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ABSTRACT 

 

Bubbles and crashes have long been an important area of research that has not yet 

led to a comprehensive theoretical or empirical understanding of how to define, 

measure, and compare such extreme market events. Highlights of the vast 

literature on bubbles, crashes, and volatility are surveyed and a promising 

direction for future research, based on a theory of short-side rationing, is 

described. The theory suggests that, especially in extreme market conditions, 

marginal quantities held or not held become transactionally more important than 

the prices paid or received. Our approach is empirically implemented by fitting 

monthly elasticity of returns variances to an exponential expression. From this 

there then follows a comparisons of changes in implied versus realized volatility, 

generation of an Extreme Events Line (EEL), and a crash intensity comparison 

metric. These methods open a new perspective from which it is possible to 

analyze bubble and crash events as applied to different time scales and asset 

classes that include bonds, real estate, foreign exchange, and commodities. 
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An Analytical Review of Volatility Metrics for Bubbles and 

Crashes 

 

1. Introduction 

 

     Financial economists and the public at large have long been fascinated by the extreme 

events that are informally referred to as bubbles and crashes. This is not surprising given 

that such events usually have important economic policy and financial market effects and 

implications and allow for spectacular, newsworthy trading gains and losses. 

 

     As such extreme events unfold there is the risk that resources such as monetary and 

intellectual capital become increasingly misallocated, at least from a long-run 

perspective. A better understanding of bubbles and crashes is thus useful for experts and 

the general interested public. 

 

     In response, a voluminous literature on bubbles and crashes – especially on how to 

mathematically describe and test for them – has been developed over the last forty years. 

By and large, this is a literature based on the assumptions that rationality prevails and that 

markets are predominantly efficient. Existing models, however, still have difficulty in 

handling extreme market events and arguments and criticisms have not been satisfactorily 

addressed or resolved. 

 

     As a result, bubbles and crashes remain largely in the “you know one if you see one” 

stage of description, especially ex-post. And researchers have begun to realize that the 

definitional aspect is important given that the power of econometric testing in this area is 

known to be relatively weak. The colorful nomenclature in the literature – using inventive 

notions of bubbles that are rational, churning, collapsing, exploding, and intrinsic –

reflects the grasping-at-straws nature of these attempts. 
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     This paper surveys the key relevant literature in this area (which has been largely 

centered on equities) and considers how bubbles and crashes have been defined, 

measured, and analyzed. It is argued that estimates of elasticity of returns variances 

(EOV) provide a practical extension of the short-side rationing theory of supply and 

demand first developed in the works of Malinvaud (1985), Bénassy (1986), Muellbauer 

and Portes (1978), and Werner (2005). An EOV approach underscores the idea that – as 

extreme market events evolve – the investment focus shifts from emphasis on prices 

given or received to quantities held or not held.  

 

       Because the measurement of the market‟s reaction to news and fundamentals may be 

equally or more important than the news and fundamentals in and of themselves, the 

EOV methodology implicitly embeds these reactions (and also interest rates, because the 

elasticity with is taken respect to either an equity risk premium or a credit spread 

measure). In this view, the market action itself defines and reveals bubble and crash 

events that are expressed through excessive stock price variance that is sui generis and 

that can be empirically estimated by fitting the variance elasticities in sequential sample 

periods to an exponential (or mathematically similar parabolic) curve progressing over 

time toward infinity. Such an exponential trace of returns variance elasticity is a 

distinctive visual feature of all bubbles and crashes – including those that appear in real 

estate and property, foreign exchange, and also markets for bonds and commodities. 

 

      Section 2 provides a survey of the literature on volatility. Section 3 reviews the 

conventional theoretical approaches to modeling bubbles. The analytical device of the 

elasticity of variance is introduced in Section 4, with Section 5 applying this to volatility 

metrics for bubbles and crashes. Section 6 then summarizes and concludes the paper.   
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2. Volatility studies 

 

       Changes in market volatility, σ, will always affect the expected returns on all assets. 

Volatility itself has become not only a more substantive feature of capital markets but 

also an important tradable asset class in itself (Cole 2014). This is a direct outgrowth of 

the seminal Black-Scholes-Merton model of European call option pricing that was 

introduced in the early 1970s (Black and Scholes, 1973) and that led to creation of a vast 

options and derivatives trading business specialized in analysis of risk as it pertains to 

aspects of implied volatility (IV). 

 

       The classical Black-Scholes partial differential equation, which describes the price of 

the option over time, t, takes the form: 

 

   (1) 

  

in which V represents the value of the option, S is the price of the underlying security, 

and r is the interest rate. By solving the equation using boundary and terminal conditions 

and rearranging terms, the price of an option can then be expressed as an implied 

volatility because risk can theoretically be eliminated through hedging via purchases and 

sales of a specific number of underlying asset and option units. Here it is assumed 

(among other things) that there are no transaction costs, that there are no arbitrage 

opportunities, that volatility is constant, and that the underlying distribution of 

continuously compounded returns is normally distributed with known mean and variance. 

 

        Nevertheless, further mathematical and empirical complications quickly arise once 

these basic assumptions are challenged. Rubinstein (1985) for instance, exposes biases, 

finding that call prices are actually higher than would be predicted by the Black-Scholes 

model. And Bates (1996) examines the observed inconsistency between the theoretical 

and observed option price distributions and the properties of the underlying asset prices. 
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In Bates-type models, jumps are expressed by a compound Poisson process with 

normally distributed jumps. 

 

       Most studies in this area, however, begin with the basic stochastic process 

assumptions that are expressed in the form of a generic geometric Brownian motion 

model shown by   

               
t

t

t

dS
dt dW

S
     ,                                                                                (2)                   

where )(tS  is the stock price at time t,   is a measure of the average rate of growth of 

the asset price (a constant drift term), dt  is the change in time,   is the constant 

volatility, and dWt , known as a Wiener process, is a normalized random variable with a 

mean of zero and unit standard deviation of dt . The aim here is to separate the 

expression into deterministic drift and stochastic components, making use of Itô’s 

Lemma, which is the stochastic version of the Taylor series expansions used in standard 

calculus. The resulting structure allows a continuous martingale model to be formed. 

 

      To this, Cox, Ingersoll, and Ross (1985) then made an important realistic 

modification by also formulating a stochastic differential model for interest rates, r, as:  

 

                                                 (3) 

in which a, b, and   are parameters. 

 

        Heston (1993) then made further extensions to the basic stochastic process model by 

expressing the instantaneous variance as  

  ,                                     (4) 

 where  , is the instantaneous variance,   

 the dW term is a Wiener process (i.e., a random walk),  

 μ is the rate of return of the asset. 
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 θ is the long variance, or long run average price variance (as t tends to infinity, the 

expected value of νt tends to θ). 

 κ is the rate at which νt reverts to θ. 

