
Constructive procedures to solve 2-Dimensional Bin Packing
Problems with Irregular Pieces and Guillotine Cuts

Antonio Martineza,Ramon Alvarez-Valdesb, Julia Bennella, Jose Manuel Tamaritb

a University of Southampton
b University of Valencia

Abstract
This paper presents an approach for solving a new real problem in Cutting and Packing. At its
core is an innovative mixed integer programme model that places irregular pieces and defines
guillotine cuts. The two-dimensional irregular shape bin packing problem with guillotine con-
straints arises in the glass cutting industry, for example, the cutting of glass for conservatories.
Almost all cutting and packing problems that include guillotine cuts deal with rectangles only,
where all cuts are orthogonal to the edges of the stock sheet and a maximum of two angles of
rotation are permitted. The literature tackling packing problems with irregular shapes largely
focused on strip packing i.e. minimizing the length of a single fixed width stock sheet, and
does not consider guillotine cuts. Hence, this problem combines the challenges of tackling the
complexity of packing irregular pieces with free rotation, guaranteeing guillotine cuts that are
not always orthogonal to the edges of the stock sheet, and allocating pieces to bins. To our
knowledge only one other recent paper tackles this problem. We present a hybrid algorithm
that is a constructive heuristic that determines the relative position of pieces in the bin and
guillotine constraints via a mixed integer programme model. We investigate two approaches
for allocating guillotine cuts at the same time as determining the placement of the piece, and
a two phase approach that delays the allocation of cuts to provide flexibility in space usage.
Finally we describe an improvement procedure that is applied to each bin before it is closed.
This approach improves on the results of the only other publication on this problem, and gives
competitive results for the classic rectangle bin packing problem with guillotine constraints.
Keywords: irregular packing, bin packing, guillotine cuts, mixed integer models.

1 Introduction
The paper focuses on the two-dimensional bin packing problem(BBP) with irregular convex
pieces and guillotine cuts. Guillotine cuts arise due to the cutting process of certain materials,
where cuts are restricted to extend from one edge of the stock-sheet to another. This is com-
monly found in the glass cutting industry and research has almost exclusively focused on the
cutting of rectangles where the cuts are orthogonal to the edges of the stock sheet.The prob-
lem tackled here is a generalized version of the rectangle single size stock sheet bin packing
problem with guillotine constraints, where the pieces to be cut are irregular convex polygons
and the guillotine cuts are not constrained to be orthogonal to the edges of the bin. We present

1

a number of constructive heuristics that exploit a mixed integer programming(MIP) model for
placing the pieces in the bin while satisfying all the geometric constraints and the guillotine
cuts and provide comprehensive results for benchmark instances for this problem and the rect-
angular bin packing problem with guillotine cuts. The results are compared with the best in the
literature and new lower bound is presented.

The motivation for tackling this problems arises in the cutting of glass sheets, for example,
the glass panes for conservatories. Glass is cut by scoring and snapping the material. Each cut
divides the sheet in two and is called a guillotine cut. As a result, only convex pieces can be cut
directly. Since the properties of the material are homogeneous, pieces can be cut at any angle
of rotation, and in some cases reflected. Typically, cutting plans involve multiple stock sheets.
An example solution to this problem is given in Figure 1. Note that the pieces must be removed
by the guillotine cuts (in bold) in a specific order so that each cut begins and ends at the edge
of the complete or divided stock sheet.

The requirement for guillotine cuts arise in many industries such as glass, wood boards or
fibre glass for printed circuit boards. Each industrial setting implies a particular class of cutting
and packing problem. For example, Malaguti et al. (2014) consider a cutting stock problem
with multiple stock sheets found in the wood industry, while Cui (2014) tackles the cutting of
metal of coils where a stock sheet is considered to have unrestricted length.

The literature tackling packing problems with irregular shapes largely focus on strip pack-
ing i.e. minimizing the length of a single fixed width stock sheet, see Bennell and Oliveira
(2009), and does not consider guillotine cuts. Further, almost all cutting and packing problems
that include guillotine cuts deal with rectangles only, where all cuts are orthogonal to the edges
of the stock sheet and a maximum of two angles of rotation of the pieces are permitted. Hence,
this problem combines the challenges of tackling the complexity of packing irregular pieces
with free rotation, guaranteeing guillotine cuts that may or may not be orthogonal to the edges
of the stock sheet, and allocating pieces to bins or stock sheets. To our knowledge, Han et al.
(2012) is the only other paper that tackles this problem. They propose two different construc-
tion heuristics. The first heuristic, they call a one-stage algorithm, constructs multiple parallel
clusters of pieces by iteratively joining two blocks, where a block is either a piece or the convex
hull of a cluster of pieces. Blocks are combined by matching pairs of edges and selecting the
best match according to a dynamic solution evaluation function. Since each accepted match,
starting with two individual pieces, is transformed into its convex block by taking the convex
hull, the guillotine cut structure is always satisfied. The approach uses threshold parameters
to control the number of blocks generated and as a result the computational time. The second
constructive heuristic, a two-stage algorithm, combines pairs of pieces into rectangles by using
the phi-functions presented by Bennell et al. (2011), and then uses the guillotine bin packing
algorithm developed by Charalambous and Fleszar (2011) to pack the rectangles. The combin-
ation of the pieces into rectangles using phi-functions requires significant computational effort,
up to eighteen hours in the largest instance (149 pieces), although the packing algorithm by
Charalambous and Fleszar (2011) takes less than one second. Most recently, Fleszar (2013)
developed an heuristic algorithm based on the insertions of the pieces one at a time obtaining
slightly worse results but the computational time is much shorter.

A key theme in the cutting and packing literature for irregular shape packing, is concerned
with efficiently identifying overlap between pieces. Bennell and Oliveira (2008) provide a
useful review of this aspect of the problem. In recent years the most common approach is to use
the Nofit Polygon (NFP). The NFP is a polygon derived from two component polygons in such

2

(a) (b) (c) (d)

(e) (f) (g)

Figure 1: Real example (J40)

a way that its interior represents all overlapping position between the component polygons, and
its boundary represents all touching positions. By determining the location of the co-ordinate
point arising from the difference between the co-ordinate position of the reference point of
the two component polygons and comparing with the correctly located NFP, the overlap test
reduces to a simple point inclusion test while the NFP has almost exclusively been used for
placing polygons, Burke et al. (2010) show that it can be extended to include arced edges.

In this paper we present a constructive heuristic that builds a solution by sequentially adding
pieces to the current bin, where a MIP model determines the position of pieces in the bin and the
corresponding guillotine constraints. Once a piece is placed in the bin, the relative position of
the piece with respect to the other pieces is fixed, but the absolute position in the bin may change
each time a new pieces is added. We investigate two approaches for allocating guillotine cuts,
and a two phase approach that delays the allocation of cuts to provide flexibility in space usage.
Finally we describe an improvement procedure that is applied to each bin before it is closed.
The contributions of the paper are many. It is the first paper to model and solve guillotine cuts
for irregular shapes as a MIP. It is only the second paper to tackle this practical problem in the
literature and improves on the results of the only other publication on this problem. It provides
a new lower bound for the problem. Finally it benchmarks the proposed algorithm against well
known rectangle guillotine packing instances and gives competitive results.

In the next section we give a detailed description of the problem and some notation. Section
3 presents the horizontal slices MIP model for the insertion of each piece into a bin. The two
different guillotine cuts structures are presented in Section 4. In Section 5 we describe our ap-
proach for reducing the rotation angles to a finite set. In Section 6 we introduce the constructive
algorithm scheme, which is extended in Section 6.1 with an alternative approach for creating
the guillotine cut structure and in Section 6.2 by embeding an improvement procedure into the
constructive process. We derive a lower bound for the problem in section 7. Section 8 contains
the computational study. Finally, in Section 9 we draw some conclusions.

3

2 Problem description
The problem objective is to minimize the number of stock sheets required to cut all the demand
pieces, hence it is an input minimization problem. There are sufficient standard size rectangular
stock-sheets available to meet demand, where the stock sheet has length L and width W. Let P
be the demand set of pieces, and each piece is considered to be unique. According to the typo-
logy proposed by Wäscher et al. (2007), which improves the typology presented in Dyckhoff
(1990, 1985), this is a single bin size bin packing problem (SBSBPP). The further refinements
are that all pieces are convex and usually irregular, pieces can be rotated continuously and re-
flected, and only guillotine cuts are allowed. In this case, the cutting line is not constrained to
be parallel to an edge of the stock-sheet and there are no limits on the number of cuts.

