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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Thesis for the degree of Doctor of Philosophy 

MODELLING THE COMBINED EFFECTS OF CREEP AND FRICTIONAL HEATING 

IN THE DEVELOPMENT OF LANDSLIDES 

By: Sujeevan Vinayagamoorthy 

In this work, different thermo-poro mechanical models for large scale landslides were 

developed to predict the transition between the creep and the catastrophic phases of a 

landslide. 

First, a refinement was made of an existing thermo-poro-mechanical landslide model, 

including a realistic formulation for the dynamics of the moving slide. The model 

equations were then solved by using an unconditionally stable numerical scheme and the 

results were compared with a similar existing model and data available from landslide case 

studies. It was found that the refined model gave different predictions for the slide’s 

acceleration and velocity which however were only marginally so in the time window of 

realistic run-out distances.  

Secondly, a thermo-poro-mechanical model for landslides was developed based on rate 

process theory. The model was initially used in an attempt to back-analyse a real landslide 

case. It was subsequently used to explore factors that influence the transition from an 

initial phase of creep to a final catastrophic phase. It was found that a threshold initial 

velocity separates the creep and collapse regimes, beyond which frictional heating leads to 

the final failure. 

A different thermo-poro-mechanical model for landslides based on a constitutive theory 

that combines a thermo-plasticity model with a creep model for soils was also developed.  

The model was initially used in an attempt to back analyse a real landslide. It is able to 

predict a transition between the creep and collapse phases. Thermal diffusivity of the shear 

band material plays a major role on the predicted duration of the creep phase.  

Finally a landslide model based on Perzyna’s visco-plasticity theory was also developed. It 

was found that the extremely low velocity predicted during the creep phase leads to 

insignificant heat dissipation inside the shearband making the prediction of thermal 

pressurization and collapse impossible with this model. 
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Chapter 1: Introduction  

1.1 Background  

Large scale landslides are a common geotechnical hazard in many parts of the world.  They 

may occur in land or under the sea and are a severe danger to human life. There are many 

examples that can be quoted as evidence. In 1963, the Vajont Slide that occurred in Italy 

moved 2.7 x 108 m3 of rock mass into an artificial lake and as a result killed 2600 people. 

In 1999, the Jiufengershan slide occurred in Taiwan. It was triggered by the Chi-Chi 

earthquake and killed 2400 people. In 1998, a submarine landslide caused the Sissano 

Tsunami which killed 2000 people and left 12,000 people homeless. 

Many events such as earthquakes, sudden changes in pore pressure, and dissociation of gas 

hydrates have been proposed by many authors as causes of initiating large scale landslides. 

However, the mechanisms due to which a slide acquires extremely high velocity leading to 

catastrophic failure are not clearly understood yet. Frictional heating was identified as a 

possible cause of the unexpected velocity and the long run-outs of some large scale 

landslides (Anderson, 1980, Habib, 1975, Vardoulakis, 2000, Vardoulakis, 2002a, 

Veveakis et al., 2007, Voight and Faust, 1982). Rapid movement of the slide occurs due to 

build-up of pore water pressure. Build-up of pore water pressure is explained by expansion 

of water due to frictional heat production (Baldi et al., 1988, Hueckel and Baldi, 1990, 

Hueckel and Pellegrini, 1991, Modaressi and Laloui, 1997). Furthermore, the elastic 

domain of the soil will shrink due to heating and its friction angle may decrease. These 

phenomena lead to declining shear resistance at the slipping plane. 

Very few landslide models exist in the literature that take into account the effect of 

frictional heating. However, these models are one-dimensional, with simple constitutive 

relations for the soil and they were used to back analyse particular landslides cases only. 

Recently, an improved thermo-poro-mechanical model for landslides was developed 

incorporating a realistic constitutive assumption of soils (Cecinato, 2009, Cecinato and 

Zervos, 2008, Cecinato and Zervos, 2012, Cecinato et al., 2011, Cecinato et al., 2008). 

Using this model, the investigators provided insights on the role of frictional heating, 
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establishing that in the idealised case of an infinite slope, permeability of the soil and the 

thickness of the sliding mass dominate the development of catastrophic velocities.  

Despite these developments, the thermo-poro-mechanics of catastrophic landslides is still 

not understood comprehensively because most of the above mentioned models cover only 

the final stage of failure, when catastrophic movement is involved. However, large-scale 

landslides may exhibit a creeping phase, possibly followed by catastrophic failure. An 

example of a landslide that exhibited such behaviour was the Vaiont landslide that 

occurred in Italy, 1963, where the final phase of catastrophic collapse was preceded by 

several months of creep (Müller, 1964). 

This thesis is concerned with developing models that include both the frictional heating 

and the creep-like movement of landslides. Therefore, the above model will be improved 

by incorporating the more realistic time dependency behaviour of soils to cover the creep 

like criteria of movements in this research.  

1.2 Aims and objectives  

The aim of the research is to investigate the impact of frictional heating in the lifetime of 

catastrophic landslides in slopes of different in-situ conditions.  

The individual objectives are; 

 A critical review of existing models of landslides, and of the thermo-mechanical 

and creep behaviour of soils to determine the range of in-situ conditions and 

relevant parameters. 

 The development of advanced thermo-poro-mechanical models of the slip zone of 

a landslide, allowing for both the stage of creep-like slope movement and an 

eventual stage of catastrophic collapse. 

 Numerical implementation and validation of each model through some back 

analysis of a well-documented catastrophic landslide case history 

 A parametric study to systematically investigate the in-situ conditions that are 

critical in making a slope prone to catastrophic failure, with particular emphasis on 

the lifetime of the resulting landslide. 

1.3 Layout of the thesis  

A literature review is presented in Chapter 2. A brief description and classification of 

landslides is first given to provide the context of this research (Section 2.1). Then a critical 
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review of a range of constitutive relations (thermo-plasticity of soils, creep behaviour) that 

can be used to model soil behaviour in the context of landslides is provided (Sections 2.3 

& 2.4). Finally, existing models of large scale landslides are presented and critically 

discussed in Section 2.5. 

Chapter 3 presents a refined thermo-poro-mechanical model of landslides, developed by 

including a realistic formulation for the dynamics of the moving slide in an existing model. 

The model equations are then solved by using an unconditionally stable numerical scheme 

and the results are compared with a similar existing model and data available for Vaiont 

case study. Subsequently, a parametric study is carried out to investigate the influence of 

shape and size of the failing mass on the development of the landslide. 

A different thermo-poro-mechanical model for landslides is presented in Chapter 4. The 

behaviour of the clay is modelled using rate process theory, which is a general theory 

quantifying time-dependent soil deformation on the basis of micromechanical 

considerations. The model is then validated through the back-analysis of Vaiont case after 

generalizing to a uniform infinite slope. Also, the model is used to explore factors that 

influence the transition from an initial phase of creep to a final catastrophic phase. 

Chapter 5 presents a thermo-poro-mechanical model for landslides based on a refined 

constitutive theory that combines a thermo-plasticity model with a creep model for soils. 

Subsequently, the governing equations for the landslide model are developed and 

discretised, and model is used in an attempt to back analyse the Vaiont case landslide.  

In Chapter 6, a landslide model based on Perzyna’s viscoplasticity theory is presented. 

First a modification to classical visco-plastic theory is presented to include temperature 

effects. Then the landslide equations are modified consistently with the new thermo-

viscoplastic model. Like previous chapters, validation of model is attempted thorough a 

back-analysis of the Vaiont case landslide. A parametric study is also carried out to 

investigate the behaviour of the model. 

In Chapter 7, conclusions from this research are outlined alongside with recommendations 

for future research on this subject. 
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Chapter 2: Literature review 

In this chapter, a brief description and classification of landslides is first given to provide 

the context of this work. Afterwards, the Vaiont landslide case history is introduced in 

details. This case history is used to validate the models presented in the following chapters.  

Then a number of constitutive relations that can be used to model soil behaviour in the 

context of landslides are reviewed. The constitutive models considered here can be divided 

into two broad categories, i.e. those concerned with the thermo-plasticity of soils and those 

aimed at modelling creep. Finally, existing models of large scale landslides are presented 

and critically discussed.  

2.1 Classification of landslides  

In general, landslides may occur on land (sub-aerial landslides) or under the sea 

(submarine landslides). Both types of landslides are identified as one of the major geologic 

hazards in the world. Several studies on landslides and their mechanisms are available in 

the literature. Here, it is only focused on a selection of material that is most relevant to the 

objectives of this research.  

Varnes (1978) classified landslides based on the materials involved and the mode of 

movement. Other classification systems that have been proposed incorporate other aspects 

of landslides such as the rate of movement and the water, air or ice contents of the sliding 

mass (Cruden and Varnes, 1996, Dikau, 1996, Hungr et al., 2001, Hutchinson, 1989, Sidle 

and Ochiai, 2006). The most accepted categories of landslides are listed below (Varnes, 

1978): 

a) Slides: This type of failure occurs when a weak zone of a slope separates the 

sliding material from more stable underlying materials. Slides can be further 

divided into two types: translational slides and rotational slides. In translational 

sliding, the landslide mass moves along a roughly planar surface. Usually, rapid 

deformation takes place during translational sliding (Cruden and Varnes, 1996). 
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Rotational sliding on the other hand takes place on a curved sliding surface (e.g. 

cylindrical or circular). 

b) Falls: Falls are characterised by free movement of mass through air, bouncing or 

rolling. Fall landslides are always extremely rapid. Separation of mass occurs in 

falls due to the existence of fractures, joints and bedding planes.  

c) Topples: A landslide is classified as topple, when the soil or rock mass rotates 

forward in a very steep slope about a point below the centre of gravity of the failing 

mass. 

d) Flows: Flows can be further divided into five categories: debris flows, debris 

avalanches, earth flows, mudflows and creeping flows. A ‘debris flow’ may consist 

of a combination of loose soil, rock, organic matter, air and water. A mixture of 

these materials mobilizes downward on a slope like slurry. Debris flows are mainly 

caused by a sudden supply of surface water, rapid snow melt and heavy rainfall that 

erodes the loose soil and rock particles on steep slopes.  

A ‘debris avalanche’ is a variant of debris flow when the debris movement is 

extremely rapid. 

An ‘earthflow’ is another type of debris flow where the materials of the slope 

become liquid and start to flow downward by forming a basin at the head of the 

slope. This failure occurs on reasonably steep slopes that contain fine grain 

materials or clay bearing rocks, and is characterised by the “hourglass” shape that 

the flowing mass assumes. 

A ‘mudflow’ is a particular type of earthflow where the material contains at least 

50% sand-, silt-, and clay sized particles that allow it to flow down when wet 

enough. Mudflows and debris flows are often referred to as mudslides. 

A ‘creeping flow’ is a slow, steady downward movement of a slope mass that 

contains soils or rock. Creep is caused by a constant applied shear stress, lower than 

the shear strength of the moving mass. This amount of stress is enough to cause 

permanent deformation but not enough to trigger shear failure at the sliding plane. 

Generally, three types of creep can be identified. (1) Seasonal creep, where 

movement is within the depth of soil affected by seasonal changes in soil moisture 

and temperature. (2) Continuous creep, where shear stress continuously increases 

and but doesn’t exceeds the strength of the materials and (3) progressive creep, 

where slopes reach the point of failure like other types of mass movements.  

e) Lateral Spreads: This type of landslides occurs usually on very gentle or flat 

slopes. Unlike natural slope failures, the mass will spread laterally. Liquefaction is 

the main cause of this type of mobilization of soil mass.     
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All the above types of landslides are depicted in Figure 1. 

 

Figure 1: Graphical illustration of major types of landslides (Varnes, 1978) 

2.2 Vaiont case history 

2.2.1 Overview 

Well documented in the literature is the case of the Vaiont landslide, which occurred in 

northern Italy on 9th October 1963. The landslide was preceded by 3 years of creep that 

ended with the final collapse of the rock mass.  

Approximately, 2.7×108 m3 of rock was moved from the northern flank of the Mount Toc 

in to an artificial reservoir of about 1.5 × 108 m3 impounding the east-west trending Vaiont 
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deep gorge (Figure 3). Nearly 250 m thickness of mass slipped about 400-450 m with the 

final slip rate of 25-30 m/s. The reservoir filling (4.7 × 107 m3) produced a giant wave that 

propagated towards down the valley, overflowed the dam and killed more than 2000 

people after destroying village of Longarone. (Anderson, 1980, Hendron and Patton, 

1985).  

Site excavation for the Vaiont dam project began in 1956 in Mountain Toc, Italy and the 

construction was completed in 1961. The main purpose of this project was to provide 

hydroelectric power for the rapidly-expanding northern cities of Milan, Turin and Modena. 

It is the world’s highest thin arch dam measuring 262 m high, 27 m thick at the base, 3.4 m 

at the crest, with a chord of 160 m, and a reservoir volume of 115 million m3. 

 

Figure 2: Overview of the Vaiont valley after disaster, photo from Schrefler and Sanavia (2005) and 

reproduced from Cecinato (2009) 

2.2.2 Geology of the Vaiont slide 

The Vaiont slide has been the interest of numerous investigations due to its social and legal 

implications. A detailed geological study has been reported in Hendron and Parton (1985), 

however, most relevant aspects for this thesis are summarised below. 

The Vaiont river flows from east to west, which cuts a large syncline structure which folds 

Jurassic and Cretaceous strata (Figure 3). The syncline created an “open chair” and 

eventually defined the geometry of the failure surface.  

The sliding area consists a succession of limestones and marls. The slide occurred at the 

top limestone strata with the thickness greater than 0.5m. The failure surface consisted of 
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0.05-0.3m thick strata of limestone and marl with clay-rich layers in between. The failure 

slip was confined in 0.5-17.5cm thick continuous clay-rich layers (Figure 4).  

Hendron and Patton (1985) proposed two representative cross-sections (Sections 2 and 5), 

which are used for the stability analysis by many authors (Figure 5). These cross sections 

are located upstream of the dam position at 400 m and 600 m distances. In this research 

Section 5 is chosen to investigate the proposed models.  

 

Figure 3: North (Monte Toc) to south (Monte Salta) section showing the general layout of the syncline, 

the Vaiont gorge and the position of the ancient landslide (after Semenza and Ghirotti, 2000). 

 

Figure 4: Stratigraphy of the rocks of the Vaiont sliding surface, the thickness is given at right hand 

side.   
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Figure 5: Two representative cross-sections of the landslide: (a) Section 2; (b) Section 5 (see the 

location in Figure 6) (After Hendron and Patton, 1985) 

2.2.3 Events leading to the landslide 

Under the supervision of an expert in rock mechanics (L.Müller-Salzburg), dedicated 

geological surveys were carried out since 1958. During the construction between 1958 and 

1959, a prehistoric slide was identified which caught the concern of the experts. However, 

engineers concluded that deep-seated landslides were highly unlikely because the three test 

borings carried out (Figure 6) did not reveal weak zones (Müller, 1964, Müller, 1968).  
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Figure 6: Location map of the Vaiont dam and reservoir (Semenza and Ghirotti, 2000) 

The first filling of the reservoir started in February 1960 before the completion of the dam 

in September 1960. A first crack in the bank was observed when the reservoir level 
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reached 130m above the river level by March 1960. While continuing the filling of the 

reservoir, inspectors began to monitor the bank movements along with the other necessary 

measurements such as rainfall (Figure 7). 

In October 1960, the bank movement rapidly increased to 3.5cm/day when reservoir level 

reached 170m. At the same time, a continuous M shape crack, as shown in Figure 6, with 

1m width and 2.5 km long was observed which suggested that a very large landslide had 

been mobilised. 

On 4th November 1960, approximately 700,000 m3 of landslide slid in to the lake in the 

course of 10 minutes with the reservoir level at 180m. In response to the slide, the reservoir 

level was reduced back to 135m. Consequently, the bank movement rate reduced from 

8cm/day to 1mm/day. By this time, the landslide had already moved by a distance of 

approximately 1m (Figure 8). The following remedies were proposed by the engineers to 

stabilise the bank. 

 Draining the failure mass to prevent or reduce water infiltration 

 Removing millions of cubic meters of material from the mass 

 Grouting the sliding mass, especially along the failure surface, and 

 Building an earthen buttress at the foot of the slide. 

However, all of these measures were found to be impractical and the designers decided to 

control the landslide movement only by controlling the reservoir water level. Therefore, 

the drainage tunnels were constructed to control the rate of landslide movement. In 

addition, four standpipe piezometers were installed between July and October 1961 to 

record the groundwater table elevation (Figure 6). 

The reservoir level was again raised to 185 m on February 1962 and to 235m on November 

1962. During this filling the movement rate did not increase substantially, however it 

reached 1.2 cm/day at the end of the filling. Therefore, the reservoir level was lowered 

back to 185m over a period of four months. Initially, the velocity remained the same but in 

December 1962 it started decreasing.  

By April 1963, when the reservoir level was at 185m, the movement rate was effectively 

zero. On the basis of all the above, the designers considered that the landslide movement 

can be controlled by the reservoir elevation.  Between April and May 1963, the reservoir 

level was again increased rapidly to 231 m and a slight increase in the rate of movement 

(always less than 0.3cm/day) is observed. In mid-July the reservoir level was brought to 

240 m and some further increase in velocity was observed to 0.5cm/day. The level was 
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maintained till mid-August during which time the velocity increased to 0.8 cm/day. The 

reservoir level was increased another 5m at the end of August and as a consequence, the 

velocity increased to 3.5cm/day at some parts.  In late September, the reservoir level was 

slowly lowered to bring down the movement under control. However, no reduction in 

velocity was observed while the reservoir level was brought down to 235 m. On October 9, 

up to 30 cm/day of velocity was recorded before the catastrophic failure occurred at 22:38 

GMT (Figure 9). 

 

Figure 7: Time histories of precipitation, changes of the water elevation in the reservoir, movement 

rates before slide on October 9, 1963; and piezometer measurements (after Muller 1964). 
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Figure 8: Accumulated displacements of surface markers (W) in the period 1960−1963 and its 

correlation with reservoir elevation (LL). Seismic events are marked in the time scale (reproduced 

from Alonso et al. (2010)) 

 

Figure 9: Relationship between water level in the reservoir and sliding velocity (courtesy of G. 

Fernández) (reproduced Alonso et al. (2010)) 
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2.2.4 Hypothesis for the instability of the slope and the failure 

Müller (1964, 1968) formulated a hypothesis that the movements were due to the effect of 

the saturation of the materials which, for the first time, were inundated by water. The belief 

that this phenomenon was the main cause of the observed instability led to the decision to 

gradually raise the lake level once again from April 1963. Müller’s hypothesis was 

confirmed by the insignificant increase in the slide velocity till July 1963 although the 

reservoir level was increased significantly (Figure 7). 

Hendron and Patton (1985) suggested that a continuous impermeable layer is formed due 

to the pre-existing failure surface and, as a result, it created two aquifers in the slope. 

Precipitation and snow melt in the hydro-geological basin fed the lower confined aquifer. 

After a large spring thaw or prolonged rainfall, the water level in the lower aquifer may 

have gradually reached much higher values than in the upper aquifer. Therefore, the shear 

resistance along the failure surface would have decreased significantly, which leads the 

instability of the mass.  

Despite these all hypothesis, many authors suggested that the frictional heat generated 

during the movement could have caused a distinct decrease in the shear resistance of the 

material in the failure surface (Habib, 1975, Sultan et al., 2002, Vardoulakis, 2002a, b) . 

The potential role of frictional heating in the rapid failure of the Vaiont slide is discussed 

in Section 2.2.6 in detail.  

2.2.5 Material properties 

Hendron and Patton (1985) performed a detailed investigation to identify the geotechnical 

properties of the sliding surface. As mentioned earlier, the slip was concentrated in clay-

rich layer. Samples of these clays were tested in different laboratories and found to be high 

plastic and the plasticity plot is given in Figure 10.  Liquid limits were found to be well in 

excess of 50%.  

Ring shear experiments by Tika and Hutchinson (1999) on Vaiont slide material showed 

that it exhibits velocity and displacement friction softening and reaches a residual value 

(Figure 11 and Figure 12). Vardoulakis (2002a) proposed a hyperbolic function for the 

mobilized friction angle as follows; 

 
𝜇̂ = 𝜇𝑟 + (𝜇𝑝 − 𝜇𝑟)

1

1 + 𝑎1 (
𝑥𝑑

𝑍𝑏
)
 

2.1 

where; 𝜇𝑟 = 𝜇𝑟𝑑 + (𝜇𝑟𝑠 − 𝜇𝑟𝑑)
1

1 + 𝑎2 (
𝑣𝑑

𝑍𝑏
)
 

2.2 
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In the above equations, 𝐷𝑏 is the shear band thickness, while 𝑥𝑑 and 𝑣𝑑 are displacement 

and velocity respectively. The thickness dependent strain and strain rate can be written as 

𝛾 =
𝑥𝑑

𝑍𝑏
  and 𝛾̇ =

𝑣𝑑

𝑍𝑏
  The other parameters present in the equation are; 

𝜇𝑟𝑠, 𝜇𝑟𝑑 – Static and dynamic residual friction coefficient (limiting values) (𝜇𝑟𝑠 =

0.18, 𝜇𝑟𝑑 = 0.077) 

𝜇𝑝   – Initial (peak) friction coefficient (𝜇𝑝 = 0.577) 

𝑎1, 𝑎2   – Parameters that control how rapidly the friction coefficient decreases with 

displacement and velocity respectively. (𝑎1 = 0.114, 𝑎2 = 0.103𝑠)  

 

Figure 10: Plasticity of clay samples from the Vaiont sliding surface (Hendron and Patton, 1985). 
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Figure 11: Displacement softening data from ring shear tests (Tika and Hutchinson, 1999) and 

hyperbola law (Vardoulakis, 2002a) 

 

Figure 12: Velocity softening data from ring shear tests (Tika and Hutchinson, 1999) and hyperbola 

law (Vardoulakis, 2002a) 

2.2.6 Potential role of frictional heating 

It has been proposed by many authors that frictional heating of the slip zone plays a major 

role on the failure of large landslides. Firstly, Habib (1975) proposed a mechanism of 

pressurization due to vaporization of pore water because of frictional heating to explain the 

reduction in the strength of rockslides, notably in the Vaiont landslide. De Blasio and 

Elverhoi (2008), Erismann (1979) and Gaziev (1984) described rockslides by using a 

concept called “self-lubrication”; it is explained as either crushing in to fine grains or even 
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melting of rock particles  the shear zone, leading to loss of shear strength. Voight and Faust 

(1982) hypothesised pore water pressure increase due to heating  to explain the 

catastrophic evolution of large landslides. Moreover,Chang et al. (2005a), Chang et al. 

(2005b) developed a block-on-slope thermo-mechanical model that includes thermal 

pressurization to back analyse the 1999 Jiufengershan landslide in Taiwan. 

A number of thermo-poro-mechanical models for catastrophic landslides were developed 

and successfully back analysed the Vaiont slide taking into consideration of frictional heat 

generation and build-up of pore water pressure inside the failure zone (Cecinato, 2009, 

Cecinato et al., 2011, Pinyol and Alonso, 2010, Vardoulakis, 2002a). All these considered 

the final collapse stage only. Veveakis et al. (2007) presented a physically base landslide 

model to predict the transition between the creep and the catastrophic phase of Vaiont slide 

incorporating the fictional heating effects. 

2.3 Review of thermo-plastic constitutive models for soil 

In this section, some existing constitutive models of thermo-plasticity of soils are 

presented. When frictional heating is considered such constitutive relations are necessary 

for determining the mechanical behaviour of soil as a function of temperature.  In the 

following models for elasto-plastic and thermo-elastoplastic behaviour of soils are 

presented. 

2.3.1 Elasto-plasticity of soils 

The elasto-plastic behaviour of a soil can be described using a yield surface is defined as 

function of (effective) stresses. If the stress state remains within the yield surface, then 

deformation is fully elastic. When the stress state reaches the yield surface, plastic 

deformation will start to occur. Depending on the type of model, the yield surface can 

either remain fixed (perfect plasticity) or evolve (hardening plasticity).   

Modified Cam-Clay is a particular model used to describe the elasto plasticity of soils. The 

yield surface of Modified Cam Clay is defined as a function of mean effective stress (p’), 

deviatoric stress (q) and preconsolidation stress(𝑝𝑐
′) and has elliptical shape (Roscoe and 

Burland, 1968). The size of the yield surface is given by the preconsolidation stress. The 

change in size of the yield surface is described through a hardening relationship defining 

the variation of the preconsolidation stress with volumetric plastic strain. The yield surface 

expands with the compactive volumetric strain (hardening) and shrinks with dilative 

volumetric strain (softening).  
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A ‘critical state’ is said to have been reached when shearing of the soil can continue 

without further change in stress or volumetric strain. Therefore, at the onset of the critical 

state; 

 
𝜕𝑝′

𝜕𝛾𝑑
=

𝜕𝑞

𝜕𝛾𝑑
=

𝜕𝜈

𝜕𝛾𝑑
= 0 2.3 

In the above, 𝛾𝑑is the shear distortion, 𝜈 is the specific volume. Critical states correspond 

to failure. For a given soil, all critical state fall on a unique line called the Critical State 

Line (CSL) is defined by the following equations in (𝑝′, 𝑞, 𝜈) space. 

 
𝑞 = 𝑀𝑝′ 

𝜈 = Γ − 𝜆 ln(𝑝′) 
2.4 

where 𝑀, Γ & 𝜆  are soil parameters determined from experiments.  

2.3.2 Hueckel’s constitutive model 

Based on experimental test of soils at different temperatures, Hueckel developed a 

modification on the critical state soil model. First, modification was done for the drained 

conditions (Hueckel and Baldi, 1990, Hueckel and Peano, 1987) (Figure 13). 

Subsequently, undrained failure was also interpreted with the inclusion of changes to pore 

water pressure due to temperature variations (Baldi et al., 1988, Hueckel and Pellegrini, 

1991) (Figure 14). 

The volumetric and deviatoric thermo elastic strain in terms of triaxial notation can be 

written as follows (Hueckel and Peano, 1987); 

 𝜀𝑣
𝑡𝑒 =

𝐾

1 + 𝑒0
ln

𝑝′

𝑝0
′ − 𝛼∆𝜃 2.5 

 
𝜀𝑞

𝑡𝑒 =
1

3𝐺
(𝑞 − 𝑞0) 2.6 

where  

𝑝′ =
𝜎1

′ + 2𝜎3
′

3
 

𝑞 = 𝜎1
′ − 𝜎3

′ ,  

K = bulk modulus of the soil at the reference temperature,  

G = shear modulus at the reference temperature, 

𝑝0
′ , 𝑞0 = reference values of 𝑝′ and 𝑞 

𝛼 = thermal expansion coefficient of soil. 

Non-linear changes in soil compressibility and the effect of secondary compression are 

ignored. The elliptical yield locus was derived as; 
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 𝑓 = ({
2𝑝′

(𝑝𝑐
′)𝐻𝑢(𝜀𝑣

𝑡𝑝, ∆𝜃)
− 1}

2

+
4𝑞2

[𝑀(𝑝𝑐
′)𝐻𝑢(𝜀𝑣

𝑡𝑝, ∆𝜃)]
2 − 1) 2.7 

In the above equation, the apparent preconsolidation stress (𝑝𝑐
′)𝐻𝑢  is a function of 

volumetric strain and temperature and is given as  

(𝑝𝑐
′)𝐻𝑢 = [𝑎̅ exp {

1

𝜆 − 𝐾𝑇
(𝑒1 + (1 + 𝑒0)𝜀𝑣

𝑡𝑝)} + 𝑎1Δ𝜃 + 𝑎2 sign (∆𝜃)∆𝜃2 ] 2.8 

where 𝐾𝑇 =
𝐾

1+𝑒0
+ (𝛼1 + 𝛼1∆𝜃)∆𝜃  

𝜀𝑣
𝑡𝑝

- volumetric thermo plastic strain 

∆𝜃 – change in temperature  

𝜆 - slope of the isotropic normal-compression line  

𝑎̅ – coefficient with the dimension of pressure  

𝑎1, 𝑎2 - coefficients of thermal sensitivity of the yield surface. 

𝑒0, 𝑒1 - reference void ratio 

At yielding, the total strain rate is obtained by adding the elastic and plastic strain rates 

(Hueckel and Pellegrini, 1991) 

 𝜀𝑣̇ = 𝜀𝑣̇
𝑡𝑒 + 𝜀𝑣̇

𝑡𝑝
 2.9 

 𝜀𝑞̇ = 𝜀𝑞̇
𝑡𝑒 + 𝜀𝑞̇

𝑡𝑝
 2.10 

The plastic strain rate can be obtained from the flow rule as follows; 

 𝜀̇𝑝 = 𝜆̇
𝜕𝑔

𝜕𝝈
 2.11 

𝜆̇ is a scalar valued plastic multiplier and 𝑔 is the plastic potential which is also a function 

of 𝑝′, 𝑞, 𝑝𝑐
′(𝜀𝑣

𝑝, ∆𝜃). The plastic multiplier 𝜆̇ is obtained from the consistency condition, 

stating that during yielding the stress state should lie on the evolving yield surface. 

Therefore, the consistency condition is expressed as; 

 𝑓̇ =
𝜕𝑓

𝜕𝑝′
𝑝̇′ +

𝜕𝑓

𝜕𝑞
𝑞̇ +

𝜕𝑓

𝜕𝜃
𝜃̇ +

𝜕𝑓

𝜕𝜀𝑣
𝑡𝑝 𝜀𝑣̇

𝑡𝑝 = 0 2.12 

Furthermore, Hueckel and Borsetto (1990) proposed two different plastic multipliers 

(𝜆̇𝑣 , 𝜆̇𝑞) in order to find out the volumetric and deviatoric plastic strain rate with single 

plastic potential function. So that; 

 𝜀𝑣̇
𝑡𝑝 = 𝜆̇𝑣

𝜕𝑔

𝜕𝑝′
 2.13 
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𝜀𝑣̇

𝑡𝑝 = 𝜆̇𝑞

𝜕𝑔

𝜕𝑞
 2.14 

Substituting the equation 2.12 into flow rule function 2.13, the volumetric plastic 

multiplier can be found as  

 𝜆𝑣̇ =

𝜕𝑓
𝜕𝑝′ 𝑝̇

′ +
𝜕𝑓
𝜕𝑞

𝑞̇ +
𝜕𝑓
𝜕𝜃

𝜃̇

𝐻̃
 ,     𝐻 =

𝜕𝑓

𝜕𝜀𝑣
𝑡𝑝

𝜕𝑔

𝜕𝑝′
  2.15 

Similarly, the deviatoric plastic multiplier is given as; 

 𝜆𝑞̇ = 𝜆𝑣̇ +
𝑓1

𝐻̃
𝜃̇ , 𝑓1 =

𝜕𝑓

𝜕𝜃
+ 𝑓1𝑇 (𝑝′, 𝑞, (𝑝𝑐

′)𝐻𝑢(𝜀𝑣
𝑝, ∆𝜃)) 2.16 

 

Figure 13: Drained heating tests at constant effective stress at various OCR – Remolded Pontida Clay 

(Hueckel and Baldi, 1990) 

 

Figure 14: Undrained heating test on Pontida Clay , water pressure vs axial strain (Hueckel and 

Pellegrini, 1991) 
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2.3.3 Laloui’s constitutive model 

Based on experimental results from triaxial tests with temperature control, Laloui and co-

workers developed a thermoplastic constitutive relation describing separately the isotropic 

and deviatoric mechanisms of deformations (Laloui and Cekerevac, 2003, 2008, Laloui 

and Francois, 2009, Laloui et al., 2008, Modaressi and Laloui, 1997). 

The total strain rate, accounting also for the influence of temperature, can be split into 

thermo-elastic and thermo-plastic components; in tensor form: 

 𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗
𝑡𝑒 + 𝜀𝑖̇𝑗

𝑡𝑝
 2.17 

The volumetric thermo-elastic strain is a combination of a reversible thermal strain and a 

reversible mechanical strain component. 

 𝜀𝑣̇
𝑡𝑒 =

𝑝̇′

𝐾
− 𝛽𝑠

′𝜃̇  ,   2.18 

where 𝛽𝑠
′ is the volumetric expansion coefficient of the solid skeleton. It was found that the 

thermal expansion coefficient is a function of temperature and the OCR (𝜉) as below 

(Laloui and Francois, 2009). 

 𝛽𝑠
′ = (𝛽𝑠0

′ + 𝜁Δ𝜃)𝜁 2.19 

The parameter 𝜁 defines the non-linear dependency to the temperature. 𝛽𝑠0
′  is the value of 

𝛽𝑠
′ at reference temperature, normally taken as the ambient temperature.  

The deviatoric (purely mechanical) component is given as  

 𝜀𝑑̇
𝑒 =

𝑞

3𝐺

̇
 2.20 

The elastic bulk and shear moduli are given as 

 𝐾 = 𝐾𝑟𝑒𝑓 (
𝑝′

𝑝𝑟𝑒𝑓
′ )

𝑛

, 𝐺 = 𝐺𝑟𝑒𝑓 (
𝑝′

𝑝𝑟𝑒𝑓
′ )

𝑛

 2.21 

𝐾𝑟𝑒𝑓, 𝐺𝑟𝑒𝑓 are the values of the moduli at the reference pressure 𝑝𝑟𝑒𝑓
′ . 

Laloui and Francois (2009) proposed that the total plastic strain increment is a linear 

combination of two irreversible processes an isotropic and a deviatoric one. Therefore, the 

plastic strain is decomposed as follows; 

 𝜀𝑖̇𝑗
𝑡𝑝 = ∑ 𝜀𝑖̇𝑗

𝑡𝑝 =

2

𝑘=1

𝜀𝑖̇𝑗,𝑖𝑠𝑜
𝑡𝑝 + 𝜀𝑖̇𝑗,𝑑𝑒𝑣

𝑡𝑝
 2.22 



23 

Each process is described using a flow rule. Laloui and Francois (2009) proposed two 

separate yield surfaces corresponding to the isotropic and the deviatoric mechanisms 

respectively. The yield function for the isotropic mechanisms is denoted by 𝑓𝑖𝑠𝑜 (Figure 

15) and describes the influence of temperature on the apparent preconsolidation pressure 

on the  (𝑝′, 𝜃) plane. The yield function for deviatoric mechanisms is denoted by  𝑓𝑑𝑒𝑣 and 

coincides with that of the original Cam-Clay constitutive model. 𝑓𝑖𝑠𝑜 , 𝑓𝑑𝑒𝑣  and the way 

they are coupled is shown in Figure 16. A general form of flow rule to describe the 

isotropic and the deviatoric process can be written as; 

 𝜀𝑖̇𝑗
𝑡𝑝 = ∑ λ𝑘

𝑝 𝜕𝑔𝑘

𝜕𝜎𝑖𝑗
′

2

𝑘=1

 2.23 

where, 𝑔𝑘  is the plastic potential corresponding to each mechanism, and 𝜆𝑘
𝑝

 is the 

respective plastic multiplier. 𝑘 = 𝑖𝑠𝑜  for the isotropic mechanisms and 𝑘 = 𝑑𝑒𝑣  for the 

deviatoric one 

 

Figure 15: Isotropic thermoplastic yield limit (Laloui and Francois, 2009) 

2.3.3.1 The isotropic mechanism  

The isotropic yield function is given as; (Figure 15) 

 𝑓𝑖𝑠𝑜 = 𝑝′ − (𝑝𝑐
′)(𝜀𝑣

𝑝, 𝜃)𝑟𝑖𝑠𝑜 2.24 

where, 𝑝𝑐
′  the apparent preconsolidation pressure that depends on 𝜀𝑣

𝑝, 𝜃. 𝑟𝑖𝑠𝑜 is the degree of 

plastification through which the progressive evolution of the yield function is taken in to 
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account as illustrated in Figure 17. The apparent preconsolidation is given by (Laloui and 

Cekerevac, 2003); 

 (𝑝𝑐
′) = 𝑝𝑐0𝑇0

′ [1 − 𝛾 log (
𝜃

𝜃0
)] exp(𝛽𝜀𝑣

𝑝) 2.25 

where 𝛾 is a material parameter, 𝑝𝑐0𝑇0
′  is the initial apparent preconsolidation at ambient 

temperature and  𝛽 is the plastic compressibility modulus. Finally, substituting the above 

equation into isotropic yield function, the latter is expressed as  

 𝑓𝑖𝑠𝑜 = 𝑝′ − 𝑝𝑐0𝑇0
′ [1 − 𝛾 log (

𝜃

𝜃0
)] exp(𝛽𝜀𝑣

𝑝)𝑟𝑖𝑠𝑜 2.26 

The associative flow rule for isotropic mechanism gives 

 𝜀𝑣̇
𝑡𝑝 = 𝜆𝑖𝑠𝑜

𝑝 𝜕𝑔𝑖𝑠𝑜

𝜕𝑝′
= 𝜆𝑖𝑠𝑜

𝑝 𝜕𝑓𝑖𝑠𝑜
𝜕𝑝′

= 𝜆𝑖𝑠𝑜
𝑝

 2.27 

2.3.3.2 The deviatoric mechanism  

The proposed deviatoric yield function is an extension of the original Cam-Clay model. 

 𝑓𝑑𝑒𝑣 = 𝑞 − 𝑀𝑝′ (1 − ln
𝑝′𝜗

(𝑝𝑐
′)

) 𝑟𝑑𝑒𝑣 = 0 2.28 

𝑟𝑑𝑒𝑣 is again the degree of plastification but in the deviatoric mechanism. 𝜗 represents the 

distance between the critical state line at ambient temperature and the isotropic 

consolidation curve for a given temperature. 𝑀 is the critical state parameter which varies 

with temperature as follows; 

 𝑀 = 𝑀0 − 𝑔̃(𝜃 − 𝜃0) 2.29 

𝑀0 is the critical state parameter (CSM) at ambient temperature 𝜃0. The thermal friction 

sensitivity parameter 𝑔̃, which gives the rate of friction softening due to temperature, is 

calculated using available experimental data (Laloui, 2001). By examining the behaviour 

of different soils shown in Figure 18, it can be concluded that the value of  𝑔̃ falls in the 

range of 10−3 ≤ 𝑔̃ ≤ 10−2. 

By combining the above equations, the deviatoric yield function becomes;  

𝑓𝑑𝑒𝑣 = 𝑞 − 𝑟𝑑𝑒𝑣𝑝
′[𝑀0 − 𝑔̃(𝜃 − 𝜃0)]{1 − ln(

𝑝′𝜗

𝑝𝑐0𝑇0
′ [1 − 𝛾 log (

𝜃
𝜃0

)] exp(𝛽𝜀𝑣
𝑝
)
)} = 0 2.30 

By applying the associative deviatoric flow rule, it was found that the deviatoric mechanics 

contributes to both volumetric and deviatoric strain rates as shown below. 

 𝜀𝑣̇,𝑑
𝑝 = 𝜆𝑑𝑒𝑣

𝑝 𝜕𝑔𝑑𝑒𝑣

𝜕𝑝′
= 𝜆𝑑𝑒𝑣

𝑝 𝜕𝑓𝑑𝑒𝑣

𝜕𝑝′
= 𝜆𝑑𝑒𝑣

𝑝 1

𝑀𝑝′
(𝑀 −

𝑞

𝑝′
) 2.31 
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𝜀𝑑̇

𝑝 = 𝜆𝑑𝑒𝑣
𝑝 𝜕𝑔𝑑𝑒𝑣

𝜕𝑞
= 𝜆𝑑𝑒𝑣

𝑝 𝜕𝑓𝑑𝑒𝑣

𝜕𝑞
= 𝜆𝑑𝑒𝑣

𝑝 1

𝑀𝑝′
 2.32 

Finally, Laloui and Francois (2009) coupled the above mechanisms using the hardening 

variable  𝜀𝑣
𝑝

. As shown above, the increment in 𝜀𝑣
𝑝

 results from both mechanisms. 

Therefore, the total volumetric strain rate is the sum. 

 𝜀𝑣̇
𝑝 = 𝜆𝑖𝑠𝑜

𝑝 𝜕𝑔𝑖𝑠𝑜

𝜕𝑝′
+ 𝜆𝑑𝑒𝑣

𝑝 𝜕𝑔𝑑𝑒𝑣

𝜕𝑝′
 2.33 

Laloui’s model is validated through the experiments on Bangkok clay carried out by Laloui 

and Francois (2009). The numerical simulations and the experimental results for various 

cases are illustrated in Figure 19 and Figure 20. 

 

Figure 16: The coupled thermo-plastic yield limit (Laloui and Francois, 2009) 
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Figure 17: Isotropic Compression test: Comparison of experimental results and the numerical 

simulation (Laloui and Francois, 2009) 

 

 

Figure 18: Experimental results for thermal friction sensitivity 
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Figure 19: Numerical simulations of isotropic compression tests of Bangkok clay at three different 

temperatures (Reproduced from Laloui and Cekerevac (2003)) 

 

 

Figure 20: Numerical simulations of a combined thermo-mechanical oedometric path of Bangkok clay. 

Comparison with experimental results (Reproduced from Laloui and Cekerevac (2003)) 
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2.3.4 Cecinato’s thermo-mechanical constitutive model  

Cecinato (2009), Cecinato et al. (2011) and Cecinato and Zervos (2012) proposed an 

improved constitutive model by modifying Laloui’s model. Rather than using the original 

Cam-Clay model to describe the deviatoric yield, Cecinato suggested using the Modified 

Cam Clay (MCC) model which has advantages when it becomes to numerical 

implementation.  

Cecinato divided the total strain rate in to three different components.  

 𝜺̇  = 𝜺̇𝑚𝑒 + 𝜺̇𝑡𝑒 + 𝜺̇𝑝 2.34 

where superscripts  𝑚𝑒,  𝑡𝑒 ,and  𝑝  denote mechanical elastic, thermo elastic and plastic 

parts.  

2.3.4.1 Thermo-elasticity  

The thermo elastic strain rate 𝜺̇𝑡𝑒 is proportional to temperature rate 𝜃̇.  

