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ABSTRACT 

UNIVERSITY OF SOUTHAMPTON  

FACULTY OF MEDICINE, HEALTH AND LIFE SCIENCES,  

SCHOOL OF MEDICINE 

 

Doctor of Philosophy 

SKELETAL STEM CELL ISOLATION AND DIFFERENTIATION: INTERDISCIPLINARY 

STRATEGIES FOR SKELETAL TISSUE ENGINEERING 

By Peter D Mitchell 

 

Stem cell based tissue engineering is viewed as a promising approach for orthopaedic 

reparative medicine and the application of microfluidic techniques for isolation and 

characterisation of individual skeletal stem cells is considered a potential source of cells 

for regenerative medicine. The studies described in this thesis aim to develop original 

techniques for isolation and characterisation of mesenchymal stem cells and to examine 

their possible uses in skeletal tissue engineering. These studies developed novel 

microfluidic technology using dielectrophoretic ring traps and sorting gates for isolation 

and recovery of specific cells according to immunofluorescent intensity. To date, the 

devices outlined in this work are limited by the small number of cells that can be 

isolated, but are capable of recovering established and primary cell populations with 

100% purity for specific markers such as STRO-1, while also displaying potential for 

on-chip analysis and culture due to the ability to precisely control the device's 

microenvironment. This study has also investigated 28 day organotypic culture of 3D 

fetal femur-derived cell pellets at an air-liquid interface. It was demonstrated that 

addition of serum, ascorbate, dexamethasone and BMP-2 resulted in mimicry of in vivo 

femur development, while addition of ascorbate and TGF-β3 resulted in a cartilaginous 

phenotype, thus offering potential models for both cartilage and early bone 

development. Analysis of pellets demonstrated that significant pellet diameter at day 1 

(greater than 0.8mm) is crucial for maintaining reproducible results in osteogenic and 

chondrogenic conditions. Furthermore, addition of BMP-2 to fetal femur-derived cells 

cultured in chemically defined media induced formation of a novel cobblestone cell 

morphology. Characterisation of the cobblestone cells demonstrated a primitive 

adipogenic phenotype as indicated by the lack of endothelial and haematopoietic marker 

expression including CD146, TIE2, CD34, and CD105 and upregulation of 

mesenchymal differentiation markers, ubiquitous expression of PPARγ and retention of 

lipid. Overall these studies have offered a novel approach to stem cell isolation for 

characterisation and have furthered the knowledge of fetal femur-derived cell and their 

potential as an alternative cell source for skeletal tissue engineering. 
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1.1. Overview 

As the population continues to rise and life-expectancy increases, there is an urgent 

socio-economic and clinical challenge to develop strategies for the repair of cartilage 

and bone lost as a consequence of trauma, disease or natural degeneration. In the US 

alone, approximately 6.8 million bone fractures occur per year, with 5-10% requiring 

bone augmentation (data from American Academy of Orthopaedic Surgeons), whilst 

current technologies for the repair of cartilage defects rarely succeed in restoring full, 

long-lasting function (reviewed in Tare et al. 2010). Stem cell based tissue engineering 

is viewed as a promising approach for orthopaedic reparative medicine and the 

application of microfluidic techniques for isolation and characterisation of individual 

skeletal stem cells is considered a potential source for regenerative medicine, 

specifically in treating skeletal disorders such as osteoporosis and osteoarthritis. The 

aim of these studies is to further characterise both adult and fetal-derived 

mesenchymal/skeletal cells and to examine their possible uses in skeletal tissue 

engineering.  

 

1.2. Cartilage 

Cartilage is a specialised, dense connective tissue composed of a collagenous 

extracellular matrix and chondrocytes embedded in a non-collagenous mix of 

proteoglycans, matrix proteins and water known as ground substance (Aigner & Stove 

2003). The main roles of cartilage are to provide structure, cushion joints and support 

other tissues whilst displaying enhanced flexibility and greater elasticity than bone. 

Cartilage lacks blood vessels and is therefore dependent on nutrient diffusion through 

the extracellular matrix (Bhosale & Richardson 2008). There are three major types of 

cartilage, separated according to the structure and appearance of the tissue; these types 

are hyaline, elastic and fibrous (Figure 1.1).  

 

Hyaline cartilage is the most common type of cartilage in the human body; covering the 

surface of bone at synovial joints, protecting the bone from wear (also known as 

articular cartilage). Hyaline cartilage is also found as a support structure in trachea, at 

the ventral ends of ribs attaching them to the sternum and in the developing foetus, 

where it acts as the template for bone formation (Shea & Miller 2005). Hyaline cartilage 

matrix is composed predominantly of Type II collagen.  
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Elastic cartilage shows greater elasticity than other types of cartilage due the presence 

of elastin fibres within its extracellular matrix in addition to collagen and is found in 

areas of the body that require elastic but robust support such as the outer ear and the 

larynx (Stockwell 1979).  

 

Fibrous cartilage contains large bundles of collagen fibres interspersed with 

chondrocytes surrounded by loose fibrils. Fibrous cartilage is found in areas that require 

large amounts of tensile strength such as where ligaments and tendons attach to bone 

and the intervertebral discs (Shea & Miller 2005). Fibrous cartilage is the only cartilage 

type that contains Type I collagen. 

 

 

Figure 1.1. The structure of the three types of cartilage (Adapted from 

www.botany.uwc.ac.za/sci_ed). 
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1.2.1. Structure and composition of articular cartilage 

Articular cartilage is found at free-moving diarthroidal/synovial joints where the 

cartilage prevents bone abrasion and protects the joint against compressive forces and 

other stress (Figure 1.2). A typical diarthroidal joint consists of two adjoining, cartilage-

covered bones surrounded by a synovial capsule, the inner of which is covered in a 

synovial membrane that produces synovial fluid to fill the joint and provide lubrication 

for the bone surfaces. 

 

 

Figure 1.2. A schematic diagram of a diarthroidal joint showing the synovial capsule 

and articular cartilage. (Adapted from www.zoology.ubc.ca). 

 

Articular cartilage is made up entirely of hyaline cartilage and as such, is composed of 

chondrocytes embedded in a collagen and proteoglycan rich extracellular matrix. The 

extracellular matrix of articular cartilage is 70-80% water containing metabolites and 

ions. It is this fluid that provides the cartilage with its ability to tolerate compressive 

forces. Type II collagen makes up approximately 50-90% of the dry weight of articular 

cartilage and provides tensile strength to the tissue (Muir 1995).  

 

Articular cartilage is divided into 4 distinct regions, known as the superficial, 

transitional, middle and calcified zones (Figure 1.3). Each of these zones is further 

divided into three distinct regions: the pericellular region and territorial region, which 
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facilitate chondrocyte-Extra Cellular Matrix (ECM) binding and support; and the 

interterritorial region, which facilitates the mechanical and structural properties of the 

cartilage (Temenoff & Mikos 2000). 

 

 Superficial zone: The thinnest part of the cartilage, consisting of a sheet of collagen 

fibres covering the joint surrounded by a sheet of flattened chondrocytes. This zone 

has high tensile strength imparted from a high concentration of collagen, fibronectin 

and water. Contains less proteoglycan than other zones 

 Transitional zone: As the name suggests, acts as a transition from the superficial 

zone to the middle zone. Possesses spherical chondrocytes containing organelles 

such as Golgi apparatus, endoplasmic reticulum and mitochondria. The transitional 

zone has a higher concentration of proteoglycan, less collagen, but larger collagen 

fibrils than the superficial zone. 

 Middle zone: Most often the largest zone, contains the largest collagen fibrils and 

the most proteoglycan. Chondrocytes are spherical, arranged in columns at a 90° 

angle to the bone, contain large numbers of synthesising organelles and are highly 

active. 

 Calcified zone: Acts as a transition phase from cartilage to subchondral bone. 

Contains small spherical chondrocytes often completely surrounded by calcified 

ECM. 

(Temenoff & Mikos 2000) 

 

Figure 1.3. Graphical representation showing the different zones of cartilage (Adapted 

from Cohen et al. 1998). 
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1.2.2. Chondrocytes 

Chondrocytes are embedded within the extracellular matrix of cartilage in small cavities 

known as lacunae. These cells make up approximately 10% of the total weight of 

articular cartilage and are fundamental for the generation and maintenance of the 

extracellular matrix of cartilage through production and/or degradation of important 

matrix proteins (Cohen et al. 1998). The avascular nature of cartilage creates an 

atmosphere with very low levels of oxygen and nutrients; chondrocytes are adapted to 

survive these conditions through efficient use of anaerobic metabolism. The avascular 

conditions in cartilage may limit the number of cells that can be sustained within the 

extracellular matrix, predisposing an individual to degenerative diseases such as 

osteoarthritis (OA) (Muir 1995). The majority of chondrocytes have a spherical 

appearance except for those found at the periphery of cartilage, which have a flattened, 

disc-like shape (Stockwell 1979). 

 

1.2.3. Collagen 

Collagen proteins (also known as tropocollagen) are long extracellular proteins with a 

right-handed helical structure, composed of three coiled polypeptide subunits held 

together and stabilised by hydrogen bonds; two α1-chains and an α2-chain. Each of 

these subunits has a left-handed helical structure as a consequence of the tripeptide 

sequences Glycine-Proline-X and Glycine-X-Hydroxyproline, where X can be any 

amino acid (Lodish et al. 2007). Tropocollagen proteins are synthesised as inactive 

precursors which become active upon cleavage of N- and C-terminal propeptide 

extensions by procollagen proteinases. Upon activation, tropocollagens will 

spontaneously assemble into semi-crystalline collagen microfibrils, which will in turn 

aggregate to form fibrils and fibres (Hulmes 2002) (Figure 1.4). 

The extracellular matrix of articular cartilage is composed mainly of Type II collagen 

fibrils (~80%) interwoven into a mesh that provides tensile strength and contains 

proteoglycans such as aggrecan, fibronectin and chondronectin (Aigner & Stove 2003). 

Articular collagen also contains types VI, IX, X and XI, albeit in much smaller 

quantities than Type II. Type VI collagen is found in the extracellular matrix of most 

tissues where it forms a microfibril network that is thought to mediate interaction 

between chondrocytes and their surrounding matrix (Aigner & Stove 2003). Type IX 

collagen is found on the surface of Type II fibrils and stabilises the 3D structure of Type 

II collagen by cross-linking with other Type IX molecules (Eyre 2002). Type X 
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collagen is only found within hypertrophic chondrocytes and plays a role in regulating 

matrix mineralisation during endochondral bone formation (Shen 2005). Type XI 

collagen is found in articular cartilage copolymerised with Type II collagen and is 

thought to cross-link fibrils of the collagen 3D structure and also restrict and therefore 

regulate the growth of collagen Type II fibrils (Eyre 2002). 

 

 

Figure 1.4. Collagen structure (http://fig.cox.miami.edu). 

 

1.2.4. Proteoglycans and other non-collagenous proteins 

Proteoglycans are a type of glycoprotein containing large numbers of 

glycosaminoglycan (GAG) chains attached to a core protein. Glycosaminoglycans are 

composed of a repeating disaccharide formed into a long unbranched polysaccharide 

and have a high negative charge (Reece et al. 2010). Proteoglycans are a diverse group 

of proteins and can be found throughout the body carrying out many different 

biochemical functions. The high negative charge from the GAGs causes a constant 

negative charge and imparts hydrophilic properties on the articular cartilage causing a 

swelling pressure as water is attracted to the joint (Iozzo 1998). This swelling pressure 

exerts a tensile stress on the collagen network and it is the balance between the swelling 

pressure and restricting tensile force that imparts the load-bearing ability of the cartilage 

(Cohen et al. 1998). Proteoglycans are categorised according to their types of GAG 

chains, their size and their localisation within the body.  

 

 



9 

The major proteoglycan in articular cartilage is Aggrecan. Aggrecan forms complexes 

with hyaluronan (HA) and link protein, a small, 40-48 kDa glycoprotein, to produce 

multimolecular aggregates that are trapped by the collagen network, creating a strong, 

fibre-reinforced matrix (Figure 1.5). It is due to the presence of these aggregates that the 

cartilage retains a high negative charge and in turn, a high level of hydration, providing 

structural support and nutrient and solute transport to the cartilage (Watanabe et al. 

1998).  

 

 

Figure 1.5. (A) A graphic representation showing how the collagen network traps 

proteoglycan aggregate to form a fibre-reinforced composite. (B) The binding of 

aggrecan to hyaluronic acid is stabilised by link protein (Cohen et al. 1998). 

 

Hyaluronic acid (HA), also known as hyaluronan or hyaluronate, is a 

glucosaminoglycan composed of alternating repeats of N-acetylglucosamine (GlcNAc) 

and glucuronic acid (GlcUA). HA is found in most parts of the body, and is 

predominant in soft connective tissues and their surroundings such as the synovial fluid 

in articular joints (Reed et al. 1988;Fraser et al. 1997). Several different functions have 

been described for HA, these include: a structural and water-balancing role in the ECM 
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of cartilage via its interaction with aggrecan and the regulation of plasma protein 

distribution and transport via the steric interactions of HA networks (Laurent & Fraser 

1992;Fraser et al. 1997). Hyaluronan also acts to bind aggregates to the cell surface of 

chondrocytes by interacting with the cell surface receptor, CD44, a transmembrane 

glycoprotein involved in cell adhesion, ECM regulation and many other functions 

(Knudson & Knudson 2001). 

 

In addition to aggrecan, many smaller proteoglycans can be found within articular joint 

cartilage, such as decorin, biglycan and fibromodulin (Figure 1.6). These are much 

shorter and contain less GAG chains than aggrecan and tend to play roles in cell 

function and matrix organisation rather than affecting the physical properties of the 

cartilage (Temenoff & Mikos 2000). 

 

 

Figure 1.6. Overview of the proteoglycans and other non-collagenous proteins present 

in cartilage (Knudson & Knudson 2001). 
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1.3. Skeletogenesis 

1.3.1. Chondrogenesis and development of the cartilage anlagen: 

Chondrogenesis is the first phase of skeletal development, characterised by the 

formation of cartilage and leading to the formation of true bone through endochondral 

ossification. During the development of the human embryo, skeletal growth begins with 

the formation of limb buds from the lateral plate mesoderm at around 4 weeks gestation 

(Goldring et al. 2006). Formation and development of the embryonic limb skeleton is 

regulated by two signalling centres; the apical ectodermal ridge (AER), which directs 

the proximal-distal growth of the limb, and the zone of polarizing activity, which directs 

the anterior-posterior growth of the limb (Olsen et al. 2000). 

 

Skeletogenesis begins with the recruitment of mesenchymal cells to sites of 

chondrogenesis, where they undergo proliferation and pre-cartilage condensation. 

Condensation involves the recruited mesenchymal precursor cells adhering to each other 

to form clusters that become the cartilage anlagen template for bone formation (Delise 

et al. 2000). This process is dependent on cell-cell/cell-matrix communication and 

interaction via adhesion molecules and gap junctions, as well as secreted factors such as 

members of the TGF-β family (Hall & Miyake 1995). The cells surrounding the 

condensations eventually become elongated and form dense perichondrium, important 

for growth and repair of the cartilage (Delise et al. 2000). 

Pre-condensation mesenchymal cells secrete hyaluronan- and collagen Type I -rich 

ECM that prevents cell-cell adhesion but facilitates cell migration and recruitment. 

Versican, a large chondroitinsulphate proteoglycan interacts with hyaluronan to 

maintain the structure of the ECM and act as an anti-adhesive via tenascin-mediated 

binding to cell adhesion molecules (Matsumoto et al. 2006). As cells are recruited to the 

site of limb formation and condensation is initiated, the cells begin to produce 

hyaluronidase that breaks down the ECM and allows the cells to adhere and interact 

(Tuan 2004). Cell-cell adhesion during condensation is facilitated by the cell adhesion 

molecules, neural cell adhesion molecule (N-CAM), neural cadherin (N-cadherin) 

CD44 and syndecan-3 (Knudson & Knudson 2001). During the initiation of 

condensation, the TGF-β family member, Activin, upregulates the ECM glycoprotein, 

fibronectin, this binds with syndecan to downregulate N-CAM, setting the boundaries of 

the condensation (Goldring et al. 2006). 
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Control of limb development and chondrogenesis is patterned by a number of genes 

working in coordination along the 3 axes of the limb to ensure correct development. To 

date, key gene pathways identified are the fibroblast growth factor (FGF), hedgehog, 

bone morphogenetic protein (BMP), homeobox (HOX) and WNT pathways (Zhu et al. 

2010). WNT signals produced early in development induce expression of FGFs, which 

then act via positive feedback loops to upregulate both WNT and FGF (Goldring et al. 

2006). FGFs are essential for limb bud initiation and outgrowth (Tickle & Munsterberg 

2001). Transcription factors belonging to the HOX family play an important role in 

regulating the expression of FGF, BMP, Sonic hedgehog (SHH) and proliferation of 

cells located in condensations (Delise et al. 2000). SHH does not play a role in limb 

growth, but is important for patterning the early limb. BMPs are required for the 

development of polarity within the developing embryo and in limiting the expansion of 

the limb bud (Chen et al. 2004). BMPs interact with BMP receptors (BMPRs) on cell 

surfaces to initiate differentiation and maturation of prechondrocytes cells into 

terminally differentiated chondrocytes at specific pre-patterned sites (Zhu et al. 2010). 

At this stage, sex determining region Y-box (SOX) genes, specifically SOX9, SOX5 and 

SOX6, are upregulated by BMP signalling and are required for expression of cartilage 

specific ECM components such as Type II, IX and XI collagen, link protein and 

aggrecan (Lefebvre et al. 2001).  

 

1.3.2. Chondrocyte hypertrophy and endochondral ossification 

Endochondral ossification is the process whereby long bones are developed by 

replacing the cartilage anlagen with bone. Upregulation of growth hormone (GH) within 

the embryo leads to proliferation of cells within condensations via the actions of insulin-

like growth factors (IGFs), WNTs, BMPs and Indian hedgehog (IHH), leading to 

expansion and elongation of the collagen anlagen and an increase in the deposition of 

ECM (Mackie et al. 2008).  Cells in the centre of the cartilage then undergo terminal 

differentiation and hypertrophy, characterised by an increase in their fluid content by 

almost 20 times, removal of the cell cycle and production of alkaline phosphatase and a 

unique collagen; type X (Goldring et al. 2006). Hypertrophy of these cells is regulated 

by a feedback loop between FGF, parathyroid hormone-related peptide (PTHrP), and 

IHH (Delise et al. 2000). Upregulation of thyroid hormone (T3) upregulates FGF 



13 

expression, which inhibits the PTHrP-binding activity of IHH. PTHrP then binds to, and 

inhibits SOX9, allowing hypertrophy of the cell (Figure 1.7) (Mackie et al. 2008). 

 

 

Figure 1.7. Overview of the regulation of chondrocyte proliferation and differentiation 

(Mackie et al. 2008). 

 

Hypertrophic chondrocytes produce angiogenic factors such as vascular endothelial 

growth factor (VEGF) that stimulate the development of blood vessels throughout the 

perichondrium and hypertrophic zone. Osteoblasts, osteoclasts and haematopoietic cells 

enter the cartilage anlagen via these blood vessels and form primary ossification centres 

(Mackie et al. 2008). Hypertrophic cells within these centres undergo apoptosis and the 

type X collagen-rich ECM is degraded as osteoblasts begin to replace the cartilage with 

trabecular bone, forming bone marrow. The perichondrium surrounding the primary 

ossification centres is converted into a collar of compact bone by osteoblasts. 

Vascularisation of the cartilage epiphysis leads to the formation of secondary 

ossification centres at the ends of the cartilage. The areas of cartilage remaining are the 
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growth plates, located between the primary and secondary ossification centres and the 

articular epiphyseal growth cartilage, located between the epiphysis of the cartilage and 

the secondary growth plates. These areas undergo repeated sequences of endochondral 

ossification that results in the longitudinal growth and expansion of the bone (Figure 

1.8) (Olsen et al. 2000;Mackie et al. 2008). 

 

 

Figure 1.8. The process of endochondral ossification. (A) formation of the cartilage 

anlagen; (B) chondrocyte hypertrophy and vascularisation initiates the formation of the 

bone tissue; (C) invasion of blood vessels into the epiphysis of the cartilage anlagen 

establishes the primary centre of ossification; (D) secondary centres of ossification form 

at the epiphysis of the cartilage; (E) fusion of the primary and secondary centres of 

ossification due to expansion and ossification of the growth plates. At this stage, all 

cartilage anlagen has been converted to bone, only the permanent articular cartilage 

remains (Mackie et al. 2008).  

 

1.3.3. Intramembranous ossification 

Intramembranous ossification occurs in fibrous tissue and involves the direct formation 

of compact bone with no cartilage anlagen via differentiation of groups of mesenchymal 

stem cells into osteoblasts (Gilbert 2000) (Figure 1.9). These groups of differentiated 

cells produce Type I collagen-rich ECM which undergoes calcification to form 

immature woven bone; eventually replaced with mature bone. Many of the osteoblasts 

become trapped in the secreted ECM and develop into osteocytes. This type of bone 
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growth is important for repair of damaged bone and during development and growth of 

bones such as the calvarial bones (Choi et al. 2005). 

 

 

Figure 1.9. Schematic diagram of intramembranous ossification. Mesenchymal cells 

aggregate to produce groups of osteoblasts, which deposit ECM that undergoes 

calcification. These osteoblasts become arrayed along the calcified region of the matrix 

and continue to produce new bone. Osteoblasts that are trapped within the bone matrix 

become osteocytes (Gilbert 2000). 

 

1.4. Bone 

As the major component of the skeleton, bone is the key structural connective tissue of 

the human body. The primary function of bone is to provide support and centres of 

movement for the body and protect the various organs of the body. Bone is also the 

focal point for haematopoiesis (the production of blood cells), regulation of 

homeostasis, and storage of minerals. The majority of bone is composed of mineralised 

osseous tissue, this tissue is a hard and yet lightweight composite of calcium 

hydroxyapatite, which has an extremely high compressive strength. In addition, bone 

contains a variety of other tissues embedded within its calcified matrix, these include: 

marrow, nerves, blood vessels and cartilage (Reece et al. 2010).  
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1.4.1. Bone Structure 

Three types of bone structure exist: woven bone, compact or cortical bone and 

trabecular or cancellous bone (Figure 1.10). Compact and cancellous bone are known as 

lamellar bone due to their highly organised, layered structures. Woven bone is immature 

bone with a disorganized structure found during formation of new bone in embryonic 

development and injury repair; it is eventually replaced by slower-forming lamellar 

bone (Downey & Siegel 2006). Compact bone is the dense outer layer of bone mainly 

found on long bones and makes up roughly 80% of the bone in the skeleton. It is 

composed of large numbers of cylindrical structures called Haversian systems. These 

systems are made up of a Haversian canal, which encloses blood vessels and nerve cells, 

surrounded by concentric layers of bone tissue (Buckwalter et al. 1996). Trabecular 

bone is a network of rod- and plate-like components that give it a spongy, porous 

structure. This makes the bone lighter and allows room for blood vessels and marrow. 

Trabecular bone is enclosed in layers of compact bone to provide compressive strength 

(Downey & Siegel 2006). 

 

 

Figure 1.10. Diagram showing the structure of compact and trabecular bone. The 

Haversian systems are also illustrated (http://training.seer.cancer.gov). 
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1.4.2. Bone Composition 

Bone is composed of varying levels of bone mineral, organic and inorganic matrix, 

water and lipids, according to the age, health, and anatomical location of the bone. 

 

1.4.2.1. Bone mineral/Inorganic matrix 

Bone mineral is composed of calcium hydroxyapatite [Ca10(PO4)6(OH)2], a rigid, 

crystalline structure which provides strength to bone, allowing it to resist compressive 

forces. This substance makes up the majority of bone weight and volume. 

 

1.4.2.2. Organic matrix 

This substance is composed of glycoproteins and collagen fibres, about 90% of which is 

Type I collagen. Type I collagen is found in bone, tendon, skin and a variety of other 

soft tissues. It is a long fibrous protein composed of two identical α-1 chains and an α-2 

chain (Gelse et al. 2003) and is essential for providing the tensile strength of bone. Type 

I collagen is produced by osteoblasts and is deposited in layers onto mature bone; this 

gives the collagen an orientated, cross-linked lamellar structure which provides the bone 

with its tremendous strength (Shea & Miller 2005). In addition to Type I collagen, there 

are approximately two hundred non-collagenous proteins (NCPs) found within the 

organic matrix of bone (Weiner & Wagner 1998), these include osteonectin, 

Osteocalcin, Osteopontin and bone sialoprotein.  

 Osteonectin (ONN) is a glycoprotein that selectively binds to both Type I collagen 

and hydroxyapatite. When bound to Type I collagen, the resulting complex catalyses 

the binding of mineral apatite crystals with free calcium ion, acting as a regulator of 

bone extracellular matrix production and mediates interactions between the 

extracellular matrix and cells (Termine et al. 1981). In addition, osteonectin also 

controls cell behaviour by modifying signalling at specific transmembrane receptors 

and plays a role in osteoblast cell survival (Delany et al. 2007).  

 Osteocalcin (OCN) is secreted by osteoblasts and is one of the major NCPs, 

representing 1-2% of the protein in bone. In bone Osteocalcin binds hydroxyapatite 

crystals with high affinity and inhibits hydroxyapatite crystal formation, down-

regulating bone growth. In addition Osteocalcin also acts as a chemoattractant that 

recruits osteoblasts and osteoclasts to specific points in the bone for remodelling 

(Huang et al. 2005). Due to the secretion of Osteocalcin by osteoblasts, Osteocalcin 

is often used as a biochemical marker of osteogenesis.  
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 Osteopontin (OPN), also known as bone sialoprotein I, is an adhesive 

glycophosphoprotein synthesised by a large number of cells including osteoblasts 

and osteocytes. Osteopontin has a regulatory effect on bone homeostasis; it inhibits 

mineral deposition by binding to hydroxyapatite and inhibiting crystal growth and 

Osteopontin promotes differentiation of osteoclasts and enhances their activity in 

bone resorption (Standal et al. 2004).  

 Bone sialoprotein (BSP) is a heavily sulphated, phosphorylated and glycosylated 

protein produced by osteoblasts that mediates cell attachment to extracellular 

matrices via an arginine-glycine-aspartate (RGD) motif. BSP promotes bone 

resorption by controlling the attachment and activation of osteoclasts to mineralised 

bone surfaces. BSP also has a high binding affinity for apatite, and is believed to be 

involved in the formation of hydroxyapatite crystals  (Huang et al. 2005). 

 

1.4.3. Bone cells 

1.4.3.1. Osteoblasts  

Osteoblasts are small, mononuclear cells responsible for bone formation. They are 

derived from mesenchymal precursors and are considered to be mature bone cells. 

Osteoblasts are found on narrow regions of newly formed, un-mineralised organic 

matrix. Osteoblasts produce osteoid; a protein matrix primarily composed of Type I 

collagen, which mineralises to become new bone tissue (Ducy et al. 2000). Osteoblasts 

also produce alkaline phosphatase, a hydrolase enzyme that dephosphorylates proteins 

and other molecules. Alkaline phosphatase has been shown to be an important marker of 

osteogenesis and may be involved in mineral deposition and crystallisation, however, 

the exact function of this substance on bone has yet to be determined (Shea & Miller 

2005). In addition to their function in bone formation, osteoblasts also play roles in 

osteoclast regulation and bone resorption via the OPG/RANK/RANKL system (Boyle 

et al. 2003). Preosteoblastic cells express RANKL, which binds to RANK on 

preosteoclast cells, initiating differentiation and activation of osteoclasts, resulting in 

bone resorption, while the cytokine receptor osteoprotegerin (OPG) regulates the 

activity of osteoclasts by blocking the effect of RANKL (Khosla 2001). The regulation 

of osteoclast development by preosteoblastic/stromal cells ensures that the processes of 

bone resorption and formation are tightly coupled. Osteoblasts also produce hormones 

such as IL-6, which induce bone resorption on its own and with other bone-resorbing 

agents (Ishimi et al. 1990). 
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1.4.3.2. Osteoclasts 

These cells act opposite osteoblasts and are responsible for the resorption of mineralised 

bone. Osteoclasts are haematopoietic cells derived from the fusion of mononuclear cells 

from the monocyte and macrophage lineage to create large, multinucleated cells 

(Roodman 1999). Bone resorption is carried out at the „ruffled border‟, a specialised, 

highly invaginated membrane found on osteoclasts that releases acid and enzymes to 

degrade the bone matrix and the resorption area, which breaks down bone proteins using 

proteolytic enzymes (Teitelbaum 2007). Bone formation and resorption is a continuous 

process in constant equilibrium that helps to prevent and heal bone damage. Damage to 

this equilibrium can result in orthopaedic disease.   

 

1.4.3.3. Osteocytes 

These cells are formed from osteoblasts that become trapped within bone during its 

formation. They occupy spaces known as lacunae. Osteocytes are able to transport 

nutrients and communicate with other osteocytes, osteoblasts and bone lining cells via 

small channels in the bone known as canaliculi (Noble & Reeve 2000). The osteocyte is 

believed to have many roles within the bone; it acts as a mechanical receptor that 

regulates bone remodelling and repair in adaptation to load and also maintains mineral 

homeostasis through the canalicular system (Bonewald 2011). 

 

1.4.3.4. Bone lining cells 

These are long, flat, inactivated osteoblasts that comprise the majority of the inactive 

surfaces of bone. They regulate the passage of calcium in and out of the bone and also 

play a role in the regulation of nutrient transport and initiation of osteoclast resorption 

of bone by facilitating transport of osteoclasts to the bone interior (Shea & Miller 2005). 
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1.4.4. Bone remodelling 

During bone growth, alteration of the bone shape and size is known as modelling. 

Remodelling refers to the natural turnover of existing bone tissue without affecting the 

shape or density of the bone. This process is constant and proceeds rapidly during 

growth. Bone remodelling is a two-part process, involving the resorption of old bone by 

active osteoclasts and replacement with new bone produced by osteoblasts.  

Bone remodelling is carried out by small groups of cells known as basic multicellular 

units (BMUs) that ensure that at least 20% of trabecular bone undergoes remodelling at 

any time (Jilka 2003). Bone remodelling is a complex process, regulated by multiple 

factors, including the OPG/RANKL/RANK system. Regulation of bone resorption has 

yet to be fully characterised, but is thought to respond to damage caused by physical 

stress and osteocyte death (Lee et al. 2002). Regulation of remodelling occurs at the 

paracrine or autocrine level as demonstrated by the fact that BMUs occur both 

geographically and chronologically separate from each other (Henriksen et al. 2009).  

Remodelling is separated into phases: osteoclast activation, resorption of bone, 

osteoblast activation, formation/calcification of new bone and the resting phase (Lee et 

al. 2002) (Figure 1.11). At the activation of remodelling, haematopoietic osteoclast 

progenitors are recruited to the bone and undergo proliferation and differentiation into 

mature osteoclasts (Hadjidakis & Androulakis 2006). Osteoblasts lining the bone 

surface produce matrix metalloproteinases (MMPs) that degrade the unmineralised 

osteoid on the surface of the bone, allowing osteoclasts to access the exposed 

mineralised surface and begin the resorption phase (Hill 1998). During resorption, 

osteoclasts adhere to the exposed mineralised surface and form a ruffled border that 

secretes acid and proteolytic enzymes. The secreted acid acts to demineralise the 

extracellular matrix of the bone, while the proteolytic enzymes degrade the organic 

components (Schindeler et al. 2008). Degradation of bone releases growth factors such 

as TGF-β, insulin-like growth factors (IGFs) I and II and platelet derived growth factor 

(PDGF) that stimulate the proliferation and differentiation of osteoblast progenitors, 

which in turn initiate the formation of new bone matrix at the sites of resorption (Mundy 

1999). After erosion of the bone is complete osteoclasts undergo apoptosis, terminating 

the resorption phase and allowing formation of osteoid in the degraded area (Henriksen 

et al. 2009). The osteoid then undergoes the process of mineralisation, taking 

approximately 124-168 days to fill in the resorption cavity with new calcified bone (Hill 
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1998). The process of bone resorption is important in calcium homeostasis as it releases 

the calcium stored in bone into the circulation. 

 

Figure 1.11. The phases of bone remodelling (Adapted from Hill 1998). 

 

1.5. Injury and repair 

1.5.1. Bone 

Typically, bone injury occurs in the form of a fracture or break caused by pressure being 

exerted on the bone greater than its tensile strength. Bone fractures vary in their 

severity, from complete fractures, where the bone is completely broken into 2 or more 

pieces, to microfractures, tiny fractures in the bone that often occur under tensile stress 

and do not affect the stability of the whole bone. Microfractures and other small breaks 

are normally repaired by the normal process of bone remodelling, which removes the 

damaged part of the bone and replaces it with new calcified tissue. Larger fractures are 

healed by endochondral ossification. Fracture healing is separated into the reactive, 

reparative and remodelling phases (Mckibbin 1978). The reactive phase occurs shortly 

after a fracture is made and begins when blood fills the cavity to form a haematoma at 

the site of injury (Figure 1.12 A). The inflammatory response results in the recruitment 

of macrophages, monocytes, neutrophils, lymphocytes, osteoclasts and fibroblasts to the 

site of injury, resulting in the removal of cell debris, stimulation of vascular invasion 

and recruitment of mesenchymal cells (Carano & Filvaroff 2003). This whole process 

15-30 
days 

124-168 
days 

~9 days 
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results in the formation of granular tissue around the wound. Various growth factors and 

cytokines are essential for the inflammatory and reparative responses to bone injury, 

including IL-1, IL-6, TGF-βs, BMPs, FGFs, IGFs and PDGF (Lieberman & 

Friedlaender 2005). Mesenchymal stem cells either originating in the damaged tissue or 

recruited by the inflammatory response begin to differentiate into cells such as 

fibroblasts, osteoblasts and chondroblasts. Chondrogenesis occurs within the granular 

tissue around the fracture site resulting in the formation of hyaline cartilage, known as 

the soft callus (Figure 1.12 B), while woven bone is formed at the border of the callus 

by intramembranous ossification (Mckibbin 1978). The cartilage of the soft callus then 

experiences angiogenic invasion and undergoes conversion to woven bone by 

endochondral ossification, resulting in a hard callus that connects the two ends of the 

fracture (Figure 1.12 C) (Lieberman & Friedlaender 2005). Finally, remodelling 

replaces the woven bone with lamellar bone and returns the bone to its original shape 

and strength (Figure 1.12 D). Bone repair takes approximately 3-6 months for adequate 

strength to return, depending on the type and severity of bone fracture, age and health of 

the individual.  

