
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This thesis cannot be 
reproduced or quoted extensively from without first obtaining permission in writing 
from the copyright holder/s. The content must not be changed in any way or sold 
commercially in any format or medium without the formal permission of the 
copyright holders.
  

 When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name 
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/


University of Southampton

Faculty of Social and Human Sciences

Mathematical Sciences

Zeta functions of groups and rings

Robert Snocken

A thesis submitted for the degree of

Doctor of Philosophy

September, 2012



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL AND HUMAN SCIENCES

MATHEMATICAL SCIENCES

Doctor of Philosophy

Zeta functions of groups and rings
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The representation growth of a T -group is polynomial. We study the

rate of polynomial growth and the spectrum of possible growth, showing that

any rational number α can be realized as the rate of polynomial growth of

a class 2 nilpotent T -group. This is in stark contrast to the related subject

of subgroup growth of T -groups where it has been shown that the set of

possible growth rates is discrete in Q.

We derive a formula for almost all of the local representation zeta func-

tions of a T2-group with centre of Hirsch length 2. A consequence of this

formula shows that the representation zeta function of such a group is finitely

uniform. In contrast, we explicitly derive the representation zeta function

of a specific T2-group with centre of Hirsch length 3 whose representation

zeta function is not finitely uniform.

We give formulae, in terms of Igusa’s local zeta function, for the subring,

left-, right- and two-sided ideal zeta function of a 2-dimensional ring. We use

these formulae to compute a number of examples. In particular, we compute

the subring zeta function of the ring of integers in a quadratic number field.
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Chapter 1

Introduction

The study of the representation growth of finitely generated torsion-free

nilpotent groups (or T -groups, for short) was introduced in [20] and studied

implicitly, for a single group, in [33]. These papers were motivated by the

analogy with the concept of subgroup growth and by the study of represen-

tation varieties, respectively.

We briefly outline these topics, but for a more comprehensive survey one

should consult [30] and [29] respectively. We survey what is known about

the representation growth of T -groups and outline the content and layout

of the thesis.

1.1 Representation varieties of finitely generated

groups

Let G be a finitely generated group and k be an algebraically closed field

of characteristic zero. We are interested in the representation theory of G

over k, that is, the homomorphisms from G to GLn(k) for some n ∈ N.

If G is finite then the theory is well-studied. Every representation is

semisimple, that is, a sum of irreducible representations, and there are only

finitely many irreducible representations up to isomorphism. The isomor-
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phism class of a representation is determined by its character, and so, the

representations of G are completely known once the character table is com-

puted.

If G is infinite then none of the assertions made in the previous paragraph

for finite groups hold in general. The analogue of character theory is the

parameterisation of representations by affine varieties. The details for the

discussion below can be found in [29].

Let 〈x1, . . . , xd | R〉 be a presentation for G and n ∈ N. A d-tuple

(A1, . . . , Ad) ∈ GLn(k)d determines a representation ρ : G→ GLn(k) if and

only if the matrices A1, . . . , Ad satisfy the relations R. We can translate

the group relations R into polynomial conditions on the entries of the Ai,

and so the set of representations of G over k of dimension n has the struc-

ture of an affine variety. Note that we do not require that G is finitely

presented. If G were not finitely presented we would have infinitely many

polynomial conditions, but these conditions would be equivalent to some

finite set of polynomials. We denote this affine variety by Repn(G). The

variety Repn(G) depends on the field k, but we suppress this in the notation.

Importantly, the isomorphism class of the variety Repn(G) does not depend

on the presentation of G.

The orbits of the natural action of GLn(k) on Repn(G) are not nec-

essarily Zariski-closed, and so the orbit space Repn(G)/GLn(k) need not

have the structure of an affine variety. Let Repn(G)//GLn(k) denote the

space of closed orbits. This does have the structure of an affine variety and

is parameterised by the isomorphism classes of semisimple representations.

For details on geometric invariant theory and the construction and prop-

erties of the quotient variety the reader is referred to [32, Chapter 3]. We

denote Repn(G)//GLn(k) by SSn(G) and call it the variety of semisimple

representations. Furthermore, the set of isomorphism classes of irreducible

n-dimensional representations, which we denote by Irrn(G), is an open sub-
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variety of SSn(G). Alternatively, we can think of SSn(G) and Irrn(G) as

being the spaces of n-dimensional semisimple and irreducible characters of

G, respectively. A geometric description of these varieties can be viewed as

the analogue of determining the characters of a finite group.

For a T -group G, the varieties Irrn(G) and SSn(G) are well understood

qualitatively, see [29, Section 6]. To give such a description we first need

a very important definition. Note that Rep1(G) = SS1(G) = Irr1(G) is a

group under the tensor product.

Definition 1.1. Let G be a group. Two representations ρ1, ρ2 are twist-

equivalent if there exists a 1-dimensional representation χ of G such that

ρ1 = χ⊗ ρ2.

Note that the twisting action descends to give an action on SSn(G) and

Irrn(G). As Irr1(G) is a group, one can easily check that twist-equivalence is

an equivalence relation. The orbits of SSn(G) and Irrn(G) under the action

of Irr1(G) are called twist-isoclasses.

Note that, in general, the operations of matrix conjugation and twist-

ing by 1-dimensional representations commute, so that two representations

ρ1, ρ2 are in the same twist-isoclass if ρ1 is isomorphic to a representation

that differs from ρ2 by a 1-dimensional representation.

We now describe qualitatively the varieties SSn(G) and Irrn(G) in the

case where G is a finitely generated nilpotent group. We denote the abelian-

isation of G by Gab and the Hirsch length of a group G by h(G).

Theorem 1.2. [29, Section 6, (I) and (II)] Let G be a finitely generated

nilpotent group and let n ∈ N.

1. G has finitely many isomorphism classes of semisimple representations

σn,1, . . . , σn,s(n) such that SSn(G) is equal to the disjoint union of the

twist-isoclasses of σn,1, . . . , σn,s(n). Furthermore, this is a partition of

SSn(G) into open and closed subvarieties.
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2. Irrn(G) is non-singular. Each of its irreducible components has di-

mension h(Gab) and consists of a single twist-isoclass.

1.2 Subgroup growth of T -groups

Let G be a finitely generated group. Let an(G) denote the number of sub-

groups of index n in G. Since G is finitely generated, an(G) is finite for all

n ∈ N. Loosely speaking ‘subgroup growth’ is the study of the properties

of the sequence (an(G)) and how these properties relate to the structure

of G. An outstanding result in this area is the polynomial subgroup growth

theorem. We say that a group G has polynomial subgroup growth if there

exist c, d ∈ R≥0 such that an(G) ≤ cnd for all n ∈ N.

Theorem 1.3. [30, Theorem 5.1] Let G be a finitely generated residually

finite group. Then G has polynomial subgroup growth if and only if G is

virtually soluble of finite rank.

In the landmark paper [16], Grunewald, Segal and Smith introduced zeta

functions to study the subgroup growth of a T -group. Given a T -group G,

its subgroup zeta function is defined as

ζG(s) :=
∞∑
n=1

an(G)n−s. (1.1)

The overarching questions in the theory of subgroup growth for T -groups

concern connections between a group’s algebraic structure, the arithmetic

properties of its subgroup growth and the analytic properties of the subgroup

zeta function. In [10] du Sautoy and Grunewald show that the subgroup zeta

function of a T -groups satisfies certain analytic properties.

Theorem 1.4. Let G be a T -group with subgroup zeta function ζG(s). There

exists α ∈ Q such that ζG(s) converges for <(s) > α. The zeta function

ζG(s) admits a meromorphic continuation beyond its abscissa of convergence
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and furthermore the continued function has only a single pole on the line

<(s) = α located at s = α.

As a corollary to this theorem one can deduce a precise asymptotic state-

ment about the subgroup growth of G. The proof of this theorem is deep

and requires an application of resolution of singularities, see [10] for the de-

tails. In the proof of the result the growth rate α is determined in terms

of the numerical data associated to a resolution of singularities. However,

while this data is, in principal, available, in practice it is very difficult to

ascertain. Furthermore, it is not clear what structural properties of G are

reflected therein.

1.3 Representation growth of T -groups

The first topic of this thesis is the representation growth of T -groups. In

this section we state the basic definitions and record the main results in the

area.

Let G be a T -group. In general, G has uncountably many irreducible

representations in infinitely many dimensions. However we have seen that

the number of twist-isoclasses of a given dimension is finite. This is because

the number of twist-isoclasses is equal to the number irreducible components

of an affine variety. We introduce the main invariants to be investigated.

For n ∈ N, set

r̃n(G) := #{twist-isoclasses of irreducible complex

representations of G of dimension n}.

In the sequel, by twist-isoclasses we mean twist-isoclasses of irreducible rep-

resentations unless explicitly stated otherwise. We also require notation for

the sequence of partial sums. For n ∈ N, set

R̃n(G) :=
n∑
i=1

r̃i(G)
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Being a non-decreasing function, R̃n(G) has the potential to ‘smoothen out’

some of the variation in the values r̃n(G). The sequence (R̃n(G)) is called

the representation growth of G. A sequence (an) of natural numbers has

polynomial growth if there exist c, d ∈ R≥0 such that an ≤ cnd for all n. By

Lemma 4.4, a T -group has polynomial representation growth, that is, the

sequence (R̃n(G)) has polynomial growth. We are interested in the rate of

polynomial growth

αĩrr(G) := inf{d ∈ R | ∃c ∈ R, R̃n(G) ≤ cnd, ∀n ∈ N}. (1.2)

We introduce an important tool in the study of representation growth, the

representation zeta function. For a complex variable s, set

ζ ĩrr
G (s) :=

∞∑
n=1

r̃n(G)n−s. (1.3)

This Dirichlet series converges precisely on the right half plane {s ∈ C |

Re(s) > αĩrr(G)} (cf. [26, Chapter VIII]).

Example 1.5. The discrete Heisenberg group H is the set of 3 × 3 upper

uni-triangular matrices over Z. In [33] Magid and Nunley studied the repre-

sentation varieties of H. As stated in Section 1.1 the number of irreducible

components of Ĩrrn(H) is equal to number of twist-isoclasses of dimension

n. They computed that r̃n(H) = φ(n), the Euler totient function. The

Dirichlet series associated with the Euler totient function is well-known (see

[1, Section 11.4]), namely,

ζ ĩrr
H (s) =

∞∑
n=1

φ(n)n−s =
ζ(s− 1)

ζ(s)
,

where ζ(s) denotes the Riemann zeta function. Therefore, αĩrr(H) = 2.

We present a couple of theorems regarding the representation theory of

T -groups that will be needed.
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Theorem 1.6. [29, Proposition 1] Let G be a T -group. For all n ∈ N

there exists a finite quotient G(n) such that all irreducible n-dimensional

representations of G are twist-equivalent to a representation that factors

through G(n).

Theorem 1.7. [5, Theorem 11.3] T -groups are monomial, that is every

irreducible representation of a T -group G is induced from a 1-dimensional

representation of a finite index subgroup of G.

A priori, we do not know which finite quotients are candidates for G(n).

In Section 2.2 we show how the Kirillov orbit method can be applied to

find all irreducible representations by inducing 1-dimensional representa-

tions from finite-index subgroups. The method produces an almost canon-

ical set of subgroups and 1-dimensional representations. This set is only

almost canonical, because, as we shall see, there is some choice.

The focus of the fledgling subject of representation growth of T -groups

has been to explore the properties of the representation zeta function and

to calculate specific examples.

Theorem 1.8. [12, Theorem 1.1] Let K be a quadratic number field with

ring of integers OK . Let H(OK) be the Heisenberg group over the ring of

integers OK , that is the 3×3 upper uni-triangular matrices over OK . Then,

ζ ĩrr
H(OK)(s) =

ζK(s− 1)

ζK(s)
, (1.4)

where ζK(s) is the Dedekind zeta function of the number field K.

Ezzat’s calculations are very constructive: for a specific generating set,

he gives explicit matrices for representatives of each twist-class. In [12] Ezzat

conjectures that the formula (1.4) should generalise to arbitrary number

fields. In [36] Stasinski and Voll define three infinite families of class-2-

nilpotent groups. Each of these families generalises the Heisenberg group.

Ezzat’s conjecture follows from [36, Theorem B]. It should be noted that
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Stasinski and Voll’s results are not as constructive, specifically they do not

give explicit matrices for the images of a generating set for a representative

of each twist-isoclass.

1.4 Localisation

In this section we describe how the process of calculating the representation

zeta function of a T -group can be ‘localized’. Let G be a T -group. For a

prime p we define the p-local representation zeta function

ζ ĩrr
G,p(s) :=

∞∑
i=0

r̃pi(G)(p−s)i. (1.5)

The p-local zeta function is the Dirichlet generating function that encodes

the numbers of twist-isoclasses of p-power dimension. In Section 4.1.2 we

will see that the global zeta function satisfies the Euler factorisation

ζ ĩrr
G (s) =

∏
p

ζ ĩrr
G,p(s), (1.6)

where the product is taken over all primes. This result is key. In view of this

factorisation, the p-local representation zeta functions are often referred to

simply as the p-local factors. The remainder of this section collects some of

what is known about these local factors.

Theorem 1.9. [20, Theorem 8.4] Let G be a T -group. For all primes p, the

local representation zeta function ζ ĩrr
G,p(s) is a rational function of p−s.

A consequence of this theorem is that the sequence (̃rpi(G)) satisfies

a linear recurrence relation. The proof of Theorem 1.9 requires a deep

application of a model-theoretic result, for the details see [20].

The p-local zeta function of G can be seen as the global zeta function

of a local object, namely the pro-p completion of G. Let Ĝp denote the

pro-p completion of G. We consider only continuous representations, those

of finite image. A representation of Ĝp is called p-admissible if it factors
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through a finite p-group. Two representations are p-twist-equivalent if they

are twist-equivalent by a p-admissible 1-dimensional representation. We de-

fine r̃(p)
n (Ĝp) to be the number of p-twist-isoclasses of p-admissible irreducible

complex representation. Note that r̃(p)
n (Ĝp) is zero unless n is a p-power as

irreducible representations of finite p-groups have p-power dimension. The

representation zeta function of Ĝp is as defined as follows:

ζ ĩrr
Ĝp

(s) =

∞∑
i=0

r̃
(p)

pi
(Ĝp)(p

−s)i. (1.7)

Proposition 1.10. [20, Lemma 8.5] Let G be a T -group. For all primes p,

ζ ĩrr
G,p(s) = ζ ĩrr

Ĝp
(s).

Actually, Hrushovski and Martin show that there is a canonical bijection

between the set of twist-isoclasses of pi-dimensional representations of G and

the p-twist-isoclasses of representations of Ĝp of dimension pi.

We finish this section by recalling two results, due to Voll, about the

local factors.

Theorem 1.11. [38] Let G be a T -group. There exist rational functions

W1(X,Y ), . . . , Wk(X,Y ) over Q and smooth projective varieties V1, . . . , Vk

over Q such that, for almost all primes p,

ζ ĩrr
G,p(s) =

k∑
i=1

|V i(Fp)|W (p, p−s),

where |V i(Fp)| denotes the number of Fp-rational points of V i, the reduction

of Vi modulo p.

The proof is non-constructive. In general, the specific rational functions

and smooth projectives varieties are unknown. The proof requires an appli-

cation of a deep result from algebraic geometry: principalisation of ideals,

a generalisation of the concept of resolution of singularities. Voll uses this

formula to show that the local factors satisfy a local functional equation.
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Theorem 1.12. [38, Theorem D] Let G be a T -group with derived group of

Hirsch length d. For almost all primes p,

ζ ĩrr
G,p(s)|p→p−1 = pdζ ĩrr

G,p(s).

For details on local functional equations, see [38, Section 1]. Conceptu-

ally, this result has an interesting consequence. The representation growth

of a T -group G ‘knows’ the Hirsch length of the derived group of G. This is

one of the first results demonstrating the connection between the structure

of the group and the properties of the sequence (r̃n(G)).

1.5 Summary of results

The main results of this thesis concern the representation growth of T2-

groups and the subring and ideal growth a 2-dimensional rings. In this

section we outline the layout of the thesis and summarize the main results.

Chapter 2 describes the main technical machinery necessary to enumer-

ate twist-isoclasses of representations, namely, the Kirillov orbit method and

elementary divisors. We show that the computation of (almost all) local rep-

resentation zeta functions of a T -group G can be reduced to enumerating

the elementary divisors of a matrix associated to the structure of G.

Chapter 3 introduces Igusa’s local zeta function and describes its basic

properties and presents a series of tools for explicit computation.

In Chapter 4 we investigate the abscissa of convergence and its relation to

the structure of the group. We establish a number of elementary properties

and determine the abscissa of convergence for direct products and certain

classes of central products. The latter result allows use to deduce the first

major result of the thesis, that every positive rational number is realised as

the abscissa of convergence of a T2-group. This is particularly interesting

because this is not the case for subgroup growth. Finally, we give bounds
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on the abscissa of convergence in terms of the structure of the group. This

last result is due to joint work with Shannon Ezzat.

Chapter 5 concerns uniformity. Loosely speaking, a representation zeta

function satisfies uniformity properties if its local factors are similar, see

Chapter 5 for a precise definition. The main result of this chapter states

that if the center of T2-group has rank 2 then the representation zeta function

satisfies a uniformity property. Furthermore, a T2-group with center of rank

3 is exhibited and its representation zeta function is shown not to be uniform.

In Chapter 6 we use the tools from Chapter 2 to compute a number of

representation zeta functions.

Chapter 7 concerns subring and ideal growth in 2-dimensional rings. The

main results of this section shows that the subring and ideal zeta functions

of a 2-dimensional ring R can be expressed in terms of Igusa’s local zeta

function associated to ideal which depends on the structure of R. As a

corollary to these main results, a classification of the possible growth rates

is given. Finally, the formulae are used to compute a number of specific

examples. These results are similar to results obtained in [22], where the

authors focus on the rings Zn equipped with component-wise multiplication.
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Chapter 2

Enumerating twist-isoclasses

In this chapter we present the main techniques that will be used in the inves-

tigation of representation zeta functions of T -groups throughout this thesis,

namely, the Kirillov orbit method and elementary divisors. For details on

the Kirillov orbit method for T -groups consult [19] and [36]. An alternative

method for enumerating twist-isoclasses is developed in [12].

2.1 Lie rings

Definition 2.1. A Lie ring L is an abelian group (written additively) with

an operation [·, ·], called the Lie bracket, satisfying

• Bilinearity: [x+ y, z] = [x, z] + [y, z], for all x, y, z ∈ L

• The Jacobi Identity: [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 0, for all x, y, z ∈ L

• For all x ∈ L, [x, x] = 0.

In particular, [·, ·] is antisymmetric. We assume further that (L,+) is

finitely generated and torsion-free, that is, isomorphic to Zn. If A,B ⊆ L

then [A,B] denotes the Lie subring spanned by all Lie brackets of elements

from A with elements from B.

13



The lower central series {γi(L)}i∈N of a Lie ring L is defined inductively

by γ1(L) = L and γi+1(L) = [L, γi(L)]. A Lie ring is class-c-nilpotent if

γc+1(L) = 0, but γc(L) 6= 0. The derived subalgebra γ2(L) is denoted by L′.

The centre Z(L) of Lie ring L is defined as Z(L) = {y ∈ L | [y, x] = 0,∀x ∈

L}. We say that a Lie subring A of L is saturated in L if, for n ∈ N, nx ∈ A

implies that x ∈ A.

If L is a class-2-nilpotent Lie ring then L′ ⊆ Z(L). For a class-2-

nilpotent Lie ring L let x1, . . . , xm, y1, . . . , yn be an additive basis such that

〈y1, . . . , yn〉 = Z(L). Clearly such a basis exists because Z(L) is saturated

in L. For all i, j ∈ [1,m], i < j the Lie bracket [xi, xj ] is an element of the

centre. Thus [xi, xj ] =
∑n

k=1 λ
k
ijyk, for some λkij ∈ Z. The λkij are called the

structure constants of L with respect to the chosen basis.

Conversely, let x1, . . . , xm, y1, . . . , yn be an additive basis of Zm+n. We

can define a Lie bracket on Zm+n by choosing arbitrary structure constants

λkij ∈ Z for 1 ≤ k ≤ m and 1 ≤ i < j ≤ m. Set [xi, xj ] =
∑n

k=1 λ
k
ijyk and

prescribe each yk to be central. The Lie bracket can be extended to the

whole of Zm+n by anti-symmetry and bilinearity. The Jacobi identity will

then be trivially satisfied as any nested bracket will be equal to 0.

A presentation of a class-2-nilpotent Lie ring L consists of an additive

basis x1, . . . , xm, y1, . . . , yn and for each i, j ∈ [1,m], i < j a linear form

in y1, . . . , yn. By convention, Lie brackets that do not follow from those

presented are assumed to be trivial.

We write T2 to denote the class of class-2-nilpotent T -groups. We now

show how to construct a class-2-nilpotent Lie ring from a T2-group and

conversely.

Let G be a T2-group such that h(G/Z(G)) = m and h(Z(G)) = n. A

Mal’cev basis for G is a set of generators x1, . . . , xm, y1, . . . , yn, where the

images of x1, . . . , xm are a basis of the abelian quotient G/Z(G) and y1, . . . yn

are a basis for Z(G). For details on Mal’cev bases see [15, Sections 1 & 5].
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Since G is class-2-nilpotent each group commutator [xi, xj ] is central and

there exist λkij ∈ Z such that G has a group presentation

G =

〈
x1, . . . xn,

y1, . . . yd

∣∣∣∣∣ [xi, xj ] =

d∏
k=1

yk
λkij , 1 ≤ i, j ≤ n

〉
, (2.1)

where all other commutators that do not follow from those presented are

trivial. The λkij are called the group structure constants and depend on

the chosen Mal’cev basis. It follows that g ∈ G can be written uniquely as

g = x1
e1 . . . xm

emy1
f1 . . . yn

fn , where ei, fj ∈ Z for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The abelian group G/Z(G) ⊕ Z(G) has a natural Lie ring structure in-

duced from the group commutators of G. Fix a Mal’cev basis for G. Iden-

tify x1, . . . , xm with their images in G/Z(G). Then x1, . . . , xm, y1, . . . , yn

are a generating set for G/Z(G) ⊕ Z(G) ∼= Zm+n, which is written as an

additive group. For i 6= j we define the Lie bracket of xi and xj to be

[xi, xj ] :=
∑d

k=1 λ
k
ijyk, where the λkij are those appearing in the presentation

of G. Of course, [xi, xi] := 0 and for 1 ≤ i ≤ n the Lie bracket of yi with

any other element is trivial. The Lie bracket is extended to G/Z(G)⊕Z(G)

by anti-symmetry and bi-linearity.