 𝜺̇𝑡𝑒  ∝  𝜃̇ 2.35 

Hooke’s law then gives 

 𝝈̇ = 𝑫𝒎𝒆𝜺̇ + 𝑫𝒕𝒆𝜃̇ 2.36 

where 𝑫𝒎𝒆  is the standard fourth-order tensor of elastic moduli, 𝑫𝒕𝒆  is here called the 

thermal tensor and is given as  

 𝑫𝒕𝒆 = −𝛽𝑠
′𝐾𝜹 2.37 

where, 𝛽𝑠
′ is the volumetric expansion coefficient of the solid skeleton, 𝜹 is the Kronecker 

delta and 𝐾 is the stress dependent bulk modulus. The thermo-elastic stress-strain relations 

can be written as; 

 𝝈̇ = (𝐾 −
2

3
𝐺)𝜹𝜺̇𝑚𝑒 + 2𝐺𝜺̇𝑚𝑒 − 𝛽𝑠𝐾𝜹𝜃̇ 2.38 

where, 𝐺 is stress dependent shear modulus. 

2.3.4.2 Thermo-plasticity   

The plastic strain rate can be obtained through the (in general non associative) flow rule. 

 𝜺̇𝑝 = λ̇
𝜕𝑔

𝜕𝝈
 2.39 

where 𝑔 is the plastic potential.  

From the consistency condition and the flow rule the plastic multiplier is calculated as, 
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 𝜆̇ =
𝑓𝝈𝑫𝒎𝒆𝜺̇ + (𝑓𝜃 + 2𝑫𝒕𝒆𝑓𝝈)𝜃̇

𝑓𝝈𝑫𝒎𝒆𝑔𝝈 − 𝑓𝜀𝑣
𝑝𝑔𝑝′

 2.40 

where 𝑓𝑎 =
𝑑𝑓

𝑑𝑎
  and   𝑔𝑎 =

𝑑𝑔

𝑑𝑎
 

The MCC yield function is;   

 𝑓 = 𝑞2 − 𝑀2𝑝′(𝑝𝑐
′ − 𝑝′) 2.41 

Substituting the equation for the apparent preconsolidation pressure (Equation 2.25) and 

the thermal-friction sensitivity (Equation 2.29) from Laloui’s model onto the above MCC 

equation, the final yield function becomes 

𝑓 = 𝑞2 − 𝑝′[𝑀0 − 𝑔̃(𝜃 − 𝜃0)]
2 {𝑝𝑐0𝑇0

′ [1 − 𝛾 𝑙𝑜𝑔 (
𝜃

𝜃0
)] exp(𝛽𝜀𝑣

𝑝) − 𝑝′} 2.42 

The above deviatoric yield function was coupled with Laloui’s isotropic yield function 

(2.26). The resultant shape of yield function in (𝑝′, 𝑞, 𝜃) space is shown in Figure 21. 

Combining both the thermo-elasticity and the thermo-plasticity, the general form of 

thermo-elasto-plastic stress-strain rate equation becomes  

 𝝈̇ = 𝑫𝒎𝒆 (𝜺̇ − λ̇
𝜕𝑔

𝜕𝝈
) + (𝑫𝒕𝒆 − 𝑪𝒕𝒆)𝜃̇ 2.43 

where 𝑪𝒕𝒆 =
1

3
𝛽𝑠

′𝜹 
 

The model was validated thorough the experimental data from Laloui and Cekerevac 

(2003) as given in Figure 22.  

 

Figure 21: Qualitative shape of the thermo-plastic yield locus at critical state (Cecinato, 2009) 
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Figure 22: Validation of Cecinato’s model through experimental data from Laloui and Cekerevac 

(2003) (reproduced from Cecinato (2009)) 

2.3.5 Robinet’s model 

Robinet et al. (1996) developed a thermo-mechanical constitutive model based on 

Hueckel’s model. This model considered the existence of a threshold temperature. Above 

the threshold temperature, both irreversible and reversible dilative strains occur as 

temperature increases. Below the threshold temperature, only reversible strains occur.  

Therefore, an isotropic yield surface was introduced based on the concept of threshold 

temperature in order to calculate the reversible and irreversible thermal strain. In addition, 

a different hardening rule was adopted to ensure that no change in the yield locus takes 

place while cooling. 

For the deviatoric part, MCC was adopted and was coupled with the above isotropic yield 

function. Validation of Robinet’s model through some experimental data is given in Figure 

23 

isotropic compression - from fig.3 Laloui & Cekerevac (2003)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

100 1000

log(p)

v
o

id
 r

a
ti

o

T=22

T=90

T=60

Numerical T=22 k=.075

λ=.11

heating 22°-60°,then only

mech.loading



31 

 

Figure 23: Numerical simulation and experiments of two axial drained paths of over consolidated state 

(Robinet et al., 1996) 

2.3.6 Sultan’s model 

Cui et al. (2000), Delage et al. (2000) and Sultan et al. (2002) developed a thermo-

mechanical model for saturated clays based on experimental results from triaxial tests 

under temperature control. The effect of overconsolidation ratio on the volumetric strain 

induced due to heating was investigated experimentally. Findings from this study were 

used to modify the existing models proposed by Hueckel and Borsetto (1990) for saturated 

clays in order to include the effects of over consolidation ratio.  

Hueckel proposed that, irreversible thermal contraction occurs only on highly over 

consolidated specimens. Unlike Hueckel’s model, Cui et al. (2000) observed 

experimentally that, there can be irreversible thermal contraction for low values of OCR. A 

new plastic mechanism called “thermal yield” (TY) was introduced by using an additional 

yield locus. Then the TY yield locus was coupled with Hueckel’s hardening law to express 

more realistically the hardening behaviour of soil. Modified Cam clay was adopted for the 

deviatoric part. Validation of Sultan’s model through some experimental data is given in 

Figure 24. 
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Figure 24: Thermal overconsolidation of the boom clay: comparison between predicted and observed 

results (Sultan et al., 2002) 

2.3.7 The mechanism of thermal pressurisation 

In the context of landslide, the thermal pressurization phenomena can be explained as 

follows; 

When the slide starts, the heat is produced due to friction within the slip surface due to the 

dissipated work. The soil strength reduces as velocity and displacement increases (Tika 

and Hutchinson, 1999). At the same time, thermo plastic collapse occurs due to 

temperature rise as explained in Laloui and Francois (2009). Furthermore, temperature rise 

facilitate the generation of pore water pressure due to thermal expansion of water. As a 

consequence, the effective stress at the slip surface is reduced due to rising of pore water 

pressure. The resistance to sliding is reduced which lead the collapse. 

Thermal pressurisation has been extensively studied, especially when it occurs in rock 

leading to shear failure or hydraulic fracturing (Rice, 2006). Sulem et al. (2007) and 

Wibberley and Shimamoto (2005) studied about the thermal collapse of clay materials in 

fault zones. Vardoulakis (2002a, 2002b) has studied thermal pressurisation in clayey 

gouges with application to the dynamic behaviour of rapid landslides. Many experimental 

evidence of thermal pressurisation mechanism can be found in the literature notably, Baldi 

et al. (1988) Campanella and Mitchell (1968) Ghabezloo and Sulem (2009) Sultan et al. 

(2002).  

Many attempt has been made to measure or calculate an average value for the key 

parameter, pressurisation coefficient λm, that gives the pore pressure increase due to a unit 

temperature increase under undrained and isochoric conditions (at constant specific 

volume). This can be given in terms of the thermal expansion coefficient (𝛼) and the 

compressibility coefficient (𝑐) as Vardoulakis (2002a) 
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𝜆𝑚 =

𝜕𝑝

𝜕𝜃
|

𝑣𝑜𝑙=𝑐𝑜𝑛𝑠𝑡
𝑢𝑛𝑑𝑟𝑎𝑖𝑛𝑒𝑑 

=
𝛼

𝑐
 

2.44 

where 𝛼 = 𝛼𝑚 − 𝛼𝑐; 𝛼𝑚 and  𝛼𝑐 are the thermal expansion coefficients of the soil water 

mixture and soil skeleton respectively.  

Experimental evidence shows that normally consolidated soil exhibits volume contraction 

under drained heating. (Hueckel and Baldi, 1990, Laloui and Cekerevac, 2003, Laloui and 

Francois, 2009). This is explained as the result of an internal mechanism of microstructural 

collapse, due to changes in water absorption by clay particles (Campanella and Mitchell, 

1968).  

Several authors found that normally consolidated soil exhibits volume reduction during 

heating , while over-consolidated soil shows elastic expansion at the initial stage of heating 

and plastic contraction with subsequent heating (Baldi et al., 1988, Laloui and Cekerevac, 

2003, Modaressi and Laloui, 1997, Sultan et al., 2002). Volume change due to heating for 

different OCRs can be plotted as in Figure 25. Under a heating/cooling cycle, volume 

changes for different values of OCR are shown in Figure 26. For increasing OCR, a 

transition temperature was identified at which plastic contraction starts from dilative elastic 

behaviour.   

 

Figure 25: Experimentally observed thermal volume change of the CM clay (Kaolin) (Laloui and 

Cekerevac, 2003) 
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Figure 26: Thermal volumetric changes of Boom clay samples at different OCR values. 

Based on the above experiments carried out in Boom clay, four major trends of thermal 

volume changes were identified as listed below (Sultan et al., 2002)  

 The plastic contraction of normally consolidated samples is independent of the 

mean effective stress applied. 

 The thermal contraction increases when OCR is decreased, leading to pure 

contraction for normally consolidated soil. 

 The slope of the volumetric strain versus temperature (i.e. thermo-elastic expansion 

coefficient) in the cooling stage is independent of the applied mean effective stress. 

 The temperature at which the transition between thermal expansion and contraction 

occurs decreases with OCR. 

For clay, Campanella and Mitchell (1968) found λm = 0.01 MPa/°C, Vardoulakis (2002a) 

proposed λm = 0.06 MPa/°C while Sulem et al. (2007) suggested λm = 0.1 MPa/°C. For 

sandstone, Campanella and Mitchell (1968) proposed λm = 0.05 MPa/°C while Rice (2006) 

estimated λm = 0.92 MPa/°C for a 7 km deep fault in rock with intact walls. 

2.3.8 Discussion on thermo plasticity on soils 

All constitutive models of thermo plasticity of soils have some common characteristics as 

well as some drawbacks.  Hueckel’s model is the first comprehensive model which is 

suitable for numerical implementations. This model was improved by Sultan, Robinet and 

co-workers by incorporating a new volumetric mechanism. Moreover, Hueckel’s model 

concentrated more on describing volumetric deformation, which is not as important in a 

landslide context as shear deformation. 

A different model was proposed by Laloui and co-workers to describe the deformation of 

soils due to thermal loading. The main drawback of Laloui’s model is that for the 

deviatoric mechanism the original Cam Clay yield function was used which, due to its non-
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smooth character, may cause problem in a numerical implementation. Also, this model is 

more complex as it contains two separate mechanisms for isotropic and deviatoric. 

Cecinato (2009) modified Laloui’s model by adopting the Modified Cam Clay model 

instead which is smooth and does not suffer from this problem. Although all the above 

models take the temperature into account none includes the time dependent behaviour of 

soils present even in isothermal conditions.  

In the following section, a critical review on time dependent behaviour of soils (creep) is 

made, with the intention of improving the existing thermo-plasticity models of soil so that, 

they cover temperature as well as time-dependent behaviour.  

2.4 Review of constitutive models of time-dependent 

behaviour of soil 

In this section, existing models that deal with time dependent behaviour of soils are 

reviewed. Creep of soils has been investigated in the laboratory by researchers and is 

defined as the progressive, irrecoverable deformation of a soil element under a state of 

constant effective stress (Hyde and Brown, 1976, Kuwano and Jardine, 2002, Murayama et 

al., 1984). 

In general, the entire process of shear creep of a soil can be divided into three stages: 

primary, secondary and tertiary creep (Augustesen et al., 2004). Experimental evidence 

shows that during the primary creep stage the shear strain rate decreases with time. Then, 

during the secondary stage the rate remains constant and finally during the tertiary stage it 

increases with time. Failure due to what is called creep rupture is possible during the 

tertiary stage (Figure 27). Many authors proposed models for secondary creep only 

(Bjerrum, 1967, Borja and Kavazanjian, 1985, Kavazanjian and Mitchell, 1977, Singh and 

Mitchell, 1968), although several models for all three stages of creep including rupture 

have also been proposed (Feda, 1989, Kuhn and Mitchell, 1993, Mitchell et al., 1968, Ter-

Stepanian, 1975). 

Feda (1989) describes that the structural hardening, i.e. particle re-orientation, is 

responsible for the primary creep whereas structural softening, i.e. particle disorienting, is 

for tertiary creep. The balancing of both softening and hardening occur during secondary 

creep. In the context of landslides, the primary and secondary creep can be used to explain 

the prolonged slow movement whereas, the tertiary creep can be used to explain the 

eventual catastrophic failure. 
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In some soils one-dimensional compression continues under constant loading even after 

excess pore pressure has dissipated, i.e. after primary consolidation has ceased - this is 

called secondary compression or volumetric creep (Lo, 1961, Mesri, 1973). The secondary 

compression coefficient 𝐶𝛼 is used to describe the magnitude of the volumetric creep as 

follows (Figure 28);  

 Δ𝑒 = 𝐶𝛼Δ log(𝑡) 2.45 

where Δ𝑒  change in void ratio and Δ log(𝑡)  is the change of logarithmic time. The 

temperature dependence on volumetric creep strain rate in explained in Section 5.8.1 in 

detail. 

 

Figure 27: Three stages of creep of soil under constant effective stress 

 

Figure 28: primary and secondary consolidation in e vs log(t) plot for soils 

2.4.1 Bjerrum’s model for volumetric creep 

Bjerrum (1967) proposed that the total volume change occurring in clay has two main 

components as defined below (Figure 29b).  

a) An ‘instant compression’ which occurs simultaneously with the increase in effective 

pressure and causes a reduction in void ratio until an equilibrium value is reached at 

which the structure effectively supports the applied pressure.  
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b) A ‘delayed compression’ representing the reduction in volume at constant effective 

stress. 

These two components are contrary to the well-known expressions, ‘primary’ and 

‘secondary’ compression Figure 29a. 

Assuming that the behaviour of soil is governed by a single void ratio e vs log p′ curve, it is 

not possible to capture the delayed compression of soils. To overcome this problem, 

Bjerrum (1967) introduced a system of e vs log p′ lines called time lines as shown in 

Figure 30. Timelines are defined as “lines of constant duration of loading”. Each timeline 

represents the compression behaviour after a particular duration of sustained loading. For 

example, if applied stress is increased at an interval of 24h, the corresponding e vs log p′ 

line is called 1-day time line (Bjerrum, 1967).  

Figure 30 illustrates the development of delayed compression under constant stress with 

time (path A–B).  It also should be mentioned that, during delayed compression, void ratio 

decreases passing through the successive timelines as shown in Figure 30. Also, the soil 

becomes over consolidated with time as the apparent preconsolidation stress , σz,pc
′ , 

increases (point C in Figure 30).  

Bjerrum’s model of secondary compression is a relatively simple one that quantitatively 

captures some aspects of soil creep although it is only concerned with the volumetric 

component. 

 

Figure 29: (a) Concept of primary and secondary compression (b) Concept of instant and delayed 

compression proposed by Bjerrum (1967) 
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Figure 30: Proposed timelines in e vs log p plot (modified from Bjerrum (1967)) 

2.4.2 Singh and Mitchell model 

From the experimental studies carried out by Mitchell and Campanella (1964), it was 

clearly understood that the time dependent response of a soil depends on various factors 

such as soil type, soil structure, stress history, drainage conditions and type of loading 

among others.  

Singh and Mitchell (1968) proposed a general stress–strain-time equation with parameters 

based on drained and undrained triaxial creep tests (Figure 31 and Figure 32). Their model 

focused on the creep behaviour of clays subjected to stresses in the range of 30% - 90% of 

the initial strength. The axial strain rate – time relationship in this model is; 

 𝜀𝑎̇ = 𝐴 𝑒𝛼̅𝐷̅ (
𝑡𝑖
𝑡
)

𝑚

 2.46 

where 𝛼̅ = 𝛼𝑞𝑚𝑎𝑥  and  𝐷̅ = 𝑞/𝑞𝑚𝑎𝑥 .  𝐴  is a parameter that represents the composition, 

structure and the stress history of the soil, α indicates the stress intensity effect on the creep 

rate 𝑞 indicates the deviatoric stress applied on specimen, 𝑡 is the time 𝑡𝑖  is a reference 

time. Finally, the parameter 𝑚 controls the strain rate with time and has a key role: If 𝑚 >

1; the axial creep strain reaches an asymptotic value over time and if 𝑚 ≤ 1; the creep 

strain increases infinitely with time (Figure 33a). 
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Figure 31: Strain rate vs. time relationships during drained creep of London clay (data from Bishop 

(1966)). 

 

Figure 32: Strain rate vs. time relationships during undrained creep of Osaka alluvial clay (data from 

Murayama and Shibata (1958)). 
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Figure 33: Creep curves predicted from Singh-Mitchell Creep equation for different m values. (a) 

strain vs time and (b) strain vs log time 

2.4.3 Kavazanjian and Mitchell model 

Kavazanjian and Mitchell (1977) proposed a different constitutive model for the time 

dependent behaviour of soil in the form of a general stress- strain-time relationship.  

This model was separately formulated for the volumetric and deviatoric components. Both 

components are assumed to have instantaneous and delayed strains as defined in Bjerrum 

(1967). Kavazanjian and Mitchell (1977) derived the volumetric part of the strain from the 

concept of logarithmic secondary compression law and the deviatoric part from the Singh-

Mitchell model. Even though the Singh-Mitchell model quantifies the axial strain in 

triaxial conditions, Kavazanjian and Mitchell (1977), proposed an indirect method for 

calculating the deviatoric strain from axial strain. 

Borja and Kavazanjian (1985) expanded this model further to calculate creep strains by 

employing the normality rule on the modified Cam Clay yield surface. To achieve this, the 

total strain was decomposed into three parts as follows; 

 𝜺̇ = 𝜺̇𝑒 + 𝜺̇𝑝 + 𝜺̇𝑡 2.47 

where superscripts 𝑒  and 𝑝  denote time-independent elastic and plastic components 

respectively and 𝑡 denotes the time-dependent component, which is irreversible. Borja and 

Kavazanjian (1985) proposed that the preconsolidation pressure 𝑝𝑐 increases due to two 

mechanisms. The first one is due to the strain hardening. The second one is due to aging of 

soil as proposed by Bjerrum (1967). The expression for 𝑝̇𝑐 (rate of preconsolidation 

pressure) is given as (Borja and Kavazanjian, 1985); 
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𝑝̇𝑐 = (
1 + 𝑒

𝜆 − 𝜅
) 𝑝𝑐𝜺̇𝑣

𝑝 + (
𝜓

𝜆 − 𝜅
) (

𝑝𝑐

𝑡
)               where , 𝜓𝛼 =

𝐶∝

ln 10
 2.48 

where 𝐶∝ is the coefficient of secondary compression (Equation 2.45), 𝑒 is the void ratio, 𝜆 

is the slope of the normal consolidation line, 𝜅 is the slope of unloading-reloading line, 𝜺̇𝑣
𝑝
 

is the volumetric strain rate and 𝑡 is the time. 

Borja and Kavazanjian (1985) validated their model against data from drained triaxial 

compression test on Weald Clay  as shown in Figure 34.  

 

Figure 34: Comparison of numerical simulations (SPIN 2D) and drained triaxial test on Weald Clay 

(Borja and Kavazanjian, 1985) 
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Overall, the model proposed by Kavazanjian and Mitchell (1977) and Borja and 

Kavazanjian (1985) can be considered as a comprehensive model for the creep of soils as it 

describes both the volumetric and the deviatoric creep strain components. 

2.4.4 Creep model with strain rate effects 

Many studies showed that strain rate also influences the stress-strain behaviour of soil. 

This can be demonstrated using the direct shear test carried out at different shearing 

velocity. Each velocity will give a different stress strain behaviour (Di Benedetto et al., 

2002, Leroueil et al., 1985, Mateši  and Vucetic, 2003, Vaid and Campanella, 1977). 

Leroueil et al. (1985), investigated the relationship between stress (𝜎𝑧
′), axial strain(𝜀𝑎), 

and strain rate (𝜀𝑎̇) on many natural clays. Constant rate of strain tests (CRS) were carried 

out for five types of natural clays selected from different sites (Smith and Wahls, 1969, 

Wissa et al., 1971). Using the experimental results, as shown in Figure 35, Leroueil et al. 

(1985) suggested a possible framework between 𝜎𝑧
′ , 𝜀𝑎  and 𝜀𝑎̇  can be described by two 

general functions. 

The first one gives the preconsolidation pressure as a function of strain rate as follows 

 𝜎𝑧,𝑝𝑐
′ = 𝑓(𝜀𝑎̇ ) 2.49 

The second one represents the normalized stress-strain relationship 

 
𝜎𝑧

′

𝜎𝑧,𝑝𝑐
′

= 𝑔(𝜀𝑎) 2.50 

The above two equations (2.49 and 2.50) can be explained using Figure 36. The 

normalized stress-strain curve varies for clays depends on the types structures of the clays. 

For a given soil, a unique normalised stress-strain relation can be written from one 

dimensional consolidation as follows, 

 𝜀𝑎 =
𝐶𝑟

1 + 𝑒0
ln (

𝜎𝑧,𝑝𝑐
′

𝜎𝑧,𝑜
′

) +
𝐶𝑐

1 + 𝑒0
ln (

𝜎𝑧
′

𝜎𝑧,𝑝𝑐
′

) 2.51 

In the above, 𝐶𝑐 & 𝐶𝑟 are the compression and the recompression index of the soils, 𝑒0 is 

the initial void ratio and 𝜎𝑧,𝑜
′  is the initial vertical stress. There is no closed-form 

expression for 𝑓 , in Equation 2.49, recommended by Leroueil et al. (1985). But later, 

Leroueil et al. (1996), suggested a linear relationship for the preconsolidation pressure 

(𝑓(𝜀𝑧̇) in Equation 2.49) as follows; 

 𝜎𝑧,𝑝𝑐
′ = 𝐴 + (

1

𝑚′
) (𝜀𝑧̇) 2.52 
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where m’ and A are constants.  Therefore, it is possible to derive a general stress-strain-

strain rate equation after substituting Equation 2.52 into Equation 2.51. 

 

Figure 35: Rate dependency on one-dimensional compression characteristics of Batiscan clay (After 

Leroueil et al. (1985)) 
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Figure 36: Stress–strain–strain-rate relationship for the strain rate approach: (a) normalized variation 

of the preconsolidation pressure with the strain rate (b) normalized effective stress–strain relation (c) 

experimental curves obtained at different strain rates (Leroueil et al., 1985) 

2.4.5 Soil creep as a rate process 

Many authors described creep of soil using rate process theory (Feda, 1989, Kuhn and 

Mitchell, 1993, Kwok and Bolton, 2010, Mitchell et al., 1968, Ter-Stepanian, 1975). Rate 

process theory is applicable to various materials such as polymer, asphalt, minerals etc. 

(Eyring, 1936) 

Rate process theory describes creep by considering on the movement of flow units such as 

atoms, molecules or particles. The movement of flow units is opposed by an energy barrier 

called activation energy which keeps a flow unit in an equilibrium position. If enough 

additional energy to exceed the activation energy is applied to the flow unit by an external 

source, it will move and cause deformation. This energy source can have different forms 

(e.g. a heat source or an applied stress). The complete description of rate process theory 

and application to the creep of soils will be discussed in Sections 4.1, 4.2 and 4.3. 

2.4.6 Soil Creep models with the influence of temperature 

Temperature also affects the creep behaviour soils. Some experimental studies were carried 

out by Campanella and Mitchell (1968) to predict the effects of temperature. In this 
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experiment, a conventional triaxial creep test was carried out with step increments of 

temperature. Typical results from test for most samples are shown in Figure 37. Using this 

experimental results, Mitchell et al. (1968) proposed the following equation.  

 𝐸 =
2.3 × 𝑅 × 𝑇2 × 𝑇1

(𝑇2 − 𝑇1)
log10

𝜀2̇𝑇1

𝜀1̇𝑇2
 2.53 

where, E is called activation energy is a constant for a given soil will be discussed in 

Section 4.3.1 in detail. 𝜀1̇  and 𝜀2̇  are the strain rate values at the values of absolute 

temperature 𝑇1 and 𝑇2 respectively. 𝑅 is the gas constant. 

 

 

Figure 37: Typical results of triaxial creep test with step increment of temperature (Campanella and 

Mitchell, 1968) 

 

2.4.7 Feda’s creep model  

Feda (1989) attempted interpreting the results of ring shear experiments (Figure 38) on the 

basis of rate process theory. Moreover, inclusion of primary and tertiary creep was also 

attempted in this model which will be more relevant in the context of landslides.  

From the basic consideration of rate process theory shear strain rate can be written in the 

following form (Feda, 1989); 
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 𝛾̇ =
2𝑘𝑇

ℎ
exp (

 𝜏𝜆𝑙

2𝑆𝑘𝑇
−

𝑈0

𝑅𝑇
) 2.54 

k = Boltzmann’s constant, 1.38 × 10−23J/K 

h = Plank’s Constant 6.62 × 10−34J s 

R = Universal gas constant, 8.31 J/ (mol K) 

T = Absolute temperature, K 

𝜆𝑙 = Distance between successive equilibrium points of two flow units  

U0= Activation Energy, which is a measure of bonding strength, J/mol 

𝜏 = Applied shear stress  

𝑆 = Number of bond/m2 

Feda (1989) modelled the shear creep of soil by combining the rate process theory and 

observations made from ring shear experiments for different specimen of soil.  

With some substitutions, Feda (1989) modified the shear strain equation as follows; 

 𝛾̇ = 𝐷 𝑒𝑥𝑝 𝛼𝑑𝜏𝑓 (
𝜏

𝜏𝑓
)  2.55 

τf - Long term strength (tertiary creep occurs at 𝜏 → τf) 

𝐷 =
2𝑘𝑇

ℎ
𝑒𝑥𝑝 (−

𝑈0

𝑅𝑇
) 

𝛼𝑑 =
 𝜆𝑙

2𝑆𝑘𝑇
 

In isothermal conditions, the term 𝐷 is constant, so that shear strain rate, in Equation 2.55, 

becomes constant with constant applied shear stress. Therefore, it is possible to model only 

secondary creep in isothermal condition. In order to include primary creep, where strain 

rate decreases with time, Feda (1989) proposed to consider D as time dependent as 

follows; 

 𝐷(𝑡) = 𝐷 (
𝑡𝑖
𝑡
)
𝑛

 2.56 

where 𝑡𝑖, is a reference time, 𝑡 is the natural time and  𝑛 > 0 is an exponent determines the 

rate of shear strain rate. Now it is possible to predict the primary creep by using rate 

process theory. 

Furthermore, from the experimental data (ring shear test), it was found that,  𝛼𝑑 obeys the 

following equation. 

 𝛼𝑑𝜏𝑓 = 𝑎𝑑 + 𝑏𝑑 (
𝑡

𝑡𝑖
) 2.57 

The stage of creep can be obtained by using the following conditions; 

If  𝑏𝑑 > 0;  
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Soil is in primary creep. During this stage, the soil exhibits strain hardening behaviour, 

therefore the strain rate diminishes with time. 

If  𝑏𝑑 = 0;  

Soil is in secondary creep. During this stage, the soil can be thought of both strain 

hardening and strain softening at the same rate therefore the strain rate remains constant 

with time. 

If  𝑏𝑑 > 0;  

Soil is in tertiary creep, during this stage soil exhibits strain softening behaviour. Therefore 

the strain rate increases with time and the soil will eventually fail. 

 

Figure 38: Results of ring shear creep test on different soils (Feda, 1989) 

2.4.8 Ter-Stepanian’s model 

Ter-Stepanian (1975) also presented a model of shear creep of clay based on rate process 

theory and experimental results (Figure 39) . It is based on the following assumptions. 

 The external forces applied to a soil specimen are transferred to the particle 

contacts, and each contact force can be resolved in to a normal (𝑟𝑖) and a tangential 

(𝑓𝑖) component. It is assumed that the shear strain rate of the soil specimen is 

proportional to ‘structure deformability’, defined as the ratio between vectorial sum 

of tangential (𝐹 = ∑𝑓𝑖) and normal (𝑅 = ∑𝑟𝑖) forces. 
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 Each inter-particle contact contains several bonds, which break due to the applied 

shear stress. Therefore the lifetime (𝐿) of the interparticle bonds depends on the 

applied shear stress (Bjerrum, 1973). 

 During primary creep, the strain rate reduces due to reorientation of particles 

arrangement, (i.e. soil structure becomes more regular). So that, L is directly 

proportional to time but during tertiary creep, the particles become more de-

oriented and L is inversely proportional to time.  

 

Figure 39: Results of ring shear creep test on Sissian Pliocene diatomaceous deposits 

With these assumptions, the following strain rate equation for was proposed for primary 

creep. 
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 𝛾̇ = 𝑎 (
𝜏 − 𝜏𝑝

𝜁
)
1

𝑡
 2.58 

Similarly, during the tertiary creep strain rate becomes; 

 𝛾̇ = 𝑎 (
𝜏 − 𝜏𝑝

𝜁
)

𝑡

(𝑡0)2
 2.59 

In Equations 2.58 & 2.59, 𝜁 is a constant and 𝑎 is a coefficient that depends on structure 

deformability (𝐹/𝑅). The coefficient 𝑎 is; 

 𝑎 = 𝐾̅ (
𝐹

𝑅
) 

𝑘𝑇

ℎ
exp (

−𝑈0

𝑅𝑇
) exp (

 𝜆𝑙𝑓0
2𝑘𝑇

) 2.60 

where, 𝐾̅ is the coefficient of proportionality with dimension of time and 𝑓0 is the average 

tangential force per flow unit i.e. molecule in the soil. In this model, 𝑓0  was assumed 

constant for a given soil, and independent of external applied forces. 

2.4.9 Visco-plasticity of soils 

The concept of visco-plasticity was introduced and developed by Perzyna; it is also 

referred to as overstress theory (Olszak and Perzyna, 1966a, b, Perzyna, 1962a, Perzyna, 

1962b, 1966). A key assumption in Perzyna’s overstress theory is that viscous effects are 

negligible in the elastic region, i.e., no viscous strains occur within the static yield surface, 

which corresponds to the traditional yield surface associated with time independent 

plasticity (Figure 40). In other words, the elastic strains are time independent whereas the 

inelastic strains are time dependent. The total strain rate is additively composed of the 

elastic and viscoplastic strain rates: 

 𝜀̇ = 𝜀̇𝑒 + 𝜀̇𝑣𝑝 2.61 

In the theory of elasto-visco-plasticity, the inelastic strain rate represents the viscous and 

plastic effects combined. The elastic strain rate is assumed to obey the generalized Hooke’s 

law. The static yield function denoted by 𝑓𝑦  separates the elastic and inelastic strain 

regime. 𝑓𝑦 is consistent with the classical concept of an elasto plastic yield function. If the 

stress point lies inside the static yield locus, elastic deformation takes place while if it is 

outside, viscoplastic strain would be expected to occur. In contrast to elasto-plastic theory, 

in viscoplastic theory, stress states are allowed to go outside the static yield locus and it is 

then that viscoplastic strains occur. The overstress function 𝐹 determines the magnitude of 

viscoplastic strain and is defined such that 𝐹 > 0, 𝐹 < 0, 𝐹 = 0 when the stress state P is 

outside, within or on 𝑓𝑦 respectively. While the viscoplastic strain-rate is assumed to obey 

the following non-associated flow rule: 
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 𝜀𝑖̇𝑗
𝑣𝑝 = 𝛾𝜙(𝐹) 

𝜕𝑔 

𝜕𝜎𝑖𝑗
′  2.62 

where 𝛾 is the fluidity parameter, 𝜙 is the viscous nucleus, 𝐹 is the overstress function, 𝑔 

is the potential function and 𝜎𝑖𝑗
′  is the effective stress state. 

 

Figure 40: Stress state P is part of the dynamic yield surface fp and overstress F is defined as the 

distance between P and the static yield surface fy  Furthermore, the viscoplastic strain rate vector is 

perpendicular to the plastic potential surface g 

The over stress function is a function of viscoplasitc work 𝑊𝑣𝑝and the current stress state 

𝜎𝑖𝑗
′  which can be written as  

 𝐹(𝑊𝑣𝑝, 𝜎𝑖𝑗
′ ) =

𝑓𝑝(𝑊𝑣𝑝, 𝜎𝑖𝑗
′ )

𝜅𝑠(𝑊𝑣𝑝)
− 1 2.63 

where 

𝑊𝑣𝑝 = ∫ 𝜎𝑖𝑗
′ 𝜀𝑖̇𝑗

𝑣𝑝
𝜀̇𝑖𝑗
𝑣𝑝

0

 

and the function  𝑓𝑝  describes the dynamic loading surface on which the current stress 

point P is located (Figure 40) and 𝜅𝑠 is the hardening parameter. Therefore, the following 

constraints are applied to the viscous nucleus 𝜙 according to the key assumption of flow 

rule applied to the dynamic yield function. 

 〈𝜙(𝐹)〉 = {
0             for 𝐹 ≤ 0
𝜙(𝐹)      for 𝐹 > 0

 2.64 

The above constraints can be considered as loading criteria for inelastic deformation. The 

direction of viscoplastic strain is assumed normal to the dynamic yield function 𝑓𝑝. 
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2.4.10 Discussion  

The models reported above take different approaches for describing the creep behaviour of 

soils. Secondary compression law is the first methodology used to calculate the long-term 

settlement of soils under constant loading. However, this method can be used to calculate 

the volumetric creep only. Bjerrum’s model is more advanced, in that total strain is 

decomposed as instant (primary) and delayed (secondary). Again however, only volumetric 

strain can be calculated by using this model.  

The Singh and Mitchel model can capture both volumetric and shear creep of soils. 

However tertiary creep cannot be simulated, because the strain rate is considered to either 

decreases or remain constant with time. The Kavazanjian and Mitchell model is a more 

advanced and comprehensive model, as it describes the both volumetric and deviatoric 

creep behaviour of soils. One further advantage is that it used the widely uses the Modified 

Cam Clay yield surface.  

Viscoplasticity is widely used currently to describe the time dependent behaviour of soil. 

The one advantage is that, by using this, both the creep (constant stress rate) and the 

relaxation process (constant strain rate) can be simulated. In viscoplastic models, the stress 

point should be outside the static yield locus in order to create creep strain. However, soil 

may undergo deformation under constant stress even though the stress state is in elastic 

region. This particular behaviour cannot be predicted by a viscoplastic model. Another 

disadvantage is that it lacks the ability to predict the tertiary creep. 

Feda’s and Ter-Stepanian’s models were derived based on rate process theory and some 

experimental results. Both have some common characteristics;  

 Both models focused mainly on shear creep of soil and ring shear tests were carried 

out to support them.  

 In both cases, time dependent coefficients were used to capture the different stages 

(primary, secondary and tertiary) of creep.  

 Even though the basic equation for rate process theory contains temperature as a 

parameter both models were proposed for isothermal conditions.  

In conclusion, most creep models in the literature consider isothermal conditions. A model 

considering both creep and temperature dependent soil behaviour is still lacking.  
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2.5 Review of existing models of large scale landslides 

There are many models available in the literature that deal with large scale landslides. 

Some selected models, which include frictional heating, are reviewed here and a discussion 

is made on the advantages and disadvantages of each model.  

It has been proposed that frictional heating of the slip zone plays a major role on the failure 

of landslides. Firstly, Habib (1975) proposed a mechanism of vaporization of pore water 

pressure due to frictional heating to explain the reduction in the strength of rockslides in 

the Vaiont landslide.  De Blasio and Elverhoi (2008), Erismann (1979) and Gaziev (1984) 

described the concept of “self-lubrication”, where rock particles crushed the in to fine 

grains or even melted in the shear zone, leading to loss of shear strength.  

2.5.1 Vardoulakis’s dynamic thermo-poro-mechanical model 

Vardoulakis (2002a) presented a comprehensive landslide model by using a thermo-poro-

mechanics approach. In this model, heat generation due to friction, pore pressure build up 

due to the production of heat and loss of shear strength due to thermoplastic collapse of the 

soil skeleton were taken into account to determine the evolution of a landslide during the 

time window of catastrophic acceleration of the sliding mass, but before the sliding mass 

starts break into pieces. It considers a rock mass sliding on a thin clay layer (shear band); 

the motion of the mass and the deformation of the shear band is derived using energy, mass 

and momentum balance. The geometry of the problem is divided into two sections. The 

first one is a long thin shear band with thickness of 𝑍𝑏. Pore pressure u (z,t), temperature θ 

(z,t), and the velocity v (z,t) inside the shear band are functions of time t and depth z . 

Furthermore, it was considered that, all deformation and heat production take place inside 

this thin shear band. The second section of the geometry is the sliding mass on top of the 

shear band (Figure 41). 

The shear band thickness plays a major role on the shear strain, strain rate, heat generation 

and diffusion of heat and pore water pressure. Vardoulakis selected the shear band 

thickness of 1.4mm based on experimental observations (Morgenstern and Tchalenko, 

1967, Tika and Hutchinson, 1999). 

In the shear band, temperature increases due to frictional heating and pore water pressure 

rises due to thermal pressurization.  This set of soil behaviour will allow rapid loss of shear 

strength; ultimately leading to catastrophic failure. From a constitutive model point of 

view, it was assumed that, the soil inside the shear band follows with the Mohr-Coulomb 
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failure law (Figure 42). Some material strain and strain rate softening also were taken in to 

consideration (Tika and Hutchinson, 1999). 

A set of three governing equations were derived in order to calculate the pore water 

pressure, temperature and the velocity/displacement profiles.  

The first equation is the heat diffusion-production equation, and is an energy balance 

equation as follows;  

 
𝜕𝜃

𝜕𝑡
= 𝜅𝑚

𝜕2𝜃

𝜕𝑧2
+ 𝜇̂(𝛾, 𝛾)̇ (

|𝜎′𝑛0 + 𝑢(𝑧, 𝑡)|

𝑗(𝜌𝐶)𝑚
) 𝛾̇ 2.65 

The first term on the RHS of Equation 2.65 accounts for heat diffusion and the second is 

heat generation. Other parameters are defined are defined below; 

𝜅𝑚= Kelvin’s coefficient of thermal diffusivity of the soil–water mixture  

 𝜇̂(𝛾, 𝛾̇) |𝜎′
𝑛0 + 𝑢(𝑧, 𝑡)|𝛾̇ = 𝐷  , is the dissipation term, equal to the plastic work done 

inside the shear band, 

 𝜇̂(𝛾, 𝛾̇) is the strain and strain rate dependent friction coefficient,  

𝑗(𝜌𝐶)𝑚 = 𝐶𝑓 is the thermal constant of the soil water mixture 

The second equation is the pore water pressure equation, derived from mass balance 

together with Darcy’s law as follows; 

 
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣(𝜃)

𝜕𝑢

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
 2.66 

where 𝑐𝑣 is the temperature dependent consolidation coefficient and  𝜆𝑚 is the temperature 

and pore pressure dependent pressurization coefficient. The first term on the RHS of 

Equation 2.66 accounts for pore water pressure diffusion and the second term for 

generation of excess pore water pressure due to thermal pressurization. 

The third equation is the dynamics equation derived from the momentum balance of the 

material inside the shear band. The velocity profile inside the shear band is described as 

follows; 

 
𝜕𝑣

𝜕𝑡
=

1

𝜌
[−𝜇̂(𝛾, 𝛾)̇

𝜕𝑢

𝜕𝑧
+ 𝐻|𝜎′𝑛0 + 𝑢(𝑧, 𝑡)|

𝜕2𝑢

𝜕𝑧2
] 2.67 

where  𝐻 =
𝜕𝜇̂

𝜕𝛾̇
  is called as frictional rate sensitivity. After integration of Equation 2.67,  
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Figure 41: “Section 5” of Vaiont Landslides and enlarged shear band (After Vardoulakis (2002a)) 
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Figure 42: Scheme of constitutive model (Vardoulakis 2002) 

Vardoulakis (2002a) found that the resulting spatial velocity profile is close to linear form, 

so that following equation is adopted instead of equation  2.67. 

 𝑣 = 𝑣𝑑(𝑡) (
𝑧

𝑍𝑏
)   2.68 

where 𝑧 is the spatial coordinate inside the shear band, 𝑍𝑏  is the thickness of the shear 

band. 𝑣𝑑(𝑡) is the velocity at the upper boundary of the shearband which coincides with 

the velocity of the sliding mass and is governed by; 

 
𝑑𝑣𝑑

𝑑𝑡
= 𝑅𝜔0

2 (𝐴(𝜇𝑚) +
𝑢𝑑(𝑡)

𝑝𝑐(𝜇𝑚)
)   2.69 

where 𝜔0
2 & 𝑅 are constants depending on the geometry, 𝐴 and 𝑝𝑐 are model parameters, 

and are functions of mobilised friction coefficient and 𝑢𝑑 is the excess pore water pressure 

at the interphase between the shear band and sliding mass. 

This model was applied to back analyse the Vaiont landslide, successfully reproducing its 

catastrophic acceleration phase. 

2.5.2 Cecinato’s model 

Cecinato (2009), Cecinato et al. (2011) and Cecinato and Zervos (2012) improved 

Vardoulakis’s model by incorporating some additional aspects. First, a more realistic 

constitutive approach was adopted than in Vardoulakis’s model based on thermo-plasticity 

and covering wider range of thermal behaviour of soil. As Modified Cam-Clay is used in 

Cecinato’s thermo-plasticity constitutive model, a superposition of thermal softening was 
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made in the critical state parameter (M) in addition to the Vardoulakis’s assumption of 

displacement and velocity softening. Final expression for 𝑀 yields as: 

 𝑀(𝛾, 𝛾,̇ 𝜃) = 𝑀̂(𝛾, 𝛾)̇ − 𝑔̃(𝜃 − 𝜃𝑟𝑒𝑓) 2.70 

where 𝜃 is the temperature, 𝜃𝑟𝑒𝑓 is the reference temperature and  𝑔̃ is thermal sensitivity. 