Let B denote the set of bins, where all bins are identical in size with width W and length
L. The bottom left corner of the bin is the origin of the cartesian co-ordinate system used to
locate each piece. Each bin, bi(Pi, Xi,Yi,Ri,Mi,Gi) ∈ B, has an associated set of pieces, Pi ⊆ P
in such a way each piece belong exactly to one of these subsets,

⋃|B|
i=1 Pi = P and Pi ∩ P j = ∅.

Each piece p ∈ Pi is given by an ordered list of vertices, p = (v1, . . . , vnp), and its edges can
be expressed by e j = (v j, v j+1), where j = 1, . . . , np − 1 and the npth edge is en = (vnp , v1).
In addition, each piece has a reference point (xp, yp), which corresponds to the bottom-left
corner of the enclosing rectangle of the piece. The position of each piece is the coordinate
position of the reference point of the piece. Then, the position of all the pieces in the bin bi

is given by the two vectors Xi ∈ R
|Pi | and Yi ∈ R

|Pi |, which denotes the x−coordinates and the
y− coordinates of all the pieces in the bin respectively. The rotation angle and the reflection
(mirror transformation) of the pieces are given by vector sets Ri ∈ R

|Pi | and Mi ∈ B
|Pi |, where

1 indicates that the original piece is reflected. Finally, Gi = (g1
i . . . g

|Pi |−1
i) is an ordered set of

guillotine cuts in such a way that the first guillotine cut, g1
i ∈ Gi divides bi into two parts. The

second guillotine cut, g2
i ∈ Gi, divides one of the parts, and so on. Note that apart from the first

cut, either endpoint of a cut can lie on one of the previous cuts instead of an edge of the bin.
Each guillotine cut, gk

i (p, el) ∈ Gi, where k ∈ {1, . . . , |Pi| − 1} is the order of the cut, is
associated to piece p ∈ Pi and runs concurrent with edge el. This means that we have to know
the position of piece p in order to know where gk

i (p, el) is placed in the bin. Note that gk
i (p, el)

has order k if it is the kth guillotine cut. The order of the guillotine cuts is important because the
endpoints of the guillotine cuts are given by the intersection with either the closest guillotine
cut with a lower order or the edges of the bin.

While the primary objective is to minimize the total number of bins (stock sheets), in prac-
tice an offcut of a partially packed bin can be reused in subsequent cutting patterns. An offcut is
the remaining material after applying a guillotine cut to separate the packed and unpacked area.
The cut may be horizontal or vertical, and selected to give the largest reusable rectangle area.
We denote by R∗ to the packed area after applying the offcut. So the objective is to minimize
the fractional number of bins (F). If N is the total number of bins used in the solution, then:

F = N − 1 +
R∗

LW
(1)

Alternatively, the objective could be to maximize the stock sheet utilization (U), defined by:

U =
∑|P|

i=1 Area(pi)
((N − 1)LW) + R∗

(2)

4

Either of these measures (U) and (F) is helpful for differentiating the quality of competing
methods when they produce solutions with the same number of bins. There is a close relation
between (F) and (U). If we consider two different solutions s1 and s2 such that U(s1) > U(s2),
indicating that the usage obtained by solution s1 is better, then s1 has a smaller fractional
number of bins F(s1) < F(s2).

3 Mixed integer formulation for the insertion of one piece
In this section we describe how an individual piece is located in a bin. Initially, all the pieces
are sorted by a certain criterion in order to be inserted into the bins. If the next piece in the
sorted list does not fit into the current bin, we try to insert the remaining pieces in the list before
opening a new bin.

In order to determine whether a piece can be inserted feasibly into a bin, and if so where, a
Mixed Integer Problem MIP is solved to optimality. Note, the MIP model permits moving the
position of the pieces already in the bin, and must respect the existing guillotine cut structure
defined in previous steps. A feasible solution for the model is the co-ordinate positions of all
the pieces already in the bin and the newly inserted piece that results in: no overlap between
pieces, all pieces are contained in the bin, and no piece crosses any of the existing guillotine
cuts. The formulation assumes all pieces have fixed rotation and a fixed reflection in order to
calculate the NFPs between the new piece and the pieces already placed. Hence, the model is
solved several times for different rotation angles for the original and the reflection of the next
piece. Clearly, the MIPs become harder to solve as the number of pieces in the bin increases.

In Figure 2 we show a simple example of a NFP given by a square(pi) and a diamond (p j).
If we fix the position of piece pi then the NFP is defined as the set of points such that the
placement of the reference point of p j (shown in the figure) would produce overlap between
pi and p j. When calculating the edges of the NFP we assume that the reference point of pi is
placed at the origin.

The NFP is a core concept of the model and therefore worth further explanation. Given
two convex polygons pi and p j, and a reference point on p j, the NFP is formed by tracing the
path of the reference point on p j as p j slides around the boundary of pi in such a way that
the polygons always touch and never overlap, see 2. Intuitively it is clear that if the reference
point moves inside the NFP then pi and p j overlap, hence the interior of the NFP represents
all overlapping positions. Equally, when the reference point is on the boundary of the NFP the
polygons touch and when it is outside the NFP the polygons are separated. This result holds
when the origin of pi and the origin of the NFP coincide. If pi is moved to position (xi, yi) then
the position of the reference point of p j must be transposed by (−xi,−yi) before testing p j’s
relative position with the NFP. Hence overlap between pi and p j can be identified by testing
whether point (x j − xi, y j − yi) is inside the NFP.

Let p ∈ P \ {
⋃i

j=1 P j} be the next piece to be inserted into bin bi ∈ B with a fixed orientation
and reflection (the piece is reduced into a polygon). We denote by INT (p) the interior of
polygon p. The following model seeks to feasibly insert p into the bin with position that
minimizes the weighted combination of the dimensions of the bounding box of the packed
area, defined by Lc and Wc. Further explanation of the model follows the formulation given by
the following equations:

5

pi

p jp j

p j

p j
NFPpi p j

Figure 2: Example of the NFP of a square and a
diamond.

Min ωLc + (1 − ω)Wc (3)
s.t. Lc ≤ L (4)

Wc ≤ W (5)
x j ≤ Lc − l j p j ∈ Pi ∪ {p} (6)

y j ≤ Wc − w j p j ∈ Pi ∪ {p} (7)
αr

kt(xk − xp) + βr
kt(yk − yp) ≤

∑µk
h=1 δ

rh
kt vkt 1 ≤ k ≤ |Pi|, 1 ≤ t ≤ µk, r = 1, . . . , 4 (8)∑µk

t=1 vkt = 1 1 ≤ k ≤ |Pi| (9)
αk j(xk − x j) + βk j(yk − y j) ≤ γk j 1 ≤ j < k ≤ |Pi| (10)

INT (p) ∩ gk
i = ∅ k = 1, . . . , |Pi| − 1 (11)

vkt ∈ {0, 1} 1 ≤ k ≤ |Pi|, 1 ≤ t ≤ µk (12)
x j, y j ≥ 0 p j ∈ Pi ∪ {p} (13)

• Objective function

The objective function (3) is a weighted combination of the length and width of the
minimum size bounding box that contains the placed pieces, represented by Lc and Wc,
respectively. Using this objective function formulation, the intention is to pack the pieces
as tightly as possible. We consider three different alternatives for weight coefficient ω:

– FO0: ω = 1
(W/L)+1

In this case, the rectangle (Lc,Wc) grows in proportions to the bin dimensions.

– FO1: ω = 0.01
The objective is to minimize the width, and the length is used as a tie-breaker.

6

– FO2: ω = 0.99
The objective is to minimize the length, and the width is used as a tie-breaker.

• Containment constraints

Constraints (4) and (5) ensure that pieces are contained entirely within the bin dimen-
sions. Constraint sets (6) and (7) define Lc and Wc as follows. For each piece p j, the
bottom left corner of its enclosing rectangle is placed at co-ordinate position (x j, y j) in
the bin. Let the length and width of the enclosing rectangle be l j nd w j, then these con-
straints set the upper-right corner to be less than or equal (Lc,Wc), for all the pieces.