 

 

Figure 1.12. The stages of bone repair (Adapted from Carano & Filvaroff 2003). 

 

1.5.2 Cartilage  

Cartilage injury occurs in 3 main forms: disruption of the cartilage matrix, partial 

thickness defects and full thickness defects (Figure 1.13). Matrix disruption is often 

caused by trauma to an articular joint, causing damage to the cartilage ECM and the 

cells contained within. Matrix disruption can heal over time provided the injury is not 

severe, as remaining chondrocytes upregulate their matrix synthesis to repair the ECM 

(Temenoff & Mikos 2000). The term partial thickness defect is used to describe damage 

to the surface of the cartilage, whilst a full thickness defect concerns damage to the 
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entire cartilage, up to and including the subchondral bone. Following creation of a 

partial thickness defect, local chondrocytes begin to proliferate and fill the injured area. 

However, for unknown reasons the chondrocytes stop proliferating before the damage is 

fully healed, leaving the defect only partially repaired (Redman et al. 2005). Full 

thickness defects can undergo spontaneous repair through the production of fibrous 

cartilage clot. This clot is sufficient to allow progenitor cells to migrate from the bone 

marrow to the site of injury and replace the damaged tissue with a hybrid of hyaline and 

fibrous cartilage. This tissue is weak compared to true hyaline cartilage and degrades 

over time, leading to further injury (Redman et al. 2005). As partial thickness defects do 

not extend to the subchondral bone, there is no migration of progenitor cells to the site 

of injury and therefore no wound healing takes place. 

 

 

Figure 1.13. Illustration of partial and full thickness defects (Redman et al. 2005). 

 

Chondrocytes maintain the structure of cartilage by sensing and compensating for any 

changes in the matrix. However, as cartilage is avascular it has limited access to the 

important nutrients, ECM components and wound healing factors found within the 

blood. Chondrocytes have a low metabolic activity and undergo very little proliferation 

as the cells are not required in large numbers to maintain the ECM-rich tissue 

(Temenoff & Mikos 2000). Furthermore, chondrocytes are embedded within lacunae, 

preventing their migration to sites of injury. Due to these limitations, once injured, 

articular cartilage regularly demonstrates insufficient capacity to heal fully, often 
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leading to defects of the articular joints, causing joint dysfunction, pain and in some 

cases, development of osteoarthritis. In addition to trauma, several diseases and 

disorders exist that lead to damage of cartilage, including osteoarthritis, rheumatoid 

arthritis and osteochondritis dissecans. Osteoarthritis is caused by articular cartilage 

being worn down in joints continually exposed to high stress, resulting in loss of 

cartilage and creation of bone-on-bone joints, causing joint dysfunction and severe pain 

when moved. Rheumatoid arthritis is classified by an autoimmune disorder involving 

the degradation of bone and cartilage in the joints due to attack from the immune 

system. Osteochondritis dissecans is where a piece of bone or cartilage becomes loose 

in the joint, and can lead to destruction of articular cartilage through friction (Emmerson 

et al. 2007). 

 

1.6. Regenerative medicine 

Regenerative medicine refers to the use of artificial organs, specially-grown tissues or 

cells, specific gene or protein therapy, laboratory-made pharmaceutical compounds, or 

combinations of these approaches for treatment of injuries and disease. The idea of 

using cells to cure human diseases has been a key area of research since Paul Niehans 

first practised “cellular therapy” in 1931 by injecting various cell types into individuals 

to act as cures and replace damaged cells (reviewed in Togel et al. 2007). The use of 

cells for therapeutics is highly beneficial due to their plasticity and ability to influence 

multiple disorders at once, both locally and systematically via the release of various 

factors. Furthermore, integration of cells into damaged tissues offers a rapid method of 

healing against a variety of injuries. Introduction of foreign tissue into a patient is 

coupled with the risk that the body will treat the transplanted tissue as an invading 

pathogen and produce an immune response leading to rejection of the tissue. To produce 

a sufficient number of a patient‟s own cells for transplant, most attention has been 

focused on the use of multipotential cells such as embryonic stem cells, somatic stem 

cells and mesenchymal stem cells. 
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1.6.1. Current treatment and therapies 

1.6.1.1. Cartilage defects  

The exact frequency of articular cartilage injury is not known due to the difficulty of 

diagnosis and lack of awareness regarding the symptoms. However, evidence from 

surgery has shown that roughly 66% of knee injuries undergoing surgery showed 

damage to cartilage (Curl et al. 1997). Most defects of the articular cartilage lack the 

capacity to spontaneously heal, resulting in a need for medical intervention. Most repair 

techniques are concerned with replacement of damaged cartilage with a substance that 

can mimic the actions of natural articular cartilage or aid healing of existing cartilage. 

 

1.6.1.2. Bone marrow stimulation using arthroscopic techniques 

Abrasion arthroplasty: This technique is where, during arthroscopic surgery, all 

damaged articular cartilage is removed from the site of damage using an automated 

burr, right down to the subchondral bone. The consequent bleeding and formation of a 

haematoma is thought to allow the influx of mesenchymal progenitor cells into the site, 

leading to natural autonomous fibrocartilage repair (Johnson 2001). Arthroscopic 

surgery differs from open surgery in that incisions are made only for the arthroscope 

and the surgical instruments, reducing the risk of damage to connective tissue 

surrounding sites of injury.  

Microfracture: Similar to abrasion arthroplasty as it aims to induce autonomous repair 

by stimulating the bodies healing process, this method is an improvement as it avoids 

damage or removal of layers of the subchondral bone.  The microfracture procedure was 

designed for patients with trauma-induced lesions of the knee that have progressed to 

full-thickness chondral defects (Steadman et al. 2001). Injured cartilage is removed 

down to the stable, undamaged mineralised cartilage, which is then carefully removed to 

prevent damage to the subchondral bone. Perforations are then made in the exposed 

bone between 3 to 4mm apart to induce bleeding whilst maintaining bone integrity. 

These perforations allow the release of blood, mesenchymal stem cells and healing 

factors from the bone marrow, inducing the formation of a haematoma that provides 

perfect conditions for new tissue formation (Kasper & Mandelbaum 2006).  

The clinical success of these arthroscopic methods is unpredictable, varying from full, 

but temporary healing of the wound to no lasting remedial effect. Reasons for these 

inconsistencies may include the variable and flexible nature of the repair tissue formed 

and the age and activity levels of the patient (Redman et al. 2005). 
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1.6.1.3. Soft Tissue Grafts  

Periosteal/perichondreal grafts: The membrane lining the outer surface of bones, known 

as the periosteum, is a dense connective tissue containing an outer layer of fibroblasts 

(fibrous layer) and an inner layer of progenitor cells (cambial layer) with chondrogenic 

and osteogenic potential (De Bari et al. 2006). Transplantation of periosteum grafts into 

full thickness defects have been performed by implanting the graft into defects with the 

cambial layer facing the articular surface. Despite production of a hyaline-like tissue 

being reported, periosteal grafts demonstrate a high rate of failure and the little repair 

observed may be due to mesenchymal stem cell release from the subchondral bone 

rather than the effects of the graft (Meyerkort et al. 2010). Grafts utilising the 

perichodrium (the layer of connective tissue which surrounds the cartilage of 

developing bone) have also been tested and have shown similar results to that of 

periosteum grafts (Homminga et al. 1990). However, perichodrium is harder to attain 

and less available than periosteum and is therefore used with less frequency. 

Osteochondral transplantation: Full thickness cartilage defects can also be repaired by 

inserting grafts of existing osteocartilage taken from a less weight bearing region of a 

joint (autografts) or from other individuals (allografts). This method is limited by the 

amount of cartilage available but has been shown to cause a decrease in pain in 70% of 

patients (Temenoff & Mikos 2000). 

 

1.6.1.4. Autologous Chondrocyte Implantation (ACI) 

Autologous chondrocyte implantation involves the introduction of a patient‟s own 

chondrocytes to the site of a wound to promote cartilage healing and requires the 

removal of a healthy biopsy of non-load bearing cartilage from the patient (Brittberg et 

al. 1994) (Figure 1.14). The extracted tissue is digested to release the chondrocytes, 

which are then expanded in culture conditions. When the cell population has reached a 

sufficient size, the chondrocytes are suspended in culture medium and implanted into a 

debrided cartilage defect, covered with a periosteal graft and sealed with fibrin glue. 
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Figure 1.14. Diagram showing the processes involved in autologous cartilage 

implantation (Redman et al. 2005). 

 

Clinical results from use of this procedure have proved varied but have showed an 

overall increase in mobility and decrease in pain in around 75-90% of patients 

(Brittberg et al. 2003), depending on the type and complexity of the cartilage defect, 

with the best results being found when used for healing the femoral condyle cartilage 

(Temenoff & Mikos 2000). Despite its success, there are many areas of ACI that cast 

doubt on its effectiveness. Firstly, a number of questions have risen regarding the effect 

on the extracted chondrocytes when expanded in vitro, such as dedifferentiation of the 

chondrocytes into precursor cells or modification of cell surface proteins. Secondly, 

there is no unequivocal evidence that the implanted chondrocytes are responsible for the 

repair and structural integrity of new cartilage during ACI-mediated repair as there are 

potentially three different sources of cells that could be responsible for the repair of 

cartilage, these are the implanted chondrocytes, precursor cells from the periosteal graft 

or mesenchymal stem cells from the subchondral bone marrow (Redman et al. 2005). 
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1.7. Tissue Engineering 

As technology has improved, a new alternative to tissue grafting and ACI has evolved 

in the form of tissue engineering. Put simply, tissue engineering involves the 

development of biological substitutes for the repair or replacement of damaged tissues, 

and is therefore deemed a highly attractive approach to skeletal tissue repair, 

specifically with regards to cartilage. For tissue engineering to be successful it requires, 

typically, the spatially and temporally coordinated application of multiple separate but 

equally important factors. The first of these is a patient-derived population of cells such 

as chondrocytes, osteoblasts or mesenchymal stem cells that can be expanded in culture. 

Secondly an extracellular matrix or scaffold is required to provide structure and support 

for the cells and define the shape of the new tissue. Specific tissue-inducing growth 

factors such as BMP-2 for bone or TGF-β3 for cartilage are required to induce the 

correct phenotype from the cells (Langer & Vacanti 1993). In some circumstances cells 

can also be manipulated and prepared for tissue engineering using genetic transfection 

to select certain desirable traits. Mechanical stimuli such as compression/pressure, fluid 

flow and tissue shear/deformation also act as key factors in the development and 

maintenance of load-bearing tissues such as bone and articular cartilage. Mechanical 

stimulation via compression or fluid-flow induced shear have been shown to affect cell 

viability, differentiation and proliferation and induce biosynthesis of extracellular 

matrix in both cartilage and bone tissue samples (Lee et al. 2006;Sandino et al. 2008). 

The effects of pressure and shear stress on skeletal tissue development have been 

examined by mechanically stretching, twisting or compressing tissue samples in culture, 

while the effects of fluid flow have been examined using techniques such as spinner 

flasks, rotating-wall bioreactors, and perfusion culture systems that create fluid flow 

around cell constructs (Lee et al. 2006;Yeatts & Fisher 2011). According to (Hutmacher 

2000), the tissue engineering process can be identified into six phases: (1) Manufacture 

of a biocompatible scaffold; (2) seeding of an appropriate cell line onto the scaffold in a 

static culture; (3) expansion of tissue in dynamic culture conditions such as a spinner 

flask; (4) development of matured tissue under physiological conditions such as in a 

bioreactor; (5) surgical transplantation into the patient and finally; (6) assimilation and 

remodelling of the transplant in vivo (Hutmacher 2000). Each of these phases requires 

large amounts of research to ensure appropriate integration.  
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1.7.1. Scaffolds 

The use of biocompatible porous scaffolds that can support adherent cultured cells is 

critical for anchoring the cells within the wound, providing a template for new tissue 

growth and maintaining the cell‟s differentiated state (as monolayer-cultured cells will 

dedifferentiate such as in the case of chondrocytes, where monolayer-cultured 

populations produce Type I collagen instead of Type II, preventing the formation of 

hyaline cartilage). Ideally, scaffolds should be manufactured using materials that closely 

mimic the environment found within the targeted tissue, that do not produce an 

immunological response, are non-toxic and would be designed so that the bioresorption 

or erosion of the scaffold matched the production rate of new tissue to enable the most 

efficient recovery (Lanza et al. 2007). A variety of materials are currently used in 

scaffold production, including naturally derived polymers such as collagens and FDA 

approved synthetic polymers such as poly(ethylene glycol) (PEG) and poly(L-lactic 

acid) (PLLA). Other polymers are under investigation and have yet to be FDA 

approved, such as poly(lactic acid-co-lysine), which is designed to promote the 

differentiation and proliferation of specific cell types (Panetta et al., 2009). Naturally 

derived biomaterials, particularly collagens, are favoured as scaffolds for bone and 

cartilage repair as they can be found within the normal structure of the tissues. Due to 

this, collagen scaffolds allow efficient attachment of cells and are recognised and 

remodelled by enzymes released during the production of new tissue, providing space 

for its expansion (reviewed in Glowacki & Mizuno 2008). Clinical testing of natural 

scaffolds using Type I and III collagen (known as matrix-induced autologous 

chondrocyte implantation (MACI™)) has shown hyaline-cartilage formation and partial 

restoration of the articular surface and is a more effective method than microfracture 

(Redman et al. 2005). Testing of a hyaluronan-based scaffold known as Hyalograft C 

has met with success and has shown 96.7% of repair tissue was hyaline cartilage and 

87% of patients showed normal or nearly-normal function of the knee after 17 months 

(Pavesio et al. 2003). Issues with use of natural biomaterials include the difficulty to 

produce large amounts of the polymers and fears over the presence of pathogens within 

the materials, highlighting the need for development of a cheap and easily producible 

synthetic polymer that replicates the conditions of the natural tissue. Use of FDA-

approved synthetic materials such as poly(glycolic acid) (PGA) and PLLA show 

attachment and proliferation of cells at a level only slightly less than that of collagen 

scaffolds (Suh & Matthew 2000). In a recent study, chondrocytes cultured on a 
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poly(vinyl alcohol) (PVA) and poly(caprolactone) (PCL) scaffold that mimics the ECM 

present in cartilage, demonstrated retention of the chondrocyte phenotype and enhanced 

secretion of extracellular matrix components in comparison to chondrocytes cultured on 

a natural polymer composed of gelatin-albumin (Mohan & Nair 2010). Despite their 

advances over some existing treatments, the use of scaffolds still has many areas that 

require improvement such as the continued need for surgery to implant the scaffold and 

problems with the adhesion of synthetic grafts with existing tissue within a wound. As 

an alternative to fibrous scaffolds, hydrogels can be manufactured from both natural and 

synthetic polymers and show great potential for tissue engineering, as they can mimic 

the structural and functional characteristics of natural extracellular matrices,  

can be injected into a wound to form a matrix in-situ (Nicodemus & Bryant 2008). 

Hydrogels have demonstrated support of growth and differentiation of many tissues 

types, including cartilage, bone and fat (Pound et al. 2006;Tan et al. 2009;Brandl et al. 

2010). 

 

1.7.2. Tissue-inducing signals 

In order to be applied to damaged tissue, it is crucial that a cell population is exposed to 

the correct conditions to form the required phenotype. In this sense, inductive 

substances such as growth factors play a vital role. The addition of an appropriate 

growth factor during tissue engineering can induce the differentiation of cells into a 

specific lineage or can enhance the production of tissue-specific factors such as ECM 

from the cells. Growth factors are naturally-produced polypeptides with the ability to 

promote cell growth, proliferation, differentiation and maturation. Certain growth 

factors such as those from the transforming growth factor-β (TGF-β) superfamily play 

fundamental roles in the formation of bone and cartilage. 

 

1.7.2.1. Transforming growth factor-β (TGF-β) superfamily 

Members of the TGF-β superfamily have been shown to play a role in both bone and 

cartilage development (Frenkel et al. 2000). The TGF-β superfamily includes five 

isoforms of TGF-β (TGF-β1-5), bone morphogenetic proteins (BMPs), inhibins, 

Activins, müllerian inhibiting substance and many other growth factors, all of which 

have similar primary amino acid sequences and form dimeric molecules (Massague 

1990). TGF-β members are produced in an inactive form and are activated by extreme 

pH or proteolytic cleavage of a latency-associated peptide (LAP) (Grimaud et al. 2002).  
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TGF-β1-3 are highly expressed during bone and cartilage development, remodelling and 

during wound healing. TGF-β1 plays an important role promoting migration, 

proliferation and differentiation of preosteoblast cells and in the production of matrix 

proteins (Tang et al. 2009). However, it inhibits later stages of differentiation, which is 

instead regulated by BMPs and other TGF-β superfamily members (Janssens et al. 

2005). TGF-β1 is also present in cartilage from the precartilaginous stage through to the 

mature and mineralising stages and has been shown to promote chondrogenesis in a 

variety of cell types, including embryonic mesenchymal stem cells, periosteum-derived 

cells and early chondrocytes (Kato 1992). TGF-β2 and TGF-β3 also act in bone 

formation and repair by inducing osteoblast development and the formation of pre-bone 

cartilage (Linkhart et al. 1996;Janssens et al. 2005). TGF-β2 and TGF-β3 rapidly induce 

differentiation of bone marrow-derived mesenchymal stem cells into chondrocytes by 

preventing hypertrophy, regulating growth and stimulating production of cartilage-

specific matrix including fibromodulin, aggrecan, decorin, Type II collagen (Barry et al. 

2001). TGF-β1 has also been shown to induce chondrogenesis in bone marrow-derived 

mesenchymal stem cells but to a lesser extent than that of TGF-β2 and -β3 (Barry et al. 

2001). 

 

1.7.2.2. Bone morphogenetic proteins 

Bone morphogenetic proteins (BMPs) are multifunctional polypeptides belonging to the 

TGF-β superfamily that were first described as promoters of bone formation by 

Marshall Urist in 1965 (reviewed in Marcus et al. 2007) and subsequently cloned by 

John Wozney and colleagues, enabling their use in tissue engineering (Wozney et al. 

1988). BMPs act as proliferation and differentiation stimuli for many tissues and have 

been shown to induce cartilage and bone formation both in vivo and in vitro (Akino et 

al. 2003;Noel et al. 2003). Around 30 different BMPs have been identified to date, with 

BMP-2, 3, 4, 5, 6, 7, and 8 comprising the human family members, all of which signal 

through serine/threonine kinase receptors comprising a heterodimer of various Type I 

and Type II isoforms (Chen et al. 2004). An eighth molecule; BMP-1, also shows bone 

and cartilage-inducing properties via activation of TGF-β family members such as 

BMP-2 and BMP-4, but is structurally different and not classed as part of the TGF-β 

superfamily (Hopkins et al. 2007). BMPs, specifically BMP-2 and BMP-7, have been 

used in various clinical trials for skeletal repair and have produced some very promising 

results. A previous trial known as the BMP-2 evaluation in surgery for tibial trauma 
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(BESTT) treated 450 tibial fracture patients with either recombinant human BMP-2 or 

the standard fracture treatment (control group). It was found that significantly more 

patients had faster wound-healing and lower risk of failure or need for intervention 

when treated with BMP-2 (Govender et al. 2002). 

 

1.7.3. Cell therapy in tissue engineering 

1.7.3.1. Embryonic stem (ES) cells 

Stem cells are defined by their ability to differentiate into more than one cell type and 

their ability to maintain a consistent population, maintaining cell division indefinitely 

(known as self-renewal) (Taylor et al. 2001). Embryonic stem cells are extracted from 

the inner cell mass of the blastocyst during early stage embryonic development (Figure 

1.15). These cells are pluripotent, meaning they are able to differentiate into all cell 

types derived from the three primary germ layers: ectoderm, endoderm, and mesoderm 

(Evans & Kaufman 1981). Human ES cells were first isolated by Thomson and 

colleagues in 1998 (Thomson et al. 1998). When no differentiation stimulus is present, 

such as when grown in vitro, ES cells maintain pluripotency through proliferation, 

allowing cultures to be maintained indefinitely (Pera et al. 2000). To maintain an 

undifferentiated state in culture, ES cells require the presence of specific conditions 

such as feeder cells, chemically defined medium or cytokines such as FGF-2 (Biswas & 

Hutchins 2007). Despite their potential for producing cures to a large number of 

diseases and disorders, the use of human embryonic stem cells is beset by problems 

such as ethical issues and tissue rejection problems (Pera et al. 2000;Outka 

2002;Takahashi & Yamanaka 2006). The first clinical trial using human ES cells for 

treatment of patients is currently being performed by the Geron corporation, with the 

aim to induce recovery of feeling and movement in patients with spinal cord injuries. 

 

Figure 1.15. The development of embryonic stem cells. 
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1.7.3.2. Induced pluripotent stem cells 

Induced pluripotent stem cells (iPSCs) are pluripotent stem cells typically derived via 

the introduction of stem cell-related genes into non-pluripotent cells by retroviral 

transfection. Takahashi and Yamanaka first generated iPSCs in 2006 by introducing the 

stem cell factors Oct-3/4, Sox2, c-myc and Klf4 into mice fibroblasts (Takahashi & 

Yamanaka 2006). Since then, iPSCs have been established from human somatic cells 

using a variety of stem cell factors, including OCT-3/4; SOX2; NANOG; LIN28; C-

MYC and KLF-4 (Takahashi et al. 2007;Yu et al. 2007;Zaehres et al. 2010). Human 

iPSCs demonstrate growth properties, morphology, stem cell surface and genetic 

markers, epigenetic status of stem cell-specific genes, and telomerase activity similar to 

that found in human ES cells, whilst also demonstrating the ability to differentiate into 

all three germ layers (Takahashi et al. 2007). Use of retroviral transfection poses risks of 

random genetic modification and creation of cancerous cells, eliciting a need for 

alternative methods for insertion of the inducing factors. Such alternatives include use 

of non-integrating adenoviruses (Stadtfeld et al. 2008) and delivery of protein forms of 

pluripotency-inducing factors (Zhou et al. 2009;Cho et al. 2010). 

 

1.7.3.3. Somatic (adult) stem cells and progenitor cells 

Adult stem cells are derived from adult tissues. This process removes any ethical 

controversy regarding their use as isolating a population of somatic stem cells does not 

require destruction of an embryo. Adult stem cells are present in most tissues, such as 

neural (Gage 2000), epidermal (Watt et al. 2006), hepatic (Alison & Sarraf 1998) and 

mesenchymal tissues (Caplan 1991). Somatic stem cells are often termed progenitor 

cells, as they define the intermediate stage between a pluripotent stem cell and the 

differentiated cell. Due to the confusion regarding the nomenclature of these cells the 

definition of these cells often varies. When compared to ES cells, somatic stem cells 

have a reduced ability to self-renew and are only multipotent as they are already 

partially specialised; only able to differentiate into cell types found in the organ from 

which they are derived.  
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1.7.3.4. Human bone marrow stromal cells (hBMSCs) and the mesenchymal stem cell 

Bone marrow contains two different types of stem cells; the haemopoietic stem cells 

(HSCs), which give rise to red blood cells, white blood cells and platelets; and the 

multipotent mesenchymal cells, which were termed as “mesenchymal stem cells 

(MSCs)” or “human bone marrow stromal cells (hBMSCs)” by Friedenstein and 

collegues (Togel et al. 2007). There is currently no unequivocal evidence for the 

existence of MSCs in vivo (Baksh et al. 2004), and knowledge of the location and 

distribution of MSCs in organisms is scant (Bianco et al. 2001). Despite this, the 

existence of MSCs is generally accepted, as populations of hBMSCs have demonstrated 

the ability to differentiate into osteoblasts, adipocytes, chondrocytes, myocytes, neurons 

and hepatocytes (Pittenger et al. 2000;Sanchez-Ramos et al. 2000;Baksh et al. 2004) 

(Figure 1.16). MSCs are considered an ideal candidate for use in therapeutic medicine 

as they are multipotent, versatile, easy to grow and can be used for transduction of 

therapeutic genes into a host. Since the realisation that MSCs could be used for 

regenerative therapy of many different tissues, many scientific papers have been 

released detailing the regulation of MSC differentiation and the plasticity of MSCs. 

However, distinct boundaries between MSCs and progenitor cells have yet to be defined 

due to the heterogeneous populations often produced by MSCs in culture (Bianco et al. 

2001). Therefore very little is known about the phenotypic characteristics of these cells 

as the “true” MSC has yet to be isolated and characterised. To fully characterise the true 

MSC, it is necessary to carry out physiological, genetic and biochemical studies at the 

single-cell scale to obtain significant data. 

Due to the uncharacterised nature of differences between true MSC and later, more 

defined stages such as progenitor cells, nomenclature for hBMSCs varies greatly from 

paper to paper. Examples of terms coined to date include mesenchymal stem cells, 

stromal precursor cells, skeletal stem cells, bone marrow stromal cells, osteogenic stem 

cells and marrow stromal fibroblastic cells (Oreffo et al. 2005). A paper backed by the 

International Society for Cellular Therapy, produced by Horwitz and colleagues, 

attempted to clarify the nomenclature for hBMSCs. It was suggested that fibroblastic-

like plastic adherent cells should be termed multipotent mesenchymal stromal cells, and 

that only cells demonstrating true stem cell properties be termed mesenchymal stem 

cells (Horwitz et al. 2005). Currently, populations of cells with the ability to 

differentiate into skeletal tissues are often termed as skeletal stem cells. 
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Figure 1.16. The connective tissue family (Bonfield 2010). MSCs have the ability to 

differentiate into many different types of cell.  

 

Isolation of MSCs from bone marrow extracts is simplified by the fact that MSCs and 

the progenitor cells will adhere to tissue grade plastic when cultured while haemopoietic 

cells will not.  The standard method used to identify MSCs is the colony forming unit-

fibroblastic (CFU-F) assay, which produces clonogenic, fibroblast-like populations 

(Friedenstein et al. 1970), although these populations maintain heterogenity and many 

cells are not multipotent (Gronthos et al. 2003;Bianco et al. 2008) In order to further 

isolate specific cells stage-specific markers are required. However, due to the lack of 

knowledge surrounding the biochemical and phenotypic structure of these cells and the 

sharing of common features with other cells, both epithelial and endothelial (Baksh et 

al. 2004); very few MSC-specific markers have been identified to date and none of 

these have been accepted as a definitive marker for the MSC phenotype, thus requiring 

use of multiple markers to enrich MSC populations (Baksh et al. 2004). Characterisation 

of the MSC cell surface has been carried out by fluorescence activated cell sorting 

(FACS, Figure 1.17 A) (Radbruch 1999) and the similar technique, magnetic activated 

cell sorting (MACS, Figure 1.17 B) (Miltenyi et al. 1990). Current markers known to 

enrich for MSCs include the absence of haematopoietic and endothelial markers (CD45, 

CD34, CD11b and glycophorin A) and the presence of STRO-1, CD29, CD44, CD49a, 
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CD63 [HOP-26], CD73 [SH-3/SH-4], CD90, CD105 [SH-2], CD106, CD146 and 

CD166 [SB-10] (Gronthos et al. 1994;Pittenger et al. 1999;Minguell et al. 2001;Stewart 

et al. 2003;Jones et al. 2006). Table 1.1 displays a list of many surface markers used to 

characterise hBMSCs in the attempt to determine the phenotype of the MSC. Gronthos 

and colleagues have demonstrated that STRO-1
+
 hBMSCs contained the CFU-F cells, 

giving rise to fibroblast, fat, muscle and bone cells, confirming the presence of the 

osteoprogenitor cell and therefore, potentially, the MSC in the STRO-1
+
 population 

(Gronthos et al. 1994). To date, the epitope of STRO-1 remains unknown. 

 

 

Figure 1.17. Graphic illustration of cell isolation using FACS (A) and MACS (B). 

 

 

 

A B 
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Category Surface marker Expression 

Adhesion molecules ALCAM (CD166) + 

ICAM-1 (CD54) + 

ICAM-2 (CD102) + 

ICAM-3 (CD50) ± 

L-Selectin (CD62L) + 

E-Selectin (CD62E) - 

VCAM (CD106) + 

Hyaluronate-R (CD44) + 

Growth factor receptors Interleukin 1-R (CD121) + 

Interleukin 2-R (CD25) - 

Interleukin 3-R (CD123) + 

Transferrin-R (CD71) + 

C-kit-R (CD117) ± 

granulocyte colony-stimulating factor-R (CD114) - 

Platelet-derived growth factor-R ± 

Epidermal growth factor-R ± 

Haematopoietic markers CD1a - 

Integrin, alpha M (CD11b) - 

CD14 - 

CD34 - 

Protein tyrosine phosphatase, receptor type, C (CD45) - 

Prominin 1 (CD133) - 

Endothelial markers PECAM (CD31) ± 

Von Willebrand factor - 

Endoglin (CD105) + 

Melanoma cell adhesion molecule (CD146) + 

Integrins Integrin, α1,2,3,5 (CD49a,b,c,e) + 

Integrin, α4 (CD49d) - 

Integrin, β1 (CD29) + 

Integrin, β4 (CD104) + 

Intracellular markers Vimentin + 

Laminin + 

Stemness markers OCT-4 - 

Nanog - 

Co-stimulatory molecules B7-1 (CD80) - 

B7-2 (CD86) - 

CD40 - 

Other markers Thy-1 (CD90) ± 

5'-nucleotidase (SH-3/SH-4, CD73) + 

STRO-1 + 

Low-Affinity Nerve Growth Factor Receptor (CD271) ± 

 

Table 1.1. Phenotypic characterisation of hBMSCs. Key: +, routinely expressed in all 

studies; ±, variably expressed; -, no expression. (Pittenger et al. 1999;Deans & Moseley 

2000;Minguell et  al. 2001;Devine 2002;Sorrentino et al. 2008;Uccelli et al. 2008;Zhang 

et al. 2009). 
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1.7.3.5. Fetal and extraembryonic tissue-derived cells 

Recently, cells derived from fetal tissues, cord blood and extraembryonic tissues have 

emerged as an alternative to both ES and adult stem cell use and are currently 

undergoing intensive investigation. These cells are attractive for use in regenerative 

medicine due to their avoidance of invasive isolation procedures, primitive phenotype, 

non-tumorigenic nature and high expansion potential (Abdulrazzak et al. 2010). While 

use of extraembryonic tissues has few ethical issues, the isolation of cells from an 

aborted fetus is still subject to public unease. 

 

Umbilical cord blood (UCB) is a rich source of haematopoietic stem cells and 

progenitor cells. UCB-derived cells have demonstrated ability to generate cells with 

characteristics of MSCs in multiple studies (Erices et al. 2000). In a study by Musina 

and colleagues, mononuclear cells isolated from the UCB displayed morphology and 

expression of surface markers similar to that of both adipose and skin-derived MSCs, 

while also demonstrating the ability to undergo both osteogenic and adipogenic 

differentiation (Musina et al. 2007). UCB cells have also demonstrated ability to 

differentiate into hepatocyte-like cells (Hong et al. 2005) and chondrocytes (Choi et al. 

2008). Despite their potential, UCB extracts have been shown to have extremely low 

counts of MSCs and a reduced proliferation rate and opinions are divided as to whether 

the UCB can be regarded as a source of MSCs as effective isolation of MSCs from both 

term and preterm UCB has been varied (Bieback et al. 2004). 

 

Cells isolated from the placenta and umbilical cord connective tissue are considered as 

acceptable alternative sources of large numbers of MSC-like cells. Placenta and 

umbilical cord matrix cells have demonstrated similarity to bone marrow-derived MSC 

populations in both morphology, cell surface marker expression and differentiative 

capacity (Barlow et al. 2008;Zeddou et al. 2010).  

 

Cells derived from fetal blood, femur, liver and amniotic fluid have also demonstrated 

multipotentcy and expression of many MSC markers including CD29, CD44, CD73, 

CD105 (Campagnoli et al. 2001;Soncini et al. 2007). 
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1.8. Microfluidic cell isolation 

The use of analytical science in areas with only minute quantities available, such as 

proteomics, genetics and cell analysis, has led to an ever decreasing amount of reagents 

being used. Handling such small volumes in modern laboratory equipment is difficult, 

therefore many novel, micro-scale techniques and devices have arisen, giving rise to the 

Lab-on-a-chip (LoaC) system. Early integration of mechanical, electrical and thermal 

elements into silicon chips led to the idea of producing LoaC devices incorporating all 

the components necessary to perform a specific analysis, known as micro-total-analysis-

systems (μ-TAS) (Jakeway et al. 2000). These systems have provided many benefits 

and new methods to a variety of research areas including detection and analysis of 

bacteria, viruses and cancers (Arora et al. 2010). LoaCs are cheaper to produce than 

normal laboratory equipment and use very low volumes of reagents; therefore they can 

be used at much lower running costs and for analysis of rare substances and cell types 

(Manaresi et al. 2003). LoaCs are also able to integrate multiple analytical devices and 

can be adapted for portable devices. The majority of LoaC research has been focused on 

increasing the efficiency of DNA amplification and detection, fluid motion and other 

analytical functions, with many devices now commercially available (Mark et al. 2010). 

However, in recent years there has been an increase in development of LoaC systems 

able to manipulate and analyse cells using a variety of different techniques. 

 

Two types of microfluidic cell separation exist: contact and non-contact. Contact 

techniques mainly consist of chemical trapping, where a chemical attached to the chip is 

used to detect a certain molecule within the fluid flow, and hydrodynamic trapping, 

which utilises mechanical obstacles to sieve an object from a fluid suspension (Johann 

2006). Contact methods are generally avoided when attempting to isolate individual 

cells or populations, as contact-free immobilisation prevents damage to, or interference 

with the cells that could lead to false data from samples. A variety of non-contact 

microfluidic cell separation techniques exist, using mechanisms including optical 

trapping, acoustics, magnetic forces and dielectrophoresis. 
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1.8.1. Dielectrophoresis (DEP) 

In a uniform electric field an uncharged particle will polarise and form a dipole, but due 

to the force on the particle being equal and opposite, the particle will not move. DEP is 

the phenomenon whereby particles exposed to non-uniform electric fields experience a 

net force directed towards locations with either increasing or decreasing field intensity. 

