creep. However,
these two assumptions are not supported by direct observations from experiments. Feda
(1989) on the other hand proposed that primary creep occurs due to changes in the number
of inter-particle bonds with time; this can be explained as an increase in the number of

contacts with time due to particle rearrangement.

As mentioned earlier, ring shear tests were carried out with different speeds at different
stages (Tika, 1989, Tika et al., 1996, Tika and Hutchinson, 1999). The results show that
when the speed of shearing increases, the change of residual strength can be of any of the

three following types (Tika et al., 1996).

1. Constant residual strength irrespective of rate of displacement: neutral effect.

2. Significant drop in residual strength with increasing displacement rate: negative
rate effect/ rate softening effect

3. Increase in residual strength with increasing displacement rate: positive rate effect/

rate hardening effect

These types of behaviour are attributed to viscous effects and structural changes during
shearing of soil. However, a particular soil type can exhibit more than one of the above
effects depending on the level of normal effective stress. If the normal effective stress o/ is
reduced, the behaviour changes from neutral to softening. A summary of observed rate
dependent behaviour is given in Figure 102. Negative rate dependent phenomena cannot be
captured by the model presented because temperature either increases or remains constant
over time. Therefore the strain rate and the velocity follow the same trends. Additional
assumptions or mechanisms would be needed to cover the entire range of creep behaviour

observed in soils.

A different issue is the shear band thickness, which plays an important role. Many authors
proposed different values for the shear band thickness. While soil is in creep, initially the
specimen deforms uniformly across its thickness, however progressively strains localise in

a narrow zone (strain localization). Vardoulakis (2002a) proposed a shear band thickness
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of 1.4 mm based on the experimental evidences on kaolin specimen (Morgenstern and
Tchalenko, 1967) and on Vaiont clay (Tika and Hutchinson, 1999).

In the simulations presented here the thickness was assumed as 11.2 mm which is the
whole thickness of a ring shear specimen. The stain rate profile, at the later stage of
deformation (17.5-19.5 hours), is given in Figure 103. Observing the strain rate profile,
initially the strain rate is constant across the shear band, but subsequently increases at the
middle of the shear zone much more rapidly than at the boundaries. This shows that a level
of strain localization develops as shearing progresses, as due to frictional heating the
temperature at the middle of the shear band is higher than at the boundaries. Therefore heat
dissipation progressively localises into a shrinking zone inside the shear band, and so does
the deformation. If the shear zone thickness increases, the time to reach stain localization
into a particular thinner zone will also increases. Therefore the assumption of “thick” shear

zone is inconsistent with the eventual strain localization in to a thinner band.

Slow shearin Fast shearin Slow shearin
> >l 2 > >

Fast peak

Threshold | -
\ //—\ Fast residual Stow peak
A 7

-

ﬁﬁ
/

I
Slow residual

NS >

Displacement

Figure 102: Summary of the observed rate-dependent phenomena for residual strength (After Tika et
al., 1996)
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Figure 103: Shear strain rate profile for applied shear stress 53 kPa

4.6 Landslide model

In the previous sections a thermo mechanical formulation for a shear band was developed.
In this section, a landslide model is developed that includes thermal pressurization and the
dynamics of the slide. The model is then used to attempt a back analysis of the Vaiont
slide.

4.6.1 Modified heat equation

When thermo mechanical formulation is used, progressive strain localization is observed,
which gives a non-linear strain rate and velocity profile inside the shear zone. However, it
was observed that the velocity profile is very close to linear and deviates slightly from a
straight line as seen in Figure 104 . For simplicity, in this landslide formulation, an average

linear velocity profile is assumed as shown in Figure 105.

With the assumption of a linear velocity profile inside the shear band, the heat equation

with modified dissipation term can be written as;

26 0%6 T (Vg
(_) 4.25

ot = "2 T j(p0)m \Z
In the above, in addition to all other parameters given in section 4.5.1, Z,, is the thickness
of the shear band and v, is the velocity of the slide. An expression that describes v, will

be derived in Section 4.6.3.
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Figure 105: Stain rate and velocity profile (real and linear) inside the shear band

4.6.2 Pore pressure equation

The pore pressure equation gives the excess pore pressure inside the shear band and its
surroundings. The same equation given in section 3.3 is used here, i.e.

Ju 6( 6u>+l a0

ot~ 9z\9z) " "™t 4.26
In the above, ¢, and 4, are the consolidation pressurization coefficients as discussed in

sections 3.3.1 and 3.3.2 respectively.

4.6.3 Dynamic equation

The dynamic equation describes the velocity of landslide. For simplicity, a block on an

infinite slope is assumed here in order to derive the dynamic equation.
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Figure 106: Schematic diagram for block on infinite slope (rate process theory)

With reference to Figure 106, the dynamics of the block sliding on a slope can be written

as;

dvg ( _ T )
a - I\smy - 4.27

where, v, is the velocity of the block, 1 is the slope angle, H is the block thickness, y, is

the effective density of the soils (y; — y,,) and t is the shear stress acting on the block.

Recalling the rate process equation (4.6)

. 2kT ( UO>X_h<rAl>
V=T P T Rr) M 2skr 4.28
For values of x > 2, sinh(x) can be approximated as (1/2) exp(x). In the above rate
process formulation, the value of % lies in the range between 8 and 20, so Equation 4.28
can be written as;
kT UO T/h
;= — - — 4.29
V=" eXp( RT) exp (ZSkT>
By assuming a linear velocity profile inside the shear band, the shear strain rate can be
written as;
, = ld
Y = 7 4.30
where Z,, is the thickness of the shear band. Solving 4.29 for shear stress t gives;
-5 (7)
TR ME, 431

In the above, S is number of bonds per unit area, which is a function of effective normal

stress as in Equation 4.20, and F, and F,, temperature dependent coefficients given as

131



A

- 4.32
Fa 2kT
kT U, 4.33
Fp = -exp (‘ ﬁ)

Substituting Equation 4.31 into Equation 4.27 gives

dv vg 1
—d=gsinl/)—LSln(—d—>

Therefore the dynamic equation becomes

dvd g , . ’
@ T yE S e = gsin() + - S() In(FaZy) 4.35

In the above, y,H is the effective weight per unit area, and this can be written as

Ono
H = 4.36
Ye cos
where gy, is the initial effective normal stress acting on the slide. Substituting 4.36 onto
4.35 gives,
dvg g(cosyp) . g(cosyp)
T o F, S(op) In(vy) = gsin(¥) + WS(%) In(F,Zp) 437

4.6.4 Numerical results for the VVaiont slide

In summary, the landslide model contains heat, pore pressure and dynamic equation as

follows;

06 026 T (v_d>

o =922 T o0 \Zy 4
du 0 ( E)u) a 00

Pyt G m 5y 4.39
dvg gcosy | . geosy

@ T o S Inwa) = gsin() + = S(00) In(FaZy) 4.40

The above system of equations (4.38, 4.39 and 4.40) will be solved numerically to
determine the evolution of excess pore pressure, temperature and the slide velocity. The
discretisation of Equations 4.38 and 4.39 is carried out same as in Chapter 3. Equation 4.40

is a first order differential equation and is discretised using the backward Euler method.
The initial and boundary conditions were taken as follows;

0(+a,t) = 0,05 = 12.5°C

0(z,0) = 0, = 12.5°C 4.41

u(+a,t) =0
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u(z,0) =0
The initial condition for the velocity was calculated using the initial shear stress t, at the

onset of sliding as:

T
va(t =0) =Faexp(Fb?0)Zb 4.4

The solution of the system of finite difference equations is not straight forward; it is a non-
linear system and hence an iterative procedure with an appropriate initial guess needs to be
employed. MATLAB numerical software was used to solve the non-linear equations using
an in-built algorithm, fsolve. The initial guess used is the solution of the previous time
step, or the initial conditions for the first time step.

The system of equations was solved with the stress state obtained from the Vaiont slide
(Hendron and Patton, 1985). The spatial domain for the diffusion equations was set to 20
times the shear band thickness. As mentioned earlier, the BTCS is an unconditionally
stable finite difference scheme allowing for large time steps to be used. The time step
between 10 and 10000 sec were used depending on the total time duration of the landslide
process. Subsequently, the value of the rate process parameters was varied within
reasonable ranges (Mitchell and Soga, 2005) to investigate the behaviour of the model.

First, an analysis was carried out using average parameter values given in Mitchell et al.
(1968). This will be hereafter referred to as the Base line case. Nearly 3 years before the
catastrophic collapse of the Vaiont slide, creep velocity was recorded as approximately 1-
2.5 mm/day (Mdller, 1964). Creep parameters were chosen to match this velocity, which
are in the reasonable range of parameters reported in Mitchell et al. (1968) as follows;

kj
Uy =1285—
mol
bonds
So = 1.1 x10° >
m?pa

A, =28x%x10"1"m
Furthermore, heat and pore pressure parameters, shear band thickness and average slope

angle are chosen in line with VVardoulakis (2002a) as follows;

Z, = 1.4mm
Ky = 1.45 X 1077m?2s~1
W = 22°

c, =7.5x10"8m2s71
A, = 0.012Mpa/°C
The initial stress state was obtained from Hendron and Patton (1985) as:
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7o = 0.976MPa
o), = 2.380MPa
The entire spatial domain was divided in to 200 grid points and temperature and pore

pressure were computed at the each grid point.

4.6.4.1 Results for base line case

Figure 107 presents temperature isochrones across the shear band and its surroundings.
The time evolution of temperature at the middle of the shear band is given in Figure 108.
The pore pressure isochrones and the time evolution of pore pressure at the middle of the
shear band are illustrated in Figure 109 and Figure 110 respectively. The maximum
temperature rise is practically zero (2 x 107*°C) and so is the maximum excess pore
pressure that develops (1Pa, dropping to zero after 8000 sec). The velocity plot Figure 111
shows that, after a very short transient period, the block is predicted to maintain a steady
state of creep at Imm/day. The displacement plot Figure 112 shows that the displacement

increases linearly with time as expected for a constant velocity.
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Figure 107: Temperature isochrones within the shearband and its surroundings (Base line case)

134



12.5002

12.5002

12.5002

T
\\

12.5001

12.5001

12.5001

12.5001

Temprature (K)

12.5001

12.5

12.5

12.5 - - -
0 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2

Time(s) x 10°

Figure 108: The time evolution of temperature at the middle of the shear band (Base line case)
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4.6.4.2 Results for different initial velocities

In the above subsection, results for the base line case were presented. To investigate the
possible transition from creep to a catastrophic phase the activation energy was varied; this
meant a different initial velocity, consistent with Equation 4.42. The activation energies are
varied between 107 kJ/mol and 102 kJ/mol which are within the range of values reported
in Mitchell et al. (1969). The temperature at the middle of the shear band for the initial
velocities investigated is presented in Figure 113. The pore pressure at the middle of the
shear band is presented in Figure 116 and the corresponding velocity plots in Figure 120. It
can be clearly seen that, for the parameters used here, an initial velocity above about 0.2
mm/sec leads to a catastrophic phase whereas an initial velocity lower than 0.2mm/sec
leads to steady state. Temperature isochrones for the lowest and highest chosen initial
velocities are presented in Figure 114 and Figure 115 respectively and corresponding pore
water pressure isochrones are shown in Figure 117 (0-800sec for 0.1 mm/sec), Figure 118
and Figure 119. Temperature and pore water pressure localization inside the shear band is
clearly visible during the catastrophic phase.
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Figure 116: Excess pore pressure at middle of the shear band for different initial velocities
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4.6.5 Influence of the size of the modelled spatial domain

In the above section, the results for initial velocities of 0.15mm/sec and 0.1mm/sec and
baseline (lmm/day) predict a steady state of creep with constant velocity after a short
transient period (Figure 111 and Figure 120). For these particular cases, temperature rise is
much lower than for the cases with higher initial velocity (Figure 108 and Figure 113).
Furthermore, excess pore water pressure inside the shear band initially increases then drops
as shown in Figure 109 and Figure 116 i.e. diffusion of excess pore water pressure
eventually becomes more significant than thermal pressurization. The balance between the
diffusion and generation of excess pore water pressure may be influenced by the total
spatial domain in the finite difference scheme. Therefore, in this section a parametric study

Is carried out to investigate the influence of the size of the modelled spatial domain.
Recalling the boundary conditions used,;

O(xa,t) = 0,cp = 12.5°C 4.43
In reality, it is not possible to maintain these boundary conditions at an infinite distance
from the shear band. In the previous analyses, the total domain was chosen as 21 times the
shear band thickness assuming that this choice places the boundaries “far enough”. To
investigate the influence of boundaries, further analyses are performed for the selected
cases, with different model thickness i.e. 11, 21, 51 and 101 times bigger than the shear
band thickness as described in Figure 121. The results are presented in the following

subsections.

