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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND THE ENVIRONMENT
Institute of Sound and Vibration Research
Doctor of Engineering
EFFICIENT FINITE ELEMENT METHODS
FOR AIRCRAFT ENGINE NOISE PREDICTION

by Albert Gerrard Prinn

Aircraft noise has a negative environmental impact. One of the ways in
which it can be mitigated is by placing acoustic liners inside the aircraft’s
engines. These liners can be optimised for noise reduction. A cost effective
way to optimise acoustic liners is to make use of numerical modelling. How-
ever, there is room for improvement of the efficiency of current modelling
methods. This thesis is concerned with the efficient numerical prediction of
noise emitted from modern aircraft engines. Four high order finite element
methods are used to solve the convected wave equation, and their perfor-
mances are compared. The benefit of using the hierarchic Lobatto finite
element method to solve this type of problem is demonstrated. A scheme
which optimises the efficiency of the high order method is developed. The
scheme automatically chooses the most efficient order for a given element,
depending on the element size, and the problem parameters on that ele-
ment. The computational cost of using the standard quadratic finite ele-
ment method to solve a typical engine intake noise problem, is compared to
the cost of the proposed adaptive-order method. A significant improvement
in terms of efficiency is demonstrated when using the proposed method over
the standard method. Furthermore, a new formulation based on potential
flow theory for the solution of vortex sheet problems (typically encountered

when dealing with exhaust noise problems) is presented.
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Introduction

Commercial aviation has many social and economic benefits. It provides shorter travel
times, and a plethora of employment opportunities. However, aviation has a noticeable
environmental impact. Modern turbofan engines still rely heavily upon fossil fuels,
and the gasses and particulates they emit contribute to global climate change. Despite
the development of more fuel efficient engines, the environmental impact of aviation is
increasing due to the growth of the aviation industry.

Although consideration of gas and particulate emissions is very important, to those
people living and working close to airports the more evident environmental impact is
noise pollution. Community noise caused by aircraft during take-off and landing can
lead to high levels of annoyance and may cause adverse health effects [15, [61) [133].
Furthermore, flyover noise can affect aesthetic evaluations of natural landscapes [26],
136], and adversely affects wildlife [23] [72].

To protect people subjected to aviation noise, international standards, which place
limits on noise emission and aircraft noise levels, were introduced in the 1960s. In re-
sponse, noise reducing technologies have advanced considerably, as can be seen in Figure
Current aircraft are significantly quieter than first generation turbofan aircraft -
roughly 20 to 30 dB quieter - but the number of flights has increased. The forecast
growth of aviation is 4.25 % per annum [112]. Although current designs meet Chapter
4 certification requirements, future targets are very ambitious, e.g. the ACARE target
which aims to reduce the current noise emissions by 10 dB between 2000 and 2020.

Novel noise reduction technologies will be needed in order to meet these targets.



1. INTRODUCTION

1.1 Project Motivation

Numerical modelling can be used to design quieter aircraft. It can be employed to
enhance the three main aircraft noise reduction techniques: 1. Controlling noise source
mechanisms, e.g. making use of novel fan blade designs for quieter aircraft engines, or
minimising the aerodynamic noise created by the airframe. 2. Noise reduction through
the use of acoustic liners inside the engines which absorb acoustic energy, thus reducing
noise emission levels. 3. Land planning, restricting flight operations, and flight path
design. Numerical modelling can be used to reduce the uncertainty in new designs, and
can enable the selection of quieter designs at an early stage. It can then be used to
optimise designs, and may even be used to demonstrate that minor design changes will
not affect existing certification.

There are other benefits to be gained from numerical modelling. Monetary savings
can be made in terms of prototype manufacture and flight test costs. It also serves as
an enabler for low-carbon emission technologies, like for example the contra-rotating
fan designs which are more fuel efficient than current designs for short flights [106] but
are still at the design stage for optimal noise emissions. Using modelling to find designs
which easily comply with certification limits can provide headroom for the improvement
of aerodynamic efficiency, and other design criteria. Also, numerical modelling can
provide insights into the underlying physics of a problem.

However, the time and computational resources needed to obtain noise predictions
depend on the problem size and the required accuracy. As an example of the limitation
imposed by the available resources, it is not currently possible to model a fully three-
dimensional turbofan engine. The problem must be separated into intake and exhaust
problems, but even obtaining solutions to these problems can be very demanding. As
will be shown in this work, using a standard quadratic finite element method to solve an
intake noise problem, up to a frequency of 1.6 kHz, takes approximately 10 hours. This
is bad news for design optimisation as many iterations are required. To make design
optimisation feasible it must be possible to run many test cases within a reasonable
time frame. Thus, there is room for improvement of the computational efficiency of the
modelling methods currently employed for the solution of such problems.

The main objective of this work is to develop more efficient modelling techniques

that outperform those currently employed for commercial aeroacoustic prediction codes.



1.2 Outline of the Thesis

This project has been carried out in collaboration with an industrial partner, LMS In-
ternational, a provider of acoustic prediction software. The company’s software, Virtu-
alLab (driven by the acoustic solver SysNoise), makes use of the finite element method
for the solution of convected wave propagation problems in the frequency domain. A
typical application is the prediction of aircraft engine noise, with a view to the opti-
misation of acoustic liner performance. It is this type of problem that is studied in
this work. Although the main focus of this project is the prediction of noise emission
from turbofan engines, it should be noted that the methodology developed here can be
extended to other applications, e.g. noise reduction in the automotive industry or in
heating, ventilating, and air conditioning systems.

The problem is approached by investigating finite element methods that make use of
high order polynomial interpolating functions, and by comparing the preferred method

to the standard method when used to obtain solutions for a typical application.

1.2 Outline of the Thesis

This thesis is organised as follows. In Chapter [2] the mathematical models used in
this work to describe acoustic waves in moving media are introduced. In Chapter [3| a
review of finite element methods for wave problems is presented; this chapter includes
descriptions of the candidate methods for more efficient solution of such problems.
Chapter [4] presents an assessment of the candidate methods, and concludes with the
identification of the hierarchic Lobatto method as the most efficient of the methods
investigated. In Chapter [5| a scheme which adaptively chooses the optimal order of the
Lobatto functions to be used on a given element is developed, and its performance is
analysed.

A choice has been made to delay the presentation of the application of the method to
an industrial problem in the hope that the foundations of the proposed method are clear
to the reader. The application of the proposed adaptive-order method to a simplified
turbofan intake noise problem is presented in Chapter [, and the improved efficiency of
the new adaptive-order method over the standard quadratic method is demonstrated.
In Chapter [7] a new formulation for the prediction of the acoustic refraction present in
exhaust noise problems is proposed, and compared to two existing formulations and an

analytic solution. The thesis is concluded, and future work is discussed, in Chapter
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Figure 1.1: Progression of noise certification limits (Adapted from [81]). In this figure
the EPNdB (Effective Perceived Noise decibel) relative to Stage 4 is plotted against time
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Acoustic Waves in Moving Media

In this chapter, the governing equations used to model convected acoustic waves are
introduced. The linearised Euler equations, which govern the linear motion of inviscid
fluids, are derived. Bernoulli’s equation and the assumption of irrotationality are put
to use to derive a convected wave equation, given in terms of the velocity potential.
The linearised Fuler equations are further simplified to give a convected wave equation
in terms of acoustic pressure, valid for uniform flows. This simplification provides an
illustration of the typical properties of acoustic waves in moving media. The boundary
conditions required to complete the mathematical models are described. These include
a boundary condition to represent duct modes, an impedance condition for modelling
acoustic liners, and two non-reflecting boundary conditions used to minimise unwanted
reflections in domains of finite extent. Finally, the Kirchhoff formula, which is used to

extrapolate solutions to the far-field, is discussed.

2.1 Governing Equations

The laws of mass and momentum conservation, and an equation of state, will be intro-
duced in this section. It will be assumed that the flow field can be decomposed into

base flow quantities and perturbed variables to arrive at the linearised Euler equations.



2. ACOUSTIC WAVES IN MOVING MEDIA

2.1.1 Conservation Equations

The mass continuity and momentum conservation laws that govern a fluid’s motion, in

the absence of external sources, are given by the equations [66]:

opt tot) —
5 +V-(pv')=0 (mass) , (2.1)
¢ [Ov' t t
P |5 + (v'-V)o'| =V (momentum) . (2.2)

In these equations p' is the fluid density, v’ is the flow velocity vector field, and o is
the stress tensor.

The mass continuity equation (2.1)) can be rewritten in the form:

Dy’ t t
—_— cv' =0 2.3
Dt +p' Vv , (2.3)

where we have made use of the material derivative: D/Dt = §/0t+v'-V. This operator
establishes a link between the Eulerian and Lagrangian descriptions of fluid motion; it
describes the evolution of some property of the fluid as it travels along a streamline.
The divergence of the stress tensor can be written as: V-0 = —Vp' + V- T?, where
pt is the pressure, and T is the viscous stress tensor. If we ignore viscosity we obtain,

from the momentum equation (2.2)), the equation:

(Do

t
Y +Vp' =0. (2.4)

2.1.2 Equation of State

An equation of state is required to relate the thermodynamic variables within the fluid.
It is assumed that the fluid may be treated as an ideal fluid. The assumptions made by
this approximation are that: 1. No energy is lost in collisions between the molecules,
or in their motion. 2. Attractive and repulsive forces betweens the molecules, and
between the molecules and their surroundings, may be neglected. These assumptions
are reasonable at low pressure and density, and at moderate temperature. The ideal

fluid law provides us with the equation of state [37]:

D t t D 4 t D
Dt _ (v Dpt (Op7) Ds (2.5)
Dt opt), Dt ds ) » Dt

where s is the entropy.



2.1 Governing Equations

Instating the isentropic assumption, i.e. that the entropy of a fluid element remains

constant, yields: Ds/Dt = 0. The equation of state (2.5) is reduced to:

Dp* 2yt Dp! 2\ op'

N —_ here == 2.6
Dt (C ) Dt w T (C ) 8pt s ( )
is the speed of sound. It may vary over the fluid.

The speed of sound is a function of the bulk modulus (or compressibility) of a fluid,
and the inverse of its density. When an ideal fluid is used, the bulk modulus may be
replaced with the product of the pressure and the ratio of specific heats, v. The speed
of sound in an isentropic flow is given by:

t p
() =74 (2.7)
p

An energy equation can be arrived at by combining the mass equation ([2.3) and

the equation of state (2.6)), and is written as [12]:
Dp?

o (A)'v-v' =0. (2.8)

The Euler equations consist of the continuity of mass (2.3)), the conservation of mo-
mentum (2.4]), and the energy equation (2.8]).

2.1.3 Linearised Euler Equations

The Euler equations can be linearised by assuming that the flow field may be decom-

posed into base flow quantities and perturbed variables, as follows:
t
p'=po+p, vl =g+, p'=po+p, and () =g+,

where the subscript represents a steady quantity in the base flow, and the unscripted
variable indicates an unsteady perturbation. The decomposed variables are substituted
into the Euler equations, and non-linear terms (which are assumed have a negligible
effect on the acoustic field) are identified and omitted.

This produces two sets of equations; those which describe the behaviour of the
base flow, and those which describe all linear disturbances of the fluid. These sets of
equations are often solved separately, with the solutions of the former being used as

inputs for the latter.



2. ACOUSTIC WAVES IN MOVING MEDIA

For the base flow we obtain the steady Euler equations:

V - (povg) =0 (mass) ,
d
P0 Od,;)o +Vpo=0 (momentum) ,
vo - Vpo + pocaV - vg = 0 (energy) .

Here we have introduced the material derivative in terms of the base flow only: do/dt =
0/0t + vy - V. These equations are non-linear, and can be solved using computational
fluid dynamics. In this work, the software package FLUENT has been used to solve
the steady Euler equations for an inviscid, compressible flow.

The unsteady linearised Euler equations are:

dop

E+v~Vp0+p0V-v+pV-v0:0 (mass) , (2.9)
d
pgdL: +po(v-V)vg+p(vg-V)vg+Vp=0 (momentum) , (2.10)
d
stp +v - Vpg + pocaV - v + poc®V - vy = 0 (energy) . (2.11)

The linearised Fuler equations support acoustic, entropy, and vorticity modes. Solving
them can be computationally expensive, as five unknown variables must be computed.
Furthermore, if solved in the time domain they can exhibit linear instability modes,
a typical example of which is the Kelvin-Helmholtz instability. However, these first
order equations can be further manipulated to give a second order wave equation,
which involves only one unknown (acoustic) variable. In formulating these equations,
the following have not taken into account: viscosity, heat-transfer, non-linearity, and

feedback between the base flow and the perturbation field.

2.2 Potential Flow Theory

This section will introduce an unsteady version of Bernoulli’s equation, which will be
used to derive a wave equation, given in terms of the velocity potential. The use of
potential flow is valid for most non-uniform flows, but the limitations of the theory will

be discussed. The acoustic energy, intensity and power will also be briefly introduced.



2.2 Potential Flow Theory

2.2.1 Bernoulli’s Equation

Bernoulli’s equation is a special form of the momentum equation. It relates the pressure,
velocity, and the velocity potential of a fluid element travelling along a streamline. In
essence it states that the sum of the kinetic and potential energies along a streamline
remains constant. To begin with, the flow is assumed to be irrotational: v! = V¢!,
where ¢! is the velocity potential. (This assumption holds for the base flow and the

perturbed field.) For a compressible, inviscid, irrotational, unsteady flow, Bernoulli’s

8d>t
—d —
' / P
The integral is evaluated along any streamline. For a perfect gas, we can make use of

the relation p’ = K (p')” (where K is a constant) and the sound speed definition (2.7)
to write the integral as [1/p'dp' = (ct)2 /(v — 1). Assume that at infinity the base

equation states [129]:

flow is steady, to obtain:

o t Lyt Ct 2
;Z + 211 +,$,_)1 = constant.

By linearisation, i.e. ¢' = ¢g + ¢, we arrive at a more practical form of Bernoulli’s

_ 0¢
p=-— <8t + v - vqs) (2.12)
2 _

where the relation: ¢ = c2(y — 1)p/po has been used.

equation:

2.2.2 Velocity Potential Wave Equation

Substitution of (2.12)) into the linearised mass equation ([2.9)) yeilds:

0<_p0do¢)+v. < Ov¢_£@ 0> —0.

ot \ @ dt dt
This can be rewritten to give a convected wave equation in terms of the velocity po-
tential:
do [ po doo po do
— V- (poV - — =0. 2.13
dt(co dt (Vo) + 3 g5 Vw0 (2.13)

This mathematical model can provide solutions, in the absence of vorticity in both
the base flow and the perturbed flow, for a fraction of the cost that would be incurred if
the linearised Euler equations were to be solved. It enables faster solutions and makes

provision for acoustic predictions at higher frequencies.



2. ACOUSTIC WAVES IN MOVING MEDIA

This model may be solved in either the time or the frequency domain. If we consider
a noise problem in which a source has been generating acoustic waves for a period of time
long enough for the initial conditions not to be of concern, then we can assume that the
solution behaviour is time harmonic. We seek solutions of the form: ¢ ~ e™*! where
w = 27 f is the angular frequency, and f is the frequency. The sponsoring company
solves this model in the frequency domain, and thus for the work carried out here we
will consider only time harmonic solutions. From this point onwards, the definition of

the material derivative will be: do/dt = (iw + vg - V).

2.2.3 Acoustic Energy, Intensity, and Power

A quantity of interest in acoustic measurements is the acoustic power. To present the
power we must introduce an energy equation which describes the energy density, F,
and the energy flux, F'. The energy equation for a homentropic (uniform entropy) and

irrotational field (in both the base flow and the perturbation) is [104]:

oF
—+V-F=0,
ot +
where )
_pe
—2p0+ 5 + pv -,
and

F = <5+v-vo> (pov + pvo) .
0

The acoustic intensity is defined as the time averaged energy flux, which gives:

p? L
2,000(2) 20(2)

I= R {pv*} + 3R {po (w0 v)v") + R (5" (v - v) w0}

The power crossing a surface, .S, which completely surrounds any acoustic sources, is

obtained by integrating the normal intensity over the surface:

P:/I-ndS,
S

where n is the outwardly pointing unit vector perpendicular to the surface. This

integral can then be used to obtain the acoustic power radiated to the far field.
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2.3 Uniform Flow

2.3 Uniform Flow

If the base flow quantities have no gradient profiles, then the flow is said to be uniform.
Applying this simplification to equation (2.13) results in a convected wave equation

valid for uniform flow:
ddo
de?
A possible solution of equation (2.14)) is the free-field plane wave: ¢ = Ae~k@+ivt

where A is a complex amplitude, and k = kn is the wavenumber vector which indicates

— V%0 =0. (2.14)

the direction of propagation of the wave, where n is the unit normal. The wavenumber

is given by:
- d - Ko ,
co(Mcosf+1) (Mcosh=+1)

where kg is the free-field wavenumber, M = wvg/cy is the Mach number, and 6 is the
angle of the flow. It can be seen that the direction of the flow has an effect on the
wavenumber. For downstream flow the acoustic wavelength is lengthened, whereas it
is shortened in the upstream case. The wavenumber is related to the wavelength by:

k=2n\"L

2.4 Boundary Conditions

Boundary conditions are required to supplement the convected wave equation .
Here we introduce an admittance condition which can be used to describe the behaviour
of acoustic liners, which may form part of the problem specification, present a source
condition based on the modal decomposition of a duct and discuss two non-reflecting

boundary conditions which will be used. A far field radiation condition is also discussed.

2.4.1 Impedance Condition

At a hard wall the gradient of the velocity potential vanishes, V¢ - n = 0. At an
acoustically lined surface a portion of the energy of an impinging acoustic wave is
absorbed. A complex frequency-dependent impedance, Z(w), can be used to write a
boundary condition which describes the effect of the lined surface on the acoustic field.
Myers [110] derived an acoustic boundary condition in the presence of an inviscid flow,

which is convenient to implement using Eversman’s method [50].

11



2. ACOUSTIC WAVES IN MOVING MEDIA

The derivation begins with the decomposition of the impedance surface into a steady
part and an unsteady part. The response of the unsteady part to an incident acoustic
wave is considered. The condition can be written in terms of the normal particle

displacement, &, at the surface to give:
v-n=iwl+vy-VE—En-(n- V) .

The impedance of the liner may also be written in terms of its admittance, A(w), which
is the inverse of the impedance. The admittance is related to the normal acoustic

particle displacement by:
A(w)p = iwé .
Using the admittance, the acoustic velocity normal to the surface can be related to the

acoustic pressure by:

v-n=lwtv V-n-(n- V) A(ii)p. (2.15)

The first term inside of the square brackets represents the impedance relation in the
absence of flow, the second term represents the convective effect of the grazing flow,
and the third term is related to the curvature of the surface. In the case of a plane
surface the third term vanishes.

In essence, this condition models the behaviour of a boundary layer at the surface
using an infinitely thin shear layer (referred to as a vortex sheet). When solved in the
time domain the vortex sheet can exhibit an instability mode that will overwhelm the
acoustic field, if left untreated. The Myers boundary condition is ill-posed in the time

domain [129]. In the frequency domain, however, instabilities are not expected [2].

2.4.2 Duct Modes

This work is predominantly concerned with the prediction of noise radiated from turbo-
fan engines. The engine inlet and exhaust are ducts along which noise propagates from
the source plane to the exterior flow. The sound field within a duct can be decomposed
into an infinite sum of duct modes. Here we use the concept of duct modes to describe
the acoustic source at the source plane.

We begin by considering a straight duct, with hard walls, which carries a uniform
subsonic flow with axial velocity vg; the flow is aligned with the duct axis. An example

of such a duct, with an arbitrary cross-section, is given in Figure [2.1
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e

Figure 2.1: A straight, hard-walled duct with arbitrary cross-section, carrying an axial

flow with velocity vy.

The convected wave equation (2.14) governs the acoustic behaviour of the fluid.
The modal decomposition can be written as:

+oo  +oo
0, 2,0,8) = D0 0 (A Mt AL T W (1) T (2.16)

m=—00 n=0

where 7 is the radial coordinate, z is the axial coordinate, 6 is the azimuth, ¥,,, is
the mode shape function, and A,,, is the amplitude of mode (m,n). A" implies a
right-going wave, and A~ a left-going mode. The circumferential mode order is m, and

the radial mode order is n. The axial wavenumber is given by:

zmn 2 2 ) .
€% — Yo

where k,,,, is the radial wavenumber.

2.4.2.1 Propagating and Evanescent Modes

Duct modes may be either propagating or evanescent (i.e. exponentially decaying). A
critical frequency can be defined, above which modes propagate and are said to be cut-
on, and below which modes are evanescent and are referred to as cut-off. The cut-off
frequency is given by:

1
fo=5_

We note that the axial wavenumber (2.17)) may be either real or complex imaginary,

2 — v¥krmn - (2.18)

depending on the frequency and the radial wavenumber; this determines the behaviour
of the mode (either propagating or evanescent).
Evanescent modes decay rapidly away from the source, and as a result they do not

carry acoustic energy far along the duct. In contrast, the amplitude of a propagating
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2. ACOUSTIC WAVES IN MOVING MEDIA

mode remains constant along the duct. This means that, far from the source, evanescent
modes do not contribute to the soundfield, and so they are generally omitted from the
source description.

The mean flow has an effect on the cut-off frequency; as the flow velocity increases

the cut-off frequency is reduced, thus creating many more cut-on modes.

2.4.2.2 Annular and Circular ducts

Let us now consider the modal decomposition of two types of ducts used in this work.
These are circular and annular ducts; their cross-sections are shown in Figure

For an annular duct the mode shape function is of the form:

\Ilmn(r) = Y;n(krmnRO)Jm(krmnr) - J;n(krmnRO)Ym(krmnT) )

where Ry is the inner radius of the duct, J,, is the Bessel function of order m, Y,, is
the Neumann function of order m, and the prime indicates the derivative with respect

to the argument. At the hard walls of the duct we have the equation:
Y, (krmnRo) I, (krmnB1) — I (krmnRo) Y (krmnB1) = 0, (2.19)

where R; is the outer radius of the duct. This is the characteristic equation of the
annular duct; it must be solved numerically to find admissible values for the radial

wavenumber. For a circular duct Ry vanishes, and the mode shape function becomes:

\I’mn(r) = Jm(krmnr) s

where R is the duct radius. In this case, the radial wavenumbers are solutions of the
characteristic equation:

J (krmnR) = 0. (2.20)

Modes with m = 0 are called axisymmetric, as they are independent of 8, and all
other modes for which m # 0 are called spinning modes. Examples of the modes in
a circular duct are given in Figure [2.3} we see that n controls the number of radial
oscillations, and m controls the circumferential oscillations.

If the duct walls are not acoustically hard the modal source description becomes

more complex.
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Figure 2.2: Cross-sections of the annular (left) and circular ducts. Ry is the inner duct

radius, and Ry, and R are the outer duct radii.

90

m=0,n=3

m=1n=2 m=2n=2 m=3n=1

Figure 2.3: Examples of circular duct modes. Top: axisymmetric modes, with the plane

wave mode (0,0) on the far left. Bottom: spinning modes.

2.4.3 Non-reflecting Conditions

The physical domain considered in this work is unbounded. This infinite domain must
be truncated using an artificial boundary. The artificial boundary must allow propa-
gating waves to leave the domain without creating unphysical waves which are reflected
back into the domain. However, constructing such a non-reflecting boundary for com-
plex, multidimensional geometries is not straightforward.

Hixon [75] compared three such conditions, when used to solve the linearised Euler
equations in the time domain. He compared boundary conditions based on a one-

dimensional (1D) characteristic analysis, a decomposition of the solution into Fourier
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2. ACOUSTIC WAVES IN MOVING MEDIA

modes, and an asymptotic analysis of the governing equation. He found that the most
robust boundary condition was obtained using an asymptotic expansion to enforce the
asymptotic behaviour of the solution at infinity. An example of an asymptotic condition
is the Sommerfeld radiation condition, which ensures that waves do not radiate from

infinity. It may be expressed mathematically as:

d—1 0
i [af* (a,w‘ s iko) b=0,
where d is the dimension of the space.

Radiation and outflow boundary conditions for the accurate simulation of acoustic
and flow disturbances in non-uniform mean flows were proposed by Tam & Dong [143].
A more recent review of computational aeroacoustics for turbofan engines [12] states
that it is currently common to find non-reflecting boundary conditions based on 1D
characteristics, asymptotic expansion, or absorption zones which surround the compu-
tational domain. In this work, we make use of two types of non-reflecting condition:
boundary conditions based on 1D characteristics, and an absorption zone referred to

as a perfectly matched layer.

2.4.3.1 Characteristic Boundary Conditions

This approach was first proposed by Thompson [146] for the solution of hyperbolic
systems in the time domain. This method is presented by Hixon [74] in his review of
radiation and wall boundary conditions for computational aeroacoustics.

Begin by considering the Fuler equations, which support acoustic, entropy, and
vorticity modes. At computational boundaries these modes must be correctly specified
if unwanted reflections are to be avoided. The modes at a boundary are depicted in
Figure in essence this is a 1D wave propagation problem in which the waves are
perpendicular to the boundary. The Euler equations are rewritten as a 1D problem,
and eigenvectors and eigenvalues are identified.

To implement the characteristic boundary condition the incoming and outgoing
solutions at the boundaries must be correctly specified or be part of the solution, i.e.
the amplitude of the incoming wave should be specified, and the amplitudes of the
outgoing waves must be determined by the system being solved.

To clarify our implementation of the characteristic condition, we choose a simple

duct problem, which more closely resembles the test cases considered in this work. We
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entropy ———» — Vo
vorticity ———»

acoustict ——» <—— jacoustic™

- »
>

Z, z

Figure 2.4: Permitted solutions at an outflow boundary: incoming and outgoing charac-

teristics in the presence of subsonic flow [74].

choose to model the propagation of a right-going acoustic wave along a hard-walled
duct of infinite extent, which carries a subsonic uniform flow. The domain has been
truncated at the planes z = 0 and z = zr.

We safely neglect to include entropy and vorticity modes, as we are solving the
convected wave equation for the velocity potential. The acoustic field within the duct
is governed by the convected wave equation , which is valid for uniform flows. A

general solution of the wave equation is of the form:
¢ = f(z = (v —co)t) + g(z — (w0 + co)t) ,

which is the sum of a left-going wave and a right-going wave, respectively. We see that

we have —c¢y and +c¢( characteristics. If we consider the boundaries of the problem, we

obtain:
dgo oo ,
- _9 —
T co . cog at z =0,and
do(b (9(ﬁ ’
— 4+ cg— = +2 =z .
& co " cof atz = zp,

To impose the characteristic condition we must specify the amplitude of the incoming
waves, and allow the outgoing waves to be set by the system being solved. To create
an acoustic wave that travels from left to right (in the domain shown in Figure ,
and which is anechoically terminated at the end of the domain, we specify that f =0
at z = zp. This ensures that a wave travels into the computational domain at z = 0,

and that (theoretically) there is no reflection at z = zy.
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2. ACOUSTIC WAVES IN MOVING MEDIA

The characteristic condition is only accurate when the wave is normal to, or tangent
to, the boundary, see, for example, Hixon & Shih [75]. Results are not optimal for
curved boundaries as there are no genuine characteristics for multidimensional problems
[142]. In this work, this condition will be used in test cases in which the wave direction
is perpendicular to the boundary only. When curved boundaries are present we will

rely on a perfectly matched layer.

2.4.3.2 Perfectly Matched Layers

The technique of replacing the boundary conditions with an absorbing region, called
a Perfectly Matched Layer (PML), was first proposed by Bérenger [27]. He applied
this method to Maxwell’s equations, and used a finite difference approximation to find
electromagnetic wave solutions in the time domain. Hu [77] studied the use of a PML
for the solution of the linearised Euler equations, in two dimensions and subject to a
uniform flow. He reported good results, and noted that errors were associated with the
discretisation process.

Bécache et al. [25] employed the PML method to solve the convected Helmholtz
equation. They developed a PML which can handle inverse upstream modes, which are
unstable when the phase velocity, w/k, and the group velocity, dw/0k of a propagating
wave have opposite signs. Hu [78] solved the linearised Euler equations, subject to
a non-uniform flow, using a PML. He showed that the PML works well for subsonic
compressible shear flows, and found that grid-stretching suppresses unstable modes.

Ozgun & Kuzuoglu [116] developed a PML for the finite element method. They
made use of a coordinate transformation, which replaces real-valued node coordinates
with complex-valued coordinates, and analytically continued the field variables to the
complex domain. It is this approach that we will follow in this work.

To construct the PML, the solutions and equations must be analytically contin-
ued into the complex space. The computational domain boundary is extended, and a
complex transformation is applied. The extended region is truncated, and a boundary
condition is applied to the end of the extended region. In practice waves travelling
along the extended region should be sufficiently damped at the end of the region so
that a Dirichlet boundary condition will suffice; any reflections from the end of the

extended region will be attenuated further on their return journey.
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We shall demonstrate the method with a simple 1D wave propagation example.
Here, the governing equation is the quiescent wave equation (19 = 0). Let our transform
be:

z—Z:Z2=2z—la(z),
where the absorption function is given by:

alz) = (z—z1)/k %f |z| > 21, and
0 if |z| < 2z,
where zy, is the boundary of the computational domain. The transformation changes
the derivatives of the governing equation:

0 1 0
— = 2.21
0z 1—id/(z) 0z (2:21)
We see that inside the computational domain the original derivatives are retained. A

solution of the governing equation is now of the form:

¢ = efik[zfia(z)] )

When « # 0 the solution becomes evanescent, i.e. beyond the boundary, zy,, the solu-
tion decays exponentially. As the PML width increases, the propagating wave converges
to the solution at infinity. This method is easily extended to higher dimensions.

The method does have some limitations. The PML is only reflectionless for the exact
equations, upon discretisation of the equations the interface between the computational
domain and the PML is no longer reflectionless. This source of error can be minimised
through the use of a slowly varying absorption function.

Also, the attenuation rate is proportional to the angle of incidence of the propa-
gating wave; as the angle approaches the tangent, reflections can appear. High angle
reflections which occur can be minimised by placing the PML sufficiently far from
sources and internal boundaries - as in the far field propagating waves begin to resem-

ble plane waves.
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2. ACOUSTIC WAVES IN MOVING MEDIA

2.4.4 Far-field Predictions

The position of an observer of the noise emitted from a turbofan engine is quite likely
to be far away from the engine itself. Numerical solutions obtained on the artificial
boundary must therefore be extrapolated to the far field. This is achieved by computing
an integral over a control surface which encloses all acoustic sources and flow effects.
Two integral methods are available: the Kirchhoff integral formulation and the Ffowcs
Williams-Hawkings equation.