Vardoulakis (2002a) used the Mohr-Coulomb failure law in constitutive point of view 

which is temperature independent. Therefore, the pressurization coefficient 𝜆𝑚 is proposed 

based on the available experimental evident. However, Cecinato developed a thermo-

plasticity constitutive model that can capture the thermal behaviour of soils (Section 2.3.4). 

Therefore an expression for 𝜆𝑚  is derived which is consistent with the proposed thermo 

plasticity framework which is given by; 

 𝜆𝑚 =
𝜆 − 𝜅

𝜆𝑐
{

𝛾𝜅

(1 + 𝑒)𝜃 (1 − 𝛾 log (
𝜃
𝜃0

)) 
− 2𝛽𝑠} 

2.71 

In the above, 𝜆  is the slope of the normal consolidation line, 𝜅  is the slope of the 

unloading-reloading line, 𝑐  is the compressibility of soils,  𝛾  is a material parameter 

defining the rate of decrease of preconsolidation stress with 𝜃. 𝜃 is the temperature and 𝜃0 

is reference temperature normally taken as ambient temperature. 

 

Figure 43: Effective stress path of material point inside the shear band (Cecinato, 2009) 

Cecinato (2009), Cecinato et al. (2011) and Cecinato and Zervos (2012) assumed that the 

stress lies at critical state. The stress path during entire process of a landslide illustrated in 
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Figure 43; path 1 to 2 occurs due to thermal softening (2.25), path 2-3 occurs due to 

existences of excess pore water pressure, which reduces by 2Δ𝑢  in preconsolidation 

pressure and path 3-4 occurs due to frictional softening where M reduces according to 

thermal friction sensitivity equation. But, all processes actually occur at the same time. 

Using this model, Cecinato (2009) was also able to reproduce the catastrophic phase of the 

Vaiont Slide. Cecinato’s findings further show that, thermal friction softening is less 

important as a destabilising mechanism than the strain and strain rate softening for the 

development of catastrophic acceleration, also that thermal pressurization will cause 

thicker sliding masses to accelerate faster. 

2.5.3 Thermo-poro-mechanics of creeping landslides (Veveakis et 

al, 2007) 

Veveakis et al. (2007) presented a physically based landslide model with the inclusion of a 

creeping phase. This model also was finally applied to the Vaiont landslide for validation. 

As confirmed from the geological data, the Vaiont landslide was preceded by 3 years of 

creep and ended with the catastrophic collapse of a rock mass with velocity of about 30 

m/s. Using the concepts of thermal softening and velocity hardening of soil, Veveakis et al. 

(2007) proposed that a balancing of these two mechanisms was responsible for the 

creeping phase of the slide.  

The proposed expression for the frictional coefficient at critical state combined thermal 

softening and velocity hardening as follows. 

 𝜇𝑐𝑠 = 𝜇𝑟𝑒𝑓 (
𝛾̇

𝛾̇𝑟𝑒𝑓
)

𝑁

𝑒−𝑀(𝜃−𝜃1) 2.72 

where N, M are the frictional rate sensitivity and the thermal sensitivity parameters 

respectively. Catastrophic acceleration is triggered, when a critical pressurization 

temperature is reached inside the shear zone, at which temperature thermal pressurization 

controls the acceleration of the rigid sliding mass. Even before the pressurization 

temperature is reached, however, the slide becomes critical because dissipation of heat 

progressively localizes inside an ever shrinking shear zone with time. This model was 

applied to the Vaiont slide and compared with the real values obtained from the case 

studies.  
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2.5.4 Goren and Aharonov‘s Thermo-poro-elastic model  

Goren and Aharonov (2007, 2009) developed a model for large scale landslides using a 

thermo-poro-elastic approach. Frictional heating and thermal pressurization, were taken as 

possible mechanisms explaining catastrophic failure as well as slow movement.  In this 

model also, governing equations were proposed based on the mass, energy and momentum 

balances. The results from this model show that the permeability of sliding mass is the 

dominant factor on the behaviour of landslides. Low permeability leads to catastrophic 

failure, while high permeability leads to slow movement (creep like movement) due to 

rapid dissipation of pore water pressure. 

2.5.5 Puzrin’s model (shear band propagation) 

Puzrin and co-workers presented a model for the growth of a shear band leading to 

catastrophic failure (Puzrin et al., 2010, Puzrin and Germanovich, 2005, Puzrin and 

Schmid, 2011, Puzrin and Sterba, 2006). Initially, the Palmer-Rice (PR) fracture mechanics 

was used to explain the propagation of the shear band. The original PR fracture mechanics 

was proposed for over consolidated soil only. Puzrin and Schmid (2011) attempted to 

develop a general approach based on the fracture mechanics, which is applicable to a wider 

range of soils such as saturated and unsaturated-normally and over consolidated soils. 

Finally, shear band propagation was studied with different approaches such as limiting 

equilibrium, linear elastic fracture mechanics, energy balance and the process zone 

technique. Among these approaches, energy balance was identified as the most 

conservative method. 

Puzrin and Germanovich (2005) explained the different types of failure (progressive, 

catastrophic and delayed failure) using fracture mechanics. Puzrin et al. (2010) explained 

the shear band propagation of submarine landslides using the energy balance approach. 

Finally, this model was applied to back analyse the Storegga slides, the Western Goleta 

slide, and the Lake Lucerne slide submarine landslides. Velocity and acceleration were 

calculated and compared. Findings show that, stiffness of the soil, the viscosity of water 

and any yearly precipitation (pore water pressure) play main role on velocity and 

acceleration of landslides.  

2.5.6 Alonso’s thermo-hydro-mechanics of rapid landslide  

Another model was developed by Alonso et al. (2010) and Pinyol and Alonso (2010) using 

the thermo-hydro-mechanics approach to explain the final stage of the failure of Vaiont 

landslide. The same thermal pressurization concept was used here as well, to explain the 

heat induced pore pressure build-up. Alonso et al. (2010) also derived a set of governing 
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equations using the energy, mass and momentum balances with some assumptions as listed 

below; 

1. Pore water pressure changes due to thermal pressurization only. 

2. The heat produced cannot escape through the band boundaries. The final failure of 

Vaiont is considered so quick, that conductive heat transfer is assumed negligible 

within the shear band. 

Finally, pore water pressure isochrones, velocity and displacement profiles were plotted 

and compared with real geological results of Vaiont slide. The parameters selection was 

made based on Hendron and Patton (1985). Permeability was identified as one of the key 

parameters controlling failure.  

2.5.7 Discussion on presented models of large scale landslides 

Even though the Vardoulakis model is comprehensive some drawbacks were identified as 

listed below. 

 The constitutive model adopted for the soil (simple Mohr-Coulomb failure line) does 

not capture the full range of temperature dependent behaviour of soils, such as thermal 

hardening and decrease in friction angle with temperature.  

 The model cannot be easily generalized to two and three dimensions. 

 The model covers catastrophic failure phase only. However slow creep-like movement 

of slopes for long periods of time is also known to often precede that.  

Although Cecinato (2009) made improvements over Vardoulakis’s model, still creep-like 

movement of the landslides is not included in that model either. Furthermore, Cecinato’s 

model assumes a shear band of infinite length. In reality, the shear band initiates at a given 

location and propagates with time till global failure occurs. Growth of the shear band is not 

included in this model. 

Creep-like movement was on the other hand included in Veveakis et al. (2007) thermo-

poro-mechanical model. This model considered that the balancing of velocity hardening 

and thermal softening mechanisms keeps the slide in the creep stage. However, there is 

experimental evidence of velocity softening in clays (Tika and Hutchinson, 1999). 

Therefore one can conclude that, this model does not cover the full range of the behaviour 

of soil during the entire life time of a landslide either. Also, creep-like movement is 

observed in soils even in isothermal conditions, where thermal softening is irrelevant.  
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Absence of some possible mechanism can also be seen in Goren and Aharonov’s model. In 

particular; 

 Inelastic soil behaviour such as hardening, strain softening, and strain rate softening 

mechanisms are not included. 

 Although energy balance is used, the heat advection term is neglected.  

 Thermal dependence of parameters such as the friction angle is not included. 

Similar drawbacks are also presented in the model developed by Alonso et al. (2010).  

 This model also does not cover the creeping phase of a landslide. 

 Thermal conductivity was assumed as zero. In reality, it is possible to conduct the heat 

through the boundary. 

Although a number of models are available in the literature, a comprehensive model 

covering all aspects of material behaviour at all stages of a landslide is still lacking. Due 

to the above reasons, more improvements are still needed to cover the wide range of 

possible mechanism of landslides 

2.6 Further developments  

In this Chapter, a comprehensive review of existing constitutive models on soils and 

landslide model was presented. 

In the next chapter, a refined dynamic thermo-poro-mechanical landslide model is 

developed based on that developed by Cecinato (Cecinato, 2009, Cecinato and Zervos, 

2012, Cecinato et al., 2011). Here a more realistic formulation for the dynamics of the 

moving slide is included. 

In chapters 4, 5 & 6, Different thermo-poro-mechanical models are developed to simulate 

the transition between the creep and the catastrophic stages of a landslide. Three different 

types of model have been selected out of all reviewed creep models to represent the soil 

behaviour.  

The first model is rate process theory which is based on activation of flow units (Section 

2.4.5). Moreover, flow units can be activated by thermal energy as well as externally 

applied stress. Therefore, it should be possible to use it to model the creep like movement 

of landslides, as it incorporates the time dependent behaviour of soils and also the concept 

of thermal activation is inherently included.  
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The second one is the model proposed by Borja and co-workers (Section 2.4.3). This 

model explains the time dependent behaviour of soils in the context of Modified Cam-

Clay. Moreover, Cecinato’s thermo-plasticity explains the thermo-mechanical behaviour 

of soils with MCC. Therefore, it possible to combine the models developed by Borja’s and 

Cecinato’s to describe the both temperature and time-dependent behaviour of soil.  

The third one is viscoplasticity of soil proposed by Perzyna and co-workers which 

explains the time dependent behaviour of soils (Section 2.4.9). It also can be combined 

with the Laloui’s thermal softening law (applied to static yield locus) to include the 

thermal dependency on the soil behaviour in it. 
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Chapter 3: A refined thermo-poro-mechanical 

model for landslides 

As described in section 2.5.2, Cecinato developed a two dimensional landslide model that 

is based on an advanced constitutive model describing the thermo-plasticity of soils 

(Cecinato, 2009, Cecinato and Zervos, 2008, Cecinato and Zervos, 2012, Cecinato et al., 

2011, Cecinato et al., 2008). A limitation of this model, however, is that when formulated 

for a circular slip surface, the dynamic equation assumes a constant driving moment 

throughout the entire movement history of the landslide. In other words, the fact that the 

distance of the centre of gravity of the sliding mass from the centre of the slip circle, and 

therefore the driving moment, changes during sliding, has been ignored . In reality, the 

change of lever arm reduces the driving moment as displacement progresses. In this 

chapter, this landslide model is further refined by considering the change in the driving 

moment. First, the dynamic equation is modified, and then it is coupled with the same heat 

and pore pressure equations proposed by Cecinato (2009). Numerical results are 

subsequently presented and discussed.  

3.1 Modified dynamic equation  

The dynamic equation describes the velocity of the sliding mass over time. Cecinato 

(2009) and Vardoulakis (2002) assumed that the landslide mass rotates as a rigid body with 

respect to the centre of the predefined failure circle. Furthermore, the net driving moment 

was assumed constant. This assumption is a gross one as the net driving moment changes 

significantly during rotation of the mass. A more refined formulation is derived below.  

A schematic diagram for the friction circle method is shown in Figure 44. With reference 

to Figure 44, the driving moment 𝑀𝑑𝑟𝑣 can be written as  

 𝑀𝑑𝑟𝑣 = 𝐷𝑅𝐷 3.1 

The term D in Equation 3.1 is the resultant driving force, and 𝑅𝐷 is the lever-arm from the 

centre of the failure circle. Angular displacement is measured from the initial position of 
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limiting equilibrium. From Taylor’s friction circle theorem, 𝑅𝐷 (at the initial position) is 

written as; (Taylor, 1948) 

 𝑅𝐷 = 𝑅𝑓 sin𝜑𝐹  3.2 

where, 𝜑𝐹 is the friction angle of the material inside the shear band at incipient failure and 

𝑅𝑓  is the radius of failure circle. 𝑅𝐷  depends on displacement, therefore a general 

expression for 𝑅𝐷 can be written as;  

 

𝑅𝐷 = 𝐾𝑐𝑅𝑓 sin(𝜑𝐹 − 𝜃𝑑) 

𝐾𝑐 =
𝛼

√2(1 − cos 𝛼)
 

3.3 
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Figure 44: Schematic diagram schematic diagram representing friction circle method 

where, 𝜃𝑑 is the angular displacement of the sliding mass, 𝛼 is the opening angle of the 

failure arc, and 𝐾𝑐  is a correction factor proposed by Taylor (1948). The resultant of 

normal reaction (𝜎𝑛0
′ ) and tangential stress (due to friction) acting along the failure arc is at 

an obliquity of 𝑅𝑓 sin(𝜑𝐹 − 𝜃𝑑) to the centre of the failure arc. The circle drawn with this 

obliquity , 𝑅𝑓 sin(𝜑𝐹 − 𝜃𝑑), is called the friction circle. However, depending on the type of 

normal reaction (𝜎𝑛0
′ )  distribution (uniformly, sinusoidal etc.), there is a deviation of 

tangency to the friction circle. In order correct this tangency, a factor 𝐾𝑐 is used which 
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depends on the opening angle of the failure arc. Factor 𝐾𝑐  shown in Equation 3.3 is 

proposed for uniformly distributed load. Therefore the final expression for driving moment 

can be written as; 

 𝑀𝑑𝑟𝑣 = 𝐷
𝛼

√2(1 − cos 𝛼)
𝑅𝑓 sin(𝜑𝐹 − 𝜃𝑑) 3.4 

The above result is valid only if the direction and magnitude of the resultant driving force 

are unchanged with time. This is plausible in cases where the magnitude of the seepage 

force is very small compared to the weight of the sliding mass, and it is the assumption 

made here. 

Motion is resisted by the total friction force that develops along the failure circle. This 

depends on the friction angle and the normal effective stress. Assuming that the normal 

effective stress is constant along the failure circle, at any time it is given by 

 
𝜎𝑛0

′ =
𝐷

𝑅𝑓√2(1 − cos𝛼)
cos(𝜑𝐹 − 𝜃𝑑) 

3.5 

Therefore the resisting moment can be written as; 

 𝑀𝑟𝑒𝑠 = [𝜎𝑛0
′ 𝑅𝑓𝛼 − 𝑝𝑑𝑅𝑓(𝛼 − 𝛼1)]𝜇𝑅𝑓 3.6 

where 𝜇 = tan𝜑𝑚  (𝜑𝑚  is the mobilized friction angle of the shear band material) and 

𝛼2 = (𝛼 − 𝛼1) is the opening angle of the part of the failure circle that is below the 

phreatic surface. 𝑝𝑑 is the excess pore water pressure generated by thermal pressurization 

at the interface between the shear band and the moving rigid mass. 

Balance of angular momentum gives 

 𝜌𝐼𝑝
𝑑𝜔

𝑑𝑡
= 𝑀𝑑𝑟𝑣 − 𝑀𝑟𝑒𝑠 3.7 

where 𝜌𝐼𝑝 is the polar moment of inertia of the sliding mass (𝜌 is the density of the mass 

and 𝐼𝑝 the second moment of area) and 𝜔  is its angular velocity. Substituting the 

corresponding expressions for 𝑀𝑑𝑟𝑣 and 𝑀𝑟𝑒𝑠 yields 

 𝜌𝐼𝑝
𝑑𝜔

𝑑𝑡
= 𝜔0

2 (𝐴 +
𝑝𝑑(𝑡)

𝑝𝑐
) 3.8 

 
𝐴 =

𝐷𝑅𝑓𝑅𝑑

𝛾𝑠𝐼𝑝
(1 −

tan𝜑𝑚

tan(𝜑𝐹 − 𝜃𝑑)
) 

3.9 

 
𝑝𝑐 =

𝛾𝑠𝐼𝑝

𝑅𝑓
3

1

(𝛼 − 𝛼1) tan𝜑𝑚
 

3.10 
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According to Equation 3.9, if tan𝜑𝑚 ≥ tan(𝜑𝐹 − 𝜃𝑑) the slide will be stable, whereas 

if tan𝜑𝑚 < tan(𝜑𝐹 − 𝜃𝑑) the slide will be unstable. The sliding velocity is calculated 

from the angular velocity as follows.  

 𝑣𝑑 = 𝑅𝑓𝜔(𝑡) 3.11 

To make this consistent with the constitutive relationship used by Cecinato (2009), the 

mobilized and incipient friction angles should be expressed in terms of a critical state 

parameter (M). Since 𝜑′ = arctan(𝜇) and 𝑀 = √3 sin 𝜑′in plane strain, M is written as; 

 𝑀 = √3 sin(arctan(𝜇)) 3.12 

From Equation 3.12 

 𝜇 = tan {arcsin (
𝑀

√3
)} 

3.13 

Using the trigonometric identity  

 
arcsin(𝑦) = arctan (

𝑦

√1 − 𝑦2
) 

3.14 

and substituting 𝑦 = 𝑀/√3 gives 

 𝜇 =
𝑀

√3 − 𝑀2
= tan𝜑𝑚 

3.15 

The term tan𝜑𝑚  in Equation 3.9  can be replaced with Equation 3.15 to obtain the 

dynamic equation in terms of the critical state parameter. 

3.1.1 Computational results for the dynamic equation  

To gain insights on the behaviour of the system, the dynamic equation was solved on its 

own by assuming that excess pore water pressure is zero. Strain and strain rate friction 

softening were taken into account. Friction strain and strain rate softening was reported by 

Tika and Hutchinson (1999) in ring shear experiments, and Vardoulakis (2002a) proposed 

simple hyperbolic expressions to describe the friction angle as a function of displacement 

and velocity.  

In the analysis, the parameters given in Table 1 were chosen; they correspond to the 

dynamic analysis of Section 5 of Vaiont slide (Hendron and Patton, 1985) carried out by 

Vardoulakis (2002a) and Cecinato (2009). Peak mobilized friction angle was taken equal 

to the incipient failure angle(𝜑𝐹). However, setting the two values equal will result to no 

movement, because the initial acceleration will be zero. In order to trigger the landslide, 

𝜑𝑚 was taken 1% lower than the incipient failure angle 𝜑𝐹.  
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Results with the assumption of constant driving moment are also reported here for 

comparison. For constant driving moment, the acceleration of the slide reaches 2.25 m/s2 

and remains constant (Figure 46a). But for varying driving moment, the acceleration of the 

slide reaches 2.15 m/s2, then decreases and becomes negative (deceleration), from which 

time onwards the resultant driving moment acts in the opposite direction of movement 

(Figure 46b).  

Velocity and displacement of the slide are given in Figure 47 and Figure 48 respectively. 

For constant driving moment, the velocity of the slide increases linearly, reaches 100 m/sec 

after 45 sec and is predicted to increase even further (Figure 47a). For varying driving 

moment, the velocity increases initially and reaches a peak value of 32.5 𝑚𝑠−1  then 

gradually decreases (Figure 47b). The sliding mass eventually becomes stable at about 45 

sec at which stage tan𝜑𝑚 is equal to tan(𝜑𝐹 − 𝜃𝑑).  

For varying driving moment, the displacement increased rapidly up to 20 sec then started 

to level off due to deceleration, reaching a total predicted run-out of 900 m at 45 sec 

(Figure 48b). But for constant varying moment, the displacement increases continuously 

and reaches 2250 m after 45 sec. 

The plots of velocity and displacement within 1sec are found to be identical for constant 

and varying driving moment (Figure 47 and Figure 48). Therefore, the respective plots of 

friction angle against time coincide and are given in Figure 45. The mobilized friction 

angle starts at 22.3o then decreases over time due to strain and strain rate friction softening, 

and reaches a residual value of 4.6o within 1sec from triggering. 

Although the results allow the effect of varying driving moment to be assessed, these 

predictions are not realistic. Before the total run out reaches 900m for varying driving 

moment or 2250m for constant driving moment, the sliding mass will have ceased to 

behave as rigid block. The total length of the analysed section 5 of Vaiont slide is 1500 m. 

When the slide reaches a displacement of 900 m (60 % of the total length of the slip arc), 

the sliding mass should have broken in to pieces (Figure 47b). Also, the actual run out for 

the Vaiont slide was observed nearly 200m (Hendron and Patton, 1985). 
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Table 1: Material parameters chosen for dynamic analysis 

Soil density 𝜌 2.44 × 103 𝑘𝑔/𝑚3 

Unit weight of the soil  𝛾𝑠 23.89 × 103 𝑁/𝑚3 

Polar moment of inertia of the slide  𝐼𝑝 0.511 𝑘𝑚4 

Resultant driving force 𝐷 3.94 𝐺𝑁/𝑚 

Opening angle of failure circle  𝛼 62 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Incipient failure angle  𝜑𝐹 22.3 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Static residual friction angle 𝜑𝑟𝑠 10.15 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Dynamic residual friction angle 𝜑𝑟𝑑 4.4 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

Peak failure angle 𝜑𝑝 22.277 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

 

 

Figure 45: Mobilized friction angle against time for constant and varying driving moments 

 

Figure 46: Acceleration of the slide a) with constant b) with varying driving moment  
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Figure 47: Velocity plot of the slide a) with constant b) with varying driving moment 

 

 

Figure 48: Displacement plot of sliding mass a) with constant b) varying driving moment 

3.2 Heat equation  

The heat equation provides the temperature variation and evolution inside the shear band 

with time and consists of a heat diffusion equation with a dissipation term. It is written as; 

(Cecinato, 2009).  

 

𝜕𝜃

𝜕𝑡
= 𝐷𝑖

𝜕2𝜃

𝜕𝑧2
+ 𝐹𝑖

𝑣𝑑(𝑡)

𝑍𝑏
 

 
3.16 

where 𝐷𝑖 =
𝑘𝑚

1 −
(𝑀𝜎𝑐

′)2𝐹1

2𝐶𝑓

 

3.17 

 𝐹𝑖 =
(𝑀𝑝𝑐

′)2𝐹2

2𝐶𝑓 − (𝑀𝑝𝑐
′)2𝐹1

 3.18 

 𝐹1 = 𝑓𝜃 −
2𝐾𝛽𝑠𝑓𝑝

𝐻̃
  3.19 
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𝐻̃ = 𝐾𝑓𝑝

2 + 3𝐺𝑓𝑞
2 − 𝑓𝜀𝑣

𝑝 
3.20 

 𝐹2 =
𝐺

√3

𝑓𝑞

𝐻̃
 3.21 

 

Equation 3.16 is derived using the thermo-plastic constitutive model developed by 

Cecinato (2009) (Section 2.3.4). Factor 𝐷𝑖 is a nonlinear diffusivity term that depends on 

temperature and pore pressure. 𝐹𝑖, 𝐹1, 𝐹2 are coefficients that depend on the temperature 

and pore pressure. The second term of the non-linear heat diffusion equation (3.16) 

describes the dissipation of heat inside the shear band.  Other parameters are given as 

follows; 

𝑣𝑑(𝑡)  –  Velocity at the interface between the shearing zone and the landslide mass.  

𝑀  –  Critical state parameter  

𝐶𝑓   –  Thermal constant of soil 

𝑝𝑐
′    –  Preconsolidation   pressure 

𝑓𝜃 , 𝑓𝑞 𝑓𝑝 and 𝑓𝜀𝑣
𝑝 – Derivative of yield locus with respect to temperature, q and p and 

volumetric plastic strain 

𝐾, 𝐺  –  Bulk   and shear modulus of soils 

𝑘𝑚  –  Thermal diffusivity of soils 

𝛽𝑠  –  Plastic contraction coefficient  

3.2.1 Critical State parameter (M) 

In critical state soil mechanics the friction angle at critical state is always constant. 

However, Vardoulakis (2002a) proposed a relationship to incorporate the reduction as well 

as strain and strain rate dependence of friction angle from its critical state to a residual 

value (Section 2.2.5).  

The critical state parameter 𝑀 for plane strain is written in terms of the friction coefficient 

𝜇̂ as; 

 𝑀̂ = √3
𝜇̂

√1 − 𝜇̂2
 3.22 

Laloui’s thermal friction softening law (2.29) can also be modified to include the effects of 

displacement and velocity as; 

 𝑀(𝛾̇, 𝛾̈, 𝜃) = 𝑀̂(𝛾̇, 𝛾̈) − 𝑔̃(𝜃 − 𝜃𝑟𝑒𝑓)  3.23 

where 𝜃𝑟𝑒𝑓 is the reference temperature, and 𝑔̃ is the rate of decrease of the critical state 

parameter 𝑀 with temperature. This simple linear law allows the possibility that the value 

of  𝑀 may become unrealistically small or even negative. Therefore, the value of 𝑀 was 
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not allowed to become lower than  𝑀𝑟𝑑 , which corresponds to the dynamic friction 

coefficient  𝜇𝑟𝑑. 

3.3 Pore pressure equation  

The pore pressure equation gives the variation and the evolution of excess pore water 

pressure inside the shear zone and its surroundings with time and it is given by 

 
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣

𝜕𝑢

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
 

3.24 

where 𝑐𝑣 is the consolidation coefficient and  𝜆𝑚is the pressurization coefficient. Different 

authors have proposed different expressions for the consolidation and pressurization 

coefficients (Sections 2.2.5 and 2.3.7). In the following subsection the formulations 

proposed by different authors for pressurization coefficients are discussed in detail. 

3.3.1 Consolidation coefficient  

The consolidation coefficient of soil is a function of soil permeability and compressibility, 

and it can be written as; 

 𝑐𝑣 =
𝑘𝑤

𝑔𝜌𝑤𝑐
 

3.25 

where 𝑐 is the soil compressibility, 𝑔 is the acceleration of gravity, 𝜌𝑤  is density of the 

pore-fluid and 𝑘𝑤 is the Darcy permeability coefficient.  𝑘𝑤 is an increasing function of 

porosity and pore-fluid density and decreasing function of dynamic viscosity. Vardoulakis 

(2002a) proposed that pore-fluid density and dynamic viscosity are functions of 

temperature. In particular, viscosity is a decreasing function of temperature. Therefore, the 

consolidation coefficient is temperature dependent. Delage et al. (2000) suggested that the 

consolidation coefficient can be written as a function of temperature based on experimental 

results (Figure 49) as;  

 𝑐𝑣 = 𝑐𝑣0 exp (
𝜃

𝜃𝑐
) 

3.26 

where 𝑐𝑣0 is the value of consolidation coefficient at the temperature of  0℃  .  𝜃𝑐  is a 

reference temperature.  Nevertheless, Equation 3.26 shows that the consolidation 

coefficient is a weakly increasing function with temperature. Therefore, based on 

experimental evidence Vardoulakis (2002) suggested using a mean value for the 

consolidation coefficient of Vaiont clay. 

 𝑐𝑣̅ = 7.3 × 10−8
𝑚2

𝑠
 

3.27 

This mean value is used in throughout the thesis. 
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Figure 49: Variations of consolidation coefficient with temperature (after Delage et al. (2000)) 

3.3.2 Pressurization coefficient (λm)  

Based on this experimental evidence (Section 2.3.7) Vardoulakis (2002a) proposed that the 

thermal expansion coefficient can be approximated by a bi-linear law incorporating a 

critical temperature. Above this critical temperature plastic contraction starts.    

 𝛼𝑐 = {
𝛼𝑐

𝑒

𝛼𝑐
𝑒𝑝

   𝑖𝑓 𝜃 ≤ 𝜃𝑐𝑟𝑖𝑡

  𝑖𝑓𝜃 ≥ 𝜃𝑐𝑟𝑖𝑡
 

3.28 

where 𝛼𝑐
𝑒 and 𝛼𝑐

𝑒𝑝
 denotes the elastic and elasto-plastic thermal expansion coefficients of 

the soil skeleton respectively. The elastic thermal expansion coefficient was considered 

constant (slope of A-B in Figure 50) and equal to the thermal expansion coefficient of the 

soil-water mixture i.e. 𝛼𝑐
𝑒 = 𝛼𝑚, calculated as; 

 𝛼𝑚 = (1 − 𝑛)𝛼𝑠 + 𝑛𝛼𝑤 
3.29 
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Figure 50: Isotropic thermal volumetric deformation of an over-consolidated Boom clay specimen for 

OCR=12. Line A-B: Thermo elastic expansion, Line B-C: Thermo plastic collapse and Line C-D: 

cooling phase representing thermoelastic contraction. (Vardoulakis, 2002a) 

In the above, 𝑛 is the porosity and 𝛼𝑠 and 𝛼𝑤 are the thermal expansion coefficient of soil 

and water respectively. Due to the above assumption, the thermal expansion coefficient 

becomes zero below the critical temperature 𝜃𝑐𝑟𝑖𝑡 (𝛼 = 𝛼𝑚 − 𝛼𝑐 = 0). Therefore the final 

form of the pressurization coefficient was written as (Vardoulakis, 2002a); 

 𝜆𝑚 = {

     0         𝑖𝑓 𝜃 ≤ 𝜃𝑐𝑟𝑖𝑡

 
−𝛼𝑐

𝑝

𝑐
     𝑖𝑓𝜃 ≥ 𝜃𝑐𝑟𝑖𝑡

   
   3.30 

where 𝛼𝑐
𝑝

= −(𝛼𝑐
𝑒𝑝

− 𝛼𝑐
𝑒)  

Subsequently, Cecinato (2009) determined the pressurization coefficient consistently with 

the thermo plastic constitutive relation he used. In this model, the thermal contribution of 

thermal-mechanical strain rate is defined as; 

 𝜀̇𝑡𝑒𝑝 =
𝜕𝜀

𝜕𝜃

𝜕𝜃

𝜕𝑡
= 𝛼𝑐

𝑡𝑝 𝜕𝜃

𝜕𝑡
 

3.31 

From, the new constitutive law used, volumetric plastic strain rate is given as 

 𝜀𝑣̇
𝑝 = 𝐹𝜃𝜃̇ + 𝐹𝑚𝜀𝑣̇

𝑚 
3.32 

 𝐹𝜃 = 𝑀2𝑝𝑐
′ {

𝑓𝑝𝑐
′(𝑝𝑐

′)𝜃 − 2𝐾𝛽𝑠𝑓𝑝

𝜒
} 3.33 

 𝐹𝑚 = 𝑀2𝑝𝑐
′ {

𝐾𝑓𝑝

𝜒
} 3.34 

In Equation 3.32, 𝐹𝜃𝜃̇ is the thermal contribution of the volumetric plastic strain and 𝐹𝑚𝜀𝑣̇
𝑚 

is the mechanical contribution of that. Therefore, by comparing Equation 3.31 and 3.32 

gives  
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 𝛼𝑐
𝑡𝑝 = 𝐹𝜃 

3.35 

Substituting the respective definitions on Equation 3.33, 𝛼𝑐
𝑡𝑝

 is given as, 

 𝛼𝑐
𝑡𝑝 =

𝜆 − 𝜅

𝜆
{

𝛾𝜅

(1 + 𝑒)𝜃(1 − 𝛾 𝑙𝑜𝑔(𝜃/𝜃0))
− 2𝛽𝑠} 

3.36 

The above formulation eliminates the critical temperature introduced by Vardoulakis 

(2002), allowing for gradual soil skeleton collapse. Finally, the pressurization coefficient 

can be written as;  

 𝜆𝑚 =
−𝛼𝑐

𝑡𝑝(𝜃)

𝑐
 

3.37 

which is now a function of temperature. 

3.4 Numerical implementation 

The governing equations 3.8 3.16 and 3.24 can be summarised as;  

 

 𝜌𝐼𝑝
𝑑𝜔

𝑑𝑡
= 𝜔0

2 (𝐴 +
𝑝𝑑(𝑡)

𝑝𝑐
) 

𝜕𝜃

𝜕𝑡
= 𝐷𝑖

𝜕2𝜃

𝜕𝜃2
+ 𝐹𝑖

𝑣𝑑(𝑡)

𝑍𝑏
 

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣

𝜕𝑢

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
 

3.38 

3.39 

3.40 

These are non-linear parabolic partial differential equations that need to be solved using 

appropriate initial and boundary conditions (Section 3.4.3). The finite difference method 

was chosen to solve the above equations. The techniques used as well as stability 

conditions of each method are described in detail in the following subsections. 

3.4.1 Overview of finite difference scheme 

In a finite difference scheme, the solution of a one dimensional time dependent problem is 

sought on a number of space and time grid points. The grid points are created by dividing 

the space and time domains into a finite number of discrete increments.   

A finite difference scheme can be explicit or implicit. Examples are given below in the 

context of a simple first order differential equation  𝑦′ = 𝑓(𝑡, 𝑦(𝑡)). A typical explicit 

scheme is the first-order forward Euler method. The derivative of 𝑦(𝑡) is discretised as  

  𝑦′ =
𝑦(𝑡 + ∆𝑡) − 𝑦(𝑡)

∆𝑡
= 𝑓(𝑡, 𝑦(𝑡)) 3.41 
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which yields, after re arrangement; 

 𝑦(𝑡 + ∆𝑡) = 𝑦(𝑡) + 𝑓(𝑡, 𝑦(𝑡))∆𝑡 3.42 

If 𝑡 is considered as time, the solution at each time step point can be computed by using the 

following recursive formula  

 𝑦𝑡+∆𝑡 = 𝑦𝑡 + ∆𝑡𝑓(𝑡, 𝑦𝑡) 3.43 

Although this explicit method is simple to implement, it has some drawbacks. The solution 

(𝑦𝑡+∆𝑡)  calculated for the end of the interval ∆𝑡, is based on the derivative and the solution 

at the beginning of the interval. Any numerical errors will thus propagate and accumulate, 

progressively reducing the accuracy of the solution. In order to reduce the accumulated 

error, the size of the interval ∆𝑡 should be very small which may not be practical for 

modelling large domains or long time intervals. 

A simple implicit scheme is the first-order backward Euler method. Contrary to Equation 

3.41, the derivative 𝑦(𝑡) is discretised as 

  𝑦′ =
𝑦(𝑡) − 𝑦(𝑡 − ∆𝑡)

∆𝑡
= 𝑓(𝑡, 𝑦(𝑡)) 

3.44 

which yields that the solution at each time step should satisfy;  

 𝑦𝑡+∆𝑡 = 𝑦𝑡 + ∆𝑡𝑓(𝑡 + ∆𝑡, 𝑦𝑡+∆𝑡) 
3.45 

In an implicit method each recursive formula contains more than one unknown; therefore a 

system of discretised equations for the entire domain should be solved simultaneously. 

This implicit method is unconditionally stable, i.e. errors do not accumulate indefinitely, 

although it needs more computation effort.  

The dynamic equation given in Equation 3.38 is a first order differential equation with 

respect to time. Backward Euler method is chosen to solve this equation to avoid 

accumulation of errors and ensure stability. 

The heat and pore pressure equations presented here (Equations 3.38 and 3.39) are 

nonlinear parabolic partial differential equations (PDE) containing second order 

derivatives in space and first order derivatives in time. Both are discretised as shown in 

Figure 51, where, i and j represent the discretisation points in the space and time domains 

respectively. Among several numerical methods available to solve PDE, three well known 

methods are discussed here; The Forward-time centred space (FTCS) scheme, which is an 
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explicit one and the Backward-time centred space (BTCS) and Crank-Nicholson (CN), 

schemes, which are both implicit. 

The FTCS method employs a forward Euler approximation in time and a centred second 

order approximation in space. Let us assume a general diffusion equation given by; 

 
𝜕𝐴(𝑧, 𝑡)

𝜕𝑡
= 𝐵

𝜕2𝐴(𝑧, 𝑡)

𝜕𝑧2
for 0 ≤ 𝑧 ≤ 𝐷, 0 ≤ 𝑡 ≤ 𝑇𝑓 

3.46 

With reference to Figure 51, the discretised form to calculate the solution at point Q using 

the FTCS method can be written as  

 
(𝐴𝑖

𝑗+1
− 𝐴𝑖

𝑗
)

∆𝑡
= 𝐵

(𝐴𝑖+1
𝑗

− 2𝐴𝑖
𝑗
+ 𝐴𝑖−1

𝑗
)

∆𝑧2
 3.47 

Solving Equation 3.47 is straightforward as it has one unknown 𝐴𝑖
𝑗+1

 i.e. the solution at 

point Q. Essentially 𝐴𝑖
𝑗+1

, i.e. the solution at the ‘next’ time step, can be calculated using 

the values of 𝐴𝑖
𝑗
only, i.e. the solution at the ‘current’ time step only. However, a von-

Newman stability analysis shows that for the FTCS to be stable, the following stability 

condition must hold (Yang et al., 2005) 

 𝐵
∆𝑡

∆𝑧2
≤

1

2
 

3.48 

where Δ𝑧 and Δt are the spatial discretisation step and the time step respectively. 
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Figure 51: Finite difference grid for a parabolic PDE 

The BTCS method, on the other hand, provides the solution employing a backward Euler 

approximation in time and a centred second order Euler approximation in space. In BTCS 

the discretised form to compute the solution can be written as  

 
(𝐴𝑖

𝑗+1
− 𝐴𝑖

𝑗
)

∆𝑡
= 𝐵

(𝐴𝑖+1
𝑗+1

− 2𝐴𝑖
𝑗+1

+ 𝐴𝑖−1
𝑗+1

)

∆𝑧2
 3.49 

Solving this equation requires more computational effort as it contains more than one 

unknown in each equation.  Therefore, a system of equations corresponding to all spatial 

points must be formed and solved at each time step. Compared to FTCS this represents 

significant additional computational effort. Nevertheless, the BTCS is unconditionally 

stable and therefore it can be used with relatively large time steps unlike FTCS.  

Finally, the Crank-Nicholson method represents an improvement over FTCS. Here, the 

average of centred Euler approximations, at time points 𝑗and  𝑗 + 1  is considered. The 

discretised form can be written as;  

(𝐴𝑖
𝑗+1

− 𝐴𝑖
𝑗
)

∆𝑡
=

𝐵

2
{
(𝐴𝑖+1

𝑗+1
− 2𝐴𝑖

𝑗+1
+ 𝐴𝑖−1

𝑗+1
)

∆𝑧2
+

(𝐴𝑖+1
𝑗

− 2𝐴𝑖
𝑗
+ 𝐴𝑖−1

𝑗
)

∆𝑧2
} 

3.50 

𝑧 

𝑡 

𝑗 − 1 𝑗 𝑗 + 1 

𝑖 − 1 

𝑖 

𝑖 + 1 
𝑃 𝑄 

Δ𝑡 

Δ𝑧 
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Again, the CN method needs more computational effort than FTCS and still needs to 

satisfy the stability condition of 3.48.  

Out of the three described methods the BTCS method was selected because it is 

unconditionally stable. Therefore, the simulation can be performed with relatively large 

time steps. 

3.4.2 Parameter selection  

For the simulation presented in the following, material parameters relevant to section 5 of 

the Vaiont landslide, which are summarized in Table 2, are used. Some of the other 

necessary parameters are calculated in the following. 

The initial mean effective stress 𝑝0
′  can be calculated by using the normal effective stress 

𝜎𝑛
′  acting on the slip plane. In order calculate 𝑝0

′  three main assumptions are made as 

follows (Vardoulakis, 2002a); 

1. Plane strain conditions are assumed  

2. Further, odeometric conditions were assumed, so that 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 0  (Figure 52) 

3. For simplicity,  𝜎𝑥𝑥
′ = 𝜎𝑛

′  is assumed (Vardoulakis, 2000) 

By using the above assumptions, the initial effective mean pressure 𝑝0
′  was found as  

 𝑝0
′ =

2

3
(1 + 𝜈)𝜎𝑛

′  3.51 

The compressibility of the soil 𝑐 was calculated by Cecinato (2009) as follows; 

 𝑐 = (
𝑒

1 + 𝑒
) 𝑐𝑤 +

2𝜅(1 + 𝜈)

3𝑝0
′ (1 + 𝑒)

 
3.52 

where; 𝑒 – void ratio at CSL 

𝑐𝑤 – Compressibility   of water  

𝜈 –Poisson ratio of the soils 

𝑝0
′  – Initial mean effective stress 

𝜅 – Slope of URL line of odeometric test. 
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Table 2: Parameters chosen to back analyse the Vaiont slide section 5 (Cecinato, 2009) 

Soil density ρ 2.44 × 103 Kg/m3 

Unit weight of the soil γs 23.89 × 103 N/m3 

Unit weight of water γw 9.81 × 103 N/m3 

Thermal constant Cf 2.84 MPa/°C 

Radius of the failure circle R 1493 m 

Radius of the “friction circle” RD 594.8 m 

Polar moment of inertia of slide Ip 0.511 km4 

Resultant driving force D 3.94 GN/m 

Slide geometry parameter ωo 8.1 × 10-2 s-1 

Shearband thickness 𝑍𝑏 1.4 × 10-3 m 

Reference temperature θref 12 °C 

Soil thermal diffusivity 

coefficient 
Km 1.45 × 10-7 m2/s 

Slope of URL of clay κ 1.85 × 10-2 ----- 

Slope of NCL of clay λ 0.16 ----- 

Specific volume intercept of clay Γ 1.42 ----- 

Initial (mean) normal effective 

stress 
σ′n 2.38 MPa 

Soil (drained) Poisson’s ratio ν 0.2 ----- 

Compressibility of water cw 4.93 × 10-4 MPa-1 

Incipient failure (peak) friction 

coefficient 
μp 0.410 ----- 

Static residual friction coefficient μrs 0.179 ----- 

Dynamic residual friction 

coefficient 
μrd 0.077 ----- 

 

 

 

Figure 52: Scheme of the shearband with axis reference system 

𝑣𝑑(𝑡) 

𝑣(𝑡) = 𝑣𝑑(𝑡) × (
𝑧

𝑍𝑏
) 𝑍𝑏 

𝑥 

𝑧 

𝑦 
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In the above, it was assumed that the soil in the shear band has reached a critical state. The 

void ratio at critical state e is calculated by using the parameter 𝛤, which is the soil’s 

specific volume intercept on 𝑣 − ln 𝑝′ plane at unit mean effective stress. Therefore the 

void ratio is given by 

 𝑒 = 𝛤 − 𝜆 𝑙𝑛(𝑝0
′ ) 3.53 

where, 𝑝𝑜
′  initial effective mean pressure.  