N

Finite difference domain

$Shear band

Figure 121: Schematic diagram of shear band and finite difference domain

4.6.5.1 Results for the baseline case
Figure 122 presents the temperature at the middle of the shear band for different model

thicknesses, and the corresponding temperature isochrones are given in Figure 123 to
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Figure 126. It can be clearly seen that the total temperature rise predicted increases with
model thickness. However, the difference in temperature rises between the cases of 11 x
Z, and 101 x Z,,, where Z, is the shearband thickness, is found nearly 8.5 x 107*°C
which is still practically negligible. Similarly, the pore water pressure isochrones for
different domains are given in Figure 128 to Figure 131. The peak value of pore pressure
increases with the thickness of the model as seen in Figure 127. The difference in peak
values of pore pressure between the cases of 11 x Z, and 101 x Z,, is found to be
practically zero (i.e. 4Pa). The velocity plot of Figure 132 shows that analyses for all
domain thicknesses reach a steady state, although the respective final velocities are

different but the differences are not significant.
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Figure 122: Temperature at the mid-point of the shear band (different boundaries, base line case)
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Figure 127: Excess pore water pressure at the mid-point of the shear band (different boundaries, base
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Figure 132: Velocity of the slide (different boundaries, base line case)

4.6.5.2 Results with 0.15mm/sec initial velocity
For the baseline case, the maximum rise in temperature, the peak value of pore water
pressure and the final velocity at steady state increases with increasing model thickness. In

this section, a similar analysis is carried out with a higher initial velocity.
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The results presented in subsection 4.6.4.2 showed that, an initial velocity above 0.2
mm/sec leads to a catastrophic phase whereas an initial velocity lower than 0.2mm/sec
leads to steady state. In this subsection, an initial velocity of 0.15 mm/sec is chosen to
investigate the influence of the model thickness. This particular initial velocity predicted a
steady state in the previous analysis presented in Subsection 4.6.4.2, where 21 X Z; was

used as the model thickness (Figure 120).

The temperature and pore water pressure isochrones for different model thicknesses are
given from Figure 133 to Figure 136 and from Figure 138 to Figure 141 respectively. The
plots for the temperature and pore water pressure at the middle of the shear band are given
in Figure 137 and Figure 142 respectively and the corresponding velocity plot in Figure
143.

It can be clearly seen that, using a model thickness of 51 x Z, or 101 X Z,, leads to a
catastrophic phase, whereas a model thickness of 11 X Z, or 21 x Z,, leads to a steady
state. Moreover, the predictions given by domains 51 X Z, and 101 x Z,, are practically

the same as seen in Figure 137, Figure 142 and Figure 143.
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Figure 143: Velocity of the slide (different boundaries, initial velocity = 0.15mm/sec)

It can therefore be concluded that, although the low initial velocities predicted a steady
state in the previous analyses (Sections 4.6.4.1 and 4.6.4.2), this was due to the effect of
the thickness of the model. On the other hand, results that predicted catastrophic failure are

not influenced by the thickness of the model.
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Base on the above analysis, modelling the exact thickness is important as it affects the
significantly the predicted outcome. To predict the failure time of the Vaiont case, the
domain thickness should kept extremely large, which is practically not possible to model.
However, a way is needed to assess whether, if full thickness is modelled, the model would
predict Vaiont’s collapse in reasonable timescales. Therefore, the following approach is

proposed here in order to predict the failure time of the Vaiont case.

First, initial velocities and the corresponding failure times of the slide are obtained from
Figure 120 and Figure 143. The logarithmic plot of failure time (sec) vs initial velocity
(mm/day) and the best linear fit is given in Figure 144. Furthermore, the best linear fit

takes the following form;

tf — V; —
In| — =C11n(—>+C2 4.44
tro Vio '
where ¢t is the failure time, ts, is the reference failure time (taken here as 1 sec) v; is the
initial velocity of the slide, v;, is areference initial velocity (taken here as 1mm/day) and
C, and the C, are the dimensionless coefficients obtained from linear fit (C; = —1.9 and
C, = 26.04). Substituting Vaiont initial velocity (base line case, Imm/day) into Equation
4.44 give failure time of 6460 years which is still very long period compared to the actual

creep duration observed in the Vaiont (3 years).
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4.7 Discussion and conclusions

In this Chapter, first a thermo-mechanical model for a shear band and then a thermo-poro-
mechanical landslide model were developed. Rate process theory was used to describe the

constitutive behaviour of the soil.

From the thermo-mechanical model of a shear band that was developed in Section 4.5, the

following conclusions can be made.

e In non-isothermal conditions, for a given model thickness, beyond a particular
threshold value of applied stresses, the model predicts blow-up in temperature and
also unconstrained acceleration. Shear stress lower than that threshold seems to
lead to a steady state, where temperature and velocity stabilise.

e Strain localization is predicted by this model and this is promoted by localization of
heat dissipation inside the shear band.

¢ In non-isothermal conditions, the development of secondary and tertiary creep is
possible to simulate. Primary creep cannot however be simulated as it would imply
a decrease in temperature and temperature either increases or remains constant over
time in this model.

e Negative rate effects cannot be simulated by this model because it assumes strain
rate to be an increasing function of the applied shear stress.

e Parameters such as activation energy (Uo), number of bonds (S) and distance
between two equilibrium points of two flow units (4)) have uncertainty associated
with them. They have a wide range of values and not all of them are possible to
measure directly. Moreover, the model is relatively sensitive to their values.

It was considered that rate process theory may provide a possible framework for describing
the transition between creep and catastrophic failure of a landslide. Subsequently, a
landslide model was developed by incorporating thermal pressurization and the dynamics

of the sliding mass.

First, this model was used in an attempt to back analyse the Vaiont case history. The rate
process parameters were chosen within the reasonable range of values available in the
literature (Mitchell and Soga, 2005). The other Vaiont parameters were chosen from
Vardoulakis (2002a). However, the model did not predict the complete history (creep and
the catastrophic phase) of the landslide. The total time to catastrophic failure was predicted
to be much longer than the observed duration in the Vaiont case history. The possible

reasons are listed below.

156



e The chosen rate process parameters are the best guess values chosen from the
literature; however parameter values specific to the Vaiont material are not
available. Moreover, the results presented here were found to be sensitive to the
values of the rate process parameters used

e Some activities such as reservoir level changes were carried out during the creep
phase of the Vaiont slide. These particular activities were not included in the model
presented in this chapter.

o Significant rainfall was observed over the entire period of the landslide event. The

precipitation effects are not included in this model.

Subsequently, using the model, results were obtained for initial velocities which are higher
than the creep velocity observed in the Vaiont case history. It was found that the initial
velocity, which depends on activation energy and number of bonds, and also the thickness
of the spatial domain modelled, have significant impact on the predicted results. For low
enough initial velocity, corresponding to higher activation energy and number of bonds,
the model predicts that, for a given model thickness, a steady state is reached as any heat
generated dissipates without a significant temperature increase. Higher initial velocity,
however, leads to temperature build-up and causes the slope to eventually accelerate.

Furthermore, the extent of the modelled spatial domain plays a dominant role on the failure
of a landslide. The larger the domain, more likely to predict the catastrophic failure.
Therefore, for infinite upper and lower boundary, the model is expected to predict
catastrophic failure irrespective of the value of initial velocity. However, the time it will
take for failure to be reached (t;) depends on the initial velocity of the slide, i.e. the higher

the initial velocity the sooner failure.

In the creep phase temperature effects are not significant, as energy dissipation and heat
production are low. Therefore frictional heating on its own is not predicted to cause the
collapse of a slope; other external actions, such as dynamic loading or pore pressure
increase, need to be invoked to push the velocity over the threshold. Once the threshold is

exceeded, however, frictional heating is predicted to facilitate catastrophic collapse.

Although the model presented is able to predict a transition between the creep and the
catastrophic phases of a landslide, due to the drawbacks stated above, a more reliable
constitutive theory is needed in order to capture the entire creep behaviour of the soil.
Therefore, a different constitutive relation, not based on rate process theory will be

investigated in the next chapter.
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Chapter 5: A Thermo-poro-mechanical
landslide model: using a refined thermo
mechanical constitutive model including creep

5.1 Introduction

In Chapter 4, a thermo-poro-mechanical landslide model was developed based on rate
process theory. Although rate process theory could describe the transition between creep
and the catastrophic phase, due to the sensitivity of the rate process parameters the duration

of the creep phase is too short compared to a real landslide case.

This chapter presents a new framework for modelling the evolution of landslides from
creep to final collapse, using an advanced constitutive model. First, a new constitutive
model is developed in Section 5.2 to 5.8, combining the constitutive models developed by
Borja and Kavazanjian (1985) and Laloui and Francois (2009). Subsequently, this
constitutive assumption is inserted in a landslide model. The model equations are

numerically solved and the results are presented and discussed.

5.2 General formulation

As discussed in section 2.4.3, Borja and Kavazanjian (1985) proposed a time dependent
constitutive model that includes the creep effects of soils. This model was developed
assuming two different empirical relations for volumetric and deviatoric creep: Taylor’s
secondary creep law was considered for the volumetric part and the Singh-Mitchell
expression was used to determine the deviatoric part. The Modified Cam-Clay yield locus
was used in this model to incorporate elasto-plasticity. Finally, time dependent evolution of

the yield locus was also introduced.

Laloui and Francois (2009) proposed a thermo-plastic constitutive model for soils as
explained in Section 2.3.3. It should be noted that Laloui and Francois (2009) used the
original Cam-Clay vyield surface (OCC) for the deviatoric mechanism (Section 2.3.3.2).
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Cecinato modified Laloui’s model replacing the OCC with the Modified Cam-Clay (MCC)
yield locus as described in Section 2.3.4 (Cecinato, 2009, Cecinato et al., 2011).

It is possible to develop a material model that includes both the effect of creep and
temperature by combining Borja’s creep model and Cecinato’s thermo-plastic model. The

development of this material model is given in the following subsections.