The strength of the force is dependent on a variety of factors including the particles‟ 

dielectric properties, determined by the physical properties of the particle such as the 

size and shape and the interior structure; the medium; and the frequency of the electric 

field (Pohl 1978). By varying the frequency of the electric field, it is therefore possible 

to non-invasively distinguish between different cells and particles. Furthermore, DEP is 

effective on all particles, both charged and uncharged. DEP has been developed for use 

in a variety of applications including separation, manipulation, trapping and 

characterisation of particles. DEP utilises the interaction force between a non-uniform 

electric field and the induced dipole of a particle. When a dielectric particle is 

suspended in an electric field, it will polarise. If the electric field is uniform, then the 

attraction between the dipolar charges and the electric field is equal and opposite and 

there is no net movement of the particle unless it carries its own net charge (Hughes 

2002) (Figure 1.18). 

 

Figure 1.18. Diagram showing the lack of net movement of a dielectric particle when 

placed in a uniform electric field. 

 

If the electric field is non-uniform then the attractive forces on either side of the particle 

will be different, resulting in a net force on the particle. The particle will move in the 

direction of greatest electric field gradient, independent of the polarity of the electric 

field. The DEP force is dictated by the relationship between the polarisability of the 

particle and the suspending medium.  
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DEP is classified into two types: positive and negative DEP (Figure 1.19). Which of 

these forces a particle experiences is dependent on its permittivity relative to its 

surrounding medium. When the permittivity of the medium is less than that of the 

particles‟ then the net-force causes it to move towards the increasing field gradient. This 

is known as positive DEP (pDEP). However, in negative DEP (nDEP), the permittivity 

of the medium is greater than the particles, causing the particle to be repelled from areas 

of high electric energy (Medoro et al. 2007). 

 

 

Figure 1.19. Negative (A) and positive (B) dielectrophoresis on a homogenous sphere  

(Medoro et al. 2007). 

 

1.8.2. Dielectrophoresis-specific LoaCs 

Dielectrophoretic separation and manipulation of cells has been greatly improved by the 

development and introduction of microelectronic devices. The majority of microfluidic 

chips involved in DEP use a conducting material such as gold patterned onto an 

insulating substrate such as glass. The patterning is usually performed by 

photolithography (Hughes 2002). The majority of work on DEP-specific LoaCs has 

been undertaken with the aim of creating cell detectors for medical use, for example in 

the detection of cancer (Cheng et al. 1998). Devices with the ability to separate different 

cell types have been previously demonstrated, such as the isolation of CD34+ 

haematopoietic stem cells from bone marrow and blood by Talary and collegues (Talary 

et al. 1995), highlighting the potential for using DEP-specific LoaCs to isolate specific 

MSC populations such as those expressing STRO-1. 

A B 
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New techniques using DEP have provided analytical science with a number of ways to 

isolate single cells from a population. Many different types of DEP single-cell traps 

currently exist, these include pDEP ring-dot, nDEP octopoles and nDEP cages 

(Rosenthal & Voldman 2005).  

 

Positive DEP is a useful technique for patterning cells onto a substrate as this requires 

only a simple electrical setup. Although pDEP can be used effectively without 

significant loss of cell viability, it has been shown to cause considerable damage to cells 

due to field disruption by the regions of high electrical field to which the cells are 

drawn. Prolonged exposure to these regions can create instability in the transmembrane 

voltage of a cell, causing lysis and cell death. In addition, in order to create the 

appropriate environment for pDEP, a media with low ionic content is needed; this can 

be detrimental to the health of the cells, leading to decrease in viability (Thomas 2006).  

 

Negative DEP has many advantages over pDEP, notably the ability to suspend particles 

above a surface for non-contact isolation of single cells, especially important for 

studying adherent cells. Technological advancements in the production of electrodes 

with micro-sized features have led to an increase in the availability of DEP. Different 

electrode designs have been designed for DEP, each providing different properties for 

particle manipulation, for example, the quadrupole electrode uses four electrodes to 

immobilise and levitate a single particle via negative DEP and offers a method to 

separate specific cells for characterisation (Voldman et al. 2003) (Figure 1.20). The 

introduction of octopole electrode designs into DEP (Schnelle et al. 1993) allowed the 

creation of nDEP cages. In this layout, electrodes are placed on both the top and bottom 

surfaces of a trap; the fields produced are able isolate a single cell in the middle of a 

flow channel, allowing single-cell isolation from a flow of cells (Manaresi et al. 2003). 

More recent techniques have looked at using computer-run recognition programs to 

selectively trap specific cells such as those expressing certain levels of fluorescence 

(Thomas 2006). 
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Figure 1.20. Basic representations of quadropole (A) and octopole (B) DEP electrodes. 

 

The introduction of new technologies such as complementary metal–oxide–

semiconductor (CMOS) chips have enabled the development of matrices of DEP 

electrodes (Manaresi et al. 2003), in this method, each of the 102,400 electrode 

elements on the chip contain an integrated transistor, allowing each element to be 

addressed separately. Using groups of these electrodes it is possible to create nDEP 

cages, allowing high throughput single cell trapping. However, use of CMOS 

fabrication is currently expensive and time-consuming and therefore may not be suitable 

for disposable devices. 

 

1.8.3. Cellular reactions to dielectrophoretic manipulation  

One drawback of using DEP for cell manipulation and isolation is the application of 

strong AC fields to cell populations. These fields can induce joule heating of buffer in 

the vicinity of the electrodes, potentially damaging cellular protein and DNA crucial for 

survival and fitness. Furthermore, the fields can alter the electrical potential of the cell 

membrane, stimulating destabilisation and potential cell lysis (Menachery & Pethig 

2005). A crucial study carried out by Steffen Archer and colleagues (Archer et al. 1999) 

showed that under controlled conditions, DEP can be used to manipulate the cells with 

no permanent effect. However, it was shown that cells exposed to DEP showed 

unknown differential gene expression compared to those not exposed to DEP, lasting 

more than 30 minutes after exposure. Use of high frequency AC fields in the Megahertz 

range has been shown to produce fewer problems with disruption of the transmembrane 

potential and use of miniature electrodes has improved heat dissipation (Glasser & Fuhr 

1998). 

A

G 

B

G 
Electrode set 1 

Electrode set 2 

Particle/cell 



44 

 

1.8.4. Mechanisms of detection for cell trapping 

1.8.4.1. Optical detection 

The majority of methods for trapping and manipulation of cells require manual 

activation. This is not suitable for high throughput assays and therefore it has become 

apparent that automated systems are required. Optical observance of cells by 

microscopy is an established technique with much of the equipment readily available, 

making this an obvious method for automated detection of specific cells in a 

microfluidic chip. This method uses a microscope-mounted camera to send images to a 

computer using rule-based algorithms to identify and trap particles according to specific 

characteristics such as colour or shape (Thomas 2007). One way of simplifying the 

software-based recognition of cells is to use fluorescent labelling. By using 

immunogenic labelling for specific membrane-bound antigens it is possible to ensure 

that fluorescence is expressed by a specific cell type, for example, fluorescent labelling 

of MSCs expressing STRO-1. Labelling of cells with a combination of different 

fluorescently labelled antibodies can be used to further isolate specific cell types.  

One disadvantage of optical detection is the requirement for optical devices such as 

microscopes which are often bulky and require complex setup, making them 

inappropriate for LoaC systems. However, integration of optical detection into an LoaC 

system is possible (Manaresi et al. 2003) and is an area for future research and 

development. 

 

1.8.5. Microfluidic analysis of single cells 

1.8.5.1. Electrorotation  

As described by Pohl (Pohl 1978), when a dielectric particle is suspended in a fluid, the 

interaction between a non-uniform field and the induced dipole can generate a torque on 

the particle, causing it to rotate. It is thus possible to use quadrupole electrodes to 

produce and control the rotation of a particle by subjecting it to a rotating electrical field 

(Arnold & Zimmermann 1982). The speed at which a particle rotates is related to the 

dielectric properties of the particle, the suspending medium and the electric field, as 

such, by knowing the properties of the medium and electric field, electrorotation can be 

used to measure the electrical properties of cells (Fuhr et al. 1985). 

It has been demonstrated that electrorotation provides a very sensitive method for 

determining the physiological state of cells and their sensitivity to chemicals and other 

agents (Arnold & Zimmermann 1988).  
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1.8.5.2. Impedance spectroscopy 

Most current analysis techniques involve labelling of cells using antibody-bound 

substrates e.g. FACS, MACS. Dielectric analysis of cells, also known as 

electrochemical impedance spectroscopy (EIS), offers a label-free method analysis and 

can be carried out on-chip (Gawad et al. 2001;Gawad et al. 2004). Impedance 

spectroscopy measures the electrochemical impedance of the cell. The cell is placed 

between a set of AC electrodes between which current and voltage are measured to 

determine the base electrical impedance. The presence of a cell between the electrodes 

causes distortion of the electrical field, altering the impedance of the system and 

allowing the impedance and in turn, the electrical properties of the cell to be determined 

(Figure 1.21). EIS is carried out over a variety of frequency ranges and can provide data 

on the structural features of a cell according to their affects on overall impedance 

(Gawad et al. 2001). 

 

 

 

Figure 1.21. Impedance spectroscopy of a single cell (Gawad et al. 2004). 
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1.9. Aims and Objectives 

The aim of this thesis was to further the understanding of both adult and fetal 

mesenchymal stem cells and the mechanisms regulating their stem cell state and their 

differentiation towards bone and cartilage tissues. To achieve this goal, this thesis set 

out to develop novel microfluidic-based technologies for the isolation and 

characterisation of mesenchymal stem cells. In addition, this thesis has examined a 

subpopulation of fetal femur-derived cells expressing a novel cobblestone phenotype 

and has assessed the potential of a novel 3D organotypic system for modelling 

skeletogenesis using fetal-derived cells. 

 

Objectives: 

 To isolate, culture and characterise a novel cobblestone phenotype Induced by use 

of chemically defined media on human fetal femur cell populations. 

 To determine the viability of fetal femur-derived cells in organotypic pellet culture 

and assess the effects of osteogenic and chondrogenic stimulatory factors on 

organotypic culture and their ability to promote formation of cartilage- or bone-like 

tissue in vitro. 

 To develop novel dielectrophoresis-based microfluidic devices (in collaboration 

with the Electronics and Computer Sciences department, University of 

Southampton) for the isolation of specific subpopulations of cells. 

 To demonstrate the purity, viability and growth of cells isolated using microfluidic 

devices in culture and characterise recovered populations. 
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2.1. Materials and reagents 

All tissue culture, histological reagents and biochemical reagents were obtained from 

Sigma-Aldrich Ltd. unless otherwise indicated, including α-MEM (minimum essential 

medium, α-modification, M0644), phosphate buffered saline (PBS, P4417), foetal calf 

serum (FCS, 8K3381),  trypsin-EDTA (ethylenediamine tetra-acetic acid, T4174), 

bovine serum albumin (BSA, A3294), Tris-EDTA (Tris-hydrochloric acid EDTA, 

T9285), alkaline buffer solution (A9226), alkaline phosphatase assay kit with Sigma 

104® phosphatase substrate (104-0) and AP standard (104-1), Naphthol AS-MX 

Phosphate 0.25% (855) and Fast Violet B Salts (F1631). PicoGreen® dsDNA 

quantification reagent (P7589), Cell tracker green™ CMFDA (C7025) Vybrant® 

CFDA SE cell tracer kit (V12883) and Vybrant® DiD (V-22887)/DiO (V-22886) were 

all purchased from Invitrogen UK. Alcian blue 8GX (343291G) and Sirius red F3B 

(341492F) were purchased from VWR International. Anti-Type I collagen antibody 

(rabbit anti-human polyclonal, LF67) was purchased from Dr Larry Fisher (NIH, 

Bethesda, USA). Sources for all other primary antibodies can be found in Table 2.1. 

Relevant secondary antibodies and ExtrAvidin Peroxidase (E2886) were purchased 

from Sigma-Aldrich. Human recombinant transforming growth factor-β3 (TGF-β3, 

PHG9305) was purchased from Invitrogen. Recombinant BMP-2 was sourced as part of 

a collaboration with Professor Walter Sebald, University of Wurzburg, Germany. 

Molecular biology reagents were purchased from Invitrogen Life Technologies, UK, 

including TRIzol solution (15596-018), Superscript™ first-strand synthesis system 

(11904-018), SuperScript™ III Reverse Transcriptase (18080-044) and Power SYBR 

Green PCR master mix (4367659). Molecular biology reagents were also purchased 

from Promega UK Ltd., including RNase-free DNase (M6101) and dNTPs 

(deoxynucleotide triphosphates, U1511). DNA-free RNA Kit (R1013) was procured 

from Zymo Research Corporation (http://www.zymoresearch.com). First strand primers 

for RT-PCR were ordered from Sigma-Genosys, UK and are listed in Table 2.2. 

 

2.2. Tissue Culture 

2.2.1. Human bone marrow preparation and stromal cell culture 

Bone marrow samples were obtained from haematologically normal patients undergoing 

routine total hip replacement surgery (Figure 2.1 A). Only waste tissue was used, with 

approval from the Southampton & South West Hampshire Local Research Ethics 
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Committee (LREC 194-99). Marrow stromal cells were obtained as previously 

described (Oreffo et al. 1998). Marrow samples were washed vigorously in α-MEM up 

to 4 times (Figure 2.1 B) and the resulting suspension was centrifuged at 1100rpm for 4 

minutes at 4C. The pellet was resuspended and run through a 70μm filter to remove 

large debris. Remaining cells were plated to culture flasks at appropriate densities. 

Cultures were PBS washed and media changed after one week to remove non-adherent 

cells and red blood cells. Cells were cultured in -MEM containing 10% FCS at 37°C 

with 5% CO2 and passaged at confluence for maintenance or use in experiments (Figure 

2.1 C).  A list of samples used in these studies can be found in Appendix 1. 

 

 

Figure 2.1. Isolation of human adult bone marrow stromal cells (hBMSCs) from bone 

marrow aspirants. (A) Marrow sample after collection; (B) Marrow aspirant after 

repeated media washes; (C) tissue cultured hBMSCs. Scale bar: 100µm.  

 

2.2.2. STRO-1
+
 immunoselection of adult stromal cells 

Magnetically activated cell separation (MACS) was used to isolate the STRO-1
+ 

population from adult marrow cells as described (Howard et al. 2002). Following bone 

marrow preparation, lymphoprep solution was added to the cell solution to remove red 

blood cells via centrifugation. The remaining cells were resuspended in blocking 

solution (PBS containing 5% FCS and 1% BSA) and incubated in the presence of 

STRO-1 antibody hybridomas for 1 hour. The solution was washed with MACS buffer 

(PBS containing 1% BSA) and incubated with MACS anti-IgM beads for 45 minutes. 

The cell suspension was passed through a MACS column located next to a magnet to 

remove the STRO-1
-
 fraction. After two further washes, the magnet was removed and 

MACS buffer was passed through the column to produce the STRO-1
+
 fraction, which 

was cultured in -MEM containing 10% FCS at 37°C with 5% CO2 

 

A B C 
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2.2.3. Isolation and culture of fetal femur-derived cells 

Human fetal tissue was obtained with informed and written consent from terminations 

of pregnancy according to guidelines issued by the Polkinghorne Report and ethical 

approval from the Southampton & South West Hampshire Local Research Ethics 

Committee (LREC 296100). Fetal femurs at 7-12 weeks post conception were isolated 

from the fetus by Prof Neil Hanley and Prof David Wilson, Human Genetics Division, 

University of Southampton. Femurs were dissected in sterile PBS to remove 

surrounding skeletal muscle (Figure 2.2). Femurs were plated into T25 flasks overnight 

in 2ml -MEM containing collagenase B. The cell solution was passed through a 70μm 

filter to remove debris, spun down and resuspended in -MEM containing 10% FCS. 

Cells were maintained at 37°C with 5% CO2. Fetal age was determined by measuring 

fetal foot length and described as weeks post conception (WPC). A list of fetal samples 

used in these studies can be found in Appendix 1. 

 

Figure 2.2. Femur isolation pictures. (A) on collection; (B) before processing; (C) after 

processing; (D) explanted fetal cells in culture. Scale bar: 100µm.  
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2.2.4. Culture of established cell lines 

Immortalised human MG-63 cells, a line derived from an osteosarcoma (ATCC, CRL-

1427) were cultured as monolayer cultures in DMEM plus 10% FCS. Cells were 

maintained at 37°C with 5% CO2 and passaged at confluence for maintenance or use in 

experiments.  

 

2.2.5. Differentiation media 

2.2.5.1. Osteogenic conditions 

To promote osteogenesis, cells were cultured in appropriate culture media (DMEM for 

established cell lines, α-MEM for primary cell lines) containing 10% serum plus 100μM 

ascorbic acid 2-phosphate, 10nM dexamethasone and 150ng/ml BMP-2. 

 

2.2.5.2. Chondrogenic conditions 

To promote chondrogenesis, cells were cultured in appropriate media containing no 

FCS, supplemented with 100μM ascorbic acid 2-phosphate, 10nM dexamethasone, 

10μl/ml 100x ITS solution and 10ng/ml TGF-β3. 

 

2.2.5.3. Adipogenic conditions 

Confluent cell cultures were treated with appropriate media containing 10% serum, 

1μM dexamethasone, 10μg/ml 100x ITS solution (insulin - transferrin - sodium selenite 

solution), 0.5mM 3-isobutyl-1-methylxanthine (IBMX) and 100 μM indomethacin. 

 

2.2.6. Cell passage  

Monolayer cells were rinsed with PBS to remove excess medium and cell debris and 

incubated with 1X trypsin at 37°C for 5-10 minutes to allow breakdown of adhesion 

proteins. Media plus FCS was added to the resulting cell solution to deactivate the 

trypsin and the suspension was centrifuged at 1100rpm for 4 minutes. The supernatant 

was discarded and cells resuspended in culture media for use in further culture. 
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2.3. Histological analysis 

2.3.1. Viability assays 

2.3.1.1. Live/dead staining 

Cell viability was examined using Cell Tracker Green™ CMFDA (5-

chloromethylfluorescein diacetate), which labels metabolically active cells green and 

ethidium homodimer-1, which labels necrotic or damaged cells red. 10μl DMSO was 

added to 50μg of cell tracker green and added to 5ml media along with 25μg ethidium 

homodimer. This solution was added to cell cultures for a 1 hour incubation at 37°C. 

The media was removed and fresh culture media was added for 1 hour to remove any 

residual dye. Samples were rinsed in PBS and fixed in 90% ethanol for 15 minutes 

before being re-immersed in PBS for visualisation. 

 

2.3.1.2. Long-term assays 

For long term viability assays the Vybrant® CFDA SE cell tracer kit 

(carboxyfluorescein diacetate, succinimidyl ester) was used. For most uses, the cells 

were stained whilst in suspension to aid uniform labelling. Cells were centrifuged at 

1100rpm for 4 minutes to obtain a cell pellet and the supernatant was removed. 500μg 

of Vybrant CFDA was dissolved in 90μl DMSO and added to prewarmed PBS, which 

was added to the cells. The suspension was incubated at 37°C for 30 minutes, 

centrifuged and resuspended in fresh prewarmed culture media for a further 30 minutes 

to ensure complete activation of the fluorescent probe. The cells were washed once 

more in culture media before being cultured. 

 

2.3.2. Sample preparation 

Samples were fixed using 90% ethanol or 4% paraformaldehyde in PBS (15 minutes 

incubation in ethanol or overnight for PFA). Monolayer cultures were washed and 

resuspended in PBS at 4°C until ready for staining. 3D cultures (fetal femurs, cell 

pellets) were processed through graded alcohols after fixation (90%, 100% for 30 

minutes each), cleared in chloroform (50% chloroform/ethanol, 100% chloroform twice, 

for 30 minutes each), soaked in paraffin wax at 60°C for at least 30 minutes to allow the 

sample to become saturated with wax, embedded in wax blocks for sectioning. 

Sectioning was performed on a Microm 330 microtome at 7μm and sections were 

transferred to pre-heated glass slides for staining. In preparation for staining, paraffin 
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sections were incubated in 2 histoclear solutions for 7 minutes each to remove the wax, 

and rehydrated by 2 minute incubations in 100% methanol (twice), 90% methanol and 

50% methanol before being submerged in a cold water bath for 10 minutes. 

 

2.3.3. Alcian blue/Sirius red staining 

Weigert‟s haematoxylin was added to rehydrated samples for 10 minutes to stain the 

cell nuclei, followed by a water and acid alcohol (20ml hydrochloric acid in 2 litres 50% 

methanol) rinse to remove excess stain. Samples were immersed in 0.5% Alcian blue 

8GX for 10 minutes to stain for proteoglycans, followed by a water rinse. Sections were 

placed in 1% molybdophosphoric acid for 20 minutes to prepare the samples, followed 

by a 1 hour incubation in 0.1% Sirius red F3B to stain for collagen. Slides were rinsed 

thoroughly with water and dehydrated in reverse graded methanols back in to histoclear 

before mounting in dibutyl phthalate xylene (DPX; Sigma 317616). 

 

2.3.4. Immunocytochemistry 

Rehydrated samples were incubated with 3% H2O2 for 5 minutes to quench endogenous 

peroxidase activity and blocked with 1% bovine serum albumin (BSA) in PBS for 30 

minutes. Positive slides were drained and incubated with the primary antibody overnight 

at 4°C (diluted in 1% BSA in PBS). Following incubation, residual antibodies were 

removed from sections by rinsing in water and incubating the sections in wash buffer 

(0.1% tween in PBS) for 5 minutes. Biotin-conjugated secondary antibody was diluted 

in 1% BSA in PBS (1:100) and incubated with sections for 1 to 2 hours at room 

temperature. Sections were rinsed and incubated for a further 30 minutes in ExtrAvidin 

peroxidase solution at room temperature (1:50 dilution in 1% BSA in PBS) (Sigma, 

E2886). Antibody binding was developed using 3-amino-9-ethyl-carbazole (AEC, 

Sigma A5754) in acetate buffer containing H2O2, to yield a reddish-brown reaction 

product. Slides were counterstained in Light Green or Alcian Blue for 1 minute, rinsed 

in water and mounted with crystal mount. Negative controls either lacked treatment 

with the relevant primary antibodies or were incubated with suitable isotype controls. 

No staining was expected to be observed in negative controls. 
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2.3.5. Immunofluorescent staining 

Samples were prepared for staining following the same protocol as used for 

immunocytochemistry. After overnight incubation with the primary antibody (Table 

2.1), the relevant Alexafluor 594-conjugated secondary antibody (Invitrogen) was 

diluted in 1% BSA in PBS (1:100) and added to slides for a further 1 to 2 hour 

incubation at room temperature. Samples were washed and incubated for 5 minutes with 

DAPI solution diluted in PBS (1:100), washed in running water and mounted in 

Fluromount (Sigma F4680). Examples of positive and negative controls can be found in 

Appendix 2. 

 

Samples fixed in PFA required permeabilisation and antigen retrieval when staining for 

some antibodies, such as those for internal or nuclear markers. Ethanol-fixed samples 

did not require permeabilisation or antigen retrieval due to the non-crosslinking nature 

of the fixative. Antigen retrieval was performed prior to blocking by treating rehydrated 

slides with 0.01M citrate buffer in a microwave for 5 minutes. Permeabilisation was 

performed by adding 0.1% tween to the normal PBS + 1% BSA blocking buffer and 

incubating for 30 minutes prior to addition of the primary antibody. 

 

 

 

 



56 

 

 

Table 2.1. List of antibodies used during immunohistological analysis.
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2.3.6. Alkaline phosphatase staining 

Samples were rinsed in PBS, fixed in 90% ethanol for 15 minutes and rinsed again in 

PBS. Naphthol AS-MX Phosphate (4% v/v) and Fast Violet B salt (0.024% w/v) were 

mixed in water following a modified Sigma-Aldrich protocol, applied to fixed samples 

and incubated until the stain turned a red-purple colour. The reaction was terminated by 

adding distilled water. 

 

2.3.7. Oil red O staining 

Samples were rinsed in PBS, fixed in Baker‟s formal calcium (4% formaldehyde plus 

calcium chloride), rinsed with 60% isopropanol and incubated in double-filtered Oil 

Red O solution for 15 minutes. The reaction was terminated by adding distilled water. 

 

2.4. Biochemical analysis 

2.4.1. Preparation 

Samples were fixed in 90% ethanol, air dried and treated with 0.05% TRITON-X100 to 

induce cell lysis. Samples were taken through at least 3 freeze/thaw cycles with repeated 

distruption of the cells via scraping or sonication. Samples were kept at -20°C until used 

in biochemical assays. 

 

2.4.2. PicoGreen® dsDNA quantification 

10μl of lysed cell solution was added to 90μl Tris-EDTA buffer and 100μl of diluted 

PicoGreen® solution in Tris-EDTA buffer (1:200) per well in a black 96-well cyto-fluor 

plate. Plates were read using a BioTek FLx-800 96-well plate reader at 480nm 

excitation and 520nm emission. Results were expressed as ng/ml DNA. 

 

2.4.3. Quantification of alkaline phosphatase activity 

10μl cell lysate was added to 90μl 2-amino-2-methyl-1-propanol buffer containing 

100mM p-nitrophenolphosphate (pNPP) per well in a clear 96-well plate. The samples 

were incubated at 37°C and timed until a colour change occurred, at which point the 

reaction was stopped using 100μl of sodium hydroxide (NaOH). Plates were read on a 

BioTek ELx-800 colourimetric plate reader at 410nm absorbance. Results were 

expressed as nmol pNPP/hr, whilst specific alkaline phosphatase activity (derived by 

comparing the total DNA with alkaline phosphatase expression) was expressed as nmol 

pNPP/ng DNA/hr. 
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2.5. Molecular analysis 

2.5.1. TRIzol RNA extraction 

Cell samples were washed thoroughly with PBS and placed on ice. 1 to 2 TRIzol 

reagent (Invitrogen, 15596-018) were added and the samples were broken down by cell 

scraping (Simms et al. 1993). The resulting solution was transferred to a molecular 

grade eppendorf and either stored at -80°C until needed or used immediately. To isolate 

the RNA from the extracted samples, 200μl chloroform was added, mixed by vortex and 

spun at 13000rpm for 15 minutes to separate the organic phenol layer from the 

inorganic aqueous layer containing the RNA. The aqueous phase was transferred to a 

fresh eppendorf and precipitated with 600μl isopropanol overnight at -20°C. The 

samples were centrifuged to provide an RNA pellet, washed with 75% ethanol, air dried 

and resuspended in ultra pure water at 65°C. Samples could be kept at -80°C until 

needed or used immediately.  

 

2.5.2. RNA cleanup 

RNA samples were purified using the Zymo DNA-free RNA kit. Samples were digested 

with DNase I for 15 minutes at 37°C, mixed with RNA binding buffer and run through 

RNA collection columns. The columns were treated with wash buffer to remove any 

remaining DNA or protein. To recover purified RNA, columns were treated with ultra 

pure water at 65°C, centrifuged and the eluate collected into fresh eppendorfs. 

 

2.5.3. cDNA synthesis 

cDNA was produced using the SuperScript© first-strand synthesis system (Invitrogen, 

11904-018). Purified RNA was incubated at 65°C for 5 minutes with free dNTPs and 

Oligo(dT) primers to begin cDNA synthesis, followed by a 50 minute incubation at 

42°C with Reverse Transcriptase II, RNase OUT recombinat RNase Inhibitor, 10x RT 

buffer, 25mM MgCl2 and 0.1M DTT to produce full cDNA strands. The reaction was 

terminated by a 15 minute incubation at 70°C. cDNA samples could be stored at -20°C 

until needed for PCR. 

 

2.5.4. Quantitative RT-PCR 

Real-time PCR was performed using SYBR Green PCR master mix (Applied 

Biosystems). 96-well PCR plates were loaded with master mix, forward and reverse 
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primers for specific genes (Table 2.2) and cDNA and loaded in to an Applied 

Biosystems real-time PCR system and run with a dissociation stage. Data was analysed 

using the delta – delta Ct (crossover threshold) method. Ct values for genes of interest 

were compared with those for housekeeping genes (GAPDH) to provide relative 

expression. 

 

Gene Primer sequences Amplicon size 

Human RUNX2 

(NM_001024630, 

NM_001015051) 

F: 5‟ gta gat gga cct cgg gaa cc 3‟ 

R: 5‟ gag gcg gtc aga gaa caa ac 3‟ 

78 bp 

Human ALP 

(NM_000478) 

F: 5‟ gga act cct gac cct tga cc 3‟ 

R: 5‟ tcc tgt tca gct cgt act gc 3‟ 

86 bp 

Human COL1A1 

(NM_ 000088) 

F: 5‟ gag tgc tgt ccc gtc tgc 3‟ 

R: 5‟ ttt ctt ggt cgg tgg gtg 3‟ 

52 bp 

Human Osteocalcin 

(NM_199173) 

F: 5‟ ggc agc gag gta gtg aag ag 3‟ 

R: 5‟ ctc aca cac ctc cct cct g 3‟ 

102 bp 

Human SOX9  

(NM_000346) 

F: 5‟ ccc ttc aac ctc cca cac ta 3‟ 

R: 5‟ tgg tgg tcg gtg tag tcg ta 3‟ 

74 bp 

Human COL2A1 

 (NM_001844, NM_033150) 

F: 5‟ cct ggt ccc cct ggt ctt gg 3‟ 

R: 5‟ cat caa atc ctc cag cca tc 3‟ 

58 bp 

Table 2.2. List of primers used for RT-PCR. 

 

2.5.5. RNA amplification and the RT
2
 Prolifer™ PCR array system 

For analysis of gene expression in small samples, RNA was amplified and qPCR 

performed using the RT
2
 PCR array system. RNA extraction and clean up was 

performed using the Arcturus® PicoPure® isolation kit (Applied Biosystems, 

KIT0204). RNA was amplified for 2 rounds according to the manufacturer's 

instructions, using the Arcturus® RiboAmp® HS PLUS kit (Applied Biosystems, 

KIT0525) that amplifies total RNA up to 1,000,000-fold. cDNA first strand synthesis 

was performed using the RT
2 

first strand kit (SABiosciences, C-03). Synthesised cDNA 

was combined with ready-to-use RT
2
 SYBR Green/ROX qPCR Master Mix 

(SABiosciences, PA-012) and aliquoted onto the pre-dispensed plate containing the 

relevant RT
2
 PCR array primer set (Mesenchymal stem cell PCR array, SABiosciences, 

PAHS-082). 
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2.6. Microfluidics 

2.6.1. Cell tracking for microfluidics 

To aid in identification of cells during microfluidic isolation and separation of cell 

types, Vybrant™ labelling solutions (carbocyanine) were used that fluoresced under 

green and red wavelengths. Vybrant DiD (red) was used to stain negative cell 

populations and DiO (green) was used to stain positive populations (Table 2.3). Vybrant 

labelling solution was added to dissociated cells suspended in PBS pre-warmed to 37°C 

(1:200 dilution) and incubated at 37°C for 7 minutes. Cell were washed twice with PBS 

to remove any excess dye and resuspended in the relevant buffer for microfluidic 

manipulation. Greater than 90% of cells expressed fluorescence in all stains and cells 

were found to retain cell viability and demonstrate proliferation at normal rates, as well 

as maintaining fluorescence for at least 3 days (Figure 2.3). 

 

Tracer  Catalog # Abs (nm)  Em (nm) 

DiO (green) V-22886 484  501  

DiD (red) V-22887 644  665  

Table 2.3. The different Vybrant cell tracers and their absorbance/emission spectra. 

 

  

  

Figure 2.3. Captured images of fluorescently stained MG-63 cells. Vybrant DiD red 3 

days after staining (A) and after passage (C). Vybrant DiO green after staining (B) and 

after passage (D). Scale bars: 100µm. 

A B 

C D 
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2.7. Image capture and analysis 

Sample images were captured using a Zeiss Axiovert 200 inverted microscope and Zeiss 

Axiovision software version 4.7. Light microscopy images were captured using an 

Axiocam HR camera, whilst fluorescent images were captured using an Axiocam MR. 

 

2.8. Statistics 

Statistical analysis was carried out using the Student‟s t-test or One-way Analysis of 

Variance (ANOVA) with Tukey-Kramer multiple comparisons post-test using the 

statistics software integrated into GraphPad Prism and InStat software. Values were 

expressed as mean ± standard deviation. All experiments were performed using at least 

3 separate populations unless otherwise stated. Results for each population were 

performed in triplicate unless otherwise stated. Values for p≤0.05 were considered 

significant. 
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CHAPTER 3 

CHARACTERISATION OF A NOVEL COBBLESTONE 

PHENOTYPE OBSERVED IN FETAL FEMUR-DERIVED 

CELL POPULATIONS CULTURED IN CHEMICALLY 

DEFINED MEDIA 
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3.1. Introduction 

Tissue engineering requires the coordinated application of a number of important 

factors including a suitable population of cells, an extracellular matrix or scaffold to 

provide structure and support for the cells and to define the shape of the new tissue and 

specific tissue-inducing growth factors to induce the correct phenotype from the cells 

(Langer & Vacanti 1993). It is essential that the cells selected for use in tissue 

regeneration are capable of producing the correct tissues when inserted into a patient 

and it is critical to identify and isolate skeletal stem cell and progenitor cell populations 

for bone and cartilage restoration. One potential source of skeletal cells to have 

undergone recent study are fetal-femur derived cells. 