For the Kirchhoff method a surface integral of the pressure, its normal derivative,
and its time derivative, is performed. When the flow is non-zero a moving frame of
reference is used [105]. Farassat & Myers [54] present a derivation of the Kirchhoff
formula for a surface moving subsonically. The Ffowcs Williams-Hawkings formula
allows for non-linearities on the surface, but is more expensive as it requires pressure,
density, and the velocity vector for its solution. When the control surface is placed in
a region of uniform flow the two formulas are equivalent (see Brentner & Farassat [34],
in which an analytic comparison of the formulas is presented).

Thus, the Kirchhoff formulation performs well for inlet noise extrapolations, whereas
for exhaust noise problems (in which shear layers are present) the Ffowcs Williams-
Hawkings equation is more accurate. In this work we make use of the Kirchhoff
formulation; this is acceptable as we will only present far field data for intake noise

predictions. A full derivation is provided by Farassat [53].
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Finite Element Methods for

Wave Problems

In this chapter, the standard finite element method is applied to a convected acoustic
wave propagation problem, in order to present its basic construction and notable fea-
tures. The most relevant advanced methods, which have been designed to tackle wave
problems, are then reviewed. The remainder of the chapter is devoted to descriptions
of four advanced finite element methods, which have been identified as candidates for

producing more efficient convected wave solutions.

3.1 The Standard Method

The standard version of the finite element method makes use of Lagrange interpolation
functions to generate predictions of the behaviour of some physical system. We will

use this section to develop the core concepts of the standard method.

3.1.1 Physical Problem

A turbofan engine intake noise problem is to be solved, using the finite element method.
This is an exterior acoustic problem, in which a body with a closed surface is placed
within a moving fluid of infinite extent. The mean flow field, vy, has sound speed, ¢y,
and density, pg. It is assumed that a solution for the flow field is available, and thus

that only a solution for the acoustic field is required. Furthermore, in this example
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Figure 3.1: Example of an exterior acoustic problem (an axisymmetric engine intake).

sheared flows are not considered. In such problems, the convected wave equation given
in terms of the velocity potential is solved [129].

The physical problem geometry is shown in Figure The surface of the engine
comprises a vibrating section which emits acoustic waves, S, sections which absorb
acoustic energy, S, and a section which is acoustically hard, .S,,.

The source surface, Ss, is modelled using the duct mode definition given in Section
2.4.2l The sound absorbing surfaces, S, are described by their acoustic impedance,
which is given by Eversman’s implementation of the Myers condition . On the
hard wall, S, the velocity potential gradient normal to the surface is zero. The mean
flow is tangent to the impedance surfaces and the hard wall. I' is a non-reflecting

boundary.

3.1.2 Weak Variational Formulation of the Governing Equation

The method of weighted residuals is used to solve the convected wave equation ([2.13)).
The solution, ¢, is approximated using a trial function: ¢ ~ gig From this approximation
there will be an error, which is referred to as a residual. With the aim of minimising

the residual the equation is set equal to zero. The equation is multiplied by a test
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function, W, and integration is performed over domain €2. This gives a weak variational

formulation:

| (2odod ) 4 Podod
/QW[dt <cg dt) v (pov¢>+cg ar Y

where the overbar denotes the complex conjugate. Using integration by parts and

A0 =0, v,

Green’s theorem, the weak formulation can be rewritten as:
)

po doW dod . / Po —dgo —
s U VW -VodQ = | —Svg - W —= WVe¢-ndS, (3.1
/Q 2t dt P ¢ s e (Mg ) e ¢-nds, (3.1)

where the integral on the right hand side is to be evaluated along each of the surfaces:
S =5,+S5,+95,. Formulas and are used on the source and impedance
surfaces, respectively, and the integral vanishes on the hard wall. A perfectly matched
transformation (Section is used on the non-reflecting boundary, I'.

3.1.3 Discretisation

The continuous domain is divided into non-overlapping elements. The average spacing
between the nodes of the elements determines the element size, h. The resulting mesh
of elements, which approximates the problem geometry, may be either structured or
unstructured. When modelling complex geometries unstructured meshes are preferred,
however, in some cases structured meshes may be more suitable, like for example when a
perfectly matched layer is used [29]. In this work both types of mesh will be considered,
although more attention will be given to unstructured meshes. Meshes may be either
conformal, i.e. nodes, edges, and faces are perfectly matched, or they may be non-
conformal, in which case hanging nodes or overlapping zones may be present. In this
study, we restrict ourselves to conformal meshes only.

Now that the problem geometry has been discretised, the Galerkin method is em-
ployed to define the trial and test functions. We write the discrete functions as:
on = Z?Zl ajp; and Wy, = ¢;, for ¢ = 1,...,n, where the subscript h indicates a
discrete variable, n is the number of unknown coefficients a, ¢ are the global shape
functions, and the briefly introduced ‘hat’ notation has been dropped. A global matrix

is constructed, with entries defined by:

dow; dow; o _
Ayj =/ —&3 0% 055 + poVoi - V; th—/ popiVe;-n dS.p,
Q, % dt dt San
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as can a source vector:
. Po __doyp; —
fi= — v 0| Pi—— |+ popiVe; -n dSg,.
Ssh CO dt

This can be written more succinctly as the linear system: Aa = f. The system is
solved to obtain the unknown coefficient vector a = [a1, ..., a,|’ using a direct method,
in this case LU factorisation. Note that that the perfectly matched transformation is
not explicitly included in the formulation given here.

Certain requirements must be met by the method if the numerical solution is to
converge towards an analytic solution. To begin with, we note that a weak variational
formulation will have derivatives ranging from zeroth order up to some maximum order.
The first requirement is completeness: within each element the shape functions must
have an order of continuity equivalent to the highest order derivative present in the
weak formulation. Second, the elements must be compatible: at element interfaces the
order of continuity of the shape functions must be no less than one order below the
highest order derivative [80]. Lastly, the method must have stability. This requires
that the problem is well-posed, meaning that it has a unique solution that depends
continuously on the input parameters.

A model that is both complete and compatible is said to be consistent. For a

consistent model as h — 0, ¢, — ¢.

3.1.4 Reference Elements

An integral must be computed over each element. Numerical quadrature is used to
approximate the integrals. To facilitate the use of quadrature, reference elements are
used. Coordinate mapping is used to transform the physical space, (z,y), to a reference
space, (1, (); this transformation is depicted in Figure

The Jacobian used in the coordinate mapping is given by:

dx Oz

on  O¢
J =

9y 9y

on  o¢

The integral over the physical space, €2, is related to the reference space, Q, by:
Jo(-+)dQ = [5(--+)|J|dS, where the details of the integrand have been omitted
(represented by the ellipses), and |J| is the determinant of the Jacobian. A function

24



3.1 The Standard Method

Figure 3.2: Coordinate mapping from physical space to reference space.

present in the transformed weak formulation is given by: f(z,y) = f(n,¢), and its
gradient is given by: Vf(z,y) =J!- @f(n, Q).
Gauss-Legendre quadrature is used to evaluate the integral over the reference ele-
ment, using a finite sum: .
[ 9w 4t =" wign).
& i=1
where ¢ is a function, w are weighting coefficients, and n; are the locations of evaluation

points. The numerical quadrature is exact for functions of polynomial order P = 2n—1.

3.1.5 Shape Functions

The global shape functions are defined as:

s ={y i
where 7, j are nodes within a given mesh. The global functions are composed of element
shape functions, 1, which are defined on each element that supports a specific global
function.

The shape functions can be taken from various members of the set of mathematical
functions. Some popular choices are Bessel, exponential, trigonometric, or polynomial
functions. The use of polynomials can facilitate faster frequency sweeps; more will be
said of this in Section[3.2.2] As such, only polynomial shape functions will be considered
in this work. There are many different kinds of polynomial functions to choose from,
like for example Chebyshev, Lagrange, or Legendre polynomials.

As an example, we will briefly introduce the linear triangular Lagrange shape func-

tions. There are three shape functions associated with the linear triangular functions,
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00 00 00
¢ n ¢ n ¢ n

Figure 3.3: The three shape functions associated with linear triangular elements.

and these are given by:

¢1:1—77—Ca w2:77a and ¢3:C (32)

These functions are defined on the reference element shown in Figure[3.2] The functions
are depicted in Figure The shape functions are unity at one vertex, and have zero
value at the remaining vertices. This property ensures interelement continuity.

A discussion of the key properties of shape functions follows.

3.1.5.1 Continuity

Let us consider the continuity requirements of the problem to be modelled. To satisfy
the weak formulation of the problem, the shape functions must be C“~! continuous
between the elements, and C¢ differentiable inside the elements, where G is the highest
order derivative in the weak formulation [80].

For a second order differential equation, like the convected wave equation, the func-
tions used must be C° continuous between the elements. This implies that the solution
field is constructed using a continuous function whose first derivative is discontinuous
at element interfaces. Some structural mechanics models require C' continuity, in that
case the shape function and its first derivative must be continuous, and its second
derivative may be discontinuous between the elements.

Most of the methods considered in this work are equipped with C° continuity, but
note that we will also consider the Hermite method (to be introduced in Section

which ensures C'! continuity.
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Figure 3.4: Modal shape functions on a one-dimensional element with two nodes. The
shape function which is non-zero on the left node is given by the dashed blue line, and
the function which is non-zero on the right node is shown using the dashed red line. Four

bubble functions are shown.

3.1.5.2 Higher Order Modal Expansion

The accuracy of the finite element solution can be improved either by increasing the
number of elements used, this is referred to as h-refinement, or by increasing the poly-
nomial order of the shape functions, which is referred to as P-refinement. Increasing the
polynomial order of the shape functions can be carried out in two ways. One method is
to increase the number of nodes in the elements, higher order shape functions are then
introduced using these nodes. These kinds of shape functions are called nodal, and an
example is the high order Lagrange functions. The other method is to use a modal
expansion of the nodes which are already available; such functions are called modal.
The shape functions which will be investigated in this work are of the modal type.

In one dimension , as the interpolation order P is increased, i.e. for P > 2, bubble
functions are added to the approximation space. Bubble functions are zero at both
nodes, but have non-zero amplitudes inside the element. This property of the shape
functions is demonstrated in Figure which shows the one-dimensional modal Bern-
stein shape functions. In this case, the polynomial order of the shape functions is 5, and

thus two nodal functions and four bubble functions are found. A higher order shape
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Figure 3.5: Degrees of freedom of a four-noded tetrahedral element with modal shape

functions. Node functions o, edge functions e, face functions o.

function, given in terms of a modal expansion, can be written as:

P
Y(n) = arhr(n) + D aitbi(n) + apr1vpia(n)
i—2

where a,, is the coefficient multiplied by function ), and ¢ = (1 —n)/2 and ¥py1 =
(14mn)/2 are the linear nodal functions attached to the first and last node, respectively.
1; are bubble functions, where ;(n) = 0 for n = £1.

In two dimensions, node, edge and face (or 2D bubble) functions are found. For
three-dimensional elements, node, edge, face and volume (3D bubble) functions are
found. As an example, consider Figure [3.5] which depicts the degrees of freedom
different types of functions on a tetrahedral element with four nodes. Node functions
are zero on all nodes but one, edge functions are zero on all other edges, face functions
are zero on all other faces, and bubble functions vary only within the element. As will
be seen in Section bubble functions can be removed from the final system to be

solved without loss of accuracy, but with the added benefit of improved conditioning

(e.g. [97]).
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3.1.5.3 Hierarchic Functions

A disadvantage of using high order nodal functions is the need to construct a new
set of shape functions when the polynomial order is increased. This has implications
for P-refinement; increasing the order will require the construction of a new mesh. If
instead modal shape functions are used, the polynomial order can be increased without
re-meshing. Although this is clearly an improvement in terms of efficiency, it still
requires the construction of new element matrices when the order is changed. If modal
shape functions which do not change with the order are used instead, further savings
can be made; as higher order functions can be included in the existing approximation
space without changing lower order shape functions. Such shape functions are called
hierarchic.

This property is ideal for P-adaptive schemes, in which case a local estimator could
be used to determine the optimum interpolation order required in different regions of a
problem, and the necessary shape functions sets could then be appended to the element
matrices. All of the functions, up to the highest order required, could then be stored
and accessed as needed by the global system assembly procedure. This property enables
a very efficient implementation of the finite element method. In this work, the Lobatto

method (to be introduced in Section makes use hierarchic functions.

3.1.5.4 Static Condensation

As the polynomial order of the shape functions is increased, the number of bubble
functions increases. Bubble functions only contribute to the solution locally - they have
no connectivity with neighbouring elements. The bubble functions can be removed from
the final system using a technique called static condensation, which involves removal of
the internal degrees of freedom from the set of global degrees of freedom, at the element
level. Making use of this technique means that only the degrees of freedom which are
shared between elements are included in the final global matrix. The solution values
interior to the elements can be recovered during post-processing.

Using condensation has two advantages. Firstly, it reduces the size of the final sys-
tem, thus reducing the computational cost of solving the system. Secondly, it improves

the conditioning of the system, particularly for higher order polynomial approximations
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[137]. It is worth noting that this process does not affect the final solution. Condensa-
tion is performed by decomposing the element matrix and the unknown solutions into

exterior and interior components, as follows:

Aee Aei {ae}_ Bee 0 { a,e}

A Ay ai 0 0 ai
where (-). are the external degrees of freedom, and (-); are the internal degrees of
freedom. This can be simplified to give Bee = Ace — AeiAi_ilAie, the condensed matrix,
where Ag. — AeiAi_ilAi6 is the Schur complement. The final system to be solved is

then Beca. = f. A more rigorous description of the condensation technique can be

found in Reference [150].

3.2 Review of Advanced Methods for Wave Propagation

Problems

When used for wave problems, the standard finite element method becomes inaccurate
at high frequencies due to dispersion error. The error occurs due to a phase shift
between the numeric and exact solutions. The error is cumulative, and results in what
is referred to as pollution error. The only way to tackle this when using standard
finite elements is to reduce the element size, but this can become very computationally
expensive. To remedy this drawback, advanced methods that aim to improve the
accuracy and efficiency of the finite element method have been developed. In this
section, the advanced methods for wave problems are reviewed, and the requirements

of the candidate methods considered in this work are stated.

3.2.1 Advanced Methods

Since the first textbook on the finite element method (FEM) was published by Zienkiewicz
& Cheung [160], many variations of the method have been investigated.

Rose [130] proposed the weak element method for the construction of smooth so-
lutions of elliptic differential equations. The method makes use of elements in which
enrichment functions are added to the local shape functions. Interelement continuity is
enforced by imposing continuity conditions based on the average value of local approx-

imate solutions and their normal derivatives. Goldstein [65] used this method to solve
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the Helmholtz equation. He used a sum of exponentials to approximate the solution
within each element.

Hughes et al. [84] introduced a least squares approach, called the Galerkin Least
Squares (GLS) method, for the solution of advective-diffusive equations. The method
involves adding residuals from the strong form of the boundary value problem to
the variational form. The method is closely related to the streamline upwind Petrov
Galerkin method proposed by Brooks & Hughes [35], but it is more general. In the
same year, and in the same vein, Franca & Carmo [59] proposed the Galerkin Gradient
Least Squares (GGLS) method. In this method the term added to the standard vari-
ational formulation is obtained from a least squares form of the gradient of the strong
form of the problem. They applied the method to a singular diffusion problem, and
demonstrated the method’s stability and accuracy. Harari & Hughes [71] compared the
standard Galerkin, the GLS, and the GGLS methods, when used to solve the Helmholtz
equation on exterior domains. They found the GLS method to be more efficient than
the Galerkin and GGLS methods. Monk & Wang [102] also applied the GLS method
to the Helmholtz equation. They used plane waves and Bessel functions as shape func-
tions to prove convergence theorems for the method, and suggest that it may be more
efficient than standard FEM.

Hughes [82] presented a variational multiscale approach, which requires dividing the
problem into large and small (subgrid) scales. Large scales are solved using standard
elements, while the subgrid scales are accounted for by using the residual of the large
resolvable scales. The method makes use of bubble functions to approximate the subgrid
scales. The use of bubble functions enables static condensation. Hughes employed the
method for the solution of the Helmholtz equation. Hughes et al. [83] presented
a multiscale method which makes use of a hierarchic basis for approximation of the
subgrid scales. The multiscale method is equivalent to the residual-free bubbles method
proposed by Franca et al. [60], which uses finite elements enriched with bubble functions
to solve the Helmholtz equation. They showed that the enriched method outperforms
the standard FEM and the GLS method.

Després [45] proposed an Ultra Weak Variational Formulation (UWVF'). The method
uses discontinuous shape functions, with continuity between elements being enforced
through impedance boundary conditions. The system is solved using an iterative al-

gorithm. Cessenat & Després [38] employed the UWVF for solution of the Helmholtz
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equation. They made use of a plane wave basis with equally spaced angles of propaga-
tion, and demonstrated that the UWVF converges faster than standard FEM. Huttunen
et al. [85, [86] also considered the use of a plane wave basis, but found conditioning
problems for coarse elements and unstructured grids. They presented an improved basis
with better conditioning, and showed that the UWVF enables the solution of problems
at higher frequencies.

A Partition of Unity Finite Element Method (PUFEM) was introduced by Melenk
& Babuska [98]. This method uses partition of unity functions, to which enrichment
functions are appended to produce new approximation functions. The partition of unity
functions ensure interelement continuity, and the enrichment functions are tailored to
provide improved local approximations. Generalized FEM (GFEM) is an extension of
the PUFEM, in which only the fine scales are solved using enrichment. Strouboulis et al.
[140] applied this method to the Laplace operator, and used enrichment functions which
contained a priori information of the problem to be solved (i.e. functions obtained from
an asymptotic expansion of the exact solution). They identified a linear dependency
issue in their interpolation functions. An advantage of the PUFEM and the GFEM
is that both methods can be easily implemented into existing standard FEM codes,
without the need for changing the underlying structure of the solver.

A Discontinuous Enrichment Method (DEM) was proposed by Farhat et al. [55].
The standard FEM is enriched by the addition of solutions to the differential equation
of the problem being solved to the standard polynomial functions. The enrichment
functions represent the fine scales of the problem. Interelement continuity is enforced
through the use of Lagrange multipliers, and static condensation can be applied at an
element level prior to assembly. This method was used to solve the Helmholtz equation,
using plane wave enrichment functions. Arnold et al. [II] presented an analysis of
the various versions of the Discontinuous Galerkin Method (DGM), which was first
proposed by Reed & Hill [126]. This method uses discontinuous shape functions, and
continuity of the solution at the element boundaries is weakly enforced through the
variational formulation. The DGM allows for solution discontinuities between elements
and lends itself easily to hP-adaptivity, which is a combination of A-refinement and
P-refinement for optimal performance.

Another advanced FEM is the spectral element method, which makes use of high
order functions. The method was first proposed by Patera [120], who used it for the so-
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lution of the incompressible Navier-Stokes equations. Stanescu et al. [139] have applied
the method to a turbofan engine inlet problem, using quadrilateral spectral elements
based on Chebyshev polynomials, and an iterative solver. Bao et al. [22] used a local
spectral method, the Discrete Singular Convolution algorithm, to solve the Helmholtz
equation. They investigated the pollution effect, and demonstrated that the method is
a dispersion vanishing scheme. They found that the spectral element method is efficient
and accurate when used to solve the Helmholtz equation for high wavenumbers. Unfor-
tunately, the method requires the discretisation of the elements into a set of quadrature
points, which means boundary curves might not be properly represented by boundary
elements [139]. This property complicates the use of commercial meshing codes, as a
quadrature point mesh generator is required.

The spectral element method makes use of elements with interior nodes, a differ-
ent approach is to construct higher order interpolation functions on elements without
interior nodes. Dey et al. [46] used higher-order finite elements with a hierarchic poly-
nomial basis. Their method uses blending functions to ensure global continuity of the
interpolated field variable. The method is similar to the PUFEM in that the shape
functions contain partition of unity functions dedicated to interelement continuity, and
a set of functions which can be varied to modify the order of approximation. They
demonstrated the ability of the higher-order approximations to control the pollution
error in 3D. Listerud & Eversman [93] also made use of higher-order methods to reduce
the nodal density of potential theory simulations of exterior acoustic problems. They
considered both fan intake and exhaust problems, for the latter they used a penalty
method first proposed by Eversman & Okunbor [51]. They compared cubic serendipity
elements (elements without interior nodes) to quadratic elements, and found the cubic
elements more efficient; specifically, at the post-processing phase in which the acoustic

pressure is retrieved from the velocity potential.
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3.2.2 Requirements of Candidate Methods

For a method to be considered in this work it must satisfy three requirements.

1. For each source frequency considered a new linear system must be assembled
and solved (for each cut-on mode at a certain frequency only a new right-had
side must be assembled). A significant computational saving can be made if the
shape functions are independent of frequency. Then the element matrices can
be constructed and stored. For each frequency the pre-computed matrices are
recalled, and the linear system is built and solved. The advantage is that the
element matrices need only to be computed once, thus reducing solution times.
As we are interested in high order methods, which can be increasingly costly
to construct (with increasing order), faster frequency sweeps can vastly improve
efficiency. To ensure that the element matrices are frequency independent, we will
consider only polynomial shape functions. This requirement means that methods
which make use of local solutions, like for example those with a plane wave basis,

will not be considered.

2. The finite element method can be optimised through the combination of mesh
and polynomial order refinement. In regions of significant geometrical complexity,
mesh refinement must be relied upon, but in regions where description of the ge-
ometry is not important polynomial order refinement is more efficient. Thus, the
second requirement is that the method must lend itself easily to hP adaptivity.
Methods which make use of interelement nodes, e.g. high order Lagrange meth-
ods, will be rejected since P-refinement would require mesh regeneration, which
would incur additional expense. Instead, we will consider only methods which
make use of modal expansion (Section for the construction of shape func-

tions in which case there is no need for mesh regeneration.
3. Lastly, the method must be easy to include in an existing code.

Using this list of requirements, four candidate methods have been identified. These
are: a partition of unity method with a polynomial basis, and the use of a Bernstein
basis, a Hermite basis, and a Lobatto basis. Each method will now be introduced, and

its strengths and/or weaknesses will be identified.
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3.3 Partition of Unity Method

The partition of unity method permits the construction of a conforming space from any
local approximation space, and thus separating the issues of interelement continuity,
and of locally approximating a smooth function using polynomials. By way of enrich-
ment functions, the local approximation order can be varied according to the problem
requirements without the need for mesh refinement. The choice of enrichment functions
is problem dependent. These can be used to include a priori knowledge of the local so-
lution behaviour, e.g. the use of plane wave enrichment for wave problems. The choice
of enrichment function will ultimately determine the properties of the resulting global
matrix, i.e. the cost of construction and the system condition number. Conditioning
is dependent on the resulting shape functions [16].

Melenk & Babuska [98], considered generalised harmonic functions and plane waves
as enrichment functions for the PUFEM. They used this method to solve the Helmholtz,
Laplace, and elasticity equations. The PUFEM has since gained much popularity
in computational modelling research, e.g. Bacuta et al. [19] used PUFEM on non-
matching grids for the solution of a Stokes problem, Bacuta & Sun [20] used PUFEM
and overlapping domains to solve the Poisson equation, and Kumar et al. [90] used the
method to solve the stationary Fokker-Planck equation.

The PUFEM is often used to model structural mechanics problems. Oden et al.
[111] used hierarchic enrichment functions to solve a linear elasticity problem subject
to a corner singularity. In terms of P-adaptivity, they found the method to be quite
versatile. Taylor et al. [144] also used hierarchic enrichment functions, and applied the
method to a linear elasticity problem. They investigated the stability of the resulting
system, and found that their system had an excess of zero eigenvalues. Duarte et al.
[49] solved elasticity problems in 3D using the PUFEM.

The method has also been used to tackle wave propagation problems. Laghrouche
et al. [91] solved the Helmholtz equation using plane waves as enrichment functions.
The number of plane waves, and their angles of incidence, at each node were varied.
They showed that the PUFEM could be used to solve high frequency problems more
efficiently than using the standard FEM. Astley & Gamallo [I3], [63] used plane wave
enrichment functions to solve the convected wave equation for flow problems, in the

context of noise prediction methods for aircraft engines. Huttunen et al. [85] compared
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the PUFEM, with plane wave enrichments, to an ultra weak variational formulation.
They considered the singular problem of an L-shaped domain, and found that both
methods were highly accurate, but ill-conditioned. Mohamed et al. [I00] presented
an investigation of ‘gq-adaptivity’, in which the number of plane wave enrichments was
varied according to element size. They employed this method to solve the Helmholtz
equation, but found it ill-conditioned.

To introduce the method, we consider a domain €2 covered with elements €,. A set

of functions form a partition of unity on €. if:
doxim=1, VneQ..
i

The approximated solution on a single element is written as:

n P )
b= ZX@'VZ'(J)ai,j ;

i=1 j=1
where e identifies an element, ¢ identifies the nodes, V are the enrichment functions,
j is the enrichment function order, and a are the unknown coefficients. The shape

functions are given by wl(j ) = XiVi(j ),

3.3.1 Polynomial Partition of Unity Method

In this work, we consider the use of polynomial enrichment functions only, as this
relieves the dependence on frequency of the elementary matrices, and requires fewer
quadrature points than plane wave enrichment. Han & Liu [70] presented a brief
overview of the Polynomial Partition of Unity Method (P-PUM). Rajendran & Zhang
[122] proposed a quadrilateral element based on P-PUM for the solution of linear elastic
problems. Their enrichment functions are the so-called point interpolation method
polynomials [94]. Hazard & Bouillard [73] demonstrated the efficiency of P-PUM for
the modelling of viscoelastic sandwich plates, using polynomial enrichment functions.
Oh et al. [114] used polynomial enrichment to solve second order and fourth order
differential equations.

The only group to have published an investigation of the performance of the P-
PUM when applied to convected acoustic problems is Mertens et al. [99]. They solved
the convected Helmholtz equation for the velocity potential in the frequency domain.

In some circumstances, they found the P-PUM to be more efficient than the standard
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Figure 3.6: Reference elements for the polynomial partition of unity method. From left

to right: linear, triangular, and quadrilateral.

FEM, and claimed that the method avoided the high condition numbers generally
associated with conventional finite elements. We now leave the general description of
the method to provide more specific details of the method used in this work.

The linear Lagrange functions form a partition of unity; in 1D they are:

1—
Xlzizn, and X2

_1+77
=—

on the interval [-1, 1] (see Figure[3.6). The polynomial enrichment functions are taken

from the space:

‘/i: {17 (77_771')7 (77_771')27 e (77—771‘)1371} )

where 7; are the coordinates of the nodes. For example, using an enrichment order of

3 gives the approximated solution:

¢e = 'l;baw (33)

where the shape functions are given by the combination of the partition of unity func-

tions and the enrichment functions:

1 1 n+1 (n+1)% 0 0 0
= —[1-9 1
Y=gl enlly Ty 0 1 -1 (-1
and the unknown coeflicients are:
T
a=la1 a2 aiz a1 a2 ass

The complete one dimensional approximation functions, up to order 3, are presented

in Figure
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Figure 3.7: One-dimensional polynomial partition of unity functions, up to order 3. Top:
shape functions attached to node 1, bottom: shape functions attached to node 2.

3.3.2 Two-Dimensional Shape functions

In 2D, the linear Lagrange functions form a partition of unity. The quadrilateral shape
functions are constructed using the tensor product of the 1D functions: @bfj ) (n)@z/)gj) (€).
The partition of unity functions and higher order functions for quadrilateral elements
(Q4) are given in Figure

For triangular elements (T3) the partition of unity functions are the linear Lagrange
functions (3.2). The 2D enrichment functions are taken from Pascal’s triangle; see
Figure [3.90 The triangular shape functions are constructed by following the same
technique used in equation .

3.3.3 Linear Dependency

Decomposition of the 1D shape functions, 1) = ¥V into a polynomial space and
a coefficient matrix, for P = 3, gives:

1 1 1 1 -1 1
1 0 1 1 0 -1

2 .3
A 1 I

o 0 -1 0 0 1

»® = (3.4)

N | —

Let us take a moment to analyse the resulting coefficient matrix on the far right. If

column 5 is multiplied by -1 we retrieve column 2, and if column 6 is added to column
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Figure 3.8: Two-dimensional polynomial partition of unity functions on quadrilateral
elements. Top row: partition of unity / first order functions, remaining rows: examples of

the second order functions.

3 we obtain column 2 multiplied by 2. The matrix in equation contains linear
dependencies.

Melenk & Babuska [98] first identified the linear dependency problem. For 1D prob-
lems, they suggest changing the partition of unity functions at the boundaries in order
to remove the linear dependency problem. Taylor et al. [144] carried out patch tests
to determine the stability of the system. They considered patches with varying num-
bers of elements, and evaluated the number of zero eigenvalues in each of the resulting
systems, but found an excess of zero eigenvalues. They eliminated the first order terms
from the local approximation (enrichment) space and in this way obtained a system
which was not rank deficient. Oden et al. [I11I] removed the enrichment functions at

the boundaries, and suggested that components common to both the partition of unity
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Figure 3.9: Demonstration of the two-dimensional polynomial partition of unity func-

tions, using Pascal’s triangle. n, =n —n; and (. = (¢ — (.

space and the enrichment space should be removed from the system.

Tian et al. [I48] have shown that the enrichment functions must not be used at
boundary nodes. Oh et al. [115] made use of flat top partition of unity functions, which
resulted in a lower condition number for the global matrix. Oh et al. [I14] proved the
relation between linear independence and the condition number of the global matrix,
while An et al. [9] suggested that the linear dependency problem is reflected in the rank
deficiency of the global approximation space (as was shown in the coefficient matrix
given in Definition [3.4)).