According to classical elasto-plasticity theory, the total strain rate can be decomposed in to
two parts, i.e. elastic and plastic, as shown in Equation 5.1;

E=¢g°+¢p 51
When creep is included, the total strain rate can be decomposed into three parts i.e. elastic,

plastic and time-dependent (Borja and Kavazanjian, 1985) as follows;

E=E°+eP+ & 5.2
If thermal loads exist, the elastic part is further decomposed into two contributions, i.e. the
mechanical elastic and the thermo elastic parts (Laloui and Francois, 2009). Therefore, the

final strain rate can be written as;

E=gme 4 gte  gP + &t 5.3

5.3 Thermo-elasticity

According to standard continuum mechanics, for a body subjected to thermal and

mechanical loadings, the stress-strain-temperature rate equation is given by (Mase, 1970);

G = A8 + 2ue™e — (31 + 2u)adb 5.4
where 1 and p are the Lame constants (Mase, 1970), and « is the thermal elastic expansion

coefficient. The stress and strain rates vectors & and & are written as;

011 €11 1

032 €22 [1\

g=|%3|&=|° |and & = é 5.5
T12 ]’12 0
i'zg k){23/ 0

T31
Laloui proposed the thermo elastic equation as (Laloui and Francois, 2009)

éﬁe — '359 5.6
Equivalently, Equation 5.6 can be written in vector form as follows,

&te = cTeg 5.7
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where €T¢ = §,856

Substituting definitions of Lame constant and the Laloui’s relationship (Equation 5.6) into

5.4 gives

. 2 ~me ~me ] 5.8

b= (K—§G>6ev +2GEme — B.KS6 -
where K and G are the stress dependent elastic bulk and shear moduli of the soil and can be
written as;

3 5.9

Therefore, Equation 5.8 can be written in the following general form

& = DMmegme | Dteg’ 5.10

where D™€ is the standard elasticity matrix given by

2 2
(K+§G) (K—gG) (K—§G> 00 0
(K 2G> <K+4G> (K 2G> 0 0 O
3 3 3
D™ = 2 2 4 5.11
(K—gG) (K—gG) <K+§G> 00 0
0 0 0 G 0 O
0 0 0 0 G 0
0 0 0 0 0 G
and D¢ is the thermo-elasticity vector given by
D¢ = —B.K§ 512

5.4 Proposed relationship for hardening law

Laloui and Cekerevac (2003) proposed that the apparent preconsolidation pressure is a

decreasing function of temperature as follows;

5 )
Pe = Peoro €xp(Bel) {1 —ylog (9—())} 5.13

where pgoro IS the reference preconsolidation pressure i.e. at temperature 6, and before

plastic deformation commences.

In the time-dependent model of Borja and Kavazanjian (1985), the presconsoildation
pressure depends on time and its rate is given as:
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pe = Bpeéy + 6% 5.14
v
where £ = i re 5.15
— K
Ve
o = 5.16
@ A—K

Y, 1s the coefficient of secondary compression plotted against natural logarithmic time and
t, iIs the volumetric age of the soil relative to an initial reference time t,;. If there is no

primary loading or unloading, then tyis equal to natural time (Aty = At) (Section 5.8.4).

Equation 5.13 & 5.14 can now be combined to form a new hardening/softening
relationship as follows: Integrating Equation 5.14 over t,; > t, , ps = pLo and 0 — £
yields

/ N t (7)
e = plo exp(Beb) (£2) 5.17
vl

where p_, is the preconsolidation pressure at t,, = t,,; and e£ = 0. Equation 5.17 can now
be modified to include the temperature dependence of Equation 5.13. Therefore, the final

expression for the preconsolidation pressure becomes;
b N 0
Pc = Pcoro eXP(Bey) (—) {1 — v log (—)} 5.18
Ly 90

Here, p.oro iS the preconsolidation pressure at t, = t,; and 8 = 8,, called the reference

preconsolidation pressure.

5.5 Yield function and consistency condition

As a result of the new hardening law (Equation 5.18), the yield locus now depends on
temperature (8) and time (t,) in addition to the state of stress (o) and the hardening

parameter(&?). This can be written as;

f(o,pi(eD,6,t,)) =0 5.19

The consistency condition (f = 0) ensures that, at yielding, the stress state lies on the

evolving yield function and this can be expressed as;

f=fab + frpi =0 5.20
Subscripts in Equations 5.20 and 5.23 describe the partial derivatives of the yield function

or effective preconsolidation pressure with respect to other model variables. As the yield
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function is a function of time, it will expand with time even under constant stress.

Therefore f < 0 is possible when ¢ = 0.
Plastic loading requires

f=0ande.(Vf)>0 5.21
where V£ is the gradient of the yield function and &. (Vf) denotes the dot product of &

and Vf. Neutral loading requires

f=0ande.(Vf) =0 5.22
Borja and Kavazanjian (1985) further assumed that plastic loading and creep are two
decoupled processes i.e. that creep can be ignored while plastic loading occurs. This
assumption is valid only if the duration of loading is comparatively small (i.e. rapid
loading rate). During this short time period, any expansion of the yield the locus due to
creep can be ignored. Therefore, the consistency condition (5.20) is valid only during

plastic loading.

The rate of change of preconsolidation pressure p.. can be written as;

Pt = 00 (€5) + (0De(0) + (P, (t,) 5.23

Each partial derivative can be defined as follows;

_<6f)_6f6p’ df dq
fo = dao) 0p' 96  dq oo

_(Of N _ (9pc ~ _ (9pc ~ _ (9pc
Fot = (50) (Pc)g§—<agg>, (pc)9—<ae>, (pc)tv—<atv>

Recalling the Modified Cam-Clay (MCC) yield locus expression

f=q*-Mp'(p: —p") 5.24
and substituting the final hardening relationship (Equation 5.18) into the MCC yield
function (Equation 5.24) yields;

f=q*-M?*p Ipéo exp(Pey) (f—;)@ {1 —ylog (H%)} — p’l 5.25

5.6 Thermo-plasticity
The plastic strain rate can be obtained using the flow rule as follows;

=9 5.26

do
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where g is the plastic potential (a curve to which the directions of plastic strain increments
are normal) and A is the plastic multiplier. In the MCC framework, the plastic potential g
coincides with the yield locus f, (i.e. g = f). The volumetric plastic strain rate can be
written as;
&0 = A— 5.27
Substituting Equation 5.4 into Equation 5.10 gives
g =D™me(&— &t — &P — £Y) + DG 5.28

Applying thermo-elasticity and the associative plastic flow rule to Equation 5.28 yields,

G = Dme(é) _ (DmeCTe _ Dte)é _ Dme)’\fa — pmegt 5.29
Equation 5.29 can be substituted in to the consistency condition (5.20), yielding

fa{Dme(é‘) _ (DmeCTe _ Dte)é _ Dme)'\fa _ Dmeét}

- : : 5.30
+ o { @O (M) + 016 (8) + (PO, (E,)} = 0
From equation 5.30 the plastic multiplier is given as
A= x[fsD™e(& = &) + (. (pio — foD™eCTe + f,D')0
: 5.31
+ for (0, ()]
where (1/)() = faDmefa - fpé(pé)ggfa
The term —f,D™¢CT¢ + f,D* can be algebraically manipulated as:
fo‘(Dte _ DmeCTe)
1
— fa (Dte _ Dmegﬁsa)
1
= fo {—BSIGY - §BS(3K)6} 5.32
= —2K P[50
= 2f,D*
Therefore the final form for the plastic multiplier is given as;
.1 .. , : . .
A= )_( [fUDme(g —&)+ (fpé(pc)ﬂ + ZfGDte)H + fpé(pc)t,,(tv)] 5.33

The partial derivatives of f are given by
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fpr =M?Q2p' —pp)

fo=2q 5.34

and the partial derivatives of p, are given by

() = Brio exp(Bel) (f—;)m {1 —y log (9%)} 5.35
(0o = —YPeo exp( Bey) (g)a) (%) 5.36
()¢, = (%) Peo exp(Pey) (f—;)a_l {1 —ylog (Q%)} 5.37

5.7 General stress-strain rate equations

Substituting the expression for thermo elastic strain (Equation 5.7) into Equation 5.28
gives
6 =D™e(&— &P — &) + (D' — D™°CT)6 5.38

Applying the associative flow rule for the plastic strain rate (5.26) gives

o =D™me {e - (}\%) - ét} + (D' — D™eCe)6 5.39

Applying the expression for the plastic multiplier (Equation 5.33) into Equation 5.39 yields

& = {(D™® — D™y, £,D™®) (& — £} — D™ x(BO + f,r 0D, t))f5
+ (Dte _ DmeCTe)g'

5.40

where B = f,,1(p)g — frD™°C"® + f,D*®
From Equation 5.40 the general form of the stress-strain rate relationship can be written as
& = Dmerg — gt 541
where D™€P s the fourth order thermo-elasto-plastic stress strain tensor
pmep — (Dme _ X(DmefafaDme)) 5.42
and &t is the stress relaxation rate given by
ot = D™ePE 4 xf . (pl)y, (t,) D™ fy + (D™exBf, + D — D™eCTe)d 5.43

If creep and temperature effects are ignored (i.e. & = 0, fpé(pg)tv(t',,) =0and d =0,

then ¢t = 0, and the formulation revert the classical elasto-plasticity expression. If only
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creep is ignored, the resulting expression is similar to Laloui’s thermo-plasticity model. In
the general case, however, where both creep and temperature effects are considered the

stress-strain relationship is given by Equation 5.41;

5.8 Creep strain rate

As suggested by Borja and Kavazanjian (1985) the direction of the creep strain rate &£ is

obtained from the normality rule applied on the equivalent yield locus as follows;

- of 5.44
t — o) .
€ (‘060'

where ¢ is a proportionality factor that determines the magnitude of the strain rate and f is
the yield surface before creep deformation takes place referred to here as the equivalent

yield locus with the size of equivalent preconsolidation pressure pg. The latter is given by

2

5.45

p6=p’+M2pSpé
where pj is the preconsolidation pressure, before creep deformation takes place. For

normally consolidated clays, before the onset of creep, py = pe

Accordingly, the equivalent preconsolidation pressure also depends on temperature from
Laloui’s thermal hardening law (Equation 2.25). Therefore, the size of the initial yield

locus also depends on temperature and can be written as

2

! 9 ! q !
Dy {1 —ylog (0—0)} =0’ + 5 <1 5.46

The proportionality factor ¢ can be determined using two empirical models of volumetric
and deviatoric creep respectively. The first model used is Taylor’s secondary compression
line from which the volumetric creep is determined while the second one is the Singh-

Mitchel creep law that describes the deviatoric creep.

5.8.1 Temperature dependence on volumetric creep strain rate

Few researchers investigated the dependence of volumetric creep on temperature
(Campanella and Mitchell, 1968, Towhata et al., 1993). Findings show that, during the
secondary compression stage, when temperature is increased over a comparatively small
time period, an instant compression is observed (Towhata et al., 1993). This instant
compression due to temperature increase is taken in to account in Laloui’s thermo-

plasticity model (Laloui and Cekerevac, 2003, 2008, Laloui and Francois, 2009) and
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referred to as “thermal loading” (Section 2.3.3). Also the secondary compression index
(y,) is independent of temperature as seen in Figure 145. Nevertheless, researchers found
that for organic soils such as peats, the secondary compression index, (y,) increases with
temperature (Fox and Edil, 1996).

In this context it is assumed that the secondary compression index is constant i.e. inorganic

soils are assumed.
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Figure 145: Secondary compression with different temperature (Towhata et al., 1993)

5.8.2 Dependence of deviatoric strain rate on temperature
Deviatoric creep was also investigated to determine the relationship between the strain rate

and temperature.

The Singh-Mitchell creep equation for axial strain rate is given as;
— (to\™
gt =AexpaD (?) 5.47
where A4, @ and m are parameters and D is a measure of the applied deviatoric stress.

The influence of parameter m was explained in Section 2.4.2. Eriksson (1989) carried out
an experimental study to investigate the effects of temperature on deviatoric creep of soils.
His findings show that the parameter m depends on temperature and varies as in Figure
146. As a result, the following linear relationship between the parameter m and
temperature was proposed by Eriksson (1989).

m = 1.03 — 0.007260 5.48
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where 8 is the temperature in °C.