The additive group G/Z(G)⊕Z(G) together with the Lie bracket defined

above is called the Lie ring associated with G and is denoted L(G). Let

a = (a1, . . . , am) ∈ Zm and b = (b1, . . . , bn) ∈ Zn then the element a1x1 +

· · · + amxm + b1y1 + · · · + bnyn ∈ L(G) will be denoted xayb. If xa′yb′ is

another element of L(G), then xayb + xa′yb′ = xa+a′yb+b′ .

The group structure can be reconstructed from the Lie structure. First,

note that the structure constants λkij are determined by the Lie bracket on

L(G). We define a binary operation ? on L(G) as follows. Declare the

monomials yb to be central and, for 1 ≤ i < j ≤ m define

xaii ? x
aj
j = xaii x

aj
j y1

aiajλ
1
ij . . . y

aiajλ
m
ij

m

The definition of the binary operation ? is then extended to L(G) in the
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obvious way and we have that (L(G), ?) is isomorphic to G. For further

details on this construction see [36, Section 2].

While we can think of having one set that has both the structure of a

Lie ring and a group, we prefer to think of them as separate objects. We

denote the map from L(G) to G determined by the above construction by

λ−1 and its inverse by λ. The map λ is used to define the adjoint action of

G on L(G). Let g ∈ G then

Adg : L(G)→ L(G)

x 7→ λ(g−1) ? x ? λ(g) .

The adjoint action is given by

G× L(G)→ L(G) (2.2)

(g, x) 7→ Adg(x) .

The dual group L̂(G) := HomZ(L(G),C?) is the set of homomorphisms

from the underlying abelian group of L(G) to C?. For g ∈ G, x ∈ L(G) and

ψ ∈ L̂(G) the coadjoint action of G on L̂(G) is given by

Ad?g ψ(x) = ψ(Adg(x)) . (2.3)

2.2 Kirillov orbit method

The Kirillov orbit method is an umbrella term for a collection of related

results in the representation theory of several classes of groups. It was first

developed in [23] by Kirillov to study the unitary representations of nilpotent

Lie groups. The method has been adapted to other classes of groups. In

[19], Howe gives a treatment for T -groups.

In this section we recall the Kirillov orbit method for the specialised case

of T2-groups, as described in [36, Section 2.4].
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Let ψ ∈ L̂(G) and define a binary form on L(G). Namely,

Bψ : L(G)× L(G)→ C?

(x, y) 7→ ψ([x, y]) .

A subalgebra P of L(G) is called a polarising subalgebra for ψ if Bψ|P×P ≡ 1

and P is maximal with respect to that property.

For a subalgebra A of L(G), ψ ∈ L̂(G) is called rational on A if ψ|A

is a torsion element, that is there exists n ∈ N such that ψ(A)n ≡ 1. Let

ψ ∈ L̂(G) be rational on L(G)′. By [36, Lemma 2.14], finite-index polarising

subalgebras for ψ exist.

Let ψ ∈ L̂(G) be rational on L(G)′ and suppose that P is a polarising

subalgebra for ψ. For a T2-group G the maps λ and λ−1 establish an index

preserving bijection between the finite index subgroups of G and the finite

index subalgebras of L(G). Furthermore, under the aforementioned corre-

spondence, normal subgroups are paired with ideals. Let Π = λ−1P , then

Π is a finite index normal subgroup of G.

In general, the map ψ ◦ λ : G → C? is not a homomorphism. However,

the restriction to Π is a homomorphism. This follows from the fact that

for g1, g2 ∈ Π, ψ([g1, g2]) = 1. That is, ψ ◦ λ : G → C? restricts to a

1-dimenstional representation of Π. Write π(ψ) for the induction of this 1-

dimensional representation from Π to G. Thus π(ψ) is a |G : Π|-dimensional

representation of G.

In the context of representation growth the dimension of the induced

representation, equivalently the index of the normal subgroup Π, is our

focus. Let ψ ∈ L̂(G) be rational, we know that a polarising subalgebra P

for ψ exists, but in general, polarising subalgebras are not unique. However,

the index of the polarising subalgebras for ψ is an invariant. The radical

Radψ of ψ is {x ∈ L | ψ([x, L]) = 1}.

Lemma 2.2. [36, cf. Lemma 2.13] Let ψ ∈ L̂(G) be rational on L(G)′ and
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let P be a polarising subalgebra for ψ. Then |L(G) : Radψ | = |L(G) : P |2.

For ψ ∈ L̂(G), let Ω(ψ) denote the orbit of ψ under the coadjoint action

of G on L̂(G).

Theorem 2.3. [36, Propostion 2.16] Let G be a T2-group. For every

rational ψ ∈ L̂(G) the representation π(ψ) is irreducible and of dimen-

sion |Ω(ψ)|1/2. Furthermore, every irreducible representation of G arises

in this manner. For ψ, φ ∈ L̂(G) the representations π(ψ), π(φ) are iso-

morphic if and only Ω(ψ) = Ω(φ). They are twist-equivalent if and only if

ψ|L(G)′ = φ|L(G)′.

Let Ω be a finite orbit of the coadjoint action of G on L̂(G) and let ψ ∈ Ω,

write StabG(ψ) for the stabiliser of ψ. By the Orbit-Stabiliser Theorem,

|Ω| = |G : StabG(ψ)| and therefore dimπ(ψ) = |G : StabG(ψ)|1/2. Under

the index-preserving bijection between finite-index subgroups of G and the

finite-index subalgebras of L(G) the stabiliser StabG(ψ) is associated with

the radical Radψ. Therefore, dimπ(ψ) = |L(G) : Radψ |1/2.

See [12] for a different method for computing the representations of a

T -group.

2.3 Elementary divisors

In this section we define the elementary divisor type of a matrix with entries

in Z/pN . These definitions can be extended to much more general situations.

We restrict our definitions to the context we need. We then prove some

simple facts about elementary divisor types that will be required throughout.

Let A ∈ Matd(Z/pN ), the set of d× d matrices over Z/pN . By the Ele-

mentary Divisor Theorem [27, Theorem 7.8], there exist α, β ∈ GLd(Z/pN )
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and m1, . . . ,md ∈ [0, N ] such that

αAβ =


pm1 0

pm2

. . .

0 pmd

 , (2.4)

where m1 ≤ m2 ≤ · · · ≤ md. Note that α, β are not necessarily unique.

We say that A has elementary divisor type (m1, . . . ,md) and write ν(A) =

(m1, . . . ,md).

The elementary divisor type of a matrix A is simpler to determine if A

has a large unit minor.

Lemma 2.4. Let A be matrix with unit i-minor. Then m1 = · · · = mi = 0.

Proof. First note that a matrix with unit determinant must have elementary

divisor type (0,. . . ,0). Now if A has a unit i-minor we use row and column

operations to move the corresponding i× i submatrix of A to the upper left

corner. We use further operations to transform the upper left corner into

the i× i identity matrix. After the described transformations the matrix A

now has the following form:

1

. . . (i)

1

(ii) (iii)


. (2.5)

The areas (i) and (ii) can be cleared of non-zero entries easily. We can

now preform row and column operations on area (iii) that will not affect the

upper left section or areas (i) and (ii). Hence, the elementary divisor type

of A is (0, . . . , 0,mi+1, . . . ,md), for some mi+1, . . . ,md ∈ N0.
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More generally, the elementary divisors are determined by minors of A.

Let σi denote the set of i-minors of A.

Lemma 2.5. Suppose a d-dimensional matrix A ∈ Matd(Z/pN ) has ele-

mentary divisor type (m1, . . . ,md), where 0 ≤ m1 ≤ · · · ≤ md ≤ N , then

m1 + · · ·+mi = min{vp(σ) | σ ∈ σi}.

This follows from the fact that row and column operations do not affect

the p-adic valuations of minors. Lemma 2.5 gives us another approach to

calculating the elementary divisor type of an arbitrary matrix. However, it

is very computationally intensive.

The elementary divisor types of antisymmetric matrices is vital to the

computation of local representation zeta functions. We now present a few

key facts concerning the elementary divisor types of anti-symmetric matri-

ces.

Lemma 2.6. Let A be a d× d anti-symmetric matrix over Z/pN , for some

N ∈ N. If d is even then there exists α ∈ GLd(Z/pN ) such that

αAαT =



0 pm1

−pm1 0

. . .

0 pmd/2

−pmd/2 0


,

where m1 ≤ · · · ≤ mbn/2c ≤ N . If d is odd, then there exists α ∈ GLd(Z/pN )

such that

αAαT =



0 pm1

−pm1 0

. . .

0 pmbd/2c

−pmbd/2c 0

0


,
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In particular, if d is even then ν(A) = (m1,m1, . . . ,md/2,md/2) and if d

is odd then ν(A) = (m1,m1, . . . ,mbd/2c,mbd/2c, N).

Proof. We can construct such an α implicitly by describing simultaneous

row and column operations that have the desired affect. Let a be an entry

of A with minimum p-adic valuation amongst the entries of A. Use simul-

taneous row and column operations to bring a to the (1,2) position. By

anti-symmetry the (2,1) position is now occupied by −a. If vp(a) = m1,

then a = upm1 for some unit u ∈ Z/pN . Multiply rows and columns 1

and 2 by u−1. After the operations described above the matrix A has been

transformed into a matrix of the following form.

0 pm1 (i)

−pm1 0

(ii) (iii)


. (2.6)

Now, any non-zero entries in areas (i) and (ii) have p-adic valuation greater

than or equal to m1. We can therefore use simulataneous row and column

operations to turn these entries to 0. Now, area (iii) is an antisymmetric

matrix. The result then follows by induction.

We already know that the elementary divisor type of A is determined by

the minors of A. In the case where A is anti-symmetric we can say more.

Recall that a submatrix of A is determined by the intersection of a subset

I of its rows with a subset J of its rows. A minor is called principal if

it is the determinant of a submatrix determined by subsets I and J with

I = J . Let σprin
i denote the set of principal i-minors of A. Let ν(A) =

(m1,m1,m2,m2, . . . ).

Lemma 2.7. [18, Section 3] Let A be a non-zero n×n anti-symetric matrix

over Z/pN . Then 2m1+2m2+. . . 2mi = min{vp(σ) | σ ∈ σ2i} = min{vp(σ) |
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σ ∈ σprin
2i }.

In words, the elementary divisor type of an anti-symmetric matrix A

is determined by its principal minors. In practice, Lemma 2.7 can ease

computations significantly.

2.4 Formulae for local zeta functions

In [38, Section 3.4] Voll uses Howe’s description [19, Section II] of the finite-

dimensional representations of a T -group G to, for almost all primes p, give

several formulae for the p-local representation zeta function ζ ĩrr
G,p(s). Later

in [36, Section 2.4.2] Stasinski and Voll gave a description in the special case

of T2-groups.

This section presents these results. In order to compute the global rep-

resentation zeta of a group G it is sufficient to calculate all local factors.

The first formula is derived from the results of the Kirillov orbit method.

It first appeared in [38, Corollary 3.1], but is proved for all primes as [36,

Corollary 2.17].

Theorem 2.8. Let G be a T2-group and p be any prime. Then

ζ ĩrr
G,p(s) =

∑
ψ∈L̂(G)′

rational of
p-power period

|L(G) : Radψ |−s/2 . (2.7)

We say that ψ has p-power period if the image of L(G)′ under ψ is

contained in the p-power roots of unity in C?.

A subalgebra A of an algebra B is saturated in B if nx ∈ A implies that

x ∈ A. If the derived ring L(G)′ of L(G) is saturated in the center Z(L(G)),

then the results of this section are valid for all primes. In the case that

L(G)′ is not saturated in Z(L(G)) there is a finite index subgroup Λ of G

such that L(Λ)prime is saturated in the center Z(L(Λ)).
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Let L(G) have presentation〈
x1, . . . xn,

y1, . . . yd

∣∣∣∣∣ [xi, xj ] =
d∑

k=1

λkijyk, 1 ≤ i, j ≤ n

〉
,

where for 1 ≤ k ≤ d, yk is central. Write y = (y1, . . . , yd), the structure

matrixRL(G)(y) of the Lie ring L(G) is the n×nmatrix of linear forms where

(RL(G)(y))ij =
∑d

k=1 λ
k
ijyk. The structure matrix RL(G)(y) depends on the

set of generators chosen for L(G). However, the properties of the structure

matrix that feature in the sequel are invariants of the Lie ring L(G). To

ease notation, RL(G)(y) is refered to as the structure matrix of L(G).

Let ψ ∈ L̂(G)′ be of p-power period. Then ψ is determined by {ψ(yk) | 1 ≤

k ≤ d} and for 1 ≤ k ≤ d, ψ(yk) is a p-power root of unity. Let N ∈ N

be the maximum natural number such that {ψ(yk) | 1 ≤ k ≤ d} contains a

primitive pN th root of unity, but does not contain a pN+1th root. Identify

ψ with (ψ(y1), . . . , ψ(yk)) ∈ (Z/pNZ)dr p(Z/pNZ)d. Via this identification,

there is a bijection between the non-trivial p-power elements of L̂(G)′ and⋃∞
N=1(Z/pNZ)d r p(Z/pNZ)d.

The structure matrix, RL(G)(y), can be considered as a matrix of linear

forms. Let Y = (Y1, . . . , Yd) be a d-tuple of variables. Then RL(G)(Y)

is d × d matrix over Z[Y]. Suppose that ψ ∈ L̂(G)′ is identified with a ∈

(Z/pNZ)drp(Z/pNZ)d. Then the dimension of the representation π(ψ) of G

associated with ψ is determined by the elementary divisor type of RL(G)(a).

Now, RL(G)(a) is a matrix with entries in the finite ring Z/pNZ. There exist

α, β ∈ GLn(Z/pNZ) such that

αRL(G)(a)β =


pm1

. . .

pmn

 ,

where m1 ≤ · · · ≤ mn ≤ N and noting that pN = 0 in Z/pNZ. That

is, RL(G)(a) has elementary divisor type m = (m1, . . . ,mn). If π(ψ) is
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the representation of G associated with a ∈ (Z/pNZ)d r p(Z/pNZ)d, then

dimπ(ψ) = p
1
2

∑n
i=1(N−mi), see the proof of [38, Proposition 3.1] for the de-

tails. The second formula expresses the p-local representation zeta function

in terms of elementary divisors. Let Z = Z(G) denote the centre of G.

Theorem 2.9. [36, cf. Proposition 2.18] Let G be a T2-group such that

h(G/Z) = n and h(G′) = d. Then for almost all primes p,

ζ ĩrr
G,p(s) = 1 +

∞∑
N=1

∑
m∈Nn

0

NN,mp−
s
2

∑n
i=1(N−mi), (2.8)

where NN,m = #{a ∈ (Z/pNZ)d r p(Z/pNZ)d | ν(RL(G)(a)) = m}.

A p-local factor is called exceptional if equation (2.8) is not valid for p.

The formula (2.8) is valid for all primes if L(G)′ is saturated in Z(L(G)) and

each entry of the structure matrix is either equal to ±yk for some k ∈ [1, d]

or 0. These conditions are sufficient, but they are not necessary.

The final formulation presented in this section expresses the local factor

ζ ĩrr
G,p(s) in terms of a p-adic integral. For 1 ≤ j ≤ n, let σj denote the set of

j-minors of RL(G)(y). Note that σ0 = 1 and let f := max{j ∈ [0, n] | (σj) 6=

(0)}.

Theorem 2.10. [38, Section 2.2] Let G be a T2-group such that h(G/Z) = n

and h(Z) = d. Then for almost all primes p,

ζ ĩrr
G,p(s)

= 1 +
1

(1− p−1)

d∏
i=1

1

1− p−i

∫
pZp×Zd

p\pZd
p

(x,y)

|x|fs−d−1
f∏
j=1

||σj ∪ xσj−1||s

||σj−1||s
dµ,

(2.9)

where | · | denotes the p-adic absolute value and for a set A, ||A|| :=

maxa∈A{|a|}.

A detailed exposition on p-adic integrals such as the one in equation

(2.9) in given in Chapter 3.
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Chapter 3

Igusa’s local zeta function

Igusa’s local zeta function is a key tool in the study of zeta functions as-

sociated to T -groups, both in the proof of general results and in specific

computations. We begin this chapter by giving a brief outline of the his-

tory of Igusa’s local zeta function. In Section 3.2 we highlight some general

results of the theory and Section 3.3 consists of a ‘toolbox’ of methods for

calculating specific examples.

3.1 History

For p be prime, let X be a smooth projective variety defined over Fp. We de-

fine Npm(X) to be the number of Fpm-rational points of X. The variety X is

defined by homogeneous equations and the numbers Npm(X) are simply the

number of solutions of the equations over Fpm . The sequence (Npm(X))m∈N

encodes a lot of arithmetical information about the variety X. To study the

sequence we introduce the p-local zeta function of X at the prime p:

ZX(p, t) = exp

( ∞∑
m=1

Npm(X)
tm

m

)
(3.1)

In [40] Weil made a number of highly influential conjectures. Although they

are now theorems they are still known as the Weil conjectures.
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Theorem 3.1. [17, Appendix C] Let X be a smooth projective variety de-

fined over Fp of dimension n.

1. (Rationality.) ZX(p, t) is a rational function of t.

2. (Functional equation.) There exists E ∈ Z such that

ZX(p, p−nt−1) = ±pnE/2tEZX(p, t).

3. (Analogue of the Riemann Hypothesis.) It is possible to write

ZX(p, t) =
P1(t)P2(t) . . . P2n−1(t)

P0(t)P2(t) . . . P2n(t)
,

where P0(t) = 1−t, P2n(t) = 1−pnt and for each 1 ≤ t ≤ 2n−1, Pi(t)

is a polynomial with integer coeffients. Further, Pi(t) can be written

as a finite product

Pi(t) =
∏
j

(1− αijt),

where the αij are algebraic integers such that |αij | = pi/2.

Weil established these conjectures in the case of curves in 1948; cf. [39].

The rationality and functional equation for higher-dimensional varieties was

first established by Dwork in [11]. The analog of the Riemann Hypothesis

was finally established in 1974 by Deligne in [6]. The proofs are deep and

require significant machinery. For a more detailed discussion of the history

of the Weil conjectures see [17, Appendix C].

The Weil conjectures have many deep consequences. In particular, ratio-

nality implies that the sequence (Npm(X)) is determined by a finite number

of the Npm(X).

Now let X be a smooth projective variety defined over Q. For each prime

p we can consider the p-local zeta function associated with X, the reduction

modulo p of X.

The L-function of a smooth projective variety X defined over Q is de-

fined, loosely speaking, by multiplying all of the p-local zeta functions of
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X together. One hopes that the L-function contains information about the

global structure of the variety.

For example, in the case where X is an elliptic curve the L-function

converges on Re(s) > 3/2 and has meromorphic contiuation to the entire

complex plane. It is well known that an elliptic curve over Q carries the

structure of an abelian group. The Birch Swinnerton-Dyer Conjecture states

that the rank of this abelian group is equal to the multiplicity of the zero

at s = 1. For details on L-functions associated with elliptic curves see [35,

Appendix B, Section 16].

The success of studying varieties defined over Q by considering the num-

bers of solutions in the tower of finite fields Fpm lead number theorists to

consider another ‘tower’. The field of p elements can be viewed as the first

level in a different system, namely the rings Z/pmZ. Let f(x1, . . . , xn) ∈

Z[x1, . . . , xn] and let Nm(F ) denote the number of roots of F over (Z/pmZ)n.

Motivated by the success of the Weil conjectures, we study these numbers

simultaneously by encoding them in a single power series PF (t), which is

called the Poincaré series associated with the polynomial F . We set

PF (t) =

∞∑
m=0

Nm(F )(p−nt)m. (3.2)

Analogously to towers of finite fields, it was conjectured (see [4, Section 5,

Problem 9]) that the number of solutions modulo pm should be determined

by a finite number of levels or, more precisely, that PF (t) is a rational

function in t. Igusa showed that this problem can be phrased in terms of

certain p-adic integrals, which we now introduce.

3.2 Igusa’s local zeta function

The p-adic integers Zp are compact. By the Haar Theorem [28, Section 29]

there exists a unique Haar measure µ on the additive group of Zp such that

µ(Zp) = 1. Then the Haar measure on Znp is given as the product measure
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and is also denoted by µ. We use this measure to define integration over

Znp . Denote, for z ∈ Qp, by vp(z) the p-adic valuation and by |z| = p−vp(z)

the p-adic absolute value.

Let x = (x1, . . . , xn) and F (x) ∈ Zp[x]. For a complex variable s, we

define Igusa’s local zeta function associated to the polynomial F by setting

ZF (s) :=

∫
Zn
p

|F (x)|sdµ. (3.3)

For a more comprehensive introduction to Igusa’s local zeta function

see [7]. We now explain the connection between Igusa’s local zeta function

ZF (s) and the Poincare series PF (t). The Haar measure µ on the p-adic

integers Zp satisfies the following property:

(∗) µ(S) = µ(a+ S) for any measurable subset S ⊂ Zp and a ∈ Zp.

We normalise the Haar measure so that µ(Zp) = 1. The property (∗) implies

that µ(pmZp) = µ(a + pmZp) = p−m. The additive cosets a + pmZp form

a basis for the topology of Zp, thus we can calculate the Haar measure of

any open subset. The Haar measure on Znp is given as the product measure,

therefore, µ(pmZnp ) = µ(pmZp)n = p−nm. We rewrite the integral ZF (s) over

subsets where the integrand is constant. We clearly have

ZF (s) =

∞∑
m=0

∫
V (m)

|F (x)|sdµ,

where

V (m) := {x ∈ Znp | vp(F (x)) = m}.

However, since the integrand is constant on V (m) we see that

ZF (s) =
∞∑
m=0

µ(V (m))p−ms.