 ξ is the vol of vol, or volatility of the volatility;
1
 

      An important general extension to fixed-income markets that models the evolution of 

interest rate curves under the assumption that the volatility and drift of the instantaneous 

forward rate are deterministic was presented in the landmark paper by Heath-Jarrow-

Morton (1992). Models that fall into the HJM framework may even be non-Markovian, 

and, as a class, will start with the relation between rates and bond prices, P (t, T), as: 

               (5) 

In this structure, forward rates f (t, T), will again, for any time T, start with the familiar 

stochastic differential equation such as shown in (2) but modified as in (6). Banks now 

commonly use the HJM model approach for asset valuation and risk management 

because it (along with numerous subsequent offshoots) well-reflects the volatility of 

changes in the term structure of interest rates, provides reasonable price estimates for 

securities that are sensitive to changes in rates, and is also applicable to foreign exchange, 

commodities futures pricing, and arbitrage strategies

                                                 

1
 All of these variations are direct descendants of an Ornstein-Uhlenbeck (OU) stochastic 

(stationary, Gaussian, and Markovian) process model. Though developed in the 1930s, the OU 

approach can be productively applied to the Brownian Motion–based financial models of today 

because OU describes velocity if friction is present, which it certainly is in real markets. 
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       (6)                                                                                                                     

      Many such stochastic models in the literature on price jumps will also often begin 

with the probability theory assumptions known collectively as a Lévy process. Whether 

applied in discrete or continuous-time forms, a process of this type will have independent 

and stationary increments and continuity in probability. Applebaum (2004) reviews Lévy 

process ties to Brownian Motion models and Zaevski et al. (2014) shows how these can 

be applied to options pricing.  

 

        Three kinds of identifiable risk thus include: volatility itself, then the volatility of 

volatility, and then the standard error of volatility of volatility.
2
 Barndorff-Nielsen and 

Veraart (2013) provide a sophisticated survey and model of such stochastic volatility of 

volatility (SVV) models and their explicit links to a variance risk premium (VRP), which 

reflects the fact that investors face not only uncertainty about the expected return 

possibilities (i.e., return variance) but also uncertainty about the return variance itself (as 

noted in Carr and Wu, 2009). 

 

      Here the most important and perhaps monetarily productive question to be answered 

is whether knowledge of implied volatility (IV) has any type of practical relationship to 

realized volatility (RV). Goyal and Saretto (2009), for instance, found that differences 

between historical realized volatility and at-the-money implied volatility produced 

significant average monthly returns. Realized volatility, however, is not usually 

considered to be independent of the time series from which it is calculated and implied 

volatility is not usually constant across different option exercise prices. 

 

      The literature, however, largely agrees that although financial asset returns are 

unpredictable, return volatility is highly predictable (Andersen et. al. 2001b, 2003). In 

                                                 

2
 This was expressed by stochastic modeling expert Peter Carr, but it is an offshoot of the Heston 

(1993), Bates (1996), and Derman-Kani (1994) models. 
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other words, there appears to be far greater probability of reversion to mean values of 

volatility than to mean values of metrics based on earnings, dividend, payouts, or cash 

flows. 

      The value of options on underlying securities is determined by the anticipated future 

volatility of the underlying security and this implied volatility reflects each option‟s 

price.
3
 But because future volatility is unknown, historical and forecast volatilities are 

used to guess at the future realized volatility. Implied volatilities for options with 

different strike prices of the same maturities will typically also differ.  

       Implied volatility can be expected to rise as the market becomes more volatile and 

vice versa even though observation of an increasing spread between implied and realized 

volatility – the volatility premium – does not necessarily lead to the conclusion that a 

bubble is in formation. Importantly, however, Bollerslev et al. (2014) and (2009) find 

evidence that this premium is able to predict aggregate stock market returns. Gatheral 

(2006) further demonstrates that implied volatility can be expressed as a weighted 

average over all possible future scenarios of realized volatilities. And because implied 

volatility displays such a term structure there is, as with bonds and interest rate curves, a 

rate of decay as the implied moves closer in time toward becoming realized.  

      Indeed, Bollerslev and Zhou (2006) showed that the volatility series “exhibit 

pronounced own temporal dependencies” and Adrian and Rosenberg (2008) showed that 

investors require compensation when holding assets that depreciate as volatility rises.
4
 

The long-term average for implied volatility of a large-stocks index such as the S&P 500 

is approximately 20 percent, with a normally strong correlation of around -0.75 between 

equity market returns and implied volatilities (and which reflects the incentive that 

options sellers require for liquidity protection). 

                                                 

3
 See Natenberg (1994, p.75). 

4
 Jones and Wilson (2004) also compared the relative volatilities of bonds and stocks over many 

decades and found that volatility for bonds has been increasing relative to that for stocks. 
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      The negative correlation can be seen in Figure 1 which compares percent changes in 

the CBOE‟s options-on-futures-based VIX to percent changes in the S&P 500 index.
5
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Fig. 1   Percent changes in the VIX relative to percent changes in the S&P 500 Index, 

monthly from 2000:01 to 2013:12. 

      Yet the classic article pertaining to volatility and expected returns is still the early one 

by French, Schwert, and Stambaugh (1987). This study presented evidence that the 

expected market risk premium is positively related to the predictable volatility of stock 

returns in a relationship that is expressed as 

       E(  - ) ) , 1,2
p

mt ft mt mtR R B p                                                                       (7) 

where Rmt is the return on a market portfolio, Rft is the risk-free interest rate, mt  is an ex 

ante measure of the portfolio‟s standard deviation, and the square of mt  represents ex 

ante variance. 

 

                                                 

5
 VIX is an annualized implied volatility index also known as the “fear gauge” that translates to 

expected movements in the S&P 500 index over the upcoming 30-day period. 
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      In summary, the literature suggests that realized volatility is the best estimator of 

volatility even though practical estimation problems often arise when dealing with bid-

ask bounces and jumps and with various econometric testing issues. The volatility 

parameter,  , can be estimated in several ways, including methods devised by Parkinson 

(1980), Garman and Klass (1980), and Rogers et al. (1994). The Parkinson number, for 

example, is an estimator of the volatility of returns presupposing that returns follow a 

geometric random walk. If this number is more than 1.67 times the estimated sample 

volatility,  , it is an indicator of a high volatility, out-of-the-ordinary condition.
 6
 A 

related survey by Poon and Granger (2005) nevertheless found that forecasting volatility 

seems often more an art than a science.
7
 

 

      Given this state of affairs, what direction should future research in this area take? Few 

of these surveyed results appear to be directly relevant to an understanding of bubbles 

and crashes. That is because none of these studies are specifically designed for nor are 

they intended to analyze features of such extreme market events. The underlying data sets 

do not differentiate between stable trending markets and bubble and crash periods. 

Instead, the data used typically extend over (or are averaged over) all types of market 

periods including those containing bubbles and crashes and also those that do not. The 

following section briefly summarizes the theoretical approach that appears in most of the 

                                                 

6
 All such measures are available on the standard Bloomberg terminal configurations (SPX 

Index>GV) and use information on daily trading ranges – the intraday high and low prices. 

Another source is the Market Data Express (MDX) of the Chicago Board Options Exchange 

(CBOE) which compiles option information for expiry months starting in 1990.  

 

7
 Additional relevant studies include Canina and Figlewski (1993), Ball and Roma (1994), 

Mayhew (1995), Adjaoute et al. (1998), Andersen et al. (1998), Christensen and Prabhala (1998), 

Blair et al. (2001), Balaban et al. (2003), Hentschel (2003), Neely (2004), Brandt and Kinlay 

(2005), Chernov (2007), Clements and Collet (2008), Carr and Wu (2009), Wang (2009),  

Ederington and Guan (2010), Engstrom (2014), and Kenourgios (2014). 
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already extensive existing literature on bubbles and crashes and sets the stage for the new 

direction that we take. 