• Non-overlapping constraints

Constraint sets (8) and (9) are defined to ensure that the new piece p is not placed in an
overlapping position with any other piece already in the bin. These constraints were pro-
posed by Alvarez-Valdes et al. (2013) in their horizontal slices formulation and use the
edges of the NFP to form the no-overlap constraints. Prior to solving the MIP, construct
the NFP of p and each piece pk, k ∈ {1, . . . , |Pi|} (NFPp,pk). Since all the pieces are convex
polygons, the NFP construction is simply a case of sorting the edges of both polygons
by slope order into one edge list, where p has counterclockwise orientation (fixed poly-
gon) and pk has clockwise orientation (orbiting polygon). The NFP is constructed from
this edge list. Care must be taken to correctly locate the origin of the NFP. When the
origin of the NFP coincides with the origin of the co-ordinate system, overlap is detected
when the difference of the reference points of pieces p and pk is inside the NFP. Note,
that the NFP of two convex polygons is also convex. The exterior of NFPp,pk indicates
a non-overlapping placement between p and pk, which is a non-convex region. The ho-
rizontal slices formulation address this problem by partitioning the exterior into convex
polygons, called slices, using horizontal lines coinciding with the vertices of the polygon
(see Figure 3). These slices are bounded by the dimensions of the bin (L and W). The
number of slices needed to cover all the possible relative positions between p and pk is
denoted by µk.

We associate one binary variable vkt to each slice. vkt = 1 if the reference point of
p − pk lies on slice t and 0 otherwise. If vkt = 1, the reference point of p − pk must
satisfy the constraints defining the slice. For instance, in Figure 3(b) if vk1 = 1 the four
constraints defined by the horizontal lines, the limit of the bin and the edge of NFPp,pk

must be satisfied. Constraint set (9) guarantees that one and only one variable vkt takes
the value 1 for each pair (p, pk). When vkt = 0, the associated constraints in (8) must be
relaxed, this is commonly done using the well known Big-M method. Here we use the
same approach as Alvarez-Valdes et al. (2013) who follow the proposal by Fischetti and
Luzzi (2008). In order to write one no-overlapping constraint, we need four inequalities
indexed by r ∈ {1, . . . , 4}, to describe slice t ∈ {1, . . . , µk}. Note that the number of
inequalities needed to describe one slice is always 4 because the slices are defined as
quadrilaterals. The no-overlapping inequality can be written with big M constant as:

αr
kt(xk − xp) + βr

kt(yk − yp) ≤ δr
kt + (1 − vkt)M

where the coefficients αr
kt and βr

kt are such that αr
kt
βr

kt
matches with the slope of edge r in

slice t, and in case that the edge r is vertical (horizontal) then αr
kt = 0 and βr

kt = 1 (αr
kt = 1

7

vk1

vk2

vk3

vk4

vk5

vk6

vk7

NFPp,pk

(a)

vk1

vk2

vk3

vk4

vk5

vk6

vk7

NFPp,pk

(b)

Figure 3: Two examples of the horizontal slices partition.

and βr
kt = 0). Coefficient δr

kt refers to the y-intercept of edge r in slice t. Fischetti and
Luzzi (2008) describe how to eliminate the M constant by including on the right hand
side of the inequality all the binary variables, defined by the current NFP, multiplied by
a given constant. These constants are obtained by solving the following problem:

δrh
kt := max

pk∈S h
αr

kt(xk − xp) + βr
kt(yk − yp),

which corresponds to the maximum value of the left hand side when piece k lies on slice
S h, h ∈ {1, . . . , µk}. Note that δrt

kt = δ
r
kt in the previous inequality when h = t, i.e, the slice

is active.

Finally, including
∑µk

h=1 vkh = 1 as constraint (9) assures the validity of the following
constraints:

αr
kt(xk − xp) + βr

kt(yk − yp) ≤
µk∑

h=1

δrh
kt vkt

Note that many of these constraints are the same as redundant because the slices have
parallel or concurrent edges. Hence, we only need to consider two inequalities in order
to write all the horizontal inequalities of the NFP.

These constraints only apply between the next piece and the pieces in the bin. Overlap
between pieces already placed is dealt with by the guillotine constraints, described next.

• Guillotine cut constraints

The next set of constraints (10) is the guillotine cut constraints that ensures that all pieces
can be removed from the stock sheet through a series of guillotine cuts. These con-
straints arise from the previous insertions of pieces and apply to all the pieces already
placed. After inserting the first piece into the bin, all subsequent insertions are followed
by identifying the guillotine cut that separates the inserted piece from the other pieces.
For each insertion, the MIP model will insert the piece in a segment of the stock sheet,
partitioned by guillotine cuts, that includes one other piece. Outside of the MIP, we
define a guillotine cut that divides this segment separating the piece initially occupying

8

the segment from the newly inserted piece. Hence every guillotine cut is separating two
pieces. Further, once a guillotine cut is defined, pieces must remain entirely on that side
of the guillotine cut for future insertions. As a result, these constraints ensure the pieces
already placed do not overlap. Therefore, the coefficients αk j, βk j and γk j corresponds to
the coefficients of one of the inequalities defined in (8) in the MIP model used for the
insertion of the previous piece, which are given by one of the edges of the NFP of the
corresponding pair of pieces.

In addition, the next insertion, piece p, must respect all the existing cuts. This is more
difficult to formulate since we do not know which side of the guillotine cut the piece will
be placed. Constraint set (11) is written to indicate the inclusion of the constraints to
prevent piece p being placed across an existing guillotine cut. In the next section we will
provide a detailed discussion and formulation of these constraints.

• Lifting the bound constraints

Constraints (6) and (7) apply to the new piece p. These inequalities can be improved
using the interaction of piece p with the pieces already placed pk ∈ Pi, expressed by the
variables vkt which have been defined for the non-overlapping constraints. For piece p,
inequalities (6) and (7) are transformed into:

∑
t αktvkt ≤ xp ≤ Lc − lp −

∑
t αktvkt 1 ≤ k ≤ |Pi| (14)∑

t βktvkt ≤ yp ≤ Wc − wp −
∑

t βkt
vkt 1 ≤ k ≤ |Pi| (15)

where αkt and αkt represent the minimal horizontal displacement, to the right or to the
left, of the reference point of piece p if vkt = 1, and βkt and β

kt
represent the minimal

vertical displacement, up or down, of the reference point of piece p if vkt = 1.

4 Guillotine cuts structure
The previous section describes two sets of constraints in the MIP formulation related to guil-
lotine cuts. Constraint set (10) are defined outside of the MIP, where a new cut constraint is
added after the next piece is inserted and the relative position of all pieces is known. Hence it
is straight forward to derive the relationship between the cuts and the pieces to form constraints
in the model. Constraint set (11) are to prevent the insertion of the next piece, p, in a position
that crosses the guillotine cuts. In this section we describe how the guillotine cuts are derived
outside of the model and how to formulate constraint set (11).

Since each cut separates two pieces, it is convenient to assign a guillotine cut to a piece. One
way to achieve this is to associate the guillotine cut to the piece that contains the concurrent
edge, called associated guillotine cuts (AGC). In this case some pieces may have no associated
cuts and others may have one or more. The other approach is to associate the new guillotine
cut with the last piece inserted, called iterated guillotine cuts (IGC), where every piece apart
from the first will have an associated guillotine cut. We describe each strategy below.

9

4.1 AGC
The following explanation uses the example presented in Figure 4. For AGC and IGC, the first
piece (p1) is placed at the bottom left corner of the bin, testing each rotation angle (see section
5) and selecting the one that minimizes the objective function. Ties are broken by selecting
the orientation that maximizes the length of the edges that are concurrent with the edges of
the stock sheet. There is no need to define a guillotine cut as it does not need to be separated
from another piece. So the model, defined in Section 3, to insert the second piece (p2) only
has the containment constraints (4), (5), (6) and (7) for both pieces, and the non-overlapping
constraints, (8) and (9), between the placed piece, p1, and the new piece, p2. The solution of
this model provides the coordinates of both pieces in the bin and we have to identify a guillotine
cut.

Since pieces are convex polygons, there is at least one edge of one piece which can be used
as a valid guillotine cut. The first valid guillotine cut found is used. For AGC, the guillotine
cut is associated with the piece that contains the edge that defines the guillotine cut. In the
example in Figure 4, the guillotine cut is concurrent with an edge of p2, so it is associated
with p2. Therefore, the relative position between p2 and this guillotine cut is fixed throughout
the construction process. In other words, wherever piece p2 is moved after the solution of
successive MIPs, the guillotine cut will be moved with it.