Now we make the connection between the measure of the subsets V (m) and

the numbers Nm(F ). If W (m) := {x ∈ Znp | vp(F (x)) ≥ m} = {x ∈ Znp |

28



F (x) ≡ 0 mod pm}, then V (m) = W (m) rW (m + 1). W (m) is the union

of Nm(F ) cosets of pmZnp each of measure p−mn and so,

µ(V (m)) = Nm(F )p−nm −Nm+1(F )p−n(m+1).

Therefore, by (3.2),

ZF (s) =
∞∑
m=0

(Nm(F )p−nm −Nm+1(F )p−n(m+1))p−ms

=

∞∑
m=0

Nm(F )(p−n−s)m − ps
∞∑
m=0

Nm+1(F )(p−n−s)m+1

= PF (p−s)− ps(PF (p−s)− 1). (3.4)

Rearranging, we see that

PF (p−s) =
1− p−s ZF (s)

1− p−s
.

In [21] Igusa showed that ZF (s) is a rational function of p−s, which in turn

proved that the Poincare series PF (t) associated to the polynomial F (x) is

a rational function in t.

3.3 Toolbox

The rest of this chapter is devoted to explaining various techniques for cal-

culating Igusa’s local zeta function for particular classes of polynomials that

are required for our computations.

Example 3.2. Consider

Zx(s) =

∫
Zp

|x|sdµ.

Since Nm(x) = 1 for all m, we have

Px(p−s) =
∞∑
m=0

(p−1−s)m =
1

1− p−1−s .
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Therefore, by (3.4),

Zx(s) =

∫
Zp

|x|sdµ =
1− p−1

1− p−1−s .

Alternatively, we can calculate the integral directly. Indeed,

Zx(s) =
∞∑
m=0

µ({x ∈ Zp | vp(x) = m})p−ms.

Let x ∈ Zp then x =
∑∞

i=0 xip
i, where 0 ≤ xi ≤ p − 1. One has vp(x) = m

if and only if x1 = · · · = xm = 0 and xm+1 6= 0, thus µ({x ∈ Zp | vp(x) =

m}) = (1− p−1)p−m, so

Zx(s) =

∞∑
m=0

(1− p−1)p−mp−ms =
1− p−1

1− p−1−s .

3.3.1 Fubini’s theorem

In the general theory of integration Fubini’s theorem [3, Theorem 10.10]

gives a criterion for when the order of integration can be reversed in an

iterated integral. We require the use of a standard corollary to the theorem,

which we present specialised to the case of Igusa’s local zeta function.

Proposition 3.3. Let F (x1, . . . , xd) be a polynomial with coefficients in Zp.

If F (x1, . . . , xd) =
∏d
i=1 fi(xi) for polynomials fi(x) ∈ Zp[x], i ∈ [1, d] then∫

Zd
p

|F (x1, . . . , xd)|sdµ =

d∏
i=1

∫
Zp

|fi(xi)|sdµ.

Example 3.4. Let F (x) =
∏d
i=1 x

ei
i where each ei ∈ N. By Proposition 3.3

and Example 3.2,

ZF (s) =

∫
Zd
p

|xe11 x
e2
2 . . . xedd |

sdµ =

d∏
i=1

∫
Zp

|xeii |
sdµ =

d∏
i=1

1− p−1

1− p−1−eis
.

This example shows that we can easily calculate Igusa’s local zeta func-

tion associated with any monomial. A technique in calculating more com-

plicated examples is to reduce the problem to calculating Igusa’s local zeta

function for monomials. A lot of the techniques that follow do just that.
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3.3.2 Change of variables

When evaluating an integral it is often convenient to change the coordinate

system of the domain of integration by a differentiable map. In doing so,

the Jacobian keeps track of the change in measure, cf. [13, Section 235]

Let F (x) ∈ Zp[x1, . . . , xd] and Φ : U → V be a bijection between subsets

U, V of Zdp given by d polynomials y1(x1, . . . , xd), . . . , yd(x1, . . . , xd) defined

over Zp. The Jacobian of this transformation is

JΦ =


∂y1
∂x1

. . . ∂y1
∂xd

...
. . .

...

∂yd
∂x1

. . . ∂yd
∂xd


and

ZF (s) =

∫
U
|F (x)|sdµ =

∫
V
|(F ◦ Φ)(x)|s| det(JΦ)|dµ,

Example 3.5. Let F (x, y) = x2 + xy. Consider the change of variables

given by the map (x, y) 7→ (x, y − x). The determinant of the Jacobian of

this transformation is equal to 1. Therefore, using Example 3.4, we have

ZF (s) =

∫
Z2
p

|x2 + xy|sdµ =

∫
Z2
p

|x2 + x(y − x)|s|1|dµ

=

∫
Z2
p

|xy|sdµ =

∫
Zp

|x|sdµ
∫
Zp

|y|sdµ =

(
1− p−1

1− p−1−s

)2

.

We can also use a change of coordinates to calculate integrals over certain

domains of integration different from Zdp.

Example 3.6. Consider the integral
∫
pZp
|x|sdµ. The map φ : Zp → pZp

given by x 7→ px has Jacobian (p). Therefore∫
pZp

|x|sdµ =

∫
Zp

|px|s|p|dµ = p−1−s
∫
Zp

|x|sdµ =
(1− p−1)p−1−s

1− p−1−s ,

by Example 3.2.
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Let F (x1, . . . , xd) be a homogeneous polynomial of degree n. Then the

transformation φ : Zdp → pZdp given by (x1, . . . , xd) 7→ (px1, . . . , pxd) yields∫
pZd

p

|F (x)|sdµ =

∫
Zp

|pnF (x)|s|pd|dµ = p−d−ns
∫
Zd
p

|F (x)|sdµ (3.5)

3.3.3 Coset decompostion

One general approach to calculating an integral is to divide the domain of

integration into pieces on which the integrand takes a simpler form. In the

case of p-adic integration, the arithmetic suggests a very useful decomposi-

tion Zp into cosets modulo pm.

Example 3.7. Let F (x) = (x − 1)(x − 2)(x − 3) ∈ Z[x]. In this case

a transformation of coordinates will not allow us to obtain a monomial.

For simplicity, assume that p > 3. We decompose the integral into cosets

modulo p.∫
Zp

|(x− 1)(x− 2)(x− 3)|sdµ =
∑
a∈Fp

∫{
x∈Zp |

x≡a mod p

} |(x− 1)(x− 2)(x− 3)|sdµ

Here the sum is not over Fp, but rather the Teichmüller representative of

the cosets of pZp. The Teichmüller representatives are the p solutions of

xp − x = 0 in Zp. We denote them by Fp because there is a map from Fp

to the Teichmüller representatives which preserves the multiplicative struc-

ture. It does not, of course, preserve the additive structure. We do not

make use of these facts. We simply use Fp as notation for the Teichmüller

representatives.

Each summand of the right hand side is now easy to calculate. If x ≡ 1

mod p then vp(x− 2) = vp(x− 3) = 0 so that∫{
x∈Zp |

x≡1 mod p

} |(x− 1)(x− 2)(x− 3)|sdµ =

∫{
x∈Zp |

x≡1 mod p

} |(x− 1)|sdµ,

and by the change of variables x 7→ x + 1, which has Jacobian of unit
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determinant,∫{
x∈Zp |

x≡1 mod p

} |(x− 1)|sdµ =

∫
pZp

|x|sdµ =
(1− p−1)p−1−s

1− p−1−s

by Example 3.6. A similar arguement holds for the cases where x ≡ 2, 3

mod p. If x 6≡ 1, 2, 3 mod p then vp((x − 1)(x − 2)(x − 3)) = 0 and so

the integral is equal to the measure of the domain of integration, namely

µ(a+ pZp) = µ(pZp) = p−1. Therefore∫
Zp

|(x− 1)(x− 2)(x− 3)|sdµ = 3
(1− p−1)p−1−s

1− p−1−s + (p− 3)p−1

=
1− 3p−1 + 2p−1−s

1− p−1−s .

In the example above we decompose Zp into its cosets modulo p. This

works because, in some sense, the arithmetic of the polynomial we are in-

tegrating is determined modulo p. The integral in Example 3.7 can be

calculated in the cases p = 2 or p = 3 by decomposing the integral into

cosets modulo p2. As discussed earlier the number of solutions of any poly-

nomial in the finite rings Z/pmZ is determined by only finitely many levels.

In the example above it is determined in the first (non-trivial) level. This

property is fairly general.

3.3.4 Hensel’s lemma

We begin by stating the simplest form of Hensel’s lemma.

Theorem 3.8. [34, Section 2.2] Let F (x) ∈ Z[x] and p a prime. Suppose

that there exists α0 ∈ Zp such that

F (α0) ≡ 0 mod p,

but

F ′(α0) 6≡ 0 mod p.

Then there exists a unique α ∈ Zp such that α ≡ α0 mod p and F (α) = 0.
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The strength of Hensel’s lemma is that it essentially allows us to work

over the finite field Fp.

Example 3.9. Let F (x) = x2 − k where k is a square-free integer. We

exclude the cases p = 2 and p|k. We use Hensel’s lemma to calculate Igusa’s

local zeta function associated with F in the remaining cases. The remaining

primes are divided into two classes, depending on whether or not k is a

quadratic residue modulo p. Suppose that k is not a quadratic residue

modulo p. This implies that for all α ∈ Zp it is the case that α2 − k 6≡ 0

mod p and thus vp(α
2 − k) = 0 for all α ∈ Zp. Thus∫

Zp

|x2 − k|sdµ = 1.

On the other hand, if k is a quadratic residue modulo p then, by definition,

there exists α0 ∈ [1, p − 1] such that α2
0 − k ≡ 0 mod p. We have that

F ′(x) = 2x so that F ′(α0) 6≡ 0 mod p, since we are assuming that p 6= 2. By

Hensel’s lemma α0 lifts to a unique α ∈ Zp such that F (α) = 0. Therefore,

in Zp, x2 − k = (x+ α)(x− α) and∫
Zp

|x2 − k|sdµ =

∫
Zp

|(x+ α)(x− α)|sdµ.

Now, since p 6= 2 we know that α is not congruent to −α modulo p. We

can then decompose the domain of integration into the cosets modulo p and

similar to Example 3.7 we calculate∫
Zp

|x2 − k|sdµ =
1− 2p−1 + p−1−s

1− p−1−s .

We can systemise the process illustrated in the example into the following

corollary.

Corollary 3.10. Let F (x) ∈ Z[x] and p a prime. If a ∈ Zp is such that

F ′(a) 6≡ 0 mod p, then∫
a+pZp

|F (x)|sdµ =

 p−1 if F (a) 6≡ 0 mod p,

(1−p−1)p−1−s

1−p−1−s if F (a) ≡ 0 mod p.
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Hensel’s lemma can be generalised in a number of directions. We now

discuss one such generalisation and give an example to illustrate its useful-

ness. We explore the multivariate case.

Let F (x1, . . . , xd) be a polynomial in d variables with integer coefficients

and p be a prime. Now suppose that there exists a = (a1, . . . ad) ∈ Zdp such

that F (a) ≡ 0 mod p and ∂F
∂xi

(a) 6≡ 0 mod p for some i ∈ [1, d]. Then

the polynomial F ?(xi) = F (a1, . . . , ai−1, xi, ai+1, . . . , ad) is a polynomial in

one variable, such that F ?(ai) ≡ 0 mod p and ∂F ?/∂xi(ai) 6≡ 0 mod p so

that, by the single variate Hensel’s lemma, there exists α ∈ Zp such that

α ≡ ai mod p and F ?(α) = 0. In [8] Denef and Hoornaert use the above

observation to prove the following proposition.

Proposition 3.11. [8, Proposition 3.1]

Let F (x) = F (x1, . . . , xd) ∈ Zp[x1, . . . , xd] be a polynomial and let a ∈ Znp .

Suppose that the set of congruences

{
F (x) ≡ 0 mod p,

∂F
∂xi

(x) ≡ 0 mod p, i ∈ [1, d]

has no simultaneous solution in the coset a + (pZp)d. Then for a complex

variable s, we have, for Re(s) > 0,

∫
a+(pZp)d

|F (x)|sdµ =

{
p−d if F (a) 6≡ 0 mod p,

(1−p−1)p−d−s

1−p−1−s if F (a) ≡ 0 mod p.

If a polynomial F (x1, . . . , xd) satisfies the hypothesis of the proposition

for all cosets modulo p, then, using coset decomposition, the calculation of

the associated integral is reduced to counting the number of solutions of F

over the finite field Fp.

Example 3.12. Let F (x) = F (x1, . . . , xd) be a polynomial which satisfies

the hypothesis of Proposition 3.11 for all cosets modulo p and let N1(F ) be
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the number of solutions of F over the finite field Fp. Then∫
Zd
p

|F (x)|sdµ =
∑
a∈Fd

p

∫
a+(pZp)d

|F (x)|sdµ

= (pd −N1(F ))p−d +N1(F )

(
(1− p−1)p−d−s

1− p−1−s

)
= 1 +N1(F )

(p−s − 1)p−d

1− p−1−s .

Here we are using Fp to denote the Teichmüller representatives.

3.3.5 Homogeneous ideals

In this section we define Igusa’s local zeta function associated to an ideal.

Then we explore the case of a homogenous ideal.

Let p be a prime, x = (x1, . . . , xd) and let f = (f1(x), . . . , fl(x))�Zp[x] be

an ideal. For a ∈ Znp , define ||f1(a), . . . , fl(a)|| := max{|f1(a)|, . . . , |fl(a)|} =

p−min{vp(f1(a)),...,vp(fl(a))}. It follows from the definition of the p-adic absolute

value that for all f ∈ f , we have |f(a)| ≤ ||f1(a), . . . , fl(a)||.

Conversely, let f denote an ideal of Zp[x]. Since Zp[x] is Noetherian, there

exist f1(x), . . . , fl(x) ∈ Z[x] such that f = (f1(x), . . . , fl(x)). We define

Igusa’s local zeta function Zf (s) associated to the ideal f = (f1(x), . . . , fl(x))

as

Zf (s) :=

∫
Zd
p

||f1(x), . . . , fl(x)||sdµ. (3.6)

Of course, the integral is independent of the choice of generating set. Also

note that Igusa’s local zeta function associated with a single polynomial

F ∈ Zp[x] is equal to Igusa’s local zeta function associated with the principal

ideal (F ) � Zp[x] generated by F .

We have seen that Igusa’s local zeta associated with a single polyno-

mial F (x) ∈ Zp[x] is related to the Poincare series encoding the number

of solutions of F modulo pm by formula (3.4). We establish the analo-

gous formula for Igusa’s local zeta function associated with an ideal. For

a ∈ Znp , set vp(f(a)) := min{vp(f1(a)), . . . , vp(fl(a))}. For m ∈ N, we
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have vp(f(a)) = m if and only if f(a) ≡ 0 modulo pm for all f ∈ f . Set

Nm := #{a ∈ (Z/pmZ)n | ∀f ∈ f , f(a) = 0}.

The Poincaré series associated with f is given by

Pf (t) :=

∞∑
m=0

Nm(p−dt)m. (3.7)

Using very similar arguments to those carried out in Section 3.2 and by

setting t = p−s, we arrive at the formula

Pf (s) =
1− tZf (s)

1− t
. (3.8)

This generalises formula (3.4).

Definition 3.13. For n ∈ N0, an ideal f � Z[x] is homogeneous of degree

n if there exist f1(x), . . . , fl(x) ∈ Z[x] such that f = (f1(x), . . . , fl(x)) such

that, for 1 ≤ i ≤ l, each fi(x) is homogeneous of degree n.

We introduce Poincaré series and Igusa’s local zeta function in the ‘pro-

jective’ case. We generalise [25, Lemma 2.1]. The proof is almost identical

and is included because we need the intermediate identities in Chapters 5

and 7.

We introduce notation for Igusa’s local zeta function with integration

over Zdp r pZdp.

Z?f (s) :=

∫
Zd
prpZd

p

||f1(x), . . . , fl(x)||sdµ.

We have already seen, in Section 3.3.3 that Igusa’s local zeta function can

be decomposed into a sum of integrals over the cosets modulo pk, k ∈ N.

We now show that if f is a homogeneous ideal then the integral over the

coset pZp is determined by the integrals over the remaining cosets. Let

f = (f1(x), . . . , fl(x)) ∈ Z[x] be a homogeneous ideal of degree n. By using

the change of variables (x1, . . . , xd) 7→ (px1, . . . , pxd), we have∫
(pZp)d

||f1(x), . . . , fl(x)||sdµ = p−d−ns
∫
Zd
p

||f1(x), . . . , fl(x)||sdµ.
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Now,

Zf (s) = Z?f (s) +

∫
(pZp)d

||f1(x), . . . , fl(x)||sdµ

= Z?f (s) + p−n−ds
∫
Zd
p

||f1(x), . . . , fl(x)||sdµ.

Thus,

Zf (s) =
1

1− p−n−ds
Z?f (s). (3.9)

For m ∈ N we set

N?
m := #{a ∈ (Z/pm)d r p(Z/pm)d | ∀f ∈ f , f(a) = 0}

and define a Poincare series

P?f (t) =

∞∑
m=0

N?
m(p−dt)m. (3.10)

Setting µ?m := µ({a ∈ Zdp r pZdp | vp(f(a)) = m}), we have

Z?f (s) =

∞∑
m=0

µ?mp
−ms. (3.11)

Now

µ?m = µ({a ∈ ZdprpZdp | vp(f(a)) ≥ m})−µ({a ∈ ZdprpZdp | vp(f(a)) ≥ m+1}),

and

µ({a ∈ ZdprpZdp | vp(f(a)) ≥ m}) =

 N?
mp
−dm if m ≥ 1,

µ({Zdp r pZdp}) = 1− p−d if m = 0.

We have

µ?m =
N?
m

pdm
−

N?
m+1

pd(m+1)
− δm,0p−d. (3.12)

By substituting (3.12) into (3.11) we have

Z?f (s) =
∞∑
m=0

(
N?
m

pdm
−

N?
m+1

pd(m+1)
− δm,0p−d

)
p−ms (3.13)

=

∞∑
m=0

N?
m

pdm
p−ms −

∞∑
m=0

N?
m+1

pd(m+1)
p−ms − p−d

= P?f (t)− t−1(P?f (t)− 1)− p−d. (3.14)
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We rearrange equality (3.14) to arrive at the statement of [25, Lemma 2.1]

generalised to case of a homogeneous ideal in Zp[x1, . . . , xd]],

P?f (t) =
1− p−dt− tZ?f (s)

1− t
. (3.15)

Example 3.14. Consider the ideal (x1, . . . , xd)�Z[x1, . . . , xd]. It is homo-

geneous of degree 1. Igusa’s local zeta function associated to this ideal can

easily be computed using (3.9).∫
Zd
p

|x1, . . . , xd|sdµ =
1

1− p−d−s

∫
Zd
prpZd

p

||x1, . . . , xd||sdµ =
1− p−d

1− p−d−s
.
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Chapter 4

The abscissa of convergence

We would like to describe relationships between the algebraic structure of

a T -group and the abscissa of convergence of its representation zeta func-

tion. An ambitious aim is to provide a closed formula for the abscissa of

convergence in terms of well-known group invariants.

In this chapter we investigate what can be said about the abscissa of

convergence in certain circumstances. In the first section we record proofs

of some results that might be considered ‘folklore’ in as much as the results

are known to the experts, but often no proof currently exists in the litera-

ture. We also show that the abscissa of convergence is a commensurability

invariant, a new result.

In the second section of this chapter we investigate central products and

use our results to show that any positive rational number can be realised

as the abscissa of convergence of the representation zeta function of some

T2-group. In the final section we present joint work with Shannon Ezzat.

We give bounds on the p-local abscissa of convergence.
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4.1 Basic properties

Throughout this section G denotes an arbitrary T -group. We need some

basic lemmas concerning the twist-isoclasses of such a group and those of a

finite-index subgroup. Let Irrn(G), Ĩrrn(G) denote the set of isomorphism

classes of n-dimensional irreducible representations of G and the set of twist-

isoclasses of n-dimensional irreducible representations of G respectively.

Let H ≤ G be a subgroup. For σ1, σ2 ∈ Irrn(H), we say that σ1 is

G-twist-equivalent to σ2 if there exists χ ∈ Irr1(G) such that σ1 = χ|Hσ2.

We write σ1 ∼G σ2. We denote by Ĩrr
G

n (H) the set of G-twist-isoclasses of

degree-n characters of H.

Lemma 4.1. For H ≤ G of finite index we have

|Ĩrr
G

n (H)| ≤ |G′ ∩H : H ′||Ĩrrn(H)|.

Proof. Let N be the image of the restriction map Irr1(G) → Irr1(H) and

let χ1, . . . , χk be the coset representatives of N in Irr1(H). If there exist

characters σ1, σ2 of H and χ ∈ Irr1(H) such that σ2 = χσ1, then σ2 is

G-twist-equivalent to at least one of χ1σ1, . . . , χkσ1.

Consider the restriction map γ : Irr1(H) → Irr1(G′ ∩H). The image of

this map is isomorphic to Irr1((G′ ∩H)/H ′). This is clear as any element of

Irr1(H) is trivial on H ′.

We show N is the kernel of γ. It is clear that N is contained within

the kernel. Now, let τ ∈ ker(γ) and let τ denote the corresponding element

of Irr1((G′ ∩H)/H ′). By the second isomorphism theorem (G′ ∩H)/H ′ ∼=

G′H/G′. So we may consider τ as an element of Irr1(G′H/G′). By extending

τ to G we obtain a 1-dimensional representation that restricts to τ and

so τ ∈ N . Therefore, k = | Irr1(H) : N | = |(G′ ∩H)/H ′|.
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Corollary 4.2. For H ≤ G of finite index we have

|Ĩrr
G

1 (H)| = |G′ ∩H : H ′|

Proof. All 1-dimensional representations of a T -group are twist-equivalent.

Therefore |Ĩrr1(H)| = 1. By Lemma 4.1, |Ĩrr
G

1 (H)| ≤ |G′ ∩ H : H ′|. To

prove equality we construct |G′ ∩H : H ′| 1-dimensional representations of

that are not G-twist-equivalent. The group (G′ ∩ H)/H ′ is finite abelian

and has precisely |G′ ∩H : H ′| 1-dimensional representations. These induce

|G′ ∩ H : H ′| distinct 1-dimensional representations of G′ ∩ H which we

extend to H. Clearly, these 1-dimensional representations of H are not

G-twist-equivalent.