 

 

3. A Survey of the Underlying Theories 

 

      Although economists have studied bubbles within the framework of business cycle 

analysis, they have most often attempted to place bubbles within the context of the by 

now well-developed random walk, efficient market hypothesis (EMH), and affiliated 

capital asset pricing model (CAPM) constructs. Most of the studies pertain to the market 

for stocks as reviewed in section 3.1. But bubbles in real estate, forex, and commodities 

have also been extensively analyzed and are covered in section 3.2. From the start, the 

inherent weakness always revolves around definitional issues: Just what is a bubble? 

   

      3.1. Stock market bubbles 

      Much of the theoretical literature rests primarily on the implicit supposition that 

investors at all times behave rationally and thus have rational expectations of underlying 

values. As a result, the RE approach is model-specific, with the main (random walk) 

assumption being that the conditional return expectation – and not merely the 

unconditional expectation – is zero. In this stochastic process, the current period‟s 

returns, Xt, are usually interpreted as the logarithm of the total payoffs including 

dividends and shown as 1t t tX X    , with [ ] 0tE   for all t and drift  an arbitrary 

parameter. The conditional expectation is then shown as | 1[ ] 0t tE X    rather than 

as [ ] 0tE   . 

 

      Almost all of the traditional bubble models describe their structural approaches 

through the use of colorful adjectives such as “intrinsic,” “collapsing,” “exploding,” 

“churning,” and “rational” and employ an equation (or variant) of the 

form
1 (1 )

t i
t t

i
i

D
P E

R









  in which the expected discounted future price is assumed to have 
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a limit of zero. If this assumption does not hold and future prices are expected to grow 

forever at the assumed rate of interest, a bubble term tB  that satisfies 

1[ /(1 )]t t tB E B R   is then added to the right-hand side of the previous equation. In a 

more abbreviated form, this can also be written as 1[ ]t t tB E B   , with  the discount 

factor < 1. This is the core of the basic REH model for which there are an infinite number 

of solutions and both a deterministic and a stochastic term (even though the stochastic 

term is not a logical necessity). 

        

      As McQueen and Thorley (1994) write, “any price of the form, *
t ttp p b  , where 

1 1[ ] (1 )t t t tE b r b   , is a solution to the equilibrium condition…Thus, the market price 

can deviate from the fundamental value by a rational speculative bubble factor, tb , if, on 

average, the factor grows at the required rate of return.” 

 

      One problem is that the rational expectations (RE), random-walk, and CAPM 

literature was never originally developed for the explicit purpose of analyzing bubbles or 

crashes: It sprang from the optimization and equilibrium-seeking approaches that typify 

mainstream economic thinking. RE-based models attempt to define the environment in 

which there would be no bubbles and in which arbitrage – strictly defined as being a 

riskless and costless way to achieve profits that exceed the risk-free rate of return – can 

be readily implemented.
 8

 

      

                                                 

8
 Shleifer and Vishny (1997) treated this subject in their classic work on the limits of arbitrage. 

Cochrane (2005) presents important examples of when arbitrage could not be implemented. 

Earlier bubble literature includes Diba and Grossman (1988a, b), Flood and Hodrick (1990), and 

Evans (1991). And Grossman and Stiglitz, 1980) note that markets cannot be perfectly 

arbitraged when information is costly and information is not perfectly reflected in prices. 
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      Real business cycle theory, in addition, suggests that extreme market events might 

alternatively be explained by adjusting existing macroeconomic models by adding terms 

relating to stochastic random shocks. Everything from changing weather patterns to 

earthquakes and sunspots and to political upheavals and realignments may provide 

unpredictable random shocks that can be included in such models. The results will often 

be able to explain macroeconomic fluctuations under carefully considered hypothetical 

conditions even though variables for population growth rates and compositions 

(young/old/ethnic/cultural mix, educational attainments, etc.) and technological changes 

might not be included. Table 1 provides a representative list of studies on bubbles, 

crashes, and tests. 

 

      Malinvaud (1985) and Bénassy (1986) have alternatively provided the theoretical 

underpinnings for what we propose. Both take issue with the Walrasian notion of general 

equilibrium in which it is assumed that all exchanges occur at a single point in time, that 

each individual confronts the same known set of prices, and that there are no price 

spreads. According to Malinvaud: “[P]urchase (or sale) is the quantity actually traded, 

whereas demand (or supply) is the quantity that the individual would like to trade in this 

market.”  

 

     Werner (2005, pp. 27 and 326) further explains that “[R]ationed markets are 

determined by quantities not prices, according to the „short-side‟ principle: Whichever 

quantity of demand or supply is smaller will determine the outcome…there is no 

guarantee that equilibrium will be obtained. It would be pure chance if demand equaled 

supply.” 

 

Table 1. Representative studies of bubbles, crashes, and tests
a 

Models Approach Type/comment 

                                                             Bubbles 

Adam and Szafarz (1992) RE Survey 

Allen, Morris, and 
Postlewaite (1993) 

RE Asymmetric information 

Asako (1991) RE with OLG model Explores Japanese land bubble 
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a A similar but more detailed table appears in the appendix to Taipalus (2012). 

Source: Vogel (2010). 

 

and concludes it was not always 
rational 

Blanchard and Watson 
(1982) 

RE with periodically 
collapsing bubbles 

Launched series of bubble 
articles 

Campbell (2000)  Survey 

Diba and Grossman (1988) Rational bubble 
component 

Explosive conditional 
expectations 

Froot and Obstfeld (1991) Intrinsic – i.e., modified 
RE  bubbles driven by 
fundamentals 

Separates present value and 
bubble components of stock 
prices 

Hardouvelis (1988) Bubble premium It’s rational to stay in market  if it 
seems highly probable  that a 
bubble will grow  

Lux and Sornette (2002) REH  Fat tails and power laws suggest 
bubbles are a special case of 
multiplicative stochastic 
processes 

Meese (1986) “fundamentals are just 
part of the story” 

Finds bubbles in fx markets 

Santos and Woodford 
(1997) 

Intertemporal competitive 
equilibrium 

Bubbles only under special 
circumstances 

Shiller (1981) Price and dividend series 
do not grow by the same 
amounts – variance 
bounds violated 

Began new branch of 
investigation 

Tirole (1982) RE equilibrium and OLGs No bubbles in infinite-horizon 
models with finite number of 
agents, but bubbles with infinite 
number of agents (OLG) 

                                                          Crashes 

Brunnerrmeier (2001) REH Four different crash category 
models 

Frankel (2008) Adaptive expectations Rational and naïve investors 
interact 

Lee (1998) Information avalanches Agents learn from the action of 
others 

Shiller et al. (1996) Survey of changes in 
expectations 

Nikkei crash due to changes in 
price expectations 

                                                               Tests 

Caginalp et al. (2000) Price momentum Behavioral finance/experimental 

Evans (1991) Econometric weaknesses Survey/tests unable to detect a 
class of rational bubbles 

Flood and Hodrick (1990) Self-fulfilling  prophecy 
(i.e., sunspots) within an 
RE framework 

Survey/ tests are misspecified 

McQueen and Thorley 
(1994) 

Rational speculative 
bubbles and duration of 
runs 

High probability of returns 
compensates for probability of a 
crash 

West (1987) Hausman spec test 
compares expected PDV 
parameters 

Bubbles exist 

West (1988) Standard models do not 
explain volatility 

Volatility survey 
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     As a result, some agents experience rationing. And thus, in addition to price signals, 

there are quantity signals. Demands and supplies must then be substantially 

accommodated and modified on the basis of such signals.  