The first guillotine cut in this example is g1(p2, e2
l), where p2 is the associated piece and e2

l is
the edge of p2 that defines the guillotine cut. The endpoints of this guillotine cut are determined
by the intersection between the cut and the edges of the bin. The inequality defined by g1(p2, e2

l)
which separates p1 and p2 (inequality (10)) has the following structure, where αp1,p2,1, βp1,p2,1

and γp1,p2,1 are the coefficients needed to define the inequality and the third subscript indicates
that this is the first constraint associated with p2:

αp1,p2,1(xp1 − xp2) + βp1,p2,1(yp1 − yp2) ≤ γp1,p2,1 (16)

The next model will insert p3 and contain all constraint sets. Constraint set (10) includes the
only guillotine cut g1(p2, e2

l) defined by (16). Constraint set (11) must prevent piece p3 crossing
g1(p2, e2

l). Since we do not know which side of g1 piece p3 will lie, we add the following three
inequalities that ensure it will lie entirely on one side or the other:

αp2,p3,1(xp3 − xp2) + βp2,p3,1(yp3 − yp2) ≤ γ
R
p2,p3,1

+ (1 − χR
p2,p3,1

)M (17)

αp2,p3,1(xp3 − xp2) + βp3,p2,1(yp3 − yp2) ≤ γ
L
p2,p3,1

+ (1 − χL
p2,p3,1

)M (18)

χR
p2,p3,1

+ χL
p2,p3,1

= 1 (19)

Note that the lines that define the guillotine cuts have the same orientation as the edge of
the piece. All pieces are assumed to have counterclockwise orientation. Hence, in Figure 4
the guillotine cut runs from the top left of the stock sheet with decreasing gradient towards the
bottom right, so p2 is to the left of the cut and p1 is to the right. Constraint (17) forces p3 to
be placed to the right of g1(p2, e2

l) when the corresponding binary variable χR
p2,p3,1

= 1, while
constraint (18) forces p3 to be placed to the left of g1(p2, e2

l) when the corresponding binary
variable χL

p2,p3,1
= 1. When binary variable χR

p2,p3,1
or χL

p2,p3,1
takes the value 0, then the big-M

constant relaxes the constraint. Constraint (19) allows one of constraints (17) and (18) to hold
true.

10

The model is free to move the position of p1 and p2 while respecting that they must remain
on opposite sides of g1(p2, e2

l), and g1(p2, e2
l) remains concurrent with edge e2

l of p2. Recall
that each piece has an origin at the bottom left corner of their bounding box and all calculations
are made relative to that origin. As a result, coefficients αp2,p3,1 and βp2,p3,1 are the same in both
inequalities (17) and (18) because the lines are parallel, while coefficients γR

p2,p3,1
and γL

p2,p3,1
are different because the vertex which touches the guillotine cut and maintains all the vertices
on one side, is different depending on the side the piece lies.

Figure 4(c) shows that the model places p3 on the same side of g1(p2, e2
l) as p1. Note that

the position of pieces p1 and p2 and guillotine cut g1(p2, e2
l) have changed when piece p3 is

inserted. The position of p3 arose from setting χR
p2,p3,1

= 1. For the next model, χR
p2,p3,1

= 1
is fixed, constraint (17) becomes part of constraint set (10) and constraints (18) and (19) are
discarded. Next, we identify guillotine cut, g2, which separates p3 from p1. This time an edge
of p3 defines the next guillotine cut, g2(p3, e3

l), which is associated with p3. Here, the top and
the bottom limits of g2(p3, e3

l) are given by the intersections with the edges of the bin.
The model to insert p4 includes three constraints in set (10): two arising from cut g1: (16)

between p1 and p2 and (17) between p2 and p3, and one arising from g2 that separate p1 and
p3. In order to guarantee that p4 is going to respect g1(p2, e2

l) and g2(p3, e3
l), constraint set (11)

is as follows:

αp2,p4,1(xp4 − xp2) + βp2,p4,1(yp4 − yp2) ≤ γ
R
p2,p4,1

+ (1 − χR
p2,p4,1

)M (20)

αp2,p4,1(xp4 − xp2) + βp2,p4,1(yp4 − yp2) ≤ γ
L
p2,p4,1

+ (1 − χL
p2,p4,1

)M (21)

χR
p2,p4,1

+ χL
p2,p4,1

= 1 (22)

αp3,p4,1(xp4 − xp3) + βp3,p4,1(yp4 − yp3) ≤ γ
R
p3,p4,1

+ (1 − χR
p3,p4,1

)M (23)

αp3,p4,1(xp4 − xp3) + βp3,p4,1(yp4 − yp3) ≤ γ
L
p3,p4,1

+ (1 − χL
p3,p4,1

)M (24)

χR
p2,p4,1

= χR
p3,p4,1

+ χL
p3,p4,1

(25)

As before, the model is seeking to place p4 entirely on one side of each of the guillotine cuts.
If it is placed to the left of g1(p2, e2

l) (with p2), then χL
p2,p4,1

= 1, g1(p2, e2
l) holds by constraint

(21) and g2(p3, e3
l) is redundant by constraints (22) and (25). If it is placed to the right of

g1(p2, e2
l) (not with p2), then χR

p2,p4,1
= 1, g1(p2, e2

l) holds by constraint (20) and g2(p3, e3
l) holds

where either χR
p3,p4,1

= 1 or χL
p3,p4,1

= 1, but not both, permitted by constraint (25). In this case
p4 may be placed to the left of g2(p3, el) (with p3), then χL

p3,p4,1
= 1 and constraint (24) holds,

or to the right of g2(p3, e3
l) (with p1), then χR

p3,p4,1
= 1 and constraint (23) holds.

Figure 4(d) shows the insertion of p4. We can see that the new guillotine cut that separates
p1 and p4 ends at intersections with previous guillotine cuts instead of with the edges of the bin.
This new guillotine cut is associated to p1, so will be denoted as g3(p1, e1

l). Since the guillotine
cuts are performed in order, g1(p2, el) and g2(p3, el) are made before performing this cut, the
cut is valid. Also observe that while maintaining their relative positions, p2 and p3 and their
associated guillotine cuts have moved upwards making room for p4. The position of p4 arose
from setting χR

p2,p4,1
= 1, χR

p3,p4,1
= 1. For the next model relative position between p4 and the

three guillotine cuts are fixed, so constraints (20), (23) and the one given by the new guillotine
cut g3(p1, e1

l) needed to separate p1 and p4, which match with one inequality defined in (8),
become part of constraint set (10) and the other constraints involving p4 with any other piece

11

p1

(a) Placement of piece p1

p1
p2

(b) Placement of piece p2

p1

p2p3

(c) Placement of piece p3

p1

p2p3

p4

(d) Placement of piece p4

p1

p2p3

p4

p5

(e) Placement of piece p5

p1

p2

p3

p4

p5

p6

(f) Placement of piece p6

p1

p2

p3

p4

p5

p6

p7

(g) Placement of piece p7

p1

p2

p3

p4

p5

p6

p7

p8

(h) Placement of piece p8

Figure 4: Example of the packing of a bin with the AGC structure.

are discarded. Therefore, if piece ph has been inserted, the model we build for the insertion of
ph+1 will have h − 1 more inequalities in (10) than in the previous iteration.

12

g1 g2

g3

g4

g5

g6

g1

g2 g4

g3 g6

g5 g7

g7

L R

R L

L R

(a)

g1

g2 g4

g3 g6

g5 g7

L R

R L

L R

(b)

Figure 5: Hierarchical structure of the guillotine cuts

We can add the rest of the pieces iteratively, as shown in the other drawings in Figure 4.
In order to provide a general form for defining the guillotine cuts, it is worth highlighting that
the relationship between cuts is hierarchical, and when inserting a piece on a given side of a
guillotine cut, the predecessors of the cut are included in the set of active guillotine constraints.
For example see Figure 5. The guillotine cuts are illustrated in 5a without showing the pieces,
the corresponding hierarchy is illustrated in 5b. If we were placing a piece on the right side of
g3, where a feasible placement would result in cut g7, the active guillotine cuts are predecessors
g2 and g1. The other cuts do not impose any restriction on this placement. Also note that g1 is
always active.