Lemma 4.3. Let H be a finite index subgroup of G. Two 1-dimensional

representations τ1, τ2 of H induce representations of G that are in the same

twist-isoclass if τ1 ∼G τ2.

Proof. This follows from Frobenius reciprocity. In particular, for a 1-dimensional

representation τ of H and a 1-dimensional representation χ of G we have

χ⊗ IndGH(τ) = IndGH(ResGH(χ)⊗ τ).

Before we can embark on an investigation of the abscissa of convergence

we must first know that the representation zeta function of a T -group con-

verges on some half plane. That is, we must show that the representation

growth is polynomial. This is established in [36]:

Lemma 4.4. [36, Lemma 2.1] For a T -group G, the sequence (̃rn(G))

is bounded by a polynomial. Equivalently, the representation zeta function

ζ ĩrr
G (s) converges on some complex half plane.
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4.1.1 Direct products

Let G ∼= H1 ×H2 be a direct product of T -groups. In many contexts, the

study of the group G can be reduced in some way to the study of the two

components H1, H2. So far, this does not appear to be the case in subgroup

growth. If we happen to know the subgroup zeta functions ζH1(s), ζH2(s)

this does not necessarily tell us anything about the subgroup zeta function

of G. However, in the case of representation zeta functions the study of G

can be reduced to the study of its direct factors.

Let G, H be groups. If ρ̃ ∈ Ĩrr(G) and σ̃ ∈ Ĩrr(H), then we denote by

ρ̃⊗σ̃ := {ρ1⊗σ1 | ρ1 ∈ ρ̃, σ1 ∈ σ̃} the set of representations of G×H that are

constructed as tensor products of representations from the twist-isoclasses

ρ̃ of G and σ̃ of H.

Lemma 4.5. Let G ∼= H1 × · · · ×Hk. Then,

Ĩrrn(G) =
⋃

d1d2...dk=n

{ρ̃1 ⊗ · · · ⊗ ρ̃k | ∀j ∈ [1, k], ρ̃j ∈ Ĩrrdj (Hj)}

Proof. It is sufficient to prove the statement for k = 2. Suppose that G ∼=

H1×H2. We describe the twist-isoclass of G in terms of the twist-isoclasses

H1 and H2. It is well known that all irreducible representations of G can

be constructed as the tensor product of irreducible representations of H1

and H2. That is, for all ρ ∈ Irr(G) there exist τ1 ∈ Irr(H1) and τ2 ∈ Irr(H2)

such that ρ = τ1⊗τ2. Additionally, we must have dim(ρ) = dim(τ1) dim(τ2).

For σ1, σ2 ∈ Irr(H1) and δ1, δ2 ∈ Irr(H2) let ρ1 = σ1 ⊗ δ1 and ρ2 = σ2 ⊗ δ2.

We show that ρ1 ∼G ρ2 if and only if σ1 ∼H1 σ2 and δ1 ∼H2 δ2.

Suppose that ρ1 ∼G ρ2. There exists χ ∈ Irr1(G) such that ρ1 = χ⊗ ρ2.

There exist χ1 ∈ Irr1(H1) and χ2 ∈ Irr1(H2) such that χ = χ1 ⊗ χ2. By as-

sociativity of the tensor product and because 1-dimensional representations

are central we have

σ1 ⊗ δ1 = ρ1 = χ⊗ ρ2 = (χ1 ⊗ χ2)⊗ (σ2 ⊗ δ2) = (χ1 ⊗ σ2)⊗ (χ2 ⊗ δ2).
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Thus σ1 ∼H1 σ2 and δ1 ∼H2 δ2. The proof of the converse is very similar.

Therefore the twist-isoclasses of G are of the form ρ̃ = σ̃ ⊗ δ̃ and the

result follows from the fact that dim(ρ̃) = dim(σ̃) dim(δ̃).

Corollary 4.6. Let G ∼= H1 × · · · ×Hk. Then

r̃n(G) =
∑

d1d2...dk=n

r̃d1(H1) . . . r̃dk(Hk). (4.1)

Proof. Clearly, we have

|{ρ̃1 ⊗ · · · ⊗ ρ̃k | ρ̃j ∈ Ĩrrdj (Hj), ∀j ∈ [1, k]}| = r̃d1(H1) . . . r̃dk(Hk).

Corollary 4.7. Let G ∼= H1 × · · · ×Hk. Then

ζ ĩrr
G (s) = ζ ĩrr

H1
(s)ζ ĩrr

H2
(s) . . . ζ ĩrr

Hk
(s).

Proof. The right-hand side of equation (4.1) is precisely the Dirichlet con-

volution product formula for the nth coefficient of the Dirichlet series

ζ ĩrr
H1

(s)ζ ĩrr
H2

(s) . . . ζ ĩrr
Hk

(s). Obviously, the left-side of (4.1) is the nth coeffi-

cient of the Dirichlet series ζ ĩrr
G (s). Two series are equal precisely when they

have the same coefficients. See [1, Section 2.6] for details regarding Dirichlet

convolution.

Corollary 4.8. Let G ∼= H1 × · · · ×Hk. Then

αĩrr(G) = max{αĩrr(H1), . . . , αĩrr(Hk)}.

Proof. It is a standard fact that the abscissa of convergence of a finite prod-

uct of Dirichlet series is equal to the maximum abscissa of convergence of

the factors. The result follows.
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4.1.2 Euler product decomposition

In this subsection we prove that the representation zeta function of a T -

group satisfies an Euler product decomposition into a product of p-local

zeta function. This result is well-known, but no complete proof has been

recorded.

Lemma 4.9. Let G be a finite nilpotent group, p be any prime and P be the

(possibly trivial) Sylow p-subgroup of G. Then, for all e ∈ N,

r̃pe(G) = r̃pe(P ).

Proof. It is well known that a finite nilpotent group is isomorphic to the

direct product of its Sylow subgroups. In particular, there exists a finite

nilpotent group H such that p - |H| and G ∼= P ×H. By Corollary 4.6 we

have

r̃pe(G) =
∑

e1+e2=e

r̃pe1 (P )̃rpe2 (H).

However, r̃pe2 (H) 6= 0 if and only if e2 = 0, because the dimension of an

irreducible representation of a finite group must divide the order of the

group, and in this case r̃1(H) = 1 and the result follows.

Lemma 4.10. Let G be a finite nilpotent group and n be a natural number

with prime factorisation n = pe11 . . . pekk . Then, we have

r̃n(G) = r̃pe11
(G) . . . r̃pekk

(G).

Proof. For i ∈ [1, k], let Pi denote the (possibly trivial) Sylow pi-subgroup

of G. There exists a finite nilpotent group H such that n is coprime to |H|

and G ∼= P1 × · · · × Pk ×H. By Corollary 4.6,

r̃n(G) =
∑

d1d2...dk+1=n

r̃d1(P1) . . . r̃dk(Pk )̃rdk+1
(H).

First note that for dk+1 | n, r̃dk+1
(H) 6= 0 if and only if dk+1 = 1. Further,

each r̃di(Pi) is non-zero if and only if di is a pi power. We must have

d1 . . . dk = n and so di = peii . The result then follows from Lemma 4.9.
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Proposition 4.11. Let G be a T -group and n be a natural number with

prime factorisation n = pe11 . . . pekk . Then, we have

r̃n(G) = r̃pe11
(G) . . . r̃pekk

(G).

In other words, the arithmetic function r̃n(G) is multiplicative.

Proof. By Theorem 1.6 there exists a finite quotient G(n) such that every

n-dimensional irreducible representation of G is twist-equivalent to a rep-

resentation that factors through G(n). Denote the kernel of natural map

G → G(n) by N(n). The finite quotients {G(n) | n ∈ N} are not uniquely

determined by this property and without loss we may assume that the nor-

mal subgroups {N(n) | n ∈ N} form a chain. In particular, if m ≤ n then

G(n) maps onto G(m).

We claim that r̃peii
(G(n)) = r̃peii

(G(peii )) and then by applying Theorem

1.6 and Lemma 4.10 we have

r̃n(G) = r̃n(G(n)) = r̃pe11
(G(n)) . . . r̃pekk

(G(n))

= r̃pe11
(G(pe11 )) . . . r̃pekk

(G(pekk )) = r̃pe11
(G) . . . r̃pekk

(G).

To prove the claim, first note that any peii -dimensional representation of

G(peii ) induces a representation of G(n) via the canonical map. Conversely if

ρ if a peii -dimensional representation of G(n) then ρ must be twist-equivalent

to a representation that factors through G(peii ) by the defining property of

G(peii ).

Corollary 4.12. Let G be a T -group. The representation zeta function

ζ ĩrr
G (s) has an Euler factorisation

ζ ĩrr
G (s) =

∏
p

ζ ĩrr
G,p(s).
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4.1.3 Commensurability

The main result of this section is to show that the rate of representation

growth αĩrr(G) is a commensurability invariant. It suffices to show that if

H is a finite index subgroup of G then αĩrr(H) = αĩrr(G).

Proposition 4.13. Let H ≤ G be a subgroup of finite index in G. Let

k1 = |G : H| and k2 = |G′ ∩H : H ′| then, for all n ∈ N,

R̃n(H) ≤ k1R̃k1n(G), (4.2)

R̃n(G) ≤ k1k2R̃n(H). (4.3)

Proof. We define a map Ψ : ∪ni=1Ĩrri(H) → ∪kni=1Ĩrri(G) as follows. Let

σ̃ ∈ ∪ni=1Ĩrr(H). We pick any representative σ of the twist-isoclass σ̃ and

induce to G. Let ρ be any irreducible component of IndGH σ and define

Ψ(σ̃) = ρ̃. We repeat this process for each element of ∪ni=1Ĩrri(H). (There

are many possible choices for Ψ.)

Suppose that we have σ̃1, . . . , σ̃m ∈ ∪ni=1Ĩrri(H) such that σ̃i 6= σ̃j for i 6=

j but Ψ(σ̃1) = · · · = Ψ(σ̃m) = ρ̃ for some ρ̃ ∈ ∪kni=1Ĩrr(G). The construction

of Ψ implies that for i ∈ {1, . . . ,m} there exist σi ∈ σ̃i and ρi ∈ ρ̃ such that

ρi ∈ IndGH σi. By Frobenius reciprocity, σi ∈ ResGH ρi. We also have that the

ResGH ρi are all twist-equivalent. This implies that for each σi there exists

χi such that χiσi ∈ ResGH ρ1.

The σi are in separate twist-isoclasses. This implies that ResGH ρ1 =

χ1σ1 ⊕ · · · ⊕ χmσm ⊕ ρ′ for some representation ρ′ of H. By relabeling we

may assume that σ1 has mininum dimension among the σi. Noting that

dim ρ1 = dim ResGH ρ1 we have that dim ρ1 ≥ m dimσ1. We also know that

dim ρ1 ≤ k dimσ1 therefore the map Ψ is at most k-to-1. This establishes

(4.2).

We define a map Φ : ∪ni=1Ĩrri(G) → ∪ni=1Ĩrr
G

i (H) as follows. Let ρ̃ ∈

∪ni=1Ĩrri(G), pick any representative ρ of the twist-isoclass ρ̃. Let σ be any
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irreducible component of ResGH and define Φ(ρ̃) = σ̃G, the G-twist-isoclass

of σ.

Suppose that we have ρ̃1, . . . , ρ̃m ∈ ∪ni=1Ĩrri(G) such that ρ̃i 6= ρ̃j for

i 6= j but Ψ(ρ̃1) = · · · = Ψ(ρ̃m) = σ̃G for some ρ̃ ∈ ∪ni=1Ĩrr
G

(H). The

construction of Φ implies that for i ∈ {1, . . . ,m} there exist ρi ∈ ρ̃i and

σi ∈ σ̃G such that σi ∈ ResGH ρi. By Frobenius reciprocity, ρi ∈ IndGH σi.

The IndGH σi are all twist-equivalent. This follows from the fact that the σi

are G-twist equivalent on H. This implies that for each ρi there exists a

1-dimensional representation τi of G such that τiρi ∈ IndGH σ1.

The ρi are not twist-equivalent. It follows that IndGH σ1 = τ1ρ1 ⊕ · · · ⊕

τmρm ⊕ σ′, for some representation σ′ of G. By relabeling we may as-

sume that ρ1 has minimum dimension among the ρi. Thus dim IndGH σ1 ≥

mdim ρ1. We also have dim ρ1 ≥ dimσ1 and so k1 dim ρ1 ≥ dim IndGH σ1 ≥

mdim ρ1. Thus m ≤ k1.

We have established that R̃n(G) ≤ k1R̃Gn (H). Inequality (4.3) then

follows from Corollary 4.2.

Corollary 4.14. Let H ≤ G be a subgroup of finite index in G. Then

αĩrr(G) = αĩrr(H).

Proof. Let α ∈ R and suppose that there exists γ such that

R̃n(G) < γnα

for all n ∈ N. Then by Proposition 4.13 we have

R̃n(H) ≤ k1R̃k1n(G) < k1γ(k1n)α = kα+1
1 γnα

for all n ∈ N . Thus, αĩrr(H) ≤ αĩrr(G). Conversely, for α ∈ R suppose that

there exists γ such that

R̃n(H) < γnα

for all n ∈ N. Then by Proposition 4.13 we have

R̃n(G) ≤ k1k2R̃n(H) < k1k2γ(n)α = k1k2γn
α
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for all n ∈ N. Thus, αĩrr(G) ≤ αĩrr(H) and the proof is complete.

Corollary 4.15. The polynomial rate of representation growth of a T -group

is a commensurability invariant.

Proposition 4.16. Let G be a T -group and H be a subgroup of finite index

in G. Then αĩrr
p (G) = αĩrr

p (H).

Proof. It suffices to show that αĩrr(Ĝp) = αĩrr(Ĥp). In this case a slight

adjustment to the proof of Proposition 4.13 is sufficient.

4.2 Central products

In this section we investigate the representation growth of central products

of T -groups. This leads to a construction of a family of groups that realise

every positive rational number as an abscissa of convergence.

We begin by recalling the definition of central products of T -groups and

a few known results on the representation theory of such groups.

Theorem 4.17. [14, Theorem 5.3] Let H, K, M be groups with M ⊆ Z(H)

and suppose there is an isomorphism θ of M into Z(K). Then if we identify

M with its image θ(M), there exists a group of the form G = HK with

M = H ∩K ⊆ Z(G) such that H centralizes K.

The group G in Theorem 4.17 is called the central product of H and

K with respect to θ. If M = 1 then the central product is just the direct

product H ×K. The central product G is isomorphic to (H ×K)/N , where

N = {(h, k) | h ∈ H, k ∈ K, θ(h) = k}.

Lemma 4.18. Let G, H be T -groups and suppose that there exists a normal

subgroup N �G of G such that G/N ∼= H. Then αĩrr(H) ≤ αĩrr(G).

Proof. Let φ : G→ H be the canonical homomorphism. Any representation

of H can be realised as a representation of G by factoring via φ.
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We need to check that representations that are not H-twist-equivalent do

not induce G-twist-equivalent representations on factoring via φ. Let τ1, τ2

be irreducible n-dimensional representations of H which are not H-twist-

equivalent. Now suppose that the irreducible n-dimensional representations

τ1 ◦ φ, τ2 ◦ φ of G are G-twist-equivalent. That is, there exists χ ∈ Irr1(G)

such that

χ⊗ (τ1 ◦ φ) = τ2 ◦ φ. (4.4)

Let n ∈ N . Now τ1 ◦ φ(n) = τ2 ◦ φ(n) = 1 because N is the kernal of φ.

Further, (χ ⊗ (τ1 ◦ φ))(n) = χ(n). By comparison with the right-hand side

of (4.4) we must have χ(n) = 1 and N is contained in the kernal of χ.

This means that χ factors through H and there exists a 1-dimensional

representation σ of H such that χ = σ◦φ. Finally note that (σ◦φ)⊗(τ1◦φ) =

(σ ⊗ τ1) ◦ φ. This implies that τ1 and τ2 are H-twist-equivalent. This is a

contradiction.

Corollary 4.19. Let G be a T -group that is a central product of two T -

groups H and K. Then αĩrr(G) ≤ max{αĩrr(H), αĩrr(K)}.

Proof. Corollary 4.8 states that αĩrr(H×K) = max{αĩrr(H), αĩrr(K)}. Now,

any central product of H and K is isomorphic to a quotient of the direct

product. Lemma 4.18 states that the abscissa of convergence of a quotient

is less than or equal to the abscissa of convergence of the original group.

We now examine a special class of central products. Let G1, G2 be

T2-groups with isomorphic centres. If we have presentations

G1 =

〈
x11, . . . x1n1

y1, . . . yd

∣∣∣∣ R1

〉
, G2 =

〈
x21, . . . x2n2

y1, . . . yd

∣∣∣∣ R2

〉
,

then the canonical central product, denoted G1 ×Z G2 has presentation

G1 ×Z G2 =

〈
x11, . . . x1n1 , x21, . . . x2n2

y1, . . . yd

∣∣∣∣∣ R1,R2

〉
.
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It is also very easy to write down the structure matrix of the Lie ring L(G1×Z

G2). It is simply the diagonal sum of the structure matrices of the Lie rings

L(G1) and L(G2):

RL(G1×ZG2)(Y) =

 RL(G2)(Y) 0

0 RL(G1)(Y)

 .

4.2.1 The k-fold canonical central product

The k-fold canonical central product of a T2-group G with itself is defined

as

×kZG := G×Z · · · ×Z G︸ ︷︷ ︸
k copies

Example 4.20. Let H denote the discrete Heisenberg group it has presen-

tation

H = 〈x1, x2, y | [x1, x2] = y〉

and L(H) has structure matrix

RL(H)(Y ) =

 0 Y

−Y 0

 .

Therefore, the k-fold canonical central product of the Heisenberg group has

presentation

×kZH =

〈x11, x12,

. . .

xk1, xk2,

y

∣∣∣∣∣
[x11, x12] = y

. . .

[xk1, xk2] = y

〉
.
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and the associated Lie ring L(×kZH) has the following structure matrix:

RL(×k
ZH)(Y ) =



0 Y

−Y 0

0 Y

−Y 0

. . .

0 Y

−Y 0


.

Proposition 4.21. Let G be a T2-group such that h(G/Z) = n and h(Z) =

d. For almost all primes p we have the following formula for the local rep-

resentation zeta function of the k-fold canonical central product of G.

ζ ĩrr
×k

ZG,p
(s) = ζ ĩrr

G,p(ks).

Proof. By Theorem 2.9, for almost all primes p the p-local representation

zeta function is given by the formula.

ζ ĩrr
G,p(s) = 1 +

∞∑
N=1
m∈Nn

0

NN,mp−
s
2

∑n
i=1(N−mi), (4.5)

where NN,m = #{a ∈ (Z/pNZ)d r p(Z/pNZ)d | ν(RL(G)(a)) = m}. Since

RL(×k
ZG)(Y) is the diagonal sum of k copies of RL(G)(Y) if ν(RL(G)(a)) =

(m1,m2, . . . ,mn), then

RL(×k
ZG)(a) = (m1, . . . ,m1︸ ︷︷ ︸

k

, . . . ,mn, . . . ,mn︸ ︷︷ ︸
k

).

Therefore,

ζ ĩrr
×k

ZG,p
(s) = 1 +

∞∑
N=1
m∈Nn

0

NN,mp−
s
2

∑n
i=1

∑k
j=1(N−mi)

= 1 +
∞∑
N=1
m∈Nn

0

NN,mp−
ks
2

∑n
i=1(N−mi) = ζ ĩrr

G,p(ks).

53



Proposition 4.21 is key in the proof of the main theorem of this section.

Theorem 4.22. Let α be a positive rational number. Then there exists a

T2-group G with abscissa of convergence α. That is, αĩrr(G) = α.

Proof. Grenham’s groups, denoted by Gn, are in introduced in Example 6.2,

where it is shown that Gn has representation zeta function

ζ ĩrr
Gn

(s) =
ζ(s− n+ 1)

ζ(s)
,

which has abscissa of convergence αĩrr(Gn) = n. In the case of Gn, formula

(2.8) is valid for all primes. Therefore the k-fold canonical central product

of Gn has representation zeta function

ζ ĩrr
×k

ZGn
(s) = ζ ĩrr

Gn
(ks) =

ζ(ks− n)

ζ(ks)
,

which has abscissa of convergence αĩrr(×kZGn) = (n + 1)/k. It is clear that

for any positive rational number α there are infinitely many choices for n

and k such that αĩrr(×kZGn) = α.

4.3 Bounds

This section consists of joint work with Shannon Ezzat. In this section we

prove some bounds for the local abscissa of convergence αĩrr
p (G). First we

need to discuss and reformulate formula (2.8) slightly. Theorem 2.9 states

that if G is a T2-group such that h(G/Z) = n and h(Z) = d, then for almost

all primes p,

ζ ĩrr
G,p(s) = 1 +

∞∑
N=1

∑
m∈Nn

0

NN,mp−
s
2

∑n
i=1(N−mi),

where NN,m = #{a ∈ (Z/pNZ)d r p(Z/pNZ)d | ν(RL(G)(a)) = m}.

In Section 2.4 we outline how this formula is derived. A representative

of each twist-isoclass of p-power-dimensional irreducible representations of
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G is constructed from φ ∈ L̂(G)′ of p-power period. There is a bijection

between the non-trivial elements of L̂(G)′ and ∪N∈N(Z/pN )d r p(Z/pN )d.

The irreducible representation associated with φ is denoted π(φ). Associ-

ated with φ is some a ∈ ∪N∈N(Z/pN )d r p(Z/pN )d. We also denote the

representation by π(a). We can rewrite formula (2.8) as

ζ ĩrr
G,p(s) = 1 +

∑
N∈N

∑
a∈(Z/pN )drp(Z/pN )d

dim(π(a))−s. (4.6)

We use elementary divisors to calculate dim(π(a)). If ν(RL(G)(a)) =

(m1,m1, . . . ,mn,mn) or (m1,m1, . . . ,mn,mn, 0) then dim(π(a)) = p
∑n

i=1(N−mi),

cf. Section 2.4.

Before we establish the main result of the section we require a technical

lemma. For a Dirichlet series Z(s) we denote the abscissa of convergence by

α(Z(s)). Note that for a Dirichlet series with non-negative coefficients the

abscissa of absolute convergence coincides with the abscissa of conditional

convergence, this follows from [26, Chapter VIII, Theorem 1].