In conclusion, according to the literature, either enrichment must not be used at
the boundaries, or the boundaries should be treated in a manner which avoids linear
dependency issues, see for example the work carried out by Cai et al. [36]. The
former approach has been adopted in this work. When using one-dimensional elements
this approach improves the method, although the condition number is still very high
for higher orders, and it rises for increasingly smaller elements as the method fails
to differentiate between different portions of the same wave. In two dimensions, the
approach remedies the linear dependency issue for unstructured meshes, but not for
structured meshes. This will be shown in more detail in the next chapter, in which the

performance of all of the methods described here will be compared.
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3.4 Bernstein Finite Elements

The Bernstein polynomial basis was developed by Sergei Natanovich Bernstein, and
was first published in 1912 [31] as a proof of the Weierstrass theorem (approximation
theorem). The basis then sunk into obscurity until the 1960’s, when it was resurrected
by De Casteljau & Bezier [57]. They used it to construct complex shapes for Citroén,
using digital computers. Since then the basis has flourished among the computer aided
design community. Recently, the basis has been considered for the construction of
interpolation functions, in the context of computer modelling of continuum mechanics,
e.g. [64].

Zumbusch [163] compared various polynomial shape functions, for solution of the
Laplace operator (V2), and showed that using Bernstein polynomials resulted in a
lower system condition number than using Lagrange polynomials. Roth [I31] used the
Bernstein basis to generate C'' continuous shape functions, and subsequently made
facial surgery simulations using finite elements with Bernstein-Bezier shape functions.
He found that accurate results could be obtained using these functions, but concluded
that for facial surgery simulations h-refinement using quadratic elements is preferable
in terms of computational costs.

One significant advantage of using this basis is that Bernstein polynomials are de-
fined for most commonly used element types. For example, Farouki et al. [57] presented
a scheme used to construct orthogonal Bernstein polynomials on triangular elements,
which could be generalised for the construction of orthogonal bases on simplexes. More
recently, Farouki [56] has published a centennial retrospective review of the Bernstein
polynomial basis, which provides a wealth of information on the subject.

To date, it seems that the only published work in which the Bernstein basis is
used to solve an acoustic problem is provided by Peterson et al. [12I]. They inves-
tigated the use of Bernstein polynomials as shape functions for the solution of the
standard Helmholtz equation for interior acoustic simulations, and investigated their
performance in an L-shaped domain. They found the polynomials to be the most effi-
cient in their comparison, for the problems investigated, when using an iterative solver,
and specifically at higher frequencies. In 3D simulations they found that using the
Bernstein polynomials instead of Lagrange polynomials significantly reduced the over-

all computational costs. They concluded that higher-order shape functions can be used
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Figure 3.10: Reference elements for the Bernstein functions. From left to right: linear,

triangular, and quadrilateral.
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Figure 3.11: One-dimensional Bernstein functions of polynomial order 1 (top left) to 5,
and 10 (bottom right).

to effectively control the pollution error and can be used to provide more accurate and
efficient simulations.

Polynomials in Bernstein form are non-negative on the interval [0 , 1] (we refer the
reader to Figure for the reference element used). In one dimension the polynomials
are given by:

V() " o

m :mnm(l—ﬁ) ;

where m = 1,2,...,P + 1 and P is the highest polynomial order; there are P + 1
polynomials. The 1D Bernstein shape functions, for polynomial orders P = 1 to 5, and

10, are shown in Figure [3.11
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Figure 3.12: Two-dimensional Bernstein functions of order 3, on Quadrilateral elements.

Top row: first order functions, remaining rows: second order functions.

For P =1 the linear Lagrange functions are recovered, but it can be seen that all
of the shape functions change as the polynomial order changes, i.e. the functions are
not hierarchic. The result of this that as the polynomial order is increased, which is

the case when P-refinement is used, the elementary matrices need to be re-computed.

3.4.1 Higher-Dimensional Shape Functions

Higher-dimensional shape functions are quite easy to construct. The hexahedral el-
ement (Q8) shape functions are given by the tensor product of the one-dimensional
shape functions: 2 (n) ® ¥ (¢) ® ¥ (€). To retrieve the Q4 shape functions the ¢-
dimension is neglected. The Q4 shape functions for order P = 3 are shown in Figure

.12
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The different types of Q4 functions can be clearly seen in the figure: the top row
shows the vertex functions, the second and third rows show the edge functions, and the
face (2D-bubble) functions can be seen in the last row.

The tetrahedral element (T4) shape functions are given by:

KN

(. ¢, €) = vind ¢he,

where v = 1 —n — ( — & To obtain the 2D basis (T3 elements) the £-dimension is
omitted. The triangular (and tetrahedral) shape functions also exhibit the different

types of functions, i.e. vertex, edge, and face (and, in three dimensions, volume).

3.5 Hermite Finite Elements

Hermite polynomials are named after the French mathematician Charles Hermite. C!
continuity can be achieved when using Hermite polynomials as shape functions, i.e.
not only are the approximated solutions globally continuous, but so are the first order
derivatives of the solutions (see Section. Due to this property it is more common
to find Hermite shape functions employed for the solution of biharmonic operators (A?)
than for the solution of the Laplace operator (A).

Augarde [14] showed that Hermite polynomials could be constructed from Lagrange
polynomials. Solin & Segeth [I53] proposed hierarchic Hermite polynomials for trian-
gular and quadrilateral elements. However, they found that the resulting triangular
element face functions have poor conditioning properties. Li et al. [92] considered the
conditioning properties of Hermite finite elements used for the solution of biharmonic
equations. They found that, for small elements, the condition number of the system
was much greater than when used for the solution of the Poisson equation.

It is possible to construct 1D shape functions of variable order in either a nodal
or a modal hierarchic fashion. Solin & Segeth have designed hierarchic Hermite shape
functions for 1D elements [I52], and their hierarchic 1D Hermite bubble functions, up
to order 12, are used in this work. They also provide a hierarchic basis for triangular
and quadrilateral elements [I53]. However, they found the triangular elements to be
poorly conditioned.

At the time of writing, a variable-order set of shape functions for simplex elements

is not readily available, although there are sets of functions available for specific orders.
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Figure 3.13: Reference elements for the Hermite functions. From left to right: linear,

triangular, and quadrilateral.
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Figure 3.14: One-dimensional Hermite functions of polynomial order 3 (top row), and

their gradients (bottom row).

Shi & Liang [138] developed a quadratic Hermite triangular element. Chien & Shih
[41] used cubic quadrilateral elements to solve the von Kérmén equations. Tabata &
Ueda [141] proposed a family of tetrahedral shape functions which could be controlled
to ‘morph’ from Lagrange elements to Hermite elements. They used these to solve
Poisson problems. From the literature it appears that constructing well conditioned
variable order tetrahedral elements may not be a simple task.

The Hermite basis has been applied to fluid dynamics and acoustic problems. Holde-
man [76] used Hermite elements to solve incompressible flow problems, and Agut et al.
[3] used them to solve the wave equation. Apello et al. [10] used a hybrid discontinuous
Galerkin - Hermite method to solve aeroacoustic problems in the time domain. They
compared the method to a finite difference method, and found the hybrid method to

be more efficient.
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3. FINITE ELEMENT METHODS FOR WAVE PROBLEMS

Let the Hermite shape functions be denoted by ¢ where n is the Hermite order,

mi )
m is the order of the derivative, and ¢ is the node of interest. The polynomial order of
the functions are given by P = n + 2, it follows that the lowest order Hermite shape
functions are cubic. The approximated solution and its first derivative are defined at
the nodes. The shape functions are labelled 1/1(()? and wﬁ) at the first node, and 1/1(%)
and @ZJS) at the second node.

The finite element solution can be written as:

1 1 1 1
de(n) = ¥ (Maot + ¥} (Mars + 98 (Maee + vy (Maz,
where the 1D Hermite shape functions, on the interval [—1,1] (see Figure for the

reference element), are given by:

do) =3 = dn+qn®

I U U Ul
%2 = % + %77 41177 5

g) =3 -+ + gt

These shape functions are given in Figure [3.14] It can be seen that the shape
functions are continuous, as are their derivatives. This illustrates the C'' continuity
property of the Hermite shape functions. Solin and Segeth have designed hierarchic
Hermite shape functions for 1D elements [152]. Their hierarchic 1D Hermite bubble
functions, from order 5 to 12, are given in Appendix

3.5.1 Two-Dimensional Shape functions

The quadrilateral element has four nodes, and each node has four degrees of freedom

so that:
T

O¢i  0¢i D¢
on  oC  Ino¢ ’
where i = 1,2,3,4. The complete space with C! continuity is given by

o= ¢

P={n"¢";m=0,1,2,3; n=0,1,2,3} .

The quadrilateral shape functions are constructed by using the tensor product of the

1D shape functions. The approximated solution can be written as

B> (067087 ass + w10 s + 65wl g + 0 e -

=1 j=1
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Figure 3.15: Two-dimensional third-order Hermite functions on a quadrilateral element.

The quadrilateral shape functions are given in Figure As previously seen in the
Bernstein shape functions, we observe different types of functions, namely: vertex, edge,
and face. Note that the function gradients are smoother than those of the Bernstein
functions. Hexahedral shape functions can also be constructed using the tensor product
of the 1D functions, but they have not been used in this work.

The triangular functions are far more complex to define, and a detailed description
of the functions is not included in this section; for conciseness the triangular Hermite
shape functions are given in Appendix In the triangular element case each node
has 6 degrees of freedom, and the set of shape functions is fourth order convergent in

the L? error norm [47]. The approximated solution at each node is:

O 0di  O%¢; 0% 2 ]
on ¢  On? OmoC 02 ’

o= | ¢
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3. FINITE ELEMENT METHODS FOR WAVE PROBLEMS

where ¢ = 1,2,3. The behaviour of tetrahedral functions has not been investigated in

this work due to the lack of a robust construction method.

3.6 Lobatto Finite Elements

The Lobatto basis is obtained from the integrated Legendre polynomials, and can be
used to construct higher-order hierarchic functions, i.e. the higher-order function sets
contain sets of lower-order functions.

Thompson & Pinsky [147] compared the hierarchic Legendre basis, the hierarchic
Fourier basis, and the Lagrange basis for solution of the Helmholtz equation. They
found that the hierarchic basis outperforms the Lagrange basis by reducing the dis-
persion error. (They concluded that higher-order elements give greater phase accuracy
than lower-order elements for the same number of degrees of freedom.) Adjerid et al.
[1] described a new hierarchic basis for simplexes, and compared its conditioning prop-
erties to existing hierarchic bases. They found that hierarchic functions in multiple
dimensions suffer from poor conditioning caused by the interaction of face and volume
functions with themselves and with other functions. They reduced the coupling be-
tween the shape functions by orthogonalising the face functions, and showed that their
new basis exhibited an algebraically growing condition number (with increasing order)
for the Laplace operator. Solin & Vejchodsky [155] considered the conditioning of the
Lagrange functions, the Lobatto functions and generalised functions (based on eigen-
functions of the Laplace operator). Solin et al. [I56] used a modified Gram-Schmidt
procedure to construct an orthonormal basis for the bubble functions. They found this
new basis to be better conditioned than the Lobatto basis. It is this basis we consider
in this work.

The main advantage of using hierarchic functions is that they lend themselves eas-
ily to efficient hP adaptivity. Vos et al. [I51I] investigated the run times of various
combinations of A and P refinements to solve a system to a predefined accuracy. They
found that for elliptic operators with smooth solutions the mesh size should be kept
constant and the polynomial order increased. For non-smooth solutions (they used an
L-shaped domain with a corner singularity) they found that the order should be held
constant and mesh refinement should be used, but stated that using a high polynomial

order is optimal.
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Figure 3.16: Reference elements for the Lobatto functions. From left to right: linear,

triangular, and quadrilateral.

It is common to find investigations of higher order elements applied to the Helmholtz
operator, but of these (to the best of the author’s knowledge) only Petersen et al. [121]
have considered using Lobatto elements to solve acoustic problems. They solved the
Helmholtz equation for high wavenumbers, and demonstrated that the Bernstein basis
and Lobatto basis are more efficient than the Lagrange basis.

To derive the basis we begin with the Legendre polynomials:

2n —1 n—1
Ln(n) = ——nLn-1(n) - Ly—2(n),
where n =1,2,3,..., =1 <17 < 1 (see Figure for reference element), Lo(n) = 1 and

Li(n) = n. These polynomials have the orthogonality relation:

forn =m

1 _2
/ Lo (1) L) iy = {+

1 0 otherwise

Lobatto polynomials are based on modified integrated Legendre polynomials. The

nodal modes of the basis are given by:

1-— 1+

These shape functions are the linear Lagrange functions; they ensure interelement con-

tinuity. The internal modes, or 1D bubble functions, are given by

wnln) =/ 75 [ Laa(aq,

Note that v, (£1) = 0, which once again ensure that interelement continuity is main-

tained. A list of these polynomials, and more details of the basis, can be found in the
book by Solin [154]. The Lobatto 1D shape functions, up to polynomial order 9, are

shown in Figure [3.1
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Figure 3.17: One-dimensional Lobatto function, from polynomial order 1 (top left) to 9
(bottom right).

3.6.1 Higher-Dimensional Shape Functions

We consider the reference elements presented in Figure The quadrilateral and
hexahedral shape functions are constructed using the tensor product of the 1D polyno-
mials: 1;(n) ® ¥;(¢) ® ¥r(§). The 2D shape functions up to order 3 for quadrilateral
elements (Q4) are given in Figure Once again, different types of shape functions
can be identified as the polynomial order is increased, these functions are: vertex func-
tions, edge functions, and face functions. The vertex functions can be see in the top
row of Figure[3.18] edge functions can be seen in the second and third rows, and bubble
functions can be seen in the last row. The existence of face (or 2D-bubble) functions
implies that condensation can be applied to the system to be solved, which reduces the
computational cost of the method, as explained in Section

The triangular and tetrahedral shape functions are formulated in terms of affine
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Figure 3.18: Two-dimensional Lobatto functions of order 3 on Quadrilateral elements.

Top row: first order functions, remaining rows: second order functions.
coordinate transformation, and constructed from a tensorial type basis. The description

of these functions is quite lengthy, and the interested reader is referred to Reference

[154] where an extremely detailed description of the functions is given.
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3. FINITE ELEMENT METHODS FOR WAVE PROBLEMS

3.7 Chapter Summary

The standard finite element method has been introduced. A weak variational formu-
lation of the convected wave equation has been developed for a turbofan engine intake
noise problem. The most notable properties of the shape functions have been described
(continuity, high order modal expansion, hierarchy, and static condensation).

The advanced methods which have been developed to tackle high frequency prob-
lems have been reviewed, and the requirements of the candidate methods have been
stated; the shape functions must be based on polynomial functions, they must make
use of a high order modal expansion, and the candidate methods must be easy to im-
plement into an existing finite element code. Following the review of the literature, and
after taking the method requirements into account, four candidate methods have been
identified.

The polynomial partition of unity method comprises the addition of enrichment
functions to the approximation space. The method suffers from a linear dependency
issue, which has been discussed. The rank deficiency of a single one-dimensional element
has been demonstrated. The method has poor conditioning.

Shape functions for the Bernstein basis exist for most commonly used element types.
These functions exhibit good conditioning properties. The functions are modal, but
not hierarchic.

The Hermite basis exhibits C'! continuity and is well conditioned. However, its use
for variable order shape functions is not well established, and as a result interpolation
order refinement in multiple dimensions may not be possible for all commonly used
element types.

The Lobatto basis generates hierarchic functions, which lend themselves easily to a
combination of element (k) and polynomial order (P) adaptivity. Shape functions for

all commonly used element types are readily available.
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4

Assessment of High Order
Methods

In this chapter, the performances of the candidate high order methods are assessed.
Our aim is to find the most computationally efficient method. The efficiency of the
methods will be determined from comparisons of accuracy against various measures of
cost.

The chapter begins with a description of the test case that will be used. This will be
followed by a comment on the possible sources of numerical error, and definitions of the
various measures of performance to be used. Convergence results of one-dimensional
and two-dimensional solutions will be presented. Finally, the selected method - the use

of Lobatto shape functions - will be further analysed in two and three dimensions.

4.1 Preliminary Notions

In this section, we will introduce: the test case which will be used to assess the per-
formances of the candidate methods, the numerical errors of the finite element method

which may be encountered, and the measures of cost that will be used.

4.1.1 Test Case

The test case is a hard-walled duct, which carries a uniform axial flow, vg. The acoustic

field inside the duct is governed by the convected wave equation (2.13]). Two test case
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Figure 4.1: Test case geometries for the one-dimensional and two-dimensional analyses.
Left: 1D domain. Right: 2D duct.

geometries are given in Figure Note that a one-dimensional version of the test case
will also be used.

An acoustic plane wave is excited at the beginning of the duct, at z = 0. It
propagates from left to right, and passes through an anechoic boundary at the end of
the duct, at © = L. Characteristic boundary conditions (see Section are used
to specify the incoming wave and the anechoic termination. On the hard walls, at y = 0
and y = H, the gradient of the velocity potential is set to zero. For this version of the
test case, the duct length is L = 2 and the duct width is H = 1.

The problem is normalised by the density, sound speed, and the duct width to give
a non-dimensional angular frequency, w, and the non-dimensional Helmholtz number,
kH, where k is the effective wavenumber which includes the flow effect. For both the
one-dimensional and two-dimensional analyses, only an upstream flow case is consid-
ered. This flow direction is considered as the ‘worst case scenario’, because the upstream
flow increases the Helmholtz number (for a fixed frequency), thus this case requires the
highest number of elements per wavelength to adequately resolve the acoustic waves

(when compared to the no flow and the downstream flow cases).

4.1.2 Numerical Errors

Various types of error may be encountered when attempting to build a numerical model
of a physical problem. A very important error is the difference between the physical
problem and the theoretical model of it; however, this is beyond the scope of the
work presented here. We will concern ourselves only with the differences between the

theoretical model and the numerical one, i.e. with verifying the numerical method.
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Generally, the physical problem geometry is discretised using either linear or quadratic
elements. If the geometry is under-discretised erroneous solutions may be obtained; it
is important to respect the geometry description to ensure that the discretisation does
not introduce an error. Also, the properties of the medium (i.e. density, flow velocity,
and sound speed) may vary over the size of an element. Under-discretisation with re-
spect to the medium properties is another potential source of error that a mesh designer
should be aware of.

In exterior problems, the truncation of an infinite domain can introduce artificial
waves that are reflected back into the computational domain. In this chapter, charac-
teristic boundary conditions (see Section are used to ensure that acoustic waves
leave the computational domain without generating any significant reflections.

Errors may be caused by the improper use of numerical integration techniques,
machine precision, or conditioning problems. Obviously, care must be taken when
designing the model. Furthermore, the finite element method has inherent errors. For
convected acoustics problems the inherent aliasing, dispersion, and interpolation errors
can lead to solutions which deviate significantly from an exact solution to a given
problem.

In both the no flow and downstream flow cases, and when using quadratic or higher-
order shape functions, error peaks emerge in convergence plots (which are obtained by
comparing the numeric solution to an exact solution while reducing the element size).
The peaks are caused by aliasing error [I0§]. Internal numerical resonances along an
element create this aliasing effect. However, in practical applications, a mesh is often
designed to resolve the highest Helmholtz number, i.e. the upstream flow case, in which
case the aliasing error does not manifest itself (see Beriot et al. [28]). Taking this into
consideration, the dispersion and interpolation errors are of the most concern in this
work.

Discretisation of the geometry introduces a dependence of the numerical solution
on the element size. A consequence of this dependence is a drift of the numerical
phase speed relative to an exact solution. The difference between the phase speeds
results in dispersion error. The numerical phase error accumulates as a wave propagates
along a computational domain, resulting in a pollution effect. The pollution effect is

a function of the frequency, domain size, and the number of degrees of freedom, D,
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Figure 4.2: Demonstration of the pollution effect (accumulation of dispersion error):
M =0, w=2m, D =61. Analytic (—), numeric (---). Left: linear element solution, right:

quadratic element solution.

used to obtain the solution. The error introduced by the pollution effect converges like
O (k[kh/(2P))?") [RT].

An example of the pollution effect is given in Figure A one-dimensional finite
element model of a right going wave has been solved using linear and quadratic elements.
The number of elements used has been varied between the two solutions to ensure that
the same number of degrees of freedom are used in both cases. The pollution error is
clearly visible when linear elements are used. It can be seen that the dispersion error is
significantly reduced when quadratic elements are used. The pollution error becomes
increasingly more prohibitive as the frequency is increased; it can be eliminated in one
dimension, but Babuska & Sauter have shown that it is impossible to fully eliminate
the pollution error in higher dimensions [I8]. The dispersion properties of higher-
order elements have been investigated by Ainsworth [5]. Higher-order elements tackle
dispersion error more effectively than lower-order elements, as can be seen from the
order of magnitude estimate given above.

The interpolation error is the difference between the interpolating function and the
best approximation of the exact solution. This error dominates the convergence of the
numerical solution to the exact solution in the asymptotic range, and it is of the order
of O ([kh/(2P)]") [87]. The interpolation error is local (it does not accumulate) and it
can be controlled by keeping kh constant.
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4.1 Preliminary Notions

4.1.3 Measures of Performance

In this section, we introduce the measures of performance that will be used to evaluate
the efficiency of the higher order methods, which were introduced in Chapter
To measure the error incurred, the L? norm will be used. The relative L? error is

given, in percent, by:

_ 1/2
E= mOM, where £l 2 = </ |f|2da:) ,
[dallz2

0o = exp(—ika) is the exact solution, and ¢y, is the approximated (numerical) solution.

Since we are dealing with engineering problems, we will be interested in obtaining a
certain level of accuracy from the numerical model. A typical error level for engineering
problems is 1 %. The computational resources required to reach such an error level are
of specific interest in this work.

A possible measure of the computational resources required is the time taken to solve
the linear system Aa = f. However, this is not a reliable measure due to differences in
computer architectures and algorithm implementations. The time taken to solve will
not be considered as a dependable measure of performance in this work, although it
will be included for the sake of interest.

A better indicator of the computational resources required is the amount of com-
puter memory needed to store and factorise the sparse matrix. The sparsity of the
matrix is quantified by its number of non-zero entries. The number of non-zero entries
is directly correlated with the amount of memory needed to store the matrix. The
amount of memory needed to factorise the matrix is dependent on the number of non-
zero entries, but also (as will be shown) on the order of the (hierarchic) polynomials
used. The sparse matrix system is solved using LU factorisation, and the memory
needed represents the number of arithmetic operations used to factorise the matrix.

A measure of the stability of the linear system is the condition number. Given the
system Aa = f, the condition number quantifies the sensitivity of a to changes in A
or f [68]. The number is given by x = ||A|1 - ||[A™!||1, and in this work the number is

estimated using the 1-norm, given by:

n
1]y = max; > Ayl

=1

where A;; is the element in row ¢ and column j, and n is the matrix dimension.
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4. ASSESSMENT OF HIGH ORDER METHODS

The parameters varied in order to produce the comparisons which follow are the
frequency, element size, and polynomial order. The input frequency and element size
can be used to describe the resulting system in terms of the number of elements per
wavelength, Ny = 27/ (koh). This measure is a useful criteria for mesh design, i.e.
from the frequency, the required element size can be determined by assuming that a
constant number of elements per wavelength will maintain a certain level of accuracy
(note, however, that this assumption neglects pollution error).

When using higher order shape functions, more information is conveyed by using the
number of degrees of freedom per wavelength. The definitions of the number of degrees
of freedom per element that follow have been obtained from asymptotic analyses. For
the polynomial partition of unity shape functions the number of degrees of freedom in a
given 1D domain are (N +1)P, where N is the number of elements in the domain. The
length of the domain is given by Nh, and thus the number of degrees of freedom per
wavelength is given by (N +1)PA/(Nh), where A = 2w /k. Asymptotically, as N — oo,

we obtain:
27

Dy =~
AT kh

P. (4.1)

For the Bernstein and Lobatto shape functions the number of degrees of freedom in a
given 1D domain are NP + 1. The number of degrees of freedom per wavelength are
then: (NP + 1)\/(INh). Asymptotically this gives the same definition for the number
of degrees of freedom per wavelength as for the polynomial partition of unity functions.

For the Hermite shape functions the number of degrees of freedom are N(P — 1)
(bearing in mind that the first shape function in the set is of polynomial order 3). Thus,

in this case, the number of degrees of freedom per wavelength is given by:

2
Dy=—(P—-1).
A= (P-1)

4.2 One-Dimensional Analysis

Here, we compare the efficiency and condition number of the shape functions when they
are used to solve the convected wave problem in 1D. This is carried out by conducting

convergence tests, and an engineering accuracy (introduced in Section |4.1.3|) analysis.
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4.2 One-Dimensional Analysis

4.2.1 Convergence and Conditioning Properties

In this section we present the performances of the methods in one dimension. For each

method we will consider:
1. The L? error as a function of the number of degrees of freedom per wavelength,
2. The L? error as a function of the number of non-zero entries in the sparse matrix,

3. The condition number as a function of the number of degrees of freedom per

wavelength,
4. The L2 error as a function of the condition number.

Convergence plots for the upstream case (M = —0.6) are generated by holding the
frequency constant, at w = 20, while the element size and polynomial order are varied.
The polynomial order is varied from 1 to 10, except in the case of the Hermite shape
functions, for which only orders 3 to 10 are available. The number of degrees of freedom
per wavelength is varied from 1 to 100, by varying the element size.

In the convergence plots that follow, three distinct regions are generally visible: an
oscillatory region in which there is no convergence, a transition region controlled by
the dispersion error, and an asymptotic convergence region that is dependent on the

interpolation error [5].

4.2.1.1 Error Against Number of Degrees of Freedom per Wavelength

In this section we investigate the convergence properties of the methods. The L? error
as a function of the number of degrees of freedom per wavelength is shown in Figure
Asymptotically, the numerical solution should converge towards the exact solution
like O (D;(P“)) 24].

The polynomial partition of unity functions display poor convergence properties.
The error of the linear functions converges as expected, i.e. like O (D;Q), as does the
quadratic function (P = 2) error, which behaves like O (D;‘g). For polynomial orders
higher than 2 the numerical solution does not converge as expected. Furthermore, as
the order is increased the performance of the numerical solutions deteriorates, this is
evidenced by the occurrence of error peaks for order 5 and higher. Poor conditioning is

to blame for this behaviour; this will be demonstrated shortly. (Note that in an attempt
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Figure 4.3: The L? error as a function of the number of degrees of freedom per wavelength

(w = 20,M = —0.6). Top left: partition of unity, top right: Bernstein, bottom left:
Hermite, and bottom right: Lobatto.

to remedy the linear dependency issue the enrichment functions at the boundaries have
been removed from the global matrix.)
The Bernstein and Lobatto results are identical. Let us consider the decomposition

of their second order shape functions into a polynomial space and a coefficient matrix.

The Bernstein shape functions are given by:

1 0 0
v=[1n n*]|-2 0 2], (4.2)
1 1 =2

while the Lobatto shape functions are given by:

) 11
¢:§[1 n n*|-1 1 0 . (4.3)
0 0
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Figure 4.4: The L? error as a function of the number of non-zero entries (w = 20, M =

—0.6). Top left: partition of unity, top right: Bernstein, bottom left: Hermite, and bottom
right: Lobatto.

We see that, although the shape functions are different (see Sections and7 the
methods behave in the same way because their shape functions are linear combinations

of each other. Asymptotically, these shape functions produce numerical solutions which

converge as expected, i.e. like O <D;(P+1)). We note that when using order 10, for

example, an error level of 1 % is obtained using approximately 5 degrees of freedom per
wavelength, while in comparison more than 100 degrees of freedom would be needed to
reach the same level of error using linear elements.

The Hermite method error behaves like O (D;(PH)), and they also appear to

demonstrate the most efficient convergence. We take this opportunity to reiterate that

the lowest order Hermite polynomials are cubic - not linear.
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4.2.1.2 Error Against Number of Non-Zero Entries

Next, we evaluate the computational cost of each set of shape functions by comparing
the L? error to the number of non-zero entries in the global matrix. The results of this
analysis are given in Figure [4.4]

The polynomial partition of unity shape functions display the most expensive solu-
tions. As the order is increased error peaks begin to appear in the plots; this is caused
by the ill-conditioning of the global matrix.

Once again, the Bernstein and Lobatto results are identical. Both of the global stiff-
ness matrices generated by the methods require the same amount of storage memory,
and so the Bernstein and Lobatto shape functions have an identical error convergence
as a function of the number of non-zero entries.

Using this measure, the Hermite shape functions provide the most efficient solutions.

A general observation is that the convergence plots exhibit a ‘crossover region’,
below which (fewer non-zero entries) higher order functions are more expensive, but
above which increasingly higher orders provide more efficient solutions. In comparison
with the results presented in Figure [£.3] we note that changing the measure of cost
from the number of degrees of freedom per wavelength to the number of non-zero
entries reduces the perceived benefit of increasing the polynomial order. However,

asymptotically higher order shape functions still provide the most efficient solutions.

4.2.1.3 Condition Number Against Number of Degrees of Freedom

Our next comparison is between the condition number of the global matrix and the
number of degrees of freedom per wavelength. A low condition number is desirable,
as the accuracy of the numerical solution can be reduced by poor conditioning of the
system. The results for this comparison are given in Figure 4.5

The polynomial partition of unity results are plotted using a different scale to that
used for the other shape function results, due to the very high condition numbers
obtained. It can be seen that as the polynomial order is increased the condition number
rapidly increases, this is a consequence of the linear dependency issue (discussed in
Section . The conditioning of the matrix degrades the numerical solution as the
order is increased. This effect is clearly observed in the results presented in Sections

42 1.Tland 42.1.21
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Figure 4.5: The condition number as a function of the number of non-zero entries (w =
20, M = —0.6). Top left: partition of unity, top right: Bernstein, bottom left: Hermite,
and bottom right: Lobatto.

The condition number of the Bernstein method increases with polynomial order
in the oscillatory region. In the asymptotic region the condition number is slightly
reduced. The Hermite method demonstrates similar trends to the Bernstein method
in the oscillatory region, although the condition numbers are lower. In the asymptotic
region the Hermite method is better conditioned.

The Lobatto method produces the lowest condition numbers of all of the methods
considered. In the oscillatory region the condition number increases with polynomial
order, although it is still very low. In the asymptotic region the condition number
actually decreases with increasing order (which is noteworthy, but is unique to the one

dimensional case).
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Figure 4.6: The L? error as a function of the condition number (w = 20, M = —0.6).
Top left: partition of unity, top right: Bernstein, bottom left: Hermite, and bottom right:
Lobatto.

These results show a marked difference between the methods. The partition of unity
method is ill-conditioned, and even though the error convergences of the Bernstein
and Lobatto methods are identical, the Lobatto method is better conditioned. It is
interesting to compare the Bernstein and Lobatto results; in Section we showed
the coefficient matrices of the shape functions, and , respectively. The sample
Bernstein coefficient matrix has a condition number of 7.7, while the Lobatto has
a number of 2.5. Also, we note purely out of interest that the Bernstein matrix has
real eigenvalues and eigenvectors, whereas the Lobatto values and vectors are complex.