 

Fetal femur-derived cells (FFDCs) are typically isolated from femurs 7 to 12 weeks 

post-conception. Younger femurs are characterised by a primitive chondrogenic 

phenotype, with older femurs expressing the first stages of endochondral ossification 

and vascularisation. To date, very few studies have been carried out to determine the 

multipotential and self-renewal properties of FFDCs. However, it has been shown that 

fetal cells can be differentiated along both osteogenic and chondrogenic lineages by the 

addition specific growth factors (Mirmalek-Sani et al. 2006), establishing the 

multipotency of the cells. It has been hypothesised that FFDCs may express similar 

levels of multipotency as the MSCs and may provide a new alternative cell line for 

tissue regeneration (Montjovent et al. 2004). A recent study by Zhang and colleagues, 

demonstrated that FFDCs have a greater osteogenic potential than adult MSCs and 

express many markers in common with adult-derived MSCs, including STRO-1, CD73, 

CD105, CD44, CD90 and CD106, but were also found to express the ES cell markers 

Nanog and OCT-4. Furthermore, approximately 50% of fetal MSCs were found to 

express STRO-1 in any given population, while only 10% of cells expressed STRO-1 in 

adult MSC populations (Zhang et al. 2009). 

 

Tissue culture typically utilises fetal calf serum (FCS) to provide nutrients and growth 

factors that benefit growth and expansion. The complete composition of FCS is 

unknown and different batches may contain considerably different factors and nutrients,  

preventing determination of any specific effect of the FCS on cell processes (Ulloa-

Montoya et al. 2005). Use of chemically defined media (CDM) removes any variability 
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introduced by FCS, allowing improved modelling of cellular growth and differentiation 

on exposure to specific stimulatory factors. One particular serum-free CDM developed 

by Johansson and Wiles (Johansson & Wiles 1995) was able to maintain human 

embryonic stem cells in a undifferentiated, proliferative state when supplemented with 

Activin A and FGF2 (Vallier et al. 2005).  

 

Previous work by Mirmalek-Sani et al, demonstrated that culture of fetal femur cells in 

Activin A/FGF2 supplemented CDM resulted in the establishment of undifferentiated, 

proliferative populations that demonstrated downregulation of differentiation-inducing 

genes (Mirmalek-Sani et al. 2009). Unusually, addition of bone morphogenetic protein-

2 (BMP-2) to CDM-treated cultures resulted in the development of a novel cobblestone-

like phenotype. Cells expressing a cobblestone morphology have previously been 

observed in many different tissues, including epithelial (Davis et al. 1995;Kaushik et al. 

2008), endothelial (Deschaseaux et al. 2007;Kirton & Xu 2010) and haematopoietic 

tissues (de Haan & Ploemacher 2001), but not in mesenchymal tissues. 

 

Activins are members of the TGF-β superfamily and have a wide variety of roles in cell 

maintenance and differentiation. Activin-A is required to maintain pluripotency and 

self-renewal by inducing the expression of both Nodal and FGF-2 (Xiao et al. 2006). 

Self-renewal of stem cells is dependent on activation of the Activin/Nodal/Smad2,3 

pathway along with suppression of the BMP/GDF/Smad5 pathway involved in cell 

differentiation (Vallier et al. 2009). FGF-2 is a member of the FGF family, involved in 

cell division and proliferation. It has been demonstrated that FGF-2 is necessary for 

self-renewal and maintenance of pluripotency in stem cells by acting as a competence 

factor for the Nodal pathway (Vallier et al. 2005).  

 

This study set out to further characterize the fetal femur-cell phenotype, with specific 

regard to that of the novel cobblestone cells resulting from treatment with CDM and 

BMP-2. Heterogeneous CDM-treated populations were subjected to histological and 

microarray analysis, while use of laser-dissection techniques enabled isolation of pure 

populations of cobblestone cells for further microarray analysis. 
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3.2. Methods 

Where not detailed below, methods for FFDC culture and differentiation can be found 

in Chapter 2 (Sections 2.2.3, 2.2.5 and 2.2.6). Techniques used for histological analysis 

of monolayer culture and fetal femurs included Alcian blue/Sirius red staining, Alkaline 

phosphatase staining, Oil Red O staining, immunohistochemistry and 

immunofluorescent staining (see Section 2.3). Biochemical analysis was also performed 

to determine the specific activity of Alkaline phosphatase (see Section 2.4). Analysis of 

FFDC monolayer culture was performed by quantitative RT-PCR (see Section 2.5) 

 

3.2.1. Formation of cobblestone cells 

Freshly isolated fetal cell cultures (passage 0) were established in basal medium for 24-

48 hours, washed with PBS and media changed to chemically defined media (CDM) 

containing 10ng/ml Activin A and 12ng/ml FGF-2 to retain cells in an undifferentiated 

state (Vallier et al. 2005). CDM was composed of 50% IMDM (Invitrogen, 21980-032), 

50% F-12 nutrient mixture (Invitrogen, 31765-027), supplemented with 5mg/ml BSA, 

Lipid 100X at 1% concentration (Invitrogen, 11905-031), 450µM monothioglycerol 

(Sigma, M6145), 7µg/ml insulin (Roche, 1376497) and 15µg/ml transferrin (Roche, 

652202) (Johansson & Wiles 1995). Media changes were carried out every other day for 

a total of 3 times then the media was substituted for CDM plus 150ng/ml BMP-2 for at 

least another 3 media changes. At this stage, large numbers of cells expressing 

cobblestone morphology were usually present in the culture. 

 

3.2.2. Laser dissection microscopy (LDM) 

Cells were cultured and differentiated on membrane slides or Lumox™ dishes for laser 

dissection (Carl Zeiss Ltd.) (Figure 3.1). Membrane slides used for culture of cells for 

laser dissection were non-tissue culture treated and provided non-sterile, requiring 

sterilisation before use. Use of ethanol or other fluid sterilisation techniques affected the 

membrane coating of the slides, therefore gamma irradiation was used to sterilise the 

slides without damaging the membrane. Lumox™ dishes and inserts were tissue culture 

treated and specifically designed with an ultra-thin (25µm), gas-permeable bases that 

allowed laser dissection. Laser dissection of samples was carried out using a PALM 

CombiSystem (Carl Zeiss Ltd.) (Figure 3.2). Isolation of samples was performed via 

positive selection (for membrane slides) or negative selection (Lumox™ dishes).  
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3.2.2.1. Positive selection 

This cell capture method was classed as positive selection as isolation of cells was 

performed by laser cutting around the desired cells and using the laser to “lift” the 

samples into the lid of an Eppendorf tube. Cells could then be transferred to a new 

culture dish or used directly for analysis. Isolation of cells by this method was beneficial 

as it offered minimal risk of contamination of the isolated cells.  

 

3.2.2.2. Negative selection 

This method was only available for cells cultured on a tissue culture treated membrane 

insert placed in a lumox™-based dish. Laser dissection was used to cut the insert 

membrane around desired cells, but not to lift them from the dish. The insert was then 

removed, leaving only the selected cells present on the dish. 

 

 

Figure 3.1. Images of different culture surfaces for laser dissection microscope. 

Membrane-coated slides during culture are demonstrated in (A). The Lumox™ culture 

dishes are shown in culture in (B) and in schematic form in (C). 

 

 

Figure 3.2. PALM CombiSystem setup (A) and a Lumox™ dish in place, ready for 

laser dissection (B). 

A B C 

A B 
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3.2.3. Molecular analysis of cobblestone cells 

Characterisation of cobblestone populations was performed using the RT² Profiler™ 

PCR Array for mesenchymal stem cell markers. Populations of cells were grown in 

αMEM + FCS, CDM + Activin A/FGF2 and CDM + BMP-2 until approximately 90% 

confluence. Only populations expressing strong cobblestone phenotypes after CDM + 

BMP-2 treatment were chosen for analysis. To determine the effects of the different 

media conditions on the cells, molecular results were compared between the different 

conditions to allow observation of gene up-regulation and down-regulation. Results for 

different conditions were compared by calculating the fold change between  normalised 

gene expression in the control and test samples. These values were then converted to 

fold-regulation to present the fold-change results in a biologically meaningful way. 

Only genes with values greater than two fold up-regulation or down-regulation were 

considered relevant. Some genes with relatively high (> 30) average threshold cycles in 

both control and test samples were excluded as their relative expression level was low, 

while all genes with an average threshold cycle greater than the 35 in both samples were 

viewed difficult to interpret as the relative expression level was negligible. 

 

3.2.3.1. Analysis of LDM-isolated cobblestone cells 

Due to the low numbers of recovered cells, extracted RNA was subjected to two rounds 

of RNA amplification using the RiboAmp kit from Molecular devices. Amplification of 

the RNA provided sufficient quantities to allow analysis using the RT² Profiler™ PCR 

Array for mesenchymal stem cell markers from SABiosciences. The amplification 

process is known to cause reduction in RNA sequence length, which can lead to bias 

towards certain nucleic acid sequences (Croner et al. 2009), therefore microarray results 

from isolated cobblestone populations could not be directly compared to those of the 

non-isolated populations. Instead, the trends in gene expression were analysed. Only 

genes with a Ct less than 25 are shown. Genes were normalised against GAPDH (set as 

1) to show relative expression levels. Despite the known risk of bias in amplified 

samples, amplification is a random process, therefore the use of multiple samples to 

provide n ≥ 3, reduced the risk of interpreting false signals. Due to this, only those 

genes demonstrating similar results in all separate populations were considered relevant. 
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3.3. Results 

3.3.1. Histological analysis of human fetal femurs 

Fetal femurs at 7-12 weeks post conception (Figure 3.3 A) were comprised of a 

cartilaginous anlage with an emergent bone collar that increased in size with age of the 

femur. Both the epiphysis and diaphysis of the fetal femurs expressed a strong 

chondrogenic phenotype evidenced by the presence of nucleated cells embedded within 

lacunae of a proteoglycan-rich matrix. However, in comparison to the diaphysis (Figure 

3.3 B), the epiphysis consisted of a more densely populated region of nucleated cells 

with less defined lacunae (Figure 3.3 C). Determination of SOX9 expression established 

that the nucleated cells were indeed chondrocytes (Figure 3.3 H). Sirius red staining 

highlighted collagen-deposition in the emergent bone collar and along the edges of the 

diaphysis (Figure 3.3 B) and in modest quantities in the epiphysis of femurs from more 

developed samples. The presence of alkaline phosphatase (ALP) (Figure 3.3 D) Type I 

collagen (Figure 3.3 E), Type II collagen (Figure 3.3 F), Osteopontin (Figure 3.3 G) and 

low levels of Osteocalcin (Figure 3.3 I) at the sites of collagen deposition confirmed the 

presence of chondrocyte hypertrophy and the emergent bone collar. Analysis of the fetal 

femur by immunofluorescence was limited due to autofluorescence of the fetal femur. 

When explanted, FFDCs expressed a fibroblast-like morphology (Figure 3.3 J). 
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Figure 3.3. Analysis of fetal femur by histology. (A) fetal femur before dissection, (B) 

Alcian blue (proteoglycan) and Sirius red (collagen) staining of diaphysis, (C) Alcian 

blue and Sirius red staining of epiphysis, (D) ALP staining, (E) Type I collagen 

staining, (F) Type II collagen staining, (G) Osteopontin staining, (H) Osteocalcin 

staining (highlighted by arrows), (I) SOX9 staining, (J) explanted fetal cells in culture. 

Scale bar for (A) is 1mm, scale bars for (B-J) are 100µM. 

 

 

 

 

A 

B C 

 

D 

E F G 

H I J 
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3.3.2. Characterisation of fetal femur-derived cells 

When grown in monolayer culture in basal conditions, collagenase-extracted FFDCs 

expressed large amounts of extracellular matrix rich in both Type I and Type II collagen 

fibres (Figure 3.4 A,D). The majority of explanted FFDCs demonstrated some level of 

SOX9 expression, with approximately half the population demonstrating strong 

expression (Figure 3.4 G), confirming that the chondrogenic phenotype was maintained 

in culture, while low levels of alkaline phosphatase suggested some early osteogenic 

activity (Figures 3.5 A,E & 3.6). Negligible Osteocalcin was observed in basal 

conditions. 

 

3.3.2.1. Osteogenic differentiation of FFDCs 

Addition of the osteogenic-inducing factors dexamethasone and ascorbate-2-phosphate 

resulted in increased expression of Type I collagen (Figure 3.4 B), while Type II 

collagen expression was equivalent to that observed in basal cultures (Figure 3.4 E). 

SOX9 expression demonstrated little difference to that observed in basal culture (Figure 

3.4 H) and samples treated with osteogenic media demonstrated  significantly higher (p 

< 0.001) ALP activity in samples treated with osteogenic media than in basal (Figure 

3.5 B,F & 3.6), suggesting differentiation of cells towards the osteogenic lineage. 

Osteogenic cultures further treated with the TGF-β superfamily growth factor, BMP-2 

were found to express lower levels of ALP than those without BMP-2 (Figure 3.5 C,G 

& 3.6). Negligible Osteocalcin was observed in osteogenically treated cultures, 

confirming that no late stage osteogenic differentiation had yet occurred. RT-PCR 

analysis demonstrated that ALP expression was enhanced in samples treated with 

osteogenic media, with basal samples expressing almost 10 fold less ALP mRNA than 

osteogenic cultures (Figure 3.7 A). Two other osteogenic markers; Osteocalcin and 

RUNX2 were also demonstrated to be expressed at significantly higher levels in 

osteogenic cultures than in basal (Figure 3.7 B, D), although the differences were not as 

substantial as those seen in ALP, with osteogenic cultures only expressing 

approximately 3 fold more RUNX2 than basal. The difference between basal and 

osteogenic cultures was least significant for Osteocalcin. Type I collagen expression in 

osteogenic culture was found to be approximately double that of basal cultures (Figure 

3.7 C). Unusually, RT-PCR for SOX9 revealed expression of the gene to be highest in 

osteogenic cultures rather than chondrogenic, with levels of SOX9 approximately 2 
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times greater in osteogenic conditions than in basal (Figure 3.7 E). Upregulation of 

ALP, RUNX2 and Osteocalcin RNA expression, combined with the expression of 

osteogenic markers suggested differentiation of the cells towards an early osteogenic 

phenotype. The higher levels of SOX9 RNA expression indicates increased profileration 

of chondrocytes, while increased RUNX2 expression in FFDCs treated with osteogenic 

media was suggestive of an upregulation of hypertrophy of the chondrocyte progenitor 

population, further indicating a shift towards the osteogenic lineage. 

 

3.3.2.2. Chondrogenic differentiation of FFDCs 

Cultures treated with chondrogenic media maintained modest Type I collagen 

expression similar to that of basal and osteogenic conditions (Figure 3.4 C), but were 

found to express higher levels of chondrogenic marker, Type II collagen (Figure 3.4 F). 

SOX9 staining demonstrated equivocal expression to that observed in basally grown 

FFDCs (Figure 3.4 I). Samples treated with chondrogenic media displayed negligible 

ALP expression and produced biochemical values for ALP below the baseline (Figure 

3.5 D,H & 3.6), demonstrating the lack of osteogenic differentiation in these cultures. 

Negligible Osteocalcin expression was observed in chondrogenic cultures. RT-PCR 

analysis of FFDCs in chondrogenic culture demonstrated significantly reduced ALP 

expression in comparison to basal culture (Figure 3.7 A), while Osteocalcin and RUNX2 

exhibited minimal difference in expression when compared to basal cultures, suggesting 

that neither culture condition induced osteogenic differentiation (Figure 3.7 B, D). Type 

I collagen expression in chondrogenic culture was found to be equivalent to that seen in 

osteogenic culture, with both expressing approximately double that of basal cultures 

(Figure 3.7 C). Chondrogenic cultures expressed significantly less SOX9 RNA than 

basal culture (Figure 3.7 E). The negligible expression of osteogenic markers such as 

ALP, RUNX2 and Osteocalcin, combined with the small increase in Type II collagen 

expression suggested a chondrogenic potential for FFDCs treated with chondrogenic 

media. However, it was clear that the culture of cells in monolayer culture was not 

suitable for inducing a chondrogenic phenotype as negligible changes were seen in 

SOX9 staining and SOX9 RNA expression was downregulated. 
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3.3.2.3. Adipogenic differentiation of FFDCs 

When treated with adipogenic media, fetal femur-derived cell populations displayed 

clear adipogenic differentiation after only 12 days. Cells were found to display the 

characteristic lipid-globule phenotype of adipocytes, evidenced by oil red O staining 

(Figure 3.8 A,B), as well as expressing the adipogenic markers, PPARγ (Figure 3.8 C) 

and FABP-4 (Figure 3.8 D). 

 

 

 

Figure 3.4. Histological analysis of FFDCs after 7 days in basal (left column), 

osteogenic (middle column) or chondrogenic media (right column). Type I collagen (A-

C) Type II collagen (D-F), SOX9 (G-I). Scale bars are 20µm. 
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Figure 3.5. Alkaline phosphatase staining of fetal cells after 7 days in culture in basal 

(A,E), osteogenic (B,F), osteogenic plus BMP-2 (C,G) and chondrogenic media (D,H). 

Scale bars for E-H are 500µm. 
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Figure 3.6. Biochemical analysis of alkaline phosphatase expression in fetal culture at 

day 7. Key: B, Basal; O, Osteogenic; O+, Osteogenic + BMP-2; C, Chondrogenic. 

Values are expressed as mean ± SD, n=6. *** p < 0.001. 

Chond  Osteo + BMP-2      Osteo     Basal 

A B C D 

E F G H 

*** *** *** 



76 

 

 

Relative Alkaline phosphatase expression

Basal Osteo Chond
0

1

2

3

4

5

6

7

8

9

10

Culture condition

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

Relative Osteocalcin expression

Basal Osteo Chond
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Culture condition

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

 

Relative type I collagen expression

Basal Osteo Chond
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Culture condition

R
e
la

ti
v
e
 e

x
p

re
s
s
io

n

Relative RUNX2 expression

Basal Osteo Chond
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Culture condition

R
e
la

ti
v
e
 e

x
p

re
s
s
io

n

 

Relative SOX9 expression

Basal Osteo Chond
0.0

0.5

1.0

1.5

2.0

2.5

Culture condition

R
e

la
ti

v
e

 e
x

p
re

s
s

io
n

 

Figure 3.7. Molecular analysis of fetal femur cells when treated with basal, osteogenic 

or chondrogenic media for 7 days. Relative expression is shown for the osteogenic 

markers alkaline phosphatase (A), Osteocalcin (B), Type I collagen (C), the late 

chondrogenic/early osteogenic marker RUNX2 (D) and the chondrogenic markers SOX9 

(E). Values are expressed as mean ± SD, n=3. Statistical significance of 

increase/decrease compared to basal conditions shown as: ns = non significant,* = p<0.05, 

** = p<0.01, *** = p < 0.001. 
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Figure 3.8. Histological analysis of adipogenic treated fetal femur cultures for Oil red O 

staining (A, B), PPARγ (C) and FABP4 (D). Figures C and D are stained with the 

nuclear dye, DAPI (blue), and the fluorescent antibody-bound Alexafluor 594 (red). The 

large numbers of nuclei highlighted by DAPI are due to the high level of confluence of 

adipogenic cultures. The arrows highlight adipocytes. Scale bars are 100µm (A); 50µm 

(B) and 20µm (C & D). 
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3.3.3. Induction of the cobblestone phenotype 

Culture of FFDCs in CDM containing Activin A and FGF-2 resulted in cells able to 

maintain a fibroblastic, undifferentiated, proliferative state (Figure 3.9 B). After 6 days 

in CDM plus Activin A and FGF-2, the media was substituted for CDM plus 150ng/ml 

BMP-2 in an attempt to induce osteogenic differentiation. Upon addition of BMP-2, 

fetal cells began expressing a cobblestone-like morphology characterised by cells 

becoming rounded and expressing what appeared to be lipid globules (Figure 3.9 C). 

The cobblestone phenotype was found to be more pronounced in confluent patches of 

cell growth. After 6 days in CDM plus BMP-2, approximately 60-70% of the population 

of fetal femur cells expressed the cobblestone phenotype, with the remaining cells 

maintaining a fibroblastic phenotype. Cobblestone cells were only observed in large 

numbers in non-passaged samples (p0); with passaged, trypsinised samples showing 

negligible cobblestone differentiation (Figure 3.9 D). It was also noted that small 

numbers of cells expressed a cobblestone-like phenotype at passage 0 in some, but not 

all, populations of FFDCs before the addition of CDM (Figure 3.9 E). Expression of the 

cobblestone-like cells was maintained alongside the proliferative, fibroblastic cells after 

addition of CDM + Activin A/FGF2 (Figure 3.9 F). Upon addition of BMP-2 to the 

populations, the majority of cells, both fibroblastic and cobblestone-like were observed 

to differentiate into cobblestone cells. Long-term culture of cells in αMEM + FCS 

(Figure 3.10 A) or in αMEM + FCS + BMP-2 (Figure 3.10 B) resulted in an exclusively 

fibroblastic cell population and loss of cobblestone-like cells and addition of CDM + 

BMP-2 directly to populations treated long-term with only αMEM + FCS%, resulted in 

negligible formation of the established cobblestone phenotype. Populations treated 

short-term with αMEM + FCS% but not CDM + Activin A/FGF2 maintained the pre-

cobblestone phenotype and established populations of cobblestone cells when treated 

with CDM + BMP-2, albeit in less numbers than in those cultures pre-treated with CDM 

+ Activin A/FGF2 (Figure 3.10 C). Furthermore, cobblestone cells induced in non pre-

treated populations were centred around areas containing the pre-cobblestone cells 

found in non CDM + BMP-2 treated samples (Figure 3.9 E,F). Cultures of FFDCs 

treated with vascular endothelial growth factor (VEGF), together with CDM + BMP-2, 

demonstrated expression of cobblestone cells similar to populations treated with CDM + 

BMP-2 only (Figure 3.10 D). 



 

79 

 

 

Figure 3.9. Images of fetal femur cells grown in αMEM + 10% FCS (A), CDM + 

Activin A/FGF2 (B) and CDM + BMP-2 (C) at passage 0. Passage 0 cells expressing a 

clear cobblestone phenotype can be seen in samples treated with CDM + BMP-2 but not 

in those at passage 1 or greater (D). In some populations of fetal cells, small numbers of 

cells expressing a cobblestone-like phenotype were observed in both αMEM + 10% 

FCS (E) and CDM + Activin A/FGF2 (F) treated populations, demonstrating the 

presence of the cobblestone phenotype or it's precursor in the heterogeneous fetal femur 

cell population (highlighted by arrows). Scale bars are 100µm. 
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Figure 3.10. Fetal cell populations treated with αMEM + 10% FCS (A), αMEM + 10% 

FCS + BMP-2 (B), CDM + BMP-2 with no CDM + Activin A/FGF2 pre-treat (C) and 

CDM + BMP-2 + VEGF (D). Addition of BMP-2 to fetal cells without CDM media 

failed to produce the cobblestone phenotype. However, addition of CDM + BMP-2 

media to a population of fetal femur cells not pre-treated with CDM + Activin A/FGF2 

induced cobblestone formation, albeit in less numbers than in those pre-treated with 

CDM + Activin A/FGF2. Scale bars are 100µm. 
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3.3.4. Histological characterisation of heterogeneous cobblestone cell populations 

To determine the phenotype of the cobblestone cells, populations of cells were treated 

with αMEM + FCS, CDM + Activin A/FGF2 and CDM + BMP-2 and stained for a 

variety of mesenchymal and endothelial cell markers, a summary of which can be found 

in Table 3.1. The skeletal stem cell marker STRO-1 was expressed in varying levels in 

αMEM treated cells, from approximately 10-30%, highlighting the expected 

heterogeneity of the population for this marker (Figure 3.11 A). In cells treated with 

CDM + Activin A/FGF2 the majority of fibroblastic cells (approximately 80-90%) 

strongly expressed STRO-1 (Figure 3.11 B). In CDM + BMP-2 cultures, the majority of 

fibroblastic cells continued to strongly express STRO-1, whilst cobblestone cells 

expressed STRO-1 across the cell membrane albeit at a lower intensity than observed in 

fibroblastic cells (Figure 3.11 C). Staining for the proliferation marker KI-67 was 

carried out to determine if the cobblestone phenotype was capable of proliferation or 

had undergone terminal differentiation. αMEM and CDM + Activin A/FGF2 treated 

cells maintained a strong expression of KI-67 provided that the cells were subconfluent, 

highlighting the proliferative ability of the fibroblastic cells (Figure 3.11 D, E). The 

majority of cobblestone cells were found to be negative for KI-67, especially in areas of 

cell confluence; with a small number of cobblestone cells and the majority of 

fibroblastic cells in CDM + BMP-2 cultures maintaining some expression (Figure 3.11 

F). Expression of the stem cell marker SOX2 was demonstrated in all three culture 

conditions, with both fibroblastic and cobblestone cells expressing the protein (Figure 

3.11 G-I). The expression of SOX2 was found to be offset from the nucleus in some 

cells, but was attributed to the fixation of the cells causing delocalisation of the protein. 

The stem cell marker OCT4 was also assessed and found to be negative in all cultures 

(Figure 3.11 J-L). 



82 

 

 

Figure 3.11. Histological analysis for stem cell and cell cycle markers. STRO-1 (A-C), 

Ki-67 (D-F), SOX2 (G-I) and OCT4 (J-L) are shown. Arrows highlight patches of 

cobblestone cells in CDM + BMP-2. Green/red fluorescent staining represents the 

expression of the specific marker, while blue staining represents cell nuclei. Except for 

images A-C, stains are set against brightfield images to allow visualisation of cell 

morphology. Scale bars are 100µm (A-C) and 20µm (D-L). 
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Analysis of the osteogenic marker, Type I collagen, showed strong expression in 

fibroblastic cells in all three culture conditions (Figure 3.12 A-C), whilst cobblestone 

cells exhibited negligible expression of the matrix collagen (Figure 3.12 C, highlighted 

by arrows). Type II collagen staining of cobblestone populations showed ubiquitous 

expression in all cultures, with the protein present both on fibroblastic and cobblestone 

cells in equivalent concentration (Figure 3.12 D-F). The early chondrogenic marker, 

SOX9, was expressed in both fibroblastic and cobblestone cells in all conditions, but 

was found to be expressed in greater intensity in cobblestone cells (Figure 3.12 G-I). 

 

 

Figure 3.12. Histological analysis for the osteogenic and chondrogenic markers; Type I 

collagen (A-C), Type II collagen (D-F) and SOX9 (G-I). Arrows highlight patches of 

cobblestone cells in CDM + BMP-2 images where fibroblastic cells are present. Red 

fluorescent staining represents the expression of the specific marker, while blue staining 

represents cell nuclei. Stains are set against brightfield images to allow visualisation of 

cell morphology. Scale bars are 20µm. 
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Observation of potential lipid globules in cells expressing the cobblestone phenotype 

suggested an adipogenic phenotype. Oil red O staining for lipid vacuoles revealed that 

fibroblastic cells in all conditions contained no lipid (Figure 3.13 A, B), while the 

majority of cobblestone cells were shown to contain lipid globules in a ring around the 

edge of the cells (Figure 3.13 C). Expression of the adipogenic markers PPARγ and 

FABP4 was negative in fibroblastic cells (Figure 3.13 D, E, G, H). Cobblestone cells 

were found to ubquitously express PPARγ but not FABP4 (Figure 3.13 F, I). Less than 

1% of cobblestone cells expressed FABP4. 

 

 

Figure 3.13. Histological analysis of adipogenic markers. Oil red O staining for lipid 

vacuoles (A-C), PPARγ (D-F) and FABP4 (G-I). Arrows highlight patches of 

cobblestone cells in CDM + BMP-2 images where some fibroblastic cells are present. 

For Figures D-I, red fluorescent staining represents the expression of the specific 

marker, while blue staining represents cell nuclei. Stains are set against brightfield 

images to allow visualisation of cell morphology. Scale bars are 20µm. 
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Staining for the endothelial marker, CD146 (MCAM) and the haematopoietic marker, 

CD34, was negligible in all 3 culture conditions (Figure 3.14 A-C, M-O).  Positive 

control staining of HUVEC cells demonstrated that the antibodies were effective, 

confirming the negative expression. The vascular endothelial receptor for angiopoietin, 

TIE-2, was present at minimal levels in αMEM + FCS populations (Figure 3.14 D). 

Addition of CDM + Activin A/FGF2 induced an increase in TIE-2 expression, with 

many cells expressing the receptor (Figure 3.14 E). After addition of CDM + BMP-2, 

TIE-2 expression was inhibited in cobblestone cells, with only a few fibroblastic and 

early-cobblestone cells maintaining expression of the marker (Figure 3.14 F). 

Von Willebrand's factor (VWF) was present in all three media conditions (Figure 3.14 

G-I) and was expressed predominantly in the extracellular matrix and on the surface of a 

minority of fibroblastic cells. Cobblestone cells lacked expression of vWF. The 

endothelial marker CD105 (endoglin) was expressed at low levels in αMEM + FCS and 

CDM + Activin A/FGF2 populations and at negligible levels in cobblestone populations 

(Figure 3.14 J-L).  
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Figure 3.14. Histological analysis of endothelial cell markers CD146 (A-C), TIE2 (D-

F), VWF (G-I) and CD105 (J-L) and the haematopoeitic marker CD34 (M-O). Red 

fluorescent staining represents the expression of the specific marker, while blue staining 

represents cell nuclei. Stains are set against brightfield images to allow visualisation of 

cell morphology. Scale bars are 20µm. 
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Histological analysis of alkaline phosphatase levels (Figure 3.15) demonstrated that in 

fetal cell populations treated with CDM plus Activin A and FGF-2, negligible alkaline 

phosphatase was expressed, in contrast with the normal fetal cell phenotype under 

normal culture medium, which expressed low levels of alkaline phosphatase. Addition 

of CDM plus BMP-2 to the cell culture restored some alkaline phosphatase expression, 

although this was not sufficient to restore the phenotype seen in normal culture. 

Furthermore, the staining was only observed in cells expressing a fibroblastic 

phenotype. Biochemical analysis of fetal cells cultured in CDM plus Activin A and 

FGF-2 and in CDM plus BMP-2 showed insignificant differences between the values 

for alkaline phosphatase expression in treated samples and the background levels.   

 

  

 

Figure 3.15. Alkaline phosphatase staining of CDM treated cultures. αMEM treated 

wells expressed low levels of ALP (A), while populations cultured in CDM + Activin 

A/FGF2 expressed negligible ALP (B). In CDM + BMP-2 populations, minor alkaline 

phosphatase expression was observed in some fibroblastic cells but was absent in 

cobblestone cells (C, D). Arrows highlight areas of cobblestone formation. Scale bar is 

100µm. 

A B C 

D 



88 

 

3.3.5. Summary of cell marker expression in fetal cells 

Marker Tissue/function 
Marker expression 

Untreated CDM + A/FGF2 Cobblestone cells 

KI-67 Proliferation ++ ++ - 

SOX2 Stem cells ++ ++ ++ 

OCT4 Stem cells - - - 

STRO-1 MSCs ++ ++ ++ 

Type I collagen Osteogenesis ++ ++ - 

Alkaline phosphatase Osteogenesis + - - 

Type II collagen Chondrogenesis ++ ++ ++ 

SOX9 Chondrogenesis + + ++ 

Oil red O Adipogenesis - - ++ 

PPARγ Adipogenesis - - ++ 

FABP4 Adipogenesis - - - 

CD146 Endothelial cells - - - 

CD105 Endothelial cells + (low) + (low) - 

TIE2 Endothelial cells - - - 

VWF Endothelial cells ++ ++ ++ 

CD34 
Haematopoietic 
cells 

- - - 

Table 3.1. Summary of cell marker expression in FFDCs at passage 0 (untreated), in 

CDM + Activin A/FGF2 treated FFDCs (CDM + A/FGF2) and in fetal femur-derived 

cobblestone cells. Antibody efficacy was confirmed via positive controls. Key: ++ = 

strong ubiquitous staining; + = some staining; - = negligible/absent staining. 
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3.3.6. Molecular characterisation of heterogeneous cobblestone cell populations 

Comparison of CDM + Activin A/FGF2 to αMEM + FCS treated cells demonstrated 

significant differences in expression of 18 genes, 12 of which were up-regulated and 6 

down-regulated (Figure 3.16, Table 3.2). Populations treated with CDM + Activin 

A/FGF2 demonstrated an increased expression of a variety of stem cell markers 

including; FGF2, PROM-1, ZFP42, FZD9, FUT1 and MMP2. A number of genes 

involved in mesenchymal tissue development, including SOX9, BMP2, BMP4, BMP7, 

GDF7 and GDF15 were also upregulated, while genes involved in haematopoietic, 

neuronal and endothelial cell differentiation, including BDNF, JAG1, LIF, PTPRC and 

HGF demonstrated significant down-regulation. The osteogenic promoter, RUNX2, was 

also downregulated. 

 

Addition of CDM + BMP-2 to populations pre-treated with CDM + Activin A/FGF2, 

induced up-regulation of 6 genes and down-regulation of 15 genes, unique to the CDM 

+ BMP-2 populations (Figure 3.17, Table 3.3). Addition of BMP-2 induced up-

regulation of genes including the epidermal and epithelial growth factor, EGF;  the 

growth factor, IGF1; the skeletogenic promoters, BMP-2 and SOX9; the neurogenic 

stem cell marker, NES; and the endothelial marker, VWF. The stem cell marker FZD9 

also demonstrated upregulation. 

 

Addition of CDM + BMP-2 to proliferative cultures resulted in down-regulation of 

genes thought to maintain pluripotency and self-renewal, including FUT1, PROM1, LIF 

and FGF10, as well as other suspected stem cell-related markers such as VCAM1, 

NT5E, THY1 and HGF. Downregulation was also observed in genes involved in skeletal 

development (BMP4, GDF5, GDF6, GDF7 and SMURF2), and other tissues including 

endothelial, epithelial, haematopoietic and immunogenic (BDNF, CSF2, ICAM1 and 

IL6). Other genes exhibiting downregulation included ANPEP and TNF. 
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Figure 3.16. Comparison of αMEM + FCS and CDM + Activin A/FGF2 populations 

analysed using the RT² Profiler™ PCR Array for mesenchymal stem cell markers. 

Columns with a value greater than 1 demonstrate genes only upregulated by addition of 

CDM + A/FGF2, while columns less than 1 demonstrate down-regulated of genes. n=3. 