Lemma 4.23. Let A be a countable set and suppose that µ : A→ N is a map

such that the Dirichlet series
∑

a∈A µ(a)−s converges on some half plane.

Further, suppose that there exist functions upp : A → N and low : A → N

such that

low(a) ≤ µ(a) ≤ upp(a)

for all a ∈ A. Then,

α

(∑
a∈A

upp(a)−s

)
≤ α

(∑
a∈A

µ(a)−s

)
≤ α

(∑
a∈A

low(a)−s

)
.

Proof. First we can rewrite
∑

a∈A µ(a)−s as
∑∞

n=1 µ̄(n)n−s, where µ̄(n) =

|{a ∈ A | µ(a) = n}|. The abscissa of convergence α
(∑

a∈A µ(a)−s
)

is defined in terms of the sequence of partial sums of the µ̄(n): α :=

α
(∑

a∈A µ(a)−s
)

is the smallest value such that

N∑
n=1

µ̄(n) < O(Nα+ε),
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for every ε ∈ R>0.

If we define upp(n) := |{a ∈ A | upp(a) = n}| and low(n) := |{a ∈ A |

low(a) = n}|. It follows that

N∑
n=1

upp(n) <
N∑
n=1

µ̄(n) <
N∑
n=1

low(n)

and the result follows.

We are ready to prove the main result of this section. This result is

similar to [2, Theorem 1.1].

Theorem 4.24. Let G be a T2-group such that h(G/Z) = n and h(G′) = d.

Then for almost all primes p

d

bn2 c
≤ αĩrr

p (G) ≤ d.

Proof. We apply Lemma 4.23. Recall formula (4.6):

ζ ĩrr
G,p(s) = 1 +

∑
N∈N

∑
a∈(Z/pN )drp(Z/pN )d

dim(π(a))−s.

The summation is over W := ∪∞N=1(Z/pN )d r p(Z/pN )d. Consider the map

W → N, a 7→ dim(π(a)). In order to apply Lemma 4.23 it is necessary to find

upper and lower bounds for dim(π(a)). Now, using the notation from the

discussion preceding Lemma 4.23, we know that dim(π(a)) = p
∑bn2 c

i=1 (N−mi).

Clearly, p
∑bn2 c

i=1 (N) is an upper bound for dim(π(a)). We obtain the lower

bound pN by noting that, by Lemma 2.4, the first elementary divisor m1

must be zero and taking the remaining elementary divisors to be equal to

N .

It follows from Lemma 4.23 that

α

(
1 +

∑
a∈W

(p
∑bn2 c

i=1 (N))−s

)
≤ αĩrr

p (G) ≤ α

(
1 +

∑
a∈W

(pN )−s

)
.

By noting that |(Z/pN )d r p(Z/pN )d| = (1− p−d)pdN we have

α

(
1 +

∞∑
N=1

(1− p−d)pdN (pb
n
2
cN )−s

)
≤ αĩrr

p (G) ≤ α

(
1 +

∞∑
N=1

(1− p−d)pdN (pN )−s

)
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and therefore

α

(
1− p−b

n
2
cs

1− pd−b
n
2
cs

)
≤ αĩrr

p (G) ≤ α
(

1− p−s

1− pd−s

)
.

The result follows after reacalling that 1
1−p−s converges for <(s) > 0
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Chapter 5

T -groups with small derived

group

Definition 5.1. The representation zeta function ζ ĩrr
G (s) of a T -group G is

finitely uniform if there exist rational functions W1(X,Y ), . . . ,Wk(X,Y ) ∈

Q[X,Y ] and a function f : P → [1, k] from the set of all primes P to [1, k]

such that for all primes p,

ζ ĩrr
G,p(s) = Wf(p)(p, p

−s).

This chapter contains results concerning the uniformity of the represen-

tation zeta functions of T2-groups. It is shown that the representation zeta

function of a T2-group with centre of Hirsch length at most 2 is finitely

uniform. This result is obtained using a classification of such groups up to

commensurability, which is recalled in Section 5.4.

We also calculate the representation zeta function a particular T2-group

with centre of Hirsch length 3; it is not finitely uniform. This result rely

on a formula for the local factors of the representation zeta for T2-groups,

whose associated Lie ring has a structure matrix of a specific shape.
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5.1 Simple elementary divisors

This section constructs a formula for almost all the local factors of the

representation zeta function of a T2-group G whose associated Lie ring L(G)

has structure matrix with a particular ‘shape’ to its elementary divisor type.

Definition 5.2. Let f ∈ N and G be a T2-group with h(G′) = d, say. Then

G is said to have simple elementary divisor type of length f if for all N ∈ N

and b ∈ (Z/pN )d \ p(Z/pN )d there exists m ∈ [N ] such that

ν(RL(G)(b)) = (0, . . . , 0,m,m︸ ︷︷ ︸
2f

, N, . . . , N).

Theorem 5.3. Let G be a T2-group that has simple elementary divisor type

of length f . Let h(G′) = d, h(G/Z) = n and let σ̃2f (Y) ⊆ Z[Y1, . . . , Yd]

denote the ideal generated by the principal 2f -minors of RG(Y). Then for

almost all primes p,

ζ ĩrr
G,p(s) =

1− tf−1

1− pdtf−1
+

(t− 1)pdtf−1

(1− pdtf−1)(1− pdtf )
Z?σ̃2f

((f − 1)s− d),

where Z?F(s) is the variant of Igusa’s local zeta function defined in Section

3.3.5.

Proof. Theorem 2.9 states, for almost all primes p:

ζ ĩrr
G,p(s) =

∑
N∈N0
m∈Nn

NN,mp−
s
2

∑n
i=1(N−mi). (5.1)

Now suppose that G has simple elementary type of length f . In this case

m1 = · · · = m2f−2 = 0 and m2f+1 = · · · = mn = N . We write m =

m2f−1 = m2f . Substituting this information into (5.1) and writing t = p−s

we obtain

ζ ĩrr
G,p(s) =

∞∑
N=0

N∑
m=0

N ?
N,mt

fN−m, (5.2)

where N ?
N,m := #{b ∈ (Z/pNZ)d \ (Z/pNZ)d | ν(σ̃2f (b)) = 2m} and

σ̃2f (Y) denotes the ideal generated by the 2f -minors of RL(G)(Y). Re-

call that ν(σ̃2f (b)) denotes the minimum p-adic valuation of any element
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of the ideal σ̃2f (Y) ⊂ Z[Y1, . . . , Yd] when evaluated at b. This minimum

is always realised by one of the elements of any generating set of σ̃2f (Y).

In particular, the minimum is always realised by at least one of the 2f -

minors of RL(G)(Y). Furthermore, by Proposition 2.7 this minimum is

attained by at least one of the principal 2f -minors. Therefore, N ?
N,m =

#{b ∈ (Z/pNZ)d \ (Z/pNZ)d | ν(σ̃2f (b)) = m}. We now use the identities

explored in Section 3.3.5 to express ζ ĩrr
G,p(s) in terms of Igusa’s local zeta

function associated to the ideal σ̃2f .

This procedure is similar to one employed in the proof of [25, Theo-

rem 1.1]. Rearranging the summation of (5.2) and then comparing the

definition N ?
N,m with the definitions of µ?m and N ?

m, given in Section 3.3.5

we have

ζ ĩrr
G,p(s) =

∞∑
N=1

N−1∑
m=0

N ?
N,mt

fN−m +

∞∑
N=0

N ?
N,N t

fN−N

=

∞∑
N=1

N−1∑
m=0

µ?mp
dN tfN−m +

∞∑
N=0

N ?
N (tf−1)N . (5.3)

Equation (3.10) implies that
∑∞

N=0N ?
N (tf−1)N = P?σ̃2f

(pdtf−1). Using

this fact and (3.12) we rewrite (5.3) as follows:

ζ ĩrr
G,p(s) =

∞∑
N=1

N−1∑
m=0

(
N ?
m

pdm
−
N ?
m+1

pd(m+1)
− δ0,mp

−d
)
pdN tfN−m + P?σ̃2f

(pdtf−1)

=

∞∑
N=1

(
N−1∑
m=0

(
N ?
m

pdm
−
N ?
m+1

pd(m+1)

)
pdN tfN−m − p−dpdN tfN

)
+ P?σ̃2f

(pdtf−1)

=

( ∞∑
N=1

N−1∑
m=0

(
N ?
m

pdm
−
N ?
m+1

pd(m+1)

)
pdN tfN−m

)
−
∞∑
N=1

pd(N−1)tfN + P?σ̃2f
(pdtf−1)
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=

∞∑
m=0

(
N ?
m

pdm
−
N ?
m+1

pd(m+1)

)
t−m

∞∑
N=m+1

pdN tfN (5.4)

−
∞∑
N=1

pd(N−1)tfN + P?σ̃2f
(pdtf−1)

=

∞∑
m=0

(
N ?
m

pdm
−
N ?
m+1

pd(m+1)

)
t−m

pd(m+1)tf(m+1)

1− pdtf
− tf

1− pdtf
+ P?σ̃2f

(pdtf−1)

=
pdtf

1− pdtf
∞∑
m=0

(
N ?
m

pdm
−
N ?
m+1

pd(m+1)

)
pdmt(f−1)m

︸ ︷︷ ︸
=:(A)

− tf

1− pdtf
+ P?σ̃2f

(pdtf−1).

(5.5)

We use (3.13) to express (A) in terms of Z?σ̃2f
(s):

ζ ĩrr
G,p(s) =

pdtf

1− pdtf
(Z?σ̃2f

((f − 1)s− d) + p−d)− tf

1− pdtf
+ P?σ̃2f

(pdtf−1)

=
pdtf

1− pdtf
(Z?σ̃2f

((f − 1)s− d)) +
tf

1− pdtf
− tf

1− pdtf
+ P?σ̃2f

(pdtf−1).

The identity (3.15) is used to express P?σ̃2f
(t) in terms of Igusa’s local zeta

function and complete the proof of the theorem.

ζ ĩrr
G,p(s) =

pdtf

1− pdtf
(Z?σ̃2f

((f − 1)s− d)) + P?σ̃2f
(pdtf−1)

=
pdtf

1− pdtf
(Z?σ̃2f

((f − 1)s− d)) +
1− tf−1 − pdtf−1 Z?σ̃2f

((f − 1)s− d)

1− pdtf−1

=
1− tf−1

1− pdtf
+

(t− 1)pdtf−1

(1− pdtf−1)(1− pdtf )
Z?σ̃2f

((f − 1)s− d).

5.2 Du Sautoy’s elliptic curve example

In this section we calculate the representation zeta function of the T2-group

known as du Sautoy’s elliptic curve example. Du Sautoy constructed the

group in [9] and used it to demonstrate the subgroup zeta function a T -

group is not necessarily finitely uniform, answering a question [16, pp. 188]
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of Grunewald, Segal and Smith in the negative. The group is given by the

presentation

G =

〈
x1, . . . , x6

y1, y2, y3

∣∣∣∣∣
[x1, x4] = y3, [x1, x5] = y1, [x1, x6] = y2

[x2, x4] = y1, [x2, x5] = y3

[x3, x4] = y2, [x3, x6] = y1

〉
(5.6)

and has associated structure matrix

RL(G)(Y) =



0 0 0 Y3 Y1 Y2

0 0 0 Y1 Y3 0

0 0 0 Y2 0 Y1

−Y3 −Y1 −Y2 0 0 0

−Y1 −Y3 0 0 0 0

−Y2 0 −Y1 0 0 0


. (5.7)

Note that the Pfaffian E(Y) := Pf(RG(Y)) = Y1Y3
2 − Y1

3 + Y2
2Y3 of the

structure matrix determines an elliptic curve E. In [9] du Sautoy showed

that the local factors of the subgroup zeta function of G are closely linked

to the number of Fp-rational points of the elliptic curve described by E(Y).

As a consequence of this fact he deduced that the subgroup zeta function

of G is not finitely uniform. Later, in [37], Voll gave an explicit formula for

almost all of the local factors of the normal subgroup zeta function of G. In

this section we compute ζ ĩrr
G (s), including all local factors.

Theorem 5.4. Let G be as above. Then

ζ ĩrr
G (s) =

∏
p

(
1− t3

1− p3t3
+ E(Fp) ·

(p− 1)(t− 1)t

(1− p2t2)(1− p3t3)

)
,

where E(Fp) := #{b ∈ P2(Fp) | E(b) = 0} and t := p−s.

Proof. First we show that G has simple elementary divisor type of length 6.

It is sufficient to show that, for all N ∈ N and b ∈ (Z/pN )3 \ p(Z/pN )3, the
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set of 4-minors of RL(G)(b) contains a p-adic unit. This is established in

[37, Section 1]. Clearly, G satisfies the conditions established in Section 2.4.

Therefore, the formula presented in Theorem 5.3 is valid for all primes p.

That is,

ζ ĩrr
G,p(s) =

1− t2

1− p3t2
+

(t− 1)p3t3

(1− p3t2)(1− p3t3)
Z?E(Y)(2s− 3). (5.8)

It remains to calculate Igusa local zeta function associated with the Pfaf-

fian E(Y).

Z?E(Y)(s) =

∫
Z3
prpZ3

p

|Y1Y3
2 − Y1

3 + Y2
2Y3|sdµ.

Suppose that p 6= 2. Then E(Y) = Y1Y3
2−Y1

3 +Y2
2Y3 satisfies the hypoth-

esis of Proposition 3.11. Therefore,

Z?E(Y)(s) = (p3 − 1− |E(Fp)|)p−3 + |E(Fp)|
(1− p−1)p−3−s

1− p−1−s .

By substituting this expression into (5.8) and performing some algebraic

manipulation the formula for the local zeta function is

ζ ĩrr
G,p(s) =

1− t3

1− p3t3
+ E(Fp)

(p− 1)(t− 1)t

(1− p2t2)(1− p3t3)
.

For p = 2, Proposition 3.11 is not applicable to the coset (1, 0, 1) + 2Z 3
2 . In

essence, Proposition 3.11 says that the solutions of E(Y) modulo p lift uni-

formly to solutions modulo pk, for k ≥ 1. In the case p = 2, a generalisation

of Hensel’s Lemma [34, Section 2.2] can be applied to show that solutions

of E(Y) modulo 23 lift uniformly. The analysis in this case must be done

modulo 23.∫
(1,0,1)+2Z3

2

|E(Y)|sdµ =
∑

b∈Z3/23

b≡(1,0,1) mod 2

∫
b+8Z2

|E(Y)|sdµ.

The sum is really over a set a representatives for the cosets of 23Z2, but we

choose these to be the Teichmüller representatives and identify them with
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elements of Z3/23. If E(b) 6≡ 0 modulo 8, then the summand corresponding

to b has constant valuation and thus∫
b+8Z2

|E(Y)|sdµ = µ(b + 8Z2)p−vp(E(b)).

If E(b) ≡ 0 modulo 8, then using [34, Lemma 1, Section 2.2] the solutions

lift uniformly. In this specific example, it happens that the solutions of

E(b) ≡ 0 modulo 2 lift uniformly, but this is not a direct consequence of

Hensel’s Lemma or one of its generalisations. The formula is therefore the

same as in the case p 6= 2.

Corollary 5.5. The representation zeta function ζ ĩrr
G (s) of du Sautoy’s el-

liptic curve example G is not finitely uniform.

Proof. It is shown in [9, Section 1] that if almost all the local factors of a

subgroup zeta function enumerating subgroups have the form

ζG,p(s) = W1(p, p−s) + |E(Fp)|W2(p, p−s),

where W1(X,Y ),W2(X,Y ) ∈ Z[X,Y ] and W2(X,Y ) 6= 0. Then the sub-

group zeta function is not finitely uniform. As the local factors of the repre-

sentation zeta function of du Sautoy’s Elliptic curve example have this form

we are done.

5.3 Non-principal ideal example

In this section we compute the representation zeta function of a family of

T2-groups that are of simple elementary divisor type. However, the structure

matrices of the members of this family are not of maximal rank and so the

elementary divisor types depend on a non-principal ideal.

For 1 ≤ r < d let G(r, d) be the T2-group given by the presentation

G(r, d) =

〈
x1, . . . , xd+1

y1, . . . , yd

∣∣∣∣ [x1, xi] = yi−1 2 ≤ i ≤ r + 1

[x2, xj ] = yj r + 1 ≤ j ≤ d

〉
,
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with associated structure matrix

RL(G(r,d))(Y) =



0 Y1 . . . Yr 0 . . . 0

−Y1 0 . . . 0 Yr+1 . . . Yd
...

...

−Yr 0

0 −Yr+1

...
...

0 −Yd


.

The group G(r, d) has centre of Hirsch length d. For all N ∈ N and

b ∈ (Z/pN )d \ p(Z/pN )d the matrix RG(r,d)(b) has rank 4. Therefore,

ν(RG(r,d)(b)) = (0, 0,m,m,N, . . . , N) and so G(r, d) has simple elemen-

tary type of length 2. Let σ4(Y) denote the set of 4-minors of RG(r,d)(Y).

For almost all primes p, it follows from Theorem 5.3 that

ζ ĩrr
G(r,d),p(s) =

1− t
1− pdt

+
(t− 1)pdt

(1− pdt)(1− pdt2)
· Z?σ4

(s− d). (5.9)

The computation of ζ ĩrr
G(r,d),p(s) has been reduced to calculating Z?σ4

(s). By

Proposition 2.7, |σ4(b)| = |σ̃4(b)|, where σ̃4(Y) denotes the set of principal

4-minors of RG(r,d)(Y). Clearly, σ̃4(Y) = {Y 2
i Y

2
j | i ∈ [2, r], j ∈ [r+ 1, d]}∪

{0}. Therefore, using Fubini’s Theorem and Example 3.14,

Z?σ4
(s) =

∫
Zd
prpZd

p

|| {YiYj | i ∈ [2, r], j ∈ [r + 1, d]} ||sdµ

= (1− p−d−2s)

∫
Zd
p

|| {YiYj | i ∈ [2, r], j ∈ [r + 1, d]} ||sdµ

= (1− p−d−2s)

∫
Zd
p

||Y2, . . . , Yr||s||Yr+1, . . . , Yd||sdµ

= (1− p−d−2s)

∫
Zp

dµ

∫
Zr−1
p

||Y2, . . . , Yr||sdµ
∫
Zd−r
p

||Yr+1, . . . , Yd||sdµ

= (1− p−d−2s) · 1− p1−r

1− p1−r−s ·
1− pr−d

1− pr−d−s
.

The third equality follows from the fact that for two ideals F1,F2 ∈ Z[Y1, . . . , Yd]

and b ∈ Zdp we have |(F1F2)(b)| = |F1(b)||F2(b)|. The final expression for
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ζ ĩrr
G(r,d),p(s) is achieved by substitution of the above expression for Z?σ4

(s) into

equation (5.9). The p-local and global representation zeta functions are

ζ ĩrr
G(r,d),p(s) =

(1− t)(1− pt)
(1− pd−r+1t)(1− prt)

and

ζ ĩrr
G(r,d)(s) =

ζ(s− r)ζ(s− d+ r − 1)

ζ(s)ζ(s− 1)
.

Therefore, αĩrr(G(r, d)) = max{r + 1, d− r + 2}.

5.4 D?-groups

In this section we study the representation zeta function of T2-group with

centre of Hirsch length 2 The main result of this section of the following.

Theorem 5.6. Let G be a T2-group with centre of Hirsch length 2. Then

ζ ĩrr
G (s) is finitely uniform.

In general, a group H is called radicable if for every x ∈ H and m ∈ N

there exists y ∈ H with ym = x. For a T -groupG, we say thatG, is radicable

if GQ, the set of Q-points of G is radicable. For a precise definition of GQ

see [15, Section 1].

Definition 5.7. A D?-group is a radicable T2-group with centre of Hirsch

length 2.

In [15] Grunewald and Segal gave a classification of T2-groups with centre

of Hirsch length 2 up to commensurability. They showed that every such

group is commensurable to a D?-group. In order to prove Theorem 5.6 it

is sufficient to show that the representation zeta function of D?-group is

finitely uniform.

First the definition and classification of D?-groups are recalled. The clas-

sification shows that a D?-group can be broken up into indecomposable con-

stituents. The representation zeta functions of indecomposable D?-groups
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are computed next. Finally, an expression for a general D?-group is derived

and it is shown that the representation zeta function of a T2-group with

centre of Hirsch length 2 is finitely uniform.

Definition 5.8. Let G be a D?-group. A central decomposition of G is a

family {Λ1, . . . ,Λk} of subgroups of G such that:

(1) Z(Λi) = Z(G) for each i ∈ [1, k],

(2) G/Z(G) is the direct product the subgroups Λi/Z(G),

(3) For i, j ∈ [1, k], [Λi,Λj ] = 1 whenever i 6= j.

The group G is called indecomposable if the only such decomposition is {G}.

Theorem 5.9. [15, Theorem 6.2] Every D?-group has a central decompo-

sition into indecomposable constituents, and the decomposition is unique,

up to automorphisms of G. In particular the constituents are unique up to

isomorphism.

Theorem 5.10. [15, Theorem 6.3] Let G be an indecomposable D?-group

of Hirsch length n+ 2. Then there exists a Mal’cev basis {x1, . . . , xn, y1, y2}

for G such that the structure matrix of G has the following form.

RL(G)(Y) =

 0 B(Y)

−B(Y)T

 ,

where, if n = 2m+ 1,

B(Y) =


Y1 Y2

Y1 Y2

. . .
. . .

Y1 Y2

 ∈ Matm,m+1(Z[Y1, Y2])
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and if n = 2m,

B(Y) =



Y1 Y2

Y1 Y2

. . .
. . .

Y1 Y2

amY2 am−1Y2 . . . a2Y2 Y1 + a1Y2


∈ Matm(Z[Y1, Y2]),

where det(B(Y1, 1)) = Y m
1 − a1Y

m−1
1 − · · · − am−1Y1 − am is a power of an

irreducible polynomial over Q.

Furthermore, if G is any D?-group then RL(G)(Y) is a diagonal sum of

matrices representing indecomposable constituents.

Proposition 5.11. Let G be an indecomposable D?-group of Hirsch length

n+ 2, where n = 2m+ 1 with m > 1. Then for all primes p,

ζ ĩrr
G,p(s) =

1− p−ms

1− p2−ms .