Equation 5.48 is based on creep tests up to a temperature of 50°C. This simple linear law
makes it possible that the value of m may become unrealistically small or even negative at
higher temperatures. To prevent this, here m is not allowed to become lower than the value
of 0.73 which is the minimum value obtained in the test at 50°C carried out by Eriksson

(1989). Therefore, a twofold expression for parameter m is proposed as;

m = 1.03 — 0.00726 6 < 50°C

5.49
m = 0.73 6 > 50°C
Accordingly, the Singh-Mitchell creep equation can now be written as
_ 1t (1.03-0.00726)
gl = AexpaD (?> 6 <50°C
_ to)\*73 5.50
st = AexpaD <?) 6 > 50°C
1.1
1.05 x
1
€ 0.95
2
% 0.9
S 0.85 X
(=
0.8 X
X
0.75
X
0.7
0 10 20 30 40 50
Temperature (°C)
Figure 146: Variation of creep parameter, m, with temperature (Eriksson, 1989)
5.8.3 Determination of ¢ using volumetric scaling
From Taylor’s secondary compression equation, the volumetric strain rate is given by
.t 4 5.51

&, =
V(1 +e)t,
Also, the volumetric strain rate can be calculated using an associative flow rule from the

equivalent yield function.

.t Y of

- _ 5.52
& (1+e)t, (pap’

Finally combining Equation 5.51 and 5.52 , ¢ is found as
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) (c’?f)‘l_ P

(p o - =
(1 +e)t, \dp (1+e)t, [Zp’ - Do {1 —ylog (9%)}] 5.53
Therefore, the creep strain rate can be written as
‘b G
do 5.54

CA+ex, 20" = bt {1 ~vlog (9%)}]

In isothermal conditions, the expression 5.54 is singular when p’ = p;/2 (i.e. when the
stress point is at critical state) and at higher deviatoric stress levels, (i.e. p’ = p(/2) it
overpredicts &. Therefore, volumetric scaling is used for volumetric creep whereas
deviatoric scaling for deviatoric creep. The deviatoric scaling will be discussed in Section
5.8.5.

5.8.4 Volumetric age of soils (tv)

As discussed in Section 5.4 , soil ages volumetrically with time. If there is no externally
applied load, its age increases linearly with natural time. If a normally consolidated soil
specimen is allowed to creep, the total time period that the specimen remains at constant
stress is the volumetric age of the soil (¢, = t). If an over consolidated soil specimen is

allowed to creep, the total volumetric age of the soil can be written as (Figure 147);

t,=to+t 5.95
where t, is the time it would take the soil to creep to its current void ratio, if it were to start

from the normal compression line and remains at constant stress. The rate of volumetric

aging is given by

t,=to+1 5.56
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Figure 147: Determination of volumetric age of soil

5.8.5 Determination of ¢ using deviatoric scaling

For deviatoric creep, the Singh-Mitchell equation can be used to determine ¢, (i.e.
deviatoric scaling can be applied), by equating the creep strain rate predicted by the Singh-
Mitchell equation to that predicted using the associative flow rule. The strain rate tensor

can finally be written as follows (Borja and Kavazanjian, 1985);

) 21-(3)
o= e[ Ly

Equation 5.57 is singular when p’ = p; (isotropic stress conditions) and therefore it
overpredicts the strain rate in near isotropic stress conditions. Therefore, for isotropic
loading volumetric scaling is more suitable (Section 5.8.3) to determine the strain rate.

Volumetric and deviatoric scalings predict different expressions for ¢. As described in
Sections 5.8.3 and 5.8.5 volumetric scaling is suitable to obtain volumetric creep whereas

deviatoric scaling is to obtain deviatoric creep. This can be summarised as:

d
&b = <p,,a—£ 5.58
ot of 5.59
& = ‘pq%

In the above, ¢, and ¢, are proportionality factors obtained from volumetric and

deviatoric scaling respectively.
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5.9 Modified landslide model

Cecinato’s landslide equations will now be modified to include the constitutive model

relations developed in the above sections.

Cecinato (2009) assumed that the shear band is in plane strain conditions and the soil is at
critical state. Of these, only the assumption of plane strain is considered for this analysis. It

is also assumed that the soil is initially normally consolidated (i.e. ¢, = t).

With reference to Figure 52, axis x is considered as the direction of movement, axisy is
the direction of zero principal strain and axis z is perpendicular to the direction of

movement. Therefore,

Eyy = 0
Yzy = Vyz = 0 5.60
Yoy = Vyx =0
The strain tensor becomes,
Exx &z O Exx (1/2)yx, O
&z &z 0 =((1/2)Yxs €22 0 5.61
0 0 O 0 0 0

5.10 Heat Equation

The heat equation gives the evolution of temperature with time and space. This can be

written as;

a0 %6 D, 5.62
I km _— —
ot 622 Cf
where D,, is the dissipated work within the shear band. According to the constitutive
model presented above, irrecoverable work is due to both plastic and creep deformations.

Therefore, the dissipation term could be split in to two parts

Dy, = D, + D, 5.63
where subscripts p and t denotes the plastic and time dependent dissipation respectively.

These two terms will be dealt with separately hereafter.

In the following two subsections 5.10.1 and 5.10.2, g; is used to denote the vector of the

principal stresses, i.e.
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1
o; = <Uz> 5.64
03

and repeated indices means summation over the index, for example:

NE

0;0; = 0;0; = 0104 + 0,0, + 0303 5.65

i=1

5.10.1 Dissipation due to creep

Volumetric and deviatoric creep strain rates were obtained from two different empirical
relations (Section 5.8). Dissipation due to creep in terms of stress and strain invariants

could be written as

De=p'és + qég 5.66
where p’ and q are the effective mean stress and the deviatoric stress respectively. From

the normality rule applied on an equivalent yield surface, the volumetric and the

distortional strain rates can be written as,

. af : af
€5 = @y a_p’ 85 = <Pq£ 5.67

Substituting the corresponding strain rate equations (Borja and Kavazanjian, 1985) into

Equation 5.67 yields,

Y of 3 __<<td)l->’“ 1 |of
D, = ’{ }—+ sAexpaD —(
TP lar @y —pontar 2T ) e >
where, in principal stress space,

_ [af of 1/0f\°

Q= _f_f__(_f> 5.69
do;dg; 3 \dp’

In the Equation 5.68, the size of the equivalent yield surface is given by p,. For normally

consolidated soil, p, can be considered as the mean effective stress applied to the soil

before the onset of creep. Therefore, the equivalent yield surface f is the initial yield

surface before creep. In principal stress space,

of af

< = M2(2p' - — =2

T (2p" — o), 3q q
op" 1 9q _3(si—p) 5.70
aO'i 3’ aO'i Zq
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Using the chain rule, the derivative of f with respect to g; can be written as;

of _0f 0p'  0f 0q

0,  op do; | 9qdo; 571

2

M
= 3(0; —p) + 3 (2p" = po)

N I G of . _ :
Substituting the definitions of a—(’:_ and a_;]:' into Equation 5.69 gives,

(2p' —po)* +9(g; —p')?

_ M*
=3

—2M?*(2p" — py)(o; — ') 5.72

4

— ?(219’ — Po)?

Q =9(0; —p)? = (o1 —p)? + (o, —p)? + (05 —P)?}

Finally, the term Q can be written as;

Q = 6{(01 — 0,)* + (0, — 03)* + (05 — 0,)*} = 64¢° 5.73

Substituting Equation 5.73 into Equation 5.68 the dissipation term becomes

De=p' {mfp—e)tv} +a{aexpaD (tf)m} 5.74

Equation 5.74 is the part of the dissipation term in heat equation 5.62 that is due to creep.
In addition to creep, energy will be lost due to plastic work. In the following subsection the

derivation of plastic dissipation is presented.

5.10.2 Dissipation due to plastic work
In principal stress space, the dissipation due to plastic work can be written as

Dp = Uléf + 0'25.'5 + 0'25.3? 5.75

Substituting the relationship for plastic strain rate from the associative flow rule yields:

L, of  of  of
Dp =4 (01 00, t o 00, tos 603>

5.76

where g, o, and o5 are the principal stresses, f is the yield locus (the Modified Cam Clay
yield locus is used here) and A is the plastic multiplier. The derivative of the yield locus

with respect to the principal stress components is expressed as;
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of _of dp’ 09f dq M?
—_—=—— 4+ ——— = 3(g;— 7' 29" —p! ,
30, = 9p' 90, T 9g g, - S0P+ (2P = po) 5.77

Equation 5.77 can be substituted into Equation 5.76 to obtain D,,, yielding
. M?
Dy =2 lcﬁ {3(01 -p)+ 3 (2p' — Pé)}
MZ
t o, {3(02 -p)+ ES (2p’ — pc)} 578
MZ
+ 03 {3(03 -p)+ ES (2p’ — pé)}l
By employing the definition of mean effective stress the above gives

Dp = /1(2(0-12 + 0-22 + 0'32 - 0-10'2 - 0'20-3 - 0-30'1)

+p'M2(2p' — pl))

: 5.79
= (2q* + p'M*(2p" - po))
Recalling Modified Cam Clay yield locus;
— 2 I'M2(n — ') —
f=a"+p'M*(p' —p) =0 5.30
After substituting 5.80 into 5.79, the final form of D,, becomes
— I(A2 ’ 2
Dy = A(q” + (p'M)?) 581

It should be noted that the above expression (5.81) is derived for any stress state applied.
An expression for the plastic multiplier A in terms of stress invariants is derived in the

following subsection.

5.10.2.1 Plastic multiplier (A)

In section 5.6, the plastic multiplier was calculated as (Equation 5.33)

A= xlfaD™ (& = &) + (fu (0o + 25D%)0 + f,(p)e, (8)] £ 8

where 1/)( = fa-Dmefa' - fpé(pé)egfp

It was further assumed that the soil was normally consolidated before creep commenced,
therefore £, = 1 (Section 5.8.4). Without any loss of generality, it is possible to split the

terms of Equation 5.82 into spherical and deviatoric parts (Mase, 1970):
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foD™e(& — &) = Kf,, (¢, — €5) + 3G f,(€4 — €D)

ZfaDte = _ZKBsfp
f,D™ef, = Kf,* + 3Gf,*

Partial derivatives of f are given by

fpr=M*(2p" —pp)
fa=12q

and partial derivatives of p; are given by

(PD)er = Bpeo exp(Bey) (f—;)a {1 —vlog (%)}
(Do = ~YPeo exp(Bel) (%)a (%)

(Pé)t,, = (E) Peo exp(ﬁeﬁ) (t_v>‘7)—1 {1 —vylog <9%>}

tvi tvi

Finally, using the above the plastic multiplier can be expressed as;

A=Fy(é, — ) + Fi(é, — €) + F,0 + F3

where
Fy = XKfp
F, = x3Gf,

F, = x(f 1 (0 — 2K Bsfy)
Fs = f,1(00e, (t)

and

1
= Khp" 361"~ fu @Dy

5.83

5.84

5.85

5.86

In terms strain rate tensor components, the deviatoric (distortional) strain rate can be

written as (Wood, 1991).

1

é‘q = —\/2 [(éyy - ézz) + (ézz - éxx) + (ézz - éyy) + 3(]/x2y + VJ;Z + yxzz)]

3

and the total volumetric strain rate can be written as

Ey = Exx T+ Eyy + &,
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As mentioned in Section 5.9, due to plane strain conditions &,, = ,, =¥,, =0.
Moreover, one dimensional assumption, as shown in Figure 52, implies &, =0.

Therefore, the deviatoric strain is reduced to

.1 — .