 

UP-REGULATED DOWN-REGULATED 

SYMBOL GENE NAME SYMBOL GENE NAME 

BMP-2 bone morphogenetic protein 2 BDNF brain-derived neurotrophic factor 

BMP4 bone morphogenetic protein 4 HGF hepatocyte growth factor 

BMP7 bone morphogenetic protein 7 JAG1 jagged 1 

FGF2 fibroblast growth factor 2 LIF leukemia inhibitory factor 

FUT1 fucosyltransferase 1 PTPRC protein tyrosine phosphatase receptor type C 

FZD9 frizzled homolog 9 RUNX2 runt-related transcription factor 2  

GDF15 growth differentiation factor 15   

GDF7 growth differentiation factor 7   

MMP2 matrix metallopeptidase 2   

PROM1 prominin 1   

SOX9 SRY (sex determining region Y)-box 9   

ZFP42 zinc finger protein 42 homolog   

Table 3.2. List of genes affected by addition of CDM + Activin A/FGF2 to αMEM + 

FCS treated cells. 



 

91 

 

1
2

3
4

5
6

7
8

9
10

11
12

A
B

C
D

E
F

G
H

0.01

0.10

1.00

10.00

100.00

F
o

ld
 D

if
fe

re
n

c
e

Column Row

CDM + BMP2

CDM + A/FGF2

 

Figure 3.17. Comparison of CDM + Activin A/FGF2 and CDM + BMP-2 populations 

analysed using the RT² Profiler™ PCR Array for mesenchymal stem cell markers. 

Columns with a value greater than 1 demonstrate genes only upregulated by addition of 

CDM + BMP-2, while columns less than 1 demonstrate downregulated of genes. n=3. 

UP-REGULATED DOWN-REGULATED 

SYMBOL GENE NAME SYMBOL GENE NAME 

BMP-2 bone morphogenetic protein 2 ANPEP alanyl (membrane) aminopeptidase 

EGF epidermal growth factor BDNF brain-derived neurotrophic factor 

FZD9 frizzled homolog 9 BMP4 bone morphogenetic protein 4 

IGF1 insulin-like growth factor 1 CSF2 colony stimulating factor 2 

NES nestin FGF10 fibroblast growth factor 10 

SOX9 SRY (sex determining region Y)-box 9 FUT1 fucosyltransferase 1 

VWF von Willebrand factor GDF5 growth differentiation factor 5 

  GDF6 growth differentiation factor 6 

  GDF7 growth differentiation factor 7 

  HGF hepatocyte growth factor 

  ICAM1 intercellular adhesion molecule 1  

  IL6 interleukin 6 

  LIF leukemia inhibitory factor 

  NT5E 5'-nucleotidase, ecto 

  PROM1 prominin 1  

  SMURF2 SMAD specific E3 ubiquitin protein ligase 2 

  THY1 Thy-1 cell surface antigen  

  TNF tumor necrosis factor 

  VCAM1 vascular cell adhesion molecule 1 

Table 3.3. List of genes affected by addition of CDM + BMP-2 to CDM + Activin 

A/FGF2 treated cells. 
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3.3.7. Isolation of pure cobblestone cell populations 

Further molecular characterisation of FFDC-derived cobblestone cells required the 

isolation of the cobblestone phenotype from heterogeneous populations. Using laser 

dissection microscopy it was possible to isolate cobblestone cells from heterogeneous 

populations for culture and analysis (Figure 3.18 A). Populations of fibroblastic cells 

isolated and recovered from heterogeneous CDM + BMP-2 populations demonstrated 

readherance and proliferation when seeded onto tissue culture plastic and grown in 

CDM + Activin A/FGF2 media (Figure 3.18 B, D). Furthermore, addition of CDM + 

BMP-2 to isolated fibroblast cells resulted in the recovery of the cobblestone phenotype. 

In samples where cobblestone cells were isolated, recovered cells were viable and 

would readhere to tissue culture plastic but failed to proliferate when treated with CDM 

+ BMP-2 media (Figure 3.18 C). 
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Figure 3.18. Phase contrast images of cobblestone cells isolated using laser dissection 

microscopy. 15 minutes post dissection, cells can still be seen attached to dissected 

Lumox™ membrane (A). At 3 days post dissection, cells from both fibroblastic (B) and 

cobblestone isolations (C) can be seen adhered (highlighted by arrows). Isolated 

fibroblastic cells demonstrated proliferation after 2 weeks culture in CDM + Activin 

A/FGF2 (D). Scale bars are 50µm (A-C) and 100µm (D), n=4 populations. 

 

3.3.8. Molecular characterisation of isolated cobblestone cells 

The number of cobblestone cells isolated per population varied from approximately 50-

300 cells depending on the availability of cobblestone cells. Trizol extraction performed 

on isolated populations resulted in minimal recovery of RNA due to the low number of 

cells. This prevented characterisation of the cells via RT-qPCR as the levels of cDNA 

produced were too small to provide reliable results (see Appendix 3). 

Analysis of amplified RNA from isolated cobblestone populations demonstrated 

expression of a variety of genes present in stem cell maintenance and differentiation 

(Table 3.4). Genes expressed during adipogenesis (PPARγ) and skeletogenesis (TGFβ3, 

GDF15, SMAD4, CASP3, ANXA5 and MITF) were found expressed alongside stem cell 

A B 

C D 

Membrane 

Cells 
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markers (FGF2, ALCAM and GTF3A) and stem cell differentiation-inducing genes 

(NUDT6, HDAC1). Other genes demonstrating high levels of expression included the 

integrin genes, ITGA6, ITGAV and ITGB1; the solute carrier family member, SLC17A5; 

GPI transamidase component, PIGS; transcriptional regulator, HAT1; cytoskeletal 

modulator, RHOA and the mesenchymal marker, VIM. Comparison of the gene profiles 

demonstrated that all genes highly expressed (Ct ≤ 25) by dissected cobblestone cells, 

except for PPARG and MITF, were also highly expressed in non-dissected 

heterogeneous populations (see Appendix 3 for list of genes highly expressed in 

heterogeneous populations).  

 

FUNCTION SYMBOL GENE NAME 

MSC markers ALCAM activated leukocyte cell adhesion molecule  

 VCAM1 vascular cell adhesion molecule 1  

 NT5E 5'-nucleotidase, ecto 

 ITGB1 integrin, beta 1 

 GTF3A general transcription factor IIIA  
   

Proliferation FGF2 fibroblast growth factor 2 

 NUDT6 nudix (nucleoside diphosphate linked moiety X)-type motif 6 
   

Adipogenesis PPARG peroxisome proliferator-activated receptor gamma  
   

Skeletogenesis ANXA5 annexin A5  

 CASP3 caspase 3, apoptosis-related cysteine peptidase  

 GDF15 growth differentiation factor 15  

 MITF microphthalmia-associated transcription factor  

 SMAD4 SMAD family member 4  

 TGFB3 transforming growth factor, beta 3  
   

Integrins ITGA6 integrin, alpha 6  

 ITGAV integrin, alpha V 
   

Gene expression HAT1 histone acetyltransferase 1  

 HDAC1 histone deacetylase 1  
   

Other genes related to 

the MSC 

PIGS phosphatidylinositol glycan anchor biosynthesis, class S  

RHOA ras homolog gene family, member A  

 SLC17A5 solute carrier family 17 (anion/sugar transporter), member 5 

 VIM vimentin  

Table 3.4. List of genes highly expressed in microarray analysis of isolated cobblestone 

populations. Shaded genes are not highly expressed in heterogeneous CDM + BMP-2 

populations. Only genes that have a Ct less than 25 are shown. n=4 populations. 
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3.4. Discussion 

Previous studies have demonstrated the multipotency and phenotype of FFDCs and their 

potential as an alternative source of skeletal stem cells for use in tissue engineering 

(Montjovent et al. 2004;Mirmalek-Sani et al. 2006). This study has re-examined the 

characteristics of whole fetal femurs and their explanted cells at 7 to 12 weeks post 

conception and has furthered previous analysis of the phenotypes induced in FFDC 

populations by the addition of chemically defined media. 

 

Fetal femurs used in this study were predominantly composed of a cartilage anlage 

bordered by emergent bone collar, and explanted cells expressed a predominantly 

fibroblastic morphology, matching the phenotype previously reported (Mirmalek-Sani 

et al. 2006). Due to the presence of both cartilage anlage and perichondrium/periosteum, 

it is still unknown if the majority of cells cultured from fetal femur digests are early 

chondrocytes (cartilage anlage) or fibroblastic/mesenchymal stem cells 

(perichondrium). Cultures of explanted FFDCs were positive for the mesenchymal stem 

cell markers; CD105 (low expression) and STRO-1, while also demonstrating 

expression of the skeletal markers ALP and SOX9, confirming the mesenchymal 

phenotype of the cells. The adipogenic markers, PPARγ and FABP4 were negligible, 

confirming the lack of adipogenic cells in fetal femur digests. FFDCs were negative for 

CD146, TIE-2 and CD34, indicating the absence of cells belonging to the endothelial or 

haematopoietic lineages. While the endothelial marker, CD146, has been recently 

recognised as a potential marker for MSCs isolated from a variety of fetal and adult 

tissues (Covas et al. 2008), it has not yet been confirmed in fetal femur-derived 

populations. While FFDCs lacked expression of the CD146 and TIE-2, the endothelial 

marker vWF was expressed in a small number of cells and the extracellular matrix, 

inferring the presence of a minority of cells with some subendothelial characteristics. 

The strong expression of vWF in the ECM of FFDC cultures is likely due to the 

secreted protein's ability to interact with Type I collagen (Sharapova et al. 2009). 

Considering the marker expression demonstrated by FFDCs, as well as the fact that 

chondrocytes are expected to be the most frequent cell type present in fetal femurs due 

to their cartilage-rich phenotype, it is likely that the majority of cells cultured from fetal 

femur digests are early chondrocyte/chondroprogenitor and mesenchymal progenitor 

populations, while a minority of cells expressed subendothelial characteristics. Previous 
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studies into the expression of STRO-1 in populations of FFDCs have resulted in varied 

results, ranging from 3% of cells to 50% of cells expressing STRO-1 (Mirmalek-Sani et 

al. 2006;Zhang et al. 2009). While exact values for STRO-1 have not been calculated 

using FACS, in this study, direct comparison between FFDC and hBMSC populations 

enabled observation that expression of STRO-1 in FFDC populations was repeatedly 

higher than in adult marrow-derived cell populations, suggestive of a population of 

mesenchymal precursor cells in fetal femur digests. In the few studies that exist, data on 

expression of ES cell markers in FFDC populations is contradictory, with some studies 

demonstrating the presence of both NANOG and OCT-4 in FFDCs (Guillot et al. 

2007;Zhang et al. 2009) and others demonstrating lack of expression of NANOG and 

OCT-4 (Mirmalek-Sani et al. 2006). While this study found no expression of OCT-4 in 

FFDCs, ubiquitous expression of SOX2, another ES cell marker essential for 

maintenance of self-renewal were observed. The lack of OCT-4 expression may be an 

artefact of culture in monolayer conditions before fixation and staining. This data, 

combined with the presence of stem cell markers in other fetal tissues, indicate the 

presence of early developmental cells within the fetal femurs or the maintenance of 

stem cell-like characteristics throughout fetal femur-derived populations. 

 

FFDCs demonstrated the ability to form both osteogenic and adipogenic tissues in 

monolayer culture, confirming the multipotency of FFDCs and other fetal tissue-derived 

cells as shown by previously published data (Campagnoli et al. 2001;Mirmalek-Sani et 

al. 2006;Zhang et al. 2009). Expression of high levels of both Type I and Type II 

collagen in all cultures was noted as a side effect of monolayer culture, demonstrating a 

significant effect of monolayer culture on the phenotype of cells. Failure to produce 

homogeneous cartilage-like populations, evidenced by high levels of the osteogenic 

marker Type I collagen and poor expression of the chondrogenic marker SOX9,  further 

demonstrated that while monolayer culture is useful for expansion of isolated cells, it is 

ineffective for facilitating total differentiation of cells. The multipotency of FFDC 

populations suggests that the cells were predominately composed of early skeletal 

progenitor cells, which despite exhibiting chondrocyte characteristics, maintained the 

ability to differentiate into multiple mesenchymal tissues when treated with the relevant 

inducing factors. Alternatively, monolayer culture of differentiated cells such as 

chondrocytes is known to induce dedifferentiation towards a more fibroblastic 
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phenotype (Goessler et al. 2005), thus FFDC cultures may exhibit multipotency due to 

dedifferentiation of early chondrocytes towards an early skeletal progenitor that 

maintains multipotentcy. Addition of the osteogenic inducer, BMP-2, to fetal 

populations treated with osteogenic media resulted in significantly reduced alkaline 

phosphatase activity, substantiating the data previously described by Mirmalek-Sani et 

al. (2006). 

 

Studies have demonstrated the use of chemically defined media (CDM) on embryonic 

stem cells to maintain an undifferentiated and proliferative population of viable cells 

(Johansson & Wiles 1995;Vallier et al. 2005). A study performed by Mirmalek-Sani et 

al. demonstrated induction of undifferentiated and proliferative populations of FFDCs 

when cultured in monolayer conditions with CDM supplemented with Activin A and 

FGF2. Furthermore, treatment of these proliferative populations with BMP-2 resulted in 

the establishment of a novel cobblestone cell morphology (Mirmalek-Sani et al. 2009). 

This study confirms that treatment of FFDC populations with CDM + Activin A/FGF2 

results in transformation of the heterogeneous cell populations towards a more 

homogeneous, undifferentiated mesenchymal progenitor phenotype and presents 

evidence that CDM + BMP-2 induced cobblestone cells are the result of a BMP-2-

induced primitive adipogenic phenotype. 

 

FFDCs cultured in CDM + Activin A/FGF2 demonstrated up-regulation of the FGF2 

and ZFP42 genes involved in maintaining stem cell properties by promoting cell 

renewal and suppressing differentiation (Raman et al. 2006), alongside up-regulation of 

the WNT signalling receptor and mesenchymal stem cell marker, FZD9 (Battula et al. 

2008); FUT1, a gene strongly expressed by hESCs (Satomaa et al. 2009); and MMP2, a 

gene strongly expressed in MSCs and involved in stem cell migration (Lapidot et al. 

2005;Ries et al. 2007). Expression of these genes indicates that the addition of Activin 

A and FGF2 promotes dedifferentiation of the cells towards an undifferentiated, 

proliferative stem cell-like phenotype, similar to a previous study by Battula and co-

workers, where adult mesenchymal stem cell populations cultured in a chemically 

defined media supplemented with FGF2 demonstrated upregulation of FZD9 and other 

stem cell markers including NANOG and OCT-4, as well as demonstrating multipotency 

(Battula et al. 2007). Downregulation of various genes involved in the promotion of 
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endothelial, epithelial and haematopoietic tissue differentiation, including HGF (You & 

McDonald 2008); PTPRC (CD45) (Shivtiel et al. 2008) and BDNF (Wang et al. 2008), 

combined with upregulation of genes involved in mesenchymal differentiation and 

development, such as SOX9, BMP2, BMP4, BMP7, GDF7 and GDF15, indicated that 

the undifferentiated, proliferative populations produced by addition of Activin A and 

FGF2 were dedifferentiating towards a more homogeneous population of mesenchymal 

progenitors. Cells treated with CDM + Activin A/FGF2 also demonstrated strong 

expression of the MSC marker STRO-1 in the majority of cells, further indicating a 

multipotent and proliferative mesenchymal state.  

 

Down-regulation of stem cell-related genes such as FUT1, PROM-1 (a gene thought to 

maintain pluripotency by suppressing differentiation (Bauer et al. 2008)), LIF (a 

cytokine that maintains cells in a stem cell state (Jiang et al. 2002;Metcalf 2003)) and 

HGF (involved in stem cell migration (Forte et al. 2006)) in CDM + BMP-2 treated 

cultures, combined with the strong expression in LDM-isolated cobblestone cells of the 

anti-proliferative FGF2-antisense gene, NUDT6 and HDAC1, a gene responsible for cell 

fate determination during stem cell differentiation, alluded that the majority of cells 

were in the process of differentiation away from a stem cell phenotype towards a 

terminal differentiation. Loss of expression of VCAM1 (CD106), NT5E (CD73) and 

THY1 (CD90), markers for MSC cells (see Section 1.7.3.4), further corroborated BMP-

2-induced loss of the proliferative, self-renewing phenotype. However, strong 

expression of the stem cell/MSC markers ALCAM and FGF2 in LDM-isolated 

cobblestone populations indicate that cobblestone cells maintain some stem-cell 

characteristics. Cobblestone cells were observed to lack expression of the proliferation 

marker KI-67 and cobblestone cells isolated with laser dissection demonstrated 

readherence to tissue culture plastic but failure to proliferate, further indicating the 

cobblestone phenotype to be a terminal differentiation. The expression of KI-67 in 

CDM + BMP-2-treated fibroblastic cells and a small number of cobblestone cells 

suggested that the small number of cobblestone cells expressing KI-67 were early 

cobblestone cells that had yet to reach terminal differentiation. 

FFDC cobblestone cells lack endothelial and haematopoietic marker expression but 

demonstrate lipid retention and strong expression of the adipogenic marker, PPARγ, as 

well as retention of other mesenchymal cell markers, including STRO-1, Type II 
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collagen and SOX9. Furthermore, populations of cobblestone cells isolated by laser 

dissection strongly express the adipogenic gene PPARγ, indicating that the cobblestone 

cells have an adipogenic phenotype. Poor FABP4 expression and limited numbers of 

lipid vacuoles observed in cobblestone cells is suggestive of a primitive adipogenic 

phenotype. The adipogenic hypothesis was furthered by the fact that insulin and BMP-2, 

both found in cobblestone-inducing media, are known to induce adipogenic 

differentiation in mesenchymal precursor cells (Kang et al. 2009) and cultures of 

preadipocyte cells such as 3T3-L1 demonstrate morphology similar to that of the FFDC-

derived cobblestone cells (Guo et al. 2004;Bohm et al. 2008). Expression of SOX9 and 

Type II collagen in the cobblestone cells was not unexpected due to the inherent 

chondrogenic nature of FFDCs and the cartilage-inducing properties of BMP-2 (Pan et 

al. 2008). The presence of the osteogenic markers ALP and Type I collagen in the 

fibroblastic cells but not in the cobblestone cells observed in CDM + BMP-2 cultures 

indicates that addition of BMP-2 to FFDCs treated with CDM may induce both early 

osteogenic (fibroblastic) and adipogenic (cobblestone) differentiation, explaining the 

presence of both a fibroblastic and cobblestone phenotype as BMP-2 is known to induce 

both osteogenic and adipogenic differentiation (Mikami et al. 2011). 

 

The cobblestone phenotype induced by culture in CDM + BMP-2 was found to be more 

pronounced in confluent patches of cell growth, suggesting that some attributes of the 

phenotype may be due to the spatial environment. The presence of cobblestone-like 

precursors in FFDC cultures shortly after digest indicates the presence of cobblestone 

precursors in fetal femur digests. However, while the pre-cobblestone cells demonstrate 

the ability to form cobblestone cells when treated with CDM + BMP-2, prior addition of 

CDM + Activin A/FGF2 resulted in significantly increased cobblestone cell formation, 

suggesting that cobblestone cells required a proliferative, undifferentiated precursor. 

The inability of FFDCs cultured for long periods of time in αMEM + FCS%  to form 

cobblestone cells, even with addition of CDM + Activin A/FGF2 and CDM + BMP-2, 

indicated a culture-induced differentiation of cells towards a phenotype unable to form 

cobblestone cells.  

 

Previous studies have demonstrated that cells with a cobblestone morphology are 

present in both early trophoectodermal and endodermal (Talbot et al. 2000), endothelial 
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(Deschaseaux et al. 2007;Kirton & Xu 2010) and epithelial cells (Davis et al. 

1995;Kaushik et al. 2008). Mesenchymal stem cells have been shown to possess the 

ability to differentiate into endothelial cells in vitro when grown in low serum culture 

(Oswald et al. 2004), provoking the original hypothesis that the FFDC-derived 

cobblestone cells were expressing endothelial characteristics despite their strong 

mesenchymal phenotype. FFDC-derived cobblestone cells demonstrated upregulation of 

RNA expression for the epidermal and epithelial growth factor, EGF and the endothelial 

marker VWF, suggestive of an endodermal-derived cell lineage. However, FFDC-

derived cobblestone cells demonstrated a lack of staining for the endothelial markers 

CD146, vWF and TIE-2, indicating that the cells did not belong to the endothelial 

lineage. Expression of vWF in the ECM and some fibroblastic cells in FFDCs treated 

CDM + BMP-2, suggested the maintained expression of a subpopulation of fibroblastic 

cells with subendothelial characteristics. Cobblestone-like cells have also been 

previously observed in haematopoietic tissues in the cobblestone-area forming assay, 

used to establish colonies of haematopoietic stem and progenitor cells (de Haan & 

Ploemacher 2001). However, the lack of expression of the haematopoietic marker, 

CD34 and the perivascular marker, CD146 in FFDC cobblestone cells suggests a non-

haematopoietic lineage (Shi & Gronthos 2003).  

 

In conclusion, this study has demonstrated that fetal femur-derived cell populations are 

multipotent and are predominantly composed of early chondrocytes and other skeletal 

precursors, with some cells with subendothelial characteristics also present. The 

addition of CDM supplemented with Activin A and FGF2 resulted in the shifting of 

cells towards a more homogeneous population of proliferative and undifferentiated 

mesenchymal precursor cells, while addition of CDM supplemented with BMP-2 

induced formation of cobblestone cells with a primitive adipogenic phenotype. The 

arrest of adipogenic differentiation at the preadipocyte stage may be accounted for by 

the lack of late adipogenic inducers in the chemically defined media, therefore, future 

work to determine whether the cobblestone cells are able to differentiate into mature 

adipocytes could be performed with the addition of adipogenic supplements such as 

high glucose content, dexamethasone, isobutylmethylxanthine (IBMX) and 

indomethacin. Furthermore, bovine endodermal cells derived from the inner cell mass 

of 7 to 8 day blastocysts have been observed growing as tight knit colonies with 
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cobblestone morphology and expression of numerous lipid vacuoles in the cells (Talbot 

et al., 2000), thus expressing a similar morphology to that of the cobblestone cells 

induced in CDM + BMP-2 treated FFDC populations. Therefore, analysis of FFDC 

cobblestone cells for markers of endoderm and trophoblast populations would enable 

definition of whether FFDC-derived cobblestone cells have characteristics of non-

mesenchymal lineages or are truly adipogenic. Finally, the lack of comparability 

between amplified and non-amplified RNA samples hindered the analysis of isolated 

cobblestone cells. While amplification was chosen as the optimal route for analysis of 

gene expression due to funding and time constraints, future work using alternative 

methods for single cell molecular analysis, such as microfluidic diagnostic chips, would 

enable a clearer image of the genetic makeup of laser dissected cells. 

 

The majority of studies utilising FFDCs, have focused on the isolation of fetal MSCs 

and characterisation of their phenotype in comparison to adult MSCs. These studies 

have confirmed that fetal femur-derived cells offer a potential alternative to adult 

hBMSCs as a source of MSCs with greater stem-like characterisitics. Investigation of 

the growth and differentiation potential of FFDCs in common tissue engineering 

protocols, such as 3D pellet culture or bioreactor culture, is required before these cells 

can be deemed suitable for use in tissue regeneration. The following chapter (Chapter 4) 

describes the utilisation of FFDCs in a 3D pellet culture model and investigates the 

phenotypes derived from growth in osteogenic and chondrogenic conditions over 28 

days.  
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CHAPTER 4 

DEVELOPMENT OF A NOVEL 3D ORGANOTYPIC AIR-

LIQUID INTERFACE MODEL FOR SKELETOGENESIS 

USING FETAL FEMUR-DERIVED CELL POPULATIONS 
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4.1. Introduction 

As previously described in Section 1.7, stem cell based tissue engineering is viewed as a 

promising approach for orthopaedic reparative medicine, involving the development of 

biological substitutes for the repair or replacement of damaged tissues.  

 

Expansion of skeletal cell populations for tissue modelling or tissue engineering can be 

performed using in vivo or ex vivo culturing techniques. In vivo expansion is unrivalled 

as a model for tissue growth as it maintains the biological and physiological interactions 

native to skeletal tissue. However, in vivo culture is restricted due to cost, ethical 

concerns and a constrained ability to examine the characteristics of tissues. As such, 

current models for developing and testing the effects of new skeletal tissue engineering 

techniques in vivo are limited. Propagation of mammalian tissue has mainly been 

focused on culture of specific, purified populations of cells in vitro. In vitro culture 

offers ease of manipulation and scalability, enabling generation of large amounts of 

tissue at relatively low cost. Current and emerging methods of in vitro culture have 

potential in various aspects of tissue engineering. Monolayer cell culture facilitates 

large-scale expansion of cells but lacks the physiological interactions, as well as the 

nutritional and hormonal conditions to closely replicate growth in vivo, compromising 

the efficacy of these cultures as models for skeletal tissues. While techniques such as 

bioreactor-based tissue engineering enable cell culture in a strictly controlled dynamic 

microenvironment (Ellis et al. 2005;Yeatts & Fisher 2011).  

 

The term "organotypic culture" is used to describe methods of in vitro culture that allow 

multiple cell types to interact and affect each other in similar conditions to those found 

in vivo. A common method for organotypic culture is the growth and differentiation of 

cells at an air-liquid interface (ALI). In this method, explanted cells or whole tissues are 

cultured on a semiporous membrane and fed by medium underneath the membrane 

(Stoppini et al. 1991;Freshney 2005) (Figure 4.1). Since its first use by Gahwiler and 

co-workers for the culture of hippocampal slices (Gahwiler 1981), ALI culture has been 

modified for use with many other tissue types including skin (Parenteau 1992;Stark et 

al. 2004), fat (Sonoda 2008), heart (Habeler 2009) and many more. All of these cultures 

have been found to provide an adequate in vitro mimicry of in vivo conditions, allowing 

for
 
long-term histological and physiological studies. The aim of the work presented in 
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this chapter was to examine the potential of skeletal cell-based organotypic ALI culture 

as a novel in vitro model for skeletogenesis, whilst also presenting a possible in vitro 

method for testing new tissue engineering techniques. 

 

 

Figure 4.1. Schematic representation of cell pellet organotypic ALI culture. Cell pellets 

are cultured on a semi-porous membrane that provides an air-liquid interface. Semi-

porous confetti is used to allow facile manipulation of pellets without disrupting their 

3D structure.  

 

4.2. Materials and methods 

4.2.1. Organotypic ALI culture 

The organotypic ALI culture protocol was modified from an existing protocol used by 

Capsant Neurotechnologies Ltd. (see Figure 4.2). Cell pellets were formed from 

collagenase IV treated monolayer cultures of FFDCs by aliquoting trypsinised cell 

solutions at 3x10
5
 cells per ml and centrifuging at 400g for 10 minutes. For viability 

assays, Vybrant® CFDA SE cell tracer (see Section 2.3.1.2) was added after 

trypsinisation. After formation of pellets by centrifugation, samples were left for a 

minimum of 2 days at 37°C with 5% CO2 to allow cell-cell interactions to occur. Pellets 

were then transferred to pre-prepared 6-well plates containing 30mm diameter Millicell-

CM inserts (Fisher, FDR-541-020X) and 6mm diameter, 0.45μm pore size PTFE 

membrane confetti (Biocell Interface) and the appropriate culture/differentiation media 

added. Cultures were run up to 28 days, after which pellet cores would begin to undergo 

necrosis. 

 

Insert 

Culture well 

Semi-porous membrane 

Confetti 

Culture media 
Cell pellet 
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Figure 4.2. Five-step setup of organotypic ALI culture. (A) media added to 6 well 

plates; (B) Addition of Millicell inserts; (C) confetti added to the insert surface; (D) 

pellets placed onto the confetti surface; (E) a complete organotypic ALI culture well; 

(F) organotypic fetal cell pellets in situ. 

 

4.2.2. Issues with pellet culture 

Performing biochemical and molecular analysis on organotypic pellets provided a 

significant problem due to the pellets not degrading. This resulted in very little protein, 

DNA and RNA being released from the samples. This problem was solved by 

modifying the protocol to include sonication stages as well as vigorous “mashing” of 

the pellets using a pipette tip.  

 

4.2.3. Differentiation media 

To promote osteogenesis, cells were cultured in appropriate α-MEM containing 10% 

serum plus 100μM ascorbic acid 2-phosphate, 10nM dexamethasone and 150ng/ml 

BMP-2. To promote chondrogenesis, cells were cultured in α-MEM containing no FCS, 

supplemented with 100μM ascorbic acid 2-phosphate, 10nM dexamethasone, 10μl/ml 

100x ITS solution and 10ng/ml TGF-β3. Control cell pellets were cultured in basal 

conditions (α-MEM containing 10% FCS only). Media compositions designated as 

follows: 

i. Basal:  αMEM + 10% serum 

ii. Osteogenic: αMEM + 10% serum + ascorbate + dexamethasone + BMP-2 

iii. Chondrogenic: αMEM + ascorbate + dexamethasone + ITS solution + TGF-β3 

A B C 

D E F 
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4.2.4. Histological and biochemical analysis 

3D pellet samples were fixed, processed, embedded in paraffin wax and sectioned for 

histological analysis (Section 2.3.2). Techniques used for histological analysis included 

Alcian blue/Sirius red staining, Alkaline phosphatase staining and immunofluorescent 

staining (see Section 2.3). Biochemical analysis was performed to determine the 

specific activity of Alkaline phosphatase in 3D organotypic pellets (see Section 2.4). 

 

4.2.5. RNA extraction and molecular analysis 

Extraction of RNA from pellets provided only small amounts of RNA sample for use in 

cDNA production and RT-PCR due to the size of the pellets (small) and in later stages, 

large amounts of matrix. Molecular analysis showed a large degree of variance between 

the six different fetal cell populations used (see table 4.1). As a consequence, it was 

required that each population be analysed separately and the trends between basal, 

osteogenic and chondrogenic conditions be compared rather than group all samples 

together. Molecular analysis was used to determine the expression of SOX9, Type II 

collagen, RUNX2, alkaline phosphatase, Type I collagen and Osteocalcin. Results for 

each population were performed in triplicate. 

 

4.2.5.1. Chomczynski and Sacchi high-recovery method for pellet cultures 

Total RNA was extracted using a protocol modified from (Chomczynski and Sacchi 

1987). Pellets were washed in PBS then transferred to a molecular grade eppendorf 

containing 600μl of solution D for pellet degradation (guanidinium thiocyanate, 0.75M 

(tri)sodium citrate, sarkosyl and 2-mercaptoethanol dissolved in ultra pure water). 

Pellets were incubated in this solution at 4°C for 1 hour then gently sonicated to disrupt 

any remaining pellets. RNA was isolated by incubating the degraded samples at 4°C for 

15 minutes with 60μl 2M sodium acetate and 600μl phenol/chloroform/iso-amyl-alcohol 

(25:24:1), then centrifuged at 13000rpm for 20 minutes at 4°C to separate the organic 

phenol layer from the inorganic aqueous layer containing the RNA. The inorganic layer 

was then transferred to a fresh eppendorf and the RNA precipitated with isopropanol 

overnight at -20°C. Following precipitation, the samples were centrifuged to provide an 

RNA pellet, washed with 75% ethanol, air dried, then resuspended in ultra pure water at 

65°C. Samples could then be kept at -80°C until needed or used immediately.  
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RNA samples were purified using the Zymo DNA-free RNA kit (Section 2.5.2) and 

cDNA was produced using the Invitrogen SuperScript© first-strand synthesis system 

(Section 2.5.3). Real-time PCR was performed using SYBR Green PCR master mix 

(Applied Biosystems). Primer sequences for genes are shown in Table 2.2 (Section 

2.5.4). 

 

FFDC population Femur length (mm) 

A 5.5 

B 5.5 

C 3.0 

D 7.0 

E 8.0 

F 7.0 

Table 4.1. List of fetal femur samples utilised in molecular analysis of organotypic ALI 

culture. 
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4.3. Results 

4.3.1. Pilot study 

To determine the effectiveness of the organotypic protocol, FFDCs were stained with 

Vybrant cell tracer and aggregated in cell pellets or alginate capsules (alginate samples 

provided by Dr Jodie Babister, University of Southampton. See Appendix 4 for 

protocol). Samples were kept in organotypic ALI culture under basal media for up to 21 

days. At day 1, both fetal cell pellets and alginate capsules maintained their structure 

(Figure 4.3 A, B). After 21 days of culture, alginate capsules were found to degrade and 

lose their structure (Figure 4.3 C), making it difficult to handle the samples and analyse 

the effects of the culture. Fetal cell pellets demonstrated cell growth and increased pellet 

diameter after 21 days in organotypic ALI culture (Figure 4.3 D). Both pellet and 

alginate 3D structures maintained cell viability up to 21 days in culture (Figure 4.3 E, 

F).  

 

Alcian blue and Sirius red staining of samples at day 21 provided clear insights into the 

effectiveness of organotypic ALI culture. The majority of capsules were found to stain 

strongly for proteoglycan (blue) with small patches of collagen (red), however the 

stained areas, particularly those positive for Sirius red show no structural similarities to 

proteoglycan or collagen and were an artefact of the alginate capsule (Figure 4.4. A), 

this was confirmed by comparing the results with positive controls showing 

proteoglycan and collagen matrix production (Figure 4.4. C). Fetal pellets were found to 

produce a defined proteoglycan core bordered by collagen (Figure 4.4. B). 
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Figure 4.3. Photographs of fetal femur-derived cell samples on confetti supports in situ. 

At day 1, alginate capsules (A) and pellets (B) retained their 3D structure. By day 21 

fetal cell alginate structures were found to collapse (C) while fetal pellets retained their 

structure and expanded in culture (D). Vybrant staining showed cells were viable at day 

21 in fetal pellets (E) and alginate capsules (F). Scale bars are 500µm. 

 

                            

 

Figure 4.4. Alcian blue and Sirius red staining of FFDC alginate capsules (A) and 

pellets (B) at day 21 in organotypic ALI culture. A positive control for proteoglycan and 

collagen production in alginate capsules is shown in (C) (sample courtesy of Dr Jodie 

Babister, University of Southampton). Scale bars are 100µm. 