Proof. The dimension of RG(Y) is n. For all N ∈ N and b ∈ (Z/pN )2 r

p(Z/pN )2 the matrix RG(b) has a 2m-minor which is a unit. Consider the

2m-minors obtained from RG(b) by deleting the m+1 row and column and

the 2m + 1 row and column. These minors are b2m1 and b2m2 respectively.

Since one of b1 and b2 is a unit it follows that

ν(RG(b)) = (0, . . . , 0︸ ︷︷ ︸
2m

, N).

Therefore, by Theorem 2.9,

ζ ĩrr
G,p(s) = 1 +

∞∑
N=1

(1− p−2)p2Np−mNs = 1 +
(1− p−2)p2−ms

1− p2−ms =
1− p−ms

1− p2−ms .

Proposition 5.12. Let G be an indecomposable D?-group of Hirsch length

n+2, where n = 2m with m > 1. Let F (Y1, Y2) be the Pffafian of RL(G)(Y).
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There exists e ∈ N and an irreducible polynomial f(Y ) such that F (Y1, 1) =

f(Y1)e. Then, for almost all primes p,

ζ ĩrr
G,p(s) =

1− tm

1− p2tm
+ ` · (p− 1)(t− 1)(1− p2et(m−1)e)

(1− p2tm−1)(1− p2tm)(1− p2e−1t(m−1e))
,

where ` is the number of roots of f̄(Y ), the reduction modulo p of f(Y ).

Proof. The structure matrix RL(G)(Y) has Pfaffian Pf(RL(G)(Y)) = Y m
1 +

c2Y
m−1

1 Y2 + · · · + cmYm =: F (Y). The 2m − 2-minors given by removing

the (m− 1,m+ 1) rows and columns and by removing the (m− 1, 2m) rows

and columns are Y 2m−2
1 and Y 2m−2

2 respectively. Therefore, G has simple

elementary divisor type of length m and by Theorem 5.3,

ζ ĩrr
G,p(s) =

1− tm−1

1− p2tm−1
+

(t− 1)p2tm−1

(1− p2tm−1)(1− p2tm)
Z?F ((m− 1)s− 2).

The computation of ζ ĩrr
G,p(s) has been reduced to computing Z?F (s). Now

consider the coset decomposition

Z?F (s) =
∑

a∈F2
pr{0}

∫
a+pZ2

p

|F (Y1, Y2)|sdµ. (5.10)

Here, strictly speaking, the summation is not over a = (a1, a2) ∈ F2
p r {0},

but rather over the representatives of the non-zero cosets of pZ2
p. If a2 ≡ 0

modulo p then a1 6≡ 0 modulo p and vp(F (a1, a2)) = 0. In this case∫
a+pZ2

p

|F (Y1, Y2)|sdµ = µ(a + pZ2
p) = p−2.

In all other cases we have a2 6≡ 0 modulo p. Now,∫
a+pZ2

p

a2 6≡0 mod p

|F (Y1, Y2)|sdµ =

∫
(a1a

−1
2 ,1)+pZ2

p

|F (Y1, Y2)|sdµ,

by a change of variables. Therefore,∑
a∈F2

p

a2 6≡0 mod p

∫
a+pZ2

p

|F (Y1, Y2)|sdµ = (p− 1)
∑
a1∈Fp

∫
(a1,1)+pZ2

p

|F (Y1, Y2)|sdµ

= (p− 1)p−1
∑
a1∈Fp

∫
a1+pZp

|F (Y1, 1)|sdµ.
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By assumption, F (Y1, 1) = f(Y1)e, where f is irreducible over Q, and so,∑
a1∈Fp

∫
a1+pZp

|F (Y1, 1)|sdµ =

∫
Zp

|f(Y1)|esdµ

= Zf (es).

For almost all primes p, Igusa’s local zeta function associated with an ir-

reducible polynomial f has a form which only depends on the splitting be-

haviour of the prime p in the ring of integers in the splitting field of f . Let

K denote the splitting field of f and let O denote the ring of integers in K.

Suppose that the prime p is unramified in O (which is the case for all but

finitely many primes) and that pO = P1 . . .Pk, where P1, . . . ,Pk are prime

ideals of O. Then, the reduction modulo p of f has the form f̄ = f̄1 . . . f̄k

where f̄1, . . . , f̄k are irreducible polynomials over Fp. For each f̄i we have

either f̄i(a) 6≡ 0 modulo p for all a ∈ Fp or f̄i(Y1) = Y1−αi for some αi ∈ Fp.

Furthermore, the roots of f̄ in Fp are distinct and each lifts, via Hensel’s

Lemma, to a unique root of f in Zp. Let ` denote the number of solutions

of f(Y1) ≡ 0 modulo p. We have,

Zf (s) =

∫
Zp

|f(Y1)|sdµ

=

∫
Zp

|(Y1 − α1) . . . (Y1 − α`)|sdµ,

where the αi are distinct, and so,

Zf (s) = ` · (1− p−1)p−1−s

1− p−1−s + (p− `)p−1.

All the summands of equation (5.10) are now understood. By summing and

performing some algebraic reductions the result is achieved.

Theorem 5.13. Let G be an arbitrary D?-group. There exists ` ∈ N

and irreducible polynomials F1(Y ), . . . , F`(Y ) ∈ Q[Y ] and rational functions

W0(Y1, Y2), . . . , W`(Y1, Y2) such that for almost all primes p

ζ ĩrr
G,p(s) = W0(p, p−s) +

∑̀
i=1

Fi(Fp)Wi(p, p
−s),
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where

Fi(Fp) := #{x ∈ Fp | Fi(x) ≡ 0 mod p}.

Proof. Let {Λ1, . . . ,Λm+n} be a central decomposition ofG where Λ1, . . . ,Λm

are indecomposable D?-groups of even Hirsch length and Λm+1, . . . ,Λm+n

indecomposable D?-groups of odd Hirsch length. The structure matrix

RG(Y1, Y2) is the diagonal sum of the structure matrices RΛi(Y1, Y2).

Denote the Hirsch length of Λi by ki + 2 so that the Hirsch length of

G is equal to k1 + · · · + km+n + 2. Let σ2r denote the set of 2r-minors

of RG(Y1, Y2). For b ∈ (Z/pN )2 r p(Z/pN )2, the matrices RΛi(b1, b2) of

the indecomposable constituents of G have large unit minors. Precisely, for

i ∈ [1,m] each RΛi(b1, b2) has a unit (ki−2)-minor and for i ∈ [m+1,m+n]

each RΛi(b1, b2) has a unit (ki − 1)-minor. Further, for i ∈ [m + 1,m + n]

each RΛi(b1, b2) has rank ki − 1.

These observations imply thatRΛi(b1, b2) has an elementary divisor type

of a very specific ‘shape’.

ν(RΛi(b1, b2)) = ( 0, . . . , 0︸ ︷︷ ︸
(
∑
ki)−2m−n

, κ1, κ1, . . . , κm, κm, N, . . . , N︸ ︷︷ ︸
n

),

Let fi(Y ) ∈ Q[Y ] be the irreducible polynomial determined by the in-

decomposable component Λm+i. That is, if Pfi(Y1, Y2) denotes the Pfaffian

of RΛi(Y1, Y2). Then, for i ∈ [1, n] there exists an irreducible polynomial fi

and ei ∈ N such that Pfi(Y, 1) = fi(Y )ei .

Let σ2r denote the set of Pfaffians of the principal 2r-minors ofRG(Y1, Y2)

and k := 1
2(
∑
ki − n). By Theorem 2.10,

ζ ĩrr
G,p(s) = 1+

1

(1− p−1)2(1− p−2)

∫
pZp×Z2

p\pZ2
p

(X,Y)

|X|s̃
∏

κ∈[1,k]

|σ2κ ∪Xσ2κ−2|s

|σ2κ|s
dµ

︸ ︷︷ ︸
=:Z(s,s̃)

,

where s̃ = (
∑
ki)s+1. Decompose the integral Z(s, s̃) with respect to cosets

modulo p and gather the cosets that are equivalent up to multiplication by
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a unit in Zp.

Z(s, s̃) =
∑

a∈F2
pr0

∫
pZp×(a+pZ2

p)
|X|s̃

∏
κ∈[1,k]

|σ2κ ∪Xσ2κ−2|s

|σ2κ|s
dµ

= (p− 1)
∑

a∈P1(Fp)

∫
pZp×(a+pZ2

p)
|X|s̃

∏
κ∈[1,k]

|σ2κ ∪Xσ2κ−2|s

|σ2κ|s
dµ

= (p− 1)
∑

a∈P1(Fp)

∫
pZp×(a+pZ2

p)
|X|s̃

∏
i∈[1,m]

|Pfi(Y1, Y2), X|sdµ.

Here we identify P1(Fp) with the following set of representatives of the ho-

mothety classes: {(a1, 1) | a1 ∈ Fp} ∪ {(1, 0)} and denote by a + pZ2
p the

coset of pZ2
p in which all elements are congruent to a modulo p.

Z(s, s̃) = (p− 1)

 ∑
a=(a1:1)∈P1(Fp)

∫
pZp×(a1+pZp)

|X|s̃
∏

i∈[1,m]

|fi(Y1)ei , X|sdµ

+

∫
pZp×((0,1)+pZ2

p)
|X|s̃

∏
i∈[1,m]

|fi(Y1, Y2), X|sdµ



= (p− 1)

 ∑
a=(a1:1)∈P1(Fp)

∫
pZp×(a1+pZp)

|X|s̃
∏

i∈[1,m]

|fi(Y1)ei , X|sdµ

+ p−2 (1− p−1)p−1−s̃

1− p−1−s̃

)
(5.11)

For p a sufficiently large prime, two distinct irreducible polynomials g1

and g2 over Q have distinct roots modulo p. Indeed, for polynomials g1, g2

the resultant Res(g1, g2) is defined as

Res(g1, g2) =
∏

α1,α2∈Q
g1(α1)=0,g2(α2)=0

(α1 − α2).

Note that if g1, g2 are irreducible polynomials then Res(g1, g2) is a rational

number. Therefore, if g1, g2 have a simultaneous root modulo p then the

p-adic valuation vp(Res(g1, g2)) of the resultant Res(g1, g2) is non-zero, but

this can only happen for finitely many primes.
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Suppose that {f1(Y ), . . . , fm(Y )} = {F1(Y ), . . . , F`(Y )}, where the Fi(Y )

are distinct. For a1 ∈ Fp and for p sufficiently large a1 can only be a root

modulo p of one of the ` distinct irreducibles polynomials. Suppose that a1

is a root of Fj for j ∈ [1, `] and let Sj := {i ∈ [1,m] | fi(Y ) = Fj(Y )} then,∫
pZp×(a1+pZp)

|X|t
∏

i∈[1,m]

|fi(Y1)ei , X|sdµ =

∫
pZp×(a1+pZp)

|X|t
∏
i∈Sj

|Fj(Y1)ei , X|sdµ

=

∫
pZp×pZp

|X|t
∏
i∈Sj

|Y ei
1 , X|sdµ.

The second equality follows from the fact that a is a simple root of Fj . If

a ∈ Fp is not a root of any of the Fj then∫
pZp×(a1+pZp)

|X|t
∏

i∈[1,m]

|fi(Y1)ei , X|sdµ = p−1

∫
pZp

|X|tdµ

In either case, the integral is a rational function in p, p−s whose coefficients

do not depend on p. The summands of expression (5.11) are now known

and the multplicity of each summand is given by Fi(Fp).

Corollary 5.14. The representation zeta function of a T2-group G with

centre of Hirsch length 2 is finitely uniform.

Proof. For any T -group G and finite-index subgroup H and for almost all

primes p we have ζ ĩrr
G,p(s) = ζ ĩrr

H,p(s). A T2-group with derived group of Hirsch

length 2 is commensurable to a D?-group. Therefore, it suffices to prove the

statement for a D?-group. Almost all the local factors of the representation

zeta function of G are given by the formula given in the theorem. The

numbers Fi(Fp) are determined by the splitting behaviour of the ideal (p) in

the ring of integers of the splitting field of Fi. Since there are only finitely

many splitting behaviours possible, the result follows.
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Chapter 6

Computations

This chapter presents computations of the representation zeta function of

several (families of) T2-groups. In each computation we give a presentation

of a T2-groupG and, after implicitely choosing a basis for L(G), the structure

matrix RL(G)(Y). All examples in this chapter satisfy the conditions in

Section 2.4 that imply the Theorem 2.9 is valid for all primes p.

Example 6.1. The Heisenberg group. Let H denote the Heisenberg group,

which has presentation 〈x1, x2, y1 | [x1, x2] = y1〉. The fact that r̃n(H) =

φ(n) was first shown in [33, Theorem 5] by direct computation of the twist-

isoclasses. It was later noted in [20] that this implies that

ζ ĩrr
H (s) =

ζ(s− 1)

ζ(s)
. (6.1)

The representation zeta function of H is also calculated using the method

of elementary divisors in [24, Chapter 3, Example 3.4]. The computation

is recorded here for completeness. The structure matrix RL(H)(Y ) of the

associated Lie ring L(H) is as follows:

RL(H)(Y ) =

 0 Y

−Y 0

 .
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Theorem 2.9 implies that

ζ ĩrr
Gn,p(s) =

∑
N∈N
m∈N

NN,mp−s(N−m),

where NN,m = #{b ∈ (Z/pN ) \ p(Z/pN ) | ν(R(Y )) = (m,m)}. It then

follows that

NN,m =


1 if N = m = 0,

(1− p−1)pN if N > 0,m = 0,

0 otherwise.

Therefore,

ζ ĩrr
Gn,p(s) = 1 +

∑
N∈N

(1− p−1)pN(1−s)

= 1 + (1− p−1)
p1−s

1− p1−s =
1− p−s

1− p1−s .

and after taking the Euler product of the local factors, formula (6.1) is

recovered.

Example 6.2. Grenham’s groups. Let Gn denote Grenham’s group given

by the presentation

Gn =

〈
x0, . . . , xn−1

y1, . . . , yn−1

∣∣∣∣[x0, xi] = yi, 1 ≤ i ≤ n
〉
.

The associated structure matrix for L(Gn) is

RL(Gn)(Y) =


0 Y1 . . . Yn−1

−Y1 0 . . . 0
...

...
. . .

...

−Y−1 0 . . . 0

 .

For any b = (b1, . . . , bn−1) ∈ (Z/pN )n−1 \ (Z/pN )n−1 the matrix RL(Gn)(b)

has rank 2. Thus, ν(RL(Gn)(b)) = (m1,m1, N, . . . , N) and by Lemma 2.4,
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m1 = 0 and

ζ ĩrr
Gn,p(s) = 1 +

∑
N∈N

(1− p−(n−1))p(n−1)Np−Ns

= 1 + (1− p−n+1)
p(n−1)−s

1− p(n−1)−s

=
1− p−s

1− p(n−1)−s

By taking the Euler product of the local factors the global zeta function is

ζ ĩrr
Gn

(s) =
ζ(s− n+ 1)

ζ(s)
.

The representation zeta function ζ ĩrr
Gn

(s) converges for <(s) > n and has

meromorphic continuation to the whole complex plane.

Example 6.3. Let Bn denote the T2-group given by the following presen-

tation:

Bn = 〈x1, . . . xn, y1 | [xi, xi+1] = y1, 1 ≤ i ≤ n− 1〉.

It has associated structure matrix

RL(Bn)(Y ) =



0 Y 0

−Y 0 Y

0 −Y 0

. . .

0 Y

−Y 0


.

For b ∈ Z/pN \ p(Z/pN ) and n = 2f or 2f + 1 the matrix RL(Bn)(b) has

rank 2f . If n = 2f then ν(RL(Bn)(b)) = (0, . . . , 0︸ ︷︷ ︸
2f

) and if n = 2f + 1

then ν(RL(Bn)(b)) = (0, . . . , 0︸ ︷︷ ︸
2f

, N). In either case, the local factors of the

representation zeta function are the same.

ζ ĩrr
Bn,p(s) = 1 +

∑
N∈N

(1− p−1)pNp−fNs

= 1 + (1− p−1)
p1−fs

1− p1−fs =
1− p−fs

1− p1−fs .
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By taking the Euler product of the local factors the global zeta function is

ζ ĩrr
Bn

(s) =
ζ(fs− 1)

ζ(fs)
.

The representation zeta function ζ ĩrr
Bn

(s) converges for <(s) > 2/f and has

meromorphic continuation to the whole complex plane.

Lemma 6.4. For m,n, a, b ∈ N and writing t = p−s,

A(s) :=
∑
N1∈N
N2∈N

pmN1+nN2p−s(aN1+bN2−min{N1,N2})

=
pm+nta+b−1(1− pm+nta+b)

(1− pmta)(1− pntb)(1− pm+nta+b−1)
. (6.2)

Proof. In order to resolve the minimum on the left hand side of equation

(6.2) divide the domain of summation into three parts:

(i) N1 > N2,

(ii) N1 = N2,

(iii) N1 < N2.

Case (i): For D ∈ N substitute N1 = N2 + D into the left hand side of

equation (6.2).

A(s)|(i) =
∑
N2∈N
D∈N

p(m+n)N2+mDp−s((a+b−1)N2+aD) =
pm+nta+b−1

1− pm+nta+b−1
· pmta

1− pmta
.

Case (ii): If N1 = N2 then

A(s)|(ii) =
∑
N∈N

p(m+n)Np−s(a+b−1)N =
pm+nta+b−1

1− pm+nta+b−1
.

Case (iii): By symmetry with case (i),

A(s)|(iii) =
pm+nta+b−1

1− pm+nta+b−1
· pntb

1− pntb
.

The result is obtained by summing the three cases and some algebraic ma-

nipulation.
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Example 6.5. Let G be the T2-group with the presentation

G =

〈
x1, . . . x4 [x1, x2] = y1, [x1, x4] = y2

y1, y2 [x2, x3] = y2

〉

and associated structure matrix

RL(G)(Y) =


0 Y1 0 Y2

−Y1 0 Y2 0

0 −Y2 0 0

−Y2 0 0 0


For b ∈ (Z/pN )2\p(Z/pN )2 the elementary divisors ofRL(G)(b) depend only

on vp(b2). The strategy employed is to divide the domain of summation into

pieces where the elementary divisors of RL(G)(b) are constant. By formula

(2.8)

ζ ĩrr
G,p(s) = 1 +

∑
N∈N

0≤m≤N

NN,mp−s(2N−m), (6.3)

where NN,m = #{b ∈ (Z/pN )2 \ p(Z/pN )2 | ν(RL(G)(b)) = (0, 0,m,m)}.

The determinant det(RL(G)(Y)) = Y 4
2 and so ν(RL(G)(b)) = (0, 0,m,m),

where m = min{2vp(b2), N}. Writing N2 := vp(b2) equation (6.3) becomes

ζ ĩrr
G,p(s) = 1 +

∑
N∈N

0≤N2≤N

NN,N2p
−s(2N−min{2N2,N}), (6.4)

where NN,N2 = #{b ∈ (Z/pN )2 \ p(Z/pN )2 | vp(b2) = N2}. The summand

of equation (6.4) is split into three cases in order to resolve the minimum.

(i) N2 = 0,

(ii) 0 < N2 < N ,

(iii) N2 = N .
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Case(i): For N ∈ N and N2 = 0, NN,0 = (1− p−1)p2N and so∑
N∈N
N2=0

NN,N2p
−s(2N−min{2N2,N}) =

∑
N∈N

(1− p−1)p2Np−2Ns

= (1− p−1)
p2−2s

1− p2−2s
.

Case (ii): Write N = N2 + D, where D ∈ N. In this case NN,N2 = (1 −

p−1)2p2N−N2 and∑
N∈N

0<N2<N

NN,N2p
−s(2N−min{2N2,N}) =

∑
N2∈N
D∈N

(1− p−1)2pN2+2Dp−s(N2+2D−min{N2,D})

= (1− p−1)2 p3t2(1− p3t3)

(1− pt)(1− p2t2)(1− p3t2)
,

by Lemma 6.4.

Case (iii): If N2 = N , then NN,N2 = (1− p−1)pN and∑
N∈N
N2=N

NN,N2p
−s(2N−min{2N2,N}) =

∑
N∈N

(1− p−1)pNp−Ns

= (1− p−1)
pt

(1− pt)
.

Therfore, the local factor of the representation zeta

ζ ĩrr
G,p(s) =

(1− t)(1− p2t2)

(1− pt)(1− p3t2)

and the global zeta function

ζ ĩrr
G (s) =

ζ(s− 1)ζ(2s− 3)

ζ(s)ζ(2s− 2)
.

The zeta function ζ ĩrr
G (s) converges for <(s) > 2 and has meromorphic con-

tinuation to the whole of C. The continued function has a double pole

at s = 2.

Example 6.6. Class-2-nilpotent quotients of Ud(Z). Let Tn denote the

maximal class-2-nilpotent quotient of the (upper) unitriangular n×n matrix

group over Z. The T2-group Tn has presentation

Tn = 〈x1, . . . xn, y1, . . . , yn−1 | [xi, xi+1] = yi, 1 ≤ i ≤ n− 1〉
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and associated structure matrix

RL(Tn)(Y) =



0 Y1 0

−Y1 0 Y2

0 −Y2 0

. . .

0 Yn−1

−Yn−1 0


.

Note that, T2 = H, the Heisenberg group and T3
∼= G3, Grenham’s group.

The first group of the form Tn that is not treated above is T4. The deter-

minant det(RL(T4)(Y)) = Y 2
1 Y

2
3 implies that for b ∈ (Z/pN )3 \ p(Z/pN )3

the elementary divisor type ν(RL(T4)(Y)) = (0, 0,m,m) only depends the

p-adic valuations of b1 and b3. Writing N1 = vp(b1) and N3 = vp(b3), we

obtain

ζ ĩrr
T4,p(s) = 1 +

∑
N∈N

0≤N1≤N, 0≤N3≤N

NN,(N1,N3)p
−s(2N−min{N1+N3,N}), (6.5)

whereNN,(N1,N3) := #{b ∈ (Z/pN )3\p(Z/pN )3 | vp(b1) = N1, vp(b3) = N3}.