The thermo-elastic expansion coefficient 𝛽𝑠   depends on the temperature and the mean 

effective stress. Experimental data show that the temperature dependence on the thermo 

elastic expansion coefficient is weak (Laloui and Cekerevac, 2003, Sultan et al., 2002). 

Therefore a constant value of 7.41 × 10−5 °𝐶  is used for 𝛽𝑠 in this analysis, in line with 

Cecinato (2009), Cui et al. (2000), Delage et al. (2000), Sultan et al. (2002) and 

Vardoulakis (2002a). 

The critical state parameter 𝑀 varies with temperature as shown in Equation 2.29. The 

thermal friction sensitivity parameter 𝑔̃, which gives the rate of friction softening due to 

temperature, is calculated using available experimental data (Laloui, 2001). By examining 

the behaviour of different soils shown in Figure 18, it can be concluded that the value of  𝑔̃ 

falls in the range of 10−3 ≤ 𝑔̃ ≤ 10−2. 

 

Figure 53: Pressurization coefficient 𝝀𝒎 with temperature for different values of 𝜸 
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The thermal softening parameter 𝛾 plays a critical role in this model as it controls the rate 

of change of preconsolidation pressure with temperature. This parameter also affects the 

value of the pressurization coefficient 𝜆𝑚 . Therefore, a systematic analysis was carried out 

to obtain a value of 𝛾 which is consistent with plausible values of 𝜆𝑚.  From Equation 3.37 

it can be seen that 𝜆𝑚 is a function of temperature. Therefore for different values of 𝛾, 𝜆𝑚 

was calculated for values of temperature ranging between  12°𝐶 and 300°𝐶 (Figure 53). 

For lower temperature values, 𝜆𝑚  is more sensitive to the value of 𝛾  than for higher 

temperature.  From this study, an average value of  𝜆̅𝑚 = 0.0122 𝑀𝑃𝑎/℃ was established 

which is in line with the value of 0.012 𝑀𝑃𝑎/℃ , proposed by Vardoulakis (2002a) 

3.4.3 Initial and boundary conditions 

The final governing equations given in Equations 3.38, 3.39 and 3.40 are solved using the 

BTCS scheme. The heat and pore pressure equations are parabolic partial differential 

equation describing changes of temperature and pore pressure across the shear band over 

time. To solve them, it is necessary to define appropriate initial and boundary conditions. 

As boundary conditions, ambient temperature and zero excess pore pressure are assumed 

far away from the shear band boundaries.  To implement that, the domain was assumed 11 

times bigger than the shear band (5 times on each side). Moreover, ambient temperature 

and zero excess pore pressure were taken as initial conditions in line with Vardoulakis 

(2002a).  In summary, initial and boundary conditions can be written as; 

 

𝑢(𝑧, 0) = 0;         𝜃(𝑧, 0) = 𝜃𝑟𝑒𝑓; 

𝑢(±∞, 𝑡) = 0;      𝜃(±∞, 𝑡) = 𝜃𝑟𝑒𝑓 
3.54 

The velocity profile through the spatial domain can be written as (Figure 52); 

 {

𝑣 = 0                                 𝑧 𝜖 [−∞, 0]

𝑣 = 𝑣𝑑(𝑡) × (
𝑧

𝑍𝑏
)            𝑧 𝜖 [0, 𝑍𝑏] 

𝑣 = 𝑣𝑑(𝑡)                           𝑧 𝜖 [𝑍𝑏 , ∞]

 3.55 

It was assumed that the slide is at rest at 𝑡 = 0, so that the initial condition for the dynamic 

equation is  

 𝑣(𝑧, 0) = 0; 3.56 

The equations were integrated for a time window of 10 seconds after initiation of 

movement which corresponds to a landslide movement less than 110 m. This upper limit of 

run out was imposed so that movement of the sliding mass as rigid body without 

significant disintegration may be assumed throughout. The numerical results obtained are 

presented hereafter. 
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3.4.4 Numerical results for the Vaiont slide 

First, the results assuming constant driving moment are presented for comparison. Such 

analyses were also carried out by Cecinato (2009) using an FTCS numerical integration 

scheme. Subsequently, the results for varying driving moment are presented as described in 

section 3.1.  

The solution of the system of finite difference equations is not straight forward; it is a non-

linear system and hence an iterative procedure with an appropriate initial guess needs to be 

employed. MATLAB numerical software was used to solve the non-linear equations using 

an in-built algorithm fsolve. The initial guess used is the solution of the previous time step, 

or the initial conditions for the first time step. 

It is worth noting that the model is no longer valid as soon as the maximum temperature 

within the shearband 𝜃𝑚𝑎𝑥 reaches the vaporization limit 𝜃𝑣𝑎𝑝 for the current pore water 

pressure. The vaporization threshold can be calculated as follows (Vardoulakis, 2000). 

 𝑝 = 62(𝜃𝑣𝑎𝑝 + 273.15)
𝑘
exp (−

4650

𝜃𝑣𝑎𝑝 + 273.15 
) 3.57 

where, 𝑝 is the maximum pore water that can be reached, which is equal to the initial 

effective normal pressure (2.38 𝑀𝑝𝑎). By solving the above equation, 𝜃𝑣𝑎𝑝 is found as 210 

oC. In all of our simulation, the condition  𝜃𝑚𝑎𝑥 < 𝜃𝑣𝑎𝑝 was always found to hold. 

Analyses were run with different combinations of friction law as described below. 

1. Analysis with displacement and velocity softening only (hereafter referred to as 

“dynamic friction softening only”) i.e. no thermal friction softening was taken in to 

account.  

2.  Analysis with displacement, velocity and thermal frictions softening (will be 

referred as “full friction softening”.) 

3. Analysis with thermal friction softening only, i.e. no velocity or displacement 

softening. 

The results are presented in the following subsections. 

3.4.4.1 Results for dynamic softening only - constant driving moment 

As a first step, It is assumed the displacement and velocity softening only by neglecting 

thermal friction softening. This analysis allows us to compare the results with no 

pressurization effect as presented in Section 3.1.1. Therefore, in this context the thermal 

friction sensitivity parameter 𝑔̃ is set to zero. 1% reduction in peak friction angle was 

assumed in order to trigger the landslide event. 
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Temperature and excess pore pressure isochrones are shown in Figure 54 and Figure 55 

respectively. Temperature starts to kick in from 1 sec after landslide initiation and reaches 

141.4℃ at the end of 10 seconds. During this period, excess pore pressure of 1.82 MPa is 

generated due to pressurization. This pore pressure is below the initial normal effective 

stress of 2.38 MPa but is significant in proportion. 

Velocity and displacement plots are shown in Figure 56 and Figure 57. In this particular 

case, the activation point of the catastrophic phase, i.e. the point at which the acceleration 

of the sliding mass starts to increase rapidly is observed as 0.5 sec. The mass reaches a 

maximum velocity of 22.9 m/sec in 10 sec. This final velocity is about 5% greater than the 

velocity obtained without the pressurization effect (Section 3.1.1). Accordingly, the 

displacement reaches 106 m, after 10 sec. 

 
 
Figure 54: Temperature isochrones within the shearband and its surroundings shear band area is 

shaded (case of constant driving moment, dynamic softening only) 
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Figure 55: Pore water pressure isochrones within the shearband and its surroundings shear band area 

is shaded (case of constant driving moment, dynamic softening only) 

 
Figure 56: Velocity plot for the case of constant driving moment and dynamic softening only 
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Figure 57: Displacement plot for the case of constant driving moment and dynamic softening only 

3.4.4.2 Results for dynamic softening – variable driving moment 

Here, again the results for dynamic friction softening are presented but with the modified 

dynamic equation that assumes variable driving moment.  Temperature and pore pressure 

isochrones across the shearband and its surroundings are given in Figure 58 & Figure 59. 
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The velocity and displacement plots are given in Figure 60 and Figure 61 respectively. The 
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Figure 58: Temperature isochrones within the shearband and its surroundings shear band area is 

given between 0.007m and 0.0084m (case of variable driving moment, dynamic softening only) 

 

 
 
Figure 59: Pore water pressure isochrones within the shearband and its surroundings shear band area 

is given between 0.007m and 0.0084m (case of variable driving moment, dynamic softening only) 
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Figure 60: Velocity plot for the case of variable driving moment and dynamic softening only 

 

 
Figure 61: Displacement plot for the case of variable driving moment and dynamic softening only 
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3.4.4.3 Results for full friction softening – constant driving moment 

In this subsection, constant driving moment analysis is presented, the most general case, 

where all possible types of friction softening are taken in to account i.e. velocity, 

displacement and thermal friction softening as given in Equation 3.23.  

In Figure 62 and Figure 63, temperature and excess pore pressure isochrones inside the 

shear band and its surroundings are presented.  At the middle of the shear band, 

temperature rises to a maximum value of 141.38oC after 10 sec. Excess pore pressure 

reaches to 1.82 MPa due to pressurization. Moreover, the “activation point” is at 0.5 sec as 

in the case of dynamic softening only (Section 3.4.4.1).  

The velocity and the displacement plots are given in Figure 64 & Figure 65 respectively. 

Velocity reaches 23.1m/sec at 10 sec and the landslide moved to a total distance of 

107.46m during that time. These values are not far off those corresponding to the case of 

dynamic friction softening only, and this will be discussed in more detail later in this 

chapter.  

 
 
Figure 62: Temperature isochrones within the shearband and its surroundings shear band area is 

given between 0.007m and 0.0084m (case of constant driving moment, full softening) 
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Figure 63: Pore water pressure isochrones within the shearband and its surroundings shear band area 

is given between 0.007m and 0.0084m (case of constant driving moment and full softening) 

 
Figure 64: Velocity plot for the case of constant driving moment and full softening 
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Figure 65: Displacement plot for the case of constant driving moment and full softening 
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Figure 66: Temperature isochrones within the shearband and its surroundings shear band area is 

given between 0.007m and 0.0084m (case of variable driving moment and full softening) 

 
Figure 67: Temperature isochrones within the shearband and its surroundings shear band area is 

given between 0.007m and 0.0084m (case of variable  driving moment and full softening) 
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Figure 68: Velocity plot for the case of variable driving moment and full softening 

 

 
Figure 69: Displacement plot for the case of variable driving moment and full softening 
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3.4.4.5 Results for thermal friction softening only – constant driving moment 

As a final case, it is only assumed the thermal friction softening, neglecting velocity and 

displacement softening. Therefore, in this context, the expression for the critical state 

parameter becomes (Equation 3.23); 

 𝑀(𝜃) = 𝑀𝑟𝑒𝑓 − 𝑔̃(𝜃 − 𝜃𝑟𝑒𝑓)  3.58 

where, 𝑀𝑟𝑒𝑓 = 0.657 is the reference critical state parameter corresponding to the peak 

friction angle given in Table 2. The thermal sensitivity parameter 𝑔̃  is set to 10−2  as 

explained in line with Cecinato (2009). This linear law may give a very small or even 

negative value of critical state parameter at high temperatures, which is not realistic. 

Therefore, a lower limit value of the critical state parameter is considered in this analysis 

corresponding to dynamic residual friction coefficient given in section 2.2.5. 

In contrast to previous analyses, the “activation point” is seen here to be at nearly 1.8 sec, 

while in all previous cases it was 0.5sec. From the temperature isochrones given in Figure 

70, it can be seen that the temperature rises to a maximum value of 139.09oC, and Figure 

71 shows that excess pore pressure increases to 1.81 MPa. Velocity and displacement plots 

are given in Figure 72 and Figure 73 respectively. A significant difference in the final 

velocity and displacement is observed compared to previous cases. The velocity reaches to 

nearly 19.5 m/sec after 10 sec whereas displacement reaches to 76.822m. 

 

Figure 70: Temperature isochrones within the shearband and its surroundings shear band area is 

given between 0.007m and 0.0084m (case of constant driving moment and thermal softening) 
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Figure 71: Pore water pressure isochrones within the shearband and its surroundings shear band area 

is given between 0.007m and 0.0084m (case of constant driving moment and thermal softening) 

 

Figure 72: Velocity plot for the case of constant driving moment and thermal softening 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.0014

0.0028

0.0042

0.0056

0.007

0.0084

0.0098

0.0112

0.0126

0.014

0.0154

Porewater pressure (MPa)

D
e

p
th

 (
m

)

 

 
   0 sec

   1 sec

   2 sec

   3 sec

   4 sec

   5 sec

   6 sec

   7 sec

   8 sec

   9 sec

  10 sec

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

Time(s)

V
e

lo
c
it
y
 (

m
s-1

)



95 

 

Figure 73: Displacement plots plot for the case of constant driving moment and thermal softening 
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Figure 74: Temperature isochrones within the shearband and its surroundings shear band area is 

given between 0.007m and 0.0084m (case of variable driving moment and thermal softening) 

 

 
Figure 75: Pore water isochrones within the shearband and its surroundings shear band area is given 

between 0.007m and 0.0084m (case of variable driving moment and thermal softening) 
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Figure 76: Velocity plot for the case of variable driving moment and thermal softening 

 

Figure 77: Displacement plot for the case of variable driving moment and thermal softening 
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3.4.5 Discussion of the numerical results  

The results presented in the last six subsections (3.4.4.1 to 3.4.4.6) correspond to the 

predicted behaviour of section 5 of the Vaiont slide given different assumption. The 

magnitude of all results is consistent with the observations reported in Hendron and Patton 

(1985).  

The results are very similar to those reported by Vardoulakis (2002a) & Cecinato (2009), 

despite the fact that they both considered constant driving moment. Using variable driving 

moment leads to reduction in the predicted velocity of 5~10%, which however is not 

significant given the other uncertainties involved in the model. 

More appreciable differences can be seen if the analyses are run for longer; 25 sec after 

initiation, the variable driving moment assumption leads to deceleration of the slide, as the 

extensive movement of the sliding mass causes the driving moment to change sign. 

In contrast, assuming constant driving moment leads to continuing acceleration. However, 

by the time the difference becomes appreciable the mass has already displaced by a large 

amount (500m), to the point that it can no longer be assumed to move as a rigid body, thus 

violating a basic assumption of the model. Hence the maximum time modelled is limited 

here to 10 sec. 

Moreover, the cases of “full friction softening” and “dynamic softening only” give 

practically the same results. Thermal friction softening on the other hand only gives 16.5% 

lower velocity than full friction softening. According to the modified dynamic equation, 

the velocity of the rotational failure mass depends on the mobilized friction angle. The 

lower the friction angle, the higher the velocity of the slide, therefore the rate of change of 

friction angle dominates the velocity of the slide. The displacement and velocity softening 

law decreases the friction angle more rapidly than the linear thermal friction softening law. 

Ultimately, all softening laws reach the same dynamic residual value. So that, in the case 

of full friction softening, the effect of dynamic friction softening overtakes the effect of 

thermal friction, explaining the similarity of the results for “full friction softening” and 

“dynamic friction softening only”.  

3.5 The effect of slip circle geometry 

In the previous subsections, Section 5 of the Vaiont slide is used to validate the landslide 

model. Cecinato (2009) carried out a parametric study on a planar slide to investigate the 

effect of the overburden thickness on the slide velocity. It was found that, if thermal 
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pressurization is ignored, overburden thickness does not affect slide velocity, but it 

becomes important when thermal pressurization is present. In the latter case, a thicker 

sliding mass accelerates faster than a thinner slide as shown in Figure 78 (Cecinato, 2009). 

Generally, the shape of the failure mass can take different forms other than planar, and one 

possibility is a circular slip. In this section, a parametric study is carried out to investigate 

the effect of the size of the circular failure mass on the velocity of the slide as well as to 

establish the effect of thermal pressurization for slides of different size. For simplicity, 

different circular slips on an infinite slope are assumed.  

It is acknowledged that circular slip is not generally a relevant failure mode for an infinite 

slope, unless particular geological conditions make it possible. On the other hand, 

consideration of a general slope would complicate the analysis significantly. The approach 

chosen represents a compromise that still allows us to investigate the effects of frictional 

heating. 

The size of the failure arc is varied in the following two ways, also shown in Figure 79. 

 The radius of the circular slip is varied while keeping centre at the same position.  

 For constant radius, the distance of the centre from the slope surface is varied. 

First, analyses were carried out neglecting the thermal pressurization effect and the 

results are compared for each case stated above. Subsequently, analyses taking thermal 

pressurization in to account are also performed.  

 

 

Figure 78: Effect of overburden thickness of the plannar slide (Cecinato, 2009) 
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Figure 79: Slip circle with a) different centre and same radius, b) different radii 

3.5.1 Dynamic equation 

In this section a general dynamic equation is derived for a circular slip surface on infinite 

slope. It is further assumed that ground water flow is parallel to the slope, as in Cecinato 

(2009). The material properties of the soil such as mobilized friction angle and density are 

assumed uniform. 

For the geometry shown in Figure 80, the driving moment can be written as (Vardoulakis, 

2002a);  

 
(𝑀𝑑𝑟𝑣)𝑖 = 𝐷𝑖

𝛼𝑖

√2(1 − cos 𝛼𝑖)
𝑅𝑓𝑖 sin(𝜑𝐹 − (𝜃𝑑)𝑖) 

3.59 

𝐷𝑖 is the effective weight, 𝛼𝑖 & 𝑅𝑓𝑖 are the reference opening angle and the radius of the 

failure circle respectively, 𝜑𝐹 is the incipient failure angle which equals the slope angle 𝛽 

and (𝜃𝑑)𝑖 is the angular displacement. 

The initial normal effective stress acting on the slip plane can be written as; 

 
(𝜎𝑛0

′ )𝑖 =
𝐷𝑖

𝑅𝑖√2(1 − cos 𝛼𝑖)
𝑅𝑓𝑖 cos(𝜑𝐹 − (𝜃𝑑)𝑖) 

3.60 

Therefore, the resisting moment can be written as; 

 (𝑀𝑟𝑒𝑠)𝑖 = 𝑅𝑓𝑖
2 𝛼𝑖𝜇((𝜎𝑛0

′ ) − 𝑝𝑑) 3.61 

where 𝜇 = tan𝜑𝑚 ,𝜑𝑚 is the mobilized friction angle of the shear band material and 𝑝𝑑 is 

the excess pore water pressure generated by thermal pressurization at the interface between 

the shear band and the moving rigid mass. 

Angular momentum balance gives; 
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 𝜌(𝐼𝑝)
𝑖
(
𝑑𝜔

𝑑𝑡
)

𝑖
= (𝑀𝑑𝑟𝑣)𝑖 − (𝑀𝑟𝑒𝑠)𝑖 

3.62 

where 𝜌(𝐼𝑝)
𝑖
 is the polar moment of inertia of the sliding mass, 𝜌 density of the mass, 

(𝐼𝑝)
𝑖

the second moment of area, and 𝜔  is the angular velocity. Substituting the 

corresponding expressions for (𝑀𝑑𝑟𝑣)𝑖 and (𝑀𝑟𝑒𝑠)𝑖 gives 

𝜌(𝐼𝑝)
𝑖
(
𝑑𝜔

𝑑𝑡
)

𝑖
= (𝜔0

2)𝑖 {
𝐷𝑖𝑅𝑓𝑖(𝑅𝑑)𝑖

𝛾𝑠(𝐼𝑝)
𝑖

(1 −
tan𝜑𝑚

tan(𝜑𝐹 − (𝜃𝑑)𝑖)
) +

𝑝𝑑(𝑡)

(𝑝𝑐)𝑖
} 

3.63 

where; 

 

𝑝𝑐 =
(𝛾𝑠)𝑖(𝐼𝑝)

𝑖

𝑅𝑓𝑖
3

1

𝛼𝑖 tan𝜑𝑚
 

 (𝑅𝑑)𝑖 =
𝛼𝑖

√2(1 − cos 𝛼𝑖)
𝑅𝑓𝑖 sin(𝜑𝐹 − (𝜃𝑑)𝑖)  

3.64 
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(RD)i
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β
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Figure 80: Reference circular slip surface on an infinite slope 

𝛾𝑠 is the density of the soil and (𝜔0)𝑖 = √𝑔/𝑅𝑓𝑖. The sliding velocity is calculated from 

the angular velocity as follows.  

 (𝑣𝑑)𝑖 = 𝑅𝑓𝑖𝜔𝑖(𝑡) 3.65 

The polar moment of inertia of the sliding mass, shown in Figure 80, can be written as 

(Zwillinger, 2002); 
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 (𝐼𝑝)
𝑖
=

𝑅𝑓𝑖
4

4
(𝛼𝑖 − sin 𝛼𝑖 +

2

3
sin 𝛼𝑖 sin

2 𝛼𝑖) 
3.66 

As flow lines are parallel to the slope, the resultant effective weight is; 

 𝐷𝑖 = (𝛾𝑠 − 𝛾𝑤) cos(𝛽)𝐴𝑖 
3.67 

where 𝛾𝑤 is the density of water and 𝐴𝑖 is the area, given by; 

 𝐴𝑖 =
𝑅𝑓𝑖

2

2
(𝛼𝑖 − sin 𝛼𝑖) 

3.68 

The opening angle 𝛼𝑛𝑒𝑤 of circle with the same centre but different radius 𝑅𝑓𝑛𝑒𝑤 can be 

written as; 

 𝛼𝑛𝑒𝑤 = 2 × arccos (
𝑅𝑖

𝑅𝑓𝑛𝑒𝑤
cos (

𝛼𝑖

2
)) 

3.69 

For a circle with the same radius whose centre is at different distance 𝐿𝑛𝑒𝑤 from the slope, 

it is proceeded as follows: The relationship between the opening angle and 𝐿𝑖  can be 

written as (Figure 80); 

 𝐿𝑖 = 𝑅𝑓𝑖 cos (
𝛼𝑖

2
) 

3.70 

The new opening angle 𝛼𝑛𝑒𝑤 can be written as; 

 𝛼𝑛𝑒𝑤 = 2 × arccos (
𝐿𝑛𝑒𝑤

𝐿𝑖
cos (

𝛼𝑖

2
)) 

3.71 

In the following, the change in perpendicular distance is referred as follows; 

 (Δ𝐿)𝑛𝑒𝑤 = 𝐿𝑛𝑒𝑤 − 𝐿𝑖 
3.72 

3.5.2 Numerical results 

It is now presented the numerical results for each one of the cases stated above with and 

without thermal pressurization effects. For the case of “without thermal pressurization” 

only velocity and displacement friction softening is included. Full friction softening is 

included when thermal pressurization is considered. To trigger the landslide, 𝜑𝑚 is set to 

22.2770 which is 1% less than the incipient failure angle 𝜑𝐹. 

The governing equations were discretised and solved using the BTCS scheme. The 

equations were integrated for a time window of 10 seconds after initiation of movement.  

As reference geometry, section 5 of the Vaiont slide with radius of 1500 m and opening 

angle of 62° is used. 
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3.5.2.1 Case of different radii 

First, the dynamic equation without thermal pressurization was solved numerically for slip 

circles of fixed centre (at 𝐿𝑖 = 1285𝑚) and radius varying between 1300 and 1900 m. 

Velocity and displacement plots are given Figure 81  and Figure 82 respectively. The 

velocity obtained ranges from 15.5 m/sec to 23 m/sec at 10 sec after initiation for the 

selected range of radii and the displacement varies from 75 m to 110 m. No significant 

change in the activation point is noticed; all analyses give an activation point of 0.5sec.  

Subsequently, analyses were carried out coupling the dynamic equation with the heat and 

pore pressure equations. The corresponding velocity and displacement plots are given in 

Figure 83 and Figure 84 respectively. The velocity obtained here ranges from 16.5 m/sec to 

26.2 m/sec at 10 sec after initiation for the selected range of radii and the displacement 

varies from 75.5 m to 125 m. 

The plot of velocity at 10 sec versus the radius of the respective circular surface is given in 

Figure 85. It can be seen from Figure 85 that, although the predicted velocity in both cases 

increases with the radius of the slip circle, the larger the radius is the bigger the influence 

of thermal pressurization on the results, as can be seen by the increasing distance between 

the two lines. 

 

Figure 81: Velocity plot for different radius of failure mass- absence of pressurization effect  
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Figure 82: Displacement plot for different radius of failure mass- absence of pressurization effect 

 

Figure 83: Velocity plot for different radius of failure mass coupled with pressurization effect 

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Time(s)

D
is

p
la

c
e

m
e

n
t 
(m

)

 

 

1300 m

1400 m

1500 m

1600 m

1700 m

1800 m

1900 m

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Time(s)

V
e

lo
c
it
y
 (

m
/s

)

 

 

1300 m

1400 m

1500 m

1600 m

1700 m

1800 m

1900 m



105 

 

Figure 84: Displacement plot for different radius of failure mass coupled with pressurization effect 

 

 

Figure 85: Plot of slide velocity at 10 sec versus radius of failure plane 
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3.5.2.2 Case of moving centre 

The numerical results for slip circles of the same radius but different centres are presented 

in this section. The analyses were carried out by varying the values of  Δ𝐿  given in 

Equation 3.72. Δ𝐿 is negative when the centre moves away from the reference position and 

positive if it moves towards the slope. Δ𝐿 = 0 represents the reference geometry  which 

corresponds to section 5 of  the Vaiont slide. 

The velocity and displacement plots when the pressurization effects are ignored given in 

Figure 86 and Figure 87. The final velocity at 10 sec varies from 15.5m/sec to 25m/sec for 

the range of  Δ𝐿 between -200 m and 400 m, whereas the displacement varies from 75m to 

123m.  

The results when the effects of thermal pressurization are included are given in Figure 88 

and Figure 89. In that case the velocity varies from 16.3 m/sec to 28.8 m/sec and 

displacement varies from 78m to 140m.  

The plot of velocity at 10 sec versus the values of Δ𝐿 is given in Figure 90. It can be seen 

from Figure 90, although the predicted velocity in both cases increases with Δ𝐿, the larger 

the Δ𝐿 is, the bigger the influence of thermal pressurization on the results, as can be seen 

by the increasing distance between the two lines. 

 

Figure 86: Velocity plot for moving centre - absence of pressurization effect 
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Figure 87: Displacement plot for moving centre-absence of pressurization effect 

 

Figure 88: Velocity plot for moving centre of failure circle coupled with pressurization effect 
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Figure 89: Displacement plot for moving centre of failure circle coupled with pressurization effect 

 

Figure 90: Plot of slide velocity at 10 sec versus  𝚫𝑳. 
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3.5.3 Discussion on numerical results 

Cecinato (2009) showed that, in planar slides, the overburden thickness plays an important 

role when thermal pressurization effects are considered. A thicker sliding mass accelerates 

faster than a thinner slide as shown in Figure 78 (Cecinato, 2009). 

Similar analyses were carried out but with circular slip surface rather than a planar one, to 

investigate the influence of the size of the circular slip surface on slide acceleration. Both 

the radius and the location of the centre of the slip surface were varied. Overall, the results 

show that, even without pressurization, size influences significantly the dynamics of the 

slide as a slide with larger radius accelerates faster than a slide with smaller one.  

The results also show that, for a given radius, slides whose centre is close to slope, 

accelerates faster. 
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Chapter 4: A thermo-poro-mechanical 

landslide model based on rate process theory  

The model described in Chapter 3 is applicable to the final phase of catastrophic failure of 

a landslide. However, in many landslides, slow creep-like movement is observed before 

the slide reaches a catastrophic phase.   

Rate process theory is based on activation of flow units (Section 2.4.5). Moreover, flow 

units can be activated by thermal energy as well as externally applied stress. Therefore, it 

should be possible to use it to model the creep like movement of landslides, as it 

incorporates the time dependent behaviour of soils and also the concept of thermal 

activation is inherently included.  

In this chapter, a new thermo-poro mechanical landslide model is developed on this basis. 

First, a preliminary validation of rate process theory was done in isothermal conditions. 

Subsequently, a thermo-mechanical formulation for a shear band was developed. Finally, a 

complete landslide model, which includes heat production, thermal pressurization and the 

dynamics of the slide was developed.  

4.1 Soil creep as a rate process  

Several authors applied rate process theory to explain the creep behaviour of soils 

(Andersland and Douglas, 1970, Christensen and Wu, 1964, Kuhn and Mitchell, 1993, 

Mitchell, 1964). Rate process theory, developed by Eyring (1936), considers the movement 

of flow units such as atoms or molecules. The movement of flow units is opposed by an 

energy barrier called activation energy, 𝑈0 (as shown in Figure 91) which keeps a flow unit 

in an equilibrium position. If enough energy to exceed the activation energy is applied to 

the flow unit by an external source, it will move and deformation will occur. This energy 

source can have different forms, e.g. a heat source or an applied stress. 



112 

 

Figure 91: Schematic representation of activation energy between two flow units 

4.2 Activation frequency  

Curve A in Figure 92 represents the potential energy-displacement relationship for a 

material at rest. From statistical mechanics, the average thermal energy per flow unit is 

given as kT, where k is Boltzmann’s constant (1.38 × 10−23𝐽𝐾−1) and T is the absolute 

temperature (K). Even though a material is at rest, each flow unit is vibrating with a 

frequency of kT/h, (where h is Planck’s constant, 6.624 × 10−34𝐽𝑠−1). In addition, it is 

assumed that the thermal energy of a material is divided among flow units following a 

Boltzmann distribution.  Therefore, at rest, the probability of a given flow unit becoming 

activated is given by 

 𝑝(𝑈0) = exp (−
𝑈0

𝑁𝑘𝑇
) 4.1 

where N is the Avogadro’s number and Nk = R  the universal gas constant 

(8.3144 𝐽𝐾−1𝑚𝑜𝑙−1). In other words, the above expression can be interpreted as the 

proportion of flow units activated at a single oscillation.  Therefore, the frequency of 

activation 𝑎𝑓 is given by 

 𝑎𝑓 =
𝑘𝑇

ℎ
exp (−

𝑈0

𝑁𝑘𝑇
) 4.2 

If an additional amount of energy is supplied, e.g. through the application of a shear force 

𝑓,̅ the energy barrier becomes distorted (curve B in Figure 92). The barrier height will be 

reduced by (𝑓𝜆̅𝑙/2) in the direction of the applied force and increased by the same amount 

in the opposite direction; 𝜆𝑙 is the distance between two successive equilibrium points of a 

flow unit. Due to reduced barrier height, the activation frequency in the direction of the 

applied force becomes  
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 𝑎𝑓⃗⃗⃗⃗ =
𝑘𝑇

ℎ
exp(−

𝑈0

𝑁 −
𝑓𝜆̅𝑙

2
𝑘𝑇

) 4.3 

and in the opposite direction, due to increased barrier height, it becomes, 

 𝑎𝑓⃖⃗⃗⃗⃗ =
𝑘𝑇

ℎ
exp(−

U0

N −
𝑓𝜆̅𝑙

2
𝑘𝑇

) 4.4 

 

Finally, the net activation frequency can be written as; 

 𝑎𝑓⃗⃗⃗⃗ − 𝑎𝑓⃖⃗⃗⃗⃗ =
2𝑘𝑇

ℎ
exp (−

𝑈0

𝑅𝑇
) sinh (

𝑓𝜆̅𝑙

2𝑘𝑇
) 4.5 

From the net activation frequency, the shear strain rate can be written in the following 

form; (Feda, 1989) 

 𝛾̇ =
2𝑘𝑇

ℎ
exp (−

𝑈0

𝑅𝑇
) × sinh (

 𝜏𝜆

2𝑆𝑘𝑇
) 4.6 

where  

k = Boltzmann’s constant, 1.38 × 10−23J/K 

h = Plank’s Constant 6.62 × 10−34J s 

R = Universal gas constant, 8.31 J/ (mol K) 

T = Absolute temperature, K 

𝜆𝑙 = Distance between successive equilibrium points of a flow unit  

U0= Free activation Energy, a measure of bonding strength kJ/mol 

𝜏 = Applied shear stress  

𝑆 = Number of bonds/m2 
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Figure 92: The distorting effect of a shear force on energy barrier (Mitchell and Soga, 2005) 

4.3 Parameter estimation 

4.3.1 Activation energy  

The activation energy is a measure of bonding strength between two atoms or two 

molecules and depends on the type of flow unit considered and the applied shear stress.  

It was measured experimentally by several authors for different types of soils using triaxial 

tests with temperature control (Campanella and Mitchell, 1968, Mitchell and Campanella, 

1964, Mitchell et al., 1969, Mitchell and Soga, 2005) on the basis of the following 

equation. 

 
𝜕 (ln

𝛾̇
𝑇)

𝜕 (
1
𝑇)

= −
𝐸

𝑅
 4.7 

Equation 4.7 follows from Equation 4.6, if sinh(. ) =
1

2
exp(. ) is considered and standard 

algebraic manipulation is carried out. 

 𝐸 = 𝑈0 −
𝜏𝜆𝑙𝑘

2𝑆𝑅
 4.8 

Different values of 𝐸 were measured for different applied shear stress. The free activation 

energy 𝑈0 is defined as, the activation energy of a material under zero applied shear stress 

and can be obtained by extrapolating the line of 𝐸 𝑣𝑠 1/𝑇 to zero shear stress. Hence, free 
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activation energy is a constant for a particular type of soil (Feda, 1989); its value ranges 

between 84-190 kJ/mol (Christensen and Wu, 1964, Kuhn and Mitchell, 1993, Kwok and 

Bolton, 2010, Mitchell and Soga, 2005, Ter-Stepanian, 1975).  

From the studies done by Mitchell and co-workers, four main features of the activation 

energy of soil were identified, (Mitchell et al., 1969) 

1. Activation energies are relatively large, much higher than for viscous flow of water. 

2. Variations in water content (including completely dry soil), consolidation pressure, 

void ratio, and pore fluid have no significant effect on the required activation energy. 

3. The values for sand and clay are very similar. 

4. Clays in suspension with insufficient solids to form a continuous structure deform with 

activation energy equal to that of water. 

4.3.2 Distance between successive equilibrium points of two flow 

units (λl) 

Different values of 𝜆𝑙 have been proposed by different authors depending on the type of 

flow unit considered. If the flow unit is a single oxygen atom, then creep is considered to 

occur due to the displacement of oxygen atoms surrounding silicate mineral, and 𝜆𝑙  is 

taken as the diameter of the oxygen atom (2.8 × 10−10  m) (Campanella and Mitchell, 

1968, Mitchell et al., 1968). If a hexagonal SiO2 molecule is taken as a flow unit, then 𝜆𝑙 is 

assumed as the distance between holes of two SiO2 molecules along the cleavage plane of a 

mica particle (5.2 × 10−10m) (Erlandsson et al., 1988). These two ways of measuring 

distance between successive equilibrium points of two flow units is illustrated in Figure 93. 
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Figure 93: Interpretation of λ in terms of silicate mineral surface structure (circles represents 

configuration oxygen atoms in silicate mineral surface) (modified after Mitchell et al. (1969) 

4.3.3 Number of bonds per unit area (S) 

Inter-particle bonds are formed due to the normal force applied between two soil particles, 

and the number of bonds is proportional to this applied force. Therefore, macroscopically, 

the number of bonds can be related to the effective stress applied on the specimen.  

Furthermore, the number of bonds per unit area for a particular confining pressure, can be 

shown to be constant and independent of particle size. This is because soils with larger 

particle size may contain fewer inter-particle contacts per unit volume. However, each 

contact forms a greater contact area between particles. In contrast, soils with smaller 

particle size contain more inter particle contacts per unit volume, but the corresponding 

contact area is smaller. The above can be shown by using Hertz’s contact zone theory 

(Johnson, 1987); this is done below. 

It is considered, for simplicity, soil particles to be represented by identical spheres 

arranged in a regular array (Figure 94a). For contact between two spheres with equal 

radius, the area of contact is a circle of radius 𝑎 (Figure 94b);  

 𝑎3 =
3𝐹𝑓𝜙

16𝐸∗
 4.9 

where 𝐹𝑓 is the applied force between two particles, 𝜙 is the particle size and 

 
1

𝐸∗
=

1 − 𝜐1
2

𝐸1
+

1 − 𝜐2
2

𝐸2
 4.10 

5.2 Å 
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where 𝐸1 & 𝐸2 are the elastic moduli and 𝜐1 & 𝜐2 are the Poisson's ratios associated with 

each sphere. From the definition given in Equation 4.9, the contact area between two 

particles can be written as; 

 𝐴1 = 𝜋 (
3𝐹𝑓𝜙

16𝐸∗
)

(
2
3
)

 4.11 

 

 

(a)      (b) 

Figure 94: (a) Regular assembly of spherical soil particles (b) contact zone between two particles  

Let us assume the total normal stress applied on the surface is  𝑃 , and the number of 

particles per unit length is 𝑛. Therefore, the applied force between two particles can be 

written as; 

 𝐹𝑓 =
𝑃𝐴

𝑛2
 4.12 

where 𝐴 is the total area of the particle assembly and 𝑛 the number of particles in each 

direction. If a unit area is considered, then 𝐴 = 1 and 𝐹𝑓 becomes as;  

 𝐹𝑓 =
𝑃

𝑛2
 4.13 

If a unit length is assumed, due to the array being regular 

 𝑛𝜙 = 1 4.14 

Substituting Equations 4.13 and 4.14 into Equation 4.11 gives 

 𝐴1 = 𝜋 (
3𝑃

16𝑛3𝐸∗
)
(
2
3
)

 4.15 

2a 

. 5𝜙 

n particles per 

unit length   
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The total number of contacts per unit area is 𝑛2. Therefore the total contact area per unit 

area of sample is given as;  

 𝐴 = 𝜋 (
3𝑃

16𝐸∗
)

(
2
3
)

 4.16 

which is independent of the particle size 𝜙. Moreover, it is predicted to vary with 𝑃(
2

3
)
 

using Hertz theory. 

Mitchell et al. (1969) proposed a linear relationship between the effective confining 

pressure and the number of inter-particle bonds based on experimental results. For a large 

value of applied stress, the hyperbolic sine in Equation 4.6 can be approximated by a 

simple exponential form. Therefore, the rate process equation becomes 

 𝛾̇ = 𝐾(𝑡) exp(𝛼𝐷′) 4.17 

 

𝐾(𝑡) =
2𝑘𝑇

ℎ
exp (−

𝑈0

𝑅𝑇
) 

𝛼 =
𝜆𝑙

4𝑆𝑘𝑇
 

4.18 

where 𝐷′ is the applied deviator stress in triaxial conditions. Creep tests were carried out 

by applying step increments to the deviator stress. Parameter 𝛼 is a constant for a given 

value of effective consolidation pressure and can be calculated from the slope of the stress 

vs log strain rate plot. With 𝛼 known, the ratio 𝜆𝑙/𝑆 can be calculated as a measure of the 

number of interparticle bonds (Mitchell et al., 1969). Three types of soil were tested under 

different values of effective consolidation pressure, water content, saturation (between 

saturated and completely dry) and OCR. Results show that normally consolidated San 

Francisco Bay mud gives 2.3 × 1013  bonds/N (bonds/unit area for a unit of applied 

consolidation pressure) (Figure 95). Furthermore, it was observed that the number of inter-

particle bonds is a decreasing function of water content. The explanation of this was that 

effective stress decreases with water content leading to the reduction in number of bonds 

(nearly 100 times greater for dry than for wet clay). Finally, the number of bonds was 

found to be an increasing function of OCR values.   

It was predicted from Hertz theory that S varies with 𝑃(
2

3
)
. Mitchell et al. (1969) found that 

S varies linearly with P. Possible reasons for this difference are listed below. 

1. It was assumed that soil particles are spherical. In reality, soil particles may have 

different shapes depending on their mineralogy.  

2. It was assumed that particles are arranged in a regular array form. In reality, 

particle arrangement will be more complex. 
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3. Hertz contact theory assumes elastic contact only. There is the possibility of plastic 

contacts existing between soil particles, which would change the force-area 

relationship. 

 

Figure 95: Number of interparticle bonds as function of consolidation pressure for normally 

consolidated San Francisco Bay mud (Mitchell et al., 1969) 

4.4 Modelling a ring shear test using rate process theory 

As a validation step of the above approach in isothermal conditions, the velocity of ring 

shear test was calculated using the rate process equation for different values of the applied 

shear stress. The results were compared with ring shear laboratory tests carried out by Tika 

and co-workers. 

Tika et al. (1996) carried out ring shear tests on various types of soils. The tests were 

carried out with constant shear velocity and constant confining pressure. Shear stress 

(applied to maintain the constant velocity), and change in pore water pressure were 

measured as outputs. The experiments were carried out at two stages of speed, i.e. slow 

shearing (0.01-2.0 mm/min) and fast shearing (100-6000 mm/min). Additionally, the 

change in temperature of the specimen was also measured during fast shearing. 

It is recognised that, in ring shear experiments, strain rate is controlled and shear stress is 

measured, whereas the rate process expression gives strain rate as a function of stress, so 

that it corresponds a process where the stress is controlled and the strain rate is taken as an 

output. Also, the rate process theory is meant to give predictions for steady state strain 
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rates that correspond to constant values of temperature and shear stress. In the ring shear, 

although the strain rate is constant, shear stress varies during stages of the test before 

reaching a steady state. Despite these limitations, comparing rate process theory with ring 

shear experiments is a worthwhile exercise because these are the only data available where 

particular type of clay sheared and, at the same time, temperature is measured. 

The displacement rate 𝑣 (velocity) at the top of the shearing zone can be written as; 

 𝑣 = 𝛾̇𝑍𝑏  4.19 

where 𝑍𝑏  is the thickness of the specimen and 𝛾̇  the strain rate (Equation 4.6)  It was 

assumed that strain rate and applied shear stress are uniform throughout the deforming 

shear zone. 

As mentioned earlier, the number of bonds per unit area is proportional to the applied 

confining pressure. Kuhn and Mitchell (1993) proposed the following expression for the 

number of bonds in terms of confining pressure. 

 𝑆 = 𝑆1𝜎𝑐
′ 4.20 

Where, 𝑆1 is the proportionality factor given by the number of bonds per unit area per unit 

of effective confining pressure. Mitchell et al. (1969) estimated the value of 𝑆1  from 

different creep tests and it is constant for a given soil ranging from 1 × 108 to 1 × 1010 

bonds/N.  3.6 × 108 was selected for the claystone material tested by Tika et al. (1996). 