&g = §\/ 431% + 3yxzz 5.89
Taking the square of both sides gives

22 1 22 .2

&g = 3 (45 + 3y.5,) 5.90

The total volumetric strain could be decomposed in to elastic, plastic and time dependent
parts (Section 5.2). However, in this context it is assumed that the total elastic strain is

negligible. Therefore, Equation 5.90 can be written as
R Y R
62 = 5(4(h +eb)" +372) 5.91

From the associative flow rule, the ratio K, between the volumetric plastic strain rate and

the distortional plastic strain rate can be written as

ST

of
w =& _ (6_17’) _ M?(2p' —p¢)
T g (ﬂ) B 2q 5.92
dq

Substituting Equation 5.92 into 5.91 gives

Q3

o 1 D1 2\2 | o
§2 = 5 (4(Kq€5 +&5)" + 3}/,?2) 5903
and ég = ¢, — &5 Therefore, Equation 5.93 can be written as,
o 1 N B
=3 (4(Kq (¢, — ) +&) + 3yxz) 5.94

&4 Can be derived by solving the quadratic Equation 5.94 and it is given as;

S B ) (i3
€ = ) 5.95
2(-1)

where A, = & — K €% . One solution of Equation 5.95 is negative. Therefore, the positive
solution has been taken into consideration as the total distortional strain should be a

positive.
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__ Ovy

Vz = e and v, = v(z,t) is the velocity within the shear band in the direction of

movement. A linear profile of v(z,t) within the shear band was assumed as shown in
Figure 52 in line with Vardoulakis (2002a). So that,

v(z,t) = (Zi) vq(t) 5.96

b

where v, (t) is the velocity at the top of the shear band i.e. the velocity of the sliding mass
and Z, is the thickness of shear band. Finally, the deviatoric strain rate becomes as a

function of the velocity of the sliding mass as follows;

_8 64 orr a(%ra N\ (%424 Vi
9Aqin\/81AqKq 4 (g ks 1)(9A£,+3Zg

T,

5.10.3 Final form of heat equation

The final form of the heat equation can be written as follows. This is done by adopting
dissipation due to the effect of both creep and plastic deformations. From Equations 5.62

and 5.63 the complete heat equation can be written as

a0 — 629+DP+DC
at T oz? Cr 5.97
o b ()
D;=p' {———— A D|—
t="D {(1+e)tv tqiAexpa t, 5.98
D, = A(q* + (p'M)?
p = Aq* + (p'M)?) 5 09
and
A=FoK (6 — )+ Fi (& — €) + F,0 + Fy 5 100
Substituting 5.98, 5.99 and 5.100 into 5.97 yields,
a0 220 1 , . .
—=kns5t+ ((FOKq + Fl)(eq — €D+ F0 + F3)(q2 + (p'M)?)
, ) C_tgA\™ 5.101
P ((1 Y )+a(4ewap <E>
v

Collecting temperature rate terms gives
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96 . "
Fm ——(q + (p'M)?)

0%6
= m 522
1 o 5.102
+ C—f{((FOKq + F) (€, — €D + F3) (g% + (p'M)?)
on) D ()
"N—— A D(—
P ((1 + e)t, Taldexpa ta
Hence, Equation 5.102 can be simplified as;
% _ 2" {CA +p'éf + qét}
ot oz T P'éy +aéq 5.103
where;
A =(q*+(@'M)?) 5.104
B; = C; — F,(q* + (p'M)?) 5.105
b K Cy
(¢ - R(@ + ') >-100
Ci = ((FoKq + F1)(éq — €)) + F5) 5.107

5.11 Pore pressure equation

The pore pressure equation gives the excess pore pressure inside the shear band and its
surroundings. The same equation given in section 3.3 is used here, i.e.

ap d ( ap) 1 a0

ot 9z\Voaz) ™ot 5.108
where ¢, and A,, are the consolidation and pressurization coefficients respectively. These

two parameters were discussed in detail in Sections 3.3.1 and 3.3.2 respectively.

5.12 Landslide model assumptions

According to the constitutive model presented here in this chapter, when a critical state is
reached, the creep law becomes redundant as the soil fails. Therefore, at critical state,
Equation 5.41 will take the form of Cecinato’s thermo elasto-plastic relationship (Equation
2.43) as described in Section 2.3.4 (i.e. the stress relaxation term ¢, in Equation 5.41 will

equal zero). Moreover, hardening with respect to time will also cease to be relevant so that,
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the model is time independent when a critical state is reached. When the stress state lies
inside the yield locus, on the other hand, only creep deformation is expected to occur.
Thermo-plastic and creep deformation are expected to occur when the stress state is on the

yield locus as well, but not at critical state.

It is reasonable to assume here that the stress state will lie inside the yield locus while a

landslide is in the creep phase and will reach a critical state during the collapse stage.

The relationship for the volumetric creep strain rate was derived using the secondary
compression theory which predicts that the rate of volumetric deformation reduces with
time (Equation 5.51).

In the landslide model presented here it is assumed that by the time slide movement was
initiated volumetric creep rate has already become negligible. Therefore, in this analysis,
only the shear creep deformation of the slip zone is considered. On this basis, the time

dependency of the size of the yield locus can also be ignored.

With the assumptions stated above, the movement of a landslide is treated as two

decoupled processes as follows;

e Movement during creep stage

e Movement during the catastrophic phase

The envisaged transition between these two processes can be qualitatively described as

follows;

Due to heat dissipation, the yield locus shrinks according to the hardening law proposed by
Laloui and Francois (2009). As a result, the stress state may eventually lie on the yield
locus. Once this happens the landslide enters into a catastrophic phase. Furthermore, for
simplicity, it is assumed that when the stress states reaches on the yield locus this occurs at
a critical state.

Therefore, the heat equation takes two different forms, one for each process;
The first form is valid during the creep phase, and it can be written as;

26 920 1 v,

ke —— gyt

In the above, v, is the creep velocity of the landslide and Z,, is the thickness of shearband.

179



The second form is valid during the catastrophic phase. In this case the heat equation will
be same as the expression developed by Cecinato (2009). This is appropriate due to the

following reasons;

o If the time dependency of the hardening law is ignored, so the constitutive law
used here reverts to the one used by Cecinato (2009).

e The assumptions of critical state leads to zero volumetric plastic strain as in
Cecinato (2009)

Recalling 3.16, the heat equation can be written as;

a0 _ 629 LF Ud(t)
at ez 't z, 5.110

The parameters for Equation 5.110 have been defined in Section 3.2.

Similarly two dynamic equations should be proposed depending on the scenarios
mentioned above. During the catastrophic phase, the dynamic equation developed in
Chapter 3 can be used due the reasons listed above. The dynamic equation during the creep

phase will be developed in the following subsection 5.12.1.

5.12.1 The dynamic equation during the creep phase

The Singh-Mitchell creep law provides an expression for the axial strain rate in undrained

triaxial conditions (Equation 5.47);

. _= (to\"
&t = Aexp(aD) (7) 5.111
D is a measure of stress level, which is given by;

~_q
D=—
Turt 5.112

q is the applied deviatoric stress, and q,;; is the ultimate or failure strength. Due to the

assumption of undrained triaxial conditions, the shear creep strain rate can be written as;

3
ot T at
V'=5% 5.113
Substituting Equation 5.113 into 5.111 gives;
3 — (to\"
ot — _ v —
v =gAexp@b) ( t) 5.114

Also, in undrained conditions, g = 2t and qy;; = 27y S0 that, Equation 5.114 becomes,
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gt =3 dexp &<L> (t_o)’"
2 T/ )\t 5.115

where 7 is the applied shear stress on the top of the shear band and t,,;;is the ultimate shear
strength. By assuming a linear velocity profile inside the shear band, the shear strain rate

can be written as;

pt=t
Zyp 5.116
Solving Equation 5.115 for the shear stress ,t, gives;
=[5, () 1
"T1M3az, \t, a 5.117

Figure 148: Schematic diagram of block on infinite slope

For simplicity, a block sliding on an infinite slope is assumed to derive the dynamic
equation. With reference to Figure 148, the dynamics of the block can be written as;

dv, _ ( ) )
a _Isnv o 5.118

where v is the slope angle, H is the block thickness, y, is the effective density of the soils

(¥s — vw) and is described in Section 4.6.3, and T is the shear stress acting on the block.

Substituting Equation 5.117 into 5.118 gives the final dynamic equation as;

dv; g Tue. [2 ve (t\™
R )] ome
dt ' y.H @ 134z, \t siny

5.119

5.12.2 Stress state assumptions

The next task is to define the necessary stress components, such as the mean effective

stress p’and deviatoric stress g, as functions of the effective normal stress g,, acting on the
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slip plane. g, can be calculated using the weight of the sliding mass and the seepage

conditions.

As described in Section 5.12, during the creep phase, the stress state is inside the yield
locus. However, during the collapse phase, the stress state reaches a critical state at which

stage, the stress ratio is;

M
p' 5.120
Generally, it can be argued that some thermal pressurization is expected to be present
during creep. However, it was simpler to assume that pressurisation during the time frame
of creep was negligible, and consider that the stress ratio q/p’ = M throughout the
creeping process. The analyses presented in later Section 5.15.1 confirmed that this was
reasonable assumption. It is also a conservative one, as pressurisation would decrease

effective stress and therefore the production of heat in the shear band.

Hook’s law written in terms of the Young’s modulus E and Poisson’s ratio v gives:

1, , ,
Exx = E (Jxx —U0yy — UO-ZZ)
1, , ,

1 ! ! !
Epy = E (O'ZZ —UOyy — UO'yy)
If the axes given in Figure 52 are considered, due to oedometric conditions, &, = &, = 0,

from Equation 5.121 it is written as,

Opx = v(aj’,y + GZ’Z)

O-glzy = U(O-chx + O-Z,Z) 5.122

Equation 5.122 gives;

v

Oxx = Oyy = 7 02z 5.123

Substituting Equation 5.123 into the definition of the mean effective stress gives

, 1. , . o, (1+v
P =§(“xx+“yy+“”)=?(1—u) 5.124

where g, is the normal stress on the slip plane which is equal to a,,.
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Next, the initial effective preconsolidation pressure should be defined in terms of the
normal effective stress a,,. In Modified Cam-Clay, if the stress state (py, qo) is on the

yield locus, the initial effective preconsolidation pressure can be written as;

2
’ do ’

Pco = W + Do 5.125

where pg & q, are the intial values of p’ & q respectively, which can be determined from
ay0-Using the expressions of p’ and g, the preconsolidation stress can be calculated using
Equation 5.125.

As discussed in Section 5.12, at the start of the simulation, the stress state should be inside
the yield locus. Therefore, it is assumed that the initial preconsolidation stress is 0.01%
bigger than the value given by Equation 5.125. Hence, the actual initial preconsolidation

stress p,, can be written as

2
P do l
Peo = 1.0001 x <W + po) 5.126

Expression 5.126 is used as the reference preconsolidation p/r, in Equation 5.18

5.13 Parameter selection

For the stage of catastrophic sliding, the same parameters given in Section 3.4.2 and Table
2 are used. Values for the creep parameters were selected in-line with Borja and

Kavazanjian (1985). Brief descriptions of each parameter are given below.

According to Equation 5.114, the shear strain rate decreases with time assuming other
parameters remain constant. A and & are material creep parameters, obtained from creep
tests that are linked to the shear strain rate at t = t, and, with reference to Equation 5.116,
the initial velocity of the sliding mass. The parameters A, a and t, are chosen as 3.5 X
107> /min, 4.45 and 1min respectively, in-line with Borja and Kavazanjian (1985). 7, is
calculated as;

Tyt = Opo tan((ppeak) 5127
where @,.q is the initial peak friction angle, material taken as 30° for the Vaiont clay
(Vardoulakis, 2002a). The last creep parameter m was taken as a two-branch function as

described in Section 5.8.2. The pressurization coefficient is taken as 0.012 MPa/°C .
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5.14 Numerical implementation

Two sets of landslide equations are developed to describe the creep and catastrophic phase
separately. Analyses are first started using the equations corresponding to the creep phase.
The equations describing the catastrophic phase are used, once the stress state reaches
critical state. Simulations of the catastrophic phase have been carried out already in
Chapter 3. Therefore, only the creep phase is considered here. The simulations were run to
the point where the stress state reaches critical state. The total duration of the creep phase
will be referred to hereafter as “time to catastrophic phase t.”. The landslide equations for

the creep phase can be summarised as;

op a/ 0 96
e =75

ot~ 9z\"9z) " ™ot
06 _, 9% 1w
ot T"az2 CrZy 5.128

dv, 9 Tut 2 vy (t
+ —In|= (—
dt y.H « 3AZ, \t,

The above set of equations is solved numerically using a backward time-centred space

)m] —siny =0

finite difference scheme. The solution of the system of finite difference equations is not
straight forward; it is a non-linear system and hence an iterative procedure with an
appropriate initial guess needs to be employed. MATLAB numerical software was used to
solve the non-linear equations using an in-built algorithm fsolve. The initial guess used is
the solution of the previous time step, or the initial conditions for the first time step.