The minimum in equation (6.5) can be resolved by breaking the sum up

with respect to the values of N1 and N3. Initially, the sum is expanded as

9 cases. However, due to the symmetry in expression (6.5) the 9 cases can

immediately be reduced to 6 cases. These cases are summarised in the table

below.

N1 = 0 0 < N1 < N N1 = N

N3 = 0 (a) (b) (c)

0 < N3 < N (b) (d) (e)

N3 = N (c) (e) (f)

In all cases except (d), the minimum is resolved and the computation

of the summation is reduced to calculating NN,(N1,N3) and expressing the

81



resulting sum in terms of geometric series. In case (d) a further case dis-

tinction is required.

Case (a): If N1 = N3 = 0, then NN,(N1,N3) = (1− p−1)2p3N and

∑
N∈N

N1=N3=0

NN,(N1,N3)p
−s(2N−min{N1+N3,N}) =

∑
N∈N

(1− p−1)2p3Np−2Ns

= (1− p−1)2 p3t2

1− p3t2
.

Case (b): If 0 < N1 < N and N3 = 0, then NN,(N1,N3) = (1 −

p−1)2p3N−N1 . Writing N = N1 +D,

∑
N∈N

0<N1<N, N3=0

NN,(N1,N3)p
−s(2N−min{N1+N3,N}) =

∑
N1,D∈N

(1− p−1)2p2N1+3Dp−s(N3+2D)

= (1− p−1)2 p2t

1− p2t
· p3t2

1− p3t2
.

Case (c): If N1 = N and N3 = 0, then NN,(N1,N3) = (1− p−1)p2N and

∑
N∈N

N1=N, N3=0

NN,(N1,N3)p
−s(2N−min{N1+N3,N}) =

∑
N∈N

(1− p−1)p2Np−Ns

= (1− p−1)
p2t

1− p2t
.

Case (d): If 0 < N1, N3 < N , then NN,(N1,N3) = (1− p−1)3p3N−N1−N3 ,

∑
N∈N

0<N1<N3<N

NN,(N1,N3)p
−s(2N−min{N1+N3,N})

=
∑
N∈N

0<N1<N3<N

(1− p−1)3p3N−N1−N3p−s(2N−min{N1+N3,N})

and the minimum is not resolved. Case (d) is further subdivided into the

following three cases:

(i) N1 < N3,

(ii) N1 = N3,
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(iii) N1 > N3.

Due to the symmetry of (6.5) the summations of cases (i) and (iii) is equal.

Case (i): Write N3 = N1 +D and N = N1 +D+D′, where D,D′ ∈ N, then

∑
N∈N

0<N1<N3<N

(1− p−1)3p3N−N1−N3p−s(2N−min{N1+N3,N})

=
∑

N,D,D′∈N

(1− p−1)3pN1+2D+3D′p−s(N1+D+2D′−min{N3,D′})

= (1− p−1)3 p2t

1− p2t

∑
N,D′∈N

pN1+3D′p−s(N1+2D′−min{N3,D′}).

(6.6)

The minimum is still unresolved, but the final sum of expression (6.6) is of

the form described in Lemma 6.4. By applying this lemma the final formula

for case (i) is obtained as

(1− p−1)3p6t3(1− p4t3)

(1− pt)(1− p2t)(1− p3t2)(1− p4t2)
.

Case (ii): Write N = N1 +D. Then by utilising Lemma 6.4

∑
N∈N

0<N1=N3<N

(1− p−1)3p3N−N1−N3p−s(2N−min{N1+N3,N})

=
∑

N1,D∈N
(1− p−1)3pN1+3Dp−s(N1+2D−min{N1,D})

=
(1− p−1)3p4t2(1− p4t3)

(1− pt)(1− p3t2)(1− p4t2)
.

Case (e): If N1 = N and 0 < N3 < N , then NN,(N1,N3) = (1 −
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p−1)2p2N−N3 . Write N = N3 +D, where D ∈ N, then∑
N∈N

N1=N, 0<N3<0

NN,(N1,N3)p
−s(2N−min{N1+N3,N})

=
∑

N,D∈N
(1− p−1)2pN3+2Dp−s(N3+D)

=
∑
N∈N

(1− p−1)p2N−N3p−Ns

= (1− p−1)2 p3t2

(1− pt)(1− p2t)
.

Case (f): If N1 = N3 = N , then NN,(N1,N3) = (1− p−1)pN and∑
N∈N

N1=N3=N

NN,(N1,N3)p
−s(2N−min{N1+N3,N}) =

∑
N∈N

(1− p−1)pnp−Ns

= (1− p−1)
pt

1− pt
.

The local factor of the representation zeta function for T4 is obtained by

summing all the cases with appropriate multiplicity.

ζ ĩrr
T4,p(s) =

(1− t)(1− pt)
(1− p2t)2

.

The global representation zeta function therefore

ζ ĩrr
T4 (s) =

ζ(s− 2)2

ζ(s)ζ(s− 1)
,

converges for <(s) > 3 and has meromorphic continuation to the whole

complex plane. The continued function has a double pole at s = 3.

The author has computed the representation zeta function ζ ĩrr
T5

(s) for T5.

The computation is very long and is similar in flavour to the calculation

for T4. The formula is

ζ ĩrr
T5 (s) =

ζ(s− 2)3

ζ(s)ζ(s− 1)2
.

Remark 6.7. For n ∈ [2, 5],

ζ ĩrr
Tn(s) =

ζ(s− 1)ζ(s− 2)n−2

ζ(s)ζ(s− 1)n−2
.

It is interesting to ask whether this formula is valid for all n ≥ 2.

84



Chapter 7

Zeta functions of

2-dimensional rings

This chapter contains ideas similar, but different, to the material in the rest

of this thesis. We discuss the zeta functions enumerating subrings and ideals

of 2-dimensional rings.

For the purposes of this chapter a ring R is always additively isomorphic

to Zd, for some d ∈ N, and equipped by a bi-additive product. Note that

this product is not necessarily associative. If R is additively isomorphic to

Zd then R is said to be d-dimensional.

Definition 7.1. For Ξ a class of sub-objects of a ring R, the Ξ zeta function

of R is the Dirichlet generating function

ζΞ
R(s) =

∑
H∈Ξ

|R : H|−s,

where the sum ranges over all finite index subobjects in the class Ξ and s is

a complex variable.

We explore the enumeration of four particular classes of sub-objects.

Namely, subrings, left-, right- and two-sided ideals.
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Remark 7.2. In general these classes yield four Dirichlet generating func-

tions. If R is (anti-)commutative then the three types of ideal coincide.

Let R be a ring that is additively isomorphic to Zd. Fix a Z-basis

y = (y1, . . . , yd) of R. Each product yiyj is a linear combination of the

basis elements. That is, for all i, j, k ∈ [1, d], there exist λkij ∈ Z such that

yiyj =
∑d

k=1 λ
k
ijyk.

Let RR(Y) ∈ Matd(Z[Y1, . . . , Yd]) be the matrix of linear forms whose

ij-entry is
∑d

k=1 λ
k
ijYk. Then RR(Y) is the structure matrix of R with

respect to the chosen basis. Once a basis is chosen we refer to RR(Y) as the

structure matrix of R. The structure matrix is determined, with respect to

the chosen basis, by the multiplication of R. Conversely, if we write down

any d× d matrix of linear forms of Z[Y1, . . . , Yd] this determines a ring R by

extending the multiplication linearly.

7.1 Localisation

In this section we localise the problem of counting subobjects and give cri-

teria for an additive subgroup of finite index to be a ring or ideal.

The ring R is a Z-algebra and so, for any prime p, we can consider the

tensor product Rp := R⊗Zp. Then Rp is a Zp-algebra whose multiplication

is obtained by linearly extending that of R. We define the Ξ zeta function

of Rp to be the Dirichlet generating function ζΞ
Rp

(s) enumerating the finite

index sub-objects in the class Ξ.

Proposition 7.3. [16, Section 3] Let R be a ring. If Ξ is the class of

subrings, left-, right- or two-sided ideals, then ζΞ
R(s) has the following Euler

product.

ζΞ
R(s) =

∏
p

ζΞ
Rp

(s), (7.1)

where the product is taken over all primes.

86



The zeta function ζΞ
Rp

(s) is the p-local factor of the the global zeta func-

tion ζΞ
R(s). We now present an enumeration of all finite-index subgroups of

Rp, which is additively isomorphic to Zdp.

Remark 7.4. In this chapter we consider global rings R and their localisa-

tion Rp, but all the results concerning Rp are valid for general Zp-algebras,

not only those that occur as the localisation of a Z-algebra.

We follow [38, Section 3]. Every subring or ideal is a subgroup of the

underlying abelian group. Once we have provided an enumeration of all

finite-index subgroups we present criteria for a subgroup to be a subring,

left-, right- or two-sided ideal.

Write Rp = Zpe1 ⊕ · · · ⊕ Zped. Let M ∈ GLd(Qp) ∩Matd(Zp), the set

of d × d matrices of over Zp with non-zero determinant. We identify M

with the sublattice of Rp generated by the elements whose coordinates with

respect to (e1, . . . , ed) are encoded in the rows of M . The index of the

subgroup is equal to the determinant of M . The left-action of Γ := GLd(Zp)

on Matd(Zp), by left multiplication, corresponds to row operations, which

means that any element of the coset ΓM corresponds to the same subgroup

of Rp. Conversely, if we fix a finite-index subgroup then every matrix with

which it identifies is an element of the coset ΓM .

We have established a one-to-one correspondence between the finite-

index subgroups of Rp and the right cosets of Γ. By the elementary divisor

theorem each coset ΓM contains a representative of the form Dα−1, where

α ∈ Γ and D = diag(pr0+···+rd−1 , . . . , pr0) = diag(D1, . . . , Dd) is a diagonal

matrix with ri ∈ N0 for i ∈ [1, d].

Proposition 7.5. [38, Section 3] Let Rp be a ring with structure matrix

RR(y). A sublattice of Rp corresponding to a right coset ΓDα−1 is a subal-

gebra of Rp if and only if the following congruences hold:

∀i ∈ [1, d] : Dα−1RR(α[i])(α−1)TD ≡ 0 mod Di, (SUB)
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where α[i] denotes the ith column of α.

We generalise Proposition 7.5 to right-, left- and two-sided ideals.

Proposition 7.6. Let Rp be a ring with structure matrix RR(y). A sublat-

tice of Rp corresponding to a right coset ΓDα−1 is a right-ideal of Rp if and

only if the following congruences hold:

∀i ∈ [1, d] : Dα−1RR(α[i]) ≡ 0 mod Di. (R-IDEAL)

Proof. Let Λ be a finite-index subgroup of Rp. Then Λ is a right ideal if and

only if ΛRp ⊆ Λ. Let C(j) : R → R, x 7→ xej be the matrix corresponding

to right multiplication by the jth basis element with respect to the chosen

basis. Consider elements of Rp as row vectors. Recall M = Dα−1 and

denote by Mi the ith row of the matrix M . Mi corresponds to a generator

of the subgroup corresponding to M . Then M is a right-ideal if and only if

∀i, j ∈ [1, d] : MiC(j) ∈ ZdpM

⇔ ∀i, j ∈ [1, d] : MiC(j)α ∈ ZdpD

⇔ ∀i, j, k ∈ [1, d] : Dk|(MiC(j)α)[k]

For all k ∈ [1, d] we have (C(1)[k]) . . . C(d)[k]) = RR(α[k]). By writing M

instead of Mi and collecting the C(j) using the previous identity we arrive

at the result.

Proposition 7.7. Let Rp be a ring with structure matrix RR(y). A sublat-

tice of Rp corresponding to a right coset ΓDα−1 is a left-ideal of Rp if and

only if the following congruences hold:

∀i ∈ [1, d] : RR(α[i])(α−1)TD ≡ 0 mod Di. (L-IDEAL)

The proof of Proposition 7.7 is very similar to the proof of Proposition

7.6.
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Proposition 7.8. Let Rp be a ring with structure matrix RR(y). A sublat-

tice of Rp corresponding a right coset ΓDα−1 is a two-sided ideal of Rp if

and only if the following congruences hold:

∀i ∈ [1, d] :

 Dα−1RR(α[i]) ≡ 0 mod Di,

RR(α[i])(α−1)TD ≡ 0 mod Di.
(IDEAL)

Proof. By definition, an ideal is two-sided if it is simultaneously a right- and

left-ideal. The congruences in (IDEAL) are simply the conjunction of the

congruences in (R-IDEAL) and (L-IDEAL).

7.2 Formulae for local zeta functions

We want to determine whether or not a given finite-index subgroup is a

subring or an ideal. In general, given a finite-index subgroup, the criteria

given in Propositions 7.5-7.8 reduce this question to verifying a number of

congruences.

In [25] Klopsch and Voll consider the subrings of 3-dimensional Zp-Lie

algebras. In this case the combination of the small dimension and the anti-

commutivity of the multiplication of a Zp-Lie algebra mean that all but one

of the congruences of (SUB) are satisfied for all finite-index subgroups.

They deduce a formula for the subring zeta function in terms of Igusa’s

local zeta function associated with a single ternary quadratic form. We use

similar methods but focus on 2-dimensional Zp-algebras (with no restriction

on the multiplication).

We write ζ≤Rp
(s) for the zeta function enumerating all finite-index sub-

rings of Rp and recall our convention that t = p−s.

Theorem 7.9. Let R be a 2-dimensional ring with structure constants λkij

for i, j, k ∈ {1, 2} with respect to a chosen Z-basis. Then

ζ≤Rp
(s) =

1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF (s− 1),

89



where F (x1, x2) ∈ Z[x1, x2] is a cubic binary form given by

F (x1, x2) = λ1
22x

3
1 + (λ2

22 − λ1
12 − λ1

21)x2
1x2 + (λ1

11 − λ2
12 − λ2

21)x1x
2
2 + λ1

22x
3
2.

Proof. For D = diag(pr1+r0 , pr0) and α ∈ GL2(Zp), consider the coset

ΓDα−1 of Γ = GL2(Zp). We want to check if the finite-index subgroup

Λ corresponding to ΓDα−1 is a subring. In the case of 2-dimensional rings

the set of congruences labelled (SUB) in Proposition 7.5 consists of eight

congruences. By writing the congruences out, one notices that seven of

the eight are automatically satisfied for all finite-index subgroups. In fact,

(SUB) reduces to verifying the single congruence

pr0F (α11, α21) ≡ 0 mod pr1 ,

where F (x1, x2) is as in the statement of the proposition.

The matrix α is determined only up to right multiplication by elements

of the stabilizer StabΓ(ΓD). For a fixed r1 we can describe StabΓ(ΓD)

precisely.

StabΓ(ΓD) =

 Z?p Zp

pr1Zp Z?p

 .

This means the first column of α is determined modulo pr1 by Λ. In ad-

dition, α must have non-zero determinant and so the pairs (α11, α21) that

correspond to unique sublattices are in bijection with the points of the finite

projective space P1(Z/pr1). Therefore,

ζ≤Rp
(s) =

∞∑
r0=0

∞∑
r1=0

M#
r0,r1t

2r0+r1 ,

whereM#
r0,r1 := #{x ∈ P1(Z/pr1) | vp(Fr0)(x) ≥ r1} and Fr0(x) = pr0F (x1, x2).

In the case r1 > 0, defineM?
r0,r1 := #{x ∈ (Z/pr1)2rp(Z/pr1)2 | vp(Fr0)(x) =

0}. It is clear that

M#
r0,r1 =

 (1− p−1)−1p−r1M?
r0,r1 if r1 6= 0,

1 if r1 = 0.
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Thus

ζ≤Rp
(s) =

∞∑
r0=0

(
t2r0 +

∞∑
r1=1

M?
r0,r1

(1− p−1)pr1
t2r0+r1

)
by direct substitution. Using identities (3.10) and (3.15) we obtain:

ζ≤Rp
(s) =

∞∑
r0=0

(
t2r0 +

t2r0

1− p−1

(
P?Fr0

(pt)− 1
))

=

∞∑
r0=0

(
t2r0 +

t2r0

1− p−1

(
1− p−1t− ptZ?Fr0

(s− 1)

1− pt
− 1

))

=
1

1− t2
+

pt− p−1t

(1− p−1)(1− t2)(1− pt)

− pt

(1− p−1)(1− pt)

∞∑
r0=1

t2r0 Z?Fr0
(s− 1)

For the final step, we use identity (3.9) and note that Zpr0F (s) = tr0 ZF (s).

ζ≤Rp
(s) =

1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF (s− 1),

Now let Ξ be the class of all finite-index right ideals. We define the

right-ideal zeta function as

ζ�r
Rp

(s) :=
∑
H∈Ξ

|R : H|−s.

Theorem 7.10. Let R be a 2-dimensional ring with structure constants λkij

for i, j, k ∈ {1, 2} with respect to a chosen Z-basis. Then

ζ�r
Rp

(s) =
1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF(s− 1),

where F � Z[x1, x2] is the ideal generated by the polynomials f1(x1, x2),

f2(x1, x2)∈ Z[x1, x2] given by

f1(x1, x2) = λ1
21x

2
1 + (λ2

21 − λ1
11)x1x2 − λ2

11x
2
2,

f2(x1, x2) = λ1
22x

2
1 + (λ2

22 − λ1
12)x1x2 − λ2

12x
2
2.
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Proof. By Proposition 7.6 a finite-index subgroup Λ is a right ideal if the

congruences (R-IDEAL) are satisfied by the matrix Dα−1 corresponding

to Λ. Since R is 2-dimensional, we see that there are eight congruences in

(R-IDEAL) and that six of them are satisfied automatically. Suppose that

a finite-index subgroup corresponds to the matrix Dα−1. Then Λ is a right

ideal if the following two congruences hold:

f1(α11, α21) ≡ 0 mod pr1 ,

f2(α11, α21) ≡ 0 mod pr1 .

Similarly to the proof of Theorem 7.9 it follows that

ζ�r
Rp

(s) =
∞∑
r0=0

∞∑
r1=0

M#
r1 t

2r0+r1 ,

where M#
r1 := #{x ∈ P(Z/pr1) | min{vp(f1(x), vp(f2(x)} ≥ r1}. Since M#

r1

does not depend on r0 we can separate the sums and obtain

ζ�r
Rp

(s) =
1

1− t2
∞∑
r1=0

M#
r1 t

r1 .

For r1 > 0 we define M?
r1 := #{x ∈ (Z/pr1)2 r p(Z/pr1)2 | f1(x) = f2(x) =

0}. We have

M#
r1 =

 (1− p−1)−1p−r1M?
r1 if r1 6= 0,

1 if r1 = 0.

Therefore

ζ�r
Rp

(s) =
1

1− t2

(
1 +

1

1− p−1

∞∑
r1=1

M?
r1(p−1t)r1

)
.
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The final formula results from using of identities (3.10), (3.15), (3.9).

ζ�r
Rp

(s) =
1

1− t2

(
1 +

1

1− p−1
(P?F−1)

)
=

1

1− t2

(
1 +

1

1− p−1
(P?F(pt)− 1)

)
=

1

1− t2

(
1 +

1

1− p−1

(
1− p−1t− ptZ?F(s− 1)

1− pt
− 1

))
=

1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)(1− t2)
Z?F(s− 1)

=
1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF(s− 1).

Now let Ξ be the class of all finite-index left ideals. We define the left-

ideal zeta function as

ζ�`
Rp

(s) :=
∑
H∈Ξ

|R : H|−s.

Theorem 7.11. Let R be a 2-dimensional ring, with structure constants λkij

for i, j, k ∈ {1, 2} with respect to a chosen Z-basis. Then

ζ�`
Rp

(s) =
1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZG(s− 1),

where G � Z[x1, x2] is the ideal generated by the polynomials g1(x1, x2),

g2(x1, x2)∈ Z[x1, x2] given by

g1(x1, x2) = λ1
12x

2
1 + (λ2

12 − λ1
11)x1x2 − λ2

11x
2
2,

g2(x1, x2) = λ1
22x

2
1 + (λ2

22 − λ1
21)x1x2 − λ2

21x
2
2.

The proof of Theorem 7.11 is very similar to the proof of Theorem 7.10.

Finally, we write ζ�Rp
(s) for the zeta function enumerating two-sided ideals.

Theorem 7.12. Let R be a 2-dimensional ring, by fixing a basis we de-

termine a structure matrix RR(y) and structure constants λkij for i, j, k ∈

{1, 2}. Then

ζ�Rp
(s) =

1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF+G(s− 1),
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where F,G � Z[x1, x2] are the ideals defined in Theorems 7.10 and 7.11

respectively.

Proof. By Proposition 7.8 a finite-index subgroup is a two-sided ideal if the

corresponding matrix Dα−1 satisfies (IDEAL), which for a 2-dimensional

ring consists of sixteen congruences. However, we notice that twelve of the

congruences are satisfied automatically. The remaining four congruences are

f1(α11, α21) ≡ 0 mod pr1 ,

f2(α11, α21) ≡ 0 mod pr1 ,

g1(α11, α21) ≡ 0 mod pr1 ,

g2(α11, α21) ≡ 0 mod pr1 ,

where f1, f2, g1, g2 are the polynomials defined in Theorems 7.10 and 7.11.

The remainder of the proof is very similar to the proof of Theorem 7.10.

In the case where the ring R is (anti-)commutative the left-, right- and

two-sided ideal zeta function are equal. In this case we denote the single

ideal zeta function by ζ�Rp
(s).

7.3 Pole spectra

In Section 7.2 we showed that the p-local subring and ideal zeta functions of

a 2-dimensional ring can be expressed in terms of Igusa’s local zeta function

associated with a polynomial or ideal given by the structure constants. In

this section we use the formulae presented in Theorems (7.9)-(7.12) to exam-

ine the local and global pole spectra for the various zeta functions associated

with a 2-dimensional ring.

We are interested in the poles of zeta functions because they give us

information about the growth of the sequence encoded in the Dirichlet series.

In particular, the pole with largest real part controls the rate of polynomial

growth.
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The pole spectrum of a class of rings X is the set S of real numbers

such that if R ∈ X and ζΞ
R(s) has leading pole on the real line at s = α,

then s ∈ S. Conversely, if α ∈ S, then there exists R ∈ X such ζΞ
R(s) has

leading pole at s = α. Recall that, by Theorem [10, Theorem 1.1], the zeta

functions of rings all have meromorphic continuation beyond the abscissa of

convergence, so that the pole spectrum of any class of rings is non-empty.