 

 

 

 

Alginate control Alginate capsule Pellet 

A B 

B A C 

C 

D E F 
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4.3.2. Differentiation within organotypic pellets 

Following confirmation of cell viability in organotypic ALI culture, fetal pellets were 

set up and grown in skeletogenic culture for up to 21 days under basal, osteogenic 

(ascorbate and dexamethasone) and chondrogenic (ascorbate, dexamethasone, ITS and 

TGF-β3) media (see Section 4.2.3). 

 

Samples were analysed at days 1, 7, 14 and 21 for proteoglycan and collagen expression 

by Alcian blue/Sirius red histochemistry. Pellets at day 1 in all culture conditions 

stained predominantly light blue with negligible proteoglycan or collagen (Figure 4.5 

A). However, in some pellets, large aggregates of collagen carried over from monolayer 

culture were observed. At day 21, pellets treated with basal media showed a small core 

of proteoglycan bordered by collagen (Figure 4.5 B), whilst pellets under osteogenic 

media expressed a similar phenotype but with a larger proteoglycan content, small 

amounts of collagen throughout the pellet and at the pellet edges (Figure 4.5 C). In 

contrast, chondrogenic treated pellets expressed a proteoglycan core surrounded by 

significant amounts of collagen and samples were observed to draw in the confetti 

around the pellet (Figure 4.5 D). Collagen expression was noted to be highest at sites of 

pellet-confetti adhesion. 

 

After analysis of the initial results, the assay was extended to 28 days to determine if a 

more defined phenotype could be established with longer culture. Furthermore, due to 

the lack of definitive osteogenic differentiation, BMP-2 was added to the osteogenic 

culture conditions due to its bone-inducing role in vivo. 
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Figure 4.5. Alcian blue and Sirius red staining of fetal cell pellets showing typical 

expression in pellets at day 1 (A) and pellets at day 21 in organotypic ALI culture under 

basal (B), osteogenic (C) and chondrogenic (D) conditions. The red collagen stain 

present at day 1 (A) is Type I collagen carried over from monolayer culture. Scale bars 

are 200µm. 

 

 

 

A B 

C D 
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4.3.3. Histological analysis of 28 day organotypic ALI culture 

Fetal cell pellets containing 3x10
5
 cells were grown in organotypic ALI culture for up to 

28 days under basal, osteogenic (+BMP-2) and chondrogenic conditions. Pellets from 

later time points (day 14 onwards) were found to express high levels of matrix, resulting 

in  difficulty in extraction of RNA and protein from the samples. Therefore, initial 

analysis of organotypic ALI culture was predominantly performed by histology. 

Paraffin wax embedded samples derived from over 6 separate fetal femurs were 

sectioned and stained for collagen and proteoglycan matrix using Alcian blue/Sirius red 

histology. At day 1, pellets from all conditions expressed an undifferentiated phenotype, 

staining equally for proteoglycan and collagen (Figure 4.6). By day 28 of organotypic 

ALI culture basal-treated pellets expressed the most inconsistent phenotypes between 

patients but were generally found to express a mixed core of undifferentiated cells, 

collagen and proteoglycan bordered by aligned collagen, specifically at sites of adhesion 

(Figure 4.7). Pellet size was found to be crucial to the phenotype of pellets at day 28. 

Smaller pellets expressed higher levels of collagen both at the borders and within the 

core of the pellet, whilst larger pellets expressed well characterised cores of 

proteoglycan with reduced levels of collagen. 

The majority of chondrogenic pellets were found to consistently express a core of 

proteoglycan bordered by large amounts of aligned collagen (Figure 4.8). The levels of 

collagen expressed by pellets was affected by patient variation and the size of the pellet. 

In pellets comprising less than 0.8mm in diameter, after 28 days of culture, the 

phenotype was characterised by a large amount of collagen formation with a small 

proteoglycan core, with the pellets showing very little growth in size. It was not 

uncommon for extremely small pellets to express a chiefly collagenous phenotype, with 

negligible proteoglycan. In contrast, pellets starting at over 0.8mm in diameter 

expressed a more cartilaginous phenotype at day 28, with a larger proteoglycan core and 

reduced levels of collagen expression (Figure 4.9). 

Osteogenic pellets treated both with and without BMP-2 were found to express a 

phenotype strongly resembling the phenotype seen in the developing fetal femur 

(Figures 4.10 and 4.11). Osteogenic pellets expressed a large proteoglycan core 

containing small amounts of collagen, bordered by aligned collagen at sites of adhesion 

and at the edges of the pellets. Lacunae formation was also observed within the 

proteoglycan core, confirming the chondrogenic phenotype. Negligible difference was 
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seen between pellets of equal size when treated with and without BMP-2. However, it 

was noted that pellets not treated with BMP-2 showed a reduced rate of growth over 28 

days of culture and pellets treated with BMP-2 were, in the majority of samples, found 

to be larger than those without BMP-2, potentially suggesting a BMP-2 induced 

increase in proliferation and growth. Due to their reduced size, pellets not treated with 

BMP-2 were often found to express a higher ratio of collagen than proteoglycan. 

 

Despite all samples being seeded at the same density, it was noted that pellets from 

different samples demonstrated a variation in pellet size at setup of organotypic ALI 

culture. No correlation between femur age and propensity for specific pellet size was 

noted. Therefore, this variation appeared to be due to the inherent differences between 

patients, rather than an artefact of the stage of development at which cells were 

harvested.  Starting pellet size was found to be crucial to the differentiation and growth 

of pellets over the 28 days of culture as it was noted that pellets less than 0.8mm in 

diameter at day 1 typically exhibited minimal growth and differentiation. Smaller pellets 

were found to be composed of high levels of supportive collagen which inhibited 

differentiation as the majority of the pellet was committed to maintaining the pellet 

structure. In contrast, pellets over 0.8mm in diameter at day 1 typically exhibited 

growth, demonstrated by an increase in pellet diameter, as well as expressing 

differentiation of the cell pellets. 

 

Specific collagen expression was determined by fluorescent immunostaining for Type I 

and Type II collagen. At day 1, pellets expressed no new Type I collagen, but 

maintained small aggregates of Type I collagen recognisable as cross-over from 

monolayer culture (Figure 4.12 A). Type II collagen expression was variable between 

samples but was found to be expressed at day 1 throughout the pellet (Figure 4.12 B). 

At day 28, in samples treated with basal conditions, equal amounts of Type I and Type 

II collagen were found to be expressed at sites of adhesion and around the pellet edge 

(Figure 4.12 C,D). Negligible Type I collagen was found within the pellet core, while 

Type II collagen was expressed in small amounts throughout the pellet. Immunostaining 

of chondrogenic pellets again demonstrated both Type I and Type II collagen in 

approximately equal concentrations at sites of cell-confetti adhesion and at the pellet 

border. The pellet core expressed low levels of Type I collagen and large amounts of 
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Type II collagen (Figure 4.12 E,F). Sites of cell-air interface were principally composed 

of aligned Type I and II collagen. In osteogenic pellets (with BMP-2), Type I collagen 

was found at sites of adhesion and around the pellet boundary (Figure 4.12 G) and Type 

II collagen was expressed throughout the proteoglycan matrix and at the pellet boundary 

(Figure 4.12 H). 

   

At day 1, expression of alkaline phosphatase (ALP) and Osteopontin (OPN) was 

negligible (Figure 4.13 A,B). Both ALP and OPN were expressed at sites of adhesion 

and at the pellet border in both basal and osteogenic pellet cultures at day 28 (Figure 

4.13 C,D,G,H). This expression corresponded with areas of aligned collagen. OPN 

expression was also present within the pellet core in basal and osteogenic cultures, 

while ALP was absent. Negligible expression of ALP and OPN were found within 

chondrogenic pellets (Figure 4.13 E,F).  

 

Immunostaining was also performed to determine the expression of the early 

chondrogenic marker, SOX9 (Figure 4.14). SOX9 expression was present within fetal 

cell pellets at day 1 and in all media conditions at day 28, with expression enhanced in 

osteogenic pellets than in basal and chondrogenic. Staining for the late osteogenic 

marker Osteocalcin was negligible in all samples. 

 

In summary, effective culture and differentiation required FFDC pellets to have an 

initial diameter greater than 0.8mm, whereupon treatment with osteogenic media would 

result in a mimicry of the normal fetal femur development, characterised by a 

predominantly chondrogenic phenotype bordered by collagen and low levels of early 

osteogenic differentiation. Treatment of pellets with chondrogenic media failed to 

induce a true cartilage phenotype, instead resulting in a mixed phenotype of bone and 

cartilage-like tissue, demonstrated by a core of proteoglycan bordered by high levels of 

aligned Type I and Type II collagen. 
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Figure 4.6. Typical example of Alcian blue (proteoglycan) and Sirius red (collagen) 

staining on sectioned samples from pellets at day 1 in basal culture. All pellets treated 

with the three media conditions were found to express the similar phenotypes at day 1. 

Scale bar for centre image: 500µm; for surrounding images: 50µm. 
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Figure 4.7. Typical example of Alcian blue (proteoglycan) and Sirius red (collagen) 

staining on sectioned samples from pellets after 28 days in basal conditions. Expanded 

images demonstrate the location-dependent differentiation of cells, with the pellet core 

expressing large amounts of proteoglycan and the pellet edge expressing large amounts 

of aligned collagen. Scale bar for centre image: 500µm; for surrounding images: 50µm. 
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Figure 4.8. Typical example of Alcian blue (proteoglycan) and Sirius red (collagen) 

staining on sectioned samples from pellets after 28 days in chondrogenic conditions. 

Expanded images demonstrate the location-dependent differentiation of cells, with the 

pellet core expressing large amounts of proteoglycan and the pellet edge expressing 

large amount of aligned collagen. Scale bar for centre image: 500µm; for surrounding 

images: 50µm. 

 

 

Figure 4.9. Effect of pellet size on fetal femur-derived cell pellets treated for 28 days in 

chondrogenic media. (A) Pellet greater than 0.8mm at day 1, (B) pellet less than 0.8mm 

at day 1. Scale bars; 200µm. 

A B 
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Figure 4.10. Example of Alcian blue (proteoglycan) and Sirius red (collagen) staining 

on sectioned samples from pellets after 28 days in osteogenic conditions. Expanded 

images demonstrate the location-dependent differentiation of cells, with the pellet core 

expressing large amounts of proteoglycan and the pellet edge expressing large amount 

of aligned collagen. Scale bar for centre image: 500µm; for surrounding images: 50µm. 

 

 

Figure 4.11. Comparison of fetal femur-derived cell pellets treated for 28 days in 

osteogenic media with BMP-2 (A) and without BMP-2 (B) and a fetal femur control 

(C). Fetal pellets with and without BMP-2 express similar phenotypes, with those 

treated with BMP-2 being larger. Fetal pellets treated with osteogenic media express 

phenotypes strongly resembling that of the developing femur, with a proteoglycan-rich 

cartilaginous core bordered by collagen. Scale bars; (A) 500µm, (B, C) 200µm. 

A B C 
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Figure 4.12. Whole pellet and high magnification images of fluorescent 

immunostaining for Type I and Type II collagen. Bone-specific Type I collagen (red) 

and cell nuclei (blue) on sectioned samples from pellets at day 1 (A); day 28 basal (C); 

day 28 chondrogenic (E) and day 28 osteogenic (+BMP-2) (G). Cartilage-specific Type 

II collagen (red) and cell nuclei (blue) on sectioned samples from pellets at day 1 (B); 

day 28 basal (D); day 28 chondrogenic (F) and day 28 osteogenic (H). Scale bars: 

Whole pellet, 500µm; high magnification, 20µm. 
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Figure 4.13. Whole pellet and high magnification images of the osteogenic markers 

alkaline phosphatase and Osteopontin. Alkaline phosphatase staining on sectioned 

samples from pellets at day 1 (A); day 28 basal (C); day 28 chondrogenic (E) and day 

28 osteogenic (+BMP-2) (G). Osteopontin (red) and cell nuclei (blue) staining on 

sectioned samples from pellets at day 1 (B); day 28 basal (D); day 28 chondrogenic (F) 

and day 28 osteogenic (H). Colour scale bars: Whole pellet, 500µm; high magnification, 

50µm.  Fluorescent scale bars: Whole pellet, 500µm; high magnification, 20µm. 

 

 

Figure 4.14. SOX9 expression (red) and cell nuclei (blue) in sectioned samples from 

pellets at day 1 (A); day 28 basal (B); day 28 chondrogenic (C) and day 28 osteogenic 

(D). 
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4.3.4. Biochemical analysis of alkaline phosphatase activity 

Analysis of the specific alkaline phosphatase activity (Figure 4.15) in samples from 4 

separate fetal populations (n=4 pellets/sample, analysis repeated 3 times for each 

sample) demonstrated the levels of variation between patients. By day 28 of organotypic 

culture the levels of ALP expression were significantly greater in cultures treated with 

osteogenic media in all samples. Basal expression of ALP was significantly greater than 

observed in chondrogenic cultures in 3 of the 4 populations. Chondrogenic cultures 

were consistently observed to express minimal ALP activity.  
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Figure 4.15. Biochemical analysis of specific alkaline phosphatase activity in 4 separate 

fetal cell populations after 28 day organotypic ALI culture (BMP-2 included in 

osteogenic conditions). Alkaline phosphatase concentration and total DNA 

concentration were compared to provide the specific alkaline phosphatase activity, n=4. 

Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data represents mean ± SD; ns = non-

significant, *** = p ≤ 0.001. 
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4.3.5. Molecular analysis of 28 day organotypic ALI culture 

4.3.5.1. SOX9 

During development, SOX9 is expressed in all chondroprogenitors and non-hypertrophic 

chondrocytes and is a key marker for chondrogenesis. SOX9 expression was 

significantly (p<0.05 or greater) increased in pellets treated with osteogenic and 

chondrogenic media over 28 days of culture, while only half of the samples cultured in 

basal conditions demonstrated a significant increase in SOX9 expression (Appendix 5). 

By day 28 of culture, SOX9 expression was significantly greater (p<0.01 or less) in 

osteogenic conditions than in basal or chondrogenic conditions in all samples (Figure 

4.16).  Pellets in chondrogenic conditions expressed SOX9 at levels equal to or greater 

than basal samples. These results indicate a strong chondrogenic phenotype experienced 

in pellets treated with osteogenic media. Pellets treated with chondrogenic media also 

experienced a chondrogenic phenotype, albeit significantly less than pellets in 

osteogenic media. 

 

4.3.5.2. Type II collagen 

Type II collagen is another key marker for chondrogenesis. Synthesised by 

chondrocytes, Type II collagen is prevalent throughout the extracellular matrix of 

cartilage tissue. All samples treated with osteogenic media demonstrated very 

significant increase (p<0.005) in Type II collagen expression between day 1 and day 28 

of culture. The majority of samples (4 out of 6) treated with basal media exhibited no 

significant change in expression over 28 days of culture, while treatment with 

chondrogenic media resulted in half of the samples demonstrating significant increase 

and the other half demonstrating negligible change in expression (Appendix 5). By day 

28, all populations demonstrated a significantly greater (p<0.001) expression of Type II 

collagen in osteogenic samples than the other two conditions, with chondrogenic pellets 

expressing significantly higher levels (p<0.001) than basal pellets in all but one sample 

(Figure 4.17). This coincides with the histological analysis of Type II collagen, which 

demonstrates a high level of Type II collagen throughout pellets in osteogenic 

conditions and enhanced collagen matrix in pellets treated with chondrogenic conditions 

in comparison to basal cultures. 
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4.3.5.3. RUNX2 

RUNX2 is essential for induction of chondrocyte hypertrophy, as well as differentiation 

of osteoblasts. As such, it plays a key role in the transformation of cartilage to bone via 

endochondral ossification. Comparison of samples at day 1 and day 28 demonstrated 

negligible change in RUNX2 expression in the majority of samples treated with basal 

media, but demonstrated significant increase of RUNX2 expression in samples treated 

with osteogenic and chondrogenic media for 28 days (Appendix 5). By day 28, all but 

one of the samples analysed demonstrated significantly higher levels of RUNX2 in 

chondrogenic pellets than the basal pellets (p<0.05 or less), suggesting that this 

condition resulted in an increase in RUNX2 expression (Figure 4.18). 4 out of 7 samples 

showed significant increase in expression between osteogenic and basal conditions (p< 

0.05 or less). This data suggests that both osteogenic and chondrogenic conditions 

induce upregulation of RUNX2 expression. In the majority of samples (4 out of 7), 

RUNX2 expression between osteogenic and chondrogenic conditions demonstrated no 

significant difference, while the remaining samples vary between osteogenic and 

chondrogenic conditions demonstrating higher expression than the other. Taken as a 

whole, these results suggest that both osteogenic and chondrogenic media induce 

RUNX2 expression at similar levels, indicative of chondrocyte hypertrophy and early 

osteogenesis. 

 

4.3.5.4. Alkaline phosphatase (ALP) 

Alkaline phosphatase is found on the surface of osteoblasts and is thought to play a key 

role in the calcification of bone. ALP is regularly used as a marker for bone formation. 

Samples treated with basal and osteogenic media demonstrated significant increase in 

ALP expression over 28 days in culture, while only half of the samples treated with 

chondrogenic media demonstrated significant increase, with the other half 

demonstrating negligible change (Appendix 5). By day 28, osteogenic conditions 

demonstrated a significantly larger expression of ALP than chondrogenic conditions in 

all but one population (p<0.05 or less, Figure 4.19), corresponding with the histological 

analysis. Basal conditions expressed a large degree of variation in ALP activity, being 

greater than osteogenic conditions in some populations and less in others. The reason 

for the diverse differences between basal and osteogenic conditions is unknown, but 

was likely due to natural variation between populations and not a result of fetal femur 
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age or other known variables, as cells from femurs of similar ages demonstrated 

markedly different ALP expression. Chondrogenic ALP expression was minimal and 

less than that of basal conditions in all populations.  

 

4.3.5.5. Type I collagen 

The osteogenic marker, Type I collagen, comprises approximately 80-90% of all protein 

in the extracellular matrix of bone. Type I collagen expression was significantly 

increased in comparison to day 1 expression levels in the majority of samples treated 

with basal and chondrogenic media for 28 days, while only half of the samples treated 

with osteogenic media demonstrated significant increase, with the other half 

demonstrating negligible change (Appendix 5). By day 28 of culture, Type I collagen 

expression was significantly greater in chondrogenic conditions than in basal conditions 

in all but one population (p<0.05 or less) and was significantly greater in chondrogenic 

conditions than in osteogenic conditions in all samples (Figure 4.20). This coincides 

with histological analysis that demonstrates a large quantity of Type I collagen in 

chondrogenic pellets in comparison to osteogenic pellets. As observed in the analysis of 

ALP expression, the pellets from basal conditions exhibit high levels of variation in 

their relative expression of Type I collagen. 

  

4.3.5.6. Osteocalcin 

Osteocalcin is secreted by osteoblasts and is considered a marker for late stages of 

osteoblast differentiation. Negligible change was observed in Osteocalcin expression 

when pellets from day 1 and day 28 of culture were compared for samples grown in 

basal, osteogenic and chondrogenic conditions (Appendix 5). In the majority of 

populations (4 out of 6), by day 28, no significant difference was observed between 

Osteocalcin expression in basal, osteogenic and chondrogenic conditions and no 

obvious trend could be distinguished in Osteocalcin expression (Figure 4.21). In those 

populations where Osteocalcin expression does show a significant change between 

conditions, expression of Osteocalcin is lower in osteogenic and chondrogenic 

conditions than in basal. This data, supported by the lack of positive Osteocalcin 

staining in pellets, indicates that no late osteogenic activity can be attributed to 

induction by any of the media conditions. 
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In summary, a high level of variation was observed between different populations in the 

expression of specific genes in pellets grown in basal conditions, hinting at natural 

diversity between separate populations. While there is no distinct known reason for the 

variance observed in basal culture, analysis of the samples used and their results 

confirmed that this diversity was not due to the age of the fetal femur the cells were 

isolated from. However, it is hypothesised that the variance is due to natural variation in 

cell differentiation between separate populations, and variance in starting pellet 

diameter at day 1. It has already been noted that despite matching seeding densities, 

different populations of FFDCs will establish different pellet sizes, a factor that is also 

known to affect differentiation (see Section 4.3.3). Despite the variance observed, 

organotypic ALI culture of pellets in osteogenic media resulted in a recurring molecular 

phenotype, defined by an increased expression of SOX9, Type II collagen, RUNX2 and 

ALP, with variable levels of Type I collagen expression. These results are indicative of a 

strong chondrogenic phenotype beginning to undergo chondrocyte hypertrophy and 

early bone formation. Pellets cultured in chondrogenic media also demonstrated an 

increase in SOX9, RUNX2 and Type II collagen expression, albeit at levels less than 

samples treated with osteogenic media, suggestive of some chondrogenic activity. 

Pellets in chondrogenic media expressed significantly higher levels of Type I collagen 

than any other condition but expressed negligible ALP, indicating early osteogenic 

activity but lack of matrix calcification. 
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Figure 4.16. Expression of SOX9 in various fetal cell populations grown in organotypic 

conditions. Gene expression was compared between basal, osteogenic and chondrogenic treated 

samples at d28.  Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data represents mean ± SD, 

n=3. Statistical significance of increase/decrease compared to basal conditions shown as: ns = 

non significant,* = p<0.05, ** = p<0.01, *** = p<0.001. 

 

  

Figure 4.17. Expression of Type II collagen in various fetal cell populations grown in 

organotypic conditions. Gene expression was compared between basal, osteogenic and 

chondrogenic treated samples at d28. Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data 

represents mean ± SD, n=3. Statistical significance of increase/decrease compared to basal 

conditions shown as: ns = non significant, *** = p<0.001. 
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Figure 4.18. Expression of RUNX2 in various fetal cell populations grown in organotypic 

conditions. Gene expression was compared between basal, osteogenic and chondrogenic treated 

samples at d28. Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data represents mean ± SD, 

n=3. Statistical significance of increase/decrease compared to basal conditions shown as: ns = 

non significant,* = p<0.05, *** = p<0.001. 

  

Figure 4.19. Expression of ALP in seven different fetal cell populations grown in organotypic 

conditions. Gene expression was compared between basal, osteogenic and chondrogenic treated 

samples at d28. Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data represents mean ± SD, 

n=3. Statistical significance of increase/decrease compared to basal conditions shown as: ns = 

non significant,* = p<0.05, ** = p<0.01, *** = p<0.001. 
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Figure 4.20. Expression of Type I collagen in six different fetal cell populations grown in 

organotypic conditions. Gene expression was compared between basal, osteogenic and 

chondrogenic treated samples at d28. Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data 

represents mean ± SD, n=3. Statistical significance of increase/decrease compared to basal 

conditions shown as: ns = non significant,* = p<0.05, ** = p<0.01, *** = p<0.001. 

 

  

Figure 4.21. Expression of Osteocalcin in various fetal cell populations grown in organotypic 

conditions. Gene expression was compared between basal, osteogenic and chondrogenic treated 

samples at d28. Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data represents mean ± SD, 

n=3. Statistical significance of increase/decrease compared to basal conditions shown as: ns = 

non significant,* = p<0.05, ** = p<0.01. 
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4.3.6. Effects of different differentiation-factors on the organotypic model 

4.3.6.1. Removal of dexamethasone from differentiation media 

Samples from 6 separate populations treated with osteogenic and chondrogenic media 

without dexamethasone were sectioned and stained for collagen and proteoglycan 

matrix using Alcian blue/Sirius red histology. At day 1, pellets from all conditions 

expressed an undifferentiated phenotype Identical to that of samples treated with 

dexamethasone. By day 28 of organotypic ALI culture, removal of dexamethasone from 

the chondrogenic media resulted in consistent expression of a chondrogenic phenotype 

when pellets were greater than 0.8mm in diameter at day 1; characterised by 

proteoglycan bordered by small amounts of supporting collagen (Figure 4.22). Pellets 

less than 0.8mm in diameter produced higher levels of supporting collagen similar to 

those treated with dexamethasone, confirming the role of pellet size on differentiation.  

Pellets treated with osteogenic media without dexamethasone expressed a phenotype 

closely matching that of pellets treated with dexamethasone, and therefore similar to the 

phenotype of the developing femur, but with a reduced size at day 28, resulting in 

slightly higher levels of collagen expression (Figure 4.23).  
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Figure 4.22. Example of Alcian blue (proteoglycan) and Sirius red (collagen) staining 

on sectioned samples from pellets after 28 days in chondrogenic conditions without 

dexamethasone (>0.8mm diameter at day 1). Expanded images demonstrate the 

location-dependent differentiation of cells, with the pellet core expressing large amounts 

of proteoglycan and the pellet edge expressing minimal aligned collagen. Scale bar for 

centre image: 500µm; for surrounding images: 50µm. 
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Figure 4.23. Example of Alcian blue (proteoglycan) and Sirius red (collagen) staining 

on sectioned samples from pellets after 28 days in osteogenic conditions without 

dexamethasone (>0.8mm diameter at day 1). Expanded images demonstrate the 

location-dependent differentiation of cells, with the pellet core expressing large amounts 

of proteoglycan and the pellet edge expressing large amount of aligned collagen Scale 

bar for centre image: 500µm; for surrounding images: 50µm. 

 

At day 28, samples treated with chondrogenic media without dexamethasone 

demonstrated minimal Type I collagen, only located at the pellet edge and sites of cell-

confetti adhesion (Figure 4.24 A), while Type II collagen was expressed throughout the 

pellet and in high levels at the pellet border (Figure 4.24 B). Similar to pellets treated 

with dexamethasone, sites of cell-air interface were composed of aligned Type I and II 

collagen. Expression of collagen in osteogenic pellets without dexamethasone was 

comparative to those treated with dexamethasone, with Type I collagen expressed at 

sites of adhesion and around the pellet boundary (Figure 4.24 C) and Type II collagen 

expressed throughout the proteoglycan matrix and at the pellet boundary (Figure 4.24 

D). 
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At day 28 without dexamethasone, no expression of ALP was found within 

chondrogenic pellets (Figure 4.25 A), but was expressed at sites of adhesion and at the 

pellet border in osteogenic pellet cultures (Figure 4.25 C). This expression corresponded 

with areas of aligned collagen. Modest OPN expression was present within the pellet 

core of both chondrogenic and osteogenic cultures, but was found in significant levels in 

osteogenic pellets at the pellet border and sites of cell-confetti adhesion (Figure 4.25 

B,D). SOX9 was present within both osteogenic and chondrogenic fetal cell pellets at 

day 28 without dexamethasone (Figure 4.26). Expression of SOX9 was stronger in 

chondrogenic pellets than in those treated with osteogenic media. As with pellets treated 

with dexamethasone, staining for the late osteogenic marker Osteocalcin was negligible 

in all samples. 

 

In summary, provided pellets were greater than 0.8mm in diameter at day 1 of culture, 

removal of dexamethasone resulted in induction of a strong cartilage-like phenotype In 

samples treated with chondrogenic media, characterised by high levels of proteoglycan, 

Type II collagen, and SOX9. Minor Type I collagen and negligible ALP expression 

further indicated a chondrogenic phenotype. Removal of dexamethasone from 

osteogenic media resulted in minimal difference to previous samples cultured with 

dexamethasone, characterised by a cartilaginous core, bordered by region undergoing 

early osteogenesis. A decrease in pellet growth over 28 days and a reduced expression 

of SOX9 was noted in osteogenic conditions. Both conditions expressed modest 

expression of OPN, especially at sites of Type I collagen expression such as the pellet 

border, indicative of low levels of chondrocyte hypertrophy and osteogenesis. 
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Figure 4.24. Whole pellet and high magnification images of fluorescent 

immunostaining for Type I and Type II collagen. Bone-specific Type I collagen (red) 

and cell nuclei (blue) on sectioned samples from pellets at day 28 without 

dexamethasone. (A) Chondrogenic  and (C) osteogenic. Cartilage-specific Type II 

collagen (red) and cell nuclei (blue) on sectioned samples from pellets at day 28 without 

dexamethasone. (B) Chondrogenic and (D) osteogenic. Scale bars: Whole pellet, 

500µm; high magnification, 20µm. 

                         

 

Figure 4.25. Whole pellet and high magnification images of the osteogenic markers 

alkaline phosphatase and Osteopontin. Alkaline phosphatase staining on sectioned 

samples from pellets at day 28 without dexamethasone in (A) chondrogenic and (C) 

osteogenic media. Osteopontin (red) and cell nuclei (blue) staining on sectioned samples 

from pellets at day 28 without dexamethasone in (B) chondrogenic and (D) osteogenic 

media. Colour scale bars: Whole pellet, 500µm; high magnification, 50µm.  Fluorescent 

scale bars: Whole pellet, 500µm; high magnification, 20µm. 

Osteopontin Alkaline phosphatase 

Type II collagen Type I collagen 

A B 

D C 

A B 

C D 

Chond 

Osteo 

Chond 

Osteo 



136 

 

 

Figure 4.26. SOX9 expression (red) and cell nuclei (blue) in sectioned samples from 

pellets at day 28 chondrogenic (A) and day 28 osteogenic (B) without dexamethasone. 

Scale bars: 20µm. 

 

4.3.6.2. Effects of 1,25-dihydroxyvitamin D3 on osteogenic culture 

In an attempt to induce a late osteogenic phenotype, vitamin D was added to the 

osteogenic media and used to culture 3 separate samples for 28 days. Samples were then 

sectioned and subjected to histological analysis for various osteogenic and chondrogenic 

markers (Figure 4.27). At day 1, pellets from all conditions expressed an 

undifferentiated phenotype as seen in all previous experiments. Addition of vitamin D 

to the osteogenic media resulted in a phenotype expressing a large core of proteoglycan 

bordered by high levels of both Type I and Type II collagen. Type II collagen was also 

present within the proteoglycan core, while Type I collagen was absent.  

Cultures treated with vitamin D demonstrated expression of ALP greater than in those 

treated without vitamin D, expressed at sites of adhesion and at the pellet border, 

especially in areas of aligned collagen. OPN expression was present in significant levels 

in vitamin D-treated pellets at the pellet border and sites of cell-confetti adhesion but 

negligible within the pellet core. Minor Osteocalcin staining was observed at the pellet 

border, located mostly at areas rich in collagen and ALP. Moderate expression of SOX9 

was present throughout the pellet at day 28. 

 

A B 
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Figure 4.27. Whole pellet and high magnification images demonstrating expression of 

various osteogenic and chondrogenic markers in vitamin D-treated pellets at day 28. (A, 

B) Alcian blue (proteoglycan) and Sirius red (collagen) staining; (C, D) alkaline 

phosphatase staining; (E, F) Type I collagen staining; (G, H) Type II collagen staining; 

(I, J) Osteopontin staining; (K, L) Osteocalcin staining; and (M) SOX9 staining. 

Fluorescent images are depicted as the active stain (red) and the nuclear counterstain, 

DAPI (blue). n=3, colour scale bars: Whole pellet, 500µm; high magnification, 50µm.  

Fluorescent scale bars: Whole pellet, (E, G, I) 500µm, (K) 200µm; high magnification, 

20µm. 
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4.3.7. Summary of organotypic ALI culture and resulting phenotypes 

 

Table 4.2. Summary of histological analysis of fetal femur cell pellets under different 

differentiation conditions for 28 days. Specific marker expression at the pellet core (C) 

and the pellet edge (B) is shown. Data applies only to pellets greater than 0.8mm 

diameter at day 1. Key: C, core; B, pellet border; ALP, alkaline phosphatase; OPN, 

Osteopontin; Dex, dexamethasone; +++ = ubiquitous/strong expression, ++ = moderate 

expression, + = minor expression, - = negligible/no expression. 
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4.4. Discussion 

FFDCs have been shown to possess multipotentcy and are able to undergo 

differentiation into bone and fat in monolayer culture and chondrogenic differentiation 

in 3D pellet cultures (Mirmalek-Sani et al. 2006). Furthermore, previous studies have 

demonstrated the ability of scaffold-based FFDCs to aid in regeneration of bone defects 

in mice (Kanczler et al. 2009). However, very few studies have investigated the 

potential of these cells as a model for skeletal tissues. As previously mentioned, use of 

organotypic ALI culture has been demonstrated as a successful method for mimicking 

normal tissue growth ex vivo. This study has demonstrated the growth and 

differentiation of fetal femur-derived cell pellets in 3D organotypic ALI culture when 

treated with basal, osteogenic and chondrogenic media, demonstrating the potential use 

of organotypic ALI culture in ex vivo 3D expansion and in development of a novel 

model for skeletogenesis. 

 

Fetal femur-derived cell populations were extracted from fetal femurs ranging in age 

from 7 to 12 weeks post-conception. Cells extracted from distinct patients express 

different differentiation and growth potential when cultured in pellet form. This inherent 

variation was evident in pellet growth during culture over 28 days and caused 

substantial variation in results of different cell populations treated under identical 

conditions. Due to this, analysis of the effects of basal, osteogenic and chondrogenic 

media proved problematic, requiring multiple repeats to determine the standard effect of 

organotypic ALI culture. For pellet culture to be considered for high throughput 

screening, it would be essential to ensure that all samples, regardless of their sample 

source, maintain the same level of growth and differentiation. Pre-testing of fetal 

populations to determine their growth potential would aid in this goal and allow custom 

seeding densities to be chosen for each sample to ensure production of pellets capable of 

correct differentiation. 

 

From all conditions tested on pellets in organotypic ALI culture, it was found that two 

provided potential models for skeletal tissues. Growth of pellets in osteogenic media 

with dexamethasone was found to mimic the phenotype of the fetal femur (Mackie et al. 

2008), suggesting that the addition of osteogenic media stimulated the fetal cell pellet to 

undergo the development and differentiation observed in fetal femurs, with production 
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of a cartilage anlage and the commencement of endochondral ossification. The fetal 

femur-like phenotype was confirmed by the presence of SOX9-expressing, lacunae-

based chondrocytes immersed in a proteoglycan and Type II collagen-rich matrix, 

bordered by an osteogenic bone collar composed of a Type I collagen, Osteopontin and 

alkaline phosphatase-rich periosteum-like region. This confirmed the ability to establish 

a potential model for early skeletal development using organotypic pellet culture. The 

addition of BMP-2 lead to a substantial increase in cell proliferation and proteoglycan 

matrix deposition, demonstrating a growth-stimulating activity as well as acting as an 

osteogenic factor. 