 

      In practice this suggests that in bubbles the rationed buyer readily meets asking prices 

but remains unfulfilled. Then, the only way to obtain the full quantity desired is to bid 

prices even higher, enticing potential sellers with a better deal. In so doing, the buyer 

thereby extends prices beyond the previously established boundaries and thus also 

increases the variance of prices. In crashes the variance of prices and returns is similarly 

expanded, only now with returns to the downside as rationed sellers hit every bid and 

then sell more at even lower prices so as to trade the quantity, à la Malinvaud, that they 

would like to trade. 

 

      From this perspective, the primary motivating force in both bubbles and crashes is not 

the price paid (or in crashes price received on sale) but instead the need – on a time-

sensitive basis – to adjust quantity held.
 
 These needs will in the real world be 

behaviorally rooted in portfolio manager concerns that relative underperformance as 

compared to that of the peer group will result in withdrawal of assets managed, in 

reductions of fees and bonuses, and ultimately in diminishment of job security. Plainly, as 

bubbles or crashes evolve, it is this behaviorally rational response – not at all captured by 

traditional economic pricing models – that makes prices diverge (sometimes greatly) 

from so-called “fundamental” asset values.  

 

      Under such circumstances, considerations of price come to be of secondary concern 

relative to those of quantities presently held or not held. Indeed, the more urgent is the 

transactionally–expressed need to adjust quantity, the greater is the resulting price 

concession (cost or loss). The degree of urgency in execution may then often also be 
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reflected in price discontinuities (or jumps) that appear on a chart as gaps – with, say, a 

trade at $12.60 followed the next instant by a trade at $14.10 (or, in a crash, $9.75).
9
 

 

       At many interim prices there may thus be no trades at all, which begs questions such 

as: What are the unseen transaction volumes and how deep is the market? What kind of 

“equilibrium” can this be if it is only a trade that clears the market of a thousand shares 

though a fund has, hovering in the background, another ten million for sale that are not 

known to the buyer of the first thousand, or where another investor has been trying to 

execute a fill-or-kill limit purchase order and failed to do so?
 10

 

 

3.2. Bubbles in other asset classes 

 

     Bubbles have throughout history appeared in a wide variety of assets not limited to 

only share prices. There of course was a famously speculative run on tulips beginning as 

far back as 1634, and bubbles have also appeared quite frequently in real estate and 

commodities. Garber (1989 and 2000) and White (1990) provide excellent starting points 

and Kindleberger (1989, 1996) is the classic survey of the field. Allen and Gale (2003) 

examine the interlinkages between asset price bubbles and stock markets. Other 

important asset classes also include fixed income and foreign exchange. 

 

        Real estate bubbles, which arguably touch more lives than do bubbles of any other 

type, have notably occurred in the mid-1920s in Florida, in Japan in the 1980s, and in 

several major countries between 1997 and 2007 (and accelerating noticeably in 2001).
11

 

As in stocks, these bubbles are also always fueled by the lowering of credit standards in 

times when monetary policies are relatively loose. Malpezzi and Wachter (2005), for 

                                                 

9
 See Zaevski, Kim, and Fabozzi (2014). 

10
 See Vogel (2010, p. 191). 

11
 For 2001 to 2004, housing prices increased in the United States by 29%, the U.K., by 50%, 

Canada by 31%, France by 48%, Spain by 63%, and Hong Kong, 27%, according to BIS data 

appearing in Hilsenrath and Barta (2005). 
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example, developed a model of real estate cycles. And Herring and Wachter (2003) 

discuss real estate market bubbles more generally with regard to the role of banks. 

 

In these types of models the interest rate discount factor is usually expressed in the form 

of cap (or capitalization) rates, which move directionally through the cycle in the same 

way that the equity risk premium does for stocks.
12

 Some further examples: Garino and 

Sarno (2004) find evidence for the existence of bubbles in U.K. house prices by using an 

overlapping-generations model. And Gan (2007) provides evidence concerning the 

adverse effect on lending channels when banks have high real estate asset exposure going 

into a crash. 

 

        Bubbles in foreign exchange have also attracted much research attention. Meese 

(1986) and Woo (1987), for instance, found mixed evidence of forex bubbles, whereas 

Wu (1995) found no significant evidence of such bubbles. 

 

      Commodity bubbles such as those experienced most recently in gold and oil are of 

great further interest. Blanchard (1979), though among the first to present a gold bubble 

model in a rational expectations framework, was also among the first to admit that 

detecting a bubble‟s presence or rejecting its existence was difficult. Johansen and 

Sornette (1999) found speculative bubbles in gold that led up to crashes. And Miller and 

Ratti (2009) write about the links between oil and stock market bubbles. 

 

       For the important commodity price spike of 2007-2008, Gutierrez (2013), for 

example, found evidence of bubbles in some major agricultural goods. And Etienne et al 

                                                 

12
 Cap rates are defined as the cash flow rate of return on investment property based on the 

expected income that the property will generate (i.e., annual net operating income divided by cost 

or value).. 
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(2014) found that over the long term, agricultural markets experienced episodes of bubble 

behavior, but for only relatively brief periods. 

 

4. Elasticity of variance measures 

 

      The stumbling block in differentiating extreme event periods from other quieter 

periods always appears when attempting to define and measure bubbles and crashes via 

the highly model-sensitive rational expectations approach. Assuming that variance 

bounds can be statistically specified, it might then be argued that any violations of such 

bounds are caused by unexpected large deviations (i.e., shocks) from the RE-model 

conditions that preclude bubbles. Such deviations are, from the RE perspective, usually 

macroeconomic in nature – and the resulting violations are indicators or symptoms of 

something gone greatly awry and far-strayed from neoclassical theoretical prescriptions. 

 

      We instead propose that the aforementioned notions of short-side rationing can lead 

to the development of a new method for defining and then identifying, measuring, and 

analyzing bubbles and crashes. In our approach, these extreme events are always 

characterized by increasingly frequent and relatively large violations of historical price 

variance bounds that are consistent with the time-scale of the event being studied.
13

 In 

our view, those violations provide (and are) the signature features – i.e., exponential 

(and/or parabolic) price-hugging curves – that are seen in all bubbles and crashes. 

 

      In normally trending markets, there would rarely be a need for variance bounds to be 

broken as “the trend is your friend” and the standard price and dividend discount models 

predominate in decisions to buy or sell at or near the most recent prices. The few 

                                                 

13
 Variance bounds have been explored in LeRoy and Porter (1981), Shiller (1981), Kleidon 

(1986), Smant (2003), Engel (2005), and Lansing (2010) among others – and with different 

authors modeling the variance of a stock‟s price, σ
2
 = Var (pt - pt-1) and coping with issues of 

series stationarity differently. 
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instances in which bounds might be broken are so infrequent and/or of such small 

magnitude that the effect on a period‟s average variance would be minimal and hardly 

noticeable. Under such relatively serene conditions, investors have plenty of time to be 

“rational” and carefully analytical, to fully weigh potential risks, to meticulously study 

balance sheets and income statements and growth prospects, to plow through dense 

analysts‟ reports and call on company managements and industry experts, and to 

earnestly deliberate with portfolio selection committees. Even so, traders will still need to 

adjust quantities not only relative to their own prior positions (and to align with their 

better-performing peer group‟s portfolios), but also in reaction to the market’s reaction to 

news relative to prior expectations.
14

 It is rational to do so and irresponsible from a 

fiduciary standpoint not to do so. 