In general, let p be the next piece to be inserted, where there are l − 1 pieces in the bin and
separated by l − 2 guillotine cuts. For each guillotine cut gt, t = 2, . . . , l − 2, we know which of
the guillotine cuts is the immediate predecessor of t denoted by t∗ ∈ {1, . . . , t − 1}.

We denote by pt the piece associated to the guillotine cut gt, t = 1, . . . , l − 2. Since it
might be possible that two or more guillotine cuts are associated with one piece then we use a
three index notation in order to determine which guillotine cut of those associated to piece pt is
being used. Therefore, αpt ,p,s, βpt ,p,s and γR

pt ,p,s are the coefficients needed to write the constraint
to ensure that piece p is going to be placed on the right hand side of gt, which corresponds to
the s-th guillotine cut associated to piece pt. Then, in a general form, inequalities (11) can be
written as follows:

αpt ,p,st(xp − xpt) + βpt ,p,st(yp − ypt) ≤ γ
R
pt ,p,st
+ (1 − χR

pt ,p,st
)M

t = 1, . . . , l − 2 (26)
αpt ,p,st(xp − xpt) + βpt ,p,st(yp − ypt) ≤ γ

L
pt ,p,st
+ (1 − χL

pt ,p,st
)M

t = 1, . . . , l − 2 (27)
χR

p1,p,1
+ χL

p1,p,1
= 1 (28)

χσpt∗ ,p,st
= χR

pt ,p + χ
L
pt ,p t = 2, . . . , l − 2 (29)

Inequalities (26) and (27) define the guillotine cuts, which are activated by binary variables
χR

pk ,pt ,s and χL
pk ,pt ,s, respectively. Equality (28) ensures that g1 is always satisfied by the new piece

(p). The remaining guillotine cuts are imposed on p using equalities (29) in the same way as

13

0
1

23
4

5

(a) AGC

0
1

2 3

4

(b) IGC

Figure 6: Difference between AGC and IGC (real example on instance H120).

described in the example above, where σ will take the term R or L depending on whether the
immediate predecessor cut is on the right (R) or left (L). For example in Figure 5, when placing
piece 8 in such a way that it would result in defining cut g7, σ = R.

4.2 IGC
The Iterated Guillotine Cut structure associates each guillotine cut with the last piece inserted
into the bin. While the cuts are still defined by an edge of one of the pieces it separates, the edge
may be from a previously placed piece but associated to the newly placed piece. The advantage
is that this association is easier to implement since each piece has only one cut association and
the cuts are in the same order as the piece allocation. The MIP formulation remains the same,
i.e. inequalities (10) and (11) are the same in both structures.

Figure 6(a) shows two different arrangement of pieces generated by each type of associ-
ation. With the AGC structure the constructive algorithm places five pieces instead of the four
placed when using the IGC structure. The algorithm works similarly in both cases until piece
four is placed. The first two pieces are separated in both cases by a vertical line which is associ-
ated with piece one. The second guillotine cut separates pieces zero and two and is associated
with piece two in both cases. The third guillotine cut is associated with piece three in both
cases. When piece four is placed, with the AGC structure the new guillotine cut is associated
with piece one with which it has a concurrent edge, while with the IGC structure it is associated
with piece four, the last piece placed. Then, piece five (a tiny triangle) fits into the packing on
the left-hand side of Figure 6(a) because piece four can be moved to the top of the bin while the
cut stays with piece one, making room for piece five. In the packing on the right-hand side of
Figure 6(b), if piece four is moved to the top of the bin, the guillotine cut has also to be moved
upwards and there is no feasible placement for piece five.

14

5 Rotations and reflections
The above discussion assumes a fixed rotation and reflection of each piece. However, in reality
a piece may be freely rotated and, in some cases, may be reflected (mirror image). In this
section we describe how we identify a finite set of orientations, reflected and not reflected,
for each piece. Since we are selecting a small number of orientations from an infinite set,
it is important to identify orientations that are likely to fit well with the rectangular bin and
the pieces already in the bin. With this aim in mind, algorithm Get Rotations (GR), identifies
rotation angles by matching the edges of the next piece with the edges of the bin and the pieces
in the bin.

Let nr be the maximum number of different orientations we wish to test, p be the next piece
and np the number of edges of p. Generate all the rotation angles for p so that each of its edges
coincide with each edge of the bin (4 ∗ np matches) and with each edge of each piece already
placed into the bin (np(n1 + n2+, . . .)). Note that some rotation angles will be generated several
times, only unique angles are stored along with the number of times they are generated. If the
total number of angles is less than nr, then algorithm GR returns all these angles. If it is greater
than nr, select nr rotation angles according to the following sorting criteria:

a) Non-increasing number of times the rotation angle is generated.

b) In the case of a tie in (a), the largest total length of the edges that match at that rotation
angle.

We test a number of different strategies for setting nr and for testing the value of using the
mirror image of the piece, as follows:

• 3R&3R: nr = 6, three orientations for the original and three for the reflected piece.

• 6R: nr = 6, six orientation for the original and no reflection.

• 3R+1&3R+1: same as 3R&3R for the first piece inserted, then increase by one for each
reflection every time a new piece is inserted.

• 3R+3&3R+3: same as 3R&3R for the first piece inserted, then increase by three for each
reflection every time a new piece is inserted.

• 5R+5&5R+5: same as 3R+3&3R+3 but starting with five orientations per reflections
and increasing by five for each reflection every time a new piece is inserted.

• E30: Every 30o for the original and the reflected piece. The first rotation is given by
matching the longest edge of the piece with the bottom edge of the bin.

• E10: Similar to E30, but considering the rotations every 10o.

6 Constructive algorithm
The constructive algorithm uses the set of angles of rotation and reflection for each piece to
sequentially place the pieces in the bin using the MIP, described above. Algorithm 1 details the
basic procedure for the constructive heuristic.

15

Given an initial permutation of pieces and an open bin, for the next piece generate the ro-
tation angles using algorithm GR. For each rotation solve the MIP. If the piece can be feasibly
placed in the bin, select the placement arising from the rotation angle that gives the best object-
ive function value, otherwise leave the piece unpacked and move on to the next. Once no other
piece can feasibly fit in the bin, close the bin and open a new bin. Start packing from the first
unpacked piece in the list in the new bin. Once all pieces are packed, rebuild the bin with the
lowest utilization, once using objective functions FO1 and once using objective function FO2.
Apply a horizontal or vertical cut respectively to find the fractional number of bins.

In order to solve a problem instance, we call the MIP several times for each piece. The com-
putational effort of the constructive algorithm depends on the number of pieces in a problem
instance and on the number of rotations permitted for each piece. Setting good upper bounds
improves the efficiency of the MIP. The first attempt to insert a piece at a given angle of rota-
tion has an upper bound equal to the value of the objective function when Lc = L and Wc = W.
If the MIP provides a feasible solution, then the objective function value can be used as an
upper bound for the following insertion of the same piece in the remaining angles of rotation.
Otherwise, the bounds remain the same as for the first insertion.

6.1 Two phase constructive algorithm
The constructive algorithm described above identifies the guillotine cuts after each piece inser-
tion, these are then set as several constraints in the MIP model, described in Section 4, which
force the next piece to respect all the guillotine cuts previously defined. Setting the guillotine
cuts in this way can over constrain the solutions space. For example see figure 7(a), where the
first set of guillotine cuts prevents p4 from being placed, while the second layout allows the
placement with a feasible set of guillotine cuts. Since the guillotine cut inequalities reduce the
feasible region for placing the new piece, we propose a modification to the constructive heur-
istic that inserts the next piece ignoring the guillotine cut constraints (inequalities 11 in Section
3). After the best insertion is found, we then perform a procedure to identify a new guillotine
cut structure, if one exists. This is called the two phase constructive algorithm.

The modification to the original MIP formulation (defined in Section 3) is straight forward.
The new MIP is simply a relaxation by removing constraint set (11). We refer to it as MIP′.
Since MIP

′

is a relaxation of the original MIP, if MIP
′

is infeasible then so is the original MIP.
Given a feasible solution to MIP

′

, we search for a guillotine cut structure using a simple
algorithm, called Finding a Guillotine Cut Structure (FGCS), that works as follows. Test each
edge of every piece, in the order the pieces are inserted, as a feasible guillotine cut i.e. a cut
concurrent with the edge that does not divide any piece and pieces lie on both sides of the cut.
On finding a feasible cut, divide the bin into two parts using the cut. For each part, repeat the
same procedure until all the pieces are separated, or stop if no cut can be found.