The absolute temperature was assumed as 300 K (i.e.26.85℃), 𝜆𝑙 = 2.8 × 10−10 m and 

𝑈0 = 105 kJ/mol in line with the values used by several other authors (Kuhn and Mitchell, 

1993, Kwok and Bolton, 2010). The thickness of the shearing zone was selected as 11.2 

mm. i.e. equal to the sample thickness. The vertical effective stress (𝜎𝑐
′) was 495 kPa and 

the shear stress required to maintain constant shear strain rate at large strains (𝜏𝑟𝑒𝑠) was 50 

kPa. 

Using the above values in Equations 4.6 & 4.19, the displacement rate was obtained as 

28.35 mm/min. This value is much lower than the displacement rate of 160mm/min 

maintained in this ring shear test. However, this is a preliminary validation in isothermal 

conditions, but the temperature is expected to play a role on shearing. This temperature rise 

would change the velocity in rate process equation 4.6. Therefore, a thermo-mechanical 

formulation for a shear zone using rate process theory is developed in the next section. 
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4.5 A thermo-mechanical formulation for a shear band  

4.5.1 Heat Equation 

As some heat can be expected to be produced during shearing, conditions will not be 

strictly isothermal and this may affect the behaviour of soil. To include this effect, energy 

balance was applied to the deforming shear zone in order to arrive at the heat equation. 

(Vardoulakis, 2002a); 

 
𝜕𝜃

𝜕𝑡
= 𝜅𝑚

𝜕2𝜃

𝜕𝑧2
+

𝜏𝛾̇

𝑗(𝜌𝐶)𝑚
 4.21 

In the above, the first term on the right hand side of the equation is a heat diffusion term, 

where 𝜅𝑚 is Kelvin’s thermal diffusivity coefficient. Vardoulakis (2002a) recommended a 

constant value of 𝜅𝑚 equal to 1.47 × 10−7𝑚2/𝑠 for a soil water mixture.  The second term 

is the heat generation term; it is assumed that all plastic work done inside the shear zone is 

converted to heat. 𝑗(𝜌𝐶)𝑚 = 𝐶𝑓  is the thermal constant of the soil water mixture, taken 

equal to 2.85MPa/oC (Vardoulakis, 2002a). 𝜏 is the applied shear stress and 𝛾̇ is the shear 

strain rate.  

Although the expression for shear strain rate based on rate process theory depends on 

temperature, it was derived assuming isothermal conditions, i.e. that there is no heat flux 

through the material. Also, it explains soil deformation as movement of flow units between 

two successive, discrete equilibrium points. However, the heat diffusion equation can be 

applied to a material assuming that the heat diffuses through it in a continuous manner. In 

order to combine rate process theory with heat diffusion, the former should be derived for 

non-isothermal conditions; this will result to a highly non-linear and complex problem.  

Therefore, here the isothermal rate process shear stain rate equation is used as a first 

approximation. Provided the rate of change of temperature is not high, successive time 

steps can be treated as successive isothermal states with different values of temperature. 

This assumption will no more be valid, when the temperature rate becomes rapid as is 

expected immediately before failure. 

On the basis of above description, the isothermal strain rate equation (4.6) is substituted in 

Equation 4.21. Thus, the final heat equation can be written as, 

 
𝜕𝑇

𝜕𝑡
= 𝜅𝑚

𝜕2𝜃

𝜕𝑧2
+

𝜏

𝑗(𝜌𝐶)𝑚
×

2𝑘𝜃

ℎ
exp (−

𝑈0

𝑅(𝜃 + 273)
) × sinh (

 𝜏𝜆𝑙

2𝑆𝑘(𝜃 + 273)
) 4.22 
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The above equation can be solved numerically using a finite difference scheme with 

appropriate initial and boundary conditions. 

4.5.2 Initial and boundary conditions  

In ring shear experiments, all soils exhibit a residual stage at the end of the test, at which 

the applied shear stress remains almost constant (Tika et al., 1996, Tika and Hutchinson, 

1999). However, before attaining the residual stage, the soil exhibits a peak and then a 

softening phase where the applied shear stress decreases (Figure 96). The temperature at 

the beginning of the residual stage was assumed as the initial condition for the above 

governing heat equation (Equation 4.22). 

To find this temperature, heat balance was considered during the softening phase, 

assuming a linear reduction of the applied stress over time. 

 
𝜕𝜃

𝜕𝑡
= 𝜅𝑚

𝜕2𝜃

𝜕𝑧2
+

(𝜏𝑢𝑙𝑡 − 𝑚𝑡)

𝑗(𝜌𝐶)𝑚
×

𝑣

𝑍𝑏
 4.23 

300 K (i.e.26.85℃) which is the initial temperature of the ring shear system was assumed 

as the initial condition(𝜃𝑟𝑒𝑓1) for equation 4.23.  The temperature increase obtained during 

the softening phase was 0.42oC (Figure 97). This temperature value is used as the initial 

condition (𝜃𝑟𝑒𝑓) for Equation 4.22 to model the residual phase. (𝜃𝑟𝑒𝑓 = 𝜃𝑟𝑒𝑓1 + 𝛥𝜃). 

As boundary conditions, the temperature far from the shear band boundaries was taken 

constant, in-line with Vardoulakis (2002a). In summary, the initial and boundary 

conditions are; 

 
𝜃(±𝛼, 𝑡) = 𝜃𝑟𝑒𝑓 

𝜃(𝑧, 0) = 𝜃𝑟𝑒𝑓 
4.24 

The total spatial domain for the heat equation was set to 21 times the specimen thickness. 

This represents 10 times the specimen thickness above and below the sample. In practice, 

in a ring shear apparatus, the soil specimen is covered by ceramic or metal plates. 

However, for simplicity, same specimen soil properties are chosen to model the metal or 

ceramic plates. 
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Figure 96: Results of fast ring shear test with 160 mm/min displacement rate (Tika et al., 1996) 

 

Figure 97: Temperature vs time at the mid of the shear zone during softening phase 

4.5.3 Numerical results  

Equations 4.22 & 4.23 are non-linear parabolic partial differential equations. To solve 

them a backward-time centred-space (BTCS) finite difference method was used. 

The same parameters were used as in the isothermal formulation (Section 4.4). 

Temperature changes were calculated across the domain of the shear zone. Temperature 

profiles with depth for different times are given in Figure 98. Furthermore, temperature at 

the middle of the shear zone is plotted against time in Figure 99. The total temperature 

increment was calculated as 7oC (Figure 99). The shear strain obtained from rate process 

theory depends on temperature. In Equation 4.6 all parameters are constant except 
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temperature; therefore strain rate would increase throughout the shear zone due to 

temperature rise.  

The temperature changes obtained from a fast ring shear test are in the range of 0.59 - 2.5 

oC (Tika et al., 1996) which is less than the temperature predicted  using this model (7oC). 

The model presented here considers 1-D heat diffusion, assuming adiabatic conditions in 

other two directions. However, in the ring shear apparatus there is a possibility that any 

heat produced would diffuse in all directions. Therefore the temperature rise would be 

lower than the predicted temperature rise using this model.  

 

Figure 98: Temperature isochrones for applied shear stress of 50 kPa 
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Figure 99: Temperature changes at the mid of the shear zone (50 kPa applied shear stress) 

 

 

Figure 100: Temperature changes for different applied shear stresses 
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Figure 101: Velocity changes for different applied shear stresses 

From the strain rate profile, the velocity at the top of the shear zone was calculated. For 50 

kPa of applied shear stress, our model velocity reaches a maximum value of 61.06 mm/min 

then remains constant, which is still lower than the fast shearing ring shear displacement 

rate of 160 mm/min. However, it increased significantly compared to the value obtained 

for isothermal conditions. 

This velocity cannot be directly compared to the ring shear test because, in the ring shear 

test, velocity was kept constant as it is a strain controlled process. In the model on the other 

hand, velocity increases with time as it is a stress controlled process.  

Subsequently, the model was used to analyse a soil layer under different levels of applied 

shear stresses. The temperature at the mid-point and the velocity at the top of the shear 

zone are plotted against time in Figure 100 and Figure 101 respectively.  

4.5.4 Discussion  

The results show that applying a shear stress above 50 kPa gives blow-up in temperature 

and also unconstrained acceleration within a time frame of 50,000 seconds. Shear stresses 

lower than 50 kpa seem to lead to a steady state, where temperature and velocity stabilise. 
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either increases or remains constant. Primary creep cannot be simulated, as during that 

stage the strain rate should decrease with time. Therefore, there should be an additional 

mechanism to be imposed to include primary creep. For this purpose, Mitchell and co-

workers proposed two assumptions (Mitchell, 1964, Mitchell and Campanella, 1964).  The 

first one is that the free activation energy is time dependent and increases with time. The 

second one is that a time dependent factor (X) must be included before the strain rate 

equation to describe the structural changes taking place during primary creep. However, 

these two assumptions are not supported by direct observations from experiments. Feda 

(1989) on the other hand proposed that primary creep occurs due to changes in the number 

of inter-particle bonds with time; this can be explained as an increase in the number of 

contacts with time due to particle rearrangement.  

As mentioned earlier, ring shear tests were carried out with different speeds at different 

stages (Tika, 1989, Tika et al., 1996, Tika and Hutchinson, 1999). The results show that 

when the speed of shearing increases, the change of residual strength can be of any of the 

three following  types (Tika et al., 1996).  

1. Constant residual strength irrespective of rate of displacement: neutral effect. 

2. Significant drop in residual strength with increasing displacement rate: negative 

rate effect/ rate softening effect 

3. Increase in residual strength with increasing displacement rate: positive rate effect/ 

rate hardening effect 

These types of behaviour are attributed to viscous effects and structural changes during 

shearing of soil. However, a particular soil type can exhibit more than one of the above 

effects depending on the level of normal effective stress. If the normal effective stress 𝜎𝑐
′ is 

reduced, the behaviour changes from neutral to softening. A summary of observed rate 

dependent behaviour is given in Figure 102. Negative rate dependent phenomena cannot be 

captured by the model presented because temperature either increases or remains constant 

over time. Therefore the strain rate and the velocity follow the same trends. Additional 

assumptions or mechanisms would be needed to cover the entire range of creep behaviour 

observed in soils.  

A different issue is the shear band thickness, which plays an important role. Many authors 

proposed different values for the shear band thickness. While soil is in creep, initially the 

specimen deforms uniformly across its thickness, however progressively strains localise in 

a narrow zone (strain localization). Vardoulakis (2002a) proposed a shear band thickness 
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of 1.4 mm based on the experimental evidences on kaolin specimen  (Morgenstern and 

Tchalenko, 1967) and on Vaiont clay (Tika and Hutchinson, 1999). 

In the simulations presented here the thickness was assumed as 11.2 mm which is the 

whole thickness of a ring shear specimen. The stain rate profile, at the later stage of 

deformation (17.5-19.5 hours), is given in Figure 103. Observing the strain rate profile, 

initially the strain rate is constant across the shear band, but subsequently increases at the 

middle of the shear zone much more rapidly than at the boundaries. This shows that a level 

of strain localization develops as shearing progresses, as due to frictional heating the 

temperature at the middle of the shear band is higher than at the boundaries. Therefore heat 

dissipation progressively localises into a shrinking zone inside the shear band, and so does 

the deformation. If the shear zone thickness increases, the time to reach stain localization 

into a particular thinner zone will also increases. Therefore the assumption of “thick” shear 

zone is inconsistent with the eventual strain localization in to a thinner band. 

 

 

Figure 102: Summary of the observed rate-dependent phenomena for residual strength (After Tika et 

al., 1996) 
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Figure 103: Shear strain rate profile for applied shear stress 53 kPa 

4.6 Landslide model  

In the previous sections a thermo mechanical formulation for a shear band was developed. 

In this section, a landslide model is developed that includes thermal pressurization and the 

dynamics of the slide. The model is then used to attempt a back analysis of the Vaiont 

slide.  

4.6.1 Modified heat equation  

When thermo mechanical formulation is used, progressive strain localization is observed, 

which gives a non-linear strain rate and velocity profile inside the shear zone. However, it 

was observed that the velocity profile is very close to linear and deviates slightly from a 

straight line as seen in Figure 104 . For simplicity, in this landslide formulation, an average 

linear velocity profile is assumed as shown in Figure 105.  

With the assumption of a linear velocity profile inside the shear band, the heat equation 

with modified dissipation term can be written as; 

𝜕𝜃

𝜕𝑡
= 𝜅𝑚

𝜕2𝜃

𝜕𝑧2
+

𝜏

𝑗(𝜌𝐶)𝑚
(
𝑣𝑑

𝑍𝑏
)  4.25 

In the above, in addition to all other parameters given in section 4.5.1, 𝑍𝑏 is the thickness 

of the shear band and 𝑣𝑑 is the velocity of the slide. An expression that describes 𝑣𝑑 will 

be derived in Section 4.6.3. 
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Figure 104: Velocity profile inside for thermo mechanical formulation (applied shear stress of 53 kPa)  

  

Figure 105: Stain rate and velocity profile (real and linear) inside the shear band 

4.6.2 Pore pressure equation 

The pore pressure equation gives the excess pore pressure inside the shear band and its 

surroundings. The same equation given in section 3.3 is used here, i.e. 

 
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣

𝜕𝑢

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
 

4.26 

In the above, 𝑐𝑣 and 𝜆𝑚 are the consolidation pressurization coefficients as discussed in 

sections 3.3.1 and 3.3.2 respectively. 

4.6.3 Dynamic equation 

The dynamic equation describes the velocity of landslide. For simplicity, a block on an 

infinite slope is assumed here in order to derive the dynamic equation.  
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Figure 106: Schematic diagram for block on infinite slope (rate process theory)  

With reference to Figure 106, the dynamics of the block sliding on a slope can be written 

as; 

 

𝑑𝑣𝑑

𝑑𝑡
= 𝑔 (sin𝜓 −

𝜏

𝛾𝑒𝐻
) 

4.27 

where, 𝑣𝑑 is the velocity of the block, 𝜓 is the slope angle, 𝐻 is the block thickness, 𝛾𝑒 is 

the effective density of the soils (𝛾𝑠 − 𝛾𝑤) and  𝜏 is the shear stress acting on the block. 

Recalling the rate process equation (4.6)  

 𝛾̇ =
2𝑘𝑇

ℎ
exp (−

𝑈0

𝑅𝑇
) × sinh (

 𝜏𝜆𝑙

2𝑆𝑘𝑇
) 

4.28 

For values of 𝑥 ≥ 2,  sinh(𝑥) can be approximated as (1/2) exp(𝑥). In the above rate 

process formulation, the value of  
 𝜏𝜆𝑙

2𝑆𝑘𝑇
 lies in the range between 8 and 20, so Equation 4.28 

can be written as; 

 𝛾̇ =
𝑘𝑇

ℎ
exp (−

𝑈0

𝑅𝑇
)exp (

 𝜏𝜆𝑙

2𝑆𝑘𝑇
) 4.29 

By assuming a linear velocity profile inside the shear band, the shear strain rate can be 

written as; 

 𝛾̇ =
𝑣𝑑

𝑍𝑏
 4.30 

where 𝑍𝑏 is the thickness of the shear band. Solving 4.29 for shear stress 𝜏 gives; 

 𝜏 =
𝑆

𝐹𝑎
ln (

𝛾̇

𝐹𝑏
) 

4.31 

In the above, 𝑆 is number of bonds per unit area, which is a function of effective normal 

stress as in Equation 4.20, and 𝐹𝑎 and 𝐹𝑏 temperature dependent coefficients given as 

𝑢 
𝜎𝑛

′  

𝑊 

𝑑𝑣𝑑

𝑑𝑡
 

𝐻 

𝜏 

𝜓 
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 𝐹𝑎 =
𝜆𝑙

2𝑘𝑇
 4.32 

 
𝐹𝑏 =

𝑘𝑇

ℎ
exp (−

𝑈0

𝑅𝑇
) 

4.33 

Substituting Equation 4.31 into Equation 4.27 gives 

 

𝑑𝑣𝑑

𝑑𝑡
= 𝑔 sin𝜓 −

𝑔

𝛾𝑒𝐻𝐹𝑏
𝑆 ln (

𝑣𝑑

𝑍𝑏

1

𝐹𝑎
 ) 

4.34 

Therefore the dynamic equation becomes 

𝑑𝑣𝑑

𝑑𝑡
+

𝑔

𝛾𝑒𝐻𝐹𝑏
𝑆(𝜎𝑛

′ ) ln(𝑣𝑑) = 𝑔 sin(𝜓) +
𝑔

𝛾𝑒𝐻𝐹𝑏
𝑆(𝜎𝑛

′ ) ln(𝐹𝑎𝑍𝑏) 
4.35 

In the above, 𝛾𝑒𝐻 is the effective weight per unit area, and this can be written as  

 𝛾𝑒𝐻 =
𝜎𝑛0

′

cos𝜓
 4.36 

where 𝜎𝑛0
′  is the initial effective normal stress acting on the slide. Substituting 4.36 onto 

4.35 gives,  

𝑑𝑣𝑑

𝑑𝑡
+

𝑔(cos𝜓)

𝜎𝑛0
′ 𝐹𝑏

𝑆(𝜎𝑛
′ ) ln(𝑣𝑑) = 𝑔 sin(𝜓) +

𝑔(cos𝜓)

𝜎𝑛0
′ 𝐹𝑏

𝑆(𝜎𝑛
′ ) ln(𝐹𝑎𝑍𝑏) 

4.37 

4.6.4 Numerical results for the Vaiont slide 

In summary, the landslide model contains heat, pore pressure and dynamic equation as 

follows; 

𝜕𝜃

𝜕𝑡
= 𝜅𝑚

𝜕2𝜃

𝜕𝑧2
+

𝜏

𝑗(𝜌𝐶)𝑚
(
𝑣𝑑

𝑍𝑏
)  4.38 

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣

𝜕𝑢

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
 

4.39 

𝑑𝑣𝑑

𝑑𝑡
+

𝑔 cos𝜓

𝜎𝑛0
′ 𝐹𝑏

𝑆(𝜎𝑛
′ ) ln(𝑣𝑑) = 𝑔 sin(𝜓) +

𝑔 cos𝜓

𝜎𝑛0
′ 𝐹𝑏

𝑆(𝜎𝑛
′ ) ln(𝐹𝑎𝑍𝑏) 

4.40 

The above system of equations (4.38, 4.39 and 4.40) will be solved numerically to 

determine the evolution of excess pore pressure, temperature and the slide velocity. The 

discretisation of Equations 4.38 and 4.39 is carried out same as in Chapter 3. Equation 4.40 

is a first order differential equation and is discretised using the backward Euler method. 

The initial and boundary conditions were taken as follows; 

𝜃(±𝛼, 𝑡) = 𝜃𝑟𝑒𝑓 = 12.5℃ 

𝜃(𝑧, 0) = 𝜃𝑟𝑒𝑓 = 12.5℃ 

𝑢(±𝛼, 𝑡) = 0 
4.41 
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𝑢(𝑧, 0) = 0 

The initial condition for the velocity was calculated using the initial shear stress 𝜏0 at the 

onset of sliding as: 

 𝑣𝑑(𝑡 = 0) = 𝐹𝑎 exp (𝐹𝑏

𝜏0

𝑆
)𝑍𝑏 

4.42 

The solution of the system of finite difference equations is not straight forward; it is a non-

linear system and hence an iterative procedure with an appropriate initial guess needs to be 

employed. MATLAB numerical software was used to solve the non-linear equations using 

an in-built algorithm, fsolve. The initial guess used is the solution of the previous time 

step, or the initial conditions for the first time step. 

The system of equations was solved with the stress state obtained from the Vaiont slide 

(Hendron and Patton, 1985). The spatial domain for the diffusion equations was set to 20 

times the shear band thickness. As mentioned earlier, the BTCS is an unconditionally 

stable finite difference scheme allowing for large time steps to be used. The time step 

between 10 and 10000 sec were used depending on the total time duration of the landslide 

process. Subsequently, the value of the rate process parameters was varied within 

reasonable ranges (Mitchell and Soga, 2005) to investigate the behaviour of the model. 

First, an analysis was carried out using average parameter values given in Mitchell et al. 

(1968). This will be hereafter referred to as the Base line case. Nearly 3 years before the 

catastrophic collapse of the Vaiont slide, creep velocity was recorded as approximately 1-

2.5 mm/day (Müller, 1964). Creep parameters were chosen to match this velocity, which 

are in the reasonable range of parameters reported in Mitchell et al. (1968) as follows; 

𝑈0 = 128.5
𝑘𝐽

𝑚𝑜𝑙
  

𝑆0 = 1.1 × 109
𝑏𝑜𝑛𝑑𝑠

𝑚2𝑝𝑎
 

 𝜆𝑙 = 2.8 × 10−10𝑚 

Furthermore, heat and pore pressure parameters, shear band thickness and average slope 

angle are chosen in line with Vardoulakis (2002a) as follows; 

𝑍𝑏 = 1.4𝑚𝑚 

𝜅𝑚 = 1.45 × 10−7𝑚2𝑠−1 

𝜓 = 22° 

𝑐𝑣 = 7.5 × 10−8𝑚2𝑠−1 

𝜆𝑚 = 0.012𝑀𝑝𝑎/℃ 

The initial stress state was obtained from Hendron and Patton (1985) as: 



134 

𝜏0 = 0.976𝑀𝑃𝑎 

𝜎𝑛0
′ = 2.380𝑀𝑃𝑎 

The entire spatial domain was divided in to 200 grid points and temperature and pore 

pressure were computed at the each grid point. 

4.6.4.1 Results for base line case 

Figure 107 presents temperature isochrones across the shear band and its surroundings. 

The time evolution of temperature at the middle of the shear band is given in Figure 108.  

The pore pressure isochrones and the time evolution of pore pressure at the middle of the 

shear band are illustrated in Figure 109 and Figure 110 respectively. The maximum 

temperature rise is practically zero (2 × 10−4℃) and so is the maximum excess pore 

pressure that develops (1Pa, dropping to zero after 8000 sec). The velocity plot Figure 111 

shows that, after a very short transient period, the block is predicted to maintain a steady 

state of creep at 1mm/day. The displacement plot Figure 112 shows that the displacement 

increases linearly with time as expected for a constant velocity. 

 

Figure 107:  Temperature isochrones within the shearband and its surroundings (Base line case) 
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Figure 108:   The time evolution of temperature at the middle of the shear band (Base line case) 

 

Figure 109:  Excess pore water pressure isochrones within the shearband and its surroundings 

(baseline case) 
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Figure 110:  The time evolution of excess pore pressure at the middle of the shear band (Base line case) 

  

Figure 111:  Plot of slide velocity (Base line case)  
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Figure 112:  Plot of slide displacement (baseline case) 

4.6.4.2 Results for different initial velocities 

In the above subsection, results for the base line case were presented. To investigate the 

possible transition from creep to a catastrophic phase the activation energy was varied; this 

meant a different initial velocity, consistent with Equation 4.42. The activation energies are 

varied between 107 kJ/mol and 102 kJ/mol which are within the range of values reported 

in Mitchell et al. (1969). The temperature at the middle of the shear band for the initial 

velocities investigated is presented in Figure 113. The pore pressure at the middle of the 

shear band is presented in Figure 116 and the corresponding velocity plots in Figure 120. It 

can be clearly seen that, for the parameters used here, an initial velocity above about 0.2 

mm/sec leads to a catastrophic phase whereas an initial velocity lower than 0.2mm/sec 

leads to steady state. Temperature isochrones for the lowest and highest chosen initial 

velocities are presented in Figure 114 and Figure 115 respectively and corresponding pore 

water pressure isochrones are shown in Figure 117 (0-800sec for 0.1 mm/sec),  Figure 118 

and Figure 119. Temperature and pore water pressure localization inside the shear band is 

clearly visible during the catastrophic phase. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Time(s)

D
is

p
la

c
e
m

e
n
t 
(m

m
)



138 

 

Figure 113:  Temperature at middle of the shear band for different initial velocities 

 

Figure 114:  Temperature isochrones for the initial velocity of 0.10 mm/sec 
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Figure 115:  Temperature isochrones for the initial velocity of 0.83 mm/sec 

 

Figure 116:  Excess pore pressure at middle of the shear band for different initial velocities 
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Figure 117:  Excess pore pressure isochrones for the initial velocity of 0.100 mm/sec (first 800sec) 

 

Figure 118:  Excess pore pressure isochrones for the initial velocity of 0.100 mm/sec 
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Figure 119:  Excess pore pressure isochrones for the initial velocity of 0.83 mm/sec 

 

Figure 120:  Velocity plot for different initial velocities 
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4.6.5 Influence of the size of the modelled spatial domain  

In the above section, the results for initial velocities of 0.15mm/sec and 0.1mm/sec and 

baseline (1mm/day) predict a steady state of creep with constant velocity after a short 

transient period (Figure 111 and Figure 120). For these particular cases, temperature rise is 

much lower than for the cases with higher initial velocity (Figure 108 and Figure 113). 

Furthermore, excess pore water pressure inside the shear band initially increases then drops 

as shown in Figure 109 and Figure 116 i.e. diffusion of excess pore water pressure 

eventually becomes more significant than thermal pressurization. The balance between the 

diffusion and generation of excess pore water pressure may be influenced by the total 

spatial domain in the finite difference scheme. Therefore, in this section a parametric study 

is carried out to investigate the influence of the size of the modelled spatial domain. 

Recalling the boundary conditions used; 

𝜃(±𝛼, 𝑡) = 𝜃𝑟𝑒𝑓 = 12.5℃ 4.43 

In reality, it is not possible to maintain these boundary conditions at an infinite distance 

from the shear band. In the previous analyses, the total domain was chosen as 21 times the 

shear band thickness assuming that this choice places the boundaries “far enough”. To 

investigate the influence of boundaries, further analyses are performed for the selected 

cases, with different model thickness i.e. 11, 21, 51 and 101 times bigger than the shear 

band thickness as described in Figure 121. The results are presented in the following 

subsections. 

 

Figure 121:  Schematic diagram of shear band and finite difference domain 

4.6.5.1 Results for the baseline case 

Figure 122 presents the temperature at the middle of the shear band for different model 

thicknesses, and the corresponding temperature isochrones are given in Figure 123 to 

Shear band  

Finite difference domain 
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Figure 126. It can be clearly seen that the total temperature rise predicted increases with 

model thickness. However, the difference in temperature rises between the cases of 11 ×

𝑍𝑏  and 101 × 𝑍𝑏 , where 𝑍𝑏  is the shearband thickness, is found nearly 8.5 × 10−4℃ 

which is still practically negligible. Similarly, the pore water pressure isochrones for 

different domains are given in Figure 128 to Figure 131. The peak value of pore pressure 

increases with the thickness of the model as seen in Figure 127. The difference in peak 

values of pore pressure between the cases of 11 × 𝑍𝑏  and 101 × 𝑍𝑏  is found to be 

practically zero (i.e. 4Pa). The velocity plot of Figure 132 shows that analyses for all 

domain thicknesses reach a steady state, although the respective final velocities are 

different but the differences are not significant. 

 

Figure 122:  Temperature at the mid-point of the shear band (different boundaries, base line case) 

10
1

10
2

10
3

10
4

10
5

10
6

12.5

12.5001

12.5002

12.5003

12.5004

12.5005

12.5006

12.5007

12.5008

12.5009

12.501

Time(s)

T
e

m
p

e
ra

tu
re

 (o
C

)

 

 

11  Z
b

21  Z
b

51  Z
b

101  Z
b



144 

 

Figure 123:  Temperature isochrones for domain thickness 𝟏𝟏 × 𝒁𝒃 , baseline case (shearband area is 

shaded) 

 

Figure 124:  Temperature isochrones for domain thickness 𝟐𝟏 × 𝒁𝒃 , baseline case (shearband area is 

shaded) 
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Figure 125:  Temperature isochrones for domain thickness 𝟓𝟏 × 𝒁𝒃 , baseline case (shearband area is 

shaded) 

 

Figure 126:  Temperature isochrones for domain thickness 𝟏𝟎𝟏 × 𝒁𝒃 , baseline case (shearband area is 

shaded) 
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Figure 127:  Excess pore water pressure at the mid-point of the shear band (different boundaries, base 

line case) 

 

Figure 128:  Pore water pressure isochrones for domain thickness 𝟏 × 𝒁𝒃 , baseline case (shearband 

area is shaded) 
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Figure 129:  Pore water pressure isochrones for domain thickness 𝟏 × 𝒁𝒃 , baseline case (shearband 

area is shaded) 

 

Figure 130:  Pore water pressure isochrones for domain thickness 𝟏 × 𝒁𝒃 , baseline case (shearband 

area is shaded) 
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Figure 131:  Pore water pressure isochrones for domain thickness 𝟏𝟎𝟏 × 𝒁𝒃, baseline case (shearband 

area is shaded) 

 

Figure 132:  Velocity of the slide (different boundaries, base line case) 
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The results presented in subsection 4.6.4.2 showed that, an initial velocity above 0.2 

mm/sec leads to a catastrophic phase whereas an initial velocity lower than 0.2mm/sec 

leads to steady state. In this subsection, an initial velocity of 0.15 mm/sec is chosen to 

investigate the influence of the model thickness. This particular initial velocity predicted a 

steady state in the previous analysis presented in Subsection 4.6.4.2, where 21 × 𝑍𝑏 was 

used as the model thickness (Figure 120).  

The temperature and pore water pressure isochrones for different model thicknesses are 

given from Figure 133 to Figure 136 and from Figure 138 to Figure 141 respectively. The 

plots for the temperature and pore water pressure at the middle of the shear band are given 

in Figure 137 and Figure 142 respectively and the corresponding velocity plot in Figure 

143.  

It can be clearly seen that, using a model thickness of 51 × 𝑍𝑏  or 101 × 𝑍𝑏  leads to a 

catastrophic phase, whereas a model thickness of 11 × 𝑍𝑏  or 21 × 𝑍𝑏  leads to a steady 

state. Moreover, the predictions given by domains 51 × 𝑍𝑏 and 101 × 𝑍𝑏  are practically 

the same as seen in Figure 137, Figure 142 and Figure 143. 

 

Figure 133:  Temperature isochrones for domain thickness  𝟏𝟏 × 𝒁𝒃  , initial velocity = 0.15mm/sec 

(shearband area is shaded) 
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Figure 134:  Temperature isochrones for domain thickness 𝟏 × 𝒁𝒃  , initial velocity = 0.15mm/sec 

(shearband area is shaded) 

 

Figure 135:  Temperature isochrones for domain thickness  𝟓𝟏 × 𝒁𝒃  , initial velocity = 0.15mm/sec 

(shearband area is shaded) 
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Figure 136:  Temperature isochrones for domain thickness 𝟏𝟎𝟏 × 𝒁𝒃 , initial velocity = 0.15mm/sec 

(shearband area is shaded) 

 

Figure 137:  Temperature at the mid-point of the shear band (different boundaries, initial velocity = 

0.15mm/sec) 
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Figure 138:  Pore water pressure isochrones for domain thickness  𝟏𝟏 × 𝒁𝒃  , initial velocity = 

0.15mm/sec (shearband area is shaded) 

 

Figure 139:  Pore water pressure isochrones for domain thickness  𝟐𝟏 × 𝒁𝒃  , initial velocity = 

0.15mm/sec (shearband area is shaded) 
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Figure 140:  Pore water pressure isochrones for domain thickness  𝟓𝟏 × 𝒁𝒃  , initial velocity = 

0.15mm/sec (shearband area is shaded) 

 

Figure 141:  Pore water pressure isochrones for domain thickness  𝟏𝟎𝟏 × 𝒁𝒃  , initial velocity = 

0.15mm/sec (shearband area is shaded) 
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Figure 142:  Excess pore water pressure at the mid-point of the shear band (different boundaries, 

initial velocity = 0.15mm/sec) 

 

Figure 143:  Velocity of the slide (different boundaries, initial velocity = 0.15mm/sec)  

It can therefore be concluded that, although the low initial velocities predicted a steady 

state in the previous analyses (Sections 4.6.4.1 and 4.6.4.2), this was due to the effect of 

the thickness of the model. On the other hand, results that predicted catastrophic failure are 

not influenced by the thickness of the model.  
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Base on the above analysis, modelling the exact thickness is important as it affects the 

significantly the predicted outcome. To predict the failure time of the Vaiont case, the 

domain thickness should kept extremely large, which is practically not possible to model. 

However, a way is needed to assess whether, if full thickness is modelled, the model would 

predict Vaiont’s collapse in reasonable timescales. Therefore, the following approach is 

proposed here in order to predict the failure time of the Vaiont case. 

First, initial velocities and the corresponding failure times of the slide are obtained from 

Figure 120 and Figure 143. The logarithmic plot of failure time (sec) vs initial velocity 

(mm/day) and the best linear fit is given in Figure 144. Furthermore, the best linear fit 

takes the following form;  

 ln (
𝑡𝑓

𝑡𝑓0
) = 𝐶1̅ ln (

𝑣𝑖

𝑣𝑖0
) + 𝐶2̅ 4.44 

where 𝑡𝑓 is the failure time, 𝑡𝑓0 is the reference failure time (taken here as 1 sec) 𝑣𝑖 is the 

initial velocity of the slide, 𝑣𝑖0 is areference initial velocity (taken here as 1mm/day) and 

𝐶1̅ and the 𝐶2̅ are the dimensionless coefficients obtained from linear fit (𝐶1̅ = −1.9 and 

𝐶2̅ = 26.04).  Substituting Vaiont initial velocity (base line case, 1mm/day) into Equation 

4.44 give failure time of 6460 years which is still very long period compared to the actual 

creep duration observed in the Vaiont (3 years).  

 

Figure 144:  Logarithmic plot of failure time (sec) vs initial velocity (mm/day) 
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4.7 Discussion and conclusions 

In this Chapter, first a thermo-mechanical model for a shear band and then a thermo-poro-

mechanical landslide model were developed. Rate process theory was used to describe the 

constitutive behaviour of the soil.   

From the thermo-mechanical model of a shear band that was developed in Section 4.5, the 

following conclusions can be made. 

 In non-isothermal conditions, for a given model thickness, beyond a particular 

threshold value of applied stresses, the model predicts blow-up in temperature and 

also unconstrained acceleration. Shear stress lower than that threshold seems to 

lead to a steady state, where temperature and velocity stabilise. 

 Strain localization is predicted by this model and this is promoted by localization of 

heat dissipation inside the shear band. 

 In non-isothermal conditions, the development of secondary and tertiary creep is 

possible to simulate. Primary creep cannot however be simulated as it would imply 

a decrease in temperature and temperature either increases or remains constant over 

time in this model.  

 Negative rate effects cannot be simulated by this model because it assumes strain 

rate to be an increasing function of the applied shear stress. 

 Parameters such as activation energy (U0), number of bonds (S) and distance 

between two equilibrium points of two flow units (λl) have uncertainty associated 

with them. They have a wide range of values and not all of them are possible to 

measure directly. Moreover, the model is relatively sensitive to their values. 

It was considered that rate process theory may provide a possible framework for describing 

the transition between creep and catastrophic failure of a landslide. Subsequently, a 

landslide model was developed by incorporating thermal pressurization and the dynamics 

of the sliding mass.  

First, this model was used in an attempt to back analyse the Vaiont case history. The rate 

process parameters were chosen within the reasonable range of values available in the  

literature (Mitchell and Soga, 2005). The other Vaiont parameters were chosen from 

Vardoulakis (2002a).  However, the model did not predict the complete history (creep and 

the catastrophic phase) of the landslide. The total time to catastrophic failure was predicted 

to be much longer than the observed duration in the Vaiont case history. The possible 

reasons are listed below. 
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 The chosen rate process parameters are the best guess values chosen from the 

literature; however parameter values specific to the Vaiont material are not 

available. Moreover, the results presented here were found to be sensitive to the 

values of the rate process parameters used 

 Some activities such as reservoir level changes were carried out during the creep 

phase of the Vaiont slide. These particular activities were not included in the model 

presented in this chapter. 

 Significant rainfall was observed over the entire period of the landslide event. The 

precipitation effects are not included in this model.  

Subsequently, using the model, results were obtained for initial velocities which are higher 

than the creep velocity observed in the Vaiont case history. It was found that the initial 

velocity, which depends on activation energy and number of bonds, and also the thickness 

of the spatial domain modelled, have significant impact on the predicted results. For low 

enough initial velocity, corresponding to higher activation energy and number of bonds, 

the model predicts that, for a given model thickness, a steady state is reached as any heat 

generated dissipates without a significant temperature increase. Higher initial velocity, 

however, leads to temperature build-up and causes the slope to eventually accelerate.  

Furthermore, the extent of the modelled spatial domain plays a dominant role on the failure 

of a landslide. The larger the domain, more likely to predict the catastrophic failure. 

Therefore, for infinite upper and lower boundary, the model is expected to predict 

catastrophic failure irrespective of the value of initial velocity. However, the time it will 

take for failure to be reached (𝑡𝑓) depends on the initial velocity of the slide, i.e. the higher 

the initial velocity the sooner failure.  

In the creep phase temperature effects are not significant, as energy dissipation and heat 

production are low. Therefore frictional heating on its own is not predicted to cause the 

collapse of a slope; other external actions, such as dynamic loading or pore pressure 

increase, need to be invoked to push the velocity over the threshold. Once the threshold is 

exceeded, however, frictional heating is predicted to facilitate catastrophic collapse. 

Although the model presented is able to predict a transition between the creep and the 

catastrophic phases of a landslide, due to the drawbacks stated above, a more reliable 

constitutive theory is needed in order to capture the entire creep behaviour of the soil. 

Therefore, a different constitutive relation, not based on rate process theory will be 

investigated in the next chapter. 
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Chapter 5: A Thermo-poro-mechanical 

landslide model: using a refined thermo 

mechanical constitutive model including creep 

5.1 Introduction 

In Chapter 4, a thermo-poro-mechanical landslide model was developed based on rate 

process theory. Although rate process theory could describe the transition between creep 

and the catastrophic phase, due to the sensitivity of the rate process parameters the duration 

of the creep phase is too short compared to a real landslide case.  

This chapter presents a new framework for modelling the evolution of landslides from 

creep to final collapse, using an advanced constitutive model. First, a new constitutive 

model is developed in Section 5.2 to 5.8, combining the constitutive models developed by 

Borja and Kavazanjian (1985) and Laloui and Francois (2009). Subsequently, this 

constitutive assumption is inserted in a landslide model. The model equations are 

numerically solved and the results are presented and discussed. 

5.2 General formulation  

As discussed in section 2.4.3, Borja and Kavazanjian (1985) proposed a time dependent 

constitutive model that includes the creep effects of soils. This model was developed 

assuming two different empirical relations for volumetric and deviatoric creep: Taylor’s 

secondary creep law was considered for the volumetric part and the Singh-Mitchell 

expression was used to determine the deviatoric part. The Modified Cam-Clay yield locus 

was used in this model to incorporate elasto-plasticity. Finally, time dependent evolution of 

the yield locus was also introduced.  

Laloui and Francois (2009) proposed a thermo-plastic constitutive model for soils as 

explained in Section 2.3.3.  It should be noted that Laloui and Francois (2009) used the 

original Cam-Clay yield surface (OCC) for the deviatoric mechanism (Section 2.3.3.2). 
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Cecinato modified Laloui’s model replacing the OCC with the Modified Cam-Clay (MCC) 

yield locus as described in Section 2.3.4 (Cecinato, 2009, Cecinato et al., 2011).   

It is possible to develop a material model that includes both the effect of creep and 

temperature by combining Borja’s creep model and Cecinato’s thermo-plastic model. The 

development of this material model is given in the following subsections.  

According to classical elasto-plasticity theory, the total strain rate can be decomposed in to 

two parts, i.e. elastic and plastic, as shown in Equation 5.1; 

 𝜺̇ = 𝜺̇𝒆 + 𝜺̇𝒑 5.1 

When creep is included, the total strain rate can be decomposed into three parts i.e. elastic, 

plastic and time-dependent (Borja and Kavazanjian, 1985) as follows; 

 𝜺̇ = 𝜺̇𝒆 + 𝜺̇𝒑 + 𝜺̇𝒕 5.2 

If thermal loads exist, the elastic part is further decomposed into two contributions, i.e. the 

mechanical elastic and the thermo elastic parts (Laloui and Francois, 2009). Therefore, the 

final strain rate can be written as; 

 𝜺̇ = 𝜺̇𝒎𝒆 + 𝜺̇𝒕𝒆 + 𝜺̇𝒑 + 𝜺̇𝒕 5.3 

5.3  Thermo-elasticity  

According to standard continuum mechanics, for a body subjected to thermal and 

mechanical loadings, the stress-strain-temperature rate equation is given by (Mase, 1970); 

 𝝈̇ = 𝜆𝜹𝜀𝑣̇
𝑚𝑒 + 2𝜇𝜺̇𝒎𝒆 − (3𝜆 + 2𝜇)𝛼𝜹𝜃̇ 5.4 

where 𝜆 and 𝜇 are the Lame constants (Mase, 1970), and 𝛼 is the thermal elastic expansion 

coefficient. The stress and strain rates vectors 𝝈̇ and 𝜺̇ are written as; 

 𝝈̇ =

(

 
 
 

𝜎̇11
′

𝜎̇22
′

𝜎̇33
′

𝜏̇12

𝜏̇23

𝜏̇31)

 
 
 

 𝜺̇ =

(

 
 
 

𝜀1̇1

𝜀2̇2

𝜀3̇3

𝛾̇12

𝛾̇23

𝛾̇31)

 
 
 

 and 𝜹 =

(

 
 

1
1
1
0
0
0)

 
 

 5.5 

Laloui proposed the thermo elastic equation as (Laloui and Francois, 2009) 

 𝜀𝑣̇
𝑡𝑒 = 𝛽𝑠𝜃̇ 5.6 

Equivalently, Equation 5.6 can be written in vector form as follows,   

 𝜺̇𝒕𝒆 = 𝑪𝑻𝒆𝜃̇ 5.7 
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where 𝑪𝑻𝒆 =
1

3
𝛽𝑠𝜹 

Substituting definitions of Lame constant and the Laloui’s relationship (Equation 5.6) into 

5.4  gives 

 𝝈̇ = (𝐾 −
2

3
𝐺) 𝜹𝜀𝑣̇

𝑚𝑒 + 2𝐺𝜺̇𝒎𝒆 − 𝛽𝑠𝐾𝜹𝜃̇ 5.8 

where K and G are the stress dependent elastic bulk and shear moduli of the soil and can be 

written as; 

 
𝐾 = 𝜆 +

2

3
𝜇 

𝐺 = 𝜇 

5.9 

Therefore, Equation 5.8 can be written in the following general form  

 𝝈̇ = 𝑫𝒎𝒆𝜺̇𝒎𝒆 + 𝑫𝒕𝒆𝜃̇ 5.10 

where 𝑫𝒎𝒆 is the standard elasticity matrix given by 

 𝑫𝒎𝒆 =

[
 
 
 
 
 
 
 
 (𝐾 +

4

3
𝐺)

(𝐾 −
2

3
𝐺)

(𝐾 −
2

3
𝐺)

(𝐾 −
2

3
𝐺)

(𝐾 +
4

3
𝐺)

(𝐾 −
2

3
𝐺)

(𝐾 −
2

3
𝐺) 0 0 0

(𝐾 −
2

3
𝐺) 0 0 0

(𝐾 +
4

3
𝐺) 0 0 0

0 0          0        𝐺 0 0
0
0

0
0

         0        0 𝐺 0
         0        0 0 𝐺]

 
 
 
 
 
 
 
 

 5.11 

and  𝑫𝒕𝒆 is the thermo-elasticity vector given by 

 𝑫𝒕𝒆 = −𝛽𝑠𝐾𝜹 5.12 

5.4 Proposed relationship for hardening law  

Laloui and Cekerevac (2003) proposed that the apparent preconsolidation pressure is a 

decreasing function of temperature as follows; 

 𝑝𝑐
′ = 𝑝𝑐0𝑇0

′ exp( 𝛽𝜀𝑣
𝑝) {1 − 𝛾 log (

𝜃

𝜃0
)} 5.13 

where 𝑝𝑐0𝑇0
′  is the reference preconsolidation pressure i.e. at temperature 𝜃0 and before 

plastic deformation commences. 