 

      The situation is different, however, in the case of bubbles and crashes. In these there 

is by definition an element of pressure and urgency for the desired quantities to be 

accumulated or disposed and there is much less time available for deep analysis and 

lengthy deliberations. As a result, previous price bounds must be broken as a growing 

proportion of investors and speculators would likely become progressively less price-

sensitive and decide to add to quantities held in bubbles and to reduce holdings and/or 

add to negative quantities (i.e., short positions) in crashes. In a bubble, the rush is to 

convert from cash (risk-on and flight from quality) just as in a crash the impulse is to 

convert to cash (risk-off and flight to quality). In either circumstance, herd psychology 

and emotionally-driven environmental considerations – including comparative 

performance rankings and the relationship to asset management fees, job security, 

bonuses, and bragging rights – are the motivating factors. 

 

       An illustration of how variances and price percent changes in the S&P 500 relate in 

terms of gains and losses is shown in Figure 2. It can be visually determined that larger 

percent gains or losses are associated with larger variances. 

                                                 

14
 See Roll (1984, 1988), Cutler et al. (1989), and Joulin et al. (2008). 
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      One way this relationship can be portrayed is as an elasticity of variance with respect 

to equity risk premium (ERP) estimates (or, with near zero interest rates, perhaps a 

measure of yield spreads or credit default swap prices).
 
The study of ERPs is itself a large 

topic, but for general purposes it can be taken as being the expected or required return 

above the contemporaneous risk-free rate on treasury bills. The elasticity estimates are 

arithmetically determined in the usual way, which is: 

              

var
erp varvar = *

 erp var  erp

erp

erp





 

                                            (8)        

 

.0

.1

.2

.3

.4

.5

.6

.7

.8

0 10 20 30 40

% gains over 6 months

V
a

ri
a

n
ce

 b
a

se
d

 o
n

 L
T

M
 (

%
)

 

.0

.1

.2

.3

.4

.5

.6

.7

.8

-35 -30 -25 -20 -15 -10 -5 0

% losses over 6 months

V
a

ri
a

n
ce

  b
a

se
d

 o
n

 L
T

M
 (

%
)

 

Fig. 2. Variance versus price change percentages: An example. The panels show that 

variance is related to the size of gains or losses as measured in percentage changes over 

six months. Gains (left) and Losses, S&P 500 Index, 1960:01 to 2005:12, Monthly 

Rolling Index Percentage Change Measured Over Closing Prices Six Months Prior, With 

Estimated Variance In Percent Based On Rolling Last Twelve Months Data. Source: 

Vogel (2010, p. xxi). 

 

 

     The key aspect is that large price changes – up in bubbles and down in crashes – are 

necessary but not sufficient conditions for defining the extreme events. The EOV 

definition of a bubble or crash hinges instead on the elasticity of variance approaching the 

limit of infinity. The main reason for this is that if price variance remains within recent 
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boundaries, there is no way for the quantities that are respectively desired and demanded 

in a bubble or not desired and undemanded or supplied in a crash to be rapidly 

accumulated or distributed within typical performance measurement and benchmarking 

time periods. Extreme event periods are instead characterized by the forced compression 

of decision-making time horizons for every market participant and asset class. 

 

       Such EOV-defined events can be econometrically estimated by fitting the variance 

elasticities for sequential sample periods to a simple exponential curve, tkt uy e  , that 

extends toward infinity. In this simple uncluttered model, t is time and the ut represent the 

regression‟s error terms. A bubble or crash will then be discernable whenever the 

estimated parameter, k, is significantly different from the null hypothesis of zero at the 

chosen significance or p-value.
15

 

 

      All of this links directly to and reflects the aforementioned short-side rationed 

markets approach. The results of this curve-fitting, as calculated using EViews 

programming is shown in Figure 3, with bubbles on the left-hand panel and crashes in the 

other. 
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15
 As the elasticities will rise toward infinity in both types of events, the distinguishing 

characteristic of a bubble is that the net arithmetic sign of the sequential sample elasticity is 

negative (i.e., a positive change divided by a negative change has a net negative sign).  
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                             Bubbles          Crashes 

Fig. 3. EOV bubbles and crashes, (p-values at 0.15), 1962:08 to 2014:06. 

Monthly data for ERPs prior to 2006 is based on Ibbotson‟s Stocks, Bills, Bonds, & 

Inflation annual publications. Later ERPs use S&P 500 monthly returns minus 3-month 

treasury bill prices. Monthly variances are based on same month‟s average daily returns, 

usually 20 or 21 days per month. Although the Crash of ‟87 was exceptionally brief in 

duration, its intensity is still prominently seen in the right-hand panel. 

 

 

5. Volatility metrics 

 

      Classical volatility estimators, for example, a high Parkinson number, can provide 

important numerical indicators of markets that are fast-moving, risky, and likely to be in 

a bubble or crash phase. Such high volatility is always a marker of extreme market 

conditions because short-side rationed investors are forced to reduce their investment 

decision time horizons even while overall investor diversity of opinion disappears: Both 

decision-making time horizons and diversity of opinion approach a limit of zero with the 

time horizon correlation approaching 1.0. 

 

5.1 New views 

     

     The traditionally estimated historical volatility of the S&P 500 Index is sequentially 

compared in Figure 4 to estimated implied volatility for this index taken over 12 months 

(left) and 3 months (right) for at-the-money call options of the same periods 

respectively.
16

 

 

                                                 

16
 To keep the exposition simple, these same option characteristics are used in all of the material 

presented below. 
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     The series start in 2004:09 because that is the furthest into the past that the 

Bloomberg-generated data for implied volatility extends.
17

 The drawback of having no 

data on implied volatility going back into the 1990s is that none of the significant market 

history of that time, including the technology-stock boom, the meltdown of the Long 

Term Capital Management firm, and the financial stresses created by the Russian and 

Asian currency crises are captured. Similar data can be generated for put options and/or 

for options in or out of the money, or for volatilities estimated using models other than 

the classical. All such variations are fodder for future research. 
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Fig. 4.  Estimated historical backwards realized and implied at-the-money call option 

volatility time series, 12 months (left) and 3 months, 2004:09 to 2014:06. 

 

       Still, there already is enough material to see that important turning points first 

appeared in 2007 when the potential for systemic financial failures began to be 

recognized by the market (and previously established variance bounds began to be 

exceeded). As the market‟s liquidity-related problems subsequently intensified, it is 

evident that implied volatility was anticipatory, soaring in both the left and right panels of 

                                                 

17
 Bloomberg indicates that it may eventually provide data prior to 2004:09. 
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Figure 4 to peaks in mid-2008. This indicates that implied volatility tends to rise earlier 

and faster than historic volatility and that it tends to overshoot the historic series. 