In conclusion, the Lobatto method provides the lowest condition numbers. Similar
results are presented in [32, I54] [163]. We note that changing the measure of cost
from the degrees of freedom to the number of non zero entries does not change these

observations.
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4.2.1.4 Error Against Condition Number

For our final comparison we present the error as a function of the condition number of
the sparse matrix. The comparison is given in Figure

The partition of unity method results demonstrate the ill-conditioning of the func-
tions. Note the scale is different to the other scales used in the figure. We see that as
the condition number increases the error decreases - except at higher orders where the
error begins to increase with condition number.

The condition number of the Bernstein method increases with polynomial order,
and the error decreases with increasing condition number. For the highest orders the
condition number is nearly constant below an error level of 1 %. The Hermite method
has a high error level for a high condition number, however as the condition number
decreases the error decreases.

The condition number of the Lobatto method decreases with increasing polynomial

order. The best system conditioning is obtained using this method.

4.2.2 Engineering Accuracy Analysis

In this section, we use an engineering approach to identify the method with the lowest
condition number and the lowest number of non-zero entries needed to solve the test
case to within an accuracy of 1 %.

For these results an upstream flow is used (M = —0.6), and three frequencies are
considered: w = 1, 20, and 40. The number of elements in the 1D domain is gradually
increased, and the L? error of the numerical solution is successively calculated. When
the error is equal to or below 1 % the condition number and number of non-zero
entries for the corresponding global matrix are recorded. This process is repeated for
all polynomial orders, i.e. from 1 to 10 (except in the case where Hermite functions
are used, then the polynomial order ranges from 3 to 10). The results are presented in
Figure Note that no data is given for the case in which the frequency is 40 and
the linear shape functions are used, this is due to the excessive computational effort
required to obtain such data.

We shall first consider the condition numbers of the global matrices. It can be
seen that the condition number of the polynomial partition of unity matrices increases

rapidly with both polynomial order and frequency. For the highest order, and highest
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frequency, the condition number is in excess of 10%°

. The global matrix constructed
using these functions is highly ill-conditioned. The matrices calculated using the Bern-
stein and Hermite functions are better conditioned, but the conditioning still increases
with polynomial order and frequency. The Lobatto functions produce the best condi-
tioned matrices. The condition number does not markedly increase with order, that is
above order 1, but does still depend on frequency.

If we now consider the number of non-zero entries in the global matrix, we see that
the system constructed using the partition of unity functions is the most expensive
to store. The number of non-zero entries of the Bernstein and Lobatto matrices are
identical. When considering the global trend of the Bernstein, Hermite and Lobatto

data it can be seen that they provide approximately the same efficiency, that is in terms

of matrix storage requirements.

4.2.3 Summary of One-Dimensional Analysis

From the analysis of the convergence and conditioning properties we can see that the
partition of unity method is the most inefficient, and that it produces matrices that are
highly ill-conditioned. The remaining methods converge like O (D;(PH)), and they
do not suffer from conditioning problems. The Hermite method appears to be the most
efficient, while the Lobatto method has the best conditioning.

The engineering accuracy analysis has confirmed these observations, but has also
shown that the efficiencies of the Bernstein, Hermite and Lobatto functions are very

similar.
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to right as follows: polynomial partition of unity, Bernstein, Hermite and Lobatto. Top
row: k =1, middle row: k£ = 20, and bottom row: k£ = 40.
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4. ASSESSMENT OF HIGH ORDER METHODS

4.3 Two-Dimensional Analysis

In this section, we verify that the conclusions made in the one-dimensional analysis
extend to the two-dimensional case. The test case is solved using quadrilateral and
triangular elements. The quadrilateral element mesh is structured, which provides
an illustration of the aliasing error. For the analyses which follow, both downstream
flow and upstream flow cases are considered. The downstream data demonstrates the
aliasing affect, but is provided mostly for the sake of interest. The upstream case
must generally be accounted for when designing finite element models of aeroacoustic
problems, due to the shorter wavelengths that are present. Selection of the preferred
method for further development will depend on the upstream analysis. Examples of
the meshes used are given in Figure 4.8

The L? error, condition number, and number of non-zero entries are used as mea-
sures of performance. For the data that follows only the cubic order (P = 3) has been
analysed, the reason being that only this order of the Hermite shape functions is avail-
able in 2D. This section will be concluded with the identification of the method chosen

for further development.

1 1
0.8 0.8
0.6 0.6
> >
0.4 0.4
0.2 0.2
0 0
0 0.5 1 15 2 0 0.5 1 15 2
X X

Figure 4.8: Examples of meshes used for the two dimensional analysis: h = 0.1. Left:

Structured quadrilateral mesh. Right: unstructured triangular mesh.

4.3.1 Downstream Flow Case

To generate the data presented here the quadrilateral and triangular meshes given
in Figure [4.8] are used. To demonstrate the aliasing effect, and the behaviour of the
methods when subjected to a downstream flow (M = 0.6), the frequency of interest is

gradually varied from w = 7 to 40. The results are presented in Figure 4.9

68



4.3 Two-Dimensional Analysis

Hermite, Bernstein, Lobatto

L2 error (%)

Condition number

T Bernstein

Lobatto

10

Frequency, w

Frequency, ®

=
o

) 1

=
o
5

=
o

=

1S)

]

10 P-PUM P-PUM

=
o
Y

]

%

L2 error (%)
=)
5

Bernstein, Lobatto

Condition number

=
o

=
o

Bernstein, Lobatto

=
[S)
S

10 12)1
Frequency, w Frequency, w

Figure 4.9: Convergence and conditioning properties of the methods, for the downstream
flow case: M = 0.6, h = 0.1, ¢cg = 1, po = 1. Top: quadrilateral elements. Bottom:

triangular elements.

4.3.1.1 Quadrilateral Elements

It can be seen that the convergence plots exhibit peaks. The peaks correspond to
internal numerical resonances within the elements. This is the aliasing error which was
introduced in Section [£1.2]

In the asymptotic region the L? error of the methods converges like O (wp +1). The
Hermite method returns the highest levels of error, the polynomial partition of unity
and Bernstein methods give identical error levels, and the Lobatto method provides

the lowest error levels.

The condition number of the polynomial partition of unity matrix is highest, as
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expected from the 1D observations (see Section. For clarity, the condition number
of the polynomial partition of unity method is not included here as it has a level
of 10%°. We note that, when using a structured mesh the linear dependency issue
reported in Section [3.3.3] is not remedied by the removal of the enrichment functions
at the boundary. The condition numbers of the remaining methods are quite similar,

although asymptotically the Bernstein method produces the best conditioned systems.

4.3.1.2 Triangular Elements

If we now consider the convergence plots obtained using the triangular mesh we see that
the error peaks are not as pronounced as they were in the quadrilateral data. This is
due to the non-uniformity of the unstructured triangular mesh, which tends to broaden
and flatten the peaks. However, the effect of the aliasing error is still observable.

The L? error of the partition of unity method behaves like a linear polynomial
system. The Bernstein and Lobatto systems produce identical error levels, but the
Hermite system incurs the lowest level of error.

The condition number of the Hermite matrix is the highest, closely followed by that
of the polynomial partition of unity matrix. The condition numbers of the Bernstein
and Lobatto matrices are similar, but in the asymptotic region the Lobatto matrix is

the best conditioned.

4.3.2 Upstream Flow Case

The convergence and conditioning plots for the upstream case (where M = —0.6) are
given in Figure m To obtain these plots the frequency is kept constant (w = 20) and
the number of quadrilateral and triangular elements is gradually increased. Dashed
lines are included on the plots to indicate the orders of convergence of the various
methods investigated. Note that in the upstream case there is no aliasing error [2§],
as the waves are well resolved in all directions (which is not true for the downstream

case).
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Figure 4.10: Convergence and conditioning properties of the third order functions, for
the upstream flow case: M = —0.6, w = 20, ¢ = 1, pop = 1. Top: quadrilateral elements.
Bottom: triangular elements.

4.3.2.1 Quadrilateral Elements

From the error convergence plots we see that the partition of unity system is the most
expensive to store. The Bernstein and Lobatto systems return identical error levels as
a function of the number of non-zero entries. For the range of numbers of elements
considered, the Hermite system is the most efficient, at least in terms of matrix storage
requirements.

We see that the Bernstein and Lobatto solutions converge like O (Ngz?’), where N,,,

is the number of non zero entries. The partition of unity error converges like O (Nn_f‘s),
while the Hermite error converges like O (N,;“). As expected, the partition of unity
matrix is severely ill-conditioned, whereas, in the asymptotic region, the Lobatto matrix

is the best conditioned.
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4.3.2.2 Triangular Elements

nz

The error of the partition of unity system converges like O (N _1‘5). The Bernstein
and Lobatto error convergence plots are identical and converge like O (N,;Z?’). For the
range of non-zero entries considered, the Hermite system is the most efficient, in terms
of storage requirements. Asymptotically, it converges like O (Nn_ZM).

The Hermite matrix has the highest condition number, followed by the partition of

unity matrix. In the asymptotic region the Lobatto matrix has the lowest condition

number.

4.3.3 Summary of Two-Dimensional Analysis

Based on the upstream flow case analysis, it can be concluded that for the quadrilat-
eral elements the polynomial partition of unity method produces systems which are
inefficient and ill-conditioned. For triangular elements the system is better conditioned
(perhaps due to the unstructured nature of the mesh, which reduces the effect of the
linear dependency issue) but it does not converge as expected. These shape functions
will not be considered for further development.

The Hermite elements appear to be the most efficient in terms of matrix storage, but
they have a high condition number when triangular elements are used. Furthermore,
this analysis has considered only one polynomial order (P = 3), due to the limited
availability of higher order triangular Hermite functions, and without linear or quadratic
functions any adaptive scheme based on these functions may be needlessly expensive
when accurate geometry description is required. These functions, despite their elegance,
will not be considered any further.

In the upstream case, the Bernstein and Lobatto systems produce identical error
levels. However, the Lobatto elements are better conditioned. (Note that this differs
from the findings of Petersen [121], however, they use an iterative solver and do not
include flow.) The Lobatto functions are hierarchic, which enables efficient system
assembly when using an adaptive order process to set-up a model, and there are readily
available functions for all commonly used element types. The Lobatto functions have

been chosen for further development.
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Figure 4.11: The L? error as a function of the number of elements per wavelength (flow
effect not included) on an unstructured triangular mesh: M = 0.6, h = 0.1. The lowest

polynomial order can be found at the top of the graph, and the highest order at the bottom.

4.4 Analysis of Lobatto Shape Functions

Firstly, we present a more detailed two-dimensional analysis, considering both down-
stream and upstream flows, to demonstrate the behaviour of the method as the poly-
nomial order is varied. A three-dimensional analysis is then presented. For this we
consider the computational resources required by the Lobatto system. This has been
made possible through the implementation (by the sponsoring company, LMS Interna-
tional) of the Lobatto method into a commercial code, which provides more information

about the system being solved than is available when using Matlab.

4.4.1 Two-Dimensional Analysis

The length of the test case geometry (see Figure is extended (L = 3) to ensure
that pollution error is present in the problem. The geometry is discretised using tri-
angular elements (but note that the observations presented here are also found when
quadrilateral elements are used). Both downstream flow (M = 0.6) and upstream flow
(M = —0.6) cases are considered. The element size is kept constant (h = 0.1), and the
frequency is varied from w = 0.4 to 40. The polynomial order is varied from 1 to 5;
higher order data is not presented due to the unavailability of sufficient resources to cal-

culate this data. The L? error as a function of the number of elements per wavelength is
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Figure 4.12: The L? error as a function of the number of elements per wavelength (flow
effect not included) on an unstructured triangular mesh: M = —0.6, h = 0.1. The lowest

polynomial order can be found at the top of the graph, and the highest order at the bottom.

given in Figure for the downstream flow case, and in Figure for the upstream
flow case. Note that using the number of elements per wavelength, Ny = 27/(koh) is
not an accurate measure of the actual cost of the method; it is only used as it lends
itself easily to the demonstration of the system’s behaviour.

In the downstream Flow Case the numerical solution converges as expected. In
the low discretisation regime error peaks are noticeable. These are associated with
internal resonances of the elements [28], i.e. the phenomenon termed aliasing error
[108], as referred to in Section In the high discretisation regime, for P = 5, the
convergence is limited by the machine’s precision. Reference triangles are included on
the plot to indicate the order of convergence of the data. In the asymptotic region the
method converges like O <N N (PH)).

In the upstream Flow Case the numerical solution converges as expected. However,
in this case no aliasing peaks are present, this is because the shortest wavelength has
been adequately resolved. Distinct regions in the convergence plots now become visible.
For a low number of elements per wavelength an oscillatory region is observed. The
transition region associated with the dispersion error, in which pollution effect domi-
nates, appears as the number of elements per wavelength is increased. In this region

the error converges like O <N N (2P+1)). In the asymptotic region, which is associated

with the interpolation error, the error converges like O (N N (P+1)).
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4.4.2 Performance of the Lobatto Method in Three Dimensions

In this section the test case and measures of cost used to assess the performance of the
Lobatto functions in 3D are introduced. Performance results without any flow, and in
the presence of an upstream flow, are presented. The computational cost of storing and

factorising the global matrix as a function of polynomial order is investigated.

4.4.2.1 Test Case and Measures of Cost

A three-dimensional version of the test case (presented in Section is used. The
test case is a duct, which carries flow along the z-axis. The test case geometry is given
in Figure It is discretised using hexahedral and tetrahedral elements.

The Mach number is zero, in the case without any flow, and M = —0.6 in the
upstream flow case. An acoustic plane wave is excited at the z = 0 plane; it propagates
along the z-axis, and is acoustically terminated at the plane z = 1. Characteristic
boundary conditions (see Section are used to impose the incoming and outgoing
waves. On the hard walls the gradient of the velocity potential is zero. The results
presented here have been generated by holding the Helmholtz number constant (kH =
50), while the number of elements in the 3D domain is varied.

To assess the performance of the Lobatto method in three dimensions, an imple-
mentation of the method has been provided by LMS International. Their code provides
information of the computational resources used when a problem is solved. Thus, the
measures used here are: the L? error, the number of non-zero entries in the sparse
matrix (this is directly related to the amount of memory needed to store the matrix),
the memory needed to factorise the matrix, and the number of floating point operations
(flops) used to factorise the matrix. The time needed to solve the linear system will
also be presented, but only for the sake of interest as this is not a dependable measure

of cost.

4.4.2.2 Performance Without Flow

At the time of writing, static condensation could not be applied to the solver with flow.
As a demonstration of the effect of static condensation, we begin with an analysis of

the performance without flow.
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Figure 4.13: Geometry of the three-dimensional test case.

The polynomial order has been varied from 1 to 10, using both hexahedral element
and tetrahedral element meshes. First, the error convergence of the numerical solution
as a function of the memory required to factorise the matrix is presented, and then
an analysis of the actual cost of storing and factorising the linear system is given.
The presented data which follows has been obtained using a machine with 48 GB of
memory, and 8 cores. Note that in this section (only) an impedance boundary condition

(Vo -n =iwpy/Z where Z = pycy) has been used at the duct exit.

1. Error vs. Factorisation Memory:

The L? error as a function of the factorisation memory is given in Figure
A general observation is that the tetrahedral elements are more efficient than
the hexahedral elements. Note that the linear order functions are too costly, in
terms of time, to solve using all of the available resources. It can be seen that the
static condensation reduces the computational cost, although this effect is more
noticeable when using hexahedral elements. The reason for this is the greater
number of bubble functions, for a fixed order, when using hexahedral elements
instead of tetrahedra. As a demonstration of this, consider the formulae used to

calculate the number of functions for a single element, given in Table
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Figure 4.14: The L? error as a function of the amount of memory required to factorise the
system (kH = 50, M = 0). The polynomial order is indicated by a corresponding number
at the end of each data line. Top: hexahedral elements. Bottom: tetrahedral elements.

Left: no static condensation. Right: static condensation applied.

Function | Hexahedral Tetrahedral
Vertex 8 4
Edge 12(P —1) 6(P—1)
Face 6(P —1)2 2(P —1)(P—2)
Bubble (P-1)3 | (P-1)(P—-2)(P~-3)/6

Table 4.1: Number of Lobatto shape functions on a single element.

If the number of bubble functions per single element, and per polynomial order,
is quantified (shown in Table , we see that the hexahedral elements always

produce many more bubble functions than the tetrahedral elements.
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Order 11213415 6 7 8 9 10
Hexahedral | O | 1 | 8 | 27 | 64 | 125 | 216 | 343 | 512 | 729
Tetrahedral |0 |0 O | 1 | 4 | 10 | 20 | 35 | 56 | &4

Table 4.2: Number of bubble functions on a single element.

As an example of the computational saving offered by static condensation, con-
sider the Hexahedral element convergence plots. Using polynomial order 10 with-
out condensation requires 20 GB of memory to obtain an error level of 1 x 1073 %,
whereas using static condensation requires only 10 GB. We observe that the most
efficient solution, for an error level of 1 % or less, is provided by the tetrahedral
elements of polynomial order 10 with static condensation applied. For an error
level of 1 % order 3 requires 9.6 GB of memory, while using order 10 requires 0.87
GB - this is an order of magnitude difference. From these results it is suggested
that, once the problem geometry has been adequately described using small ele-
ments, the most efficient solutions are obtained when large tetrahedral elements

with the highest available order are used inside the domain.

2. Analysis of Computational Resources:

It has been shown that higher order systems require less factorisation memory.
To investigate this observation we now compare the factorisation memory, the
time to solve, and the number of floating point operations used for factorisation,
to the size of the sparse matrix (quantified by its number of non-zero entries).

These comparisons are given in Figure

It can be seen that for a fixed number of non-zero entries the factorisation memory
needed reduces with increasing polynomial order. For example, when the number
of non-zero entries in the sparse matrix is 1 x 10° a solution obtained using linear
elements requires 1.8 GB, but using functions of polynomial order 10 requires only
72 MB. The same trend is observed in the time taken to solve the linear system.
For the same number of non-zero entries, order 1 takes 17s, while order 10 takes
0.69s. Thus, we see that higher order functions are indeed more efficient, with
the caveat that time is not a completely reliable measure of cost. The number of

floating point operations carried out to factorise the matrix have been obtained
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Figure 4.15: Measures of the computational cost as a function of the number of non-
zero entries (kH = 50, M = 0). Data obtained using tetrahedral elements with static
condensation. The trend of the polynomial orders is indicated.

from the linear system solver MUMPS [7, [8]. Once again the same trend in
the data is observed; a lower number of floating point operations is required to
factorise a matrix with a fixed number of non-zero entries when higher order
polynomials are used. This data suggests that higher order matrices have a
reduced number of fill-in entries (which are generated during the factorisation
process). It is often remarked that higher order matrices have a greater bandwidth
than lower order ones, and it is thus expected that they will be as, or even more,
expensive to solve than standard finite elements. However, these results show
that this is definitely not the case when hierarchic Lobatto shape functions are
used. Evidence of this is shown in [134], Figure 10, although the significance of

this result is not discussed in the referenced text.
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4.4.2.3 Performance With Flow

The test case (with characteristic boundary conditions) has been solved using tetra-
hedral element meshes on a cluster computer with four nodes (2 of 32 GB, and 2 of
16 GB). An upstream flow with a Mach number of M = —0.6 is considered, and the
polynomial order is varied from 1 to 9 (at the time of writing polynomial order 10 was
not available). Note that static condensation has not been applied in this instance.
The L? error, factorisation memory required and time taken to solve as a function of
the number of non-zero entries are plotted in Figure

For a fixed error level, polynomial order 9 gives the most efficient solution. For an
error level of 1 %, 6.4 GB of memory are needed to factorise the matrix constructed
using functions of order 3, while using order 9 requires 550 MB. As was shown in the
case without flow, for a fixed number of non-zero entries the amount of memory used to
factorise the matrix is reduced when the polynomial order is increased. For example,
when the number of non-zero entries in the sparse matrix is 2 x 106 a solution obtained
using linear elements requires 910 MB, whereas using functions of polynomial order
9 requires 32 MB. The same trend is observed in the time taken to solve the linear
system. For the same number of non-zero entries, order 1 takes 46s, while order 9
takes 9.8 x 1072s. The observations made here are the same as those made for the case
without flow. The highest order provides the most efficient solution. This observation
is confirmed by the comparisons of the factorisation memory and time to solve to
the number of non-zero entries on the sparse matrix. Higher order matrices require
increasingly less factorisation, and are thus solved faster than lower order ones.

Lastly, the effect of the mean flow on the resources required is considered. In Figure
417 it can be seen that the inclusion of flow increases the number of non-zero entries
in the global matrix. This is expected, as in the no flow case the matrix being solved is
complex symmetric, but when flow is present the matrix is complex unsymmetric. Thus
in the no flow case only half of the matrix needs to be stored - the matrix with flow is
twice as costly to store. Surprisingly, when flow is present the amount of factorisation
memory required is reduced. The algorithms used by MUMPS to solve symmetric and
unsymmetric matrices are different, but it is still expected that the matrix with flow

will be more costly to solve. This is a strange result.
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4.5 Summary of Conclusions

The polynomial partition of unity method is inefficient and ill-conditioned. The third
order triangular functions exhibit linear order convergence. The Hermite method is as
efficient as the Bernstein and Lobatto methods, in 1D, and performs well in 2D for
polynomial order 3. However, it is not as well conditioned as the Lobatto method, and
variable order functions are not available. Furthermore, it may be of limited use for
adaptive methods, as there are no linear or quadratic functions. The Bernstein method
is as efficient as the Lobatto method, but it is not as well conditioned. Also, it is not
hierarchic.

The Lobatto method is efficient and well conditioned. It is hierarchic, which can
enable faster matrix assembly, and facilitates faster frequency sweeps. Also, shape
functions are available for all commonly used element types. In three dimensions it has
been found that matrices constructed using higher-order Lobatto functions require less
factorisation memory than lower-order ones, due to a reduced number of fill-in entries.
It is suggested that once the boundaries of a problem geometry have been properly
described, large elements with high order functions should be used to obtain the most
efficient solutions. In the next chapter we will focus on the development of an adaptive
order version of the method, which makes use of the element size, and the flow speed
and input frequency of a problem, to determine the most efficient order for a specific

element.
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Development of an Adaptive
Order Scheme

To take full advantage of the efficiency of the higher order polynomials, an adaptive
order scheme is required. The scheme should analyse the finite element model and
choose the optimal polynomial order for each element in the mesh, based on the input
frequency of the problem, the size of each element, and the medium properties on
each element. In this work, an a priori error estimation is used to find the optimal
polynomial order. Existing a priori estimators are first introduced and assessed. A
new estimator is then proposed, and used to solve problems on non-uniform meshes, in

2D and 3D, for a wide range of frequencies.

5.1 Test Case and Measures of Error

The test case used in this chapter is identical to the test case used in Chapter |4l The
2D and 3D versions are shown in Figure The test case is a duct that carries a
uniform flow with velocity vg. An acoustic plane wave is excited at one end of the
duct, and is anechoically terminated at the opposite end. Equation is solved on
the computational domain, and characteristic boundary conditions (see Section
are used to impose the incoming and outgoing waves. This simple test case allows us
to accurately quantify the behaviour of the proposed adaptive order scheme.

To measure the error incurred by the adaptive order scheme we will use the H!
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Figure 5.1: Test case geometries. Left: unit square for two-dimensional tests, right: unit

cube for three-dimensional tests.
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The effective wavenumber, k, includes the effect of flow (which in this work is either

Ep =100

upstream or downstream). For a plane wave in uniform flow, the k? coefficient in the

H'! norm ensures that the norm is proportional to the acoustic energy.

5.2 FError Estimation

Estimation of the error, incurred by the finite element model, may be carried out using
either a posteriori or a priori methods. A posteriori methods estimate the error based
on full solutions of the method, whereas a priori methods attempt to predict the error
before solving the full problem. In this section, we briefly discuss a posteriori methods,
but will focus mainly on a priori methods.

Error estimation of the finite element solution has a history which stretches back
at least 35 years. Babuska & Rheinboldt [I7] were the first to introduce a posteri-
ori estimates. They provided asymptotic estimates for second order problems in one

dimension. Ainsworth & Oden [6] presented an error estimator based on an element
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residual method, and used it in the context of higher order methods. They found the
residuals on single elements, and used them to approximate the actual error of the full
solution. A different approach was used by Zienkiewicz & Zhu [162]; they presented a
super-convergent patch recovery method. This method makes use of the behaviour of
the gradient of the solution, which in general is discontinuous at interelement bound-
aries. The solution gradient is post-processed to generate a smooth gradient, and the
post-processed gradient is compared to the actual gradient. Whether or not to refine
an element is based on this comparison.

The convergence of the finite element method exhibits asymptotic and pre-asymptotic
ranges. In the pre-asymptotic range, pollution error is more significant than interpo-
lation error. Deraemaeker et al. [44] found that local estimators do not account for
pollution error, and thus always underestimate the global error. Furthermore, accord-
ing to Ainsworth [4], a posteriori estimators fail in the presence of pollution error, and
thus a posteriori estimation is only reliable in the asymptotic range [88]. However,
when designing a mesh it is common to base the design on the behaviour of the method
in the pre-asymptotic range, as the asymptotic range is generally computationally too
expensive to solve.

In general, a posteriori methods are computationally expensive, as the full problem
must be solved before an error estimate can be obtained, and they are only reliable in
the asymptotic range. In this work, only a priori estimators will be considered.

According to a review of estimation methods by Grisch & Bathe [67], practical
estimation techniques do not provide error bounds which are mathematically proven.
They go on to provide a list of requirements of an error estimator, which are reproduced

here for later analysis of the proposed estimation method. An error estimator should:
1. be accurate in the sense that the predicted error is close to the actual error;
2. be asymptotically correct;
3. yield sharp upper and lower bounds of the actual error;
4. be simple and inexpensive;

5. be robust, i.e. have a wide range of applications.
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5. DEVELOPMENT OF AN ADAPTIVE ORDER SCHEME

5.2.1 Existing A Prior: Estimators

A priori estimators aim to predict the global error of a system based on parameters
of the model. Parameters may include: domain size, element size, polynomial order,
frequency of interest, and properties of the medium. Here we introduce two existing
estimators, and evaluate their performance when used to solve the test case.
Ihlenburg & Babuska [87] considered higher order finite elements for the solution

of Helmholtz problems at high wavenumbers. They introduced the following a priori

kR \ T kh\ 2P
E<Cy (213) + Csk <2F)> R (5.3)

error estimate:

where C and C5 are constants. Both constants may depend weakly on the polynomial
order, and the constant Cs may also depend on the length of the domain. The first term
of inequality represents the interpolation error, while the second term represents
the pollution error (thus the dependence on domain length). This estimate is based on
the H{ semi-norm: || f||g1 = ([, |V f|?d€) 2

Ainsworth [5] designed an a priori guideline for choosing the order of the shape
functions on an element based on the element size and the input frequency of the

problem to be solved. The guideline is:
2P +1 > kh + C3(kh)Y/?, (5.4)

where (3 is a constant, which according to Ainsworth may in practice be unity. This

guideline aims to ensure that the dispersion error is negligible in the final solution.

5.2.1.1 Predicting the Optimal Order of an Element

It is possible to write and in terms of the polynomial order, and thus to
predict the optimal polynomial order for a given element, based on the element size
and input frequency, but this involves problem dependent, empirical constants.

An expression for the optimal polynomial order of an element, Py, can be derived
from by noting that the constants are weak functions of P, and thus by assuming

that the dependence on P can be neglected. We can then write:

2 VC? +4CHE;
{Wo [ <217r+10g01+ 021E+ Ct k)

hk

1
Popt = §exp

} hk (5.5)

T
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where Wy is the Lambert function (defined by W (z)eW'(®) = 2, 2 € C, the subscript 0
indicates that the principal branch of the solution is to be used) and E; is the desired
error. It may be possible to include the dependence of the constants on the polynomial
order, and make use of a non-linear solution method to obtain a numerical solution,
but this path has not been taken here. Inequality can also be rewritten in terms

of the polynomial order to give the optimal order:

kh + Cs(kh)Y/3 — 1

Popt = 9

+E,. (5.6)

Using a given element size and frequency, the optimal order to maintain an error
level of E; = 1% is predicted using and . The optimal orders for a range of
element sizes and frequencies are plotted onto the one-dimensional H' error convergence
plots, given in Figures and respectively. The values of constants C), have been
adjusted empirically to tune the estimators to give the best frequency response. Good
choices for the constants, at least for the test case considered, are: C7 = 33, C; = 6.28
and C3 = 4.45. We observe that the error levels oscillate around 1% when using the
H} estimator , and around 0.1% when using Ainsworth’s guideline .

5.2.1.2 Performances of the Existing Estimators

As an investigation into the performance of the existing estimators, equations and
have been used to predict the optimal order of each element in an unstructured
two-dimensional mesh. The constants, C,, are tuned to give an accuracy of 1 %.
The mesh was composed of triangular elements with an element size of 0.15. The
input frequency was varied from w = 1 to 50. The convected wave equation , with
characteristic boundary conditions, was solved on the domain, and the H' and L? errors
of the resulting solutions were calculated. Plots of the errors of the resulting solutions
are given in Figure It can be seen that both estimators are unsatisfactory as they
provide errors that are much lower than the desired level. Adaptivity schemes based on
these estimators will require empirical constants, and will be problem dependent. They
will be too conservative, and will thus introduce unnecessary computational expense.
Furthermore, the desired level of error cannot be easily changed, and upper and lower

error bounds for the actual error cannot be established.

87



5. DEVELOPMENT OF AN ADAPTIVE ORDER SCHEME

H Error (%)

H* Error (%)

H Error (%)

HY Error (%)

H Error (%)

SEmmmmm———

HY Error (%)

10 n A U i L

Element size, h

10° 107 0™ 10°
Element size, h
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Figure 5.4: Comparison of the performances of the asymptotic error estimator 1| (left)
and Ainsworth’s guideline (5.4]) (right). Shown is the actual solution error as a function of

input frequency. H! error (---), L? error (—).

5.2.2 Proposed A Priori Estimator

In this section we propose a new a priori error estimator. We begin by describing the
main assumption made of the method, and by introducing the operation of the esti-
mator. The available measures of error and definitions of element size are investigated.
Lastly, guidelines for the efficient implementation of the method, and for mesh design,

and discussed.