In the time-dependent model of Borja and Kavazanjian (1985), the presconsoildation 

pressure depends on time and its rate is given as: 
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 𝑝̇𝑐
′ = 𝛽𝑝𝑐

′𝜀𝑣̇
𝑝 + 𝜔̃

𝑝𝑐
′

𝑡𝑣
 5.14 

where 𝛽 =
1 + 𝑒

𝜆 − 𝜅
 5.15 

 𝜔̃ =
𝜓𝛼

𝜆 − 𝜅
 5.16 

𝜓𝛼 is the coefficient of secondary compression plotted against natural logarithmic time and 

𝑡𝑣 is the volumetric age of the soil relative to an initial reference time 𝑡𝑣𝑖. If there is no 

primary loading or unloading, then tv is equal to natural time (Δtv = Δt) (Section 5.8.4).  

Equation 5.13 & 5.14 can now be combined to form a new hardening/softening 

relationship as follows: Integrating Equation 5.14 over  𝑡𝑣𝑖 → 𝑡𝑣  , 𝑝𝑐
′ → 𝑝𝑐0

′  and 0 → 𝜀𝑣̇
𝑝
 

yields 

 𝑝𝑐
′ = 𝑝𝑐0

′ exp( 𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃

 5.17 

where 𝑝𝑐0
′  is the preconsolidation pressure at 𝑡𝑣 = 𝑡𝑣𝑖 and 𝜀𝑣

𝑝 = 0.  Equation 5.17 can now 

be modified to include the temperature dependence of Equation 5.13. Therefore, the final 

expression for the preconsolidation pressure becomes;  

 𝑝𝑐
′ = 𝑝𝑐0𝑇0

′ exp( 𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃

{1 − 𝛾 log (
𝜃

𝜃0
)} 5.18 

Here, 𝑝𝑐0𝑇0
′  is the preconsolidation pressure at 𝑡𝑣 = 𝑡𝑣𝑖  and 𝜃 = 𝜃0 , called the reference 

preconsolidation pressure.  

5.5 Yield function and consistency condition  

As a result of the new hardening law (Equation 5.18), the yield locus now depends on 

temperature (𝜃)  and time (𝑡𝑣)  in addition to the state of stress (𝝈)  and the hardening 

parameter(𝜀𝑣
𝑝). This can be written as; 

 𝑓(𝝈, 𝑝𝑐
′(𝜀𝑣

𝑝, 𝜃, 𝑡𝑣)) = 0 5.19 

The consistency condition (𝑓̇ = 0) ensures that, at yielding, the stress state lies on the 

evolving yield function and this can be expressed as;  

 𝑓̇ =  𝑓𝝈𝝈̇ + 𝑓𝑝𝑐
′𝑝𝑐

′̇ = 0 5.20 

Subscripts in Equations 5.20 and 5.23 describe the partial derivatives of the yield function 

or effective preconsolidation pressure with respect to other model variables. As the yield 
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function is a function of time, it will expand with time even under constant stress. 

Therefore 𝑓̇ < 0 is possible when 𝝈 ̇ = 0.  

Plastic loading requires 

 𝑓 = 0  and 𝝈̇. (∇𝑓) > 0 5.21 

where ∇𝑓 is the gradient of the yield function and  𝝈̇. (∇𝑓) denotes the dot product of  𝝈̇ 

and ∇𝑓. Neutral loading requires 

 𝑓 = 0  and 𝝈̇. (∇𝑓) = 0 5.22 

Borja and Kavazanjian (1985) further assumed that plastic loading and creep are two 

decoupled processes i.e. that creep can be ignored while plastic loading occurs. This 

assumption is valid only if the duration of loading is comparatively small (i.e. rapid 

loading rate). During this short time period, any expansion of the yield the locus due to 

creep can be ignored. Therefore, the consistency condition (5.20) is valid only during 

plastic loading.  

The rate of change of preconsolidation pressure 𝑝𝑐
′̇  can be written as;  

 𝑝𝑐
′̇ = (𝑝𝑐

′)
𝜀𝑣
𝑝(𝜀𝑣̇

𝑝) + (𝑝𝑐
′)𝜃(𝜃)̇ + (𝑝𝑐

′)𝑡𝑣
(𝑡𝑣)̇  5.23 

Each partial derivative can be defined as follows; 

𝑓𝝈 = (
𝜕𝑓

𝜕𝝈
) =

𝜕𝑓

𝜕𝑝′

𝜕𝑝′

𝜕𝝈
+

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝝈
 

𝑓𝑝𝑐
′ = (

𝜕𝑓

𝜕𝑝𝑐
′
) , (𝑝𝑐

′)
𝜀𝑣
𝑝 = (

𝜕𝑝𝑐
′

𝜕𝜀𝑣
𝑝) , (𝑝𝑐

′)𝜃 = (
𝜕𝑝𝑐

′

𝜕𝜃
) , (𝑝𝑐

′)𝑡𝑣 = (
𝜕𝑝𝑐

′

𝜕𝑡𝑣
) 

Recalling the Modified Cam-Clay (MCC) yield locus expression 

 𝑓 = 𝑞2 − 𝑀2𝑝′(𝑝𝑐
′ − 𝑝′) 5.24 

and substituting the final hardening relationship (Equation 5.18) into the MCC yield 

function (Equation 5.24) yields; 

 𝑓 = 𝑞2 − 𝑀2𝑝′ [𝑝𝑐0
′ exp(𝛽𝜀𝑣

𝑝) (
𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃

{1 − 𝛾 log (
𝜃

𝜃0
)} − 𝑝′] 5.25 

5.6 Thermo-plasticity  

The plastic strain rate can be obtained using the flow rule as follows; 

 𝜺̇𝒑 = 𝜆̇
𝜕𝑔

𝜕𝝈
 5.26 



164 

where 𝑔 is the plastic potential (a curve to which the directions of plastic strain increments 

are normal) and 𝜆̇ is the plastic multiplier. In the MCC framework, the plastic potential 𝑔 

coincides with the yield locus 𝑓, (i.e. 𝑔 = 𝑓). The volumetric plastic strain rate can be 

written as; 

 𝜀𝑣̇
𝑝 = λ̇

𝜕𝑓

𝜕𝑝
 5.27 

Substituting Equation 5.4 into Equation 5.10 gives 

 𝝈̇ = 𝑫𝒎𝒆(𝜺̇ − 𝜺̇𝒕𝒆 − 𝜺̇𝒑 − 𝜺̇𝒕) + 𝑫𝒕𝒆𝜃̇ 5.28 

Applying thermo-elasticity and the associative plastic flow rule to Equation 5.28 yields, 

 𝝈̇ = 𝑫𝒎𝒆(𝜺̇) − (𝑫𝒎𝒆𝑪𝑻𝒆 − 𝑫𝒕𝒆)𝜃̇ − 𝑫𝒎𝒆λ̇𝑓𝝈 − 𝑫𝒎𝒆𝜺̇𝒕 5.29 

Equation 5.29 can be substituted in to the consistency condition (5.20), yielding 

 

𝑓𝝈{𝑫
𝒎𝒆(𝜀̇) − (𝑫𝒎𝒆𝑪𝑻𝒆 − 𝑫𝒕𝒆)𝜃̇ − 𝑫𝒎𝒆λ̇𝑓𝝈 − 𝑫𝒎𝒆𝜺̇𝒕}

+ 𝑓𝑝𝑐
′ {(𝑝𝑐

′)
𝜀𝑣
𝑝(λ̇𝑓𝑝) + (𝑝𝑐

′)𝜃(𝜃)̇ + (𝑝𝑐
′)𝑡𝑣

(𝑡𝑣)̇ } = 0 
5.30 

From equation 5.30 the plastic multiplier is given as 

 
λ̇ = 𝜒[𝑓𝝈𝑫

𝒎𝒆(𝜺̇ − 𝜺̇𝒕) + (𝑓𝑝𝑐
′(𝑝𝑐

′)𝜃 − 𝑓𝝈𝑫𝒎𝒆𝑪𝑻𝒆 + 𝑓𝝈𝑫𝒕𝒆)𝜃̇

+ 𝑓𝑝𝑐
′(𝑝𝑐

′)𝑡𝑣
(𝑡𝑣)̇ ] 

5.31 

where  (1/𝜒 ) = 𝑓𝝈𝑫
𝒎𝒆𝑓𝝈 − 𝑓𝑝𝑐

′(𝑝𝑐
′)

𝜀𝑣
𝑝𝑓𝝈 

The term −𝑓𝝈𝑫
𝒎𝒆𝑪𝑻𝒆 + 𝑓𝝈𝑫

𝒕𝒆 can be algebraically manipulated as: 

  

𝑓𝝈(𝑫
𝒕𝒆 − 𝑫𝒎𝒆𝑪𝑻𝒆) 

= 𝑓𝝈 (𝑫𝒕𝒆 − 𝑫𝒎𝒆
1

3
𝛽𝑠𝜹) 

= 𝑓𝝈 {−𝛽𝑠𝐾𝜹 −
1

3
𝛽𝑠(3𝐾)𝜹} 

= −2𝐾𝛽𝑠𝑓𝝈𝜹𝒊𝒋 

= 2𝑓𝝈𝑫
𝒕𝒆 

5.32 

Therefore the final form for the plastic multiplier is given as; 

 λ̇ =
1

𝜒
[𝑓𝝈𝑫

𝒎𝒆(𝜺̇ − 𝜺̇𝒕) + (𝑓𝑝𝑐
′(𝑝𝑐

′)𝜃 + 2𝑓𝝈𝑫
𝒕𝒆)𝜃̇ + 𝑓𝑝𝑐

′(𝑝𝑐
′)𝑡𝑣

(𝑡𝑣)̇ ] 5.33 

The partial derivatives of 𝑓 are given by  
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𝑓𝑝′ = 𝑀2(2𝑝′ − 𝑝𝑐
′) 

𝑓𝑞 = 2𝑞 

𝑓𝑝𝑐
′ = −𝑀2𝑝 

5.34 

and the partial derivatives of 𝑝𝑐
′  are given by  

 (𝑝𝑐
′)

𝜀𝑣
𝑝 = 𝛽𝑝𝑐0

′ exp( 𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃

{1 − 𝛾 log (
𝜃

𝜃0
)} 5.35 

 (𝑝𝑐
′)𝜃 = −𝛾𝑝𝑐0

′ exp( 𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃

(
1

𝜃
) 5.36 

 (𝑝𝑐
′)𝑡𝑣 = (

𝜔̃

𝑡𝑣𝑖
) 𝑝𝑐0

′ exp(𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃−1

{1 − 𝛾 log (
𝜃

𝜃0
)} 5.37 

5.7 General stress-strain rate equations  

Substituting the expression for thermo elastic strain (Equation 5.7) into Equation 5.28 

gives 

 𝝈̇ = 𝑫𝒎𝒆(𝜺̇ − 𝜺̇𝒑 − 𝜺̇𝒕) + (𝑫𝒕𝒆 − 𝑫𝒎𝒆𝑪𝑻𝒆)𝜃̇ 5.38 

Applying the associative flow rule for the plastic strain rate (5.26) gives 

 𝝈̇ = 𝑫𝒎𝒆 {𝜺̇ − (λ̇
𝜕𝑓

𝜕𝝈
) − 𝜺̇𝒕} + (𝑫𝒕𝒆 − 𝑫𝒎𝒆𝑪𝑻𝒆)𝜃̇ 5.39 

Applying the expression for the plastic multiplier (Equation 5.33) into Equation 5.39 yields 

𝝈̇ = {(𝑫𝒎𝒆 − 𝑫𝒎𝒆𝜒𝑓𝝈𝑓𝝈𝑫𝒎𝒆)(𝜺̇ − 𝜺̇𝒕)} − 𝑫𝒎𝒆𝜒(𝐵𝜃̇ + 𝑓𝑝𝑐
′(𝑝𝑐

′)𝑡𝑣
(𝑡𝑣)̇ )𝑓𝝈

+ (𝑫𝒕𝒆 − 𝑫𝒎𝒆𝑪𝑻𝒆)𝜃̇ 
5.40 

where 𝐵 = 𝑓𝑝𝑐
′(𝑝𝑐

′)𝜃 − 𝑓𝝈𝑫
𝒎𝒆𝑪𝑻𝒆 + 𝑓𝝈𝑫

𝒕𝒆 

From Equation 5.40 the general form of the stress-strain rate relationship can be written as  

 𝝈̇ = 𝑫𝒎𝒆𝒑𝜺̇ − 𝝈̇𝑡 5.41 

where 𝑫𝒎𝒆𝒑 is the fourth order thermo-elasto-plastic stress strain tensor  

 𝑫𝒎𝒆𝒑 = (𝑫𝒎𝒆 − 𝜒(𝑫𝒎𝒆𝑓𝝈𝑓𝝈𝑫
𝒎𝒆)) 5.42 

and 𝝈̇𝑡 is the stress relaxation rate given by 

 𝝈̇𝑡 = 𝑫𝒎𝒆𝒑𝜺̇𝒕 + 𝜒𝑓𝑝𝑐
′(𝑝𝑐

′)𝑡𝑣
(𝑡𝑣)̇ 𝑫𝒎𝒆𝑓𝝈 + (𝑫𝒎𝒆𝜒𝐵𝑓𝝈 + 𝑫𝒕𝒆 − 𝑫𝒎𝒆𝑪𝑻𝒆)𝜃̇ 5.43 

If creep and temperature effects are ignored (i.e. 𝜺̇𝒕 = 0, 𝑓𝑝𝑐
′(𝑝𝑐

′)𝑡𝑣
(𝑡𝑣)̇ = 0 and 𝜃̇ = 0,) 

then 𝝈̇𝑡 = 0, and the formulation revert the classical elasto-plasticity expression. If only 
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creep is ignored, the resulting expression is similar to Laloui’s thermo-plasticity model. In 

the general case, however, where both creep and temperature effects are considered the 

stress-strain relationship is given by Equation 5.41;  

5.8 Creep strain rate  

As suggested by Borja and Kavazanjian (1985) the direction of the creep strain rate  𝜀̇𝑡 is 

obtained from the normality rule applied on the equivalent yield locus as follows; 

 𝜺̇𝒕 = φ
𝜕𝑓

𝜕𝝈
 5.44 

where φ is a proportionality factor that determines the magnitude of the strain rate and 𝑓 is 

the yield surface before creep deformation takes place referred to here as the equivalent 

yield locus with the size of equivalent preconsolidation pressure 𝑝0
′

.  The latter is given by 

 𝑝0
′ = 𝑝′ +

𝑞2

𝑀2𝑝
≤ 𝑝𝑐

′  5.45 

where 𝑝0
′  is the preconsolidation pressure, before creep deformation takes place. For 

normally consolidated clays, before the onset of creep, 𝑝0
′ = 𝑝𝑐

′  

Accordingly, the equivalent preconsolidation pressure also depends on temperature from 

Laloui’s thermal hardening law (Equation 2.25). Therefore, the size of the initial yield 

locus also depends on temperature and can be written as  

 𝑝0
′ {1 − 𝛾 log (

𝜃

𝜃0
)} = 𝑝′ +

𝑞2

𝑀2𝑝
≤ 𝑝𝑐

′  5.46 

The proportionality factor φ can be determined using two empirical models of volumetric 

and deviatoric creep respectively. The first model used is Taylor’s secondary compression 

line from which the volumetric creep is determined while the second one is the Singh-

Mitchel creep law that describes the deviatoric creep. 

5.8.1 Temperature dependence on volumetric creep strain rate 

Few researchers investigated the dependence of volumetric creep on temperature 

(Campanella and Mitchell, 1968, Towhata et al., 1993). Findings show that, during the 

secondary compression stage, when temperature is increased over a comparatively small 

time period, an instant compression is observed (Towhata et al., 1993). This instant 

compression due to temperature increase is taken in to account in Laloui’s thermo-

plasticity model (Laloui and Cekerevac, 2003, 2008, Laloui and Francois, 2009) and 
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referred to as “thermal loading” (Section 2.3.3). Also the secondary compression index 

(𝜓𝛼)  is independent of temperature as seen in Figure 145. Nevertheless, researchers found 

that for organic soils such as peats, the secondary compression index, (𝜓𝛼) increases with 

temperature (Fox and Edil, 1996). 

In this context it is assumed that the secondary compression index is constant i.e. inorganic 

soils are assumed. 

 

Figure 145: Secondary compression with different temperature (Towhata et al., 1993) 

5.8.2 Dependence of deviatoric strain rate on temperature 

Deviatoric creep was also investigated to determine the relationship between the strain rate 

and temperature.  

The Singh-Mitchell creep equation for axial strain rate is given as; 

 𝜀𝑎̇
𝑡 = 𝐴 exp 𝛼̅𝐷̅ (

𝑡0
𝑡
)
𝑚

 5.47 

where 𝐴, 𝛼̅ and m are parameters and  𝐷̅ is a measure of the applied deviatoric stress.  

The influence of parameter 𝑚 was explained in Section 2.4.2. Eriksson (1989) carried out 

an experimental study to investigate the effects of temperature on deviatoric creep of soils. 

His findings show that the parameter 𝑚 depends on temperature and varies as in Figure 

146. As a result, the following linear relationship between the parameter 𝑚  and 

temperature was proposed by Eriksson (1989). 

 𝑚 = 1.03 − 0.0072𝜃 5.48 
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where 𝜃 is the temperature in ℃.  

Equation 5.48 is based on creep tests up to a temperature of 50℃. This simple linear law 

makes it possible that the value of 𝑚 may become unrealistically small or even negative at 

higher temperatures. To prevent this, here 𝑚 is not allowed to become lower than the value 

of 0.73 which is the minimum value obtained in the test at 50℃ carried out by Eriksson 

(1989). Therefore, a twofold expression for parameter 𝑚  is proposed as;  

 
𝑚 = 1.03 − 0.0072𝜃           𝜃 ≤ 50𝑜𝐶 

𝑚 = 0.73                                𝜃 > 50𝑜𝐶 
5.49 

Accordingly, the Singh-Mitchell creep equation can now be written as 

 

𝜀𝑎̇
𝑡 = 𝐴 exp 𝛼̅𝐷̅ (

𝑡0
𝑡
)
(1.03−0.0072𝜃)

            𝜃 ≤ 50𝑜𝐶 

𝜀𝑎̇
𝑡 = 𝐴 exp 𝛼̅𝐷̅ (

𝑡0
𝑡
)

0.73

                           𝜃 > 50𝑜𝐶 

5.50 

 

Figure 146: Variation of creep parameter, m, with temperature (Eriksson, 1989) 

5.8.3 Determination of 𝜑 using volumetric scaling  

From Taylor’s secondary compression equation, the volumetric strain rate is given by  

 𝜀𝑣̇
𝑡 =

𝜓

(1 + 𝑒)𝑡𝑣
 5.51 

Also, the volumetric strain rate can be calculated using an associative flow rule from the 

equivalent yield function.   

 𝜀𝑣̇
𝑡 =

𝜓

(1 + 𝑒)𝑡𝑣
= 𝜑

𝜕𝑓

𝜕𝑝′
 5.52 

Finally combining Equation 5.51 and 5.52 , 𝜑 is found as  
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 𝜑 =
𝜓

(1 + 𝑒)𝑡𝑣
(
𝜕𝑓

𝜕𝑝′
)
−1

=
𝜓

(1 + 𝑒)𝑡𝑣 [2𝑝′ − 𝑝0
′ {1 − 𝛾 log (

𝜃
𝜃0

)}]
 

5.53 

Therefore, the creep strain rate can be written as 

 𝜺̇𝒕 =
𝜓

(1 + 𝑒)𝑡𝑣 [2𝑝′ − 𝑝0
′ {1 − 𝛾 log (

𝜃
𝜃0

)}]
(
𝜕𝑓

𝜕𝝈
) 

5.54 

In isothermal conditions, the expression 5.54 is singular when 𝑝′ = 𝑝0
′ /2 (i.e. when the 

stress point is at critical state) and at higher deviatoric stress levels, (i.e. 𝑝′ → 𝑝0
′ /2) it 

overpredicts 𝜺̇𝒕 . Therefore, volumetric scaling is used for volumetric creep whereas 

deviatoric scaling for deviatoric creep. The deviatoric scaling will be discussed in Section 

5.8.5. 

5.8.4 Volumetric age of soils (tv)  

As discussed in Section 5.4 , soil ages volumetrically with time. If there is no externally 

applied load, its age increases linearly with natural time. If a normally consolidated soil 

specimen is allowed to creep, the total time period that the specimen remains at constant 

stress is the volumetric age of the soil (𝑡𝑣 = 𝑡). If an over consolidated soil specimen is 

allowed to creep, the total volumetric age of the soil can be written as (Figure 147); 

 𝑡𝑣 = 𝑡0 + 𝑡 5.55 

where 𝑡0 is the time it would take the soil to creep to its current void ratio, if it were to start 

from the normal compression line and remains at constant stress. The rate of volumetric 

aging is given by 

 𝑡̇𝑣 = 𝑡̇0 + 𝑡̇ 5.56 
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Figure 147: Determination of volumetric age of soil 

5.8.5 Determination of φ using deviatoric scaling  

For deviatoric creep, the Singh-Mitchell equation can be used to determine 𝜑,  (i.e. 

deviatoric scaling can be applied), by equating the creep strain rate predicted by the Singh-

Mitchell equation to that predicted using the associative flow rule. The strain rate tensor 

can finally be written as follows (Borja and Kavazanjian, 1985); 

 𝜺̇𝒕 = √
3

2
𝐴𝑒𝛼𝑞̅̅ ̅̅ [

𝑡𝑖
𝑡
]
(𝑚)

[
𝜕𝑓

𝜕𝝈
×

𝜕𝑓

𝜕𝝈
−

1

3
(
𝜕𝑓

𝜕𝑝
)
2

]

−(
1
2
)
𝜕𝑓

𝜕𝝈
 5.57 

Equation 5.57 is singular when 𝑝′ = 𝑝0
′  (isotropic stress conditions) and therefore it 

overpredicts the strain rate in near isotropic stress conditions. Therefore, for isotropic 

loading volumetric scaling is more suitable (Section 5.8.3) to determine the strain rate.  

Volumetric and deviatoric scalings predict different expressions for 𝜑.  As described in 

Sections 5.8.3 and 5.8.5 volumetric scaling is suitable to obtain volumetric creep whereas 

deviatoric scaling is to obtain deviatoric creep. This can be summarised as: 

 𝜀𝑣̇
𝑡 = 𝜑𝑣

𝜕𝑓

𝜕𝑝′
 5.58 

 
𝜀𝑞̇

𝑡 = 𝜑𝑞

𝜕𝑓

𝜕𝑞
 

5.59 

In the above, 𝜑𝑣  and 𝜑𝑞  are proportionality factors obtained from volumetric and 

deviatoric scaling respectively. 

λ line 

κ line 

t0 

t 
A 

ln (p) 

e 
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5.9 Modified landslide model 

Cecinato’s landslide equations will now be modified to include the constitutive model 

relations developed in the above sections. 

Cecinato (2009) assumed that the shear band is in plane strain conditions and the soil is at 

critical state. Of these, only the assumption of plane strain is considered for this analysis. It 

is also assumed that the soil is initially normally consolidated (i.e. 𝑡̇𝑣 = 𝑡̇).  

With reference to Figure 52, axis 𝑥 is considered as the direction of movement, axis y is 

the direction of zero principal strain and axis 𝑧  is perpendicular to the direction of 

movement. Therefore, 

 
𝜀𝑦𝑦 = 0 

𝛾𝑧𝑦 = 𝛾𝑦𝑧 = 0 

𝛾𝑥𝑦 = 𝛾𝑦𝑥 = 0 

5.60 

The strain tensor becomes, 

 (
𝜀𝑥𝑥 𝜀𝑥𝑧 0
𝜀𝑥𝑧 𝜀𝑧𝑧 0
0 0 0

) = (
𝜀𝑥𝑥 (1/2)𝛾𝑥𝑧 0

(1/2)𝛾𝑥𝑧 𝜀𝑧𝑧 0
0 0 0

) 5.61 

 

5.10 Heat Equation 

The heat equation gives the evolution of temperature with time and space. This can be 

written as; 

 𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

𝐷𝑤

𝐶𝑓
 

5.62 

where 𝐷𝑤  is the dissipated work within the shear band. According to the constitutive 

model presented above, irrecoverable work is due to both plastic and creep deformations. 

Therefore, the dissipation term could be split in to two parts  

 𝐷𝑤 = 𝐷𝑝 + 𝐷𝑡 5.63 

where subscripts p and t denotes the plastic and time dependent dissipation respectively. 

These two terms will be dealt with separately hereafter.  

In the following two subsections 5.10.1 and 5.10.2, 𝜎𝑖 is used to denote the vector of the 

principal stresses, i.e.  
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 𝜎𝑖 = (

𝜎1

𝜎2

𝜎3

) 5.64 

and repeated indices means summation over the index, for example: 

 𝜎𝑖𝜎𝑖 = ∑𝜎𝑖𝜎𝑖

3

𝑖=1

= 𝜎1𝜎1 + 𝜎2𝜎2 + 𝜎3𝜎3 5.65 

5.10.1 Dissipation due to creep  

Volumetric and deviatoric creep strain rates were obtained from two different empirical 

relations (Section 5.8). Dissipation due to creep in terms of stress and strain invariants 

could be written as  

 
𝐷𝑡 = 𝑝′𝜀𝑣̇

𝑡 + 𝑞𝜀𝑞̇
𝑡  

5.66 

where 𝑝′ and 𝑞 are the effective mean stress and the deviatoric stress respectively. From 

the normality rule applied on an equivalent yield surface, the volumetric and the 

distortional strain rates can be written as, 

 𝜀𝑣̇
𝑡 = 𝜑𝑣

𝜕𝑓

𝜕𝑝′
,        𝜀𝑞̇

𝑡 = 𝜑𝑞

𝜕𝑓

𝜕𝑞
 5.67 

Substituting the corresponding strain rate equations (Borja and Kavazanjian, 1985) into 

Equation 5.67 yields, 

𝐷𝑡 = 𝑝′ {
𝜓

(1 + 𝑒)𝑀2(2𝑝′ − 𝑝0)𝑡𝑣
}
𝜕𝑓

𝜕𝑝′
+ 𝑞 {√

3

2
𝐴 exp 𝛼̅𝐷̅ (

(𝑡𝑑)𝑖

𝑡𝑑
)

𝑚
1

√𝑄̅
}

𝜕𝑓

𝜕𝑞
 5.68 

where, in principal stress space,  

  𝑄̅ = [
𝜕𝑓

𝜕𝜎𝑖

𝜕𝑓

𝜕𝜎𝑖
−

1

3
(
𝜕𝑓

𝜕𝑝′
)
2

] 5.69 

In the Equation 5.68, the size of the equivalent yield surface is given by 𝑝0. For normally 

consolidated soil, 𝑝0  can be considered as the mean effective stress applied to the soil 

before the onset of creep. Therefore, the equivalent yield surface 𝑓  is the initial yield 

surface before creep. In principal stress space, 

 

𝜕𝑓

𝜕𝑝′
= 𝑀2(2𝑝′ − 𝑝0),

𝜕𝑓

𝜕𝑞
= 2𝑞 

𝜕𝑝′

𝜕𝜎𝑖
=

1

3
,

𝜕𝑞

𝜕𝜎𝑖
=

3(𝜎𝑖 − 𝑝′)

2𝑞
 

5.70 
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Using the chain rule, the derivative of 𝑓 with respect to 𝜎𝑖 can be written as; 

 
𝜕𝑓

𝜕𝜎𝑖
=

𝜕𝑓

𝜕𝑝′

𝜕𝑝′

𝜕𝜎𝑖
+

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝜎𝑖

=  3(𝜎𝑖 − 𝑝′) +
𝑀2

3
(2𝑝′ − 𝑝0) 

5.71 

Substituting the definitions of 
𝜕𝑓

𝜕𝜎𝑖
 and 

𝜕𝑓

𝜕𝑝′
 into Equation 5.69 gives, 

 

𝑄̅ =
𝑀4

3
(2𝑝′ − 𝑝0)

2 + 9(𝜎𝑖 − 𝑝′)2

− 2𝑀2(2𝑝′ − 𝑝0)(𝜎𝑖 − 𝑝′)

−
𝑀4

3
(2𝑝′ − 𝑝0)

2 

5.72 

𝑄̅ = 9(𝜎𝑖 − 𝑝′)2 = 9{(𝜎1 − 𝑝′)2 + (𝜎2 − 𝑝′)2 + (𝜎3 − 𝑝′)2} 

Finally, the term 𝑄̅ can be written as; 

 𝑄̅ = 6{(𝜎1 − 𝜎2)
2 + (𝜎2 − 𝜎3)

2 + (𝜎3 − 𝜎1)
2} = 6𝑞2 5.73 

Substituting Equation 5.73 into Equation 5.68 the dissipation term becomes  

 𝐷𝑡 = 𝑝′ {
𝜓

(1 + 𝑒)𝑡𝑣
} + 𝑞 {𝐴 exp 𝛼̅𝐷̅ (

𝑡0
𝑡
)

𝑚

} 5.74 

Equation 5.74 is the part of the dissipation term in heat equation 5.62 that is due to creep. 

In addition to creep, energy will be lost due to plastic work. In the following subsection the 

derivation of plastic dissipation is presented.  

5.10.2 Dissipation due to plastic work 

In principal stress space, the dissipation due to plastic work can be written as 

 𝐷𝑝 = 𝜎1𝜀1̇
𝑝 + 𝜎2𝜀2̇

𝑝 + 𝜎2𝜀3̇
𝑝
 5.75 

Substituting the relationship for plastic strain rate from the associative flow rule yields: 

 𝐷𝑝 = 𝜆̇ (𝜎1

𝜕𝑓

𝜕𝜎1
+ 𝜎2

𝜕𝑓

𝜕𝜎2
+ 𝜎3

𝜕𝑓

𝜕𝜎3
) 5.76 

where 𝜎1, 𝜎2 and 𝜎3 are the principal stresses, 𝑓 is the yield locus (the Modified Cam Clay 

yield locus is used here) and 𝜆̇ is the plastic multiplier. The derivative of the yield locus 

with respect to the principal stress components is expressed as; 
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𝜕𝑓

𝜕𝜎𝑖
=

𝜕𝑓

𝜕𝑝′

𝜕𝑝′

𝜕𝜎𝑖
+

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝜎𝑖
=  3(𝜎𝑖 − 𝑝′) +

𝑀2

3
(2𝑝′ − 𝑝𝑐

′) 5.77 

Equation 5.77 can be substituted into Equation 5.76 to obtain 𝐷𝑝, yielding 

 

𝐷𝑝 = 𝜆̇ [𝜎1 {3(𝜎1 − 𝑝′) +
𝑀2

3
(2𝑝′ − 𝑝𝑐

′)}

+ 𝜎2 {3(𝜎2 − 𝑝′) +
𝑀2

3
(2𝑝′ − 𝑝𝑐

′)}

+ 𝜎3 {3(𝜎3 − 𝑝′) +
𝑀2

3
(2𝑝′ − 𝑝𝑐

′)}] 

5.78 

By employing the definition of mean effective stress the above gives 

 

𝐷𝑝 = 𝜆̇(2(𝜎1
2 + 𝜎2

2 + 𝜎3
2 − 𝜎1𝜎2 − 𝜎2𝜎3 − 𝜎3𝜎1)

+ 𝑝′𝑀2(2𝑝′ − 𝑝𝑐
′))

= 𝜆̇(2𝑞2 + 𝑝′𝑀2(2𝑝′ − 𝑝𝑐
′)) 

5.79 

Recalling Modified Cam Clay yield locus; 

 
𝑓 = 𝑞2 + 𝑝′𝑀2(𝑝′ − 𝑝𝑐

′) = 0 
5.80 

After substituting 5.80 into 5.79, the final form of 𝐷𝑝 becomes 

 
𝐷𝑝 = 𝜆̇(𝑞2 + (𝑝′𝑀)2) 

5.81 

It should be noted that the above expression (5.81) is derived for any stress state applied. 

An expression for the plastic multiplier 𝜆̇  in terms of stress invariants is derived in the 

following subsection. 

5.10.2.1 Plastic multiplier (λ̇) 

In section 5.6, the plastic multiplier was calculated as (Equation 5.33) 

 
λ̇ = 𝜒[𝑓𝝈𝑫

𝒎𝒆(𝜺̇ − 𝜺̇𝒕) + (𝑓𝑝𝑐
′(𝑝𝑐

′)𝜃 + 2𝑓𝝈𝑫𝒕𝒆)𝜃̇ + 𝑓𝑝𝑐
′(𝑝𝑐

′)𝑡𝑣
(𝑡𝑣)̇ ] 

5.82 

where 1/𝜒 = 𝑓𝝈𝑫
𝒎𝒆𝑓𝝈 − 𝑓𝑝𝑐

′(𝑝𝑐
′)

𝜀𝑣
𝑝𝑓𝑝 

It was further assumed that the soil was normally consolidated before creep commenced, 

therefore 𝑡𝑣̇ = 1 (Section 5.8.4). Without any loss of generality, it is possible to split the 

terms of Equation 5.82 into spherical and deviatoric parts (Mase, 1970):  
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𝑓𝝈𝑫
𝒎𝒆(𝜺̇ − 𝜺̇𝒕) = 𝐾𝑓𝑝(𝜀𝑣̇ − 𝜀𝑣̇

𝑡) +  3𝐺𝑓𝑞(𝜀𝑞̇ − 𝜀𝑞̇
𝑡) 

2𝑓𝝈𝑫𝒕𝒆 = −2𝐾𝛽𝑠𝑓𝑝 

𝑓𝝈𝑫
𝒎𝒆𝑓𝝈 = 𝐾𝑓𝑝

2 + 3𝐺𝑓𝑞
2
 

5.83 

Partial derivatives of 𝑓 are given by  

 

𝑓𝑝′ = 𝑀2(2𝑝′ − 𝑝𝑐
′) 

𝑓𝑞 = 2𝑞 

𝑓𝑝𝑐
′ = −𝑀2𝑝 

5.84 

and partial derivatives of 𝑝𝑐
′  are given by  

 

(𝑝𝑐
′)

𝜀𝑣
𝑝 = 𝛽𝑝𝑐0

′ exp( 𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃

{1 − 𝛾 log (
𝜃

𝜃0
)} 

(𝑝𝑐
′)𝜃 = −𝛾𝑝𝑐0

′ exp( 𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃

(
1

𝜃
) 

(𝑝𝑐
′)𝑡𝑣 = (

𝜔̃

𝑡𝑣𝑖
) 𝑝𝑐0

′ exp( 𝛽𝜀𝑣
𝑝) (

𝑡𝑣
𝑡𝑣𝑖

)
𝜔̃−1

{1 − 𝛾 log (
𝜃

𝜃0
)} 

5.85 

Finally, using the above the plastic multiplier can be expressed as; 

 λ̇ = 𝐹0(𝜀𝑣̇ − 𝜀𝑣̇
𝑡) + 𝐹1(𝜀𝑞̇ − 𝜀𝑞̇

𝑡) + 𝐹2𝜃̇ + 𝐹3 5.86 

where 

𝐹0 = 𝜒𝐾𝑓𝑝 

𝐹1 = 𝜒3𝐺𝑓𝑞 

𝐹2 = 𝜒(𝑓𝑝𝑐
′(𝑝𝑐

′)𝜃 − 2𝐾𝛽𝑠𝑓𝑝) 

𝐹3 = 𝑓𝑝𝑐
′(𝑝𝑐

′)𝑡𝑣
(𝑡𝑣)̇  

and 

1

𝜒
= 𝐾𝑓𝑝

2 + 3𝐺𝑓𝑞
2 − 𝑓𝑝𝑐

′(𝑝𝑐
′)

𝜀𝑣
𝑝𝑓𝑝 

In terms strain rate tensor components, the deviatoric (distortional) strain rate can be 

written as (Wood, 1991). 

𝜀𝑞̇ =
1

3
√2 [(𝜀𝑦̇𝑦 − 𝜀𝑧̇𝑧) + (𝜀𝑧̇𝑧 − 𝜀𝑥̇𝑥) + (𝜀𝑧̇𝑧 − 𝜀𝑦̇𝑦) + 3(𝛾̇𝑥𝑦

2 + 𝛾̇𝑦𝑧
2 + 𝛾̇𝑥𝑧

2 )]   5.87 

and the total volumetric strain rate can be written as 

𝜀𝑣̇ = 𝜀𝑥̇𝑥 + 𝜀𝑦̇𝑦 + 𝜀𝑧̇𝑧 5.88 
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As mentioned in Section 5.9, due to plane strain conditions  𝜀𝑦̇𝑦 =  𝛾̇𝑧𝑦 = 𝛾̇𝑦𝑧 = 0 .  

Moreover, one dimensional assumption, as shown in Figure 52, implies  𝜀𝑥̇𝑥 = 0 . 