 

       Figure 5 provides another perspective of the same basic data, dividing implied by 

historical to derive a ratio of one series to another. In dividing one series by the other, a 

“normalized” relationship is extracted from the raw data. This makes it not only easier to 

interpret the underlying relationships but it also generates a pure number that allows 

comparisons no matter what the prevailing interest rates and/or S&P 500 p/e ratios are at 

any point in time. The mean ratio for this sample period is 1.71 for the 12 months‟ 

comparisons (left) and 6.04 for the 3 months‟ (right). The ratio for 3 months, by dint of 

lesser smoothing in its underlying calculation, is clearly much more sensitive and 

volatile, even though the story it tells is much the same for most of the period covered. 
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Fig. 5.  Estimated historical and implied at-the-money call option volatility time series, 

implied divided by historical, 12 months (left) and 3 months, 2004:09 to 2014:06. 

 

       The basic revealed characteristic features – substantial but relatively brief variations 

that travel well above and below a mean value – that are evident in Figures 4 and 5 are in 

support of the empirical notion that underlying contracts tend toward a mean volatility. 

 

       Although there might be many ways to statistically parse such data so as to further 

validate this statement, the most straightforward is to count the number of times that the 
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volatility ratio has been above or below the mean. For the 12-month comparison (left- 

hand panel of Figure 5), the ratio has been above the mean of 1.71 for a total of 60 out of 

118 months, or about half the time (50.8 percent). But for the jagged 3-month 

comparison, the ratio has only been above its mean of 6.04 for 28 out of 118 months, or 

23.7 percent of the time.  

 

     While this type of measurement obviously does not provide irrefutable evidence that 

an underlying contract is likely to have a long-term mean volatility to which there is 

reversion, it might still be contrarily argued that the 3-month volatility ratio simply does 

not cover a period that is sufficiently long for such reversion to occur. In this respect, the 

12-month ratio is to be preferred. Porterba and Summers (1988) suggested that stock 

returns are indeed mean-reverting, and so it appears that volatility is too.  

 

      There are at least two probable reasons for this. The first is that most options trading 

volume is for contracts that are within two years of expiration. This time-limitation factor 

is not present in the multi-year long-horizon common stock investing strategies and 

structures used by pension plans and also by many mutual funds and individual investors. 

Price-based metrics can wander widely depending on the popularity of stocks versus 

bonds versus commodities versus real estate versus cash. There have been long stretches 

in history when stocks were either highly in or out of favor (the 1990s and the 1950s, 

respectively) with investors. 

 

       But the most important reason is that were volatility to remain very high for an 

extended period of more than a few months, the market would begin to falter and then –

as in the crash of October 1987, the Long-Term Capital Management debacle of 1998, or 

the „flash‟ crash of May 2010 – veer towards dysfunctionality: The wheels would begin 

to come off of the truck. The market would eventually have to shut down. 

 

      Sustained high volatility imposes such high costs and penalties – for hedging, for 

incorrectly positioning against the increasingly violent directional movements, and for 

the toll it takes on psychology and confidence and capital resources – that it must subside 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

27 

 

(i.e., revert to a mean) sooner than later.
18

 Yet that is not the case with p/e ratios or the 

prices paid for $1 of dividends or other such measures (Prechter and Parker, 2007). High 

volatility – which always accompanies bubbles and crashes – thus contains the seeds of 

its own destruction. 

 

 5.2 The Extreme Events Line. 

 

      Engle (1982) first found that volatility tends to cluster, which is another way of 

saying that volatility also tends to exhibit serial correlation and that volatility in the 

present period tends to depend on the previous period‟s volatility. This suggests that it 

might be useful to examine clusters of volatility and to see if such clusters can provide 

additional insights about what happens in bubbles and crashes. 

 

      A scatter plot of implied versus past realized historical volatility appears in Figure 6, 

which introduces the notion of an extreme events line (EEL). The EEL provides a new 

and readily comprehensible display of clusters that illustrates relationships between 

implied and historical volatilities as they specifically pertain to bubbles and crashes. 

Although it is merely a variation on the volatility ratios discussed earlier and uses the 

same underlying data, the EEL functions as a simple market X-ray that allows volatility 

relationships to be compared in both extreme and non-extreme market periods. It is also 

minimally arbitrary in terms of procedural implementation.   

 

                                                 

18
 Capital resources are stretched because margin requirements are generally raised and spreading 

distrust of financial counterparty viability necessitates that loans are only extended if more 

collateral is placed at risk. 
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Fig. 6.  Implied volatility versus past realized historical volatility, 12 months (left) and 3 

months, 2004:09 to 2014:06. The tranquility zone is the area below the EEL, which is the 

boundary between extreme market event volatility and non-extreme market volatility. For 

the 12 months data, the estimated OLS equation (including 118 observations) is IV= 

10.13 + 0.76HV (and p-values of 0.0), and for 3 months data it is IV=14.01 + 0.45HV 

(and p-values of 0.0). On the left-hand panel, October and November 2008 and 

September 2011 are more than 2 standard errors above the EEL. The s.e. of regression is 

3.79 for the left panel and 6.53 for the right. 

 

 

       Although various option times to expiry and different types of options (e.g., puts 

versus calls, European versus American, out-of-the-money versus in-the-money) will 

generate somewhat different EEL lines, none of this changes the basic concept; in bubble 

and crash episodes, the contemporaneous ratio of implied versus historical volatility 

spikes dramatically above the ordinary least squares regression line – the EEL – that has 

been estimated by inclusion of data points extending over all types of (extreme and non-

extreme) market environments. 
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      Above the EEL are observations that can only be found when markets are abnormally 

volatile. For instance, with the 12-month data, the two highest observations at implied 

volatility of just above and below 40 are for October and November 2008 – times of 

deep-seated anxiety as a result of the late September collapse of the Lehman investment 

bank and of frozen credit markets in which even high-grade commercial paper (e.g., 

General Electric‟s) could not be rolled over. The observation for September 2011 also 

recalls a highly volatile month. 

 

        But the much less volatile-than-average month of July of 2009 (left-panel) appears 

well below the line. Similarly, on the 3-month right-panel data, the relatively tranquil 

December 2010 also appears below the EEL. The space below the EEL thus depicts a 

zone of tranquility, with the extreme events known as bubbles and crashes appearing only 

above the EEL. 

 

      Why are most data points above the EEL crash-related? The reason is that bubbles 

can gestate, grow, or extend over long periods of time, sometimes over many years. 

Following a long down period, it typically takes a while before the fears of investors and 

speculators have been sufficiently dissipated and abated and confidence is restored. A 

bubble might then eventually follow if monetary conditions are easy, important new 

technologies are introduced, and other positive social-mood factors (e.g., no wars) are 

present and thereby enable the revival of speculative interest. Carried too far, this interest 

can then turn into bravado and, finally, into overwhelming exuberance. Bubbles therefore 

usually evolve much more slowly than crashes and the variance increases that are most 

noticeable appear closer to a bubble‟s end than at its beginning. 

 

      But crashes are relatively rapid affairs because fear of losses crystallizes much faster 

than does the confidence that must gel before bubbles begin to attract widespread 

attention. Accordingly, more dots above the EEL should be expected for crashes than for 

bubbles, although the degree of difference would depend on many factors, the most 

important of which is the time scale used for measurement. 
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       If extreme events are represented by dots above the EEL, then there are at least two 

remaining issues that need to be addressed. The first one is how far above the EEL is 

considered extreme? This will be a matter for further research, but for now we suggest – 

while assuming an approximately normal distribution – that any observations be defined 

as extreme if they are above the EEL by more than two standard errors. 