The local pole spectrum is defined analogously.

In practice we may not be able to calculate the subring (or ideal) zeta

function of given ring R. However, we might be able to provide a superset

for its pole spectrum. Of course, the pole spectrum for the class of all rings

is a natural superset for the pole spectrum of a given ring. In this section

we give supersets for the subring and idea pole spectrum of 2-dimensional

rings.

Before we can describe the pole spectra we need to introduce some no-

tation and recall some well known facts. For a prime p the p-local factor of

the Riemann zeta function ζp(s) is defined as

ζp(s) =
1

1− t
.

The p-local factor of the Riemann zeta function converges for Re(s) > 0, has

meromorphic continuation to the whole complex and the extended function

has a simple pole at s = 0. The Riemann zeta function ζ(s) is the Euler

product of the p-local factors:

ζ(s) =
∏
p

ζp(s).

The Riemann zeta function converges for Re(s) > 1, has meromorphic con-

tinuation to the whole complex plane and the extended function has a simple

pole at s = 1.

The main result of [16] implies that the local factors of the subring, left-,

right- and two-sided zeta functions are rational functions. Furthermore, in

[10] it is shown that they have the following form.

95



For a ring R, a prime p and ? ∈ {≤,�r,�`,�} we have

ζ?Rp
(s) =

Ψp.1(p, t)

Ψp,2(p, t)
,

where Ψp,1(X,Y ),Ψp,2(X,Y ) ∈ Z[X,Y ] are polynomials and

Ψp,2(X,Y ) =
∏
i∈Ip

(1− pAp,itBp,i),

where Ap,i, Bp,i ∈ N0 and Ip is a finite indexing set. It follows that the

location of the real part of any poles in an element of the set {Ap,i/Bp,i |

i ∈ I}. It is also shown in [10] that the location of the leading pole is

maxp prime
i∈Ip

{Ap,i+1
Bp,i

}.

Therefore, from knowledge of all possible pairs (Ap,i, Bp,i) we know the

possible local and global pole spectra. The set of all such pairs is called the

pole location data.

Theorem 7.13. For the class of all 2-dimensional rings:

(1) The pole spectra of the local subring zeta function is {0, 1/3, 1/2, 2/3, 1}.

The pole spectra for the leading pole of the global subring zeta functions is

{2/3, 1, 2}.

(2) The pole spectra of either the local left-, right- or two-sided ideal zeta

function is {0, 1/2, 1}. The pole spectra for the leading pole of the either the

global left-, right- or two-sided ideal zeta functions is {1/2, 1, 2}.

Proof. For all primes p and ? ∈ {≤,�r,�`,�} and any 2-dimensional ring

R, there exist an ideal F � Z[x1, x2] such that

ζ?Rp
(s) =

1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF(s− 1)

The ideal F depends on ? and R and is described explicitly in Theorems

7.9-7.12, but it is generated by a single cubic polynomial if ? =≤ or a set of

quadratic polynomials if ? ∈ {�r,�`,�}. In either case, we see immediately

that (0, 1) and (1, 1) are part of the pole location data.
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Our analysis is complete if we understand the pole location data for

ZF(s−1). Note that if (A,B) is part of the pole for ZF(s), then (A+B,B) is

part of the pole data for ZF(s−1). We complete our analysis by determining

the pole data for ZF(s) when F�Z[x1, x2] is a homogeneous ideal of degree

n = 2 for the ideal case and degree n = 3 for the subring case. By identity

(3.9)

ZF(s) =
1

1− p−2tn
Z?F(s).

Therefore, (-2, n) is in the pole location data for ZF(s) which implies (1, 3)

is part of the pole location data for ζ≤Rp
(s) and (0, 2) is part of the pole

location data for ζ?Rp
(s), where ? ∈ {�r,�`,�}. Now, Z?F(s) has a pole if

and only if every element of F has a simultaneous root in Z2
p r pZ2

p. The

elements of F can have only finitely many distinct simultaneous solutions.

Pick m ∈ N sufficiently large such that the distinct solutions are not equal

modulo pm and consider the coset decomposition

Z?F(s) =
∑

a∈(Z/pm)2rp(Z/pm)2

∫
x∈(Z2

prp(Zp)2

x≡a mod pm

||F(x)||sdµ

︸ ︷︷ ︸
=:ZF,a(s)

.

If a = (a1, a2) is not congruent to one of the solutions then ZF,a(s) is a

polynomial in t and therefore cannot contribute a pole. Now suppose that a

is congruent to one of the roots. The denominator of ZF,a(s) only depends

on the order of the root. Denote the order of the root by k. The denominator

of ZF,a(s) is 1 − p−1−ks which means that (−1, k) for 1 ≤ k ≤ n are part

of the possible pole data for ZF(s) which implies that (0, 1), (1, 2) and (2, 3)

are added to the pole location data for ζ≤Rp
(s) and (0, 1), (1, 2) are added to

the pole location data for ζ?Rp
(s), where ? ∈ {�r,�`,�}.

We have provided a superset for the the pole spectra for the class of

2-dimensional rings. The proof is completed by showing that each of the

possible poles is actually exhibited by a zeta function associated to a 2-

dimensional ring. Each possible pole location data is exhibited in the exam-
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ples computed in Section 7.4.

7.4 Examples

In this section we use the results of Section 7.2 to compute the subring

and ideal zeta functions for several rings. In each case the calculation is

reduced to computing Igusa’s local zeta function associated to an ideal that

is generated by polynomials whose coefficients are given in terms of the

structure matrix of the ring.

To calculate Igusa’s local zeta function we use the tools and examples

presented in Section 3.3. Throughout this section let F (x1, x2) be as defined

in Theorem 7.9, F, f1(x1, x2), f2(x1, x2) be as defined in Theorem 7.10 and

G, g1(x1, x2), g2(x1, x2) be as defined in Theorem 7.11. Recall that ζ(s)

denotes the Riemann zeta function.

Example 7.14. Let R be additively isomorphic to Z2 and equipped with

component-wise multiplication. If we choose the basis {(1, 0), (0, 1)}, then

RR(Y) =

Y1 0

0 Y2

 .

The ringR is commutative, and so has only one ideal zeta function associated

with it. In this case F (x1, x2) = x1x2(x1+x2) and F = 〈f1(x1, x2), f2(x1, x2)〉 =

〈−x1x2, x1x2〉.

Proposition 7.15. For R = Z2, equipped with component-wise multiplica-

tion, we have

ζ≤R (s) =
ζ(s)3ζ(3s− 1)

ζ(2s)2
(7.2)

ζ�R (s) = ζ(s)2. (7.3)

Proof. We first calculate the subring zeta function. By Theorem 7.9

ζ≤Rp
(s) =

1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF (s− 1),
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where F (x1, x2) = x1x2(x1 + x2). It suffices to compute

ZF (s) =

∫
Z2
p

|x1x2(x1 + x2)|sdµ.

First note that ZF (s) = 1
1−p−2−3s Z?F (s). We compute Z?F (s) by first decom-

posing the integral over the p2 − 1 cosets of p(Zp)2.

Z?F (s) =
∑

a∈F2
pr{0}

∫
x∈Z2

prp(Z2
p)

x≡a mod p

|x1x2(x1 + x2)|sdµ

︸ ︷︷ ︸
=:Ia(s)

We compute the integrals Ia(s) in cases. If vp(a1) 6= 0, then vp(a2) = 0 and

Ia(s) =

∫
x∈Z2

prp(Z2
p)

x≡(0,a2) mod p

|x1x2(x1 + x2)|sdµ =

∫
x2∈pZp

|x2|sdµ =
(1− p−1)p−1−s

1− p−1−s .

If vp(a2) 6= 0, then vp(a1) = 0 and

Ia(s) =

∫
x∈Z2

prp(Z2
p)

x≡(a1,0) mod p

|x1x2(x1 + x2)|sdµ =

∫
x1∈pZp

|x1|sdµ =
(1− p−1)p−1−s

1− p−1−s .

If vp(a1) = vp(a2) = 0, then

Ia(s) =

∫
x∈Z2

prp(Z2
p)

x≡(a1,a2) mod p

|x1 + x2|sdµ.

Further, if a1 6≡ −a2 mod p, then |a1 + a2| = 1 and Ia(s) = p−2. However, if

a1 ≡ −a2 mod p, then, by performing a linear change of variables, we have

Ia(s) =

∫
x∈Z2

prp(Z2
p)

x≡(a1,−a1) mod p

|x1 + x2|sdµ =

∫
x1∈pZp

|x1|sdµ =
(1− p−1)p−1−s

1− p−1−s .

By gathering the summands and performing some algebraic reduction, we

have

ζ≤Rp
(s) =

(1− p−2s)2

(1− p−s)3(1− p1−3s)
.

Formula (7.2) is achieved by taking the Euler product.

Now we prove Formula (7.3). The ring R is commutative, therefore, by

Theorem 7.10

ζ�Rp
(s) =

1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF(s− 1), (7.4)
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where F � Z[x1, x2] is the ideal generated by the polynomials f1(x1, x2) =

−x1x2 and f2(x1, x2) = x1x2. It suffices to compute the integral

ZF(s) =

∫
Z2
p

|x1x2|sdµ =

∫
Zp

|x1|sdµ
∫
Zp

|x2|sdµ =

(
1− p−1

1− p−1−s

)2

.

Here we have used Fubini’s Theorem and Example (3.2). By substituting

the expression for ZF(s) into (7.4), we have

ζ�Rp
(s) =

1

(1− p−s)2
.

Formula (7.3) is achieved by taking the Euler product.

Recall that, if A(n), B(n) are arithmetic functions, then we write A(n) ∼

B(n) if limn→∞
A(n)
B(n) = 1.

Corollary 7.16. Consider Z2 as a ring with componentwise multiplication.

Then
n∑
i=1

a≤n (Z2) ∼ 3

π
n(log n)2

and
n∑
i=1

a�n (Z2) ∼ n(log n).

Furthermore, we have a�n (R) = d(n), where d(n) denotes the divisor func-

tion.

Proof. The two asymptotic formulae follow at once from [10, Theorem 4.20].

For the final statement, it is well-known, see for example [1, Section 11.4,

Example 5], that the Dirichlet series associated with the divisor function

d(n) is ζ(s)2.

Corollary 7.17. For R additively isomorphic to Z2 and equipped with

component-wise multiplication,

ζ≤R (s) =
ζ(s)ζ(3s− 1)ζ�R (s)

ζ�R (2s)
.

Proof. This follows immediately from Proposition 7.15.
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Example 7.18. Let K be a quadratic number field. It is well-known that

K = Q(
√
d) for some square-free integer d. Let R be the ring of integers of

K. Then R is a 2-dimensional ring whose structure depends on the residue

class of d modulo 4. Precisely,

R =

 Z
[
1, 1+

√
d

2

]
if d ≡ 1 mod 4,

Z[1,
√
d] if d ≡ 2, 3 mod 4.

For a number field K with ring of integers R, recall that the Dedekind

zeta function ζK(s) of K is defined as ζK(s) =
∑

I�RN(I)−s, where N(I)

denotes the norm of the ideal I.

The ideal zeta function ζ�R (s) is precisely the Dedekind zeta function

ζK(s). The p-local factors of the Dedekind zeta function ζK(s) are well-

known and depend only on the splitting behaviour of the prime ideal (p) in

the ring of integers, see [26, Chapter VIII, Section 2]. We provide a new

proof in the case where K = Q(
√
d). For details on the splitting of prime

ideals see [26, Chapter 1, Section 7].

Proposition 7.19. Let R be the ring of integers in a quadratic number

field K.

ζ�R,p(s) =


1

1−p−s if (p) is ramified in R,

1
1−p−2s if (p) is inert in R,

1
(1−p−s)2

if (p) is split in R.

Proof. Let R be the rings of integers in the number field K = Q(
√
d). We

prove the statement in the case d ≡ 3 mod 4. The proofs of the other cases

are very similar.

The ring R is generated by {1,
√
d} and with respect to that basis has

structure matrix

RR(Y) =

 Y1 Y2

Y2 dY1

 .

The ring R is commutative and therefore, By Theorem 7.11,

ζ�R,p(s) =
1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF(s− 1), (7.5)
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where F = 〈0, dx2
1 − x2

2〉. It suffices to compute

Z?F(s) =

∫
Z2
prpZ2

p

|dx2
1 − x2

2|sdµ.

In a quadratic number field a prime ideal (p) ramifies if p = 2 or p|d. We

treat these two cases first. Let p = 2. We decompose Z?F(s) over the cosets

of 2Z2
2.

Z?F(s) =
∑

(a1,a2)∈F2
2r{0}

∫
(x1,x2)∈Z2

2r2Z2
2

(x1,x2)≡(a1,a2) mod 2

|dx2
1 − x2

2|sdµ.

Notice that on the cosets (0, 1)+2Z2
2 and (1, 0)+2Z2

2, the valuation vp(dx
2
1−

x2
2) is identically 0. If we break the coset (1, 1) + 2Z2

2 up modulo 4 we see

that the valuation vp(dx
2
1 − x2

2) is identically 1. Therefore,

Z?F(s) = 2µ(2Z2
2) + 2−sµ(2Z2

2) = 2−1 + 2−2−s.

By substituting ZF(s) = 1
1−2−2−2s Z?F(s) into equation (7.5) and performing

some algebraic manipulation the result is acquired.

ζ�R,2(s) =
1

1− 2−s
.

Now suppose that p|d. Once again decompose Z?F(s) over the cosets of pZ2
p.

Since d is square-free, p divides d exactly once. It is easy to show that

vp(dx
2
1 − x2

2) ≡

 0 if vp(x2) = 0,

1 if vp(x2) ≥ 1.

Therefore, to compute Z?F(s) we need only count the multiplicities of each

case:

Z?F(s) = (p2 − p)p−2 + (p− 1)p−2−s = (1− p−1)(1 + p−1−s).

By substituting ZF(s) = 1
1−2−2−2s Z?F(s) into equation (7.5) and preforming

some algebraic manipulation the result is acquired.

ζ�R,p(s) =
1

1− p−s
.
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Now suppose that p 6= 2 and p - d. Additionally suppose that d is a quadratic

residue modulo p. There is r̃ ∈ Fp such that r̃2− d ≡ 0 mod p. As p 6= 2, by

Hensel’s Lemma, r̃ lifts to r ∈ Zp such that r2 = d. Therefore, dx2
1 − x2

2 =

(rx1 − x2)(rx1 + x2) and by performing a change of variables

ZF(s) =

∫
Z2
p

|(rx1 − x2)(rx1 + x2)|sdµ =

∫
Z2
p

|x1x2|sdµ =

(
1− p−1

1− p−1−s

)2

.

By substituting Z?F(s− 1) into (7.5), we obtain

ζ�R,p(s) =
1

(1− p−s)2
.

Finally, suppose that p 6= 2, p - d and d is not a quadratic residue modulo p.

For (x1, x2) ∈ Z2
p r pZ2

p one of the valuations vp(dx
2
1), vp(x

2
2) must be zero,

additionally dx2
1 is not a quadratic residue modulo p and, of course, x2

2 is a

quadratic residue modulo p. Therefore, vp(dx
2
1 − x2

2) = 0 and

Z?F(s) = µ(Z2
p r pZ2

p) = 1− p−2.

By substituting Z?F(s− 1) into (7.5),

ζ�R,p(s) =
1

1− p−2s
.

Proposition 7.19 is well-known from the classical theory of Dedekind zeta

functions. However, the subring zeta function of the ring of integers is a new

object of study, although similar Dirichlet series have been studied, see for

example [31].

Proposition 7.20. Let R be the ring of integers in a quadratic number

field K.

ζ≤R,p(s) =


1−p−2s

(1−p−s)2(1−p1−3s)
if (p) is ramified in R,

1−p−4s

(1−p−s)(1−p−2s)(1−p1−3s)
if (p) is inert in R,

1−p−2s

(1−p−s)3(1−p1−3s)
if (p) is split in R.

(7.6)
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Proof. Let R be the rings of integers in the number field K = Q(
√
d). We

prove the statement in the case d ≡ 3 mod 4. The proofs of the other cases

are very similar.

By Theorem 7.9 the p-local subring zeta function

ζ≤R,p(s) =
1

(1− t)(1− pt)
− pt

(1− p−1)(1− pt)
ZF (s− 1), (7.7)

where F (x1, x2) = x1(dx2
1 − x2

2). It suffices to compute

Z?F (s) =

∫
Z2
prpZ2

p

|x1(dx2
1 − x2

2)|sdµ.

First suppose that p = 2. We break up Z?F (s) over the cosets modulo pZ2
p.

From the proof of Proposition 7.5 we know that

v2(dx2
1 − x2

2) =

 0 if (x1, x2) ≡ (0, 1) or (x1, x2) ≡ (1, 0) mod 2,

1 if (x1, x2) ≡ (1, 1) mod 2.

Therefore,

Z?F (s) =

∫
2Z2

2

|x1|sdµ+ 2−2 + 2−2−s =
(1− 2−1)2−2−s

1− 2−1−s + 2−2 + 2−2−s.

By substituting ZF (s − 1) = 1
1−21−3s Z?F (s − 1) into formula (7.7) and per-

forming some algebraic simplification,

ζ≤R,2(s) =
1− 2−2s

(1− 2−s)2(1− 21−3s)
.

Now suppose that p|d. We decompose the integral Z?F (s) into cosets

modulo p. The integral over a coset (a1, a2) + p(pZp)2 only depends on

whether a1, a2 are units or non-units. We gather the cosets into three sets:

Z?F (s) = (p− 1)

∫
p(Zp)2

|x1|sdµ+ (p− 1)2p−2 + (p− 1)p−2−s

=
(p− 1)(1− p−1)p−2−s

1− p−1−s + (p− 1)2p−2 + (p− 1)p−2−s.

By substituting ZF (s− 1) = 1
1−p1−3s Z?F (s) into formula (7.7),

ζ≤R,p(s) =
1− p−2s

(1− p−s)2(1− p1−3s)
.
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Now suppose that p 6= 2 and p - d. Additionally suppose that d is a quadratic

residue modulo p. There is r̃ ∈ Fp such that r̃2− d ≡ 0 mod p. As p 6= 2, by

Hensel’s Lemma, r̃ lifts to r ∈ Zp such that r2 = d. Therefore, x1(dx2
1−x2

2) =

x1(rx1 − x2)(rx1 + x2) and

Z?F (s) =
∑

a∈Fpr{0}

∫
x∈Z2

prpZ2
p

x≡a mod p

|x1(rx1 − x2)(rx1 + x2)|sdµ

= 3(p− 1)

∫
(pZp)2

|x1|sdµ+ (p− 1)(p− 2)p−2

= 3(p− 1)
(1− p−1)p−2−s

1− p−1−s + (p− 1)(p− 2)p−2.

By substituting ZF (s− 1) = 1
1−p1−3s Z?F (s) into formula (7.7),

ζ≤R,p(s) =
1− p−2s

(1− p−s)3(1− p1−3s)
.

Finally, suppose that p 6= 2, p - d and that d is not a quadratic residue

modulo p. For (x1, x2) ∈ Z2
p r pZ2

p, the valuation vp(dx
2
1 − x2

2) is identically

zero. Therefore,

Z?F (s) =

∫
Z2
prpZ2

p

|x1|sdµ = (p− 1)

∫
(pZp)2

|x1|sdµ+ (p2 − p)p−2

= (p− 1)
(1− p−1)p−2−s

1− p−1−s + (p2 − p)p−2.

By substituting ZF (s− 1) = 1
1−p1−3s Z?F (s) into formula (7.7),

ζ≤R,p(s) =
1− p−4s

(1− p−s)(1− p−2s)(1− p1−3s)
.

Theorem 7.21. Let R be the ring of integers in a quadratic number field K,

ζ≤R (s) =
ζ(s)ζ(3s− 1)ζK(s)

ζK(2s)
.

Proof. This follows from inspection of Propositions 7.19 and 7.20.
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Corollary 7.22. Let R be the ring of integers in a quadratic number field K.

There exists γ ∈ R such that

n∑
i=1

a≤n (R) ∼ γn log n.

Proof. The zeta function ζ≤R (s) is a quotient of Dedekind zeta functions; it

has meromorphic continuation to the whole complex plane. It satisfies the

hypothesis of Theorem [10, Theorem 4.20] and the result follows.

In the remainder of this section we present a number of examples of 2-

dimensional rings whose subring and ideal zeta functions are calculated using

Theorems 7.9-7.12. The computations are similar to those in Propositions

7.15, 7.19 and 7.20 and are omitted.

Example 7.23. Let R be the 2-dimensional ring with trivial multiplication.

For any basis it has structure matrix

RR(Y) =

 0 0

0 0

 .

The zeta functions are equal to the subgroup zeta function of Z2.

ζ≤R (s) = ζ�R (s) = ζ(s)ζ(s− 1).

Example 7.24. Let C2 denote the group of order 2. Let R = Z[C2], the in-

tegral group ring of C2. The ring R is 2-dimensional. For the basis {1e, 1a},

where e denotes the identity element and a denotes the non-trivial element

of C2, the ring R has structure matrix

RR(Y) =

 Y1 Y2

Y2 Y1

 .

The subring and ideal zeta functions are

ζ≤R (s) =
ζ(s)3ζ(3s− 1)

ζ(2s)2
,

ζ�R (s) = ζ(s)2.
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Note that the subring and ideal zeta functions of Z[C2] are equal to those

of Z2. However, these rings are clearly not isomorphic. This shows that the

subring and ideal zeta functions do not determine the isomorphism class of

a ring.

Example 7.25. Let R be the 2-dimensional soluble Lie ring given by the

presentation 〈x, y | [x, y] = x〉, with respect to the basis {x, y} it has struc-

ture matrix

RR(Y) =

 0 Y1

−Y1 0


and subring and ideal zeta functions

ζ≤R (s) = ζ(s)ζ(s− 1),

ζ�R (s) = ζ(s)ζ(2s− 1).

Example 7.26. Let R be a 2-dimensional ring with structure matrix

RR(Y) =

 Y1 0

Y2 Y1


The ring R is not commutative. We have,

ζ≤R (s) =
ζ(s)ζ(2s− 1)ζ(2s− 3)

ζ(4s− 2)
,

ζ�`
R (s) = ζ(s)ζ(2s− 1),

ζ�`
R (s) = ζ�R (s) = ζ(2s).
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