 

Previous studies have demonstrated that 3D pellet culture is conducive for chondrogenic 

differentiation of  cartilage-derived cells (Tare et al. 2005) and that organotypic ALI 

culture can maintain populations of chondrocytes (Bujia et al. 1993). In this study, 

organotypic ALI culture of FFDC pellets in chondrogenic media without 

dexamethasone resulted in a strong cartilaginous phenotype (Table 4.2), thus offering a 

potential model for cartilage development and for use in drug screening. 

Dexamethasone is considered to be essential for in vitro induction of both osteogenic 

(Yamanouchi et al. 1997) and chondrogenic cell differentiation (Derfoul et al. 2006). 

However, in contrast to this, only those samples treated with chondrogenic media 

without dexamethasone resulted in a chondrogenic phenotype, while addition of 

dexamethasone to chondrogenic organotypic ALI cultures appeared to induce an 

increase in osteogenic differentiation, evidenced by the increased expression of Type I 

collagen and RUNX2. This data, in combination with previous studies demonstrating 

that addition of dexamethasone induces ALP expression in chondrogenic pellet culture 

(Stewart et al. 2008), suggests that dexamethasone induces osteogenic differentiation in 

3D pellet culture. However, removal of dexamethasone from samples cultured in 

osteogenic media does not prevent osteogenesis but instead results in a reduction in 

pellet growth, confirming that dexamethasone also plays a role in inducing proliferation 

during osteogenesis. 

 

While many pellets expressed high levels of Type I collagen, Osteopontin and low 

levels of alkaline phosphatase, it was found that none of the conditions used were able 

to produce a mature bone phenotype, with all samples maintaining a core of 
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proteoglycan and very few expressing significant amounts of Osteocalcin or other late 

bone markers. A study performed by Muraglia et al. (2003) demonstrated that  after 

chondrogenic differentiation of hBMSC pellets to induce cartilaginous tissue, further 

treatment with osteogenic media resulted in the formation of a bony collar around a 

cartilage core (Muraglia et al. 2003). This phenotype matches that observed in 

organotypic ALI culture of FFDC pellets in osteogenic conditions, indicating that the 

predominantly chondrogenic nature of FFDCs limits the amount of osteogenic 

differentiation that can occur. Thus, establishment of mature bone using these cells may 

require a longer culture period or conditions beyond addition of dexamethasone, 

ascorbate and BMP-2 to induce the formation of bone. However, neither the addition of 

β-glycerophosphate (work performed by undergraduate medical students, Appendix 6), 

known to increase matrix calcification (Chang et al. 2000) or 1,25-dihydroxyvitamin D, 

known to stimulate late osteogenesis (Jorgensen et al. 2004) were able to produce a true 

bone phenotype, although addition of vitamin D did induce a higher expression of bone-

specific markers such as ALP, Type I collagen and OCN. Use of other cell lines such as 

adult hBMSCs are more likely to offer a strong bone phenotype. Indeed, early tests 

demonstrated that hBMSC pellets under basal conditions, naturally differentiate towards 

an osteogenic phenotype (see Appendix 7). 

 

Pellets treated with chondrogenic media regularly produced a phenotype strongly 

resembling a mix of both bone and cartilage as evidenced by cores of proteoglycan 

bordered by large quantities of both Type I and Type II collagen. Organotypic ALI 

culture is carried out at atmospheric oxygen concentrations, in contrast to 

chondrogenesis in vivo, which normally occurs in avascular, hypoxic conditions (Shea 

& Miller 2005). The high concentration of oxygen may have been responsible for the 

mixed phenotype produced, as even in cell pellets treated with chondrogenic media, 

sites of air-pellet interaction were exposed to conditions conducive to osteogenic 

differentiation. This theory was expounded by the presence of increased levels of Type I 

collagen and decreased levels of Type II collagen towards sites of air-pellet interaction. 

 

In pellets from all different media conditions, Type I collagen was predominantly found 

surrounding the pellet at sites of pellet-air interaction, whilst Type II collagen was found 

at sites of cell-confetti adhesion. This suggests a role for oxygen concentration in the 
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differentiation of cells in organotypic ALI culture.  It was theorised that cells at sites of 

adhesion and near the liquid-pellet interface were exposed to a lower oxygen 

concentration in comparison to cells at the pellet-air interface, leading to an enhanced 

chondrogenic phenotype. Initial results for fetal femur cell pellets cultured in hypoxic 

(<5% oxygen) organotypic ALI culture were in conflict with this theory, as they 

exhibited an enhanced osteogenic phenotype in cell pellets grown in all conditions, 

evidenced by an increase in Type I collagen expression (see Appendix 8). Culture of 

pellets in hypoxic conditions also led to an increase in cell necrosis, thus further repeats 

of fetal cell pellets under hypoxic organotypic ALI culture would need to be performed 

before this phenotype can be confirmed. Another theory for the unusual phenotypes 

observed in organotypic ALI culture was the serum content of specific media types. 

Preliminary results concluded that phenotypes expressed by pellets treated were 

relatively unaffected by serum concentration other than in size. However, it was noted 

that the addition of serum appeared to initiate a greater osteogenic response in pellets 

treated with chondrogenic media (see Appendix 9).  

 

In conclusion, this study has demonstrated that organotypic pellet culture of FFDCs 

presents a potential model for both cartilage and early bone development that mimics in 

vivo conditions. However, the high levels of variation in marker expression observed 

between different populations of pellets grown in basal conditions highlighted a 

significant factor in maintaining reproducibility. Patient variation was observed to affect 

not only the differentiation of cells but also the ability of cells to form adequate 3D 

structures. Analysis of pellets demonstrated that significant pellet diameter at day 1 

(greater than 0.8mm) is crucial for maintaining reproducible results in osteogenic and 

chondrogenic conditions. To prevent anomalous results, it is essential that the growth 

potential of each population be determined before organotypic ALI culture to ensure 

suitable pellet diameter is obtained at day 1. By ensuring adequate pellet size in each 

population, the organotypic  protocol can be used to further analyse the effects of 

specific growth factors on cartilage and bone differentiation and would enable a better 

understanding of the processes involved in early skeletogenesis. Future work using 

these techniques could involve the use of different mesenchymal cell lines such as adult 

bone marrow cells to establish further models for skeletogenesis. 
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Chapters 3 and 4 have investigated the characteristics of FFDCs and their potential for 

use in tissue engineering protocols. In these chapters, it was shown that isolated FFDC 

populations demonstrate heterogeneity and contain multiple subpopulations, a trait 

common to most primary cell populations. The presence of multiple subpopulations can 

affect the growth potential and differentiation of a cell population in culture, as well as 

inhibit efficient characterisation. Thus, the isolation of specific subpopulations of cells 

for characterisation is a well established goal in stem cell research. While many 

protocols currently exist for separation of subpopulations, there is a paucity of methods 

that can offer isolation of 100% pure populations. Chapters 5 and 6 describe the 

development of novel devices for isolation of specific cell populations according to 

immunofluorescent marker expression. 
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CHAPTER 5 

DEVELOPMENT OF A DIELECTROPHORETIC DEVICE TO 

TRAP AND RECOVER CELLS 

 

In collaboration with Dr Rupert Thomas, School of Electronics 

and Computer Science, University of Southampton 

 

Cell biology by Peter Mitchell 

Device preparation by Dr Rupert Thomas 

Microfluidic isolation of cells by both parties 

 

Data published in:  

Thomas, R.S.W.*, Mitchell, P.D.*, Oreffo, R.O.C., & Morgan, H. 2010. "Trapping 

single human osteoblast-like cells from a heterogeneous population using a 

dielectrophoretic microfluidic device." Biomicrofluidics, 4, (2) (*Joint first authors). 
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5.1. Introduction 

It remains a clinical necessity to develop technologies that enable recognition and 

isolation of specific cell types in order to provide sufficient cell populations for use in 

tissue regeneration. Isolation of MSCs from bone marrow extracts is simplified by the 

fact that MSCs/progenitor cells will adhere to tissue culture plastic when cultured while 

haematopoietic and endothelial cells will not (Oreffo et al. 2005). The standard method 

used to identify MSCs is the colony forming unit-fibroblastic (CFU-F) assay, which 

produces fibroblastic, heterogeneous populations (Gronthos et al. 1994). In order to 

further isolate specific cells, stage-specific markers are required. However, due to the 

lack of knowledge surrounding the biochemical and phenotypic structure of these cells 

and the sharing of common features with other cells, both epithelial and endothelial; 

very few MSC-specific markers have been identified to date and none of these have 

been accepted as a definitive marker for the MSC phenotype (Baksh et al. 2004). 

Current markers known to enrich for MSCs include STRO-1, CD44, CD49a, CD63, 

CD73, CD90, CD105, CD106 and CD166 (Gronthos et al. 1994;Pittenger et al. 

1999;Minguell et al. 2001;Stewart et al. 2003;Jones et al. 2006). 

 

Populations of MSCs are often heterogeneous and the presence of sub-populations can 

seriously affect the overall analysis of the cell population. In order to produce accurate 

and cell-specific analysis, one approach is to use single-cell analysis. It is estimated that 

only 1/100,000 nucleated cells derived from bone marrow is a stem cell (Connolly et al. 

1989), therefore it is essential that an effective method of isolation is found to isolate 

stem-like cells. The majority of research into enrichment and isolation of the MSC from 

bone marrow cells has been carried out by fluorescence activated cell sorting (FACS) 

(Radbruch 1999) and the similar technique, magnetic activated cell sorting (MACS) 

(Miltenyi et al. 1990). However, these techniques are time consuming and neither 

approach provides 100% enrichment for the marker(s) in question. An alternative 

approach for the selection of specific cell populations is offered through the use of 

microfluidic techniques for isolation and characterisation of individual cells. 

Furthermore, microfluidic devices offer new methods for the characterisation of 

selected cell populations. Microfluidic devices can provide the means to manipulate and 

trap single cells. Contact-free immobilisation prevents damage to, or interference with 

the cells that could lead to false data from samples. To date, a variety of non-contact 
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microfluidic cell isolation techniques exist (Johann 2006), based on optical (Ozkan et al. 

2003), acoustic (Kim et al. 2004;Kriel et al. 2006), magnetic (Inglis et al. 2004;Kimura 

et al. 2005) and dielectrophoretic devices. 

 

Dielectrophoresis (DEP) is the phenomenon whereby polarisable particles exposed to 

non-uniform electric fields experience a net force directed towards locations with either 

increasing or decreasing field intensity. If the electric field is uniform, then the 

attraction between the dipolar charges and the electric field is equal and opposite and 

there is no net movement of the particle unless it carries its own net charge (Hughes 

2002). The strength of the DEP force is dependent on a variety of factors including the 

particles‟ dielectric properties, determined by the physical properties of the particle such 

as the size and shape and the interior structure; the medium; and the frequency of the 

electric field (Pohl 1978). By varying the frequency of the electric field, it is therefore 

possible to non-invasively distinguish between different cells and particles. DEP can be 

classified into two types: positive and negative DEP. Which of these forces a particle 

experiences is dependent on its permittivity relative to its surrounding medium. When 

the permittivity of the medium is less than that of the particles‟ then the net-force causes 

the particle to move towards the increasing field gradient. This is known as positive 

DEP (pDEP). However, in negative DEP (nDEP), the permittivity of the medium is 

greater than the particles, causing the particle to be repelled from areas of high electric 

energy (Medoro et al. 2007). Negative DEP has many advantages over pDEP, notably 

the ability to suspend particles above a surface for non-contact isolation of single cells, 

a property especially important for the study of adherent cells. Technological 

advancements in the production of electrodes with micro-sized features have led to an 

increase in the availability of DEP. Different electrode configurations have been 

designed for DEP, each providing different properties for particle manipulation, for 

example, the quadrupole electrode uses four electrodes to immobilise and levitate a 

single particle via negative DEP and offers a method to separate specific cells for 

characterisation (Voldman et al. 2003) (Figure 1.25). The introduction of octopole 

electrode designs into DEP (Schnelle et al. 1993) allowed the creation of nDEP cages. 

In this layout, electrodes are placed on both the top and bottom surfaces of a trap; the 

fields produced are able isolate a single cell in the middle of a flow channel, allowing 

single-cell isolation from a flow of cells (Manaresi et al. 2003). More recent techniques 
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have looked at using computer-run recognition programs to selectively trap specific 

cells such as those expressing certain levels of fluorescence (Thomas et al. 2009). 

 

In essence, microfluidic devices offer two different methods for cell separation; cell 

sorting and cell trapping. Cell sorting involves active manipulation of cells using an 

external force within a fluid flow in order to guide cells of interest to specific channels 

or areas of interest away from unwanted cells (Chen et al. 2008). Cell trapping is used to 

retain or delay cells in a fluid flow while unwanted cells are removed, thereby 

separating cells of interest from a population. Cell trapping devices enable a high degree 

of enrichment as small numbers of cells can be isolated with minimal unwanted cell 

contamination. Trapping methods also facilitate cell recovery as there is no need to 

accurately divide the fluid flow as is normally required to recover populations from a 

cell sorter. Cells separated by trapping can also be retained for on-chip analysis (Johann 

2006). The potential use of dielectrophoresis ring electrode traps have been previously 

demonstrated to immobilise single cells in physiological media (Thomas et al. 2009). 

Activation of a ring traps draw a cell towards the centre of the ring, suspending it above 

the substrate.  All other cells outside the trap are repelled by the dielectrophoretic field, 

resulting in each trap only containing a single cell. The aim of this study was to 

demonstrate the potential use of an array of ring electrodes for the isolation of specific 

subpopulations from a heterogeneous population of human osteosarcoma cells with 

100% purity. 
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5.2. Methods & Materials 

5.2.1. Cell lines 

This study utilised MG-63 cells, an osteoblast-like cell line with a fibroblastic 

morphology, derived from a human osteosarcoma. These cells were purchased from 

ATCC and were used as an established alternative to primary skeletal cell lines due to 

their osteogenic characteristics and expression of various osteoblast and skeletal stem 

cell markers including STRO-1. 
 

5.2.2. Cell labelling 

To aid in identification of cells during microfluidic isolation and separation of cell 

types, Vybrant™ labelling solutions DiD and DiO were used to establish fluorescent 

cell populations. Dissociated cells were centrifuged, washed with PBS and suspended in 

a solution of 10μl DiO/DiD stock in 1ml PBS for 7 min at 37°C. After incubation, cells 

were washed twice with PBS and suspended in flow media (see Section 5.2.4). For ease 

of recognition, green fluorescent cell lines were used for positive samples (to be 

trapped) and red fluorescent cells for negative samples. As an alternative to DiO-stained 

positive populations, established cell lines were transfected with recombinant GFP 

using the Amaxa Nucleofector® system, a non-viral system that utilises cell-specific 

buffer solutions and electroporation to transfect cells with foreign DNA. Cell cultures 

were trypsinised and gently centrifuged for 5 minutes at 90g then resuspended in 100μl 

of cell-specific nucleofector solution containing appropriate amounts of pmaxGFP 

plasmid, transferred to a certified Amaxa cuvette and electroporated under an optimised 

protocol on the Nucleofector® system. Cells were transferred to culture media and 

seeded onto 6-well plates or T75 culture flasks for recovery. After 24hrs in culture, 

transfected cells were dissociated and counterstained with DiD for use in cell trapping 

experiments. Transfection efficiency varied between cell types but on average ranged 

from 50-60% of the viable population being positive for GFP (Figure 5.1). Cells stained 

with cell tracker green failed to maintain cell viability after staining and Vybrant CFDA 

populations were unable to establish viable populations after passage, indicating their 

lack of suitability as long-term viability markers. Cells stained with Vybrant DiD and 

DiO stains or transfected with GFP were found to maintain cell viability after 

staining/transfection and after passage. However, GFP populations exhibited a large 

degree of variation in the levels of fluorescence exhibited by cells, increased by 

passage. 
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5.2.3. Microfluidic device 

Microfluidic chips were designed by Dr Nicolas Green (Electronics and Computer 

Science, University of Southampton) using CAD/CAM software and fabricated by 

Philips Electronics UK Ltd (Guildford). Inlet and outlet ports were drilled in to the chip 

using electro-chemical spark erosion and anisotropic conductive film bonding was used 

to connect the electrodes on the chip to an external circuit board through a flexible PCB, 

to allow connection of the chip to the signal generator via a software-run relay board. 

Microfluidic trapping of cells via the relay board was performed using an automated 

MATLAB script that allowed manual or automatic activation and deactivation of 

individual traps, facilitating selection and trapping of specific cells (see Appendix 10). 

Live images grabbed from a digital video camera were compared with a stored 

background image to identify moving objects. The size, colour and intensity of each 

object was determined, and traps activated as positively-identified cells passed 

overhead. Video files of cell isolations were also recorded through the MATLAB 

software for future reference. Microscopic observations were made through a bespoke 

fluorescent microscope with a uEye 2230c colour CCD camera and a Nikon PlanFluor 

x4 objective lens. Illumination was provided by a „white‟ LED (5500K CCT - Lumiled 

Luxeon), and red (635nm, 200mW) and blue (473nm, 30mW) lasers (Laserglow) were 

used for epifluorescence observations with a dual-band polychroic mirror (FITC/CY5 – 

Chroma, USA) and emission filter (FF01-538/685-25 - Laser 2000, UK). Introduction 

of flow media and cell solutions was performed using a syringe pump to provide 

consistent flow of media. Flow rate during trapping was set at 2 μl/min for optimal 

dielectric manipulation whilst also preventing sedimentation. Recovery of cells was 

performed at 5 μl/min. Traps were set at electrical excitation of 5 MHz, 10vpp; provided 

by a function generator. Use of flow valves enabled easy transition between alternating 

input syringes containing flow media or cell solution and between waste collection and 

positive cell collection. An overview of the microfluidic setup is shown in Figure 5.2 

(additional schematics can be found in Appendix 10). 

 

5.2.3.1. Quantification and prevention of cell adhesion 

To determine the extent that cells would adhere to the chip surface without trapping, 

macro-scale experiments were carried out to test a variety of different coatings. Using a 

hydrophobic pen, 1.5cm
2
 regions were marked on plain glass slides. 200μl solution 
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containing 1x10
3
 cells was dispensed into the marked region and incubated for up to 30 

minutes. Slides were then rinsed with running PBS to remove the cell solution and the 

number of cells adhered were counted in 4 sections of the marked region using 

microscopy. 

 

5.2.4. Dielectrophoretic trapping 

Fluorescently-labelled cell lines (red for negative and green for positive) were mixed at 

various ratios of red to green (2:1, 4:1, 10:1 etc.) and suspended in DMEM containing 

10% Dextran-70 (flow media) to provide neutral buoyancy. Cell solutions were then 

introduced into a microfluidic chip previously cleaned and sterilised using virkon, 

ethanol and PBS washes, incubated with 5% BSA in PBS to coat the glass and reduce 

cell adhesion/sticking, then washed with PBS and flow media. Traps were set at a 

frequency of 5 MHz and voltage of 10 VPP (volts point-to-point) and the device was 

cooled to 10 to 12°C to provide optimal conditions. Positive cells could be trapped 

manually or via the use of computer controlled software. Upon trapping of cells, flow 

was continued until all remaining non-trapped cells had been collected into the waste 

tube. Traps were then deactivated and trapped cells washed into a 384-well plate for 

analysis. After collection of trapped cells, DMEM plus 20% FCS was added to each 

well to improve cell viability and speed of recovery. The total number of cells collected 

was counted using phase confocal microscopy, while fluorescent microscopy was used 

to determine the ratio of positive and negative cells. 

 

 

Figure 5.1. Images of GFP+ MG-63 cells 2 days after transfection (A) and 1 week after 

transfection, after passage (B).  Transfection of cells with GFP resulted in varying levels 

of fluorescence (C) from none (arrowed) to intense fluorescence. Scale bars: (A, B) 

100µm, (C) 20µm. 

A

G 

B C 
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Figure 5.2. (A) Overview of the microfluidic setup (Thomas 2006). (B) Diagram of the 

microfluidic channel on the device. The channel is 95µm deep, 350µm wide increasing 

to 950 µm around the ring electrodes. (C) Photograph of the ring electrodes and 

microfluidic channel in the centre of the device. (D) Concept drawing of a single cell 

dielectrophoretic trap. The DEP force (arrows) direct the cell down and towards the 

centre of the ring electrodes. Figure adapted from (Thomas et al. 2010). 
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5.3. Results 

5.3.1. Microfluidic isolation of cells 

5.3.1.1. Preliminary experiments 

Preliminary tests into the use of microfluidic devices for isolation and retrieval of cells 

were carried out using three different cell trapping chip designs. Initial tests of novel 

chip designs were performed by Dr Rupert Thomas using polystyrene fluorescent beads. 

In all cases, isolation and/or retrieval failed due to inherent problems with the chip 

design (Table 5.1). 

 

From the preliminary tests, it was discovered that for optimal conditions, chips must be 

sealed with glass rather than silicone in order to maintain a rigid structure and thus a 

consistent flow rate throughout the chip (Figure 5.3). Whilst failing to isolate specific 

cells, the preliminary tests demonstrated the ability of microfluidic devices to trap 

specific cells.  

 

Test number Positive Negative 

1 Functional traps, able to isolate 

fluorescent beads 

15μm channel too small for MG-63 cells 

2 100μm channel large enough for 

cells, good consistent flow rate 

Manufacture-induced damage, majority of 

traps non-functional 

3 Functional traps, large enough for 

cells 

Use of non-rigid silicone wafer to seal 

chips caused issues with fluid flow 

Table 5.1. Summary of the positive and negative characteristics of the preliminary tests. 

 

 

Figure 5.3. Examples of silicone (polydimethylsiloxane) (A) and glass (B) sealed chips.  

A B 

5mm 
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5.3.2. Isolation and retrieval of Vybrant-stained cells  

Red and green fluorescent stained MG-63 cell populations were mixed at a 4:1 ratio of 

red to green. Cell mixtures were then inserted into the microfluidic device and trapping 

initiated. From a 4:1 mixture it was possible to identify and trap up to 8 positive green 

cells. In initial experiments it was found that recovery of pure green populations was 

prevented by contamination with negative red cells (Table 5.2 runs 1-5). In some cases 

this contamination came from red cells getting stuck within traps but the majority of 

contamination came from non-specific adhesion of cells to the chip surface (Figure 5.4). 

These cells adhered strongly enough to resist normal trapping flow rates but not 

sufficiently for recovery flow rates, preventing removal of the cells before recovery of 

the trapped positive cells. On average the purity of green cells was increased from 20% 

to 50 to 60%. This remained short of the 100% purity desired. 

Cooling the device to 10 to 12°C, in addition to use of a 5% BSA anti-adhesion coating 

(see Section 5.3.2.1) and suspension of cells in DMEM plus 10% Dextran-70 to provide 

neutral buoyancy, significantly reduced non-specific adhesion, enabling the removal of 

most, if not all non-trapped cells before recovery (Figure 5.5). This increased the purity 

of recovered positive cells to a consistent 100% (Table 5.2 runs 6-9). However, a major 

problem noted with all results was that recovered cells stained with DiD and DiO lacked 

viability and failed to adhere to tissue culture surfaces after 24 and 72 hours, whilst 

unsorted control populations maintained viability (Figure 5.6). This suggested that 

either the dielectrophoretic trapping or the low seeding density after recovery had a 

negative effect on cell viability. 
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Run 
no. 

Red 
stain 

Red 
recovered 

Red 
adhered 

Green 
stain 

Green 
trapped 

Green 
recovered 

Green 
adhered 

Green 
purity 

1 DiD 12 0 CTG 8 15 0 55% 

2 DiD 6 0 CTG 5 9 0 60% 

3 DiD 10 0 CTG 5 11 0 52% 

4 DiD 20 1 DiO 6 16 0 44% 

5 DiD 1 0 DiO 2 2 0 67% 

6 DiD 0 0 DiO 4 4 0 100% 

7 DiD 0 0 DiO 5 2 0 100% 

8 DiD 0 0 DiO 5 3 0 100% 

9 DiD 0 0 DiO 3 3 0 100% 

Table 5.2. Summary of chronologically separate recovered stained populations. Runs 1-

5 demonstrate early experiments hampered by cell sticking and red cell contamination, 

while runs 6-9 represent trapping using an optimised protocol. Key: DiD, Vybrant DiD; 

DiO, Vybrant DiO; CTG, cell tracker green. 

 

 

Figure 5.4. Screenshot of trapped MG-63 cells. Examples of adhered cells can be seen 

circled in yellow. Green cells are stained with Vybrant DiO and act as the cell of 

interest, while red cells are stained with Vybrant DiD and act as unwanted cells. Scale 

bar; 100µm. 
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Figure 5.5. Still frames taken from the video at intervals during cell trapping: (A) prior 

to trapping, (B) after trapping, and (C) after washing. Scale bars; 100µm. 

 

Figure 5.6. Microfluidic isolation of cell tracker green and Vybrant DiD stained cells. 

An example of an impure batch of recovered cells is shown in (A) and an unsorted 

control sample of cells is shown in (B). While the control population demonstrates cell 

adherence, isolated cells fail to readhere to tissue culture plastic. Scale bars: 100µm. 

 

A B 
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5.3.2.1. Quantification and prevention of cell adhesion 

Cells incubated on plain glass slides were found to adhere rapidly, with cells adhering in 

less than 5 minutes and the majority of cells observed to be adherent after 10 minutes of 

incubation (Figure 5.7). Therefore the adhesion of cells in all following tests were 

measured at 5 minutes (Figure 5.8) and 20 minutes (Figure 5.9). Of all coatings tested, 

5% BSA, 1% Agarose and 1% Agarose/APES ((3-aminopropyl)triethoxysilane) were 

deemed the most effective at preventing cell adhesion. In addition to testing coatings for 

the glass chips, various media additives were tested. These included the addition of 

various molecular weights of PEG (polyethylene glycol) and trypsin.  None of the 

additives were found to have any substantial effect on cell adhesion to glass slides. 

 

5.3.2.2. Cell viability 

Recovered populations of trapped Vybrant DiD/DiO stained cells failed to adhere to 

tissue culture plastic, prompting an investigation into the effect of the microfluidic 

device on cell viability. Control samples were established at recovery seeding density 

(<10 cells per well in a 384 well plate) for each stage of the microfluidic protocol and 

viewed after 24 and 72 hours. Results showed that after 24 hours, Cells at all stages, 

(including after being run through the device without trapping), still maintained 

viability. However, it was noted that cells left in suspension for long periods of time, 

both at 4°C and 18°C demonstrated severely reduced viability (Figure 5.10). Negligible 

differences were noted between cell counts at 24 and 72 hours, indicating that no 

proliferation had occurred despite cell adhesion and viability.  
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Figure 5.7. Graphic representation of MG-63 cell adhesion on plain glass over 30 

minutes. Individual experiments (n=4) are shown by points, with mean demonstrated by 

a straight line.  
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Figure 5.8. Graphic representation of MG-63 cell adhesion on coated slides after 5 

minutes. Individual experiments (n=4) are shown by points, with mean demonstrated by 

a straight line. Key: APES, (3-aminopropyl)triethoxysilane; PEG, 

poly(ethyleneglycol)diacid 600; BSA, bovine serum albumin. 
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Number of cells adhered after 20 minutes
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Figure 5.9. Graphic representation of MG-63 cell adhesion on coated slides after 20 minutes. 

Individual experiments (n=4) are shown by points, with mean demonstrated by a straight line. 

Key: APES, (3-aminopropyl)triethoxysilane; PEG, poly(ethyleneglycol)diacid 600; BSA, 

bovine serum albumin. 
 

Viability of Vybrant-stained MG-63 cells during the microfluidic process
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Figure 5.10. Percentage of Vybrant-stained cells viable at each stage of the microfluidic 

process when seeded at recovery density. Samples were viewed 24 hours after seeding. Data 

shown as mean ± SD, n ≥ 6. Statistical analysis performed in comparison to post-trypsin 

control; ns = non-significant, *** = p < 0.001. 
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5.3.3. Microfluidic isolation of GFP
+
 MG-63  

MG-63 cell populations transfected with GFP exhibited less uniform expression of 

fluorescence than stained cells but demonstrated consistent viability throughout testing 

(Figure 5.11). GFP
+
 cells were mixed with Vybrant DiD stained cells at ratios varying 

from 2:1 to 4:1 red to green (according to the rough percentage of a transfected 

population expressing GFP). 

 

Out of a total of 4 runs using GFP transfected cells, it was possible to identify and trap 

between 2-5 positive cells. All tests recovered 100% purity of GFP
+
 cells. In addition, 

approximately 53% (range: 33-80%) of recovered cells maintained viability and adhered 

to tissue culture surfaces within 24 hours (Table 5.3, Figure 5.12). After 72 hours only 

one of the recovered populations had demonstrated proliferation, while all others failed 

to proliferate (Figure 5.13). Suggesting that while recovered cells are able to readhere to 

tissue culture plastic, the stress they are exposed to during trapping severely inhibits 

normal cell growth. 

 

To test the proliferative ability of GFP transfected cells, control populations were set up 

at approximately 10 cells per well (384-well plate) and cultured for 12 days to allow 

ample time for recovery and growth. Proliferation of cells was only observed in wells 

containing  more than 10 cells, while wells containing less than 10 cells were found to 

lose viability and detach within a few days (Table 5.4, Figure 5.14). This suggested a 

requirement for a minimum number of cells to be seeded per well to enable cell 

recovery and growth, offering an explanation as to the poor viability of the small 

numbers of trapped and recovered cells (<10 cells). 
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Viability of GFP+ MG-63 cells 24hrs post-recovery
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Figure 5.11. Percentage of GFP-transfected cells viable at pre-dielectrophoresis stages 

of the microfluidic process when seeded at recovery density. Data shown as mean ± SD, 

n ≥ 6. Statistical analysis performed in comparison to post-trypsin control; ns = non-

significant. 

 

Run 
no. 

Red 
recovered 

Red 
adhered 

Green 
recovered 

Green 
adhered 

Green 
purity 

1 0 0 4 2 100% 
2 0 0 5 4 100% 
3 0 0 3 1 100% 
4 0 0 2 1 100% 

Table 5.3. Summary of recovered GFP+ MG-63 populations after 24 hours, n=4. 

 

 

Figure 5.12. Examples of GFP+ MG-63 cell viability 24 (A) and 72 hours (B) after 

recovery. Scale bars: 20µm. 

A B 

ns 
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Figure 5.13. Total number of cells vs. viable cells for recovered GFP+ cells at 24 and 

72 hours post-recovery (n=2 populations, 2 runs/population). 

 

Sample Initial adhered cell count Adhered cell count after 12 days 

1 11 0 
2 16 >50 
3 8 0 
4 7 0 
5 15 >50 
6 11 >20 
7 4 3 
8 10 0 
9 9 0 
10 14 >50 
11 9 0 
12 6 0 

Table 5.4. Analysis of cell growth and proliferation in control cultures of MG-63 cells 

after 12 days culture following seeding at 1 to 20 cells per well. 

. 

 

24 hours 72 hours 
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Figure 5.14. Images of MG-63 control populations after 12 days, demonstrating 

proliferation in wells seeded at more than 10 cells/well (A) and lack of proliferation, 

resulting in cell death and detachment in wells seeded at less than 10 cells/well (B). 

Scale bars; 50µm. 

 

 

 

 

 

A B 



 

165 

 

5.4. Discussion  

Previous studies into characterisation of mesenchymal stem cells have highlighted the 

need to isolate and purify specific populations of cells for analysis due to the lack of 

knowledge surrounding the biochemical and phenotypic structure of these cells (Baksh 

et al. 2004). The majority of current techniques for the isolation and separation of cells 

from a mixed population have failed to provide pure populations of recovered cells. 

This study has demonstrated that individual human cells can be isolated and recovered 

from a heterogeneous population, using nDEP ring traps, to provide an enriched 

population. Eight separate sorting operations demonstrated recovery of 100% pure 

populations of specific cells. This shows that despite limitations discussed later in this 

section, specific individual cells can be selected and manipulated from a heterogeneous 

population. 

 

The low number of available traps, the linear layout of the traps and the need to 

compromise between filling all available traps and how long cells were exposed to the 

sorting process resulted in the output of recovered cells being low in comparison to 

other existing techniques used for cell enrichment, with the duration of each sorting 

operation limited by the gradual decrease in cell viability the longer cells spend out of 

culture. In addition, actuation of flow control valves during washing stages was found to 

introduce a displacement into the fluid, often with magnitude sufficient to dislodge cells 

trapped in the ring electrodes. Hence, a small number of trapped cells would be lost 

during the sorting operation as they would be displaced from traps before recovery. 

Recovery of cells after trapping typically resulted in a 25% yield of trapped cells, 

resulting in a further reduction in the number of output cells of interest. However, this 

could be easily addressed by up-scaling the device to provide a larger number of traps 

and modifying the layout of the traps to a non-linear pattern so that more cells were 

likely to be exposed to traps during the sorting process. Alternatively use of a CMOS 

chip would provide high numbers of traps in any desired layout (Manaresi et al. 2003). 

 

Cells in contact with or moving slowly near to a surface were liable to become attached. 

These cells could then detach at a later time, particularly at points when the flow rate 

was increased such as during recovery. This is likely to lead to non-target cells being 

recovered and contaminating the isolated sample. It was discovered that cells adhered to 

plain glass within 5 minutes, even when suspended in trypsin, suggesting that adhesion 



166 

 

was due to forces other than cell-produced proteins. To limit cell-surface interactions, 

the microfluidic channel was designed so that channels to and from the area containing 

the ring electrodes were narrower, increasing fluid velocity and reducing the likelihood 

of cell attachment. Additionally, coating the surface of the glass chip with 5% BSA to 

prevent adhesion, coupled with addition of Dextran-70 to the media to provide a near-

neutral buoyancy to prevent cells dragging along the chip surface, substantially reduced 

cell adherence; even in those trapped and held stationary for up to 20 minutes. The 

design of the microfluidic channel is crucial if pure populations are to be recovered 

(Sims & Allbritton 2008). Separate inlets were provided for input of cells and buffer so 

that non-target cells could be flushed away effectively. Separate outlets were also 

applied for the recovery of isolated cells and waste. Care was taken to keep the recovery 

outlet clean and devoid of cells so that non-target cells were not released into the fluid 

flow during recovery. An additional washing inlet was provided so that media could 

flow into the device along the recovery outlet, preventing cells entering the recovery 

outlet until non-target cells had been sufficiently flushed out.  