    

       Another heretofore unexplored issue for volatility studies pertaining to bubbles and 

crashes is that, especially in crashes, correlations go to one. Because implied correlation 

(Buraschi et al. 2010), is closely related to implied volatility, a special program (in 

EViews) was written for illustration in Figure 7.
19

 From this it can be seen that in rising 

markets, positive return correlations (UPCORR) rise along with the volatility and that 

returns in a crash also begin to correlate on the downside (DOWNCORR). As Wilmott 

(2001, p. 340) explains, “a crash isn‟t just a rise in volatility…During a crash, all assets 

fall together. There is no such thing as a crash where half the stocks fall and the rest stay 

put.”
20

 

                                                            

                                                 

19
 In July 2009 the Chicago Board Options Exchange began disseminating daily values for the 

CBOE S&P 500 Implied Correlation Index, with historical values back to 2007. 

 

20
 The implication for both bubbles and crashes, as Muellbauer and Portes (1978) recognize, is 

that “[A]n agent who is rationed as a buyer or seller on one market and cannot transact his 

notional excess demand…will in general alter his behaviour on other markets.” 
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Fig. 7.  Historical volatility, based on 3 month at-the-money call options for the S&P 500 

related to positive and negative return correlations within the 500 stocks in the index, 

1999:01 to 2014:06. The higher the historical volatility, the higher the correlation for 

both bubbles (left panel) and crashes (right panel),  

 

 

       In other words, in a crash there is nowhere to hide, a crash characteristic that 

becomes evident in Figure 8. Here it can be seen that even on a monthly basis, at the lows 

of 2008, the percentage of all S&P 500 stocks up was just below 40%. At intra-month 

crash lows it is indeed not unusual for the percentage of stocks up to approach zero. 

 

5.3 Storm cats 

 

      Because crashes tend to be much more distinctive in their speed and intensity and 
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Fig. 8.  In a bear phase, there‟s no place to hide: Percentage of S&P 500 stocks 

rising in the month (unsmoothed raw data) and monthly S&P 500 index (right-hand 

scale), January 1999 to June 2014. Source data: Standard & Poor‟s. 

 

beginnings and endings than are bubbles, it is also possible to introduce a crash scale that 

is somewhat akin to the Saffir-Simpson hurricane classification system which evaluates 

storms on a weakest to strongest scale of 1 to 5 based on wind speeds, potential property 

damage, and flooding.
 21

 

 

       In the last fifty years, the most important crash episode for a broad-based index 

began at the S&P peak at 336.77 of August 25, 1987 and ended on October 19, 1987 – 38 

trading days later – while generating an average per day loss of 2.95 points and 0.87 

percent. The most dramatic and climactic part of this episode occurred on October 19, 

1987, when the S&P 500 fell by a record 22.61 percent in one day – the largest price 

                                                 

21
 The scale introduced here is arithmetic not logarithmic as is the Richter-Gutenberg scale used 

to assess the strength of earthquakes (and in which a 5.0 quake is ten times more powerful than a 

4.0 quake). 
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change over the briefest time on record.
22

 With the subsequent implementation of stock 

exchange “circuit breaker” rules the likelihood of this ever happening again is remote. 

 

      The very intensity and brevity of this crash, however, allows it to be used as a 

benchmark reference against which to arithmetically scale other crash episodes. Ten 

crashes in the S&P 500 and six in the NASDAQ are compared in Figure 9 on the basis of 

average percentage losses per day taken as a percent of the S&P 500 average loss per day 

(0.87 percent) seen in 1987. The underlying base data appear in Table 2 

 

         In this representation, crashes broadly fall into three categories. Several S&P 

episodes are below 25 percent of the intensity of the Crash of ‟87, and these might be 

labeled as category 1 storms. But given that shares of companies in the NASDAQ are 

generally less seasoned and financially secure than  those in the S&P, it is not surprising 

to find several NASDAQ episodes that are above 25 percent and up to around 60 percent 

of the intensity of the 1987 S&P experience. These might be labeled as category 2 events. 

Any crashes that are above 60 percent of the intensity of the Crash of ‟87 might be 

labeled as category 3s. They are so potentially catastrophic (“cat3cats” or C3Cs) as to be 

able to not only wreck a market‟s infrastructure but also a nation‟s economy. 

 

                                                 

22
 In the crash of 1929, the Dow-Jones Industrial average fell 11.73 percent on October 29, and 

12.82 percent on October 28, which was the largest daily percentage price decline on record for a 

major index until October 19, 1987. 
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Fig. 9. Crash intensity comparisons for the S&P 500 and NASDAQ, 1962 -2014. 

Bars show the relative average daily percent decline in each episode as a percent of the 

average daily percent decline in the Crash of ‟87. Bar number 10 in the S&P (left panel) 

is the Crash of ‟87. For the S&P, bars 1 through 9 began: 1) 28-Nov-80; 2) 31-Dec-76; 3) 

10-Oct-83; 4) 11-Jan-73; 5) 24-Mar-00; 6) 14-May-69; 7) 9-Feb-66; 8) 9-Oct-07; 9) 16-

Jul-90. For the NASDAQ, bars 1 through 6 began: 1) 10-Mar-00; 2)27-Apr-94; 3) 31-

Oct-07; 4) 17-Jul-90; 5) 27-Aug-87; 6) 21-Jul-98. Underlying data appear in Table 2. 
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Table 2. 

Crash or collapse? Important peak-to-trough moves (>10%), daily closing prices, S&P 

500, 1962-2010 and NASDAQ, 1984 – 2010. 

 

            Total  # trading days   Avg loss per day

Peak  Trough Points lost  % lost       points      %

S&P 500

9-Feb-66 94.10 29-Aug-66 74.53 19.57 20.8 139 0.14 0.15

14-May-69 106.16 26-May-70 69.29 36.87 34.7 260 0.14 0.13

11-Jan-73 120.24 3-Oct-74 62.28 57.96 48.2 436 0.13 0.11

31-Dec-76 107.46 6-Mar-78 86.90 20.56 19.1 296 0.07 0.06

28-Nov-80 140.52 12-Aug-82 102.42 38.10 27.1 430 0.09 0.06

10-Oct-83 172.65 24-Jul-84 147.82 24.83 14.4 199 0.12 0.07

25-Aug-87 336.77 19-Oct-87 224.80 111.97 33.2 38 2.95 0.87

16-Jul-90 368.95 11-Oct-90 295.50 73.45 19.9 62 1.18 0.32

24-Mar-00 1527.46     4-Apr-01
a

1103.25 424.21 27.8 251 1.69 0.11

9-Oct-07 1565.15 10-Mar-08 1273.37 291.78 18.6 104 2.81 0.18

       avg
b

26.4 222  0.93 0.21

       Alternatives:

24-Mar-00 1527.46 11-Mar-03 800.73 726.73 47.6 741 0.98 0.06

19-May-08 1426.63 20-Nov-08 752.44 674.19 47.3 130 5.19 0.36

19-May-08 1426.63 9-Mar-09 676.53 750.1 52.6 202 3.71 0.26

NASDAQ

27-Aug-87 455.8 7-Dec-87 293.70 162.10 35.6 70 2.32 0.51

17-Jul-90 469.5 17-Oct-90 325.10 144.40 30.8 65 2.22 0.47

27-Apr-94 800.39 27-Jun-94 694.16 106.23 13.3 69 1.54 0.19

21-Jul-98 2018.46 8-Oct-98 1420.94 597.52 29.6 56 10.67 0.53

10-Mar-00 5048.62 9-Oct-02 1114.11 3934.51 77.9 647 6.08 0.12

31-Oct-07 2859.12 17-Mar-08 2177.01 682.11 23.9 94 7.26 0.25

       avg
b

35.2 167  5.01 0.35

       Alternatives:

5-Jun-08 2549.94 20-Nov-08 1316.12 1233.82 48.4 118 10.46 0.41

5-Jun-08 2549.94 9-Mar-09 1268.64 1281.3 50.2 190 6.74 0.26  
a
 The entire decline might also be measured to the post-terrorist attack low of 965.80 on 21 September 

2001, which would be 36.8%. Thus the alternative row below 

b
 This average excludes the last row alternatives. 