5.2.2.1 Main Assumption of the Estimator

We begin by assuming that a higher-dimensional element can be related to a one-
dimensional element, and that solving the convected wave equation on a single 1D
element provides a reasonable prediction of the error on the higher dimensional element.
On each one-dimensional element the following system is solved:
/ _ 2o doW dog + po@@ dQ. = [—povo g (WdO¢> - powdﬂh . (5.7
Q dzx dx

& dt dt ct dt dn |,

Characteristic boundary conditions are used to close the right-hand side of Equation
. The size of the 1D element is h, which may be the minimum, average, or max-
imum edge length of the higher dimensional element. A depiction of the analytic and
numeric wave propagation along the single element (used for the estimation) is pro-
vided in Figure In essence, the estimator predicts the average error incurred by

each element of a given mesh.
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Figure 5.5: The one-dimensional element used to approximate the higher dimensional

element. Analytic solution: ¢,, numeric solution: ¢,.

5.2.2.2 Operation of the Estimator

The operation of the estimator scheme is as follows: for each element in a given mesh,
equation ([5.7) is solved using linear shape functions. The error is calculated, and
compared to a predefined error threshold, E,. If the error is higher than the predefined
error, the polynomial order of the shape functions is increased by one. This process is
repeated until the calculated error is lower than, or equal to, the predefined error. The
required order for that specific element is then stored. This is repeated for every element
in the mesh, thus providing the predicted optimal polynomial order on each element.
The scheme can account for all of the local variables and medium properties. This
procedure is depicted by the flowchart given in Figure [5.6 The scheme can be made
more efficient by hard-coding pre-integrated element matrices for all orders. Then,
the adaptivity scheme requires the calculation of one element matrix, and one matrix
inversion per error estimate.

A 2D version of the test case has been solved using the proposed adaptive scheme.
The unstructured triangular mesh used has a maximum element size of h = 0.3, and
a minimum element size of A = 0.07. The 2D elements are approximated using 1D
elements with a length equal to the average of the 2D element size (the average length
is given by the sum of the lengths of the edges, divided by the number of edges). The
L? error was used as the measure of the error incurred on the one-dimensional elements.
The problem is solved for a frequency of w = 10, with a desired accuracy level of 1%.

The results are given in Figure The estimation of the error on each element is
shown. Note that this is not the actual error, it is instead the L? error levels of the 1D
element solutions. Included in the figure is the predicted optimal polynomial order to

use on each element; the edge functions are not shown, but take on the highest order
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of the surrounding elements. The actual error of the 2D problem was 0.26%, in the L?

norm, and 0.96% in the H' norm.

For every element in the mesh:

E = f(h,k, M, P)

v

pP=1
solve 1D problem <— increase order, P

v
ST

v

yes

;
s P

Figure 5.6: Flowchart of the operation of the adaptive order scheme that is applied to

each element of the higher-dimensional element.
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Figure 5.7: Demonstration of the predictions of the adaptive order scheme when ap-
plied to a two-dimensional problem. Left: predicted L? error (%) on each element, right:
predicted optimal order of each element (w = 10,¢9 =1,p0 =1, M =0, E, = 1%).
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5.2.2.3 Measure of Error and Element Size Definition

The framework of the estimator has been established, the choices of the most appli-
cable measure of error and definition of element size still remain. In this section we
compare the various measures of error available, and the best element size definition is
considered. The behaviour of the estimator with the preferred measure and definition
will then be demonstrated. The section will close with a discussion of the use of the

estimator for the design of optimal meshes.

e Measures of Error

Four measures are considered: the H! error, the L? error, the dispersion error, and the
interpolation error. The H' and L? errors have already been introduced (see Section
5.1)). To define the dispersion error we begin by calculating the numerical wavenumber.

Noting that the numerical solution is of the form: ¢, ~ exp (—ikyh), the numerical

B on(h)\ 1 2nm
kh_ln<¢h(0)> E+T’

where the numeric solution at the second node is normalised by the solution at the first

wavenumber is given by:

node to ensure that both the analytic and numeric solutions have the same magnitude
and phase at the first node of the element (at = 0). The additional term involving =
accounts for the infinite number of possible solutions; a range of n solutions are chosen,
and of this range the wavenumber which best approximates the exact solution is used.

The estimated dispersion error is:

[k — Enll2
Ey =100 12— iz
[1E]l2
where the 2-norm ( [lz]l; = (X, \azi|2)1/2 ) has been used. Using the numeric

wavenumber, the interpolation error can be obtained using:

|Pa(kn) — dnll2
pa(kr)llz

A single 1D problem has been solved in order to compare the measures of error. The

E; =100

input frequency was held constant, w = 10, and a no-flow case was considered, M = 0.
The number of degrees of freedom per wavelength was varied, and the error levels were
recorded. The convergence results for four orders (P =1, 2, 3, and 10) are presented in

Figure |5.8
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Figure 5.8: Comparisons of the measures of error on a single one-dimensional element,
for polynomial orders 1 (top left), 2 (top right), 3 (bottom left), and 10. H! error (---),
L? error (—), dispersion error (- - -), and interpolation error (---).

For the first polynomial order the interpolation error is the highest in the very
low discretisation region (approximately 1 or 2 degrees of freedom per wavelength)
but as the element size is reduced the H' measure reports the highest levels of error.
For all polynomial orders higher than one, the H' error is the highest. The L? error
is always less than the H', but always greater than the dispersion and interpolation
errors (except when very low discretisation with linear elements is used, but this case is
uninteresting). The dispersion and interpolation errors tend to vary with the number of
degrees of freedom, and the polynomial order. As the actual error of the finite element
method is a combination of these two types of error, choosing one over the other may
be short-sighted. The choice of best measure of error must be made between the H*

and L? errors.
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e Element Size Definition

The performance of the proposed error estimator depends on the way in which the 1D
element approximates the behaviour of 2D or 3D elements. This is far from obvious,
especially when considering unstructured meshes (for which the element size h is not
well defined). Let us consider a propagation problem with triangular elements. Three
different measures of the element size are used, and their influence on the accuracy of
the error estimator is assessed.

A comparison of the performance of the error estimator, when used to solve the 2D
problem presented in Section for the two measures of error (H! and L?) and the
three element size definitions (minimum, average, and maximum), is given in Figure
Included on the plots are the maximum and minimum error levels predicted by the
one-dimensional error estimator (as an example consult Figure [5.7). These indicators
can be understood as numerical upper and lower error bounds. The upper and lower
bounds can be viewed as indicators of the accuracy and efficiency of the error estimator,
respectively. A general observation is that the upper bounds (the maximum predicted
error of the mesh for each desired error) are almost identical. This seems to imply that
the upper bound does not depend significantly on the choice of the measure of error, or
on the element size definition. The lower bounds match very closely, but do depend on
the choice of error and element size definition. If we consider the L? error results we see
that the L? error is bounded for all choices of element size definition - except for very
low accuracies, in which case the pollution error becomes significant. The H! error is
bounded only when the average and maximum element size definitions are used. When
the H! error is used as a measure we observe that the H' error is always bounded,
and the L? error is bounded for the minimum element size definition only. When the
definition is based on the average or maximum edge length the L? error is below the
lower bound. We see that using the L? error and average edge length provides the most
accurate and efficient estimates.

It is possible to define an effectivity index: n = E;/E, which should ideally be
close to, or equal to, 1. A value of 1 indicates that the actual error is identical to the
desired error. Effectivity indices that correspond to the data presented in Figure [5.9
are given in Figure It can be seen that using H' error provides solutions which are

too conservative, i.e. using this norm incurs unnecessary computational expense, since
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the effectivity index is much greater than unity. The choice of the most appropriate
element length definition remains.

When using the minimum edge length, the effectivity index of the measured H'
error is close to zero. Using the minimum edge length may give solutions which exceed
the predefined error threshold. Using the maximum edge length produces solutions
which are too conservative. The best solutions are obtained using the average edge
length, in which case the effectivity index of the measured H! error is closest to unity.

In summary, using the L? error and the average edge length for the error estima-
tion should provide the most efficient solutions; by using the minimum computational
resources to ensure an upper bound is placed on the error of the higher-dimensional

system.

e Behaviour of Estimator

We now consider the behaviour of the actual error when the proposed error estimator
is used to solve the test case given above for four different frequencies, w = 1, 10, 20,
and 50. The results are given in Figure [5.11

A general observation is that in all cases the L? error is bounded - except at very low
accuracy, which is suspected to be an effect of the pollution error that is not accounted
for by the error estimator. For the low frequency case where w = 1 the H'! error is
out of bounds. A plateau is observed for low accuracies, corresponding to the lowest
order elements, thus the error does not increase as the mesh adequately resolves the
propagating wave. As the desired accuracy is increased, the order of the elements is
increased and the error converges. For w = 10 the H! error is close to the upper bound.
A plateau in the lower bound is observed for low accuracies; for lower accuracies the
mesh resolution has reached a limit. For w = 20 the H' error is bounded. Again a
plateau is observed, which corresponds to the resolution limit of the system. For the
highest frequency, w = 50 the H' error is bounded, and the plateau in the upper bound
and actual error indicate that the maximum resolution of the mesh has been reached.
To achieve higher accuracy the element size must be reduced, or the polynomial order
must be increased (a maximum order of 10 has been used in this work). We see that
the behaviour of the error estimator is a function of frequency.

In summary, the largest predicted error of the mesh acts as an upper bound, until

either the mesh resolution is reached, or pollution error becomes significant.
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Figure 5.9: Actual error as a function of the desired error, obtained using two measures of

error, and three element size definitions. Left: L? error measure, right: H' error measure.

Top: minimum edge length, middle: average edge length, bottom: maximum edge length.
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and the average element size. Top left: w = 1, top right: w = 10, bottom left: w = 20,

bottom right: w = 50. H* error (---), L? error (—), max. and min. predicted errors (---).

Actual error as a function of the desired error, obtained using the L? error

2.2.4 Pollution Error

has been noted that the estimator does not make provision for the effect of pollution

error (which is the domain length dependent accumulation of dispersion error). In this

section the performance of the estimator when used to provide accurate solutions for

pr

of

oblems in which the pollution error is increasing is investigated.
An re-meshed version of the geometry presented in Figure[5.7]is used, and the length

the domain is varied; one example of the meshes used is presented in Figure [5.12

The size of the elements in each mesh ranges from 0.07 to 0.3. The wavenumber limit

of

the mesh can be determined using: k = 2w P/(h D). For a desired accuracy of 1%,

using seven degrees of freedom per wavelength and the highest polynomial order gives

an upper limit on the resolvable wavenumber of the mesh of approximately k = 30.
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Figure 5.12: Example of mesh used to investigate behaviour of error estimator as the

pollution effect becomes significant. Max. element size: 0.3, and min. element size: 0.07.

The proposed error estimator was used to predict the required polynomial order
on each element to achieve an accuracy of 1%, and the H' and L? errors of the full
solution were calculated. This was carried out for frequencies w= 1, 5, 10, 20, 30 and
40. For the longest domain length used, x = 20, these frequencies correspond to the
following numbers of wavelengths in the domain: 3.18, 15.9, 31.8, 63.7, 95.5, and 127.

The results of this investigation are presented in Figure The pollution effect
is clearly visible; as the length of the domain is increased, the level of the actual
error increases while the maximum predicted error remains constant. If we consider
the results obtained for frequency w = 1 we see that the estimator fails to contain the
error as the length of the domain is increased, as expected. However, as the frequency is
increased we observe that the L? error remains bounded until the frequency limit of the
mesh is exceeded. The reason for this is that at very low frequencies the error estimator
chooses the lowest polynomial order on the elements. It is well known (see e.g. [44])
that higher-order elements control dispersion error more effectively than lower-order
elements, and this is what we observe in these results. As the frequency increases, the
orders of the elements increase, and the dispersion error is minimised. Thus, up to
some undefined maximum domain length, the highest polynomial order elements of a
given mesh control the pollution error. Note that when the upper frequency limit of
the mesh is exceeded, the estimator fails, but this is to be expected.

We conclude that the proposed error estimator has a frequency range of applicabil-
ity, in which it performs well. Although it does not account for pollution error, the use

of the higher order polynomials does, to some extent, control the pollution error.
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Figure 5.13: The actual error as a function of the length of the domain. Top left: w =1,
top right: w = 5, middle left: w = 10, middle right: w = 20, bottm left: w = 30, and
bottom right: w = 40 (note: mesh limit has been exceeded). H! error (---), L? error (—),

predicted error bounds (---).
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5. DEVELOPMENT OF AN ADAPTIVE ORDER SCHEME

5.2.2.5 Efficient Choice of Optimal Order

It is interesting to consider the behaviour of the L? error on the single element, as the
polynomial order is varied.

Firstly, we analyse the L? error as a function of the number of elements per wave-
length - this data is presented on the left panel of Figure [5.14] For these results the
flow is zero. Convergence data for frequencies w = 1 and 100 are plotted. It can be
seen that the error is identical for both frequencies. The reason for this is that the
interpolation error is the dominant source on the single one-dimensional element, and
so keeping kh constant controls the error. This is quite beneficial, as it means that for a
desired error and a given element size the optimal polynomial order can be determined
from the input frequency. Furthermore, a ‘look-up’ table which contains the optimal
order for a pre-defined error level and for a given value of kh can be created, and stored.
Using such a table can make the method even more efficient, by not actually requiring
the solution of the single element problem on each high-dimensional element.

Next, we consider the L?error as a function of the number of degrees of freedom
per wavelength. For these results the frequency is held constant, w = 100, and the no
flow and upstream cases are compared. We see that in the upstream case slightly more
degrees of freedom are needed to maintain a given level of error - this is more noticeable
in the low discretisation region. This is an artefact of the boundary conditions used.
This behaviour means that when flow is present using a ‘look-up’ table is not advised.
Instead the adaptivity scheme should be used to compute the optimal polynomial order
for a given element.

Ultimately, the estimator requires the analysis of every element in the higher-
dimensional mesh. Although this is an additional expense, the evaluation time is in-
significant compared to the cost of solving the full system, especially in light of the fact

that it enables more efficient solutions.

5.2.2.6 Mesh Design

As shown in Section [£.4.2] using polynomial order P = 10 requires the least amount
of factorisation memory, for a given accuracy, when compared to lower orders. It is
expected that this trend will continue for orders higher than 10, but this has not been

confirmed in this work. With this in mind, the formula for the number of degrees of
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Figure 5.14: The L? error on a single one-dimensional element as a function of the
number of elements per wavelength (left) and as a function of the number of degrees of
freedom per wavelength (right). Polynomial orders 1 to 10 are presented. Left: w =1 (-),
w =100 (o). Right: M =0 (—), M = —0.6 (---).

freedom per wavelength (4.1) can be used to determine an optimal element size for

mesh design. The optimal element size is given by:

hopt = (58)

%Dy’
where the optimal polynomial order 10 has been used. The wavenumber is dictated
by the input frequency and Mach number of the problem. The number of degrees
of freedom per wavelength to be used is determined from the accuracy required, e.g.
for an accuracy of 1% 4.8 degrees of freedom per wavelength are needed when using
polynomial order 10 (see Figure . Once a desired accuracy has been chosen, a
mesh designer should aim to create elements with a size dictated by . However, as
meshes of complex geometries will be composed of elements of varying sizes, and thus
varying orders, it has been found that using a more conservative value for the number
of degrees of freedom per wavelength is advisable. For an accuracy of 1% using the
traditional rule of 6 degrees of freedom is suggested.

Formula can be rewritten in terms of the wavenumber in order to determine

the upper frequency limit of a given mesh:

207 (¢o — |ugl)
w=—" 5.9
hoptDz\ ( )
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5. DEVELOPMENT OF AN ADAPTIVE ORDER SCHEME

5.3 Illustration of Performance of Proposed Estimator

Assessments of the performance of the proposed error estimator are presented here. For
both two-dimensional and three-dimensional problems, the non-uniform meshes used

are given, and followed by the error results of frequency sweep tests.

5.3.1 Performance in Two Dimensions

In this section we demonstrate the ability of the adaptive order scheme to properly
define the mesh resolution required to generate solutions which are very close to a
predefined error level. The two-dimensional analysis that follows shows the behaviour
of the scheme when subjected to frequency sweeps. Up to the frequency limit of the
mesh, the solutions obtained are bounded by the required accuracy, and show very little
variation with frequency. Four meshes have been constructed, and used to demonstrate
the scheme’s performance; these are presented in Figure[5.15] Note their increasing non-
uniformity, i.e. the meshes become less uniform as the smallest size of the elements is
decreased. The largest element size used is 0.15, which gives an upper frequency limit
(given in terms of the wavenumber) of k£ = 100 (obtained using formula (5.9))), for both
M =0and M = —0.6.

5.3.1.1 No Flow Case

The standard wave equation was solved using the adaptive scheme on the four different
meshes, for a range of frequencies from w = 1 to 100. The adaptive scheme was used
to predict the optimal polynomial order based on the element size and input frequency.
The resulting errors as a function of frequency are given in Figure [5.16f We begin
with a few general observations. All of the L? errors are bounded by the maximum and
minimum predicted errors provided by the adaptive order scheme. The upper frequency
limit of each mesh is exceeded, but before this occurs the maximum predicted error
goes above the required error level. This serves as an indicator that the mesh limit is

close to being exceeded. We also note that for higher frequencies, and in all cases, there
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Figure 5.15: Meshes used to test the adaptivity scheme in 2D. Top left: h = 0.15,
top right: hy/he = 0.15/0.06, bottom left: hqi/he = 0.15/0.03, bottom right: hy/hy =
0.15/0.015.

is relatively little variation in the actual error obtained for the resolvable frequencies
considered. Consider the results obtained for the mesh with a ratio of 1 : 1. There
are noticeable dips in the error plots. As the mesh is composed of elements with
approximately the same size, as the orders of the elements change the error levels
exhibit an associated sudden change. These dips are still noticeable in the results
obtained from the mesh with a ratio of 2.5 : 1, but they are smaller. This is due to the
increasing range of orders across the elements, which tend to average out the associated
error dips, i.e. as the mesh ratio is increased, the range of orders is increased, and the

error plots become much smoother.
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Figure 5.16: Measures of error as a function of frequency, for the 2D test case, without
flow. Mesh ratios: top left: 1:1, top right: 2.5:1, bottom left: 5:1, and bottom right: 10:1.
H! error (---), L? error (—), max. and min. predicted error (--).

It can be seen that beyond an upper frequency limit the proposed method fails to
keep the actual error below the desired level. However, in these examples the maximum
frequency resolved is higher than the limit given by , that is £ = 60. The predicted
(obtained from the one-dimensional single-element solutions) and actual maximum re-
solvable frequencies are given in Table Also included are the number of degrees of
freedom per wavelength which would give such frequencies. We see that using the 6
degrees of freedom per wavelength that is suggested in Section [5.2.2.6| is slightly con-
servative, but also that the number needed is dependent on the non-uniformity of the
mesh.

If we consider all of the error plots, we observe that the a priori estimator places

an upper bound on the L? error below the upper frequency limit of the mesh. Note
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5.3 Illustration of Performance of Proposed Estimator

Mesh ratio 1:1 251 51 10:1
Predicted max. w. 64 74 80 78
Predicted required Dy | 6.5 5.7 5.2 54
Actual max. w. 77 92 93 96
Actual required D), 54 4.6 45 44

Table 5.1: Maximum resolvable frequencies of the meshes, and the corresponding numbers

of degrees of freedom required to resolve the frequencies.

that, for higher frequencies, only the use of higher order elements or smaller elements
will keep the error bounded. It is interesting to see that the maximum frequency
limit of each mesh increases with the increasing non-uniformity. This is caused by the
increased number of smaller elements, on which the order can still be increased for
greater accuracy. These results are very encouraging as they suggest that the error
estimator maintains a bounded error level, even when the mesh is non-uniform, and

that the error levels obtained exhibit very little variation with frequency.

5.3.1.2 Flow Case

The convected wave equation has been solved for a range of frequencies, from w =1 to
40, with a flow of Mach number —0.6. The resulting errors as a function of frequency
are given in Figure A general observation is that the L? error is always bounded
by the maximum and minimum predicted errors of the mesh. We note also that the
maximum frequency limit of the meshes has been exceeded in each case, but that the
predicted and actual limits of the meshes are higher than the value given by - this
is due to the use of a conservative value for the number of degrees of freedom required.

Essentially the results are the same as the results given in the case without any flow
(M = 0), albeit the frequency limit of the meshes is reduced due to the shortening of
the wavelengths by the flow. For the uniform mesh (ratio 1 : 1) dips in the error are
noticeable. They are caused by the improved accuracy of higher order functions which
is brought about by the simultaneous increments of polynomial order of each element
with increasing wavenumber. We see that as the mesh non-uniformity increases, the
error plots become smoother, and exhibit less variation with frequency. This is due to

the increasing range of orders on the elements.
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Figure 5.17: Measures of error as a function of frequency, for the 2D test case, with Mach
number —0.6. Mesh ratios: top left: 1:1, top right: 2.5:1, bottom left: 5:1, and bottom
right: 10:1. H! error (---), L? error (—), max. and min. predicted error (--).

To further demonstrate the behaviour of the adaptive scheme, the most common
and maximum polynomial orders of each mesh, for each input frequency, are presented
in Figure It can be seen that for the uniform mesh (ratio 1:1) the most common
order of the elements is much higher than the non-uniform meshes, and is at most three
orders below the maximum polynomial order (in this case 10). This is the underlying
reason for the appearance of the dips in the error plots shown in Figure[5.17} the size of
the elements tends to be the same, and as the frequency increases the orders increase
in union. In contrast, the largest difference between the most common and maximum
polynomial orders of the most non-uniform mesh (ratio 10:1) is seven orders, which
explains the much smoother error plots. In general, we can see that once the maximum

order available has been reached, the upper frequency limit is close to being exceeded.
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Figure 5.18: Most common (o) and maximum polynomial (o) orders as a function of
frequency, for the 2D test case with a flow Mach number of -0.6. Mesh ratios: top
left: 1:1, top right: 2.5:1, bottom left: 5:1, and bottom right: 10:1.

5.3.2 Performance in Three Dimensions

The company sponsoring this project, LMS International, have implemented the pro-
posed adaptive order scheme into their aeroacoustic solver, SysNoise. This has enabled
tests of the performance of the adaptive scheme in three dimensions. The results of
these tests are presented in this section. Four meshes with increasing non-uniformity
have been generated, and are used to test the adaptive scheme’s ability to handle dis-
torted meshes. The meshes are presented in Figure Three predefined error levels
were chosen to provide users of the solver with coarse (15%), standard (5%), and fine
(0.5%) resolution options. Look-up tables for these levels were created using the data

presented in Figure [5.14
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Figure 5.19: Meshes used to test the adaptivity scheme in 3D. Top left: h = 0.2, top right:
hi/ha = 0.2/0.04, bottom left: hq/hy = 0.2/0.02, and bottom right: hi/he = 0.2/0.05

5.3.2.1 No Flow Case

The unconvected wave equation has been solved. The L? error as a function of the
frequency is given in Figure[5.20] A general observation is that the actual error, for all
meshes and for each of the accuracies (coarse, standard, and fine), is bounded by the
desired error level. It can be seen that the error plots exhibit very little variation with

frequency, until the mesh frequency limit is exceeded.
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We observe that this limit depends on the accuracy chosen, which is expected as a
higher accuracy will require elements with higher orders, and thus the highest available
order will be required on a majority of the elements at high frequencies. The flat error
plots also indicate that a minimal amount of unnecessary computational effort has been
incurred. As was observed for the 2D results, the error levels produced by the uniform
mesh exhibit dips; these are caused by the uniformly increasing polynomial order of
the elements with increasing frequency. The results obtained from the mesh with an
element size ratio of 4:1 exhibit ‘bumps’ in the error. This mesh has a much higher
number of small elements than the other meshes (as the entire boundary is composed
of small elements), and thus the changing of the polynomial order of these smaller
elements causes the bumps in the error.

In Figure the maximum, most common, and minimum polynomial orders used
to solve the system, to a ‘standard’ accuracy, are given as a function of frequency.
For the uniform mesh (ratio 1:1) we note that the order is not always the same on
every element. Since this is an unstructured mesh the elements are not all exactly the
same size. In the case of the mesh with an element size ratio of 4:1, we see that the
maximum order is much higher than the most common and minimum orders. This is
due to the high number of the smaller elements in the mesh, which are able to give good
accuracies using lower orders. Note that the incremental changes of the minimum and
most common orders coincide with the bumps in the error (referred to in the previous
paragraph).

In Figure the memory required for matrix factorisation as a function of fre-
quency is given. As expected, the uniform mesh requires the least amount of memory,
and this is because the uniform mesh has the highest number of large elements. This
in turn means it has the lowest number of elements, but also that the order on those
elements is higher. As already shown, using higher orders is optimal due to the re-
duced factorisation memory requirements. For the highest frequencies the mesh limit
is reached, as indicated by the plateau in the memory needed. The distorted mesh
requires the most memory, as it has the highest number of low-order elements. This
comparison confirms the efficiency of using higher order elements. In Figure the
time required to solve the system is given as a function of frequency. The same con-
clusion can be drawn as for the memory requirements - it is most efficient to use large

elements with higher order interpolation functions.
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5.3.2.2 Flow Case

In this section the flow case is solved using the adaptive scheme with the standard
accuracy (5%), for flows with Mach numbers 0.4, 0.2, —0.2, —0.4, and —0.6. The
resulting L? errors are given as functions of the wavenumber in Figure

A general observation is that the upstream error levels are very similar in level,
although there is a noticeable increase in error with increasing Mach number. This
slight increase may be caused by either pollution error or the boundary conditions of
the problem - neither of these possible errors are accounted for by the adaptive order
scheme. Furthermore, the scheme does not account for the wave direction across an
element, which means that in the presence of flow the worst case scenario must be
accounted for, which is the upstream flow case. A consequence of this is that in the
presence of downstream flow the method becomes inefficient. This can be seen in the
error plots shown. Waves in the downstream case are over-resolved, and thus incur
unnecessary computational expense.

As in the no flow case, the uniform mesh error exhibits dips which are associated
with the uniformly changing orders of the elements. In the downstream case this
mesh is more expensive to solve than the other meshes due to the increased order of
the element. The remaining meshes exhibit similar results; the upstream cases exhibit
little variation in error with frequency, while the downstream cases are computationally
expensive. The only way to make the adaptive scheme more efficient on elements that
are subject to both upstream and downstream flow is to have advanced knowledge of
the wave direction across each element. However, this is no trivial task, and is left for
future work.

The factorisation times as a function of the wavenumber for the uniform mesh and
the mesh with an element size ratio of 4:1 are presented in Figure [5.25, These results
support the observations already made: the upstream cases take similar amounts of
time to be solved, while the downstream cases are inefficient, and incur unwanted

additional computational expense.

5.4 Discussion

In order to obtain the most efficient solutions for the higher-order finite element method,

a scheme which automatically chooses the optimal order of an element is required.
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Two existing a priori error estimators have been introduced, and their abilities
to provide efficient solutions have been assessed. However, both estimators require
empirical constants, which are problem and frequency dependent. There is no clear way
to generalise these estimators for different problems. Furthermore, for the problem and
frequencies considered, it has been shown that these estimators are too conservative,
and thus incur unnecessary computational expense.

A new a priori error estimator scheme has been proposed. The scheme does not
depend on constants, and is robust. It is based on solutions of one-dimensional versions
of higher-dimensional elements. The proposed adaptive order scheme has been tested
in two and three dimensions, and it has been shown that the scheme enables efficient
solutions by placing an upper bound on the L? error incurred by the higher-order
finite element method. The scheme produces error levels with very little variation with
frequency, over a wide range of frequencies. It is remarkable that the one-dimensional
estimations provide such good predictions of the error on higher-dimensional elements.

The proposed scheme has also been tested for problems which include flow. For
upstream flow fields the results are excellent. However, for downstream flow, propa-
gating waves are over-resolved, making the method very inefficient. The inclusion of
flow /wave direction information into the adaptive order scheme is the subject of future
work (in which case aliasing error will become an important issue [28]). Note that this
adaptive scheme does not account for pollution error (as expected, see Deraemaeker
et al. [44]). The domain size dependent pollution effect would also be considered in
future work.

Considering the requirements of an error estimator [67], presented in Section
the proposed scheme controls the error in each element very well. (However, it does
not account for the pollution error; for very large domains the estimator may fail. In
such cases the threshold should be adjusted.) As the desired error level is reduced, the
actual error converges (within the limits of the mesh). The scheme provides upper and
lower bounds on the actual error (again, within the limits of the mesh, but also only
in the absence of significant pollution error). The scheme is simple and inexpensive.
With respect to the range of frequencies considered, the scheme appears to be quite
robust. In the next section the reliability of the adaptive scheme to produce optimised

meshes for a typical aircraft engine intake noise problem will be investigated.
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Application to an Intake Noise

Problem

In this chapter the standard quadratic finite element method, and the proposed higher-
order finite element method are used to predict the noise radiated from a generic turbo-
fan engine intake. The problem is introduced, as are the generic geometry, the source
model, the characteristic flow field, and the typical liner model. The standard finite
element method is used to solve the problem, and the cost of solving the problem using
the standard method is investigated. A simplified version of the problem is then solved
using the adaptive high-order method (presented in Chapter . The cost of the stan-
dard method is compared to that of the higher-order method, and the improvement in
terms of efficiency of the proposed higher-order method over the standard method is

demonstrated.

6.1 Turbofan Intake Noise

Aircraft noise is generated by many different mechanisms, but can be generally cate-
gorised into airframe noise and engine noise. An example of the contribution of both
sources to the total aircraft noise is shown in Figure Although great advances have
been made in the reduction of engine noise, it is still a significant component of the
total noise output.

The high-bypass ratio engine, commonly found on modern commercial aircraft, is

considered. It takes its name from the fact that a large proportion of the air drawn in
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Figure 6.1: An example of the contribution of aircraft noise sources to the total noise
output, given for the approach condition (adapted from [96]).

by the fan bypasses the internal workings of the engine. The high-bypass ratio engine
has a large fan at the intake, and a small jet engine at the rear. The larger fan enables
a lower exhaust jet velocity, while maintaining the thrust given by early engine designs.
As the jet mixing noise is related to the jet velocity (to the eighth power of the velocity)
the exhaust noise of the high-bypass ratio engine is reduced. This design has enabled
significantly quieter aircraft. A comparison of the noise signatures produced by early
and modern engine designs is given in Figure [6.2] It can be seen, however, that the
cost of the reduction in exhaust noise is an increase in fan noise.