Therefore, the deviatoric strain is reduced to  

 𝜀𝑞̇ =
1

3
√4𝜀𝑣̇

2 + 3𝛾̇𝑥𝑧
2  5.89 

Taking the square of both sides gives 

 𝜀𝑞̇
2 =

1

9
(4𝜀𝑣̇

2 + 3𝛾̇𝑥𝑧
2 ) 5.90 

The total volumetric strain could be decomposed in to elastic, plastic and time dependent 

parts (Section 5.2). However, in this context it is assumed that the total elastic strain is 

negligible. Therefore, Equation 5.90 can be written as 

 𝜀𝑞̇
2 =

1

9
(4(𝜀𝑣̇

𝑝 + 𝜀𝑣̇
𝑡)

2
+ 3𝛾̇𝑥𝑧

2 ) 5.91 

From the associative flow rule, the ratio 𝐾𝑞 between the volumetric plastic strain rate and 

the distortional plastic strain rate can be written as 

 𝐾𝑞 =
𝜀𝑣̇

𝑝

𝜀𝑞̇
𝑝 =

(
𝜕𝑓
𝜕𝑝′)

(
𝜕𝑓
𝜕𝑞

)
=

𝑀2(2𝑝′ − 𝑝𝑐
′)

2𝑞
 5.92 

Substituting Equation 5.92 into 5.91 gives 

 𝜀𝑞̇
2 =

1

9
(4(𝐾𝑞𝜀𝑞̇

𝑝 + 𝜀𝑣̇
𝑡)

2
+ 3𝛾̇𝑥𝑧

2 ) 5.93 

and 𝜀𝑞̇
𝑝 = 𝜀𝑞̇ − 𝜀𝑞̇

𝑡 . Therefore, Equation 5.93 can be written as, 

 𝜀𝑞̇
2 =

1

9
(4(𝐾𝑞(𝜀𝑞̇ − 𝜀𝑞̇

𝑡) + 𝜀𝑣̇
𝑡)

2
+ 3𝛾̇𝑥𝑧

2 ) 5.94 

𝜀𝑞̇ can be derived by solving the quadratic Equation 5.94 and it is given as; 

 𝜀𝑞̇ =
−

8
9𝐴𝑞𝐾𝑞 ± √64

81 𝐴𝑞
2𝐾𝑞

2 − 4(
4
9𝐾𝑞

2 − 1) (
4
9𝐴𝑞

2 +
1
3 𝛾̇𝑥𝑧

2 ) 

−2 (
4
9𝐾𝑞

2 − 1)
 5.95 

where 𝐴𝑞 = 𝜀𝑣̇
𝑡 − 𝐾𝑞𝜀𝑞̇

𝑡  . One solution of Equation 5.95 is negative. Therefore, the positive 

solution has been taken into consideration as the total distortional strain should be a 

positive.  
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 𝛾̇𝑥𝑧 =
𝜕𝑣𝑥

𝜕𝑧
 and 𝑣𝑥 = 𝑣(𝑧, 𝑡)  is the velocity within the shear band in the direction of 

movement. A linear profile of 𝑣(𝑧, 𝑡) within the shear band was assumed as shown in 

Figure 52 in line with Vardoulakis (2002a). So that, 

 
𝑣(𝑧, 𝑡) = (

𝑧

𝑍𝑏
) 𝑣𝑑(𝑡) 

5.96 

where 𝑣𝑑(𝑡) is the velocity at the top of the shear band i.e. the velocity of the sliding mass 

and 𝑍𝑏  is the thickness of shear band. Finally, the deviatoric strain rate becomes as a 

function of the velocity of the sliding mass as follows; 

𝜀𝑞̇ =

−
8
9

𝐴𝑞𝐾𝑞 ± √
64
81

𝐴𝑞
2𝐾𝑞

2 − 4(
4
9

𝐾𝑞
2 − 1) (

4
9

𝐴𝑞
2 +

𝑣𝑑
2

3𝑍𝑏
2) 

−2 (
4
9𝐾𝑞

2 − 1)
 

5.10.3 Final form of heat equation 

The final form of the heat equation can be written as follows. This is done by adopting 

dissipation due to the effect of both creep and plastic deformations. From Equations 5.62 

and 5.63 the complete heat equation can be written as 

 
𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

𝐷𝑝 + 𝐷𝑡

𝐶𝑓
 

5.97 

 𝐷𝑡 = 𝑝′ {
𝜓

(1 + 𝑒)𝑡𝑣
} + 𝑞 {𝐴 exp 𝛼̅𝐷̅ (

𝑡𝑑𝑖

𝑡𝑑
)
𝑚

} 5.98 

 
𝐷𝑝 = 𝜆̇(𝑞2 + (𝑝′𝑀)2) 

5.99 

and  

 
λ̇ = 𝐹0𝐾𝑞(𝜀𝑞̇ − 𝜀𝑞̇

𝑡) + 𝐹1(𝜀𝑞̇ − 𝜀𝑞̇
𝑡) + 𝐹2𝜃̇ + 𝐹3 

5.100 

Substituting 5.98, 5.99 and 5.100 into 5.97 yields, 

 

𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

1

𝐶𝑓
{((𝐹0𝐾𝑞 + 𝐹1)(𝜀𝑞̇ − 𝜀𝑞̇

𝑡) + 𝐹2𝜃̇ + 𝐹3)(𝑞
2 + (𝑝′𝑀)2)

+ 𝑝′ (
𝜓

(1 + 𝑒)𝑡𝑣
) + 𝑞 (𝐴 exp 𝛼̅𝐷̅ (

𝑡𝑑𝑖

𝑡𝑑
)
𝑚

)} 
5.101 

Collecting temperature rate terms gives 
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𝜕𝜃

𝜕𝑡
(1 −

𝐹2

𝐶𝑓

(𝑞2 + (𝑝′𝑀)2))

= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2

+
1

𝐶𝑓
{((𝐹0𝐾𝑞 + 𝐹1)(𝜀𝑞̇ − 𝜀𝑞̇

𝑡) + 𝐹3)(𝑞
2 + (𝑝′𝑀)2)

+ 𝑝′ (
𝜓

(1 + 𝑒)𝑡𝑣
) + 𝑞 (𝐴 exp 𝛼̅𝐷̅ (

𝑡𝑑𝑖

𝑡𝑑
)
𝑚

)} 

5.102 

Hence, Equation 5.102 can be simplified as;  

 

𝜕𝜃

𝜕𝑡
= 𝐷𝑖

𝜕2𝜃

𝜕𝑧2
+

1

𝐵𝑖
{𝐶𝑖𝐴𝑖 + 𝑝′𝜀𝑣̇

𝑡 + 𝑞𝜀𝑞̇
𝑡} 

5.103 

where; 

 𝐴𝑖 = (𝑞2 + (𝑝′𝑀)2) 5.104 

 𝐵𝑖 = 𝐶𝑓 − 𝐹2(𝑞
2 + (𝑝′𝑀)2) 5.105 

 
𝐷𝑖 =

𝑘𝑚𝐶𝑓

(𝐶𝑓 − 𝐹2(𝑞2 + (𝑝′𝑀)2))
 

5.106 

 𝐶𝑖 = ((𝐹0𝐾𝑞 + 𝐹1)(𝜀𝑞̇ − 𝜀𝑞̇
𝑡) + 𝐹3) 5.107 

5.11 Pore pressure equation  

The pore pressure equation gives the excess pore pressure inside the shear band and its 

surroundings. The same equation given in section 3.3 is used here, i.e. 

 
𝜕𝑝

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣

𝜕𝑝

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
 5.108 

where 𝑐𝑣 and  𝜆𝑚 are the consolidation and pressurization coefficients respectively. These 

two parameters were discussed in detail in Sections 3.3.1 and 3.3.2 respectively. 

5.12 Landslide model assumptions 

According to the constitutive model presented here in this chapter, when a critical state is 

reached, the creep law becomes redundant as the soil fails. Therefore, at critical state, 

Equation 5.41 will take the form of Cecinato’s thermo elasto-plastic relationship (Equation 

2.43) as described in Section 2.3.4 (i.e. the stress relaxation term 𝝈̇𝒕, in Equation 5.41 will 

equal zero). Moreover, hardening with respect to time will also cease to be relevant so that, 
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the model is time independent when a critical state is reached. When the stress state lies 

inside the yield locus, on the other hand, only creep deformation is expected to occur. 

Thermo-plastic and creep deformation are expected to occur when the stress state is on the 

yield locus as well, but not at critical state.   

It is reasonable to assume here that the stress state will lie inside the yield locus while a 

landslide is in the creep phase and will reach a critical state during the collapse stage.  

The relationship for the volumetric creep strain rate was derived using the secondary 

compression theory which predicts that the rate of volumetric deformation reduces with 

time (Equation 5.51).  

In the landslide model presented here it is assumed that by the time slide movement was 

initiated volumetric creep rate has already become negligible. Therefore, in this analysis, 

only the shear creep deformation of the slip zone is considered. On this basis, the time 

dependency of the size of the yield locus can also be ignored. 

With the assumptions stated above, the movement of a landslide is treated as two 

decoupled processes as follows; 

 Movement during creep stage  

 Movement during the catastrophic phase 

The envisaged transition between these two processes can be qualitatively described as 

follows; 

Due to heat dissipation, the yield locus shrinks according to the hardening law proposed by 

Laloui and Francois (2009). As a result, the stress state may eventually lie on the yield 

locus. Once this happens the landslide enters into a catastrophic phase. Furthermore, for 

simplicity, it is assumed that when the stress states reaches on the yield locus this occurs at 

a critical state.  

Therefore, the heat equation takes two different forms, one for each process;  

The first form is valid during the creep phase, and it can be written as;  

𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

1

𝐶𝑓

𝑣𝑡

𝑍𝑏
 5.109 

In the above, 𝑣𝑡 is the creep velocity of the landslide and 𝑍𝑏 is the thickness of shearband.   
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The second form is valid during the catastrophic phase. In this case the heat equation will 

be same as the expression developed by Cecinato (2009). This is appropriate due to the 

following reasons; 

 If the time dependency of the hardening law is ignored, so the constitutive law 

used here reverts to the one used by Cecinato (2009).  

 The assumptions of critical state leads to zero volumetric plastic strain as in 

Cecinato (2009) 

Recalling 3.16, the heat equation can be written as;  

 
𝜕𝜃

𝜕𝑡
= 𝐷𝑖

𝜕2𝜃

𝜕𝜃2
+ 𝐹𝑖

𝑣𝑑(𝑡)

𝑍𝑏
 

5.110 

The parameters for Equation 5.110 have been defined in Section 3.2.  

Similarly two dynamic equations should be proposed depending on the scenarios 

mentioned above. During the catastrophic phase, the dynamic equation developed in 

Chapter 3 can be used due the reasons listed above. The dynamic equation during the creep 

phase will be developed in the following subsection 5.12.1.  

5.12.1 The dynamic equation during the creep phase 

The Singh-Mitchell creep law provides an expression for the axial strain rate in undrained 

triaxial conditions (Equation 5.47); 

𝜀𝑎̇
𝑡 = 𝐴exp(𝛼̅𝐷̅) (

𝑡0
𝑡
)
𝑚

 5.111 

𝐷̅ is a measure of stress level, which is given by;   

𝐷̅ =
𝑞

𝑞𝑢𝑙𝑡
 5.112 

𝑞 is the applied deviatoric stress, and 𝑞𝑢𝑙𝑡 is the ultimate or failure strength. Due to the 

assumption of undrained triaxial conditions, the shear creep strain rate can be written as; 

 𝛾̇𝑡 =
3

2
𝜀𝑎̇

𝑡  
5.113 

Substituting Equation 5.113 into 5.111 gives; 

 𝛾̇𝑡 =
3

2
𝐴 exp(𝛼̅𝐷̅) (

𝑡0
𝑡
)
𝑚

 
5.114 

Also, in undrained conditions, 𝑞 = 2𝜏  and 𝑞𝑢𝑙𝑡 = 2𝜏𝑢𝑙𝑡. So that, Equation 5.114 becomes, 
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 𝛾̇𝑡 =
3

2
𝐴 exp(𝛼̅ (

𝜏

𝜏𝑢𝑙𝑡
)) (

𝑡0
𝑡
)
𝑚

 
5.115 

where 𝜏 is the applied shear stress on the top of the shear band and 𝜏𝑢𝑙𝑡is the ultimate shear 

strength. By assuming a linear velocity profile inside the shear band, the shear strain rate 

can be written as; 

 
𝛾̇𝑡 =

𝑣𝑡

𝑍𝑏
 

5.116 

 Solving Equation 5.115 for the shear stress ,𝜏, gives; 

 𝜏 = {ln [
2

3

𝑣𝑡

𝐴𝑍𝑏
(
𝑡

𝑡0
)
𝑚

]}
𝜏𝑢𝑙𝑡

𝛼̅
 

5.117 

 

Figure 148: Schematic diagram of block on infinite slope  

For simplicity, a block sliding on an infinite slope is assumed to derive the dynamic 

equation. With reference to Figure 148, the dynamics of the block can be written as; 

 

𝑑𝑣𝑡

𝑑𝑡
= 𝑔 (sin𝜓 −

𝜏

𝛾𝑒𝐻
) 

5.118 

where 𝜓 is the slope angle, 𝐻 is the block thickness, 𝛾𝑒 is the effective density of the soils 

(𝛾𝑠 − 𝛾𝑤) and is described in Section 4.6.3, and  𝜏 is the shear stress acting on the block.  

Substituting Equation 5.117 into 5.118 gives the final dynamic equation as; 

 

𝑑𝑣𝑡

𝑑𝑡
+

𝑔

𝛾𝑒𝐻

𝜏𝑢𝑙𝑡

𝛼̅
ln [

2

3

𝑣𝑡

𝐴𝑍𝑏
(
𝑡

𝑡0
)
𝑚

] − sin𝜓 = 0 
5.119 

5.12.2 Stress state assumptions 

The next task is to define the necessary stress components, such as the mean effective 

stress 𝑝′and deviatoric stress 𝑞, as functions of the effective normal stress 𝜎𝑛
′  acting on the 

𝑢 
𝜎𝑛

′  

𝑊 

𝑑𝑣𝑡

𝑑𝑡
 

𝐻 

𝜏 

𝜓 
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slip plane. 𝜎𝑛
′  can be calculated using the weight of the sliding mass and the seepage 

conditions.  

As described in Section 5.12, during the creep phase, the stress state is inside the yield 

locus. However, during the collapse phase, the stress state reaches a critical state at which 

stage, the stress ratio is; 

 

𝑞

𝑝′
= 𝑀 

5.120 

Generally, it can be argued that some thermal pressurization is expected to be present 

during creep. However, it was simpler to assume that pressurisation during the time frame 

of creep was negligible, and consider that the stress ratio 𝑞/𝑝′  = 𝑀  throughout the 

creeping process. The analyses presented in later Section 5.15.1 confirmed that this was 

reasonable assumption. It is also a conservative one, as pressurisation would decrease 

effective stress and therefore the production of heat in the shear band. 

Hook’s law written in terms of the Young’s modulus 𝐸 and Poisson’s ratio 𝜐 gives: 

 

𝜀𝑥𝑥 =
1

𝐸
(𝜎𝑥𝑥

′ − 𝜐𝜎𝑦𝑦
′ − 𝜐𝜎𝑧𝑧

′ ) 

𝜀𝑦𝑦 =
1

𝐸
(𝜎𝑦𝑦

′ − 𝜐𝜎𝑧𝑧
′ − 𝜐𝜎𝑥𝑥

′ ) 

𝜀𝑧𝑧 =
1

𝐸
(𝜎𝑧𝑧

′ − 𝜐𝜎𝑥𝑥
′ − 𝜐𝜎𝑦𝑦

′ ) 

5.121 

If the axes given in Figure 52 are considered, due to oedometric conditions, 𝜀𝑥𝑥 = 𝜀𝑦𝑦 = 0, 

from Equation 5.121 it is written as, 

 

𝜎𝑥𝑥
′ = 𝜐(𝜎𝑦𝑦

′ +  𝜎𝑧𝑧
′ ) 

𝜎𝑦𝑦
′ = 𝜐(𝜎𝑥𝑥

′ +  𝜎𝑧𝑧
′ ) 5.122 

Equation 5.122 gives;  

 
𝜎𝑥𝑥

′ = 𝜎𝑦𝑦
′ =

𝜐

1 − 𝜐
𝜎𝑧𝑧

′  
5.123 

Substituting Equation 5.123 into the definition of the mean effective stress gives 

 
𝑝′ =

1

3
(𝜎𝑥𝑥

′ + 𝜎𝑦𝑦
′ + 𝜎𝑧𝑧

′ ) =
 𝜎𝑛

′

3
(
1 + 𝜐

1 − 𝜐
) 

5.124 

where 𝜎𝑛
′  is the normal stress on the slip plane which is equal to 𝜎𝑧𝑧

′ .  
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Next, the initial effective preconsolidation pressure should be defined in terms of the 

normal effective stress 𝜎𝑛
′ .  In Modified Cam-Clay, if the stress state (𝑝0

′ , 𝑞0) is on the 

yield locus, the initial effective preconsolidation pressure can be written as; 

 𝑝𝑐0
′ =

𝑞0
2

𝑝0
′𝑀2

+ 𝑝0
′  5.125 

where 𝑝0
′  & 𝑞0 are the intial values of 𝑝′ & 𝑞 respectively, which can be determined from 

𝜎𝑛0
′ .Using the expressions of 𝑝′ and 𝑞, the preconsolidation stress can be calculated using 

Equation 5.125.  

As discussed in Section 5.12, at the start of the simulation, the stress state should be inside 

the yield locus. Therefore, it is assumed that the initial preconsolidation stress is 0.01% 

bigger than the value given by Equation 5.125. Hence, the actual initial preconsolidation 

stress 𝑝𝑐0
′  can be written as 

 𝑝𝑐0
′ = 1.0001 × (

𝑞0
2

𝑝0
′𝑀2

+ 𝑝0
′) 5.126 

Expression 5.126 is used as the reference preconsolidation 𝑝𝑐0𝑇0
′   in Equation 5.18 

5.13 Parameter selection  

For the stage of catastrophic sliding, the same parameters given in Section 3.4.2 and Table 

2 are used. Values for the creep parameters were selected in-line with Borja and 

Kavazanjian (1985). Brief descriptions of each parameter are given below.  

According to Equation 5.114, the shear strain rate decreases with time assuming other 

parameters remain constant. 𝐴 and 𝛼̅ are material creep parameters, obtained from creep 

tests that are linked to the shear strain rate at 𝑡 = 𝑡0 and, with reference to Equation 5.116, 

the initial velocity of the sliding mass.  The parameters 𝐴, 𝛼̅ and 𝑡0 are chosen as 3.5 ×

10−5/𝑚𝑖𝑛, 4.45 and 1min respectively, in-line with Borja and Kavazanjian (1985). 𝜏𝑢𝑙𝑡 is 

calculated as; 

 𝜏𝑢𝑙𝑡 = 𝜎𝑛0
′ tan(𝜑𝑝𝑒𝑎𝑘) 

5.127 

where 𝜑𝑝𝑒𝑎𝑘 is the initial peak friction angle, material taken as 30° for the Vaiont clay 

(Vardoulakis, 2002a). The last creep parameter 𝑚 was taken as a two-branch function as 

described in Section 5.8.2. The pressurization coefficient is taken as 0.012 MPa/℃ . 
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5.14 Numerical implementation 

Two sets of landslide equations are developed to describe the creep and catastrophic phase 

separately. Analyses are first started using the equations corresponding to the creep phase. 

The equations describing the catastrophic phase are used, once the stress state reaches 

critical state. Simulations of the catastrophic phase have been carried out already in 

Chapter 3. Therefore, only the creep phase is considered here. The simulations were run to 

the point where the stress state reaches critical state. The total duration of the creep phase 

will be referred to hereafter as “time to catastrophic phase 𝑡𝑐”. The landslide equations for 

the creep phase can be summarised as;  

 
𝜕𝑝

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣

𝜕𝑝

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
  

 
𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

1

𝐶𝑓

𝑣𝑡

𝑍𝑏
 5.128 

 
𝑑𝑣𝑑

𝑑𝑡
+

𝑔

𝛾𝑒𝐻

𝜏𝑢𝑙𝑡

𝛼̅
𝑙𝑛 [

2

3

𝑣𝑡

𝐴𝑍𝑏
(
𝑡

𝑡0
)
𝑚

] − 𝑠𝑖𝑛 𝜓 = 0  

The above set of equations is solved numerically using a backward time-centred space 

finite difference scheme. The solution of the system of finite difference equations is not 

straight forward; it is a non-linear system and hence an iterative procedure with an 

appropriate initial guess needs to be employed. MATLAB numerical software was used to 

solve the non-linear equations using an in-built algorithm fsolve. The initial guess used is 

the solution of the previous time step, or the initial conditions for the first time step. 

The time step was chosen as 10 sec. The analysis starts at 𝑡 = 𝑡0, where 𝑡0 = 60 𝑠𝑒𝑐 the 

reference time. 

The initial and boundary conditions for heat and pore water pressure equations are; 

 

𝑢(𝑧, 𝑡0) = 0;         𝜃(𝑧, 𝑡0) = 𝜃𝑟𝑒𝑓 = 12℃; 

𝑢(±∞, 𝑡 > 𝑡0) = 0;      𝜃(±∞, 𝑡 > 𝑡0) = 𝜃𝑟𝑒𝑓 = 12℃ 
5.129 

The initial condition for the dynamic equation is calculated from the shear creep equation 

by applying 𝑡 = 𝑡0, resulting to 2.6 × 10−5𝑚/𝑠 . 

5.15 Numerical results  

5.15.1 Results for the base line case  

First, an analysis was carried out with the parameters given in Section 5.13. Hereafter, this 

will be referred to as the base line model. The evolution of temperature at the middle of the 
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shear band and temperature isochrones within the shear band and its surroundings (0-

1000sec) are presented in Figure 149 and Figure 150 respectively. The maximum 

temperature rise is found as 0.085℃ which is negligible. The pore water pressure at the 

middle of the shear band and the respective isochrones are shown in Figure 151 and Figure 

152. Excess pore pressure rose to 6kPa during the period of temperature rise. When the 

temperature started to drop, the excess pore pressure became negative due to cooling of the 

shear band. Once the temperature stabilized to its initial magnitude of 12℃, the excess 

pore pressure dropped back to zero. 

The velocity and displacement plots are given in Figure 153 and Figure 154 respectively. 

Velocity drops from 2.6 × 10−5𝑚/𝑠  to zero and 13.5 mm of displacement is attained 

during the time period of 10000 sec.  

In this base line case, the model did not reach catastrophic phase as energy dissipation and 

heat production are low. As a result, the stress state remained inside the elastic region and 

only creep deformation occurred. For the slide to reach a catastrophic phase, heat 

dissipation inside the shear band should increase. This is possible if the initial velocity of 

the slide increases. To this end, the creep parameter 𝐴 is increased by 10 times. The results 

are presented in the following subsection. 

 

Figure 149: Temperature at the mid of the shear band (base line case) 
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Figure 150: Temperature isochrones within the shear band and its surroundings (base line case) 

 

Figure 151: Pore water pressure at the mid of the shear band (base line case) 
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Figure 152: Pore water pressure isochrones within the shear band and its surroundings (base line case) 

 

Figure 153: Velocity of the slide (base line case) 
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Figure 154: Displacement of the slide (base line case) 

5.15.2 Results for higher initial slide velocity 

In this section, the results are presented for an initial velocity 10 times higher than that of 

the assumed base line case (Section 5.15.1). 

In this case the temperature reached to 12.85℃ at 200 sec before dropping as shown in 

Figure 155 and Figure 156. Also the excess pore pressure peaked to 600 𝑘𝑝𝑎  at 165 sec 

then dropped to zero. The temperature and pore pressure rise were nearly 100 times greater 

than the base line case due to higher energy dissipation. The velocity and displacement 

plots are given in Figure 159 and Figure 160 respectively.  The slide velocity decreased 

from 3 × 10−4𝑚/𝑠  to 5 × 10−5𝑚/𝑠  after 500 sec.  

In this case, during the creep phase the slide travelled 48mm before the collapse phase, 

which was reached after 500 sec. This is well after temperature and excess pore water 

pressure peak which my appear odd but can be explained thus; when temperature increases 

the yield locus shrinks, while effective stress reduces due to heating. The yield locus also 

shrinks due to the development of strain and thermal softening. In contrast, when 

temperature reduces the yield locus expands, while effective stress increases due to 

cooling. Therefore, it is possible that the stress state may touch the yield locus (failing 

point) during the decreasing phase of temperature and pore water pressure, if the rate of 

change of stress is higher than the rate of change in the size of the yield locus.   
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Figure 155: Temperature at the mid of the shear band (A=3.5 x 10-4/min) 

 

Figure 156: Temperature isochrones within the shear band and surroundings (A=3.5 x 10-4/min) 
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Figure 157: Pore water pressure at the mid of the shear band (A=3.5 x 10-4/min) 

 

Figure 158: Pore water pressure isochrones within the shear band and its surroundings (A=3.5x10-4 

/min) 
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Figure 159: Velocity of the slide (A=3.5 x 10-4 /min) 

 

Figure 160: Displacement of the slide (A=3.5 x 10-4/min) 
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Subsequently, similar analysis with the larger size of model thickness (51 × 𝑍𝑏 ) was 

carried out. With larger model thickness, the temperature reached to 12.90℃ at 300 sec 

and remains same till 350 sec at which the catastrophic phase is reached as shown in 

Figure 161 and Figure 162. Also the excess pore pressure peaked to 650 kPa at 235 sec 

before dropping (Figure 163 and Figure 164). The velocity and displacement plots are 

given in Figure 165 and Figure 166 respectively. The slide velocity decreased from 3 ×

10−4𝑚/𝑠  to 7.5 × 10−5𝑚/𝑠  after 350 sec.  

In this case, a catastrophic phase was reached after 350 sec which is even sooner than with 

thinner model thickness. During the creep phase the slide travelled 40 mm before the 

collapse phase.  

Overall, the analysis with higher initial velocity successfully modelled the transition 

between the creep and the catastrophic phase of a landslide. However, the longest duration 

of creep movement was predicted to be 500 sec, which is much less than the timescales 

observed in real landslide cases (e.g. 3 years for Vaiont (Müller, 1964, Müller, 1968)) .  

In the following, an attempt is made to increase the duration of the creep phase 𝑡𝑐. 

The heat and pore water pressure equations are one-dimensional diffusion-generation 

equations. The general form of the dimensionless time factor , 𝑇𝑣,  for such equations, is 

given by (Powrie, 2013); 

 
𝑇𝑣 =

𝑌𝑖𝑡

𝑍𝑏
2  

5.130 

where 𝑌𝑖  is the thermal diffusivity 𝜅𝑚  for heat diffusion problems or the consolidation 

coefficient 𝑐𝑣  for consolidation problems. 𝑡 is the time and 𝑍𝑏 is the thickness of the shear 

band.  

The progress of this process is measured by the time factor 𝑇𝑣. To increase the actual time 

to which any given time factor corresponds to, either the thickness of the shear band, 𝑍𝑏 

can be increased or the thermal diffusivity of the soil water mixture 𝜅𝑚 can be decreased. 

However, the thicker the shear band the higher the initial velocity (Equation 5.116), 

therefore 𝑡𝑐 will further reduce due to higher heat dissipation. Therefore, in the following 

subsection analyses are carried out with lower value of thermal diffusivity (𝜅𝑚) for the 

soil-water mixture and with  11 × 𝑍𝑏 of model thickness, to investigate its effect in 𝑡𝑐. 
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Figure 161: Temperature at the mid of the shear band (A=3.5 x 10-4/min, model thickness = 𝟓𝟏 × 𝒁𝒃) 

 

Figure 162: Temperature isochrones within the shear band and surroundings (A=3.5 x 10-4/min, model 

thickness = 𝟓𝟏 × 𝒁𝒃) 
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Figure 163: Pore water pressure at the mid of the shear band (A=3.5 x 10-4/min, model thickness =
𝟓𝟏 × 𝒁𝒃) 

 

Figure 164: Pore water pressure isochrones within the shear band and its surroundings (A=3.5x10-4 

/min, model thickness = 𝟓𝟏 × 𝒁𝒃) 
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Figure 165: Velocity of the slide (A=3.5 x 10-4 /min, model thickness = 𝟓𝟏 × 𝒁𝒃) 

 

Figure 166: Displacement of the slide (A=3.5 x 10-4/min, model thickness = 𝟓𝟏 × 𝒁𝒃) 
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5.15.3 Results for different values of the thermal diffusivity 

In this section the results are presented for different values of thermal diffusivity for the 

soil-water mixture. Originally 𝜅𝑚 = 1.45 × 10−7𝑚2𝑠−1was used in-line with Vardoulakis 

(2002a). Here, analyses are carried out after decreasing the original thermal diffusivity by 

factors of 0.5 and 0.1 (i.e. 𝜅𝑚 = 7.25 × 10−8& 1.45 × 10−8 𝑚2𝑠−1). The results show 

that, all these analyses predict a catastrophic phase. The plots up to the point where the 

landslide enters a catastrophic phase are presented in this section.  

The plot of temperature at the middle of the shear band is given Figure 167. It can be 

clearly seen that higher thermal dissipation occurs for smaller values of thermal diffusivity 

of the soils-water mixture. The excess pore water pressure shows similar behaviour as seen 

in Figure 168. The velocity and displacement plots are shown in Figure 169 and Figure 

170. It can be clearly seen that the velocity and displacement of slide are very close for 

different values of 𝜅𝑚. Overall, the “time to catastrophic phase 𝑡𝑐” increased from 500 sec 

to 930 sec when  𝜅𝑚 decreased by a factor of 0.1.  

 

Figure 167: Temperature at the mid of the shear band (different 𝜿𝒎) 
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Figure 168: Excess pore pressure at the mid of the shear band (different 𝜿𝒎) 

 

Figure 169: Velocity of the slide (different 𝜿𝒎) 
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Figure 170: Displacement of the slide (different 𝜿𝒎) 

5.16 Discussion   

In this chapter, a new thermo-poro-mechanical landslide model was developed using a 

refined constitutive model that includes temperature and time effects.  

The new constitutive model was developed by combining Borja’s model for time 

dependent behaviour (Borja and Kavazanjian, 1985) and Laloui’s model for the thermo-

plasticity of soils (Laloui and Francois, 2009). The new constitutive model offers a 

possible framework for describing the transition between creep and catastrophic failure of 

a landslide.  

First, this model was used in an attempt to back analyse the Vaiont case history. Analysis 

using the parameters obtained from Vardoulakis (2002a) and Borja and Kavazanjian 

(1985) showed that a catastrophic phase was not predicted for Vaiont. This is due to the 

underlying expression for the creep strain rate being a power law, and therefore predicting 

a strain rate that decreases with time. Thus, energy dissipation also decreases with time. 

Therefore, if the model does not enter into a catastrophic phase relatively early, the slide 

will creep continuously and come to rest due to declining heat dissipation. Furthermore, 

Singh-Mitchell parameters were chosen from Borja and Kavazanjian (1985) however, 

these parameter values specific to the Vaiont material are not available in the literature. 
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Moreover, the changes in reservoir level elevation and significant precipitation during the 

phase were not included in this model. 

Subsequently, model behaviour was investigated by varying the initial velocity of the slide 

and the thermal diffusivity of the soil-water mixture. It was found that the time to 

catastrophic failure,𝑡𝑐 increases for decreasing thermal diffusivity of the soil-water mixture 

and decreases for increasing initial slide velocity.  

The expression for thermal diffusivity of the soil-water mixture of a soil is given as 

(Vardoulakis, 2002a): 

 𝜅𝑚 =
𝑘𝐹𝑚

(𝜌𝐶)𝑚
 

5.131 

where 𝑘𝐹𝑚 and (𝜌𝐶)𝑚 are Fourier’s thermal conductivity and the specific heat of the soil-

water mixture respectively. 𝑘𝐹𝑚 is written as 

 𝑘𝐹𝑚 = (1 − 𝑛)𝑘𝐹𝑠 + 𝑛𝑘𝐹𝑤 
5.132 

where 𝑛 is the porosity of the soil and 𝑘𝐹𝑠 and 𝑘𝐹𝑤 are Fourier’s thermal conductivity of 

the soil granules and water respectively. Vardoulakis assumed the porosity of the soil as 

0.18, which implies  𝜅𝑚 = 1.45 × 10−7𝑚2𝑠−1 . Maintaining 𝑘𝐹𝑠  and 𝑘𝐹𝑤  unchanged, a 

reduction of 𝜅𝑚 by a factor of 10 implies a porosity of −2.68 < 0, which is physically 

impossible.  

On the other hand, maintaining the porosity unchanged at 𝑛 = 0.18, a reduction of 𝜅𝑚 by a 

factor of 10 implies reduced values for either 𝑘𝐹𝑠 or  𝑘𝐹𝑤 or both. However, the thermal 

conductivity of water 𝑘𝐹𝑤  has a well-defined value of 1.2 × 10−3 𝑐𝑎𝑙/(𝑐𝑚 𝑠 ℃) 

(Vardoulakis, 2002a). The value of 𝑘𝐹𝑠  then needs to be decreased to  −1.5 ×

10−4 𝑐𝑎𝑙/(𝑐𝑚 𝑠 ℃)   < 0, which is again physically impossible.  

Even with this unrealistic reduction of 𝜅𝑚, however, the longest possible time at which 

transition to catastrophic is predicted is nearly 930sec. This is still very short compared to 

the field observations. Therefore, additional mechanisms need to be invoked to explain the 

duration of the creep phase. 
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Chapter 6: A thermo-poro-mechanical 

landslide model using viscoplasticity of soil 

6.1 Introduction 

In this chapter, a thermo-poro-mechanical landslide model using the concept of 

viscoplasticity is developed. Viscoplasticity also referred to as Perzyna’s overstress theory, 

is widely used to explain the time dependent behaviour of soils by many authors (Adachi 

and Oka, 1982, Adachi et al., 1990, Fusao et al., 1994, Kimoto et al., Kimoto et al., 2004, 

Oka et al., 1995). However, viscoplasticity was developed for isothermal conditions. In 

this chapter, first a new constitutive model is developed by combining viscoplasticity with 

Laloui’s thermal hardening relationship. The background viscoplastic model used is the 

one proposed by Oka and co-workers (Adachi and Oka, 1982, Adachi et al., 1990, Fusao et 

al., 1994, Kimoto et al., 2013, Kimoto et al., 2004, Oka et al., 1995, Oka et al., 2002). 

Subsequently, the landslide model is modified to take in to account this constitutive 

assumption.  

6.2 The proposed thermo-viscoplastic constitutive model 

6.2.1 General formulation 

As described in Section 2.4.9, the key assumption in Perzyna’s viscoplasticity is that 

elastic strains are time independent and inelastic (viscous) strains are time dependent. 

Therefore the total strain can be written as; 

 
𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗

𝑒 + 𝜀𝑖̇𝑗
𝑣𝑝

 
6.1 

The elastic strain rate is given by Hooke’s law as follows (Kimoto et al., 2004); 

  𝜀𝑖̇𝑗
𝑒 =

1

2𝐺
𝑆̇𝑖𝑗 +

𝜅

3(1 + 𝑒0)𝑝′
𝑝̇′ 6.2 

where, 𝑆𝑖𝑗 is the deviatoric stress state tensor, 𝑝′ is the mean effective stress, 𝜅 is the slope 

of unloading-reloading line (URL), 𝐺 is the elastic shear modulus and 𝑒0 is the void ratio.  
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6.2.2 Yield functions 

In viscoplasticity theory, two yield functions are introduced.  

The first yield function is called static yield function 𝑓𝑦 and is equivalent to yield locus of 

elasto-plasticity. If the stress point lies inside the static yield locus, elastic deformation 

takes place. In contrast to elasto-plastic theory, the stress states are allowed to go outside 

the static yield locus and then the viscoplastic strains occur (𝜀𝑖𝑗
𝑣𝑝). 

The second yield function is called viscoplastic potential or overstress function (𝑓𝑝)  which 

passes through the current stress state, if it is outside the yield locus.  

Kimoto et al. (2004) suggested static yield locus using original Cam Clay yield locus as 

follows; 

  𝑓𝑦 = 𝜂̅0 + 𝑀∗𝑙𝑛 (
𝑝′

𝑝𝑐𝑦
′

)  6.3 

where 𝜂̅0 is the relative stress ratio defined by; 

 𝜂̅0 = √(𝜂𝑖𝑗 − 𝜂𝑖𝑗,0)(𝜂𝑖𝑗 − 𝜂𝑖𝑗,0)  6.4 

in which, 𝜂𝑖𝑗 is the stress ration tensor given as 𝑆𝑖𝑗/𝑝
′ and subscripts 0 denotes the initial 

state before the deformation occurs and 𝑀∗ is the stress ratio at critical state (i.e. 𝜀𝑣
𝑣𝑝

= 0) . 

𝑝𝑐𝑦
′  is the hardening/softening parameter that determines the size of the static yield locus.  

Similarly, Kimoto et al. (2004) suggested viscoplastic potential using original cam clay 

yield locus as follows; 

 𝑓𝑝 = 𝜂̅0 + 𝑀∗𝑙𝑛 (
𝑝′

𝑝𝑐𝑝
′

)  6.5 

where 𝑝𝑐𝑝
′  determines the size of visco plastic potential.  

However, it is replaced with normalized modified Cam-Clay for easier numerical 

implementation due its smooth character. The static yield locus becomes; 

 𝑓𝑦 =
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦

′ − 𝑝)

𝑝′2
  6.6 

In the above, 𝑝′ and  𝑞 denote the effective mean and deviatoric stress, 𝑀 is the critical 

state parameter and viscoplastic potential becomes 

 𝑓𝑝 =
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑝

′ − 𝑝)

𝑝′2
  6.7 
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6.2.3 Hardening law 

As described in Section 6.2.2, the hardening/softening parameter contained in the 

expression of the static yield locus (6.6) determines the size of the locus.  It depends on the 

volumetric viscoplastic strain as follows;  

  𝑝𝑐𝑦
′ = 𝑝𝑐𝑦0

′ exp(𝛽𝜀𝑣
𝑣𝑝)  6.8 

To introduce the temperature dependence, the above expression is modified as proposed by 

Laloui and Cekerevac (2003) and Laloui and Francois (2009) for elasto-plasticity (See also 

Section 2.3.3). 

 𝑝𝑐𝑦
′ = 𝑝𝑐𝑦0

′ exp(𝛽𝜀𝑣
𝑣𝑝) {1 − 𝛾 log (

𝜃

𝜃0
)} 6.9 

In the above, 𝛾 is a material parameter that determines rate of thermal collapse of the yield 

locus, 𝜃0  is the reference temperature measured in ℃ and 𝑝𝑐𝑦0
′  is the reference 

preconsolidation pressure when 𝜀𝑣
𝑣𝑝 = 0 and 𝜃 = 𝜃0. From the above relationship, the size 

of the static yield locus depends on both viscoplastic strain and temperature. 

6.2.4 Final form of constitutive relationship   

The viscoplastic strain can be written as follows based on Perzyna’s overstress theory 

Kimoto et al. (2004); 

 
𝜀𝑖̇𝑗

𝑣𝑝 = 𝛾〈Φ(𝑓𝑦)〉 
𝜕𝑓𝑝

𝜕𝜎𝑖𝑗
′  

6.10 

where the symbol 〈 . 〉 is defined as  

 〈Φ(𝑓𝑦)〉 = {
Φ(𝑓𝑦)      𝑓𝑦 > 0

0               𝑓𝑦 ≤ 0
  6.11 

𝑓𝑦 = 0  and 𝑓𝑝 = 0  denote the static yield locus and viscoplastic potential function 

respectively. Φ is a function that determines the rate sensitivity of the material. Based on 

experimental results, Kimoto et al. (2004) defined the material function Φ as follows. 

 𝛾Φ(𝑓𝑦) = 𝐶′𝑝 exp(𝑚′𝑓𝑦)  6.12 

where 𝐶′  and 𝑚′  are viscoplastic parameters determined from experiments. Substituting 

the expression for the static yield function (Equation 6.6) into Equation 6.12 gives; 

 𝛾Φ(𝑓𝑦) = 𝐶′𝑝 exp [𝑚′ {
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦

′ − 𝑝)

𝑝′2
}]  6.13 

Substituting Equation 6.12 into Equation 6.10 gives the viscoplastic strain as  
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 𝜀𝑖̇𝑗
𝑣𝑝 = 𝐶′𝑝 exp [𝑚′ {

𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦
′ − 𝑝)

𝑝′2
}]

𝜕𝑓𝑝

𝜕𝜎𝑖𝑗
′  6.14 
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Figure 171: Schematic description of thermo-viscoplastic potential and static yield locus including 

thermal effects  

6.3 Proposed landslide equations 

As discussed in Section 2.4.9, the magnitude of the viscoplastic strain rate is determined by 

the overstress function, which is the difference between the static yield locus and the 

current stress state as shown in Figure 171. However, the size of the static yield locus is 

now also dependent on temperature. Therefore, it can be expected that, due to contraction 

of the static yield locus with temperature, the viscoplastic strain rate will increase as 

temperature increases. Therefore, due to the influence of temperature, it may be possible to 

model the transition behaviour between the creep and collapse phases of a landslide. In the 

following, landslide model equations including the new thermo-viscoplastic constitutive 

model are developed. Validation through back analysis of the Vaiont case is attempted. 

6.3.1 Heat equation 

The heat equation provides the temperature variation and evolution inside the shear band 

with time and consists of a heat diffusion equation with a dissipation term. It is written as 

 

𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

𝐷𝑣𝑝

𝐶𝑓
 6.15 
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in which, 𝑘𝑚 is thermal diffusivity of soil-water mixture and 𝐶𝑓 is the thermal constant. 

The heat dissipation term, 𝐷𝑣𝑝  in Equation 6.15, is derived in the following using the 

proposed viscoplastic law. The volumetric viscoplastic strain in the shear zone of a 

landslide is assumed negligible compared to the shear part, therefore in this framework, the 

governing equations are derived using the viscoplastic shear strain only. 

Shear heat dissipation (𝐷𝑣𝑝) in terms of shear viscoplastic strain can be written as; 

 𝐷𝑣𝑝 = 𝜏𝛾̇𝑣𝑝 6.16 

In the above, 𝜏 is the effective shear stress applied on the shear band and 𝛾̇𝑣𝑝 is the shear 

viscoplastic strain. From the definition given in Equation 6.14, 𝛾̇𝑣𝑝 can be written as; 

 𝛾̇𝑣𝑝 = 𝐶′𝑝 exp [𝑚′ {
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦

′ − 𝑝)

𝑝′2
}]

𝜕𝑓𝑝

𝜕𝜏
 6.17 

By using chain rule, the derivative of the static yield locus can be written as 

 

𝜕𝑓𝑝

𝜕𝜏
=

𝜕𝑓𝑝

𝜕𝑝

𝜕𝑝

𝜕𝜏
+

𝜕𝑓𝑝

𝜕𝑞

𝜕𝑞

𝜕𝜏
 6.18 

The derivatives in the above equation can be written as; 

 
𝜕𝑓𝑝

𝜕𝑝
=  −

2𝑞2

𝑝3
+

𝑀2𝑝𝑐𝑝
′

(𝑝′)2
 6.19 

 
𝜕𝑝

𝜕𝜏
= 0 6.20 

 
𝜕𝑓𝑝

𝜕𝑞
=

2𝑞

𝑝2
 6.21 

 
𝜕𝑞

𝜕𝜏
=

3𝜏

𝑞
 6.22 

So that,  
𝜕𝑓𝑝

𝜕𝜏
 becomes; 

 

𝜕𝑓𝑝

𝜕𝜏
=

6𝜏

(𝑝′)2
 6.23 

Substituting 6.23 onto, 6.16 results the heat dissipation as; 

 𝐷𝑣𝑝 = 𝜏𝐶′𝑝 exp [𝑚′ {
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦

′ − 𝑝)

𝑝′2
}]

6𝜏

(𝑝′)2
 6.24 

After substituting Equation 6.24 into 6.15, the final form of the heat equation becomes; 

 
𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

1

𝐶𝑓

6𝜏2

(𝑝′)2
𝐶′𝑝 exp [𝑚′ {

𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦
′ − 𝑝)

𝑝′2
}] 6.25 
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6.3.2 Pore pressure equation 

The pore pressure equation gives the excess pore pressure inside the shear band and its 

surroundings and is the same one used in Chapter 3 (Sections 3.3). 

 
𝜕𝑝

𝜕𝑡
=

𝜕

𝜕𝑧
(𝑐𝑣

𝜕𝑝

𝜕𝑧
) + 𝜆𝑚

𝜕𝜃

𝜕𝑡
 6.26 

In the above, 𝑐𝑣 and 𝜆𝑚 are the consolidation and pressurization coefficients as discussed 

in sections 3.3.1 and 3.3.2 respectively. 