The time step was chosen as 10 sec. The analysis starts at t = t,, where t, = 60 sec the

reference time.
The initial and boundary conditions for heat and pore water pressure equations are;

u(z, ty) = 0; 0(z,ty) = Orep = 12°C;

o 5.129
u(too,t >ty) =0; O(£o,t > ty) = O = 12°C

The initial condition for the dynamic equation is calculated from the shear creep equation

by applying t = t,, resulting to 2.6 x 10™>m/s .

5.15 Numerical results

5.15.1 Results for the base line case

First, an analysis was carried out with the parameters given in Section 5.13. Hereafter, this
will be referred to as the base line model. The evolution of temperature at the middle of the
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shear band and temperature isochrones within the shear band and its surroundings (O-
1000sec) are presented in Figure 149 and Figure 150 respectively. The maximum
temperature rise is found as 0.085°C which is negligible. The pore water pressure at the
middle of the shear band and the respective isochrones are shown in Figure 151 and Figure
152. Excess pore pressure rose to 6kPa during the period of temperature rise. When the
temperature started to drop, the excess pore pressure became negative due to cooling of the
shear band. Once the temperature stabilized to its initial magnitude of 12°C, the excess

pore pressure dropped back to zero.

The velocity and displacement plots are given in Figure 153 and Figure 154 respectively.
Velocity drops from 2.6 x 10™°m/s to zero and 13.5 mm of displacement is attained

during the time period of 10000 sec.

In this base line case, the model did not reach catastrophic phase as energy dissipation and
heat production are low. As a result, the stress state remained inside the elastic region and
only creep deformation occurred. For the slide to reach a catastrophic phase, heat
dissipation inside the shear band should increase. This is possible if the initial velocity of
the slide increases. To this end, the creep parameter A is increased by 10 times. The results

are presented in the following subsection.
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Figure 149: Temperature at the mid of the shear band (base line case)
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5.15.2 Results for higher initial slide velocity

In this section, the results are presented for an initial velocity 10 times higher than that of

the assumed base line case (Section 5.15.1).

In this case the temperature reached to 12.85°C at 200 sec before dropping as shown in
Figure 155 and Figure 156. Also the excess pore pressure peaked to 600 kpa at 165 sec
then dropped to zero. The temperature and pore pressure rise were nearly 100 times greater
than the base line case due to higher energy dissipation. The velocity and displacement
plots are given in Figure 159 and Figure 160 respectively. The slide velocity decreased

from 3 x 10™*m/s to 5 X 10~>m/s after 500 sec.

In this case, during the creep phase the slide travelled 48mm before the collapse phase,
which was reached after 500 sec. This is well after temperature and excess pore water
pressure peak which my appear odd but can be explained thus; when temperature increases
the yield locus shrinks, while effective stress reduces due to heating. The yield locus also
shrinks due to the development of strain and thermal softening. In contrast, when
temperature reduces the vyield locus expands, while effective stress increases due to
cooling. Therefore, it is possible that the stress state may touch the yield locus (failing
point) during the decreasing phase of temperature and pore water pressure, if the rate of

change of stress is higher than the rate of change in the size of the yield locus.
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Subsequently, similar analysis with the larger size of model thickness (51 X Z,) was
carried out. With larger model thickness, the temperature reached to 12.90°C at 300 sec
and remains same till 350 sec at which the catastrophic phase is reached as shown in
Figure 161 and Figure 162. Also the excess pore pressure peaked to 650 kPa at 235 sec
before dropping (Figure 163 and Figure 164). The velocity and displacement plots are
given in Figure 165 and Figure 166 respectively. The slide velocity decreased from 3 X
10™*m/s 10 7.5 x 10™>m/s after 350 sec.

In this case, a catastrophic phase was reached after 350 sec which is even sooner than with
thinner model thickness. During the creep phase the slide travelled 40 mm before the

collapse phase.

Overall, the analysis with higher initial velocity successfully modelled the transition
between the creep and the catastrophic phase of a landslide. However, the longest duration
of creep movement was predicted to be 500 sec, which is much less than the timescales

observed in real landslide cases (e.g. 3 years for Vaiont (Muller, 1964, Miller, 1968)) .
In the following, an attempt is made to increase the duration of the creep phase t..

The heat and pore water pressure equations are one-dimensional diffusion-generation
equations. The general form of the dimensionless time factor, T, for such equations, is

given by (Powrie, 2013);

_ Tt
72 5.130

where Y; is the thermal diffusivity k,, for heat diffusion problems or the consolidation

T

coefficient c,, for consolidation problems. t is the time and Z,, is the thickness of the shear
band.

The progress of this process is measured by the time factor T,,. To increase the actual time
to which any given time factor corresponds to, either the thickness of the shear band, Z,,
can be increased or the thermal diffusivity of the soil water mixture x,, can be decreased.
However, the thicker the shear band the higher the initial velocity (Equation 5.116),
therefore t. will further reduce due to higher heat dissipation. Therefore, in the following
subsection analyses are carried out with lower value of thermal diffusivity (x,,) for the

soil-water mixture and with 11 x Z, of model thickness, to investigate its effect in t,.
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5.15.3 Results for different values of the thermal diffusivity

In this section the results are presented for different values of thermal diffusivity for the
soil-water mixture. Originally k,, = 1.45 x 10~7m?s~1was used in-line with Vardoulakis
(2002a). Here, analyses are carried out after decreasing the original thermal diffusivity by
factors of 0.5 and 0.1 (i.e. x,,, = 7.25 X 1078& 1.45 X 1078 m?s~1). The results show
that, all these analyses predict a catastrophic phase. The plots up to the point where the

landslide enters a catastrophic phase are presented in this section.

The plot of temperature at the middle of the shear band is given Figure 167. It can be
clearly seen that higher thermal dissipation occurs for smaller values of thermal diffusivity
of the soils-water mixture. The excess pore water pressure shows similar behaviour as seen
in Figure 168. The velocity and displacement plots are shown in Figure 169 and Figure
170. It can be clearly seen that the velocity and displacement of slide are very close for
different values of k,,. Overall, the “time to catastrophic phase t.” increased from 500 sec

to 930 sec when k,,, decreased by a factor of 0.1.
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Figure 167: Temperature at the mid of the shear band (different k,,,)
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5.16 Discussion

In this chapter, a new thermo-poro-mechanical landslide model was developed using a
refined constitutive model that includes temperature and time effects.

The new constitutive model was developed by combining Borja’s model for time
dependent behaviour (Borja and Kavazanjian, 1985) and Laloui’s model for the thermo-
plasticity of soils (Laloui and Francois, 2009). The new constitutive model offers a
possible framework for describing the transition between creep and catastrophic failure of

a landslide.

First, this model was used in an attempt to back analyse the Vaiont case history. Analysis
using the parameters obtained from Vardoulakis (2002a) and Borja and Kavazanjian
(1985) showed that a catastrophic phase was not predicted for Vaiont. This is due to the
underlying expression for the creep strain rate being a power law, and therefore predicting
a strain rate that decreases with time. Thus, energy dissipation also decreases with time.
Therefore, if the model does not enter into a catastrophic phase relatively early, the slide
will creep continuously and come to rest due to declining heat dissipation. Furthermore,
Singh-Mitchell parameters were chosen from Borja and Kavazanjian (1985) however,

these parameter values specific to the Vaiont material are not available in the literature.
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Moreover, the changes in reservoir level elevation and significant precipitation during the
phase were not included in this model.

Subsequently, model behaviour was investigated by varying the initial velocity of the slide
and the thermal diffusivity of the soil-water mixture. It was found that the time to
catastrophic failure,t, increases for decreasing thermal diffusivity of the soil-water mixture

and decreases for increasing initial slide velocity.

The expression for thermal diffusivity of the soil-water mixture of a soil is given as
(Vardoulakis, 2002a):

— ka
(PC)m 5.131

where kg,, and (pC),, are Fourier’s thermal conductivity and the specific heat of the soil-

Km

water mixture respectively. kg, is written as

ka = (1 - n)sz + nkFW 5.132

where n is the porosity of the soil and ky, and kg,, are Fourier’s thermal conductivity of
the soil granules and water respectively. Vardoulakis assumed the porosity of the soil as
0.18, which implies k,, = 1.45 x 10~’m?s~1. Maintaining kr, and kg, unchanged, a
reduction of k,, by a factor of 10 implies a porosity of —2.68 < 0, which is physically

impossible.

On the other hand, maintaining the porosity unchanged at n = 0.18, a reduction of «,, by a
factor of 10 implies reduced values for either kg, or kg, or both. However, the thermal
conductivity of water kg, has a well-defined value of 1.2 x 1073 cal/(cm s °C)
(Vardoulakis, 2002a). The value of kg, then needs to be decreased to —1.5 X

10™* cal/(cm s °C) < 0, which is again physically impossible.

Even with this unrealistic reduction of k,,, however, the longest possible time at which
transition to catastrophic is predicted is nearly 930sec. This is still very short compared to
the field observations. Therefore, additional mechanisms need to be invoked to explain the

duration of the creep phase.
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Chapter 6: A thermo-poro-mechanical
landslide model using viscoplasticity of soil

6.1 Introduction

In this chapter, a thermo-poro-mechanical landslide model using the concept of
viscoplasticity is developed. Viscoplasticity also referred to as Perzyna’s overstress theory,
is widely used to explain the time dependent behaviour of soils by many authors (Adachi
and Oka, 1982, Adachi et al., 1990, Fusao et al., 1994, Kimoto et al., Kimoto et al., 2004,
Oka et al., 1995). However, viscoplasticity was developed for isothermal conditions. In
this chapter, first a new constitutive model is developed by combining viscoplasticity with
Laloui’s thermal hardening relationship. The background viscoplastic model used is the
one proposed by Oka and co-workers (Adachi and Oka, 1982, Adachi et al., 1990, Fusao et
al., 1994, Kimoto et al., 2013, Kimoto et al., 2004, Oka et al., 1995, Oka et al., 2002).
Subsequently, the landslide model is modified to take in to account this constitutive

assumption.

6.2 The proposed thermo-viscoplastic constitutive model

6.2.1 General formulation

As described in Section 2.4.9, the key assumption in Perzyna’s viscoplasticity is that
elastic strains are time independent and inelastic (viscous) strains are time dependent.
Therefore the total strain can be written as;

The elastic strain rate is given by Hooke’s law as follows (Kimoto et al., 2004);

1 . K
— St —p
26 T3 + ep' ¥ 6.2

where, S;; is the deviatoric stress state tensor, p’ is the mean effective stress, k is the slope

e _
gij -

of unloading-reloading line (URL), G is the elastic shear modulus and e, is the void ratio.
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6.2.2 Yield functions

In viscoplasticity theory, two yield functions are introduced.

The first yield function is called static yield function £, and is equivalent to yield locus of

elasto-plasticity. If the stress point lies inside the static yield locus, elastic deformation

takes place. In contrast to elasto-plastic theory, the stress states are allowed to go outside

the static yield locus and then the viscoplastic strains occur (e}’j” .

The second yield function is called viscoplastic potential or overstress function (f,,) which

passes through the current stress state, if it is outside the yield locus.

Kimoto et al. (2004) suggested static yield locus using original Cam Clay vyield locus as

follows;
_ o (P
fy=no+Mln<,> 6.3
pcy
where 7, is the relative stress ratio defined by;
Mo = \/(Yh'j - Th’j,o)(mj - 77ij,0) 6.4

in which, n;; is the stress ration tensor given as S;;/p" and subscripts 0 denotes the initial

state before the deformation occurs and M* is the stress ratio at critical state (i.e. £,° = 0) .