The large fan has implications for numerical modelling. The bigger the domain
becomes, the greater the computational cost. However, this increased cost is slightly
offset by the generation of lower blade passing frequencies, due to a reduced number of
blades. Solutions of lower frequencies require less resources.

The available aeroacoustic code, SysNoise, solves the convected wave equation in
terms of the velocity potential field. Using potential flow theory precludes exhaust noise
predictions, as it does not account for the vorticity which is present in the exhaust noise
problem. Outside of any boundary layers which may be present, the flow field of the
intake problem can be assumed to be irrotational. In this chapter, the prediction of
intake noise will be presented, while exhaust noise predictions will be considered in
Chapter [7]

When noise certification tests of new aircraft entering service are made, three flight
conditions are measured. These are take-off (often referred to as sideline), cutback

(when the engine power is reduced after take-off), and approach.
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Engine noise sources — 1960s vs. modern design

Typical 1960s design Typical modern design
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‘ Turbine & Combustion

Compressor ‘ ‘ Turbine & Combustion

Figure 6.2: Comparison of early and modern aircraft engine designs [69]. Note the
reduction in jet noise due to the high bypass ratio design.
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Figure 6.3: Noise Certification measurement positions [103].

The certification measurement positions are depicted in Figure In this work
we have chosen to investigate only the approach condition. Admittedly, this is the
least computationally demanding condition to solve, but it allows improvements of
performance to be easily demonstrated, and its use does not change the conclusions
found.

In this section the physical problem is introduced, by describing the engine operation
and the engine noise sources. A model of the problem will then be introduced. A generic

axisymmetric intake geometry, source spectra used to model the noise source at the fan
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6. APPLICATION TO AN INTAKE NOISE PROBLEM

plane, and flow field characteristics typical of the approach operating condition are

presented. Lastly, a model of a typical acoustic liner is given.

6.1.1 Engine Operation and Sources of Noise

A labelled diagram of the inner workings of a typical high-bypass ratio turbofan engine
is given in Figure A large shrouded fan draws air into the engine. Two pathways
are available to the inflowing air: the bypass flow, and the core flow. The bypass flow
interacts only with the fan and the outlet guide vanes, it then travels along the bypass
duct, and exits at the rear of the engine. Alternatively, the core flow interacts with the
fan, and is then compressed, mixed with fuel, and burned in a combustion chamber.
The hot air of the core jet then moves through the turbine stage, in which power is
extracted from the flow for driving the compression stage. The hot air is then expelled
from the engine exhaust. Air expelled from the bypass and core ducts form coaxial jets
at the rear of the engine, which mix with the exterior flow.

The noise emitted from a high-bypass turbofan engine comprises fan, core and jet
noise. Fan noise is caused by the displacement of the air by the blades, and by the lift
and drag on the blades. The wakes produced by the blades interact with the outlet
guide vanes, also creating noise. The periodicity of the rotating blades creates tonal
noise with a blade passing frequency: f = nBS)s, where n is the set of positive integers
which account for harmonics of the fundamental frequency (n = 1), B is the number
of fan blades, and €2 is the shaft rotation frequency. In the case of supersonic fan-tip
speeds, buzz-saw noise is generated, which comprises multiple pure tones. The fan
noise propagates out of the engine inlet and exhaust.

The core noise is composed of compressor, combustion, and turbine noise. Com-
pressor noise is generated by interactions between adjacent blade rows. The spectrum
of compressor noise has both broadband and tonal components. Combustion noise is
caused by the rapid expansion of small packets of heated air, and has a broadband
spectrum. Turbine noise is tonal with a broadband component. The core noise radi-
ates from the exhaust nozzle, where it refracts through the shear layers, which develop
between the core and bypass jets, and between the bypass jet and the cool air surround-
ing the exhaust. As the noise traverses the bypass shear layer spectral broadening of
the harmonic tones occurs. Lastly, broadband jet noise is generated by the turbulent

mixing of the hot core jet with the bypass jet and the surrounding atmosphere.
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Figure 6.4: High-bypass ratio turbofan engine [113].

The noise generated by the engine propagates to the far-field, and as it does it
is subjected to frequency dependent atmospheric absorption, and atmospheric effects
brought about by wind, temperature, and humidity gradients. Although these phenom-
ena are of significant importance when determining the sound pressure levels which are

observed in the far-field, they are not explicitly dealt with in this work.

6.1.2 Definition of a Generic Intake

The test case used in this work is introduced here. This is a generic engine intake
geometry, with typical acoustic source and flow field characteristics. An acoustic liner

model is also presented.

6.1.2.1 Engine Intake Geometry

The generic, axisymmetric engine intake geometry used in this work is given in Figure
The geometry is revolved to generate a fully three-dimensional intake geometry.
The spinner has a radius of 0.36 m, and the fan has a radius of 1.2 m. The noise emitted
from the fan plane is described using duct modes, which are defined for a uniform duct.
Thus, a source plane has been positioned behind the fan plane, at z = —0.24 m, to
ensure the duct is uniform. An acoustic liner is placed along the interior wall of the

intake, between z = 0.07 m and z = 1.15 m.
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Figure 6.5: Test case. Top left: generic axisymmetric aero-engine intake geometry.
Top right: source spectrum for the approach condition. BPF tones (—a), third octave
frequency bands (---). Bottom: frequency dependent acoustic liner admittance,

real (—) and imaginary (---) parts.

6.1.2.2 Noise Source Spectra

The noise source spectrum is described using the duct mode definition given in Section
The source is composed of tonal and broadband components.

Tones are present at the blade passing frequency and its harmonics. It is assumed
that for a given frequency all cut-on modes have an equipartition of power. The sound

power levels at the blade passing frequency and its harmonics are approximated using

the formula:

Ly = —0.006f + 134.

The blade passing frequency is f = 811 Hz (B = 24, Qs = 2028 rpm).
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6.1 Turbofan Intake Noise

It is assumed that the broadband noise has a flat frequency response (when using
third octave bands), with a sound power level of L,, = 120 dB. The broadband noise
is assumed to be composed of uncorrelated modes with the same power in each third

octave frequency band. A plot of the source spectrum is given in Figure [6.5

6.1.2.3 Flow Field Characteristics

The flow field is non-uniform within the problem domain. Typically, low flow velocities
are expected in the free stream surrounding the engine, while higher velocities will be
found at the throat and fan-face of the engine. Flow field characteristics are needed to
generate numerical solutions of the flow field.

The following stagnation variables are used: the density is 1.2 kg/m?, the sound
speed is 340 m/s, and the temperature is 20° Celsius. The ratio of specific heats is
~ = 1.4. The engine is assumed to be moving, and the free stream flow surrounding
the engine has a Mach number of 0.25. At the engine fan face the Mach number is 0.3.

A numerical solution of the flow field will be given in Section [6.2.1

6.1.2.4 Sound Absorbing Acoustic Liner

Acoustic liners are strategically placed along the interior surfaces of the engine in order
to attenuate acoustic emissions. Liners placed in the intake section of a turbofan engine
typically have a honeycomb structure, and are covered with a perforated face sheet.
The liner begins at the throat of the nacelle and runs along the interior intake wall
towards the fan (this can be see in Figure . It has a length of 0.97, where r is the
nacelle radius,

The typical impedance of such a liner can be modelled using the formula [107]:

Z R .cot (koh) +i /C()Mf
= —1 i ,
PoCo PoCo PoCo PoCo
where R = 2 Pa-s/m? is the resistance, h = 0.02 m is the cavity depth, and My =
0.02286 Pa-s/m? is mass reactance. The admittance of the liner is given by the inverse
of the impedance. A plot of the frequency dependent acoustic admittance of the typical

liner described above is given in Figure 6.5
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6. APPLICATION TO AN INTAKE NOISE PROBLEM

6.2 Application of the Standard Finite Element Method

Solutions of the three-dimensional turbofan intake noise radiation problem using the
standard finite element method are presented. The flow field calculation is described.
The acoustic model is established, and solved using quadratic elements. The numerical

results are presented, and the computational costs of the method are discussed.

6.2.1 Flow Field Calculation

The flow field will refract acoustic waves propagating through it, and will vary the
acoustic wavelength. A realistic description of the flow field is needed for accurate
noise predictions. Thus, FLUENT has been used to compute the flow field around the
turbofan intake. A calculation of the steady inviscid compressible flow has been made
by solving the Euler equations .

The engine intake geometry given in Figure is used. The rear of the intake is
extruded to form a cylinder, to avoid any unwanted wave reflections. A sphere with a
radius of 5 m is placed around the intake. This new geometry is discretised for the flow
field computations. Small quadratic elements with a size of 30 mm are used close to the
intake to ensure that features of the flow are correctly captured. Larger elements with
a size of 500 mm are used in the free field, where it is assumed that the field variables
are almost constant. The resulting mesh is given in Figure and is composed of
approximately 4.3 million cells.

The flow field characteristics for the approach condition (presented in Section
are used to provide input data to the fluid dynamics solver. However, other input pa-
rameters are required. The static pressures at the boundary of the domain and at the
source plane are calculated using the formula:

v

-1 51
P =Do (1+72M2>

(taken from the FLUENT manual [58]). The stagnation pressure, po, is calculated
using the equation of state, pg = poRyTo, where R, is the ideal gas constant (taken
to be 287 J/(kg K)), and Tj is the temperature in Kelvin. The calculated stagnation
pressure is 1.01 x 10 Pa, the static pressure at the far-field boundary is 9.67 x 10* Pa,

and the pressure at the source plane is 9.47 x 10* Pa. The static temperature at the
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6.2 Application of the Standard Finite Element Method

Figure 6.6: The flow mesh.

source plane is also required; it is computed using the formula:
—1
T=T, <1+72M2>.

The static temperature is T = 290.4 K. The mass flow rate at the source plane is
obtained from the product of the local density, source surface area, and the local flow
speed, yielding 504 kg/s.

The results of the flow computation is given in Figure [6.7] If we consider the
velocity field, we see that the highest velocity (M = 0.5) is found at the engine throat
and halfway along the spinner. The flow velocity is the lowest at the leading edge of
the engine casing, i.e. at the lip of the nacelle. Close to the tip of the spinner the flow
has a Mach number of M = 0.2. The higher velocities, found at the engine throat and
at the base of the spinner, shorten the acoustic wavelength. Thus, when designing the
acoustic mesh, these regions will require greater resolution. This can be achieved in
two ways: the sizes of the elements in that region can be reduced, or the order of the
interpolation functions can be increased. The resolution requirements are more relaxed

at the lip of the engine and at the tip of the spinner.

125



6. APPLICATION TO AN INTAKE NOISE PROBLEM

Figure 6.7: The computed velocity field.

6.2.2 Establishment of the Acoustic Model

The convected wave equation written in terms of velocity potential (2.13)) is solved
in SysNoise using standard quadratic finite elements. The boundary conditions and

acoustic meshes are presented in this section.

6.2.2.1 Boundary Conditions

The noise source spectrum given in Section [6.1.2.2]is imposed at the source plane. The
boundary condition in this region is a perfectly matched layer (see Section [2.4.3.2)),
which imposes the source condition, and guarantees that waves reflected back into the
intake fan from the sound field are completely absorbed.

The frequency dependent absorption characteristics of the liner surface, expressed
in terms of its admittance, A, are related to the wall normal displacement, £, (pointing
into the wall) through the relation: Ap = iw{. The acoustic liner admittance (given in
Section is included in the model using the Myers boundary condition ([2.15)).
To avoid the second order derivative of the velocity potential which arises in the for-

mulation, the condition is implemented using a technique proposed by Eversman [50].
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6.2 Application of the Standard Finite Element Method

Figure 6.8: Left: boundary truncation study, four acoustic domains: Domain I (blue),
Domain II (yellow), Domain IIT (green) and Domain IV (red). Right: coarse mesh of
acoustic Domain III with the source plane (green), the liner (yellow) and non-reflecting

boundary condition (pink).

A perfectly matched layer is used at the computational boundary to impose a non-
reflecting boundary condition. The far-field is computed using the Kirchhoff integral
formulation (Section [2.4.4). The remainder of the geometry is composed of hard walls,

at which the velocity potential gradient normal to the surface is set to zero.

6.2.2.2 Acoustic Meshes

The size of the computational domain has a significant effect on the computational
resources needed to solve the problem. It is desirable to have as small a domain as
possible, but care must be taken so as not to sacrifice the accuracy of the solution.
Thus, four domains of varying sizes are presented in this section, which are used in the
next section to investigate the effect on the solution of moving the artificial boundary
closer to the intake geometry. The four domains are shown in Figure [6.8] It can be
seen that the boundary is placed increasingly closer to the lip of the intake. Domain
I represents a reference domain, its boundary is positioned in a region where the flow
values are close to the free stream quantities (given in Section [6.1.2.3). Domain IV
represents an extreme truncation, the boundary is positioned in a region of significant
flow variations.

The four domains are discretised using quadratic elements. Each domain is discre-

127



6. APPLICATION TO AN INTAKE NOISE PROBLEM

tised using large elements, with a size of 120 mm, to create a coarse, low frequency
mesh, and also with small elements, with a size of 60 mm, to create a fine, higher
frequency mesh. Using a resolution of 7 degrees of freedom per wavelength (eq. )
gives the maximum attainable frequencies of each discretisation; these are 567 Hz and
1.13 kHz, respectively.

Each acoustic mesh is locally refined at the engine throat, due to the increased flow
velocity in this region, and locally relaxed on the far-field (perfectly matched layer)
boundary, where the flow velocity is lower. The coarse mesh is refined to give a local
element size of 102 mm, and relaxed to give elements with an average size of 128 mm.
The fine mesh is refined to give a size of 52 mm, and relaxed to give a size of 64 mm.
The coarse mesh of acoustic Domain III is shown in Figure The three regions in

which the boundary conditions are imposed are highlighted.

6.2.3 Numerical Results

In this section we present the post-processed results of the numerical solutions. The
values of the interpolated flow field are given, the transmission loss and far-field direc-
tivities of the different acoustic domains are compared, and the far-field noise spectrum

is considered.

6.2.3.1 Interpolated Flow Field

The flow speed and density, obtained from the flow field computation, are interpolated
onto the acoustic domains. The average interpolated values are compared to the com-
puted values, for each of the four coarsely meshed acoustic domains, in Table[6.1] The
values at the source plane, and on the far-field (Kirchhoff) surface, are presented. The
values on the Kirchhoff surface are used as input parameters to the Kirchhoff inte-
gral formulation (see Section , which calculates the acoustic far-field. Thus, it is
important that these values agree well with the computed flow field values. Upon com-
parison, the computed flow field data and the averaged interpolated data are in good
agreement, even for the smallest domain, IV. Note that only averaged values are avail-
able from the acoustic solver, and so this comparison does not take into account the any
fluctuations of the values that may be present on the Kirchhoff surface. Fluctuations
can have a significant affect on the far-field calculation, as the integral formulation is

based upon the assumption that the flow field does not vary.
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6.2 Application of the Standard Finite Element Method

Computed Interp. I | Interp. II | Interp. III | Interp. IV
Kirchhoff surface
co (m/s) 343 343 343 343 343
po (kg/m?) 1.14 1.15 1.15 1.15 1.15
ugz (m/s) 0 |-0.2x1072 0.1 | -0.1x1071 | -0.5x1073
ugy (m/s) 0 |-0.6x1072 | -0.2x1072 0.2 | -0.8x1072
g, (m/s) -85.0 -85.0 -84.4 -83.0 -83.8
Source plane
co (m/s) 341 341 341 341 341
po (kg/m?) 1.11 1.12 1.12 1.12 1.12
M -0.338 -0.332 -0.331 -0.331 -0.332

Table 6.1: Comparison of the averaged Kirchhoff surface and source plane values with
the computed flow field values. Data for each of the coarsely meshed acoustic domains is

presented.

6.2.3.2 Transmission Loss

The transmission loss quantifies the power loss of the sound field between the source
plane and the far-field. Here, the transmission loss is used to compare the numerical
solutions obtained from the different domains, and thus to determine the effect on the
accuracy of moving the artificial boundary closer to the engine intake.

The transmission loss is given by:

o
where P; is the input power prescribed at the source plane and P, is acoustic power
radiated to the far-field. The input power is 120 dB (which is divided equally between
all cut-on modes), and the output power is calculated on the Kirchhoff surface. The
transmission loss as a function of frequency is shown in Figure The coarse meshes
are used to generate solutions for a range of third-octave band centre frequencies from
50 Hz to 630 Hz. The fine meshes are used to solve the third-octave frequencies ranging
from 800 Hz to 1.6 kHz.

Good agreement between the transmission losses given by each domain is found.
For the low frequency results the maximum observable difference between Domain 1

and Domain IV is 0.2 dB. For the higher frequency range it was only possible to solve
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Figure 6.9: Comparison of the transmission losses obtained for the lined inlet duct, for

the third-octave band centre frequencies ranging from 50 Hz to 1.6 kHz.

the two smallest domains with the available computational resources. The results given
by these two domains are also in good agreement. The comparison of the transmission
losses seems to suggest that using the smallest domain (IV) does not reduce the accuracy

of the solution.

6.2.3.3 Far-Field Directivity

To assess the influence of the domain truncation on the far-field results, the directivity
plots obtained on the different domains are compared between 0° to 120°. Beyond 120°
little significant information is expected to be found, as in the rear arc the sound field
will be weakest. The directivity plots at 315 Hz and 500 Hz for a multimode noise
source on the coarse meshes are given in Figure [6.10, Domains I and II show close
agreement along the full arc, while differences of up to 2 dB at 315 Hz, and up to 3
dB at 500 Hz, are observed for Domain IV. This shows that the boundary of Domain
1V is too close the nacelle lip. The results for the fine meshes of Domains III and IV
are given in Figure at 1 kHz and 1.25 kHz. Noticeable differences are observed,
and thus it is assumed that the boundary truncation used to generate Domain IV is

too crude for accurate predictions, as it is in a region of significant flow variation.
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Figure 6.10: Comparison of the far-field pressure directivities at 10 meters, obtained
using the coarse meshes, with a multimode noise source at 315 Hz (left) and 500 Hz
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Figure 6.11: Comparison of the far-field pressure directivities at 10 meters, obtained
using the fine meshes, with a multimode noise source at 1 kHz (left) and 1.25 kHz (right).
Domains: IIT (—), and IV (-o).

6.2.3.4 Far-Field Spectrum

The complete radiation of the turbofan engine is considered. The coarse and fine
meshes of Domain III are used to predict the sound pressure levels at 10 m from the
source plane, for the set of third-octave band centre frequencies ranging from 50 Hz
to 1.6 kHz, and at various angles to the centreline axis. The sound pressure level is

given as a function of frequency, and of angle, in Figure The source comprises
the broadband noise, and fundamental tone at 1 BPF.
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Figure 6.12: Left: complete radiation spectrum of the turbofan engine at 10 meters, at
three different angles, in the approach condition over the frequency range [50, 1600] Hz.
Both the contribution of the broadband noise and of the BPF tones are included. Right:
Directivity patterns for three frequencies.

The broadband pressure level at 0° is almost constant with frequency. It varies by
approximately +£2 dB about a level of 95 dB. For the largest angle considered, 90°, the
low frequency components play a much more significant role. The noise spectrum is
clearly dominated by the 1 BPF tone, which is about 10 dB higher than the average
broadband noise. At larger angles this is less obvious, and the 1 BPF pressure levels
are comparable to those recorded in the low frequency regime. The directivity of the
turbofan changes significantly with the frequency. Radiation differences between the
duct axis and the largest angle range from, approximately, 13 dB at 50 Hz to 27 dB at
1.6 kHz.

6.2.4 Computational Costs

The computational costs of the prediction of the noise radiated from the generic engine
intake are discussed here. The cost of the low frequency solution (coarse mesh) is
compared to the high frequency cost in Table The number of nodes, elements,
and degrees of freedom are included in the table for the sake of interest, but it is more
informative to consider the number of non-zero entries in the global matrix instead.
This number quantifies the amount of memory required to store the matrix. The
global matrix must be assembled and factorised for every frequency considered. For
each cut-on mode (for a given frequency) a new right hand side term for the linear

system to be solved must be assembled. The cost of solving the system for each mode
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Coarse (low freq.) | Fine (high freq.)
Number of nodes 103 131 707 362
Number of elements 72 348 511 754
Number of degrees of freedom 153 266 875 618
Number of non-zero entries 5 015 063 27 275 355
Factorisation memory used (GB) 4.31 41
Time per factorization (s) 63.9 707
Solve time per mode (s) 1.37 5.48
Post-process time per mode (s) 1.88 28.7

Table 6.2: Computational costs of the noise solutions using Domain III.

is also included. Finally, a post -processing stage is carried out (for every mode) in
which the nodal pressure values and velocity vectors are evaluated, and the Kirchhoff
integral is solved.

From the table it can be seen that, between the coarse and fine meshes, the num-
ber of non-zero entries increases by a factor of approximately five. The memory and
time needed to factorise the global matrix, for each frequency, goes up by an order of
magnitude. The time needed to solve the system for each mode increases by a factor
of four, while the post-processing goes up by a factor of fifteen.

It can be seen that the time taken to factorise the system for all of the twelve low
frequencies (ranging from 50 Hz to 630 Hz) is 12.8 minutes, where as for the four high
frequencies the time taken is 47.1 minutes. However, as the frequency increases, so does
the number of cut-on modes. The number of cut-on modes as a function of frequency is
shown in Figure As the number of modes increases, the post-processing becomes
the most computationally expensive stage. To cover the twelve low frequencies the
total computational time (including matrix assembly) is 25.2 minutes. Due to the very
high number of cut-on modes, the total time taken to cover the four high frequencies
is 10.3 hours.

The mesh refinement used in this example of the performance of the standard
quadratic finite element method doubles the maximum resolvable frequency. However,
it can be seen in these results that the factorisation memory and time requirements

increase by approximately an order of magnitude between the two meshes; clearly the
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Figure 6.13: Number of cut-on modes per third octave band frequency.

relation between the resolvable frequency and the computational resources required is
not linear. Higher frequencies will become increasingly more computational expensive
due to this relation, and the total computational time needed will increase dramatically

with frequency due to the increasing number of cut-on modes.

6.3 Application of Proposed Adaptive-Order Method

The proposed adaptive higher-order finite element method has been implemented in
the commercial software SysNoise (by the sponsoring company, LMS International).
Unfortunately, at the time of writing the implementation did not yet provide for the
inclusion of a flow field, or the use of a modal source condition. Thus, a version of
the model without a flow field is used in this section to demonstrate the efficiency
gains afforded by the new method. The plane wave mode only is considered. Using
this simplified test case does not affect the performance gains demonstrated in this

Chapter.

6.3.1 Meshes

In total, ten meshes have been created. All of the meshes use quadratic elements to
describe the geometry. Fight of the meshes are designed for solution using the standard

quadratic finite element method, while the remaining two meshes are designed for the
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Max. frequency (Hz) | h (mm) nodes | elements | degrees of freedom
315 310 8 593 5611 15 563
400 240 17 911 12 002 29 906
500 190 32 570 22 201 51 300
630 150 72 043 50 465 103 428
800 120 129 587 91 691 177 727
1000 97 249 400 | 178 629 322 475
1250 78 517 945 | 375 492 630 610
1600 60 | 1053 697 | 769 074 1 243 087

Table 6.3: Data of the meshes used for the standard quadratic finite element method.

Max. frequency (Hz) | h (mm) | nodes | elements degrees of freedom
1600 300 | 9492 6 226 | frequency dependent
2300 200 | 24 363 16 185 | frequency dependent

Table 6.4: Data of the meshes used for the adaptive higher-order finite element method.

adaptive order finite element solutions. Details of the meshes used for the quadratic
finite element method are presented in Table [6.3] while mesh details for the adaptive
order finite element method are presented in Table

Meshes which are intended to be used for the quadratic method have been created
for each of the third-octave centre frequencies, ranging from 315 Hz to 1.6 kHz. The
desired element size of each mesh has been determined using seven degrees of freedom
per wavelength (eq. ) In this section solutions are obtained for the case when the
flow is zero, thus the meshes are approximately uniform (as no regions which require
refinement exist). The most refined mesh (h = 60 mm) is used to provide reference
solutions with which to confirm the validity of solutions obtained using coarser meshes.

Of the two meshes created for the polynomial finite element solutions, one is used
to investigate the efficiency gain made possible by the adaptive higher-order elements,
while the other is used to investigate the highest achievable frequency with the available
resources. The sizes of the elements have been chosen to resolve frequencies of 1.6
kHz and 2.3 kHz, respectively, again by ensuring that seven degrees of freedom per

wavelength are used.
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6. APPLICATION TO AN INTAKE NOISE PROBLEM

Figure 6.14: Examples of the meshes used for intake noise propagation predictions. Left:
quadratic FEM (reference) mesh: h = 60 mm, right: adaptive order FEM mesh: h = 300
mim.

Examples of the meshes are given in Figure It can be seen that the adaptive
higher-order method mesh is much coarser than the quadratic method mesh. The ge-
ometry of the problem is still respected by making use of quadratic geometry elements.
Furthermore, from a practical point of view, the coarser mesh is much less demanding
of resources when pre-processing the model, i.e. when meshing, selecting boundary

condition surfaces, or mapping the flow.

6.3.2 Far-Field Directivities

In this section the directivities of the plane wave mode emitted from the generic lined
turbofan engine, predicted using quadratic elements and higher-order elements, are
compared. This comparison aims to confirm that the problem geometry is properly
respected by the coarse mesh. The predicted directivities at 10 m from the fan plane
for each of the third-octave frequencies are given in Figures[6.15and [6.16] It can be seen
that for all solutions the main lobes of the directivity patterns are in good agreement.
At larger off-axis angles the agreement is not as good, but these sound pressure levels
are very low in comparison to the maximum levels, and thus these differences should
not have a noticeable effect on the accuracy of the predictions. These results imply

that the problem geometry is respected by the coarse mesh, and that the higher-order
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Figure 6.15: Sound pressure level of the plane wave mode as a function of polar angle.
Top left: 315 Hz, top right: 400 Hz, bottom left: 500 Hz, and bottom right: 630 Hz.
Reference solution (—), standard quadratic solution (...), higher order solution (---)

solutions agree with the reference solution.

6.3.3 Memory and Time Requirements

The standard method and the higher-order method are used to solve the problem on
a machine with 48 GB of memory, operating at 2.53 GHz, with 8 cores. The compu-
tational resources required to factorise the global matrix are investigated. In Figure
the memory and time requirements of the quadratic finite element method are
compared to those of the higher-order finite element method. A general observation is
that both measures of cost exhibit the same trend, in that the higher-order solutions
are increasingly more efficient than the standard finite element solutions with increas-

ing frequency. This is due to the reduced factorisation memory needed by higher-order
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Figure 6.16: Sound pressure level of the plane wave mode as a function of polar angle.
Top left: 800 Hz, top right: 1 kHz, bottom left: 1.25 kHz, and bottom right: 1.6 kHz.
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functions. At low frequencies both methods require, roughly, the same amount of mem-
ory and time. This is as expected since they both use low order elements. However, as
the frequency is increased the higher-order method becomes increasingly more efficient.
For a frequency of 1.6 kHz the standard quadratic method requires approximately 40.7
GB of memory, whereas the polynomial order method requires only 11.5 GB. The total
time spent factorising the matrices using the standard quadratic method was 27.2 min-
utes, while the total time spent factorising the matrices when using the higher-order
element method was 5.17 minutes. It is worth noting that each quadratic element solu-
tion requires a new mesh and problem definition, which consumes a great deal of time
for the end-user. Furthermore, the higher-order method will maintain the accuracy

of the solution at much higher frequencies than the standard method, as higher-order
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Figure 6.17: Resources required to solve the linear system, as a function of frequency.

Standard quadratic solution (---). Higher order solution (—).

functions tackle dispersion error more effectively than lower-order functions. It is clear
that a significant gain in efficiency has been achieved.

To reduce operator time in industry it is not uncommon to generate a single mesh
and solve the linear system for a range of frequencies. This technique is reproduced
here for further comparison. The quadratic element reference mesh is compared to the
more refined (h = 200 mm) higher-order element mesh. The memory requirements of
both solutions are given as a function of frequency in Figure It can be seen that
the higher-order method provides more efficient solutions. The standard quadratic so-
lutions require about 40.7 GB of memory for every frequency (as the same mesh is used
for each frequency) whereas the higher-order element requirements vary with frequency.
The higher order solution at 1.6 kHz requires approximately 14 GB. Furthermore, the
maximum resolvable frequency has been raised from 1.6 kHz (obtained using the most
refined standard quadratic mesh) to 2.3 kHz when using the higher-order method, for
approximately the same amount of available memory (the higher-order element method
requires 36.8 GB at 2.3 kHz). This is an increase of maximum resolvable frequency
of 43.8 %. The total time taken to solve the standard finite element problem was 5
hours and 9 minutes, whereas only 37 minutes were needed to solve the higher order
problem. In this instance, the higher-order method is 13.7 times faster than the stan-
dard quadratic method. Included in Figure [6.18] are the minimum, most common and
maximum polynomial orders of the adaptive order method, as a function of frequency.

We observe that, qualitatively, the maximum order exhibits the same trend as seen in
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Figure 6.18: Comparison of reference mesh (h = 60 mm, quadratic elements) and refined
pFEM mesh (h = 200 mm). Standard quadratic solution (---). Higher order solution (—).
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the plot of the factorisation memory given as a function of the frequency.

6.4 Summary of Conclusions

A generic model of a turbofan engine intake noise problem has been presented. The
standard quadratic method has been compared to the proposed higher-order method,
using a version of the physical problem which omits the flow field (as at the time of
writing this feature was not available in the prediction software used). It has been
shown that the cost of solving this problem is greatly reduced when the proposed
higher-order method is used instead of the standard quadratic method. When solving
the problem for eight third-octave centre frequencies, ranging from 315 Hz to 1.6 kHz,
the factorisation time is reduced from 27.2 minutes (using quadratic elements) to 5.17
minutes. Note that this saving will be even more significant when all cut-on modes
are solved for. For the highest frequency solvable by both methods, i.e. 1.6 kHz, the
factorisation memory requirement has dropped from 40.7 GB (standard FEM) to 11.5
GB. The higher-order method presented in this work is significantly more efficient than
the standard method, and can be used to solve problems at higher frequencies than can

the standard quadratic method.
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7

Exhaust Noise Prediction

In the preceding chapters work concerning the development of a more efficient com-
putational method for convected wave problems was presented. In this chapter we
consider a reformulation of the potential flow problem to predict the noise radiated
from turbo-fan engine exhausts. Solving these problems for a potential flow is con-
siderably less computationally expensive than solving the linearised Euler equations,
but the assumption of potential perturbations excludes the vorticity from the mean
flow; this is an essential feature of sheared flow acoustic problems, as the acoustic field

becomes coupled to the flow field.