6.3.3 Dynamic equation  

In this section, a dynamic equation is derived that describes the velocity of landslide and is 

consistent with thermo-viscoplastic theory. For simplicity, the landslide is modelled as a 

block on infinite slope. With reference to Figure 172, the dynamic equation for the sliding 

mass can be written as, 

 
𝑑𝑣𝑣

𝑑𝑡
= 𝑔 (sin 𝜓 −

𝜏

𝛾𝑒𝐻
) 

6.27 

 

 Figure 172: Schematic diagram of block on infinite slope and deforming slip band 

where, 𝑣𝑣 is the velocity of the slide, 𝐻 is the block thickness, 𝛾𝑒 is the effective density of 

the soils (𝛾𝑠 − 𝛾𝑤) and  𝜓  is the slope angle. The shear stress  𝜏  inside the slip band is 

assumed constant. From equations 6.17 and 6.23, the viscoplastic shear strain rate can be 

written as; 

 𝛾̇𝑣𝑝 = 𝐶′𝑝′ exp [𝑚′ {
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦

′ − 𝑝)

𝑝′2
}]

6𝜏

(𝑝′)2
  6.28 

𝑢 
𝜎𝑛

′  
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Assuming a linear velocity profile inside the shear band, the velocity of the sliding mass 

can be written as; 

 𝑣𝑣 = 𝑍𝑏𝐶
′𝑝′ exp [𝑚′ {

𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦
′ − 𝑝)

(𝑝′)2
}]

6𝜏

(𝑝′)2
  6.29 

where 𝑍𝑏 is the thickness of the shearband. Solving Equation 6.28 for the shear stress 𝜏 

gives: 

 𝜏 =
(𝑝′)2

6𝑍𝑏𝐶′𝑝′
exp [−𝑚′ {

𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦
′ − 𝑝)

(𝑝′)2
}] 𝑣𝑣 6.30 

Substituting Equation 6.30 into 6.27 yields the final dynamic equation as; 

𝑑𝑣𝑣

𝑑𝑡
+

𝑔

𝛾𝑒𝐻

(𝑝′)2

6𝑍𝑏𝐶′𝑝′
exp [−𝑚′ {

𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦
′ − 𝑝)

(𝑝′)2
}] 𝑣𝑣 − 𝑔 sin(𝜓) = 0 6.31 

or 

𝑑𝑣𝑣

𝑑𝑡
+ 𝜇𝑣 𝑣𝑣 − 𝑔 sin(𝜓) = 0 6.32 

where 

𝜇𝑣 =
𝑞(𝑝′)2

6𝛾𝑒𝐻𝐷𝑏𝐶
′𝑝′

exp [−𝑚′ {
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦

′ − 𝑝)

(𝑝′)2
}]  6.33 

can be thought of as an equivalent stress-dependent viscosity of the material inside the 

shear band. 𝛾𝑒𝐻 is the effective weight per unit area, and this can be written as 

 𝛾𝑒𝐻 =
𝜎𝑛0

′

cos𝜓
  

6.34 

where 𝜎𝑛0
′  is the initial effective normal stress acting on the slide. The expressions for 

stress components 𝑝′  and  𝑞  can be derived in terms of effective normal stress  𝜎𝑛
′  from 

Equations 5.124 and 5.120 respectively. 

 

6.4 Numerical implementation 

Equation 6.25 is the final heat equation without dynamic effects of slide. Also, the 

dynamic equation was derived consistent with thermo viscoplastic constitutive theory as in 

section 6.3.3. Including dynamics of the slide, the heat equation can be written as;  
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𝜕𝜃

𝜕𝑡
= 𝑘𝑚

𝜕2𝜃

𝜕𝑧2
+

1

𝐶𝑓

𝜏𝑣𝑣

𝑍𝑏
 6.35 

In the above, 𝑣𝑣 is the sliding velocity (derived in section 6.3.3), 𝑍𝑏 is the thickness of the 

shearband. 

The complete set of landslide equations are now derived which includes heat, pore pressure 

and dynamic equation. To simulate the time evolution of temperature, pore pressure and 

slide velocity, the landslide equations were integrated numerically by using a BTCS 

scheme. The BTCS is an unconditionally stable numerical scheme; here, time steps ranging 

between 10 sec to 5 hours are used to perform the analysis.  

The solution of the system of finite difference equations is not straight forward; it is a non-

linear system and hence an iterative procedure with an appropriate initial guess needs to be 

employed. MATLAB numerical software was used to solve the non-linear equations using 

an in-built algorithm fsolve. The initial guess used is the solution of the previous time step, 

or the initial conditions for the first time step. 

The discretisation of governing Equations 6.35 and 6.26 is done along the line with Section 

3.4.1 and the initial and boundary conditions were taken as; 

𝜃(±𝛼, 𝑡) = 𝜃𝑟𝑒𝑓 = 12.5℃  

𝜃(𝑧, 0) = 𝜃𝑟𝑒𝑓  = 12.5℃ 

𝑢(±𝛼, 𝑡) = 0 

𝑢(𝑧, 0) = 0 

6.36 

The 1-D spatial domain is set to 21 times the thickness of the shear band. It is also assumed 

that the initial slide acceleration is zero. Therefore, from Equation 6.31, the slide velocity 

with zero acceleration can be written as; 

 𝑣𝑣 = exp [𝑚′ {
𝑞2 − 𝑀2𝑝′(𝑝𝑐𝑦

′ − 𝑝)

(𝑝′)2
}]

6𝑍𝑏𝐶
′𝑝′

(𝑝′)2
𝛾𝑒𝐻 sin(𝜓)  6.37 

The initial velocity 𝑣𝑣0 can be obtained by applying the initial stress conditions in Equation 

6.37; its value depends on the parameters 𝐶′, 𝑚′and 𝑍𝑏.  

6.4.1 Parameter selection 

The initial values for stress components (𝑝0
′  and 𝑞𝑜) were calculated using Hooke’s law 

and with the assumption of oedometric condition as described in Section 5.12.2. The 

resultant 𝑝0
′  and 𝑞𝑜 are functions of the initial normal effective stress (𝜎𝑛0

′ = 2.38MPa).  
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The thickness of the shear band is chosen as 1.4 mm as in previous models (Chapter 3, 4 

and 5). The critical state parameter 𝑀 is taken as 0.657 for the static yield locus as well as 

the viscoplastic potential. The corresponding friction angle is 22.3o which is the incipient 

failure angle of the shear band material reported in Vardoulakis (2002a). Finally, 𝑝𝑐𝑦0
′  

represents the initial size of the static yield locus. It also represents the reference 

preconsolidation pressure in Laloui’s hardening relationship. Here, it is assumed that 𝑝𝑐𝑦
′ =

1.6𝑝𝑐𝑝
′ , where 𝑝𝑐𝑝

′  is the size the viscoplastic potential which can be calculated from the 

current stress state components 𝑝0
′ , 𝑞𝑜 and the critical state parameter 𝑀. Laloui’s thermo-

plasticity parameter 𝛾 is taken as 0.5 × 10−2. The remaining parameters are taken from 

Table 2. 

In addition to general parameters described above, there are new parameters that should be 

defined for viscoplastic theory.  

Parameters 𝐶′  and 𝑚′ can be determined experimentally. Different authors reported 

different values, ranging between 10−13/𝑠 and  10−8/𝑠 for 𝐶′and between 18.5  and 28.2 

for 𝑚′ (Kimoto et al., 2004, Oka et al., 2002). However these values were calibrated to fit 

specific experimental data sets. In the model presented here, 𝐶′ and 𝑚′are linked to the 

initial velocity of the landslide. If a landslide is modelled from a time instant where the 

slide has a particular velocity, the viscoplastic parameters 𝐶′ and  𝑚′ need to be consistent 

with that velocity.  

As described in Section 2.2.3, the Vaiont slide was creeping with velocity between 1-10 

mm/day over the period between December 1959 and July 1963 before catastrophic 

failure, as shown in Figure 7 (Müller, 1964). For the first analysis using this model, the 

parameters 𝐶′  and 𝑚′  were calibrated to match an initial velocity of 2.2 mm/day as 

follows; 

𝐶′ = 10−8/𝑠 

𝑚′ = 18.5 

These values fall within the range suggested by Kimoto et al. (2004) and Oka et al. (2002). 

In addition, parameters  𝑀, 𝑝0
′ , 𝑞0, 𝑍𝑏  and 𝑝𝑐𝑦

′  also influence the initial slide velocity as 

given in Equation 6.37. 
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6.5 Numerical results 

In this section the numerical results are presented. First a simulation is carried out with 

parameter values consistent with the Vaiont slide, to be used as a base-line case. 

Subsequently, the assumed initial velocity of the slide is increased to investigate the 

behaviour of the model. Finally, the material softening reported in Tika and Hutchinson 

(1999) is included to examine the thermal dependency of the model.   

6.5.1 Results for the base line case  

The viscoplastic parameters 𝐶′ and 𝑚′were calibrated to match an initial velocity of 2.2 

mm/day as detailed in section 6.4.1. The entire spatial domain was divided in to 200 grid 

points and temperature and pore pressure were computed at the each grid point. For this 

baseline case, the analysis modelled 10000 sec using 50 sec time steps. 

The time evolution of temperature at the middle of the shear band is given in Figure 173. 

Figure 174 presents temperature isochrones across the shear band and its surroundings. 

The pore pressure isochrones and the time evolution of pore pressure at the middle of the 

shear band are shown in Figure 175 and Figure 176 respectively. The maximum 

temperature rise predicted was as 1 × 10−4℃, which is practically zero, and so is the 

maximum predicted excess pore pressure (6.5 × 10−2Pa dropping to zero after 8000 sec). 

The velocity plot of Figure 177 shows that, the block is predicted to reach a steady state of 

creep immediately at 2.2 mm/day; this is in the range of realistic velocities for a creeping 

slide of Vaiont (Müller, 1964). The displacement plot Figure 178 shows that, the slide 

reaches to a displacement of 0.25 mm over a period 1 × 104 sec. As slide reaches to a 

steady state velocity, the displacement is expected to increase linearly with time as shown.  



211 

 

Figure 173: Temperature at the mid of the shear band (base line case) 

 

Figure 174: Temperature isochrones within the shear band and its surroundings (base line case) 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
12.5

12.5

12.5

12.5

12.5

12.5

12.5001

12.5001

12.5001

12.5001

12.5001

Time(s)

T
e

m
p

e
ra

tu
re

 (o
C

)

285.5 285.5 285.5 285.5 285.5285.5001285.5001285.5001285.5001285.5001
0

0.005

0.01

0.015

0.02

0.025

0.03

Temperature (oC)

D
e
p
th

 (
m

)

 

 
    0 sec

  400 sec

  800 sec

 1200 sec

 1600 sec

 2000 sec

 2400 sec



212 

 

Figure 175: Pore water pressure at the mid of the shear band (base line case) 

 

Figure 176: Pore water pressure isochrones within the shear band and its surroundings (base line case) 
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Figure 177: Velocity of the slide (base line case) 

 

Figure 178: Plot of slide displacement (base line case) 
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6.5.2 Effect of different initial velocity  

The results presented for the base line case clearly show that temperature did not play an 

important role on the failure of the landslide. This is due to the negligible energy 

dissipation inside the shear band. Also, the slide was predicted to reach a steady state of 

creep immediately.  

To investigate possibility of capturing a transition from creep to a catastrophic phase the 

viscoplastic parameter 𝐶′ was varied; this meant a different initial velocity, consistent with 

Equation 6.37. Here, the initial velocities were increased up to 10,000 times by increasing 

the viscoplastic parameter accordingly. The temperature at the middle of the shear band for 

a range of initial velocities is presented in Figure 179. The corresponding pore pressure at 

the middle of the shear band for a range of initial velocities is presented in Figure 180. And 

the corresponding velocity and displacement plots are presented in Figure 181 and Figure 

182.  It can be clearly seen that, for the parameters used here, the model does not reaches a 

catastrophic phase even with high initial velocity. In the creep phase temperature effects 

are not predicted to be important, even with extremely higher initial velocities such as 

10,000 times the Vaiont slide creep velocity (i.e. 0.25 mm/sec). This particular initial 

velocity predicted the catastrophic phase in the models presented in Chapters 4 and 5.  

However, using viscoplastic theory, frictional heating on its own is not predicted to cause 

catastrophic collapse of the slope. 
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Figure 179: Temperature at the mid of the shear band (different initial velocities) 

 

Figure 180: Pore water pressure at the mid of the shear band (different initial velocities) 
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Figure 181: Velocity of the slide (different initial velocities) 

 

Figure 182: Displacement of the slide (different initial velocities) 
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6.5.3 Effects of friction softening 

In Section 6.5.2, it was seen that high initial velocity is not predicted to be sufficient to 

trigger a catastrophic phase. Material softening is now included, to investigate how this 

may affect model behaviour. The numerical results presented here are for the baseline case 

with the addition of frictional softening. 

Material friction softening is only applied to the static yield locus 𝑓𝑦 ; the critical state 

parameter for viscoplastic potential 𝑓𝑝  was assumed constant throughout the shearing 

process. As described in Section 2.2.5, the strain, strain rate and temperature dependence 

of friction angle can be written as Equation 2.70; 

 𝑀(𝛾̇, 𝛾̈, 𝜃) = 𝑀̂(𝛾̇, 𝛾̈) − 𝑔̃(𝜃 − 𝜃𝑟𝑒𝑓)  6.38 

The thermal friction sensitivity parameter 𝑔̃ is taken as 10−2 in line with Cecinato (2009). 

The time evolution of temperature at the middle of the shear band is given in Figure 183. 

This plot is obtained by using a time step of 4.8 hours. An initial step increase (4.5 ×

10−4 ℃) is observed in temperature within the first time step.  

To investigate whether this step increase is part of the solution or an artefact of the 

numerical scheme, the time step was further reduced to 20 sec and an analysis was 

performed for the first 10,000 sec. From the temperature plot of Figure 184 it can be 

clearly seen what appears as a step increase in Figure 183 is in fact a smooth increase over 

the first few thousand seconds and is therefore not an artefact.  

Figure 184 presents the evolution of temperature at the middle of the shear band for first 

10,000 sec. The pore water pressure plots for 40 days and for first 10000 sec are shown in 

Figure 186 and Figure 187 respectively. The temperature and pore water pressure 

isochrones within the shear band and its surroundings are shown in Figure 185 and Figure 

188 respectively. The total temperature rise 1.44 × 10−3℃ at 40 days is practically zero 

and so is the maximum excess pore pressure (3.25 × 10−1Pa dropping to zero after 8000 

sec).  

The velocity plot Figure 189 shows that, after an initial acceleration, the block velocity 

levels off and reaches a steady state of creep at 7.45 mm/day; this is still within the range 

of realistic velocities for a creeping slide such as Vaiont (Müller, 1964) (Figure 7) . The 

displacement plot Figure 190 shows that the slide reaches a displacement of 270 mm over 

a period 40 days. As slide reaches to a steady state a velocity, the displacement is expected 
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to increase linearly with time. The friction softening did not play a significant role for the 

first 10,000 sec, because the results presented here are very close to the baseline case. 

 

Figure 183: Temperature at the mid of the shear band (with friction softening) 

 

Figure 184: Temperature at the mid of the shear band (with friction softening, 0-10000 sec) 

0 5 10 15 20 25 30 35 40
12.5

12.5002

12.5004

12.5006

12.5008

12.501

12.5012

12.5014

12.5016

Time(days)

T
e

m
p

e
ra

tu
re

 (o
C

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
12.4999

12.5

12.5001

12.5002

12.5003

12.5004

12.5005

12.5006

12.5007

Time(s)

T
e

m
p

e
ra

tu
re

 (o
C

)



219 

 

Figure 185: Temperature isochrones within the shear band and its surroundings (with friction 

softening) 

 

Figure 186: Excess pore water pressure at the middle of the shear band (with friction softening) 
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Figure 187: Excess pore water pressure at the middle of the shear band (with friction softening, 0-

10000 sec) 

 

Figure 188: Excess porewater pressure isochrones within the shear band and its surroundings (with 

friction softening) 
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Figure 189: Velocity of the slide (with friction softening) 

 

Figure 190: Displacement of the slide (with friction softening) 
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6.6 Discussion  

The results presented show that the developed model does not predict a catastrophic phase 

in the range of cases considered. In the creep phase temperature effects are of low 

importance, as energy dissipation and heat production are low.  

For the case of Vaiont, the model does not predict catastrophic phase. Furthermore, the 

analyses with higher initial velocity show that the effects of temperature are not important, 

even with extremely higher initial velocities such as 10,000 times the Vaiont slide creep 

velocity (i.e. 0.25 mm/sec). It is worth noting that an initial velocity of 0.25mm/sec led to a 

catastrophic phase according to both models presented in Chapters 4 and 5.  As mentioned 

in previous chapters, water level changes and precipitation were not included in this model 

either.  

The inclusion of friction softening leads to increase in velocity due to depletion of shear 

strength but with comparatively slow rate. However a catastrophic phase is not reached, 

due to the low slide velocity it takes as long as 40 days for the friction angle to drop its 

residual value. 

Therefore, using the thermo-visco-plastic model developed here, frictional heating on its 

own is not predicted to cause the collapse of a slope; other external actions such as 

dynamic loading or increase of pore water pressure due to external factors need to be 

invoked to push the over the threshold and lead to catastrophic failure. 
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Chapter 7: Conclusions and recommendations 

7.1 General conclusions 

In this research, the importance of frictional heating on the development of landslides was 

investigated. In particular, the prediction of the transition between the creeping phase and 

the final collapse of a landslide was attempted. The general conclusions are: 

 A wide range of in-situ conditions and parameters that are relevant for terrestrial 

landslides were identified and existing models for large scale landslides were 

critically reviewed. Also a critical review of the Vaiont case history is carried out 

which is used to back analyse the proposed models in this thesis. 

It was found that, in each model reviewed, either the collapse phase or the creeping 

regime was considered. Only one model was found that considers the transition 

between the creeping phase and the final collapse of a landslide (Veveakis et al, 

2007) assuming balancing mechanisms of strain rate hardening and thermoplastic 

softening. However, the assumptions made in this model are not relevant in general 

for all landslides. Therefore, a comprehensive model covering all aspects of 

material behaviour at all stages of a landslide is still lacking.  

 A comprehensive review of existing models for thermo-plasticity of soils and creep 

of soils were carried out. It was found that creep models were proposed for 

isothermal conditions, whereas thermo-plasticity models do not consider creep. A 

material model considering both creep and temperature dependent soil behaviour is 

still lacking. However, to model the thermo mechanics of a creeping landslide, it is 

expected that the constitutive relation for the material should contain combined 

effects of temperature and creep. A new constitutive model incorporating these 

effects would facilitate the predictions of the transition between the creeping phase 

and the final collapse a landslide. 

 The driving moment changes while a landslide mass rotates about the centre of the 

slip circle. This particular aspect was not investigated in the model developed by 

Cecinato (2009). The dynamic equation was modified from Cecinato (2009) by 



224 

incorporating the change in net driving moment. The model was discretised using 

an implicit finite difference scheme, and validated successfully by back-analysing a 

real landslide case.  

It was found that the refined model gave different predictions for the slide’s 

acceleration and velocity which however were only marginally so in the time 

window of realistic run-out distances. Moreover, bigger failure mass accelerates 

faster than of smaller because the net effective driving force is greater in bigger 

rotational slide 

 By using rate process theory, a transition between creep and catastrophic failure of 

a landslide can be explained. The results show that, for a given modelled spatial 

domain, a threshold initial velocity separates the creep and collapse regimes, 

beyond which frictional heating leads to the final failure. Thermal effects will 

exacerbate slope failure once the threshold velocity is exceeded. 

The extent of the modelled spatial domain plays a dominant role on the failure of a 

landslide. The larger the domain, the more likely the model is to predict the 

catastrophic failure. For an infinite upper and lower boundary, the model is 

expected to predict catastrophic failure irrespective of the value of initial velocity.  

Moreover, the results were found to be sensitive to the values of the rate process 

parameters, especially the number of inter-particle bonds and the activation energy.  

 It is possible to develop a material model that includes the effects of creep and 

temperature by combining Borja’s creep model and Laloui’s thermo-plasticity of 

soils. This material model was introduced to a landslide model to predict the creep 

as well as the catastrophic failure of a landslide and was able to predict the 

transition between the creep and catastrophic phases.  

Prediction of Vaiont’s both creep and collapse phases is not possible using this 

model. However, it predicted a transition between creep and catastrophic failure of 

landslides with initial velocity higher than observed creep velocities in a typical 

large scale landslides. Nevertheless, the predicted duration of the creep phase is 

very short compared to typical field observation.  

 It is possible to develop a thermo-visco-plastic constitutive relation for soils by 

combining Perzyna’s viscoplastic model and Laloui’s thermoplastic model. A 

landslide model was then developed using this combined thermo-visco-plastic 

model. For the case of Vaiont, collapse due to thermal pressurization is impossible 

in this model because of the extremely low slide velocity predicted during the creep 

phase, which leads to insignificant heat production inside the shearband.  
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Moreover, unlike other models the viscoplastic model did not predict a collapse 

phase for high initial velocities. 

 In general, all models developed here based on rate process theory, Borja’s creep 

model and viscoplastic theory show that frictional heating on its own is not 

predicted to cause the collapse of a slope. It is not expected that thermal creep is  

likely dominate in large rapid landsides; other external actions, such as dynamic 

loading or pore pressure increase, need to be invoked to predict the final collapse. 

Therefore, heating will not make the slope collapse but may make the event more 

catastrophic if the slope does collapse. Also these models are limited due to lack of 

data available for the respective constitutive parameters, which are not routinely 

measured or reported in the literature for different soils. 

7.2 Recommendations for further research 

One of the barriers encountered in this thesis was scarcity or even lack of data for the 

model parameters (i.e. rate process, viscoplastic and Borja’s creep equation parameters). 

An experimental research could be carried out to obtain realistic values for relevant 

parameters to improve predictions. 

The models developed in this thesis were used in an attempt to back analyse the Vaiont 

case landslide. However, none of them predicted the complete landslide history, at least 

partially due to the other external factors present such as water level changes and rainfall. 

Therefore, the models could be validated using case studies of other large scale landslides 

available in the literature to assess their suitability. Other well documented landslides are 

the Jiufengeshan slide; occurred in 1999, killed 2000 people, the La Clapière landslide; 

occurred in 1987 and the Ok Ma dam landslide occurred in 1984. None, however, is as 

well documented as Vaiont. 

In reality, slip zones develop progressively and their direction is influenced by in-situ 

conditions (i.e. stress distributions), and external factors (i.e. earthquakes and rainfall).  

Modelling of crack propagation can also be included to model the initiation and growth of 

the shear band. This would enable predictions of the effect of frictional heating on the 

progressive development of landslides. 





227 

References 

Adachi, T. & Oka, F. (1982). Constitutive equations for normally consolidated clay based 

on elasto-viscoplasticity. Soils and Foundations, 22, 57-70. 

Adachi, T., Oka, F. & Mimura, M. (1990). Elasto-Viscoplastic Constitutive Equations for 

Clay and Its Application to Consolidation Analysis. Journal of Engineering 

Materials and Technology, 112, 202-209. 

Alonso, E. E., Pinyol, N. & Puzrin, A. M. (2010). Geomechanics of Failures. Advanced 

Topics, Springer Verlag. 

Andersland, O. & Douglas, A. (1970). Soil deformation rates and activation energies. 

Geotechnique, 20, 1-16. 

Anderson, D. L. (1980). An earthquake induced heat mechanism to explain the loss of 

strength of large rock and earth slides. International Conference on Engineering for 

Protection from natural disasters,, Bangkok. 

Augustesen, A., Liingaard, M. & Lade, P. V. (2004). Evaluation of Time-Dependent 

Behavior of Soils. International Journal of Geomechanics, 4, 137-156. 

Baldi, G., Hueckel, T. & Pellegrini, R. (1988). Thermal volume changes of the mineral–

water system in low-porosity clay soils. Canadian Geotechnical Journal, 25, 807-

825. 

Bishop, A. W. (1966). The Strength of Soils as Engineering Materials. Géotechnique, 16, 

91-130. 

Bjerrum, L. (1967). Engineering geology of Norwegian normally-consolidated marine 

clays as related to settlements of buildings. Geotechnique, 17(2), 83-119. 

Bjerrum, L. (1973). Problems of soil mechanics and construction on soft clays and 

structurally unstable soils (collapsible, expansive and others) Proc. 8 th Int. Conf 

Soil Mech. Found. Engng, Moscow, 111-159. 

Borja, R. I. & Kavazanjian, E. (1985). A Constitutive Model for the Stress-Strain-Time 

Behaviour of 'Wet' Clays. Geotechnique, 35, 283-298. 

Campanella, R. G. & Mitchell, J. K. (1968). Influence of temperature variations on soil 

behavior. ASCE Journal of Soil Mechanics & Foundations Div, Vol 94, 709-734. 

Cecinato, F. (2009). The role of frictional heating in the development of catastrophic 

landslides. Thesis (PhD), University of Southampton,. 

Cecinato, F. & Zervos, A. (2008). Thermo-mechanical modelling of catastrophic 

landslides. 16th Conference of the Association of Computational Mechanics in 

Engineering, Newcastle, UK. 



228 

Cecinato, F. & Zervos, A. (2012). Influence of thermomechanics in the catastrophic 

collapse of planar landslides. Canadian Geotechnical Journal, 49, 207-225. 

Cecinato, F., Zervos, A. & Veveakis, E. (2011). A thermo-mechanical model for the 

catastrophic collapse of large landslides. International Journal for Numerical and 

Analytical Methods in Geomechanics. 

Cecinato, F., Zervos, A., Veveakis, E. & Vardoulakis, I. (2008) Numerical modelling of 

the thermo-mechanical behaviour of soils in catastrophic landslides. In:  

Proceedings of the Tenth International Symposium on Landslides and Engineered 

Slopes 2008 China. 

Chang, K.-J., Taboada, A. & Chan, Y.-C. (2005a). Geological and morphological study of 

the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake. 

Geomorphology, 71, 293-309. 

Chang, K.-J., Taboada, A., Lin, M.-L. & Chen, R.-F. (2005b). Analysis of landsliding by 

earthquake shaking using a block-on-slope thermo-mechanical model: Example of 

Jiufengershan landslide, central Taiwan. Engineering Geology, 80, 151-163. 

Christensen, R. W. & Wu, T. H. (1964). Analysis of clay deformation as a rate process. 

Journal of the Soil Mechanics and Foundations Division, ASCE, 90, 125-157. 

Cruden, D. M. & Varnes, D. J. (1996). Landslide types and processes. In: Turner A.K.; 

Shuster R.L. (eds) Landslides: Investigation and Mitigation. Transp Res Board, 

247, 36-75. 

Cui, Y. J., Sultan, N. & Delage, P. (2000). A thermomechanical model for saturated clays. 

Canadian Geotechnical Journal, 37, 607-620. 

De Blasio, F. V. & Elverhoi, A. (2008). A model for frictional melt production beneath 

large rock avalanches. J. Geophys. Research-Earth Surface, 113. 

Delage, P., Sultan , N. & Cui, Y. J. (2000). On the thermal consolidation of Boom clay. 

Canadian Geotechnical Journal, 37, 343-354. 

Di Benedetto, H., Tatsuoka, F. & Ishihara, M. (2002). Time-dependent shear deformation 

characteristics of sand and their constitutive modelling. Soils and Foundations, 42, 

1-22. 

Dikau, R. (1996). Landslide Recognition: Identification, Movement and Causes : Report 

No. 1 of the European Commission Environment Programme, Contract No. Ev5v-

Ct94-0454, Commission of the European Communities, Wiley. 

Eriksson, L. (1989) Temperature effects on consolidation properties of sulphide clays. In, 

1989. Taylor and Francis Group. 

Erismann, T. (1979). Mechanisms of large landslides. Rock Mechanics and Rock 

Engineering, 12, 15-46. 



229 

Erlandsson, R., Hadziioannou, G., Mate, C. M., Mcclelland, G. M. & Chiang, S. (1988). 

Atomic scale friction between the muscovite mica cleavage plane and a tungsten 

tip. The Journal of Chemical Physics, 89, 5190-5193. 

Eyring, H. (1936). Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction 

Rates. The Journal of Chemical Physics, 4, 283-291. 

Feda, J. (1989). Interpretation of creep of soils by rate process theory. Geotechnique, 39, 

667-677. 

Fox, P. J. & Edil, T. B. (1996). Effects of stress and temperature on secondary compression 

of peat. Canadian Geotechnical Journal, 33, 405-415. 

Fusao, O., Adachi, T. & Yashima, A. (1994). Instability of an elasto-viscoplastic 

constitutive model for clay and strain localization. Mechanics of Materials, 18, 

119-129. 

Gaziev, E. (1984). Study of the Usoy landslide in Pamir. In: Proc. 4th International  

Symposium on Landslides, Toronto, 511–515. 

Ghabezloo, S. & Sulem, J. (2009). Stress dependent thermal pressurization of a fluid-

saturated rock. Rock Mechanics and Rock Engineering, 42, 1-24. 

Goren, L. & Aharonov, E. (2007). Long runout landslides: The role of frictional heating 

and hydraulic diffusivity. Geophys. Res. Lett., 34, L07301. 

Goren, L. & Aharonov, E. (2009). On the stability of landslides: A thermo-poro-elastic 

approach. Earth and Planetary Science Letters, 277, 365-372. 

Habib, P. (1975). Production of gaseous pore pressure during rock slides. Rock Mechanics 

and Rock Engineering, 7, 193-197. 

Hendron, A. & Patton, F. (1985). The Vaiont slide, a geotechnical analysis based on new 

geologic observations of the failure surface, Technical Report GL-85-5. 

Washington, DC: Department of the Army US Corps of Engineers. 

Hueckel, T. & Baldi, G. (1990). Thermoplasticity of Saturated Clays: Experimental 

Constitutive Study. Journal of Geotechnical Engineering, 116, 1778-1796. 

Hueckel, T. & Borsetto, M. (1990). Thermoplasticity of Saturated Soils and Shales: 

Constitutive Equations. Journal of Geotechnical Engineering, 116, 1765-1777. 

Hueckel, T. & Peano, A. (1987). Some geotechnical aspects of radioactive waste isolation 

in continental clays. Comput. Geotech., 3, 157-182. 

Hueckel, T. & Pellegrini, R. (1991). Thermoplastic modeling of undrained failure of 

saturated clay due to heating. Soils Foundations, 31, 1-16. 



230 

Hungr, O., Evans, S., Bovis, M. & Hutchinson, J. (2001). A review of the classification of 

landslides of the flow type. Environmental & Engineering Geoscience, 7, 221-238. 

Hutchinson, J. (1989) General report: morphological and geotechnical parameters of 

landslides in relation to geology and hydrogeology: Proc 5th International 

Symposium on Landslides, Lausanne, 10–15 July 1988V1, P3–35. Publ Rotterdam: 

AA Balkema, 1988. In:  International Journal of Rock Mechanics and Mining 

Sciences & Geomechanics Abstracts, 1989. Pergamon, 88. 

Hyde, A. F. L. & Brown, S. F. (1976). The plastic deformation of a silty clay under creep 

and repeated loading. Géotechnique, 26, 173-184. 

Johnson, K. L. (1987). Contact Mechanics, Cambridge University Press. 

Kavazanjian, E. & Mitchell, J. K. (1977). A general stress-strain-time formulation for soils. 

Ninth International Conference on Soil Mechanics and Foundation Engineering, 

Tokyo, Japan, 113-120. 

Kimoto, S., Khan, B., Mirjalili, M. & Oka, F. (2013). A Cyclic Elasto-Viscoplastic 

Constitutive Model for Clay Considering the Nonlinear Kinematic Hardening Rules 

and the Structural Degradation. International Journal of Geomechanics, 0, null. 

Kimoto, S., Oka, F. & Higo, Y. (2004). Strain localization analysis of elasto-viscoplastic 

soil considering structural degradation. Computer Methods in Applied Mechanics 

and Engineering, 193, 2845-2866. 

Kuhn, M. R. & Mitchell, J. K. (1993). New Perspectives on Soil Creep. Journal of 

Geotechnical Engineering, 119, 507-524. 

Kuwano, R. & Jardine, R. J. (2002). On measuring creep behaviour in granular materials 

through triaxial testing. Canadian Geotechnical Journal, 39, 1061-1074. 

Kwok, C. Y. & Bolton, M. (2010). DEM simulations of thermally activated creep in soils. 

Geotechnique, 60, 425-433. 

Laloui, L. (2001). Thermo-mechanical behaviour of soils. Revue Française de Génie Civil, 

5, 809-843. 

Laloui, L. & Cekerevac, C. (2003). Thermo-plasticity of clays:: An isotropic yield 

mechanism. Comput. Geotech., 30, 649-660. 

Laloui, L. & Cekerevac, C. (2008). Numerical simulation of the non-isothermal 

mechanical behaviour of soils. Comput. Geotech., 35, 729-745. 

Laloui, L. & Francois, B. (2009). ACMEG-T: Soil Thermoplasticity Model. Journal of 

Engineering Mechanics, 135, 932-944. 

Laloui, L., Leroueil, S. & Chalindar, S. (2008). Modelling the combined effect of strain 

rate and temperature on one-dimensional compression of soils. Canadian 

Geotechnical Journal, 45, 1765-1777. 



231 

Leroueil, S., Kabbaj, M., Tavenas, F. & Bouchard, R. (1985). Stress-Strain-Strain Rate 

Relation for the Compressibility of Sensitive Natural Clays. Geotechnique, 35, 159-

180. 

Leroueil, S., Marques, S. & Esther, M. (1996) Importance of strain rate and temperature 

effects in geotechnical engineering. In:  Measuring and Modeling Time Dependent 

Soil Behavior, Geotechnical Special Publication No. 61, 1996. ASCE, 1-60. 

Lo, K. (1961). Secondary compression of clays. Journal of the Soil Mechanics and 

Foundations Division, ASCE, 87, 61-87. 

Mase, G. E. (1970). Schaum's Outline of Theory and Problems of Continuum Mechanics, 

McGraw-Hill. 

Mateši , L. & Vucetic, M. (2003). Strain-rate effect on soil secant shear modulus at small 

cyclic strains. Journal of geotechnical and geoenvironmental engineering, 129, 

536. 

Mesri, G. (1973). Coefficent of secondary compression. Journal of Soil Mechanics & 

Foundations Div, 99. 

Mitchell, J., Campanella, R. & Singh, A. (1968). Soil creep as a rate process. Journal of 

Soil Mechanics & Foundations Div, Vol 94, 709-734. 

Mitchell, J. K. (1964). Shearing Resistance of Soils as a Rate Process ASCE Journal of Soil 

Mechanics & Foundations Div, Vol 90, 29-61. 

Mitchell, J. K. & Campanella, R. G. (1964) Creep studies on saturated clays. In:  ASTM-

NRC of Canada, Symposium of Laboratory Shear Testing of Soils, 1964 Ottawa, 

Canada.: ASTM International, 90-103. 

Mitchell, J. K., Singh, A. & Campanella, R. G. (1969). Bonding, effective stresses, and 

strength of soils, University of California, Institute of Transportation and Traffic 

Engineering, Soil Mechanics and Bituminous Materials Research Laboratory. 

Mitchell, J. K. & Soga, K. (2005). Fundamentals of soil behavior, John Wiley & Sons. 

Modaressi, H. & Laloui, L. (1997). A thermo-viscoplastic constitutive model for clays. 

International Journal for Numerical and Analytical Methods in Geomechanics, 21, 

313-335. 

Morgenstern, N. & Tchalenko, J. (1967). Microscopic structures in kaolin subjected to 

direct shear. Geotechnique, 17, 309-328. 

Müller, L. (1964). The rock slide in the Vajont Valley, Springer-Verlag. 

Müller, L. (1968). New considerations on the Vaiont slide. Rock Mechanics & Engineering 

Geology. 



232 

Murayama, S., Michihiro, K. & Sakagami, T. (1984). Creep characteristics of sand. Soils 

and foundations, 24. 

Murayama, S. & Shibata, T. (1958). On the Rheological Characters of Clay Part 1. 

Bulletins-Disaster Prevention Research Institute, Kyoto University, 26, 1-43. 

Oka, F., Adachi, T. & Yashima, A. (1995). A strain localization analysis using a 

viscoplastic softening model for clay. International Journal of Plasticity, 11, 523-

545. 

Oka, F., Higo, Y. & Kimoto, S. (2002). Effect of dilatancy on the strain localization of 

water-saturated elasto-viscoplastic soil. International Journal of Solids and 

Structures, 39, 3625-3647. 

Olszak, W. & Perzyna, P. (1966a). The constitutive equations of the flow theory for a non-

stationary yield condition. In: GÖRTLER, H. (ed.) Applied Mechanics. Springer 

Berlin Heidelberg. 

Olszak, W. & Perzyna, P. (1966b). On Elastic/Visco-Plastic Soils. In: KRAVTCHENKO, 

J. & SIRIEYS, P. (eds.) Rheology and Soil Mechanics / Rhéologie et Mécanique 

des Sols. Springer Berlin Heidelberg. 

Perzyna, P. (1962a). The Constitutive Equations for Rate Sensitive Plastic Materials, 

Brown University. Division of Applied Mathematics 

United States. Office of Naval Research, Defense Technical Information Center. 

Perzyna, P. (1962b). The study of the dynamic behavior of rate sensitive plastic materials, 

BROWN UNIV PROVIDENCE RI DIV OF APPLIED MATHEMATICS. 

Perzyna, P. (1966). Fundamental Problems in Viscoplasticity. Advances in applied 

mechanics, 9, 243. 

Pinyol, N. M. & Alonso, E. E. (2010). Criteria for rapid sliding II.: Thermo-hydro-

mechanical and scale effects in Vaiont case. Engineering Geology, 114, 211-227. 

Powrie, W. (2013). Soil Mechanics: Concepts and Applications, Third Edition, Taylor & 

Francis. 

Puzrin, A., Saurer, E. & Germanovich, L. (2010). A dynamic solution of the shear band 

propagation in submerged landslides. Granular Matter, 12, 253-265. 

Puzrin, A. M. & Germanovich, L. N. (2005). The growth of shear bands in the catastrophic 

failure of soils. Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Science, 461, 1199-1228. 

Puzrin, A. M. & Schmid, A. (2011). Progressive failure of a constrained creeping 

landslide. Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Science. 



233 

Puzrin, A. M. & Sterba, I. (2006). Inverse long-term stability analysis of a constrained 

landslide. Geotechnique, 56, 483-489. 

Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of 

Geophysical Research: Solid Earth, 111, B05311. 

Robinet, J. C., Rahbaoui, A., Plas, F. & Lebon, P. (1996). A constitutive thermomechanical 

model for saturated clays. Engineering Geology, 41, 145-169. 

Roscoe, K. & Burland, J. (1968). On the generalized stress-strain behaviour of wet clay. 

Engineering plasticity, Cambridge University Press, 3, 539-609. 

Schrefler, B. & Sanavia, L. 2005. Finite element analysis of strain localization in 

multiphase materials. 

Semenza, E. & Ghirotti, M. (2000). History of the 1963 Vaiont slide: the importance of 

geological factors. Bulletin of Engineering Geology and the Environment, 59, 87-

97. 

Sidle, R. C. & Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use, 

Washington, DC, AGU. 

Singh, A. & Mitchell, J. (1968). General Stress-Strain-Time Function For Soils. ASCE 

Journal of Soil Mechanics & Foundations Div, Vol 94, 21-46. 

Smith, R. E. & Wahls, H. E. (1969). Consolidation under constant rates of strain. ASCE 

Journal of Soil Mechanics & Foundations Div, Vol 95, PP 519-539. 

Sulem, J., Lazar, P. & Vardoulakis, I. (2007). Thermo-poro-mechanical properties of 

clayey gouge and application to rapid fault shearing. International Journal for 

Numerical and Analytical Methods in Geomechanics, 31, 523-540. 

Sultan, N., Delage, P. & Cui, Y. J. (2002). Temperature effects on the volume change 

behaviour of Boom clay. Engineering Geology, 64, 135-145. 

Taylor, D. W. (1948). Fundamentals of Soil Mechanics. Soil Science, 66, 161. 

Ter-Stepanian, G. (1975). Creep of a clay during shear and its rheological model. 

Geotechnique, 25, 299-320. 

Tika, T. (1989). The effect of rate of shear on the residual strength of soil. Ph. D. 

Dissertation, University of London (Imperial college of Science and Technology). 

Tika, T., Vaughan, P. & Lemos, L. (1996). Fast shearing of pre-existing shear zones in 

soil. Geotechnique, 46, 197-233. 

Tika, T. E. & Hutchinson, J. (1999). Ring shear tests on soil from the Vaiont landslide slip 

surface. Geotechnique, 49, 59-74. 



234 

Towhata, I., Kuntiwattanaku, P., Seko, I. & Ohishi, K. (1993). Volume change of clays 

induced by heating as observed in consolidation tests. Soils and Foundations, 33, 

170-183. 

Vaid, Y. P. & Campanella, R. G. (1977). Time-dependent behavior of undisturbed clay. 

Journal of the Geotechnical Engineering Division, 103, 693-709. 

Vardoulakis, I. (2000). Catastrophic landslides due to frictional heating of the failure plane. 

Mechanics of Cohesive-frictional Materials, 5, 443-467. 

Vardoulakis, I. (2002a). Dynamic thermo-poro-mechanical analysis of catastrophic 

landslides. Geotechnique, 52, 157-171. 

Vardoulakis, I. (2002b). Steady shear and thermal run-away in clayey gouges. 

International Journal of Solids and Structures, 39, 3831-3844. 

Varnes, D. J. (1978). Slope movement types and processes. Transportation Research 

Board Special Report. 

Veveakis, E., Vardoulakis, I. & Di Toro, G. (2007). Thermoporomechanics of creeping 

landslides: The 1963 Vaiont slide, northern Italy. J. Geophys. Res., 112, F03026. 

Voight, B. & Faust, C. (1982). Frictional heat and strength loss in some rapid landslides. 

Geotechnique, 32, 43-54. 

Wibberley, C. a. J. & Shimamoto, T. (2005). Earthquake slip weakening and asperities 

explained by thermal pressurization. Nature, 436, 689-692. 

Wissa, A., Christian, J. T., Davis, E. H. & Heiberg, S. (1971). Consolidation at constant 

rate of strain. Journal of Soil Mechanics & Foundations Div, Vol 97, pp 1393-

1413. 

Wood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics, Cambridge 

University Press. 

Yang, W. Y., Cao, W., Chung, T. S. & Morris, J. (2005). Applied Numerical Methods 

Using MATLAB, John Wiley & Sons. 

Zwillinger, D. (2002). CRC Standard Mathematical Tables and Formulae, 31st Edition, 

Taylor & Francis. 

 