In general the two-phase procedure for inserting a piece p works as follows: For each
rotation, insert p using MIP

′

. Given a feasible solution, call FGCS. If MIP
′

fails to find a
feasible solution for all rotations, move on to the next piece. If FGCS fails to find a feasible
guillotine cut structure for all feasible solutions to MIP

′

, call the original MIP and proceed in
the same way as the basic construction heuristic for this piece.

16

p1
p2

p3

(a) Constructive Algorithm

p1 p2

p3

p4

(b) Constructive Algorithm with two phases

Figure 7: Solutions obtained by a constructive algorithm and a constructive algorithm with two phases.

6.2 Embedding an improvement procedure into the constructive algorithm
Local search has been successfully applied to a wide range of packing problems and instinct-
ively would seem like an interesting avenue to pursue here. However, all our experimentation
over a wide range of neighborhood structures resulted in little benefit and high computational
times. Instead, we developed an improvement procedure embedded in the construction heur-
istic to improve the bin utilization before it is closed and a new bin opened. In order to avoid
wasting computational time, the procedure is only applied to bins with utilization below a given
threshold, κ. In our experiments we set κ to 0.95.

The guillotine cuts effectively define containment polygons around each piece. Compar-
ing the area of the piece to the area of the containing polygon provides a measure of space
utilization of the specific piece. Figure 8 shows the containment polygon of piece p6, which
has the lowest space utilization. In this example, the utilization in the containment polygon is
lower than 0.5. The improvement procedure removes the piece with the worst utilization and
rebuilds the bin, without this piece, using the same angles of rotation and reflection for the
retained pieces. Then we try to insert the remaining pieces on the unpacked list. Finally we
try to insert the removed piece last considering ten alternative rotations for each reflection. As
before, algorithm GR produces the angles of rotation by matching the edges of the piece with
the edges of the other pieces, but in this case, ignoring the edges of the bin. If the utilization of
the repacked bin is higher, then accept the solution and identify the next piece with the lowest
utilization of its containing polygon. The procedure continues until no improvement can be
found.

7 Lower bounds for the total number of bins
In order to assess the quality of the solutions obtained, we have computed a simple lower
bound for N by solving a 1-dimensional bin packing model. This model uses an upper bound
of Nub, given by the constructive algorithm. In order to indicate that bin i is open we use a
binary variable yi, which takes the value 1 if the bin is used in the solution. We consider binary

17

p1

p2

p3

p4

p5

p6

p7

p8

Figure 8: Containment polygon of piece p6

variables xi j, which take the value 1 if piece j is placed on bin i, and 0 otherwise. The model
can be written as follows:

Min
∑Nub

i=1 yi (30)
s.t.

∑n
j=1 a jxi j ≤ abyi i = 1, ...,Nub (31)∑Nub

i=1 xi j = 1 j = 1, ..., n (32)
xi j ∈ {0, 1}, yi ∈ {0, 1}, 1 ≤ j ≤ n, 1 ≤ i ≤ Nub (33)

where n denotes the total number of pieces, Nub is an upper bound for the total number of bins,
a j is the area of piece j ∈ {1, . . . , n} and ab the area of one bin. In the objective function we try
to minimize the total number of bins used. Inequalities (31) ensure that the total area of pieces
placed in bin i ∈ {1, . . . ,Nub}must be less than or equal to the area of the bin. Finally, equalities
(32) force each piece to be placed exactly in one open bin.

8 Computational experiments
We divide the computational experiments into four parts. In subsection 8.1 we compare the dif-
ferent versions of the constructive algorithm. Once the best version is identified, in subsection
8.2 we show the improvement achieved by the constructive algorithm with two phases and the
improvement procedure. Finally, in subsections 8.3 and 8.4 we compare with the state of the
art algorithms on irregular packing and rectangular packing respectively. The computational
experiments were coded in Microsoft Visual Studio C++ 2008 and run on a Intel core i5 with
2.4 GHz PC with 4 GB of RAM. The MIP models were solved using CPLEX solver, version
12.5.0.0.

We test the performance of the alternative variants using the test data presented by Han
et al. (2012). They consider eight instances, four provided by a company in glass cutting for
conservatories and another four generated using properties of the industrial data. The number
of pieces ranges between 40 and 149. The instance name is coded by a letter and a number:
the letter can be J or H depending on whether the instance is provided by a company (J) or

18

is generated (H); the number represents the total number of pieces to be packed into the bins.
For each data set the pieces have between 3.5 and 4 edges on average. The data defining the
pieces is available on the ESICUP website (http://paginas.fe.up.pt/ esicup/tiki-index.php), and
the length and the width of the bin are L = 225 and W = 321 respectively.

8.1 Finding the best constructive algorithm
In this subsection we study the basic constructive algorithm and test alternative design de-
cisions. All the different versions follow the structure described in Algorithm 1 while testing
alternative sorting criteria of pieces, orientation and reflections (see Section 5), objective func-
tion (see Section 3), and association of guillotine cuts (AGC and IGC).

We investigate three alternative sorting criteria for the pieces at the beginning of the process,
these are: (i) Randomly. (ii) Non-increasing area. (ii) By shape: pieces are classified by those
similar to a rectangle and those that are not (usually triangular). Given the enclosing rectangle
of a piece, if the area of the piece occupies more that 70% of the enclosing rectangle then it is
classified rectangular. Within each class, pieces are sorted by non-increasing area. Rectangular
pieces are packed first.

The default settings for the constructive algorithm (CA1), sorts the pieces by non-increasing
area as the initial permutation, uses the best 3 angles of rotations for both the original and
reflected piece (3Rx3R), objective function FO0 and the AGC guillotine cut structure. The
other variants are the same as CA1 with the following modifications:

CA2: initially pieces are sorted randomly.

CA3: initially pieces are sorted by shape.

CA4: objective function FO1.

CA5: objective function FO2 (see Section 3).

CA6: piece rotation strategy is 6R.

CA7: piece rotation strategy is 3R+1&3R+1.

CA8: piece rotation strategy is 3R+3&3R+3.

CA9: piece rotation strategy is 5R+5&5R+5.

CA10: piece rotation strategy is E30.

CA11: piece rotation strategy is E10.

CA12: guillotine cuts association is IGC.

Table 1 shows the total number of bins used to pack all the pieces using these versions of
the constructive algorithm and the lower bound (LB). Since CA2 is random, the result is the
average of 10 random permutations. Table 2 shows the fractional number of bins used. Finally,
Table 3 shows the computational time in seconds.

19

Table 1: Number of bins used

Instances CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11 CA12 LB
J40 8 9 8 8 8 8 8 8 8 8 8 8 7
J50 10 11 10 10 10 10 10 10 10 10 10 10 8
J60 11 12 11 11 11 11 11 11 11 11 11 11 9
J70 12 13.5 12 12 12 13 12 12 12 12 12 12 10
H80 10 11 10 10 10 10 10 10 10 10 10 10 9
H100 16 17.7 17 16 16 17 16 16 16 16 16 16 14
H120 16 17.6 17 16 17 17 16 16 16 17 16 17 14
H149 22 24.5 23 23 23 23 22 22 22 22 22 22 20
Total 105 116.3 108 106 107 109 105 105 105 106 105 106 91

Table 2: Fractional number of bins used

Instances CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11 CA12
J40 7.40 8.45 7.38 7.45 7.43 7.70 7.25 7.21 7.21 7.33 7.25 7.52
J50 9.27 10.50 9.37 9.24 9.31 9.53 9.31 9.16 9.16 9.36 9.25 9.38
J60 10.35 11.54 10.54 10.52 10.40 10.68 10.35 10.21 10.22 10.36 10.28 10.41
J70 11.63 13.03 11.85 11.80 11.78 12.18 11.57 11.66 11.62 11.79 11.74 11.79
H80 9.46 10.44 9.47 9.48 9.46 9.34 9.40 9.30 9.35 9.43 9.33 9.55
H100 15.56 17.27 16.12 15.87 15.82 16.16 15.62 15.43 15.47 15.94 15.54 15.75
H120 15.75 17.19 16.17 15.65 16.24 16.39 15.69 15.65 15.74 16.14 15.95 16.21
H149 21.83 24.03 22.39 22.09 22.24 22.09 21.88 21.72 21.77 21.87 21.75 21.83
Total 101.27 112.45 103.30 102.10 102.67 104.06 101.07 100.33 100.54 102.21 101.08 102.43

The comparison between CA1, CA2 and CA3 in Table 1 shows that the best sorting criterion
is non-increasing area (CA1). We can see that CA2 is always inferior to CA1, and CA3 is
inferior to CA1 in the last three instances. Furthermore, Table 2 shows that CA1 obtains better
results than CA3 in all but instance J40 where it is slightly inferior.