Dey is the hardening/softening parameter that determines the size of the static yield locus.

Similarly, Kimoto et al. (2004) suggested viscoplastic potential using original cam clay

yield locus as follows;

fo =10+ M"In (p—> 6.5
Pep )

where p,,, determines the size of visco plastic potential.

However, it is replaced with normalized modified Cam-Clay for easier numerical
implementation due its smooth character. The static yield locus becomes;
_q* = M?*p'(piy — p)

fy 7 6.6

In the above, p’ and q denote the effective mean and deviatoric stress, M is the critical

state parameter and viscoplastic potential becomes

2 _MZ (0!
- q Z,gpcp p) .
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6.2.3 Hardening law

As described in Section 6.2.2, the hardening/softening parameter contained in the
expression of the static yield locus (6.6) determines the size of the locus. It depends on the

volumetric viscoplastic strain as follows;

Dey = Peyo exp(Be,T) 6.8
To introduce the temperature dependence, the above expression is modified as proposed by

Laloui and Cekerevac (2003) and Laloui and Francois (2009) for elasto-plasticity (See also
Section 2.3.3).

, ~ 0
Péy = Peyo exp(Be,”) {1 —ylog (Q—)} 6.9

0
In the above, y is a material parameter that determines rate of thermal collapse of the yield
locus, 6, is the reference temperature measured in °C and pg,, is the reference

preconsolidation pressure when &,° = 0 and 8 = 6,. From the above relationship, the size

of the static yield locus depends on both viscoplastic strain and temperature.

6.2.4 Final form of constitutive relationship

The viscoplastic strain can be written as follows based on Perzyna’s overstress theory

Kimoto et al. (2004);

: 0fp
SZP = y(®(fy)) aT._l,] 6.10

where the symbol (. ) is defined as
o(f,) f,>0
(d>(fy)>={0 " f <o 6.11
fy =0 and f, =0 denote the static yield locus and viscoplastic potential function

respectively. @ is a function that determines the rate sensitivity of the material. Based on

experimental results, Kimoto et al. (2004) defined the material function @ as follows.

v®(fy) = C'pexp(m'fy) 6.12
where C' and m' are viscoplastic parameters determined from experiments. Substituting

the expression for the static yield function (Equation 6.6) into Equation 6.12 gives;

q® — M?*p'(ply — p)}l
6.13

y®(fy) = C'pexp Im{ e

Substituting Equation 6.12 into Equation 6.10 gives the viscoplastic strain as
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Figure 171: Schematic description of thermo-viscoplastic potential and static yield locus including
thermal effects

6.3 Proposed landslide equations

As discussed in Section 2.4.9, the magnitude of the viscoplastic strain rate is determined by
the overstress function, which is the difference between the static yield locus and the
current stress state as shown in Figure 171. However, the size of the static yield locus is
now also dependent on temperature. Therefore, it can be expected that, due to contraction
of the static yield locus with temperature, the viscoplastic strain rate will increase as
temperature increases. Therefore, due to the influence of temperature, it may be possible to
model the transition behaviour between the creep and collapse phases of a landslide. In the
following, landslide model equations including the new thermo-viscoplastic constitutive
model are developed. Validation through back analysis of the Vaiont case is attempted.

6.3.1 Heat equation

The heat equation provides the temperature variation and evolution inside the shear band

with time and consists of a heat diffusion equation with a dissipation term. It is written as

00 320 Dy,

5 fmazt T 6.15
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in which, k, is thermal diffusivity of soil-water mixture and Cy is the thermal constant.
The heat dissipation term, D,,, in Equation 6.15, is derived in the following using the
proposed viscoplastic law. The volumetric viscoplastic strain in the shear zone of a
landslide is assumed negligible compared to the shear part, therefore in this framework, the

governing equations are derived using the viscoplastic shear strain only.

Shear heat dissipation (D,,,) in terms of shear viscoplastic strain can be written as;

Dy = Ty 6.16

In the above, t is the effective shear stress applied on the shear band and y"? is the shear

viscoplastic strain. From the definition given in Equation 6.14, y*P can be written as;

2 2007 (14!

. q* = M*p'(py — p))] 9%

v — ! ! a4

v P exp [m { 72 P 6.17
By using chain rule, the derivative of the static yield locus can be written as

dfp _aﬁaa_era};aq

ot dp at  dq dt 6.18

The derivatives in the above equation can be written as;

%_ _Zqz _I_szép

ap  p @) 6.19
dp
Fr 0 6.20
fy 2q
% = F 6.21
dq 3t
e = 7 6.22
d
So that, ﬁ becomes;
ot
fp 6t
ot (p")? 6.23

Substituting 6.23 onto, 6.16 results the heat dissipation as;

2 2.7 /]
, (a* —M?*p'(piy —p))] 67
Dvp =1('pexp Im { p,z (p")? 6.24

After substituting Equation 6.24 into 6.15, the final form of the heat equation becomes;

20 920 1 672 q? — M?p'(ply — )
6.25

—=k +—— C'pexplm’{
at " oz2  Cr(p')? p’?
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6.3.2 Pore pressure equation

The pore pressure equation gives the excess pore pressure inside the shear band and its
surroundings and is the same one used in Chapter 3 (Sections 3.3).

dp 0 ap a6

30 = 37 5) * Ay 6.26
In the above, c, and A,,, are the consolidation and pressurization coefficients as discussed

in sections 3.3.1 and 3.3.2 respectively.

6.3.3 Dynamic equation

In this section, a dynamic equation is derived that describes the velocity of landslide and is
consistent with thermo-viscoplastic theory. For simplicity, the landslide is modelled as a
block on infinite slope. With reference to Figure 172, the dynamic equation for the sliding

mass can be written as,

dv, ) T
a9 (S””” - yeH) 6.27

Figure 172: Schematic diagram of block on infinite slope and deforming slip band

where, v, is the velocity of the slide, H is the block thickness, y, is the effective density of
the soils (ys — y,,) and ¥ is the slope angle. The shear stress 7 inside the slip band is
assumed constant. From equations 6.17 and 6.23, the viscoplastic shear strain rate can be

written as;

2 2.7 !
. . (q® — M?*p'(ply —p))] 67
y'P = C'p’ exp lm { p,z (p')2 6.28
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Assuming a linear velocity profile inside the shear band, the velocity of the sliding mass

can be written as;

q® — M?*p'(ply — p)} 67
(p")? (p')? 6.29

where Z,, is the thickness of the shearband. Solving Equation 6.28 for the shear stress t

v, = ZpC'p" exp lm’ {

gives:

o @ T (@M (- P))]
6Z,C'p’ P )2 v 6.30

Substituting Equation 6.30 into 6.27 yields the final dynamic equation as;

dv, g (©)? (9% — M?*p'(ply — p) .
it TyHezcp SP|T™ )2 vy — gsin() =0 6.31
or
dv
d_tv + vy —gsin(®) =0 6.32
where

"n2 Z_MZ / é —
9@y l_m, {q p'(py p)}l 25

ﬂ = 12%Y4 e !
YT 6y HD,C'p T @2
can be thought of as an equivalent stress-dependent viscosity of the material inside the

shear band. y, H is the effective weight per unit area, and this can be written as

!
Ono

~ Cosy 6.34

YeH

where a,,, is the initial effective normal stress acting on the slide. The expressions for
stress components p’ and g can be derived in terms of effective normal stress g, from

Equations 5.124 and 5.120 respectively.

6.4 Numerical implementation

Equation 6.25 is the final heat equation without dynamic effects of slide. Also, the
dynamic equation was derived consistent with thermo viscoplastic constitutive theory as in

section 6.3.3. Including dynamics of the slide, the heat equation can be written as;
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a0 " 026 N 1 v,
at oom aZZ Cf Zb 635
In the above, v, is the sliding velocity (derived in section 6.3.3), Z,, is the thickness of the

shearband.

The complete set of landslide equations are now derived which includes heat, pore pressure
and dynamic equation. To simulate the time evolution of temperature, pore pressure and
slide velocity, the landslide equations were integrated numerically by using a BTCS
scheme. The BTCS is an unconditionally stable numerical scheme; here, time steps ranging

between 10 sec to 5 hours are used to perform the analysis.

The solution of the system of finite difference equations is not straight forward; it is a non-
linear system and hence an iterative procedure with an appropriate initial guess needs to be
employed. MATLAB numerical software was used to solve the non-linear equations using
an in-built algorithm fsolve. The initial guess used is the solution of the previous time step,
or the initial conditions for the first time step.

The discretisation of governing Equations 6.35 and 6.26 is done along the line with Section

3.4.1 and the initial and boundary conditions were taken as;

0(ta,t) = 0,,; = 12.5°C

0(2,0) = 0, = 12.5°C

u(ta,t) =0 6.36
u(z,0) =0

The 1-D spatial domain is set to 21 times the thickness of the shear band. It is also assumed
that the initial slide acceleration is zero. Therefore, from Equation 6.31, the slide velocity

with zero acceleration can be written as;

2 2.1 I I
q* — M?p (pcy—p)}l 6Z,C'p .

v, = exp |m’ H sin
v p I { (p,)z (p,)z Ye (l/)) 6.37

The initial velocity v, can be obtained by applying the initial stress conditions in Equation

6.37; its value depends on the parameters C', m'and Z,,.

6.4.1 Parameter selection

The initial values for stress components (pg and q,) were calculated using Hooke’s law
and with the assumption of oedometric condition as described in Section 5.12.2. The

resultant p; and g, are functions of the initial normal effective stress (o;,, = 2.38MPa).
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The thickness of the shear band is chosen as 1.4 mm as in previous models (Chapter 3, 4
and 5). The critical state parameter M is taken as 0.657 for the static yield locus as well as
the viscoplastic potential. The corresponding friction angle is 22.3° which is the incipient
failure angle of the shear band material reported in Vardoulakis (2002a). Finally, pey,
represents the initial size of the static yield locus. It also represents the reference
preconsolidation pressure in Laloui’s hardening relationship. Here, it is assumed that p¢, =
1.6p¢y,, Where pg, is the size the viscoplastic potential which can be calculated from the
current stress state components pj, q, and the critical state parameter M. Laloui’s thermo-
plasticity parameter y is taken as 0.5 x 1072, The remaining parameters are taken from
Table 2.

In addition to general parameters described above, there are new parameters that should be
defined for viscoplastic theory.

Parameters C' and m' can be determined experimentally. Different authors reported
different values, ranging between 10713 /s and 1078/s for C'and between 18.5 and 28.2
for m' (Kimoto et al., 2004, Oka et al., 2002). However these values were calibrated to fit
specific experimental data sets. In the model presented here, C’ and m'are linked to the
initial velocity of the landslide. If a landslide is modelled from a time instant where the
slide has a particular velocity, the viscoplastic parameters C’ and m' need to be consistent

with that velocity.

As described in Section 2.2.3, the Vaiont slide was creeping with velocity between 1-10
mm/day over the period between December 1959 and July 1963 before catastrophic
failure, as shown in Figure 7 (Muller, 1964). For the first analysis using this model, the

parameters C' and m’ were calibrated to match an initial velocity of 2.2 mm/day as

follows;
C'=10"8/s
m' = 18.5

These values fall within the range suggested by Kimoto et al. (2004) and Oka et al. (2002).
In addition, parameters M, p, qo, Z, and p,, also influence the initial slide velocity as

given in Equation 6.37.
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6.5 Numerical results

In this section the numerical results are presented. First a simulation is carried out with
parameter values consistent with the Vaiont slide, to be used as a base-line case.
Subsequently, the assumed initial velocity of the slide is increased to investigate the
behaviour of the model. Finally, the material softening reported in Tika and Hutchinson
(1999) is included to examine the thermal dependency of the model.