7.1 Background and Motivation

Exhaust noise predictions are generally obtained by solving the Linearised Euler Equa-
tions (LEE) in the time domain. Finite-difference methods are commonly used for this
purpose, typically with compact schemes or dispersion-relation-preserving schemes, see
for instance the work by Panek et al. [I19], and Chen et al. [39]. When using un-
structured grids, the discontinuous Galerkin methods (DGM) seem to be the method
of choice [30} 40}, 127]. Using these computational approaches, solutions have been ob-
tained for axi-symmetric and three-dimensional models of turbofan exhausts at realistic
frequencies.

A specific issue associated with time-domain solutions of the LEE is that they can
include Kelvin—Helmholtz instabilities which develop along the jet shear layer. This

part of the solution can, in some cases, overwhelm the acoustic solution. In practice the
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growth of these instabilities is limited by the development of the shear layer thickness
and is saturated by non-linearities. Several methods have been proposed to suppress
or control these instabilities. Bogey et al. [33] used a technique called Gradient Term
Suppression (GTS) to remove the terms associated with the instabilities. The Acoustic
Perturbation Equations (APE) have been introduced to remove the hydrodynamic part
of the solutions [62]. Huang et al. [79] compared GTS and the APE and found that they
provide similar results, while Tester et al. [145] have shown that suppressing gradient
terms has a small but measurable effect on the acoustic far-field. Bailly & Juvé [21]
modified the LEE by introducing non-linear terms to saturate the instability waves.
The full non-linear Euler equations are also used, for instance by Redonnet et al. [125].

An alternative approach is to solve the LEE in the frequency-domain. It has been
suggested that solutions obtained in the frequency domain using a direct solver are free
of instability waves [2]. Zhao & Morris [I59] and Rao & Morris [124] used a DGM
and a Streamlined Upwind Petrov-Galerkin finite element method to solve the LEE in
the frequency-domain, and produced solutions which were not polluted by instability
waves. Ozyoriik [I17, 118] used a finite difference scheme to make turbofan exhaust
predictions in the frequency domain using a direct solver.

Frequency-domain solutions of the LEE using direct solvers can be computationally
expensive, as four or five unknowns must be solved for and a fine grid must be used
to resolve the hydrodynamic waves. A simpler model can be used if one assumes that
the total flow, i.e. mean flow and perturbed flow, is irrotational. The benefit of the
linearised potential theory is that it only involves a scalar convected wave equation and
is therefore much cheaper and faster to solve [132]. This model is now well established
in industry and is valid for several applications, such as noise radiation from turbofan
inlets. However, by definition it cannot be applied to cases with shear flows or thick
boundary layers. Note that it may also be possible to make use of the Mohring equation
[101], but (to date) validations of this equation have not been published.

The main objective of this investigation is to extend the linearised potential theory
to include shear layers so as to represent the refraction effects. Previous attempts
have been made to represent shear layers with linearised potential theory. Eversman &
Okunbor [51] modelled the shear layer using a vortex sheet across which the continuity
of acoustic particle velocity and continuity of pressure are imposed. The convected wave

equation is solved using standard finite elements. More recently, Manera et al. [95]
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compared time-domain LEE and potential flow solutions for exhaust noise problems.
They also used a vortex sheet, but enforced the continuities of normal displacement
and of pressure instead.

In this chapter we revisit the models previously proposed in references [51), [95] and
we address several outstanding issues: the application of a Kutta condition at the
beginning of the vortex sheet, the discretisation of the vortex sheet, and a quantitative
validation and comparison of these finite element models. In particular, we explicitly
include the Kutta condition, an upwinding method is proposed to discretise the vortex
sheet, and finally the different finite element formulations are validated against a semi-
analytic model.

This chapter is structured as follows: we introduce the physical problem, by de-
scribing the vortex sheet, the Kutta condition, and the Kelvin-Helmholtz instability.
We review the governing equations, derive the potential theory model, and present
the necessary continuity conditions. We derive the existing formulations, the proposed
formulation, and we introduce a novel streamline upwind Petrov-Galerkin method. De-
tails of the implementation of the method to a benchmark problem are given, and the

results are discussed. Finally, a summary of the main findings is presented.

7.2 Description of the Problem

An example of the jet exhaust of a turbofan engine exhaust is illustrated in Figure
[[1l Coaxial jets issue from the bypass and core ducts, and shear layers develop at
the interface between these jets, and between the bypass jet and the free stream flow.
Broadband noise and tonal noise are generated upstream of the core and bypass ducts.
This noise propagates along the ducts and radiates through the jets and into the far
field. The sound waves will be diffracted by the trailing edges of the ducts, and refracted
by the mean flow gradient as it propagates through the shear layers. It is essential to

capture these effects to accurately predict the sound radiated to the far field.

7.2.1 Vortex Sheet

The shear layer of a jet is initially very thin close to the nozzle and gradually grows in
the downstream direction. The convected wave equation (2.13) does not allow sheared

flows, such as a mixing layer, to be included as a base flow. Instead we implement a
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Figure 7.1: Diagram of the engine exhaust problem.

vortex sheet, which is essentially a surface of discontinuity in the mean flow representing
an infinitely thin shear layer. This approximation is only valid when the acoustic
wavelength is much larger than the shear layer thickness. This is the case either close
to the nozzle and/or at low frequencies.

To fix ideas, let us consider two different flow regions §2; and {29 separated by a
vortex sheet I', as shown in Figure The trailing edge of the nozzle, from which the
vortex sheet originates, is labelled I'y. The flow properties in each region are denoted
by subscripts 1 and 2. On I' the mean flow is tangential: vy - n = vgo - n = 0, where
n is the unit normal to I' pointing into 2. The solutions on either side of the vortex
sheet are coupled by imposing kinematic and dynamic conditions [149].

For an inviscid fluid, the dynamic condition is the continuity of pressure:

Opo2
on’

Opo1

o (7.1)

p1+¢& =p2+¢

where £ is the normal displacement of the vortex sheet. Note that the terms involving
mean pressure gradients are present because the continuity of pressure for the total flow
is imposed on a surface which oscillates with displacement £. Using Euler’s equation

for the base flow we can write:

—— = —po[(vo- V)vg] - m. (7.2)
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Thus we see that the second terms on both sides of Equation (7.1)) are related to the
change in direction of the fluid elements along the vortex sheet.
The kinematic condition derived by Myers [I10] is obtained by linearising the con-

tinuity of total normal velocity along a moving interface:

d d
vl-n:%f— n-[(n-V)vy] and vg-n:%—

n-[(n- Vv,  (7.3)
where the terms involving normal gradients account for the curvature of the vortex
sheet. This condition can be understood to represent the continuity of the normal
acoustic displacement across the vortex sheet [149].

As an alternative to ([7.3)), the continuity of normal acoustic velocity has sometimes

been used. This can be written as:

Op1  O¢a

vi-n=wvy-n, oOr, —— =—— (7.4)

on  on '

7.2.2 Trailing Edge

The behaviour of the fluid at the trailing edge has a noticeable effect on the acoustic far
field. The acoustic and hydrodynamic fields are coupled at the trailing edge, and, as a
consequence, the amount of vorticity shed from the trailing edge and the behaviour of
the sound field at that point are closely linked.

A basic physical property of the problem is that the streamline at the trailing edge
is continuous, which amounts to requiring that the normal displacement of the vortex
sheet at the trailing edge must be zero.

A stronger constraint is the Kutta condition, for which the normal acoustic velocity
should also vanish at the trailing edge. Since we have v - n = dp£/dt the streamwise
gradient of the normal displacement at the trailing edge vanishes. The Kutta condition
indicates that all the vorticity is shed from the trailing edge and, in that case, that the
acoustic pressure vanishes with p ~ /r near this point where r is the distance from the
trailing edge. If the Kutta condition is not satisfied, the acoustic pressure is singular
at the trailing edge and behaves like p ~ 1/4/7.

This condition has been included in analytic models of exhaust duct problems.
Rienstra [I28] introduced a complex parameter which could be continuously varied
to control the amount of vorticity shedding. Gabard & Astley [62] used this method
when modelling the noise radiating from a jet pipe (the so-called Munt problem [109]).
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Figure 7.2: A schematic of a three-dimensional vortex sheet I' emanating from the trailing

edge 'y of a nozzle.

They observed that vorticity shedding has no significant effect on the main lobe in far-
field directivities, but did find that vorticity shedding noticeably affects the pressure
amplitude in the rear arc.

An example of vortex shedding from a trailing edge, in the case of a uniform mean
flow with an imposed Kutta condition, is given in Figure Also included in the
figure is a solution of the velocity potential field in the presence of non-uniform mean
flow, but without any Kutta condition, note the refraction of the wave as it propagates
the vortex sheet. This data has been obtained using the analytic solution which will

be used to test the numerical predictions, yet to be presented.

7.2.3 Kelvin—Helmholtz Instability

The shear layer can exhibit Kelvin—Helmholtz instabilities. The onset of this hydrody-
namic instability is characterized by the Strouhal number St = f§/Au, where f is the
frequency, d the shear layer thickness and Aw is the velocity difference [89].

The instability wave will initially grow exponentially along the shear layer. If in-
cluded, non-linear effects will saturate the growth of this instability. Even in a linear
model, the gradual increase of the shear layer thickness will turn the instability wave
into a decaying wave. When approximating the shear layer by a vortex sheet model,
it is important to recognise that the vortex sheet model is unstable at any frequency

since we take § — 0 [48]. Furthermore, since the growth of the shear layer thickness is
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Figure 7.3: An analytic solution of a straight vortex sheet leaving a straight duct, the
duct is found at » = 1, and ends at z = 0. The Helmholtz number kR (where k = w/c¢y is
the wavenumber, ¢g = 1 and R is the duct radius) is 10. The excitation source is the second
radial mode with azimuthal order m = 3. Left: Uniform mean flow (vg1 = vg2 = 0.45)
with Kutta condition imposed at the trailing edge. Note the vorticity shedding. Right:
Non-uniform mean flow (vg; = 0.45, vgpa = 0.1) without the Kutta condition. Note the
acoustic refraction across the vortex sheet.

not included the instability wave will grow indefinitely along the vortex sheet. This in-
troduces significant challenges for numerical predictions inasmuch as such instabilities
may obscure the acoustic part of the solution. Finally, the causal solution for the initial
value problem does include the instability [42]. However, when solved in the frequency
domain it is expected that a non-causal solution excluding the instability is obtained
[2]. We will comment further on this issue when we discuss the properties of the finite

element models presented.

7.3 Finite Element Models

The wave equation , written in terms of velocity potential, is solved on each
acoustic domain, ©; and €2y, using a standard finite element method based on the
usual variational formulation .

The integral on the boundary 0f2 is modified to incorporate the appropriate bound-
ary conditions. Here we concentrate on the implementation of the vortex sheet at the
surface I', as presented in Section [7.2 In the following discussion, we denote by A

all the terms involved in the formulation of the vortex sheet. Since the mean flow is
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parallel to the vortex sheet, the initial definition of these terms is:

__ 700 092
A= /Fmel o po2Ws o dr . (7.5)

7.3.1 Existing Formulations

The rationale for the formulation proposed by Eversman & Okunbor [51] is (i) to allow
for a discontinuity in the velocity potential along I', and (ii) not to introduce other
additional degrees of freedom. In this formulation the integral in vanishes, which
requires a continuous mean density across I' (e.g. an isothermal jet), and the continuity
of normal velocity .

The continuity of pressure is enforced by means of a Lagrange multiplier, that is by

adding the following term to the variational formulation (3.1):

do1 Wi do2Wa do191 do2¢2
A=-)\ — — dr 7.6
/F<,001 I P02 1 > <Po1 i P02 i ; (7.6)

where A is the Lagrange multiplier. Note that the terms involving the displacement &
in are not included since the formulation was developed for a cylindrical vortex
sheet. The term under the overbar is the test function suggested in [51].
It is possible to extend this formulation to the case with different mean densities
across the vortex sheet. To that end, we have to introduce a variable v such that
001 = 002 = iwv
on on
This variable can be interpreted as the normal displacement that would be observed in
the absence of mean flow and we denote the corresponding test function by 7. Instead
of a Lagrange multiplier for the continuity of pressure, we write equation as the

following variational formulation:

_ doi¢r  .Opor) do2d2  ,Ipo2 B
/F?? [(Pm 1 oy ) <p02 & g dI'=0, Vn, (7.7)

where the terms between parentheses represent the acoustic pressure on either side of

the vortex sheet. When considering a straight vortex sheet, the terms in equation ((7.7)
involving £ vanish since they describe the change in direction of the fluid elements, see

equation ([7.2)). The variational formulation ([7.7)) is solved alongside equation (3.1)).
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Therefore, for a straight vortex sheet the relevant terms in the modified variational

formulation are:

A=~ A(Poﬂ% — poeWa)iwr + 17 [(Pm ngl) - <P02 dodzzbzﬂ dr. (7.8)

Eversman & Okunbor suggest that the test function 7 should be constructed by
taking the material derivative of the standard finite element shape function. We follow
their example by replacing n with dgn/d¢, where standard shape functions are used for
7.

Manera et al. [95] proposed an alternative formulation based on the continuities of
pressure and of normal displacement, the latter being also introduced as a variable in
the model. Equation is used to write the continuity of displacement £ in terms of
the velocity potential. Using equation the integral in becomes

/po1W1 {d§ —én-[(n- V)Uoﬂ} po2Wo {df —én-[(n- V)’002]} dar. (7.9)

The continuity of pressure is enforced by adding the variational statement ((7.7) where
71 is now the test function associated with £. The corresponding terms in the variational

formulation are therefore as follows:

A= / po1 Wi {1§ —¢én-[(n- )Uoﬂ} — po2Wa {25 —¢én-[(n- V)UOZ]}

_ do1¢1 Opo1 do2¢2 Opo2
A s

The addition of the normal displacement as additional degrees of freedom on I' does
not represent a noticeable cost compared to the discretisation of the acoustic field.
Note that in the formulations described so far no attempt has been made to control
the behaviour of the solution at the trailing edge (for instance, for there is
no mention in [95] of the displacement being set to zero at the trailing edge, although
technically it is possible to do so directly since the displacement ¢ is an explicit variable
in this formulation). Furthermore, it is not possible in these formulations to enforce
the Kutta condition. These issues will be revisited in Section where the constraints

imposed at the trailing edge will be discussed and their effects compared.

149



7. EXHAUST NOISE PREDICTION

7.3.2 Proposed Formulation

The new formulation is also based on the continuity of pressure and normal displace-
ment across the vortex sheet. In addition, it attempts to provide an explicit description
of the Kutta condition at the trailing edge.

First we introduce the normal velocity on the vortex sheet as an independent vari-
able. Two distinct velocities are defined since this quantity is not necessarily continuous

across the vortex sheet:

oo
on ’

_ 9%

and vy = o (7.11)

U1

These additional variables only represent a very small increase in the total number
of degrees of freedom in the numerical model. The advantage of having v; and vy
as explicit variables is that one can directly impose the Kutta condition by setting
v1 = vy = 0 at the trailing edge.

Secondly, the normal velocities on either side of I' are related to the displacement
& of the vortex sheet by using the kinematic condition derived by Myers. This is

achieved by the following variational statement:

d d
/01 vy — ﬁ—i—fn- (n-V)vol] | +72 vg—ﬁ—i-fn- [(n-V)vge] ) dl'=0,
r dt dt
(7.12)
where the test functions o1 and o9 are associated with the velocity variables v; and
vg. The displacement is still an explicit variable, and this allows the trailing edge
displacement to be set to zero directly.
Thirdly, we use equation (|7.1]) for the continuity of pressure formulated in the same
way as in equation ([7.7). When put together, the proposed formulation corresponds

to:

o = d o) d o)
A=— / portWivy — poaWovz +17 [(Pm 001 po1> - <p02 0202 pmﬂ
Tr

dt 8n1 dt 8712
_ do1§ _ do2§
+o01 {Ul — ﬁ +§n . [(n . V)’U()l]} + 09 {UQ — F + fl’l . [(n . V)’UOQ]} dar.

The first two terms originate from ([7.5)) and represent the forcing of the acoustic fields
in 7 and 9 by the vortex sheet. The next term enforces the continuity of pressure

across I'. The last two terms relate the acoustic normal velocities on either sides of I to
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the normal displacement of the vortex sheet. For a straight vortex sheet the proposed

formulation reduces to

- __ d d
A=— / po1Wiv1 — poaWava+7 <P01 05(;51 — P02 02¢2)
. t dt
_ doi€ _ do2§
+01 <U1 a > —+ 09 <U2 1 dr. (7.13)

7.3.3 Streamline Upwind Petrov-Galerkin

Oscillations of the vortex sheet will be caused not only by acoustic waves propagating
through it but also by the vorticity shedding from the trailing edge. The latter is
hydrodynamic in nature and has quite different properties from the acoustic field.
In particular, its wavelength is smaller and given by vy/f. There are two acoustic
wavelengths A = (co £ vg)/f, i.e. downstream and upstream waves, and there are
therefore the factors M /(14 M) between the acoustic and hydrodynamic wavelengths.
These hydrodynamic oscillations are simply convected by the mean flow along the
vortex sheet.

It is well-known that standard finite elements are particularly inefficient at repre-
senting such solutions due to the lack of upwinding. Finite elements tend to produce
node-to-node oscillations when attempting to solve convection-dominated problems, see
for example the standard textbook by Zienkiewicz et al. [161].

Brooks & Hughes [35] introduced the Streamline Upwind Petrov-Galerkin (SUPG)
method which can result in nodally exact solutions for the one-dimensional advection-
diffusion equation. This upwinding method is based on the idea that information will
propagate in the direction of the convection velocity, and it reduces the need for severe
mesh refinement by weighting the solution upstream of a node more heavily than the
solution downstream.

SUPG methods are used extensively for convection-dominated problems in the time
domain [I6I]. They are not so common for time-harmonic problems, one exception
being the work of Rao & Morris on a finite element model for the LEE [123| 124]. They
showed that the method was suitable for aeroacoustic problems with rotational mean
flow. In the present work, a SUPG method is proposed to discretise equations (7.1]) and
. Results presented in section will demonstrate the benefit of this approach.
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SUPG methods use test functions of the form 1 + h39n/0z where 7 is a standard
shape function, and h is the element size. The addition of the gradient term to the test
function stabilises the Galerkin method, and then the parameter 5 can be adjusted to

optimize the accuracy of the numerical scheme.

7.3.3.1 Model Problem

The oscillations of the vortex sheet are fully coupled with the sound fields on either side
of I', and it is not possible to write a simple convection equation for the displacement

of the vortex sheet. As a consequence it is not practical to use the full formulations

described in Sections ([7.3.1)) and ([7.3.2)) to choose the value of the upwinding parameter

5. Instead we consider a simple model problem to identify a suitable value for 8, which
we will then use for the full formulation with the vortex sheet. The model problem

considered is the one-dimensional ‘one-way’ wave equation in the frequency domain:

iw<+vgi =0, (7.14)

where ( is a physical quantity, and v is a convection velocity, which may take on a
complex value. The imaginary part of this velocity may be used to generate solutions
which either grow or decay. Solutions to the model problem behave like { ~ e~ ikz ,
where k = w /v is the wavenumber. As will be shown in Section this simple model
adequately captures the behaviour of the oscillations of the vortex sheet in the problem

of interest ((7.13)).
Solving Equation ([7.14)) with the SUPG method leads to a variational statement of

the form:
0 0
/ (77 + hBaZ) (iw( + vag> dz=0. (7.15)

To obtain § we consider a uniform mesh with elements of size h with quadratic
shape function We then require that the exact solution ( ~ e~ be also a solution

of the numerical model. This leads to two distinct equations:

K107 FEm 4 Ky 0o R0 4 (g g+ K1)+ Ky pe %72 4 K 5o ) = 0 (7.16a)

Kyqe FCR2) 4 K o 4 Ky ge 2 — (7.16b)

"We will also use quadratic elements when solving the full problem in Sections and The

procedure described here to obtain S can also be applied to linear elements.
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o}
[

-1 0 1 -1
z z

Figure 7.4: Comparison of standard test functions and the SUPG test functions, on a
reference element. For the SUPG functions, h = 0.5, and v = 0.45 — 0.1i. Left: Standard
quadratic test functions. Right: SUPG test functions. Real part (—), imaginary part

()

where the coefficients K, originating from the element matrix, can be written in closed-
form (these expressions are not given here for the sake of brevity). Equation
corresponds to the difference equation for the nodes between two elements (i.e. the
adjacent shape functions) while equation corresponds to the internal nodes (i.e.
to the internal bubble shape function). Each of these equations can be solved to obtain
an optimal value for the upwinding parameter 5. This implies that different values of
B should be used for the adjacent shape function and for the internal bubble shape
function. The closed-form expressions for 81 and fo are quite complex, but using a
Taylor series with respect to wh when wh — 0 yields the following approximations:

Tihw 4iv . ihw 4iv . .
= + S (exterior nodes), and, [ =~ e + S (interior nod(e) ) |
7.17

B1

A comparison of the standard test functions and the SUPG test functions is given
in Figure 7.4l Tt should be noted that the coefficients S and Py are imaginary, so the
SUPG test functions are complex whereas the standard test functions are real. It can
be seen as well that the SUPG test functions are weighted more heavily towards the
upstream direction.

To illustrate the benefit of using the SUPG method with the Definitions ,
Figure compares the rates of convergence of the standard quadratic test function

and of the SUPG method. These results are for a simple test case with a Dirichlet
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Figure 7.5: Numerical error, as a function of the number of elements, for the simple
convection equation . Standard quadratic test functions (---), SUPG test functions
(—). The numerical error is measured using the relative nodal error. Parameters are the
number of elements: 10 to 200 in steps of 10, a domain size of 2, w = 10 and v = 0.454-0.1i.

condition (¢ = 1) at z = 0 and a domain of length 2. It is quite clear that the use of
the SUPG test functions results in a faster convergence rate than that of the Galerkin

test functions - quartic instead of quadratic.

7.3.3.2 Vortex Sheet Problem

Now that we have devised an optimal SUPG for the model problem , we discuss
how it can be used for the vortex sheet model. The key is in identifying the phase veloc-
ity v which is used in Equation to define the values of the upwinding coefficient.
We therefore need to calculate the phase velocity of the hydrodynamic disturbances
that can propagate along the vortex sheet.

To that end, we consider a three dimensional problem with a planar vortex sheet
located at y = 0 and separating two uniform mean flows in the z direction (with
parameters vg1, co1 and pp; for y > 0, and parameters vga, co2 and pg2 for y < 0 ). For
a solution behaving like plwt—ikz—inr (with arbitrary frequency w and wavenumbers k
and k) it is straightforward to solve the convected wave equation , and then to
apply equations and for the continuity of pressure and normal displacement.
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This leads to the following condition on the streamwise wavenumber k:

P02f€1(w - 00215)2 = Polﬁz(w - U01l;?)2 )

where k1 = \/(w —vo1k)2/cd, — k2 and Ky = —\/(w — vo2k)2/c2, — k2. Then by writ-
ing k = w /v, where v is the phase velocity, this can be further simplified to give:
po2[(vor —v)* — 1] (vo2 — v)* = por[(vo2 — v)* — ) (vor —v)* . (7.18)

This gives a polynomial equation of order 6 in v, which can be solved numerically.
However, if one assumes that the density and sound speed are uniform (cp; = co2 and

po1 = poz2), then the convection velocity along the vortex sheet is given by:

vo1 +vo2 | 1 2]1/2
v= T [1— (\/1—1—(1)01—1)02)2—2) ] , (7.19)
where the sign of the imaginary part determines if the hydrodynamic wave oscillating
along the vortex sheet is exponentially decaying or growing. This result is in fact
consistent with the high-frequency approximation derived by Gabard & Astley [62] for
a cylindrical vortex sheet, because at high frequency the curvature of the vortex sheet

becomes negligible.

The SUPG method is applied to the variational formulation described in Section
by substituting 7, o1 and oy in Equation (7.13]) by

N+ hBon/0z, o1+ ha1do1/0z, and, o9+ haxdos/0z,

respectively. The values of the upwinding parameter 5 are given by with the
phase velocity v given by in the isothermal case, or by numerically solving Equa-
tion for the hot jet case; using the positive complex part gives a decaying solution.
Parameter « is calculated using the tangential mean flow velocity on either €2y or o,
and serves to stabilise the elements along the vortex sheet. The performance of such a

formulation will be discussed in Section [T.5]

7.4 Test Case

The test case used for the validation of the finite element models is the Munt problem

[109]. This test case was chosen because it contains the essential features of the physical
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Figure 7.6: Schematic of the test case. Example of a coarse mesh. Note the refinement
of the trailing edge; this is needed to predict solutions with singularities.

problem, namely: the trailing edge, the vortex sheet and the refraction through the
vortex sheet, and because there is a readily available semi-analytic solution [62].

The test case geometry is shown in Figure[7.6] A semi-infinite axisymmetric straight
duct carries an axial uniform mean flow with velocity vg;. In region €25 a uniform mean
flow with velocity vgo is present, which may be different from the jet velocity vg;. A
vortex sheet I' separates the two flow regions, it emanates from the nozzle lip and is
parallel to the z-axis. An acoustic source is placed at the upstream end of the duct, and
corresponds to an incoming acoustic mode. A hard-wall condition is imposed on the
inner and outer duct walls, and the computational domain is surrounded by a perfectly
matched layer (see Section [2.4.3.2).

We will consider both isothermal and hot jets. All variables are normalised by the
ambient sound speed, the ambient density, and the duct radius. For the isothermal jet
it is assumed that the density and sound speed are uniform. The Helmholtz number kR,
where k = w/cq is the wavenumber and R is the duct radius, is 10, and the excitation
source is the second radial mode with azimuthal order m = 3. The jet Mach number is
0.45 and the ambient Mach number in €5 is either 0.45 or 0.1. Both uniform mean flow
(vo1 = vo2 = 0.45 ) and non-uniform mean flow (vg; = 0.45, vge = 0.1) are considered.
Such flow conditions are typical of bypass duct exhausts on turbofan engines.

For the hot jet, in €7 the density is 0.33 and the sound speed is 1.74, in )y the
density and sound speed are unity. The Helmholtz number is still 10, but now the
excitation source is the first radial mode with azimuthal order m = 2. The jet Mach

number is chosen to be 0.51 in €2y, and the ambient Mach number is 0.1 in 9. These
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values were chosen as they are representative of a typical helicopter exhaust jet.
Unstructured triangular elements are used to discretise domains €2; and 29, and
quadrilateral elements are used for the PML. Line elements are used for the vortex
sheet. An example of a coarse mesh is given in Figure As can be seen from
the figure the mesh is refined along the vortex sheet, by a factor M /(1 + M). This is
necessary for proper resolution of the hydrodynamic oscillations along the vortex sheet.
Quadratic interpolation shape functions have been used for all elements. In the
acoustic domains the typical element size is 0.1. For a velocity of 0.45 this gives
an approximate resolution of 18 nodes per acoustic wavelength in the downstream
direction, and 7 nodes per wavelength in the upstream direction. The mesh refinement
used along the vortex sheet resolves the hydrodynamic waves with approximately 11

nodes per wavelength.

7.5 Discussion of Results

In this section we compare the different formulations previously presented to the semi-
analytic solution. Several quantities of interest will be considered to assess the accuracy
of these formulations, including: the normal displacement of the vortex sheet, the
normal acoustic velocity on either side of the sheet, and the velocity potential. The
latter quantity will be assessed along the vortex sheet as well as along an observation
line located at a fixed radius r = 2.75; this is to study the acoustic field at some distance
from the vortex sheet.

We will first consider specific cases to demonstrate the properties of the vortex sheet
that we are trying to capture. We will then consider the convergence tests for cases
without vorticity shedding (i.e. no Kutta condition), and with vorticity shedding (i.e.
with Kutta condition).

7.5.1 Preliminary Considerations

Here we will present results which demonstrate some important aspects of the problem,
and which highlight the performances of the formulations considered, by comparing the
numerical and analytical solutions either along the vortex sheet, or along the obser-

vation line. We will consider different flow conditions to show different but relevant
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phenomena. First, we demonstrate the consequence of using displacement as an ex-
plicit variable, we then show the behaviour of the displacement at the trailing edge,
without and with the Kutta condition. The efficacy of the SUPG technique is demon-
strated, and the singularities which result when the Kutta condition is not imposed are

presented.

7.5.1.1 Displacement as an Explicit Variable

First we compare the original formulation , where the vortex sheet displacement
is treated as an implicit variable, to a variant in which displacement is explicitly
included in the formulation. We consider a uniform mean flow, with and without the
Kutta condition.

Velocity potential predictions along the observation line at r = 2.75 are compared
in Figure The trailing edge displacement has been set to zero for these numerical
results, as this is a physical requirement (see next Section). Also shown in this figure
are the analytical solutions with or without Kutta condition at the trailing edge. It
can be seen that the velocity potential obtained when the vortex sheet displacement
is considered as an implicit variable agrees poorly with the analytic solutions. The
prediction obtained using displacement as an explicit variable gives excellent agreement

with the solution with Kutta condition. For this reason we shall now concentrate on

formulation ([7.8)) instead of (7.6]).

7.5.1.2 Zero Trailing Edge Displacement

Having shown that it is preferable to include the vortex sheet displacement as an explicit
variable, we now discuss the impact of setting this displacement to zero at the trailing
edge. As discussed in Section a basic physical requirement is to have a continuous
streamline at the trailing edge. To demonstrate this behaviour we consider a uniform
mean flow without Kutta condition.

Shown in Figure is the comparison of the results obtained with the formulation
and the formulation proposed by Manera et al. . Predictions are given both
with and without the constraint £ = 0 at the trailing edge, and the analytical solution

without Kutta condition is included.
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Figure 7.7: Velocity potential, in the presence of uniform mean flow, along the observation
line. Left: no Kutta condition, right: Kutta condition. Comparison of formulation
with displacement as an implicit variable (---), formulation with displacement as
an explicit variable (—)., and the analytic solution (---). (Explicit variable and analytic
solutions agree with a Kutta condition.)