In order to decide which objective function produces better results, we compare CA1, CA4
and CA5. According to Table 1 there is little to chose between the objective functions. Table 2
shows that CA1 is better than CA4 and CA5 apart from instances J50 and H120, therefore the
weighted objective function FO0 works better than both FO1 and FO2.

The advantages of using reflection can be seen by comparing CA1 and CA6. Each insertion
tries 6 different orientations of one piece, CA1 considers the best three rotations of both original
and reflected polygons and CA6 does not take into account the reflection. We can see from
Table 2 that the results are clearly better if we consider the reflected polygons.

Algorithm CA1 considers 6 different orientations of the piece which is going to be inserted.
This means that 6 MIP models are solved to optimality in order to decide the relative position
between the new inserted piece and the pieces already placed. Algorithms CA7, CA8, CA9,
CA10 and CA11 consider more rotations for both polygons, original and reflected, of a given
piece. In Table 3 we can see that the computational time increases, CA11 being the slowest
algorithm (note that at each insertion CA11 72 MIPs are solved to optimality). Table 1 shows
that all these algorithms produce results with the same number of bins with the exception of
CA10 which obtains a worse result on instance H120. It is interesting to note that matching
edges (CA7, CA8, CA9) works better than a fixed increment in the angle of rotation (CA10,
CA11). The best results are given by CA8, which produces the best results for 6 of 8 instances.
However, the computational time of CA8 increases considerably in comparison with CA1.

Finally, as suspected AGC structure produces better solutions than the IGC, shown by com-
paring CA1 using AGC with CA12 using IGC.

20

Table 3: Time in seconds

Instances CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 CA10 CA11 CA12
J40 14 28 15 14 16 41 31 83 105 58 177 15
J50 18 45 22 20 19 24 52 89 108 95 237 22
J60 32 67 45 73 36 65 96 204 180 162 440 39
J70 62 100 121 93 129 44 142 334 305 281 609 55
H80 155 227 131 112 158 117 354 610 545 449 1257 99
H100 124 215 97 223 177 92 294 582 587 720 1286 108
H120 326 456 149 288 186 158 771 1198 1424 782 2769 194
H149 624 627 235 225 208 193 1042 1529 1525 1307 3369 250
Total 1355 1765 813 1048 928 734 2782 4627 4779 3855 10145 783

8.2 Comparison of the constructive algorithms with two phases and the
improvement procedure

Table 4 shows the comparison between the original CA1, the CA1 configuration using the two-
phase constructive algorithm (CA1 − 2Ph) and CA1 − 2Ph with the improvement procedure
(CA1 − 2Ph − imp) described in Section 6.2. Comparing CA1 and CA1 − 2Ph, the computa-
tional time remains similar and the quality of the solutions is slightly improved. Adding the
improvement phase, shows a more significant improvement in solution quality. The number of
bins in instances J40, J50 and J60 are reduced and in instances H100 and H120 the fractional
number of bins is reduced. That is, on 5 instances this improvement procedure obtains a better
solution. However, there is at a significant increase in computational times. Note that solution
using CA2 − 2Ph − imp find an optimal solution in instance J40 (respect the total number of
bins) and the three algorithms find solutions at most two bins above the lower bound.

Table 4: Comparing the initial and the two-phase constructive algorithms

CA1 CA1-2Ph CA1-2Ph-imp LB
N U F T N U F T N U F T N

J40 8 0.82 7.40 14 8 0.83 7.31 21 7 0.88 6.92 168 7
J50 10 0.82 9.27 18 10 0.83 9.23 26 9 0.85 8.97 344 8
J60 11 0.84 10.35 32 11 0.83 10.49 68 10 0.87 9.99 445 9
J70 12 0.85 11.63 62 12 0.88 11.46 99 12 0.86 11.54 703 10
H80 10 0.86 9.46 155 10 0.89 9.20 121 10 0.89 9.21 1275 9
H100 16 0.86 15.56 124 16 0.87 15.33 165 16 0.88 15.27 1412 14
H120 16 0.87 15.75 326 16 0.87 15.74 488 16 0.89 15.37 2406 14
H149 22 0.88 21.83 624 22 0.89 21.57 524 22 0.89 21.59 3314 20
Total 105 101.27 1355 105 100.13 1513 102 98.87 10068

8.3 Comparison with the best known algorithms
Han et al. (2012) propose several versions for the one step algorithm depending on two para-
meters: θ is the threshold for accepting matches of blocks and K controls the linearity of the

21

dynamic weighting scheme. The best two algorithms using the one-step approach are given by
the following combinations: 1S-0.94-5, with θ = 0.94 and K = 5 and 1S-0.97-3, with θ = 0.97
and K = 3.

The two-step algorithm (2S) also proposed by Han et al. (2012) is in general inferior to the
one-step algorithms, with the exception of one instance (see J70 in Table 5) where the two-step
algorithm found a better solution with fewer bins than all the one-step algorithms.

Table 5 shows the computational results obtained by the two-step algorithm 2S and the
one-step algorithms 1S-0.94-5 and 1S-0.97-3. The two last columns correspond to CA1 and
CA1− 2Ph− imp. The total number of bins is denoted by N, F is the fractional number of bins
and T is the computational time measured in seconds. Algorithm CA1−2Ph−imp produces the
best known results for five of the eight instances (the best known solution of instance J70, H80
and h149 is given by CA1− 2Ph in Table 4). The behavior of algorithm CA1 is also interesting
because on average it works better than the algorithms proposed by Han et al. (2012), and it
is faster than CA1-2Ph-imp requiring a similar computational time than 1S-0.97-3 on average.
In fact, we can see that CA1 reduces the number of bins used in 1S-0.94-5 and 1S-0.97-3 in 4
instances.

8.4 Comparison with the state of the art algorithms in rectangular bin
packing problems

The constructive algorithms proposed in this paper deal with irregular pieces and use a mathem-
atical model which is hard to solve to optimality in each step. Nevertheless, the same approach
can be directly applied to the standard bin packing problem with rectangular pieces. While
there are few competing algorithms for irregular pieces to use as a benchmark, it is interesting
to compare with the state of the art in rectangle bin packing. However, we emphasize that our
algorithm was designed for irregular pieces.

For the bin packing problem with rectangular pieces, there is a standard benchmark set
composed of 500 instances divided into 10 classes. The first 6 classes were proposed by Berkey
and Wang (1987) and the last 4 classes by Lodi et al. (1999). We consider two rotations for the
insertion of each piece (0o and 90o) and therefore we are solving the 2DBP|R|G problem in the
typology presented in Dyckhoff (1990).

Table 6 compares the total number of bins used by the constructive algorithm CA1 with
fast heuristic algorithms: the Knapsack-Problem-based heuristics of Lodi et al. (1999) (KP),
the Guillotine Bottom-Left heuristic of Polyakovsky and MHallah (2009) (GBL) and the Con-
structive Heuristic of Charalambous and Fleszar (2011) (CH).