6.5.1 Results for the base line case

The viscoplastic parameters C' and m'were calibrated to match an initial velocity of 2.2
mm/day as detailed in section 6.4.1. The entire spatial domain was divided in to 200 grid
points and temperature and pore pressure were computed at the each grid point. For this

baseline case, the analysis modelled 10000 sec using 50 sec time steps.

The time evolution of temperature at the middle of the shear band is given in Figure 173.
Figure 174 presents temperature isochrones across the shear band and its surroundings.
The pore pressure isochrones and the time evolution of pore pressure at the middle of the
shear band are shown in Figure 175 and Figure 176 respectively. The maximum
temperature rise predicted was as 1 x 107*°C, which is practically zero, and so is the
maximum predicted excess pore pressure (6.5 X 10~2Pa dropping to zero after 8000 sec).
The velocity plot of Figure 177 shows that, the block is predicted to reach a steady state of
creep immediately at 2.2 mm/day; this is in the range of realistic velocities for a creeping
slide of Vaiont (Muller, 1964). The displacement plot Figure 178 shows that, the slide
reaches to a displacement of 0.25 mm over a period 1 x 10* sec. As slide reaches to a

steady state velocity, the displacement is expected to increase linearly with time as shown.
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Figure 173: Temperature at the mid of the shear band (base line case)
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Figure 174: Temperature isochrones within the shear band and its surroundings (base line case)
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Figure 176: Pore water pressure isochrones within the shear band and its surroundings (base line case)

212



2.1851

s
2.1851 /
2.1851 /

2.1851

Velocity (mm/day)

2.1851

2.1851 ]

2.1851

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(s)

Figure 177: Velocity of the slide (base line case)

0.35

0.3

0.25 ~
/

a
£ e
- 0.2 ~
5 -
=
8 0.15
g .
s ~
(|
0.1
0.05

0 i i i i i i i L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(s)

Figure 178: Plot of slide displacement (base line case)

213



6.5.2 Effect of different initial velocity

The results presented for the base line case clearly show that temperature did not play an
important role on the failure of the landslide. This is due to the negligible energy
dissipation inside the shear band. Also, the slide was predicted to reach a steady state of

creep immediately.

To investigate possibility of capturing a transition from creep to a catastrophic phase the
viscoplastic parameter C’ was varied; this meant a different initial velocity, consistent with
Equation 6.37. Here, the initial velocities were increased up to 10,000 times by increasing
the viscoplastic parameter accordingly. The temperature at the middle of the shear band for
a range of initial velocities is presented in Figure 179. The corresponding pore pressure at
the middle of the shear band for a range of initial velocities is presented in Figure 180. And
the corresponding velocity and displacement plots are presented in Figure 181 and Figure
182. It can be clearly seen that, for the parameters used here, the model does not reaches a
catastrophic phase even with high initial velocity. In the creep phase temperature effects
are not predicted to be important, even with extremely higher initial velocities such as
10,000 times the Vaiont slide creep velocity (i.e. 0.25 mm/sec). This particular initial
velocity predicted the catastrophic phase in the models presented in Chapters 4 and 5.
However, using viscoplastic theory, frictional heating on its own is not predicted to cause

catastrophic collapse of the slope.
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Figure 180: Pore water pressure at the mid of the shear band (different initial velocities)
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Figure 182: Displacement of the slide (different initial velocities)
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6.5.3 Effects of friction softening

In Section 6.5.2, it was seen that high initial velocity is not predicted to be sufficient to
trigger a catastrophic phase. Material softening is now included, to investigate how this
may affect model behaviour. The numerical results presented here are for the baseline case

with the addition of frictional softening.

Material friction softening is only applied to the static yield locus f,; the critical state
parameter for viscoplastic potential f, was assumed constant throughout the shearing

process. As described in Section 2.2.5, the strain, strain rate and temperature dependence
of friction angle can be written as Equation 2.70;

M©,7,0) = M3, 7) = §(6 — brer) 6.38
The thermal friction sensitivity parameter § is taken as 1072 in line with Cecinato (2009).

The time evolution of temperature at the middle of the shear band is given in Figure 183.
This plot is obtained by using a time step of 4.8 hours. An initial step increase (4.5 X

107* °C) is observed in temperature within the first time step.

To investigate whether this step increase is part of the solution or an artefact of the
numerical scheme, the time step was further reduced to 20 sec and an analysis was
performed for the first 10,000 sec. From the temperature plot of Figure 184 it can be
clearly seen what appears as a step increase in Figure 183 is in fact a smooth increase over

the first few thousand seconds and is therefore not an artefact.

Figure 184 presents the evolution of temperature at the middle of the shear band for first
10,000 sec. The pore water pressure plots for 40 days and for first 20000 sec are shown in
Figure 186 and Figure 187 respectively. The temperature and pore water pressure
isochrones within the shear band and its surroundings are shown in Figure 185 and Figure
188 respectively. The total temperature rise 1.44 x 1073°C at 40 days is practically zero
and so is the maximum excess pore pressure (3.25 x 10~1Pa dropping to zero after 8000

Sec).

The velocity plot Figure 189 shows that, after an initial acceleration, the block velocity
levels off and reaches a steady state of creep at 7.45 mm/day; this is still within the range
of realistic velocities for a creeping slide such as Vaiont (Muller, 1964) (Figure 7) . The
displacement plot Figure 190 shows that the slide reaches a displacement of 270 mm over
a period 40 days. As slide reaches to a steady state a velocity, the displacement is expected
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to increase linearly with time. The friction softening did not play a significant role for the

first 10,000 sec, because the results presented here are very close to the baseline case.
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Figure 183: Temperature at the mid of the shear band (with friction softening)
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6.6 Discussion

The results presented show that the developed model does not predict a catastrophic phase
in the range of cases considered. In the creep phase temperature effects are of low

importance, as energy dissipation and heat production are low.

For the case of Vaiont, the model does not predict catastrophic phase. Furthermore, the
analyses with higher initial velocity show that the effects of temperature are not important,
even with extremely higher initial velocities such as 10,000 times the Vaiont slide creep
velocity (i.e. 0.25 mm/sec). It is worth noting that an initial velocity of 0.25mm/sec led to a
catastrophic phase according to both models presented in Chapters 4 and 5. As mentioned
in previous chapters, water level changes and precipitation were not included in this model

either.

The inclusion of friction softening leads to increase in velocity due to depletion of shear
strength but with comparatively slow rate. However a catastrophic phase is not reached,
due to the low slide velocity it takes as long as 40 days for the friction angle to drop its

residual value.

Therefore, using the thermo-visco-plastic model developed here, frictional heating on its
own is not predicted to cause the collapse of a slope; other external actions such as
dynamic loading or increase of pore water pressure due to external factors need to be
invoked to push the over the threshold and lead to catastrophic failure.
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Chapter 7: Conclusions and recommendations

7.1 General conclusions

In this research, the importance of frictional heating on the development of landslides was

investigated. In particular, the prediction of the transition between the creeping phase and

the final collapse of a landslide was attempted. The general conclusions are:

A wide range of in-situ conditions and parameters that are relevant for terrestrial
landslides were identified and existing models for large scale landslides were
critically reviewed. Also a critical review of the Vaiont case history is carried out
which is used to back analyse the proposed models in this thesis.

It was found that, in each model reviewed, either the collapse phase or the creeping
regime was considered. Only one model was found that considers the transition
between the creeping phase and the final collapse of a landslide (Veveakis et al,
2007) assuming balancing mechanisms of strain rate hardening and thermoplastic
softening. However, the assumptions made in this model are not relevant in general
for all landslides. Therefore, a comprehensive model covering all aspects of
material behaviour at all stages of a landslide is still lacking.

A comprehensive review of existing models for thermo-plasticity of soils and creep
of soils were carried out. It was found that creep models were proposed for
isothermal conditions, whereas thermo-plasticity models do not consider creep. A
material model considering both creep and temperature dependent soil behaviour is
still lacking. However, to model the thermo mechanics of a creeping landslide, it is
expected that the constitutive relation for the material should contain combined
effects of temperature and creep. A new constitutive model incorporating these
effects would facilitate the predictions of the transition between the creeping phase
and the final collapse a landslide.

The driving moment changes while a landslide mass rotates about the centre of the
slip circle. This particular aspect was not investigated in the model developed by
Cecinato (2009). The dynamic equation was modified from Cecinato (2009) by
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incorporating the change in net driving moment. The model was discretised using
an implicit finite difference scheme, and validated successfully by back-analysing a
real landslide case.

It was found that the refined model gave different predictions for the slide’s
acceleration and velocity which however were only marginally so in the time
window of realistic run-out distances. Moreover, bigger failure mass accelerates
faster than of smaller because the net effective driving force is greater in bigger
rotational slide

By using rate process theory, a transition between creep and catastrophic failure of
a landslide can be explained. The results show that, for a given modelled spatial
domain, a threshold initial velocity separates the creep and collapse regimes,
beyond which frictional heating leads to the final failure. Thermal effects will

exacerbate slope failure once the threshold velocity is exceeded.

The extent of the modelled spatial domain plays a dominant role on the failure of a
landslide. The larger the domain, the more likely the model is to predict the
catastrophic failure. For an infinite upper and lower boundary, the model is
expected to predict catastrophic failure irrespective of the value of initial velocity.
Moreover, the results were found to be sensitive to the values of the rate process

parameters, especially the number of inter-particle bonds and the activation energy.

It is possible to develop a material model that includes the effects of creep and
temperature by combining Borja’s creep model and Laloui’s thermo-plasticity of
soils. This material model was introduced to a landslide model to predict the creep
as well as the catastrophic failure of a landslide and was able to predict the
transition between the creep and catastrophic phases.

Prediction of Vaiont’s both creep and collapse phases is not possible using this
model. However, it predicted a transition between creep and catastrophic failure of
landslides with initial velocity higher than observed creep velocities in a typical
large scale landslides. Nevertheless, the predicted duration of the creep phase is
very short compared to typical field observation.

It is possible to develop a thermo-visco-plastic constitutive relation for soils by
combining Perzyna’s viscoplastic model and Laloui’s thermoplastic model. A
landslide model was then developed using this combined thermo-visco-plastic
model. For the case of Vaiont, collapse due to thermal pressurization is impossible
in this model because of the extremely low slide velocity predicted during the creep
phase, which leads to insignificant heat production inside the shearband.
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Moreover, unlike other models the viscoplastic model did not predict a collapse
phase for high initial velocities.

e In general, all models developed here based on rate process theory, Borja’s creep
model and viscoplastic theory show that frictional heating on its own is not
predicted to cause the collapse of a slope. It is not expected that thermal creep is
likely dominate in large rapid landsides; other external actions, such as dynamic
loading or pore pressure increase, need to be invoked to predict the final collapse.
Therefore, heating will not make the slope collapse but may make the event more
catastrophic if the slope does collapse. Also these models are limited due to lack of
data available for the respective constitutive parameters, which are not routinely

measured or reported in the literature for different soils.

7.2 Recommendations for further research

One of the barriers encountered in this thesis was scarcity or even lack of data for the
model parameters (i.e. rate process, viscoplastic and Borja’s creep equation parameters).
An experimental research could be carried out to obtain realistic values for relevant

parameters to improve predictions.

The models developed in this thesis were used in an attempt to back analyse the Vaiont
case landslide. However, none of them predicted the complete landslide history, at least
partially due to the other external factors present such as water level changes and rainfall.
Therefore, the models could be validated using case studies of other large scale landslides
available in the literature to assess their suitability. Other well documented landslides are
the Jiufengeshan slide; occurred in 1999, killed 2000 people, the La Clapiere landslide;
occurred in 1987 and the Ok Ma dam landslide occurred in 1984. None, however, is as

well documented as Vaiont.

In reality, slip zones develop progressively and their direction is influenced by in-situ
conditions (i.e. stress distributions), and external factors (i.e. earthquakes and rainfall).
Modelling of crack propagation can also be included to model the initiation and growth of
the shear band. This would enable predictions of the effect of frictional heating on the

progressive development of landslides.
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