When the constraint is not applied, formulation predicts a singularityﬂ at
the trailing edge, while formulation does not yield the correct solution for the
displacement along the vortex sheet.

It can be seen that imposing the constraint £ = 0 improves the predictions at the
trailing edge. For the formulation , there is no singularity in the solution. The
small-scale oscillations (corresponding to the hydrodynamic wavelength) are initially
captured but then decay progressively in the streamwise direction. Formulation
predicts the correct response at the trailing edge, but the solution grows with distance
from the trailing edge. Note also the node-to-node oscillations, these are the topic of
Section The behaviours reported here show the significance of imposing the
constraint £ = 0 at the trailing edge.

7.5.1.3 Kutta Condition

In addition to stating that & = 0 at the trailing edge, a stronger constraint on the
solution at the trailing edge is the Kutta condition, which requires that the trailing edge

velocity must be zero or, equivalently, that the gradient of the vortex sheet displacement

'Note that when the Kutta condition is not included in the model the mesh must be refined at the

trailing edge to avoid problems associated with the prediction of singularities.
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Figure 7.8: Normal displacement along the vortex sheet, in uniform mean flow without
Kutta condition. Left: formulation . Right: formulation . Unconstrained normal
displacement at the trailing edge (---), trailing edge displacement set to zero (—), and
analytic solution (---).

at the trailing edge vanishes. In Figure we present a comparison for the vortex
sheet displacement of the three formulations against the analytical solution with Kutta
condition]

When only ¢ = 0 is set and the gradient of ¢ is not prescribed, the results in Figure
show that the formulations and are not able to capture the solution
along the vortex sheet. However, the velocity potential along the observation line is
correct for formulation . This is due to the enforced continuity of velocity, which
is valid only in this specific case - that of uniform mean flow.

As explained in Section imposing 0¢/0z = 0 at the trailing edge is easily
achieved in the proposed formulation by directly setting v; = vo = 0 since the
velocities on either side of the vortex sheet are explicit variables. Excellent agreement
with the analytical solution is observed in Figure [7.9]

In contrast, the formulations and only provide the displacement as

explicit variable, but it is still possible to impose a zero axial gradient of £ by introducing

'Note that in this analytical solution the normal velocity of the vortex sheet is of the form eikz
for z > 0 where k corresponds to the hydrodynamic wavenumber. The corresponding solution for the
displacement is ze~ k= (for z > 0) which is linearly growing along the vortex sheet, as can be seen in
Figure [7.9] This should not be misunderstood as an instability, since we are considering a uniform
mean flow.
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Figure 7.9: Normal displacement of the vortex sheet, in uniform mean flow with Kutta
condition. Top left: Formulation (7.8). Top right: Formulation (7.10). Bottom left:
Formulation (7.10) with gradient of displacement set to zero. Bottom right: Formulation

(7.13). Analytic (---) , numeric (—).

a linear constraint to force the gradient of the displacement at the trailing edge to be
zero. This is not part of the variational formulation and is implemented directly in
the solution procedure. The result of formulation in Figure indicates that
the effect of this modification is only local, and that the numerical solutions are not

consistent with the Kutta condition.

7.5.1.4 Vortex Sheet Discretisation

A distinctive feature of the proposed model ([7.13) is the use of an SUPG method to
improve the accuracy of the numerical solution, especially for the convection of hy-

drodynamic disturbances along the vortex sheet. The benefit of using the SUPG test
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Figure 7.10: Uniform mean flow with Kutta condition. Predictions obtained using the
proposed formulation . Top left: Displacement. Top right: Normal velocity along
vortex sheet. Bottom left: Velocity potential along the observation line. Bottom right:
Acoustic pressure along the observation line. Analytic (---) , numeric with SUPG (—) ,
numeric without SUPG (-.-) .

functions devised in section is illustrated in Figure where the numerical
results obtained with and without SUPG test functions are compared against the an-
alytical solution for uniform mean flow. The case with Kutta condition is considered
here (so we impose £ = 0 and v; = v9 = 0 at the trailing edge in the numerical model).
The results obtained when using standard test function are not as accurate as with
the SUPG method. This is especially true for the vortex sheet displacement which
exhibits very large, node-to-node oscillations typical of convection-dominated problem
solved with standard finite elements (see [161] for other examples of this phenomenon).

Although less visible for the other variables shown in Figure the numerical error
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was also found to be increased when using standard test functions. In contrast the
results obtained with the SUPG method are in excellent agreement with the analytical

solution.

7.5.1.5 Velocity Singularities

When the Kutta condition is not imposed the acoustic velocity at the trailing edge
becomes singular. This results in a singularity in velocity potential at the trailing
edge. To demonstrate this behaviour, we now present a comparison of the numerical
and analytical solutions for the non-uniform flow case without Kutta condition; we
consider an isothermal jet. For the isothermal jet, the density and sound speed are
constant across the vortex sheet, and only the mean flow velocity changes.

Predictions obtained using the proposed formulation are presented in Figure
The vortex sheet displacement, the normal velocities on either side of the vortex
sheet, and the velocity potential on the observation line (r = 2.75) are presented.
Excellent agreement is found for all of these variables. Note that the singularity in the
normal velocity is present, as explained in Section[7.2] and it was necessary to refine the
mesh at the trailing edge. This singularity also affects the upwinding provided by the
SUPG shape functions at the trailing edge node, and so the standard shape functions
were used, at this node only, instead.

Although not clearly visible in the Figure, the singular behaviour of the numerical
solution is different to that of the singular behaviour of the analytic solution. Note that
this is not an error associated with the proposed formulation, but with the inherent

inability of finite element models to predict singularities.

7.5.2 Convergence Results

To further assess the consistency of the numerical results, we now present the results of
convergence tests where the variation of relative error between numerical and analytical
solutions is measured by varying the mesh resolution. The error is calculated for the
velocity potential over the whole computational domain, but excluding the PML region.

The following definition of the relative numerical error (in percent) is used:

o 12 1/2
. {zj 60 = ul } o

Zj |¢a7j 2
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Figure 7.11: Non-uniform mean flow without Kutta condition. Predictions obtained
using formulation (7.13]). Top left: Displacement along the vortex sheet. Top right: Normal
velocity on the duct side of the vortex sheet. Bottom left: Normal velocity on the free

stream side of the vortex sheet. Bottom right: Velocity potential along the observation

line. Analytic (---), numeric (—).

where ¢, is the analytic solution, ¢,, is the numerical solution, and j is the nodal index.

This error is computed by interpolating the solution over a uniform mesh, and is in

effect the error in the L? norm. In these convergence plots the cost of the numerical

model is measured by the number of elements per acoustic wavelength, Ny = 27 /(kh),

note that there are twice as many grid points per wavelength due to the use of quadratic

elements. These results were obtained by keeping the frequency constant and by varying

the element size.
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7.5.2.1 Uniform Mean Flow without Kutta Condition

We shall first present results for the case when no Kutta condition is imposed. In this
case there is no vorticity shedding, which results in a singularity at the trailing edge.
We begin by discussing the case with a uniform mean flow. Even though there is no
refraction of acoustic waves when they propagate through the jet, the use of a vortex
sheet in these cases is still useful to describe the vortex shedding from the nozzle lip.
Results are presented in Figure [7.12]

Four different formulations are discussed. First, the modified formulation of Ev-
ersman & Okunbor , and that of Manera et al. are considered, both of
them with the vortex sheet displacement set to zero at the trailing edge. Secondly,
results obtained with the proposed formulation are also included. The condition
& =0 at z = 0 is always enforced. Finally, we consider the behaviour of the model
without any special treatment for the vortex sheet, whereby the velocity potential is
simply continuous across this surface (in other words the formulation is solved
on one single domain ©Q; U y). This is included here to check whether ignoring the
vortex sheet altogether is a viable option and to assess the level of error incurred by
such a simplification. Note that in some industrial cases in which the vortex sheet is
completely ignored error levels of around 10 % are reported.

The first observation that can be made from Figure is that formulations
and do not yield accurate results for either the nodal error or the error along
the observation line. Neither of these formulations predicts the behaviour of the vortex
sheet correctly.

More striking is the fact that in the absence of any treatment of the vortex sheet the
solution converges to the analytical solution with no vorticity shedding. This can be
understood by noting that this solution only contains acoustic waves, and the absence
of hydrodynamic waves along the vortex sheet explains why no special treatment is
required to capture the solution.

The proposed formulation (7.13) generates a solution which converges to the an-
alytic solution without the Kutta condition. A mesh resolution of Ny = 3, i.e. 3
quadratic elements per wavelength, is sufficient to achieve an error of 1%. We can

observe that the numerical error reaches a plateau at 0.2% in Figure This is due
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Figure 7.12: Numerical error E of the velocity potential as a function of the mesh

resolution for a uniform flow without Kutta condition. No vortex sheet (A), formulation

(7.8) (o), formulation (7.10) (+) and proposed formulation (7.13) (o). The 3*%-order rate

of convergence is shown by the dashed line.

to the singularity in velocity at the trailing edge. For finite element methods the pres-
ence of singularities in the solution can reduce the accuracy of the numerical scheme.
This can be remedied by further refining the mesh in the vicinity of the trailing. This
issue is therefore not due to the formulation, but to the nature of the solution that is
represented by the finite element model. Such a problem is not present with the Kutta
condition since the corresponding solutions for pressure, velocity and displacement are

all regular.

7.5.2.2 Non-Uniform Mean Flow without Kutta Condition

We now consider a test case with non-uniform mean flow, that is when the mean flow
properties are different on either sides of the vortex sheet. The test case involves a
strong refraction of the acoustic waves as they propagate through the vortex sheet, as
illustrated on Figure (right). We consider the case without Kutta condition, for
both isothermal and hot jets

A key feature of the test case with non-uniform flow is that the shear layer is un-
stable, i.e. it exhibits a physical unstable mode of oscillation that grows exponentially
in the streamwise direction (see reference [62] for examples). As mentioned above in
Section the causal solution to the problem includes this instability, but numerical

models in the frequency domain tend to provide results excluding the instability [2],
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Figure 7.13: Numerical error E of velocity potential as a function of the mesh resolution
for an isothermal jet flow without Kutta condition. No vortex sheet (A), formulation (7.8])
(), formulation (7.10) (+) and proposed formulation (7.13) (o). The 3'%-order rate of

convergence is shown by the dashed line.

and are therefore not causal [42] (and indeed this is the case for the finite element
models discussed here). From the analysis reported in [62] it can be seen that if the
Kutta condition is not imposed at the trailing edge, then it is possible to derive the
corresponding, non-causal analytical solution (the details are rather lengthy and tech-
nical and are not presented here). So, we can still use the analytical model presented
in [62] to obtain the reference solution.

The results of a convergence test, for the isothermal jet case, are shown in Figure
7.13] The solution with no treatment of the vortex sheet does not converge. This is
expected since in the case of a non-uniform mean flow the velocity potential is not
continuous. Note also that the error level is around 10 %. Similarly, the formulation
by Eversman & Okunbor does not converge to the expected solution. The formu-
lation by Manera et al. is able to achieve better levels of accuracy, and indeed
converges to the analytical solution. Formulation is also able to provide the
accurate solutions, although the rate of convergence deteriorates somewhat when the
error reaches level of the order of 0.06%. This is due to the velocity singularity present
at the trailing edge (a similar trend can be seen in Figure .

Next we consider the case of a hot jet, without imposing the Kutta condition at the
trailing edge. In this case the density and sound speed are not uniform (see Section
for details). The convergence of the numerical results is shown in Figure Qual-
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Figure 7.14: Numerical error F of velocity potential as a function of the mesh resolution
for a hot jet without Kutta condition. No vortex sheet (A), formulation (¢), formu-
lation (4+) and proposed formulation (o). The 3*d-order rate of convergence
is shown by the dashed line.

itatively, the conclusions are similar to that of the isothermal jet. Solutions obtained
in the absence of a vortex sheet, and from formulation are unable to converge
to the analytical solution; note that with no vortex sheet the error increases dramati-
cally. The formulation converges, but does not predict the singularity behaviour
demonstrated by the analytic solution, and eventually plateaus. The proposed formu-
lation achieves good accuracy, although the rate of convergence is reduced again by the

presence of the singularity in velocity.

7.5.2.3 Uniform Mean Flow with Kutta Condition

We now consider the case in which a Kutta condition is present at the trailing edge.
Even in the case of uniform flow, the Kutta condition results in vorticity shedding from
the trailing edge which relieves the singularity there. Results are presented for the
solutions with Kutta condition in Figure [7.15

Again, four different formulations are discussed. The modified formulation of Ev-
ersman & Okunbor (7.8), and that of Manera et al. are considered, both of
them with the vortex sheet displacement set to zero at the trailing edge, but without
any further treatment at the trailing edge. For the proposed formulation the
condition 0¢/0z = 0 at z = 0 is also imposed. We consider the case for which there is

no special treatment for the vortex sheet.
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Figure 7.15: Numerical error E of the velocity potential as a function of the mesh
resolution for a uniform flow with Kutta condition. No vortex sheet (A), formulation
(¢), formulation (+) and proposed formulation (o). The 3"d-order rate of
convergence is shown by the dashed line.

Formulations and do not yield accurate results. Neither formulation
correctly predicts the vortex sheet behaviour at the trailing edge.

Formulation does not yield accurate results. However, if one considers the
numerical error only on the observation line at » = 2.75, then this formulation is found
to converge to the analytical solution with Kutta condition (i.e. vorticity shedding),
despite the fact that it cannot represent the solution in the vicinity of the vortex sheet.
This is due to the use of the continuity of acoustic velocity in the construction of the
formulation. This specific case is the only case in which this continuity condition is
valid. The result is that the observation line solution is correctly predicted. This shows
the importance of the influence of the Kutta condition on the acoustic field at some
distance from the trailing edge.

The proposed formulation is able to provide the expected solution with the
Kutta condition. A mesh resolution of Ny = 3.5 is sufficient to achieve an error of 1%,
but in this case the solution converges to the analytic solution without plateauing; with
the Kutta condition the singularity is not present.

In Figure we present the condition number of the algebraic systems associated
with each formulation and corresponding to the convergence results presented in Figure
[.15] for the solutions with Kutta condition. The condition number is an indicator of the

robustness of the numerical model and also indicates whether iterative solvers could be
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Figure 7.16: Condition number as a function of the mesh resolution for a uniform flow
with Kutta condition. No vortex sheet (A), formulation (7.8 (o), formulation (7.10]) (+)
and proposed formulation 4) (o).

used to solve large-scale problems. It appears that the formulation ([7.10)) exhibits the
worst conditioning, and the formulation ([7.8)) yields rather poorly conditioned systems,
especially for high mesh resolutions. The best conditioning is found in the absence of

a vortex sheet, and the second best by the proposed formulation ([7.13)).

7.5.2.4 Non-Uniform Mean Flow with Kutta Condition

Finally we discuss the case of a non-uniform flow with the Kutta condition applied.
In this case, it is not possible to derive an analytical solution excluding the Kelvin—
Helmholtz instability and satisfying the Kutta condition. The fundamental reason for
this can be found in the analysis from [62]: the Kutta condition can only be applied if
the instability is included as such in the solution. For this reason it is not possible to
provide a reference solution to assess the finite element models. A possible way around
this issue would be to modify the finite element models of the vortex sheet to allow, at
least locally, for the existence of the instability. However this goes beyond the scope of
the present work.

Here, we consider the velocity potential along the observation line predicted by the
proposed formulation. We quantitatively compare the no Kutta solution to the non-
causal Kutta solution. The results for both the isothermal jet and the hot jet cases

are given in Figure As a further investigation, results are also presented for the
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Figure 7.17: Non-uniform mean flow velocity potential solution with and without Kutta
condition, along the observation line. The proposed formulation solutions are shown.
Top left: isothermal jet, w = 10. Bottom left: isothermal jet, w = 20. Top right: hot jet,
w = 12. Bottom right: hot jet, w = 24. No Kutta (---), Kutta (—).

case in which the frequency of interest is doubled, and the observation line has been
extended into the rear arc.

It can be seen that the largest differences occur in the rear arc, which is in support
of the findings of Gabard & Astley [62]. For the isothermal jet the difference between
the no Kutta and the Kutta solution is 4.7 % when w = 10, and 22 % when w = 20.
For the hot jet case the difference is 4.5 % when w = 12, and 3.9 % when w = 24.
Unfortunately, without an available analytic solution, it is not possible to provide a

qualitative assessment of the non-causal Kutta condition solution.
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7.6 Summary of Conclusions

Exhaust noise predictions can be obtained by solving the linearised Euler’s equations,
but they are computationally expensive when compared to solving models based on
linearised potential theory. However, potential theory solutions do not predict shear
layer refraction effects. In this chapter several finite element models, based on the
linearised potential theory, have been presented and their capability to predict the
noise propagation through a shear layer by implementing a vortex sheet model has
been assessed.

It has been shown that it is preferable to introduce the normal displacement £ and
the normal velocities at the vortex sheet as variables in the formulation. This permits
the inclusion of the constraint £ = 0 at the trailing edge, as well as a Kutta condition,
directly in the model. A new formulation of the vortex sheet which includes these
features has been proposed. Comparisons with an analytical solution have shown that
these constraints are required for the finite element model to converge to the appropriate
solution. When the Kutta condition is imposed, the proposed formulation improves on
previous finite element models of the vortex sheet. However, without a Kutta condition
the formulation by Manera et al. [95] gives the best results. When the vortex sheet is
omitted from the model, the error is around 10 %, or worse in the hot jet case.

Furthermore, oscillations of the vortex sheet represent hydrodynamic waves that
are convected downstream; since standard finite elements are inefficient when it comes
to representing convection, a new SUPG method has been introduced to obtain an
accurate description of these hydrodynamic waves in the new formulation. Numerical
results have shown the benefits of this approach.

The present study can be extended further, for instance by considering curved
vortex sheets which would correspond more closely to the jets of turbofan engines. In
this case the additional terms present in equations and would play a role.
In extending this study two challenges will be faced; the best position for the vortex
sheet will need to be defined, and a suitable, possibly experimental, reference solution

will need to be used for validation.
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Conclusions

The finite element method is relied upon to predict the behaviour of wave problems
due to its robustness, and its ability to handle complex geometries and inhomogeneous
media. However, to provide solutions for problems at high frequencies a great deal
of computing power is required. Consequently, due to an increasing reliance upon
numerical modelling, there is much interest in reducing the computational costs in
order to provide solutions more efficiently. The main aim of this thesis was to develop
more efficient finite element methods, with a specific focus on the prediction of turbofan
engine noise propagation.

Following a review of the finite element methodology, four high order finite element
methods were identified as candidates for more efficient solutions. These methods are
based on high order polynomials, which make use of a modal (as opposed to a nodal)
expansion of the solution over an element. The methods considered were the polynomial
partition of unity method, the Bernstein method, the Hermite method, and the Lobatto
method.

The polynomial functions (which give their name to each method) were imple-
mented into an existing finite element code, and used to solve a simple test case with an
available analytic solution. One-dimensional and two-dimensional (using both quadri-
lateral /structured and triangular/unstructured elements) analyses were carried out.
It was demonstrated that the polynomial partition of unity method suffers from ill-
conditioning caused by linear dependencies between the shape functions. The Hermite
method proved to be the most efficient (at least in terms of storage memory require-

ments) but variable-order functions are currently unavailable. The Bernstein and Lo-
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batto methods incur identical error levels as a function of the storage memory required,
but the Lobatto method yields matrices with the best conditioning.

In general, the Lobatto method outperforms the other candidate methods. The
Lobatto functions are available for all commonly used element types, and are hierarchic
in nature - which enables computational savings in terms of reduced global matrix
assembly time. The performance of the method was further analysed in two and three
dimensions, and it was found that the use of the highest available polynomial order
results in the most efficient solutions, due to a reduction of the relative amount of
factorisation memory needed (which reduces with increasing order). This is brought
about by a reduced number of fill-in entries during factorisation.

To take full advantage of the reduction of relative factorisation memory with order,
a higher-order adaptive scheme has been proposed. This is an a priori scheme which
assumes that the error found on a higher-dimensional element can be related to the
error found on a one-dimensional element. As such, solutions obtained on the one-
dimensional versions of the higher-dimensional elements are used to determine the
optimal order of a given element in a mesh based on the average element size, the
input frequency of interest, and the properties of the physical medium on the element.
The scheme has been used to solve a test case with an analytic solution, in two and
three dimensions. The error estimator which drives the adaptive order scheme provides
bounded error levels over wide ranges of frequencies.

The finite element method has been applied to an industrial problem, that of the
noise emitted from a turbofan engine intake. The noise predictions have been demon-
strated, and the computational cost of using the standard quadratic finite element
method to solve the problem has been investigated. A simplified version of the prob-
lem (in which there is no flow and only the plane wave mode is considered, due to
lack of available implementation) has been solved using the proposed adaptive order
method. The standard (quadratic) and proposed methods have been compared, and a
significant improvement in terms of efficiency has been demonstrated. It is expected
that these computational savings will extend to the case in which flow is included.

Further to this, the possibility of obtaining more efficient solutions for the turbofan
exhaust noise problems has been considered. The mathematical model used for the
intake noise prediction is not valid for exhaust noise predictions, due to its inability

to include rotational mean flows. These solutions are an essential part of acoustic
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refraction across shear layers, and the diffraction from trailing edges. Previous investi-
gators have made use of a vortex sheet to model the problem, across which continuity
conditions are applied. In this work, the existing formulations have been revisited,
and an improved formulation has been proposed. It has been shown that by including
the acoustic velocity along the vortex sheet as an explicit variable in the formulation,
the Kutta condition can be applied to the trailing edge from which the vortex sheet
issues. Good agreement with analytic solutions has been found. However, an issue
still remains, and that is the inclusion of the Kelvin-Helmholtz instability in the finite

element model.

8.1 Original Contributions

e Assessed the performances of four high-order finite element methods for the solu-
tion of the convected wave equation in the frequency domain. Identified a more
efficient method, which is based on hierarchic Lobatto polynomials. Furthermore,
it has been shown that using hierarchic high order functions is computationally
less expensive than using low order functions, i.e. the relative computational
cost reduces with increasing order. This is due to a reduction of the factorisation

memory needed (due to reduced fill-in).

e Developed a simple a priori error estimator to obtain solutions with a pre-defined
level of accuracy with minimal cost. Error levels obtained using the proposed esti-
mator exhibit very little variation over a wide range of frequencies. The estimator
also provides upper and lower bounds on the interpolation error of the finite el-
ement method. The estimator provides optimal solutions in both two and three

dimensions.

e Compared the computational resources required by the standard quadratic method
and the variable-order Lobatto method (steered by the proposed adaptive order
scheme) when used to solve a simplified version of an industrial problem (in three
dimensions). A significant improvement in terms of efficiency of the proposed
higher-order method over the standard quadratic method has been demonstrated.
A more efficient finite element method, for the solution of convected wave prop-

agation problems, is now available, as can be seen in Figure [8.1
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Figure 8.1: Resources required to solve the linear system, as a function of frequency.

Standard quadratic solution (---). Higher order solution (—).

e As evidence of the quality of the work, the proposed adaptive order method has

been implemented in SysNoise, one of the leading software packages for aeroa-

coustic solutions.

e Investigated two existing formulations for the solution of vortex sheet problems

based on potential flow theory. A new formulation which allows for the inclusion

of a Kutta condition at the trailing edge has been proposed. The vortex sheet has

been discretised using a new SUPG method. The first quantitative assessment

of the existing formulations has been carried out, and the proposed formulation’s

predictions have been validated using an analytic solution.

8.2 Future Work

The use of Hermite elements could be further investigated. They have been found

to be quite efficient, but unfortunately there are no readily available variable order

functions, for all commonly use element types. If variable order (preferably hierarchic)

functions could be constructed, efficiency tests could be carried out to determine their

performance in three-dimensional models. It may be that hierarchic Hermite functions

are more efficient than the Lobatto functions. Such functions may also find employment

in structural mechanics models, or indeed any models which require the solution of

fourth-order differential equations, due to their C'! continuity. However, as their lowest
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order is cubic, models with complex geometries (thus requiring smaller elements) may
still be expensive.

A limitation of the proposed higher order method is the need for small (computa-
tionally expensive) elements in the region of complex boundaries. Xue & Demkowicz
[158] present a way of computing the error introduced by the finite element discreti-
sation, with a view to controlling it. Demkowicz et al. [43] propose a new scheme
for geometry description using sixth order polynomials based on Hermite interpolation,
and use it to reconstruct the geometry of a human head from CT and MRI data. Sevilla
et al. [I35] present a finite element method which makes use of non-uniform rational b-
splines (NURBS). They have found the NURBS enhanced finite element method to be
an order of magnitude more precise than isoparametric finite elements. Xie et al. [I57]
present an a posteriori strategy which moves boundary element nodes to create curved
boundaries. Another possible avenue for future studies could be the use of higher or-
der functions for the description of complex geometries. This would allow for the use
of larger elements near complex surfaces, which would permit the use of higher-order
interpolation, and thus increase computational efficiency.

Polynomial order 10 may be considered as quite a high order in the finite element
community, however it is quite low when compared to the orders used in the spectral
element method [I51]. It would be interesting to investigate the performance of the Lo-
batto finite element method when using orders greater than 10. Do the computational
savings afforded by the reduced factorisation memory extend above polynomial order
10?7 Unfortunately this could not be investigated in this work due to the unavailability
of higher order functions. Before this could be investigated new functions would have
to be constructed.

The Lobatto method could be used for the solution of other mathematical models,
like for example the linearised Euler equations (which would allow for more efficient
shear layer predictions). Also, its performance in the presence of corner singularities
could also be assessed.

The adaptive order scheme should be further developed. A major drawback of the
scheme is that it does not account for the pollution error. It may be possible to include
the pollution effect by providing the scheme with information about the longest free
paths in a model to be solved. This may even lead to the development of a ‘directional

order scheme’, which takes the longest free paths, and the direction of the flow field
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into account. This would be ideal, as the current scheme considers only an upstream
flow, which may lead to unnecessarily expensive solutions. It may be possible to use
ray theory to predict the paths of propagating acoustic waves (in the presence of flow)
and then use this information to predict the resolution requirements of each individual
element. Perhaps a map of the streamlines could also be utilised.

Furthermore, the adaptive order scheme could be used for the solution of non-
aeroacoustic problems, in order to determine its robustness. It could also be imple-
mented in other numerical methods, to determine if the principle used in its construc-
tion can make other numerical methods more efficient.

When considering the application of the proposed method to the intake noise prob-
lem, it is necessary to conduct further tests of the benchmark problem with flow and a
modal source condition, in order to determine the actual cost of solving the complete
physical problem. Furthermore, tests should be carried out which determine the max-
imum resolvable frequency of the proposed higher-order element method; specifically
when using a cluster computer for large scale industrial problems.

The proposed formulation for the prediction of acoustic refraction across vortex
sheet could be applied to a curved vortex sheet. Predictions could then be compared
to experimental data, although this data may be difficult to find. Also, the Kelvin-
Helmholtz instability should be included in the proposed finite element model. It is
possible to do this in an ad hoc way, for example by forcing the solution behaviour
using the SUPG test functions, but this does not satisfy the physical requirements of
the problem. Another serious issue is the need for an effective boundary condition at
the vortex sheet termination. It may even be that the correct boundary condition would
permit an instability wave in the frequency domain (as can be seen in [I18]) Finally, it

could be interesting to apply the Mohring equation [I0I] to the Munt problem.

178



Appendix A

Hermite Functions

Included in this appendix are the 1D bubble, and the 2D triangular functions.

A.1 One-Dimensional Bubble Functions

So
=1

0 1 R 0 1 A 0 1 o0y 0 1
n n n n

Figure A.1: One dimensional Hermite bubble functions. Top left 15, bottom right: 2.

Solin and Segeth have designed hierarchic Hermite shape functions for 1D elements

[152]. Their hierarchic 1D Hermite bubble functions, from order 5 to 12, are given by:

1/}5: \/%8(1_772)2’ wGZ %(1_772)2777
vr =t/ 135 (1= %) (= T2+ 1), vs = 31/ (1 =) (3n% = 1),
o = 51/ 1 (1—n?) (330" — 18n% + 1),
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b0 = 25/ 12 (1 — %) (1435* — 11092 + 15),
Y11= 531/ 195 (1 = 17%)
Y2 = 251/ 2% (1 — %) (2218 — 2735% + 917% — 7)1,

These bubble functions can be seen in Figure The bubble functions allow for

condensation of the stiffness matrix.

2 (14376 — 143n* + 3312 — 1),

A.2 Triangular Hermite Functions

The triangular Hermite shape functions are not quite as easy to define as for the

quadrilateral functions. The (incomplete) T3 functions are given by:

Ny = ¢*(10¢ — 15¢% + 6¢° + 30§n(§ +1)), N1z = £¢3(3 — 2¢ — 3¢ + 6¢n),

N1z =n¢*(3 —2¢ — 3n° + 6¢n), Nig =362 (1 - &+ 2n),

Nis = &nc?, N1 = 31°¢2(1 4 2¢ — n),

Nay = €2(10€ — 1562 + 6£° + 15n°(), Nao = 5E2(—8¢ + 14€2 — 6% — 150%(),
Nz = 56%0(6 — 4€ — 3n — 3n? + 3¢n), Ny = 3E2(26(1 = €)%+ 5n°C),

Najs = 58%n(=2 426 +n+n° — &n), Nag = 3120°C + 36307,

N1 =7*(10n — 159 4 6n° + 15£2(), N3g = 5607 (6 — 3¢ — 4n — 3% + 3¢n),
N33 = 3n*(—8n + 14n? — 61> — 15¢%(), N34 = $E20%C + 1%,

N3s = 3En* (=2 + &+ 20+ 2 —£n), Nz = 17*(2n(1 — n)? 4 5¢%¢),

where ( = 1 — ¢ — 7. These functions are incomplete because they are dependent on

the reference coordinate transformation used. The complete set of shape functions is

given by:
[1 0 0 0 0 0
0 Jin Jio 0 0 0
0 Jo1 Joo 0 0 0
Ne=Lilg o JZ 21112 JZ,
0 0 0 Juuda Jiodor + Jiidae Ji2J2o
o 0o 0 JZ 2.J21J22 JZ

where L; = [Nj1 Nj2 N;3 Nia Nis N;gl, i is the node index, and J,,, is the coordinate

transformation Jacobian with matrix indices n and m.
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