Source: Calculations based on Yahoo.com data and Vogel (2010, p. 245). 

 

6. Conclusions 

 

      Development of numerous derivatives-based securities products has expedited and 

energized the emergence of volatility as a distinct asset class in itself and made volatility 

an increasingly important feature of modern algorithmically-traded markets. It is now 
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widely accepted that volatility tends to cluster and to mean-revert and that implied 

volatility deviates from the realized. Significant volatility changes also tend to have 

relatively brief life spans measured in months or weeks and days but not necessarily in 

years. 

  

      Much of the literature on volatility has been devoted to examination of econometric 

issues that include the estimation of biases and the viability of using historical volatility 

as a predictor of implied future volatility. Studies have also suggested that idiosyncratic 

volatility (a measure of market efficiency) has over the last decades been rising even 

though volatility – at least leading up to the financial meltdown that began in 2007 and 

prior to the widespread implementation of high-frequency trading – has probably 

remained about the same for the overall market as taken for periods of more than a year 

or two.
23

 The rise of idiosyncratic volatility implies that correlation among securities 

within a broad-based index such as the S&P 500 is higher than previously and that more 

securities and/or asset classes are now needed to properly diversify portfolios according 

to the tenets of the modern portfolio theory and its numerous variants. 

 

       However, little of the literature appears to have either implicitly or explicitly studied 

volatility as it relates directly to bubbles and crashes.
24

 This is not surprising given the 

absence of a commonly accepted statistical definition of the extreme events that are 

rather informally and typically after-the-fact described as having been bubbles and 

crashes. It is also an indirect artifact of the thus far ineffectual attempts to shoehorn, 

contort, and otherwise mold extreme event characteristics into the efficient market and 

CAPM structures. These structures were never expressly designed or intended to model 

bubbles and crashes and they are theoretically incompatible with the notion that bubbles 

and crashes even exist. 

 

                                                 

23
 Bekaert et al. (2012). 

24
 Topol (1991) and Jarrow et al. (2011) are the exceptions. 
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      The approach presented is based on the short-side rationed principle and the idea that 

bubbles and crashes can be statistically defined, modeled, and measured on any time 

scale by looking for the elasticity of variance with respect to equity risk premiums 

(and/or credit spreads or cap rates in real estate) to move exponentially toward infinity 

and thereby break previously established variance bounds. The method is applicable to all 

asset classes including real properties, bonds, forex, and commodities because for 

bubbles and crashes in those classes, credit spreads and cap rates respond directionally in 

the same way that equity risk premiums do in stock market bubbles and crashes. 

 

      A rising or falling price is only a necessary but not sufficient condition for an extreme 

event to occur. The EOV approach reflects the quantity-related urgency to fulfill rationed 

demand or supply and it thereby captures the essence of asset price behavior in bubbles 

and crashes: The empiricist needs only to specify the probability level (significance as 

measured by the p-value) at which the analysis is being made. With this, there is then no 

guessing as to which variables and which type of specific model might potentially 

describe the best fit. Here, the market itself tells us directly when something unusual is 

probably happening. 

 

       Simple comparisons between historical and implied volatility time series suggest that 

implied leads historical and that a rise in the implied foreshadows a bubble or crash 

condition. There is reason to expect that, in using the proposed short-side rationed-EOV 

approach – in which considerations of price take a backseat to considerations of 

quantities held or not held – a relationship of this kind can be found for and applied to 

extreme market events across different time scales and different asset classes, including 

bonds, commodities, and real estate. 

 

       It has, in addition, been demonstrated that as such extreme market events evolve, 

directional correlation – be it either up or down – among the individual components of a 

broadly-based stock index such as the S&P 500 increases notably and that the correlation 

of returns rises along with the volatility. A plausible reason for this is that increasing 
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volatility leads to more emotionally-based decision-making which then heightens the 

appeal of and the need for herding (and rationed short-sided) behavior. 

 

      Under such time-pressured circumstances, opinions become increasingly 

undiversified and there is a contemporaneous collective reduction in decision-making 

time horizons. An extreme event line (EEL) and also a zone of “tranquility” provide 

another way to conveniently represent these ideas. But, overall, because fear crystallizes 

and is initially acted upon much faster than enthusiasm and exuberance – which will 

usually build over longer periods of time (and be most noticeable near the end) –  the 

EEL will likely tend to be more useful for illustrating crashes than bubbles.
25

 Because of 

their distinctive speed and intensity, a method of comparing and categorizing crashes on 

an arithmetic scale into three categories has also been introduced. 

 

         Upon further analysis and testing, these notions ought to have the potential to 

evolve into a new set of volatility-related metrics that are apart from the traditional, RE- 

and equilibrium-based approaches. Moreover, these notions are fully compatible with 

recent indications that central banks have begun to take volatility more seriously into 

account when formulating policy decisions.
26

 

                                                 

25
 As the time scale over which the metrics are applied is reduced, the ratio of identifiable 

bubbles to crashes would be expected to rise and vice versa. Development of such a bubble-to-

crash (B/C) ratio taken over relatively short periods would, for instance, provide another tool for 

portfolio managers, investment strategists, and market technicians.  

 

26
 Both the Fed and the Bank for International Settlements (BIS 84

th
 Annual Report, p. 9) have 

recently commented on volatility. From the Fed Open Market Committee minutes of June 17-18. 

2014: “The VIX, an index of option-implied volatility for one-month returns on the S&P 500 

index, continued to decline and ended the period near its historical lows. Measures of uncertainty 

in other financial markets also declined; results from the Desk's primary dealer survey suggested 

this development might have reflected low realized volatilities, generally favorable economic 

news, less uncertainty for the path of monetary policy, and complacency on the part of market 
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       In statistical terms, bubbles and crashes are, even after many years of research, still 

not mathematically well-defined, modeled, and understood. Human nature is such that 

these extreme events and their sizable and often long-lasting social and political effects 

on the distribution of income and wealth will never disappear entirely. 

   

      But with the further development of volatility metrics such as those proposed, central 

bankers and governments might begin to assess economic and market conditions from 

new perspectives. This should enable better-informed policy formulation and execution 

and, hopefully, mitigation of the most pernicious aspects of bubbles and crashes. 
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Highlights 

 

Surveys previous significant studies on bubbles, crashes, and volatility. 

Why price becomes secondary to quantity via the short-side rationed 

principle. 

Adds new perspectives on defining and measuring bubbles, crashes, and 

volatility. 

Introduces an extreme events line (EEL) and a crash intensity indicator. 