We can observe that the constructive algorithm CA1 is competitive, working better than
GBL, slightly worse than KP and clearly worse than CH. Algorithm CA1 − 2Ph produces
better results than any other constructive algorithm. However, the state of the art procedure
on rectangular bin packing problems with guillotine cuts is the CHBP algorithm proposed by
Charalambous and Fleszar (2011), in which their constructive algorithm (CH) is followed by
a post-optimization phase. CHBP requires only 7064 bins. The heuristic algorithm CFIH+J4
proposed by Fleszar (2013) obtains similar solutions than the CHBP but in a small fraction of
time (the average time of the CFIH+J4 is 0.000314 seconds while CHBP requires an average of
0.66278 seconds). Besides, CA1-2Ph requires a high computational effort, being the average

22

Table 5: Comparison with the algorithms proposed by Han et al. (2012)

2S 1S-0.94-5 1S-0.97-3 CA1 CA1-2Ph-imp
N 8 8 8 8 7

J40 F 7.72 7.39 7.32 7.40 6.92
T > 1h 110 47 14 168
N 10 11 10 10 9

J50 F 9.66 10.43 9.8 9.27 8.97
T > 1h 130 74 18 344
N 11 11 11 11 10

J60 F 10.90 10.23 10.51 10.35 9.99
T > 1h 170 60 32 204
N 12 13 13 12 12

J70 F 11.95 12.75 12.65 11.63 11.54
T > 1h 200 98 62 703
N 10 10 10 10 10

H80 F 9.63 9.25 9.45 9.46 9.21
T > 1h 405 187 155 1275
N 17 17 17 16 16

H100 F 16.40 16.31 16.35 15.56 15.27
T > 1h 700 201 124 1412
N 17 17 17 16 16

H120 F 16.14 16.25 16.58 15.75 15.37
T > 1h 714 247 326 2406
N 23 23 23 22 22

H149 F 22.29 22.33 22.41 21.83 21.59
T > 1h 947 389 624 3314

TOTAL N 108 108 108 105 102
F 104.69 103.06 103.72 101.27 98.87
T > 8h 3006 1145 1261 10067

time 151.68 seconds.
Table 7 shows the total number of bins used by algorithms CH, CA1, CA1−2Ph and CHBP

for each class of instances. The main differences between algorithms CH and CA1 appear
in classes 7 and 8, the performance in the rest of the classes being similar. The differences
disappears if we consider algorithm CA1 − 2Ph, which seems especially well suited for these
types of instances. Note that CA1 and the other constructive algorithms presented in this paper
are carefully designed to decide the position of the pieces in a given bin and do not focus on
the assignment of pieces to bins. Nevertheless, they work well on rectangular bin packing
problems.

9 Conclusions
In this paper we tackle a new problem in the cutting and packing literature (only one other
published article) that has a real application. Our contribution includes a new approach to mod-
elling and solving a guillotine cut structure using a mathematical programming model. To our
knowledge, this is the first paper in the cutting and packing literature presenting a mathematical

23

Table 6: Total number of bins in the 10 classes.

Total number of bins CPU TIME (Milliseconds) Processor
KP 7297 < 500 SG 195 MHz
GBL 7367 < 500 SG 195 MHz
CH 7191 5.37 Core i3 2.13 GHz
CA1 7303 104170.42 Core i5 2.4 GHz
CA1-2Ph 7146 151678.63 Core i5 2.4 GHz
CHBP 7064 66.28 Core i3 2.13 GHz
CFIH+J4 7080 0.314 Core2 2.33 GHz

Table 7: Total number of bins in each class.

Class 1 2 3 4 5 6 7 8 9 10
CH 997 127 705 126 894 115 792 792 2131 512
CA1 994 130 718 127 896 116 844 843 2124 511
CA1(2 phases) 984 128 695 126 878 116 792 795 2124 508
CHBP 975 124 687 125 872 113 770 776 2119 503

model which considers guillotine cuts. In addition we present a lower bound for this problem.
In modelling the problem we propose an approach for determining a finite set of rotations in

algorithm (GR) and comprehensively test a range of rotation setting and the value of reflecting
polygons. We also test different objective functions, initial permutations and approaches for
associating a guillotine cut to a piece. We enhance the construction heuristic with a two-phase
approach and an improvement heuristic. Both improve the solution quality, although the latter
at a notable computational cost.

The constructive algorithm proposed obtains high quality results on the bin packing prob-
lem with guillotine cuts and irregular convex pieces, improving the best known solutions in
all of the eight benchmark instances and it produces competitive results for the rectangular bin
packing problem with guillotine cuts.

Acknowledgements: This study has been partially supported by the Spanish Ministry of Eco-
nomy and Competitiveness, DPI2011-24977, cofinanced by FEDER funds.

24

Algorithm 1 Constructive algorithm structure
Require: P, L, W;

Set P′ (initial permutation of pieces);
Set nr (number of rotations);
Set OF (objective function);
Set guillotine cut structure;
B = ∅, cont = 0;
while P′ , ∅ do

Create a new bin bcont.
for i = 0, . . . , |P′| − 1 do

Set bestOFvalue = ωL + (1 − ω)W (ω is given by OF);
IN = f alse;
P∗ is the set of all polygons obtained by the different rotations of p′i = P′[i];
if p′i has no symmetries and reflection is allowed then

P∗m is the set of all polygons obtained by the different rotations of m(p′i) (reflected
polygon);

end if
for each polygon p ∈ P∗ ∪ P∗m do

Add p to the MIP model;
Solve the MIP model using as upper bound bestOFvalue;
if model is feasible then

IN = true;
Update best rotation (and reflection) of p′i .
bestOFvalue =current objective function value;

end if
Remove p from the model.

end for
if IN = true then

Add p′i to bcont

Insert the piece into the MIP model with the best rotation (and reflection).
Identify the new guillotine cut and update the guillotine cut constraints of the model.
P′ = P′ \ {p′i}

end if
end for
B = B ∪ {bcont};
cont = cont + 1;

end while
Sort bins B by non-decreasing waste;
Rebuild last bin of B with objectives functions FO1 and FO2 and choose the best configur-
ation.
return B;

25

References
Alvarez-Valdes, R., A. Martinez, J.M. Tamarit. 2013. A branch & bound algorithm for cutting

and packing irregularly-shaped pieces. International Journal of Production Economics. 145
463–477.

Bennell, J.A., J.F. Oliveira. 2008. A tutorial in irregular shaped packing problems. European
Journal of Operational Research 184 397–415.

Bennell, J.A., J.F. Oliveira. 2009. The geometry of nesting problems: a tutorial. Journal of the
Operational Research Society 60 S93–S105.

Bennell, J.A., Scheithauer, G., Romanova, T., Stoyan, Y., Pankratov, A. 2011. Op-
timal clustering of a pair of irregular objects. Journal of Global Optimization doi:
http://dx.doi.org/10.1007/s10898-014-0192-0..

Berkey, J.O., P.Y. Wang. 1987. Two-dimensional finite bin-packing algorithms. Journal of
Operational Research Society 38 423–429.

Burke, E.K., R.S.R. Hellier, G. Kendall, G. Whitwell. 2010. Irregular packing using the line
and arc no-fir polygon. Operations Research 58 948–970.

Charalambous, C., K. Fleszar. 2011. A constructive bin-oriented heuristic for the two-
dimensional bin packing problem with guillotine cuts. Computers and Operational Research
38 1443–1451.

Cui, Y. 2014. Heuristic for the cutting and purchasing decisions of multiple metal coils. Omega
46 117–125.

Dyckhoff, H. 1990. A typology of cutting and packing problems. European Jouranl of Opera-
tional Research 44 144–159.

Dyckhoff, H., Kruse, H-J., Abel, D., Gal, T. 1990. Trim loss and related problems. Omega 13
59–72.

Fischetti, M., I. Luzzi. 2008. Mixed-integer programming models for nesting problems. J
Heuristics 15 201–226.

K. Fleszar. 2013. Three insertion heuristics and a justification improvement heuristic for two-
dimensional bin packing with guillotine cuts. Computers & Operations Research 40 463–
474.

Han, W., J.A. Bennell, X. Zhao, X. Song. 2012. Construction heuristics for two dimensional
irregular shape bin packing with guillotine constraints. European Journal of Operational
Research dx.doi.org/10.1016/j.ejor.2013.04.04.

Lodi, A., S. Martello, D.Vigo. 1999. Heuristic and metaheuristic approaches for a class of
two-dimensional bin packing problems. Informs Journal on Computing 11 345–357.

Malaguti, E., Medina Duran, R., Toth, P. 2014. Approaches to real world two-dimensional
cutting problems. Omega 47 99–115.

26

Polyakovsky, S., R. MHallah. 2009. An agent-based approach to the two-dimensional guillotine
bin packing problem. European Journal of Operational Research 192 767–781.

Wäscher, G., H. Haußner, H. Schumann. 2007. An improved typology of cutting and packing
problems. European Journal of Operational Research 183 1109–1130.

27

Appendix: Solutions representation.

(a) (b) (c) (d)

(e) (f) (g)

Figure 9: J40

28

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 10: J50

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 11: J60

29

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12: J70

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 13: H80

30

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 14: H100

31

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 15: H120

32

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v)

Figure 16: H149

33