 

After trapping experiments were performed it was discovered that in all cases, 

recovered cells stained with Vybrant DiO failed to adhere to tissue culture plastic, 

whilst most samples transfected with GFP and were able to readhere to tissue culture 

plastic after trapping and recovery. Trapped GFP+ cells were recovered into a 

microplate by aliquoting 40μl of the eluent per well. This resulted in cell densities of 

approximately 1-3 cells per well. Despite the majority of cells adhering to the culture 

plate, as the numbers of cells recovered to each well failed to reach the numbers 

required to maintain a healthy population, the cells showed extremely slow recovery 

rates and negligible levels of proliferation were observed in recovered populations, with 

almost all trapped cells succumbing to cell death and detaching from the culture surface 

within a week. From observation of recovered populations and viability controls at all 

stages of the microfluidic protocol it was proposed that reduction in viability was not 

caused by any one process, but rather the combined effects of multiple stimuli, 

including cells becoming stressed by staining (DiO was particularly stressful on cells), 

held for sustained periods in suspension, being exposed to a dielectric field during 

trapping and/or an extremely low seeding density during recovery, as interestingly, cells 

had to be seeded at densities greater than ten cells per well to maintain a stable 

population and proliferate.  
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The dielectrophoretic traps operate by producing a large gradient in the electric field in 

the region surrounding the traps, this can alter the electrical potential across the 

membrane of a cell (Grosse & Schwan 1992). Numerical simulation of the electric field 

indicates that the traps are unlikely to induce a transmembrane potential within cells 

immobilised in the traps that exceeds harmful values. However, localised heating of the 

media will also occur, particularly as the physiological media used is quite conductive 

(Glasser & Fuhr 1998). Simulations indicate that the substrate temperature inside a trap 

would not exceed a 12
o
C rise from the local ambient temperature (Thomas et al. 2009). 

For example, if the device is cooled to 10°C during trapping, the maximum temperature 

experienced by cells is approximately 22°C directly above the electrodes (Thomas 

2010), demonstrating that it is possible to set the substrate temperature within a range 

that is unlikely to cause long-term harm to cells when exposed for short periods of time. 

However, cells in the vicinity of a trap may still experience a thermal gradient that 

increases cellular stress. 

 

In conclusion, this study demonstrates that isolation and recovery of specific cells is 

possible using dielectrophoretic ring traps. While this device is capable of isolating and 

recovering only small numbers of cells, thus hindering reestablishment of stable somatic 

cell populations, the system offers a route for the isolation and recovery of pure 

populations of specific cells. Addition of integrated on-chip analytical devices such as 

those for single-cell mRNA analysis (Ottesen et al. 2006;Marcus et al. 2006) would 

negate the need for high cell throughput, allowing direct genomic characterisation of 

small populations of recovered cells. Alternatively, application of more traps coupled 

with a non-linear arrangement would enable recovery of sufficient cell numbers to allow  

recovered somatic cell populations to maintain viability and proliferation. The trapping 

device discussed here also offers potential for isolation and culture of specific cells on-

chip as previously described by (Yamaguchi et al. 2009). With the discovery of 

sufficient surface antigens that enable identification and labelling of stem cells with 

fluorescent markers, ring trap systems offer a potential for isolation and recovery of 

stem cells from a heterogeneous population, which typically maintain viability and 

proliferation even when cultured as single cells. These studies illustrate the potential of 

such a dielectrophoretic device for cell isolation from heterogeneous populations and 

the implications therein for cell sorting of somatic populations. 
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6.1. Introduction 

As discussed in Chapter 5, an alternative to trapping devices for cell separation is cell 

sorting, where an external force is used to manipulate cells of interest within a fluid 

flow. Separation of cells with distinct characteristics such as difference in size can be 

performed with greater ease than isolating for less obvious differences such as marker 

expression. For example, previous studies have isolated nucleated red blood cells with  

up to 99.99% efficiency based on size and natural magnetism (Huang et al. 2008) or 

have efficiently separated cells based on distinct dielectrophoretic properties with purity 

up to 99% (Wang et al. 2005;Gascoyne et al. 2009). 

 

Isolation of similar cells based on marker expression currently requires the use of 

external identifiers such as stains and antibodies. Currently, the main techniques for 

marker-based cell sorting consist of fluorescence activated cell sorting (FACS) 

(Radbruch 1999) and magnetic activated cell sorting (MACS) (Miltenyi et al. 1990). 

However, these techniques are time consuming and neither approach provides 100% 

enrichment for the marker(s) in question. The majority of existing microfluidic marker-

based sorting devices are simply miniaturised versions of FACS and MACS (Wolff et 

al. 2003;Adams et al. 2008;Wu et al. 2010) and have yet to provide a consistent method 

for the recovery of pure cell populations of specific cells, as, to date, recovered 

populations typically contain small numbers of unwanted cells. For example, a study by 

Wang and co-workers demonstrated recovery of GFP-labelled HeLa from unstained 

cells using optical forces to manipulate cells towards collection or waste outputs. This 

method enabled sorting of more than 10,000 cells but only provided recovery of 82-98% 

pure GFP-positive populations (Wang et al. 2005).  

 

The isolation of pure populations of specific skeletal cells was previously enabled by 

use of a novel DEP-based trapping device as discussed in Chapter 5. However, this 

device was limited in the number of cells that could be retrieved. In addition, recovered 

cells were unable to establish viable populations. Sorting methods are designed to offer 

a higher throughput of cells than trapping devices, thus providing a larger number of 

cells for analysis and/or growth. However, this increased throughput is often hampered 

by a decrease in purity. The aim of this study set out to utilise DEP technology to create 

a microfluidic-based cell sorter that would continue to provide 100% purity whilst also 
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enabling recovery of larger numbers of sorted cells for analysis or establishment of 

viable cell populations. 

 

6.2. Methods 

6.2.1. Cell lines 

This study utilised MG-63 cells for initial studies as an established and robust 

alternative to primary skeletal cell lines due to their expression of the skeletal stem cell 

marker, STRO-1. Later experiments were performed with primary hBMSC populations 

(see Section 2.2 for culture protocols). 

 

6.2.2. Microfluidic device 

To enable the recovery of an enriched sample from a heterogeneous population a device 

with two separate outputs, one for the cells of interest (positive fraction) and one for the 

remainder of the cells (waste), was fabricated by Katie Chamberlain at the Southampton 

Nanofabrication Centre, University of Southampton. A nDEP-based sorting gate 

comprising of 3 pairs of electrodes was used to manipulate cells towards the desired 

output (Figure 6.1). During sorting, the electrodes default setting was to deflect cells 

towards the waste. When a cell of interest was recognised, the electrodes switched to 

deflect the cell towards the positive channel, reverting back to the default setting once 

the cell past the sorting gate. This allowed isolation of cells from the population as a 

whole. Cell recognition and control of the electrodes was facilitated by automated 

software written in MATLAB by Dr Rupert Thomas (ECS, University of Southampton). 

Fluorescence-based optical detection was utilised to allow the software to track cells, 

with positive cells expressing a fluorescent intensity significantly different to negative 

cells. The sorting chips were fitted into a holder that enabled connection of the chip to 

the fluid inputs and outputs. Connective tubing between the chip and sources of 

media/recovery devices were all fitted with simple on/off valves to enable control of 

buffer flow during use. Use of valves to isolate specific inputs or outputs helped to 

ensure that the positive recovery channel was isolated from unwanted cells during cell 

loading, as well as preventing contamination of sorted populations during recovery 

(Figure 6.2). During wash cycles, bleach, 70% ethanol, sterile PBS and sterile buffer 

were fed into the chip through one of the input channels via a syringe pump to prepare 

the device for use with live cells. A syringe pump was also used to enable recovery of 
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sorted cells, as the higher throughput of buffer facilitated rapid recovery and removal of 

any stuck or adhered cells. Control of fluid flow during required finer control than 

offered by syringe-fed input, therefore sorting was performed using gaseous pressure on 

fluid input and output tubes using a Fluigent MFCS-4C pressure controller. Use of a 

Fluigent Flowell allowed individual measurement and fine manipulation of the pressure 

and thus the flow rate in each channel of the microfluidic chip.  

 

6.2.3. Cell sorting 

Initial tests determined that for optimal sorting, the device was run at a flow rate of 

40nl/min and a cell density of 3x10
5
/ml. Cell manipulation was carried out at 9vpp, 

5Mhz, as this provided a suitable balance between maintaining cell viability and 

providing a dielectrophoretic field strong enough to manipulate cells (see Section 6.3.4). 

Automated software written in MATLAB by Dr Rupert Thomas (Electronics and 

Computer Science, University of Southampton) was designed to recognise and 

selectively isolate green fluorescent cells (see Appendix 10). The software was limited 

in that the system required all cells to express some form of fluorescent marker as the 

software was unable to distinguish unstained cells from the background on the chip. To 

solve this issue, all cells were labelled with DiD Vybrant (red) to make them visible to 

the image capture device. Sorting could be performed fully automated, allowing the 

software to make all decisions on cell separation or via use of a semi-manual approach, 

where the user observed the automated sorting and manually intervened to remove 

incorrectly isolated cells by altering the flow of buffer. 

 

For positive cells, either a fraction of the population were further labelled with Vybrant 

DiO (green, positive control, see Section 5.2.2) or the whole population was 

immunostained for STRO-1. In Vybrant-stained experiments, cells were mixed at a 4:1 

ratio of red to green. MG-63 cells cultured at low density, up to approximately 60% 

confluence, strongly express STRO-1, thus providing an ideal population of cells for use 

in development of the device for STRO-1+ cell isolation. 

 

6.2.4. Fluorescent labelling for cell tracking 

Populations of hBMSC and MG-63 cells were dissociated from tissue culture plastic 

using accutase (1X solution, Sigma A6964), suspended in sort buffer (PBS + 1% BSA + 

5mM EDTA + 25mM HEPES) and labelled using immunostaining for STRO-1. To 
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provide fluorescent marking of STRO-1 positive cells, cells were incubated in a 1:1 mix 

of sort buffer and mouse anti-human STRO-1 primary antibody for 45 minutes, washed 

and then incubated in sort buffer containing a goat anti-mouse Alexa-fluor 488-

conjugated secondary antibody (1:200 dilution). To counterstain all viable cells red and 

enable observation of all cells within the microfluidic device, the Vybrant cell dye DiD 

was applied to cells post-immunostaining in a 1:200 dilution in PBS and incubated for 7 

minutes at 37°C. Cells were then washed twice and resuspended in neutral buoyancy 

buffer for use in sorting experiments. The majority of MG-63 cells displayed some 

STRO-1 expression but only around 10 to 20% strongly expressed STRO-1 and 

exhibited a ubiquitous green fluorescent stain. As expected from previous STRO-1 

isolation research, approximately 10 to 15% of hBMSCs (per population) expressed 

STRO-1 at detectable levels. 

 

6.2.5. Cell recovery 

Recovery methods for initial tests involved collection of positively selected cells to a 

sterile 2ml vial. Cells were suspended in buoyancy buffer, with addition of media to the 

recovered cells to reduce the buoyancy of the cell suspension. The vial was then 

centrifuged and the cells resuspended in fresh culture media plus 20% FCS before being 

seeded onto a 96-well plate. Later experiments involved recovery of cells directly to a 

96-well plate. The majority of sorted cells were observed to be suspended within the 

first 100 to 200µl of buffer, allowing recovery of the cells to the same well. Media was 

then added to wells containing recovered cells to reduce buoyancy and the plate 

centrifuged to allow resuspension of the cells in culture media plus 20% FCS and 1% 

penicillin/streptomycin. 

 

6.2.6. Genotyping isolated populations 

To provide enough RNA for analysis, isolated STRO-1+ cells were seeded onto 96-well 

tissue culture plates and grown until approximately 100 to 200 cells were available for 

RNA extraction. Extracted RNA was subjected to two rounds of RNA amplification 

using the Arcturus RiboAmp HS PLUS kit (Applied Biosystems, KIT0525). 

Amplification of the RNA provided sufficient quantities for cDNA synthesis using the 

RT² first strand cDNA kit (SABioscences, C-03) and analysis using the RT² Profiler™ 

PCR Array (SABiosciences, PAHS-082) for mesenchymal stem cell markers from 

SABiosciences. Only genes with a Ct less than 25 were considered relevant. 



 

175 

 

 

 

 

Figure 6.1. A schematic representation of microfluidic based cell sorting (A) and an 

image of the device positively selecting for a green fluorescent cell (circled) from a 

heterogeneous population (B). 
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Figure 6.2. Schematic diagram of valve operation during device preparation (A-D), 

sorting (E) and recovery (F,G) (Figure courtesy of Dr Rupert Thomas, University of 

Southampton (Thomas 2006)). (A) the syringe pump is used to run sterile sorting buffer 

through the microfluidic device; (B) cells are introduced into the system; (C) the „waste‟ 

output is flushed clean with buffer; (D) unsorted cells are removed from the „positive 

fraction‟ outlet by flowing buffer back along the channel; (E) cells are sorted between 

the two outputs; (F) unsorted cells are flushed from the system into the „waste‟ output; 

(G) sorted „target‟ cells are flushed from the „positive fraction‟ outlet and collected. 

A B 

C D 

E F 
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6.3. Results 

6.3.1. Selection of a suitable cell buffer 

Microfluidic sorting is a time-consuming process both in preparation of cells and in 

running cells through the device. In order to successfully isolate cells from 

heterogeneous populations, the cells must remain non-adherent and maintain their 

viability whilst in suspension. Established and primary skeletal cell populations are 

adherent and become sticky when kept in a single cell suspension for long periods of 

time. It was therefore essential to ensure that the cells were maintained in a suitable 

buffer that could maintain a viable single cell suspension for as long as possible.  

 

6.3.1.1. Selection of a buffer to maintain single cell suspension and prevent cell 

adherence 

To test the ability of potential buffers to maintain a single cell suspension, an 

established cell line (MG-63) and primary cell culture (hBMSCs) were dissociated from 

tissue culture flasks and resuspended in relevant sort buffer. The suspensions were then 

observed at room temperature (21°C) or 4°C for up to 4 hours to determine the level of 

cell adhesion. Cell suspensions were agitated every 30 minutes to maintain the cell 

suspension. 

 

Sorting of cells in their normal culture medium (DMEM/αMEM) proved beneficial as 

the buffer was ideal for maintaining cell viability and also facilitated recovery of cells 

after sorting as cells could be seeded directly from sorting. However, tests using culture 

medium as a sort buffer demonstrated a high level of cell settling and adherence to 

container surfaces and other cells, confirming culture media as unsuitable for cell 

sorting. No significant difference was noted between cells stored at 4°C and those at 

room temperature. 

 

Based on existing in-house sorting buffer recipes used for maintenance of cells in FACS 

and MACS, a suitable buffer was designed to replace culture media as the cell buffer 

during sorting.  It was found that PBS (Ca/Mg
2+

 free) plus 1mM EDTA, 25mM HEPES 

and 1% BSA, maintained a cell suspension for over 4 hours with minimal cell-cell 

clumping (approximately 13% of the cells were clumped) but high levels of cell-
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container adherence. No significant difference was noted between cells stored at 4°C 

and those at room temperature. 

 

In order to maintain a single cell suspension and prevent settling and adhesion of cells 

to their container, a high molecular weight sugar, Dextran-70, was added to the sorting 

buffer. It was calculated that approximately 11% Dextran-70 (w/v) was required to 

induce  neutral buoyancy. It was therefore decided that 10% Dextran-70 would be used  

to provide a buoyancy level that significantly reduced the settling of cells and limited 

the level of clumping, whilst not completely preventing cells from settling over time. 

After 4 hours, both 4°C and room temperature samples demonstrated negligible levels 

of cell settling and adherence to the container, as well as minimal cell-cell clumping 

(approx. 8% of cells). 

 

6.3.1.2. Viability of cells in buffer 

Viability was assessed using the Guava EasyCyte™ Mini System (Millipore) at various 

timepoints up to 4 hours under room temperature and at 4°C. Cells suspended for over 4 

hours were then seeded onto tissue culture plastic to determine their ability to recover 

and proliferate. 

 

At room temperature (21°C), both established and primary cells demonstrated some loss 

of viability when suspended in culture media for 4 hours, although significant (p<0.001) 

loss was only observed in primary cells. Despite decreased viability, both established 

and primary cells were able to maintain a healthy population of cells after seeding. In 

both sort buffer and buoyancy buffer, cells maintained their viability for over 4 hours at 

room temperature and cells suspended in both buffers demonstrated readherance and 

cell proliferation (Figure 6.3 A,C; Figure 6.4 A,C,E,G,H,J). 

 

At 4°C, cells from established and primary cultures maintained viability for over 4 

hours in all buffers and demonstrated readherance and proliferation of cells (Figure 6.3 

B,D; Figure 6.4 B,D,F,H,I,K). 
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Figure 6.3. Guava-assessed viability of established and primary cell lines suspended in 

different sorting buffers for up to 4 hours. (A) MG-63 at room temperature (21°C), (B) 

MG-63 at 4°C, (C) hBMSCs (p0) at room temperature (21°C), (D) hBMSCs at 4°C. 

Key: CM, culture media (red); SB, sort buffer (green); NB, sort buffer plus 10% 

Dextran-70 (blue). Results shown as mean ± SD, n ≥ 3, *** = p<0.001, ns = not 

significant. 
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Figure 6.4. Images of MG-63 following 4 hours incubation in sorting buffers at 24 hrs 

post-seeding (left column) and 2 weeks post-seeding (right column). Cells incubated in 

DMEM buffer at room temperature (A, C) and at 4°C (B, D). Cells incubated in Sort 

buffer at room temperature (E, G) and at 4°C (F, H). Cells incubated in buoyancy buffer 

at room temperature (H, J) and at 4°C (I, K). Key: CM, culture media; SB, sort buffer; 

NB, sort buffer plus 10% Dextran-70. Scale bars: 100µm. 

 

6.3.2. Cell dissociation tests 

6.3.2.1. Dissociation of confluent MG-63 cells: 

The method used for cell dissociation plays a key role in preventing cell clumping and 

in establishing a single cell suspension, critical for effective microfluidic cell sorting. 

In order to find the best protocol, a variety of different cell dissociation solutions, 

including trypsin, Accutase (Sigma, A6964), Accumax (Sigma, A7089), 

trypsin/collagenase and enzyme-free dissociation fluid, were tested on confluent MG-63 

cell populations (Figure 6.5). The resulting dissociated cells were re-seeded to 

determine any effect of the solutions on the viability of the cells (Figure 6.6). 
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Trypsin dissociation of cells proved extremely effective (5 minutes at 37°C) although 

significant cell clumping was observed due to the expression of collagen matrix not 

degraded by the trypsin enzyme (Figure 6.5 A). Trypsin dissociated cells maintained 

their viability and demonstrated successful readherence to tissue culture plastic (Figures 

6.5 B and 6.6).  

 

Accutase is a commercially available dissociation buffer that combines protease and 

collagenolytic activities, designed to maintain a high level of cell viability. Accutase-

induced detachment of  confluent cells from tissue culture plastic (15 minutes at 37°C) 

exhibited a significant increase in single cells in comparison to trypsin-dissociated cell 

suspensions (Figure 6.5 C) and demonstrated high levels of cell readherence and 

viability (Figures 6.5 D and 6.6). However, accutase-dissociated cell suspensions still 

maintained small numbers of collagen-induced cell aggregates that interfered with 

effective cell sorting. 

 

Accumax maintains the protease and collagenolytic activities of accutase together with 

the addition of DNase and is designed specifically to dissociate cell clumps into single 

cell suspensions. Accumax proved effective for cell dissociation (15 minutes at 37°C), 

resulting in the generation of a single cell suspension with minimal clumping of cells 

(Figure 6.5 E). Accumax dissociation demonstrated a minor deleterious effect on the 

viability of the cells, with approximately 5% loss in cell readherence in comparison to 

accutase. However, the difference in viability between Accumax and other dissociation 

buffers was statistically insignificant (Figure 6.6). This was corroborated as cells 

maintained a high level of cell recovery and proliferation (Figure 6.5 F). 

 

It was found that use of a collagenase pre-treatment before use of trypsin dissociation 

resulted in an effective cell dissociation protocol, with very few cell clumps. However, 

this technique was deemed no more effective than use of Accumax or Accutase, whilst 

having the drawback that collagenase treatment required incubations of greater than 30 

minutes. Use of enzyme-free dissociation buffer was ineffective at dissociating cells 

from tissue culture plastic and cells that did detach did so in cell sheets. It was 

concluded that Accumax would be used for dissociation of cells for use in sorting 

experiments due to the high viability and negligible cell clumping resulting from its use.  
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Figure 6.5. Dissociation tests on confluent MG-63 cells. Trypsin dissociation was 

unable to remove the majority of cell clumps (A) but cells remained viable (B). 

Accutase dissociation greatly reduced numbers of cell clumps but still maintained a 

small number of large cell aggregates (C), while cells remained viable (D). Accumax 

dissociation resulted in a mostly single cell suspension (E) and cell viability 

demonstrated no significant difference to that seen with other dissociation buffers (F). 

Scale bars: 200µm. 
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Figure 6.6. Readherence of cells 24hrs post-dissociation. Results are shown as mean ± 

SD, n = 4, ns = not sigificant. 

 

6.3.2.2. Dissociation of hBMSC cells 

When grown in monolayer culture for extended periods of time, hBMSCs are known to 

produce large amounts of collagenous matrix. The presence of this matrix was 

extremely detrimental to the establishment of a single cell suspension as large amounts 

of collagen-adhered cell clumps remained. Use of trypsin-collagenase and buffers with 

collagenolytic activity (Accutase and Accumax) were found to significantly reduce the 

level of clumping. However, it was found that collagenase-treated cell suspensions 

contained large amounts of debris and cells readily coalesced within a short period of 

time post-dissociation, suggesting a remaining presence of collagen. Modification of the 

hBMSC growth protocol presented the ideal method of reducing collagen-induced cell 

aggregates. After isolation from bone marrow, cells were seeded at high density and 

allowed to adapt to monolayer culture and to establish for 6 days, during which minimal 

collagen production occurred. After 6 days, at which time cells reached 50% 

confluence, the flasks were dissociated using accutase. Populations of cells grown and 

dissociated using this protocol were found to maintain single cell suspensions with 

minimal clumping for up to 4 hours post staining, facilitating microfluidic isolation of 

cells.  

 

 

ns ns 



184 

 

6.3.3. Effects of staining on cell viability 

Staining of cells with fluorescent markers was essential for identification of positive and 

negative cell fractions. A variety of different cell markers, including cell tracker green, 

Vybrant CFDA, Vybrant DiD and Vybrant DiO, were tested on multiple populations of 

MG-63 cells (n>3) to determine the effects of the stains on cells for microfluidic sorting 

(Figure 6.7). The Vybrant dyes DiD (red) and DiO (green) were chosen as a rapid and 

uncomplicated method for fluorescent cell staining during development of the sorting 

protocol and for background staining of all cells. Whilst immunofluorescent staining 

was used for labelling of specific cell markers such as STRO-1.  

Unstained populations of MG-63 cells demonstrated an average of 87% cell 

readherence for up to 4 hours post-staining when not subjected to the microfluidic 

process. Cells that were processed through the microfluidic device demonstrated a 

statistically insignificant drop in readherence to 81% on average. While not statistically 

significant, this minor loss of readherence indicated that the microfluidic device may 

have had a small detrimental effect on cell viability. 

The ethanol-based DiD stain maintained readherence of unprocessed cells at 86% when 

kept for up to 4 hours in suspension, confirming the negligible effects of this dye on cell 

viability. However, DiD-stained cells processed through the microfluidic device 

induced a significant (p<0.01) reduction in cell readherence to a 71% average; a 10% 

drop in viability in comparison to processed unstained cells. This suggested a 

synergistic detrimental effect of both the staining and the microfluidic device on cell 

viability.  

 

Addition of the dimethylformamide based Vybrant stain, DiO, alongside DiD was found 

to cause notable loss of viability in both microfluidic-processed and -unprocessed 

populations of MG-63 cells. Viability of DiD/DiO-stained cells was significantly less 

than that of unstained and DiD-stained cells immediately post-staining (p<0.001). 

Viability continued to drop significantly over 4 hours in suspension (p<0.001), with 

average cell adherence for unprocessed cells dropping from 67% post-staining to 42% 

after 4 hours in suspension. Processed populations demonstrated severe loss of viability, 

with an average of 16% readherence of cells. 
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Cells that underwent immunofluorescent staining for STRO-1/DiD demonstrated 

average cell readherence of 73% immediately post-staining; a significant decrease in 

comparison to unstained cells (p<0.01), but maintained viability for up to 4 hours in 

suspension when unprocessed. Thus the long immunostaining protocol and inherent 

stress from high levels of manipulation resulted in detrimental effects on cell viability. 

Coupled with exposure to the microfluidic process, cell readherence dropped to an 

average of 55%, again highlighting the detrimental synergy of staining- and 

microfluidic-induced stress. While the reduction in viability was not ideal, 

immunostained cells still maintained a level of readherence considered satisfactory for 

cell isolation and recovery. 
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Figure 6.7. Viability of vybrant-stained, unsorted and sorted cells after 24 hours. 

Readherence of cells 0 hours post-staining (0hrs), 4 hours post-staining (4hrs) and post-

microfluidic sorting (MF) was observed for unstained cells, DiD-stained cells, DiD/DiO 

stained cells and DiD/STRO-1 stained cells. Results are shown as mean ± SD, n ≥ 3. 

For each staining protocol, comparison to the 0hr control is shown as: ns = not 

significant, *** = p<0.001. 

*** 

*** 

*** 

*** 

ns 

ns 

ns 

ns 
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6.3.4. Selection of the appropriate field strength 

Dielectric fields have been known to have detrimental effects on the viability of cells as 

a consequence of frequency-induced disruption of the cell membrane or voltage-induced 

heating. Previous work on the trapping device (Chapter 5) had demonstrated the 

effectiveness of a 5Mhz frequency for maintaining cell viability and a strong 

manipulative field, as such, this frequency was also used for sorting experiments. A 

voltage of  9vpp or greater was shown to provide a dielectric field strong enough for cell 

manipulation. Therefore a voltage dose response was performed to determine the effect 

of different voltages on cell viability. 

MG-63 cells exposed to the dielectric field at both 8vpp and 10vpp demonstrated 

readherence and proliferation for up to 2 weeks post-exposure, while exposure to 12vpp 

resulted in complete loss of cell readherence (Figure 6.8). Analysis of cell viability 

using the Guava EasyCyte™ Mini System demonstrated no significant (p>0.05) loss in 

cell viability in populations of cells exposed to a field of 10vpp and 5Mhz frequency 

(Figure 6.9). 

 

 

Figure 6.8. Viability and proliferation of MG-63 cells exposed to a dielectric field set 

at: (A) 8vpp and 5Mhz frequency; (B) 10vpp and 5Mhz frequency; and (C) 12vpp and 

5Mhz frequency. Images taken 2 weeks post-exposure and cells were stained for 

Wigert's haemotoxylin to allow clear observation. Scale bars: 500µm. 

A B C 
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Figure 6.9. Viability of MG-63 cells exposed to 10vpp, 5Mhz electronic field, assessed 

using the GUAVA Viacount. Populations of unstained (negative) and DiD stained 

(positive) cells were exposed to the dielectrophoretic field and the viability compared to 

control populations (unsorted). Results are shown as mean ± SD, n ≥ 3, ns = not 

significant. 

 

6.3.5. Sorting of fluorescent-stained MG-63 osteoblast populations 

Use of the automated software resulted in sorting and recovery of populations with 

greater than 95% green cells (Table 6.1, Runs 1-4). Red cell contamination of the 

positive fraction during sorting was caused either by the software being unable to 

recognise clumps of cells as more than one cell (red cells adhered to green cells were 

recognised as green), or as a consequence of too many cells being present within the 

sorting gate at one time, resulting in a loss of field strength and thus reduced ability of 

the device to prevent cells from entering the positive channel. Reduction of the cell 

density and improvements to the composition of the suspension of cells (via use of 

buoyancy buffer) helped to decrease the frequency in errors caused by these issues. Use 

of a semi-manual approach resulted in consistent sorting of 100% positive (green) 

populations from heterogeneous cells (Table 6.1, Runs 5-13). Errors in automated cell 

sorting were found to occur approximately once every 20-30 cells. 

 

 

ns 
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Sorting experiments were recorded at 30-45 minutes duration and resulted in an average 

of 50 positive green cells to be sorted. The output of positive cells was restrained by the 

slow flow rate required to allow cells to be manipulated correctly and the low numbers 

of spatially isolated green cells available due to clumping or proximity to negative cells 

during sorting. 

 

In initial tests where cells were recovered to a sterile 2ml vial before plating, the number 

of recovered cells was significantly less than that of the cell sorted, with an average loss 

of around 54% of cells (Table 6.1, Runs 1-6). It was accepted that it was likely a small 

portion of recovered cells would not be recovered due to settling and adherence to the 

positive recovery tube during the sort process. However, the loss of such large numbers 

of cells during recovery was unexpected and considered to be due to cell lysis and loss 

of cells during centrifugation. It was probable that the stress of centrifugation coupled 

with the already poor cell viability due to the use of the DiD/DiO dual staining 

technique and exposure to the dielectrophoretic field resulted in high levels of cell lysis. 

In later experiments, recovery by direct seeding into 96-well plates exhibited some cell 

loss, assumed to be due to cell settling in the recovery tube, but demonstrated a marked 

improvement in recovered cell number in comparison to the centrifugal recovery 

method, with an average loss of 23% of the cells and some populations only losing 

3.5% of the sorted cells during recovery (Table 6.1, Runs 7-13). 

Readherence of recovered cells stained with Vybrant DiO was generally poor and only 

one out of six recovered populations demonstrated proliferation (Table 6.1, Runs 1-6). 

However, poor recovery was expected as unsorted control populations and previous 

viability tests demonstrated the detrimental effect of the DiD/DiO dual staining coupled 

with exposure to the electric field. Early experiments using the DiD/STRO-1 

immunostained MG-63 cells also demonstrated poor numbers of readherent cells (~9-

20% cell readherence) (Table 6.1, Runs 7-9) due to an unoptimised staining protocol 

inducing cell stress and loss of viability. Optimisation of the staining protocol in 

resulted in 54-72% cell readherence in recovered populations (Table 6.1, Runs 10-13), 

while culture of recovered cells in conditioned media (media previously used to culture 

cells) aided recovery and establishment of proliferating populations, even in those 

experiments with low numbers of recovered cells (Table 6.1, Runs 8-13). 
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Run Green 

stain 

Sort type Cells 

sorted 

(approx.) 

Cells 

recovered 

Cells 

adhered 

Control 

viability 

(%) 

Sort 

viability 

(%) 

Green 

cells 

Purity 

(%) 

Proliferated 

1 DiO Automated 50 16 10 71.4 62.5 16 100.0 No 

2 DiO Automated 80 40 22 62.9 55.0 39 97.5 Yes 

3 DiO Automated 40 27 7 32.5 25.9 27 100.0 No 

4 DiO Automated 80 41 11 36.6 26.8 39 95.1 No 

5 DiO Manual 60 21 4 68.2 19.0 21 100.0 No 

6 DiO Manual 80 30 11 69.4 36.7 30 100.0 No 

7 STRO-1 Manual 40 34 3 61.5 8.8 34 100.0 No 

8 STRO-1 Manual 70 64 7 51.5 10.9 64 100.0 Yes 

9 STRO-1 Manual 57 55 11 41.4 20.0 55 100.0 Yes 

10 STRO-1 Manual 35 24 13 75.2 54.2 24 100.0 Yes 

11 STRO-1 Manual 25 17 12 71.7 70.6 17 100.0 Yes 

12 STRO-1 Manual 20 12 7 65.5 58.3 12 100.0 Yes 

13 STRO-1 Manual 25 19 12 72.6 63.2 19 100.0 Yes 

 

Table 6.1. Sorting of fluorescently-stained populations of MG-63 using DiD/DiO or 

DiD/STRO-1. Cells were recovered to 2ml tubes and centrifuged before resuspension 

and seeding (runs 1-6) or were recovered directly to 96-well plates in all experiments 

(runs 7-18). Key: Manual = semi-manual sorting; blue shading = Vybrant stained, 

automated sorting; red shading = Vybrant stained, semi-manually sorted; green shading 

= STRO-1 immunostained, semi-manually sorted. 
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6.3.6. Sorting of fluorescent-stained STRO-1 labelled hBMSC populations 

hBMSC populations stained for STRO-1/DiD demonstrated higher levels of clumping 

than observed in MG-63 cells, resulting in an increase in errors during sorting. The 

increase in cell aggregates meant fewer spatially isolated green cells were available for 

positive selection. As a consequence, the numbers of cells that were able to be sorted 

during the 30-45 minute process was reduced from approximately 50 to 100 cells to an 

average of 21 cells per run. Use of the semi-manual method for isolation of cells, 

consistently produced sorted populations with purity of 100% green cells (Table 6.2). 

Sorted cells were recovered directly to a 96-well plate. Recovery by direct seeding 

exhibited an average cell loss of 20%, assumed to be due to cell settling in the recovery 

tube. (Table 6.2). 

 

Immunostained hBMSCs demonstrated poor viability immediately post-staining (Figure 

6.10), expressing an average readherence to tissue culture plastic of 47% (range 30-

68%), but exhibited no significant decrease in viability when left in suspension for up to 

4 hours. Exposure of immunostained hBMSCs to the dielectrophoretic field resulted in 

significant loss of viability and an average readherence of 20%, demonstrating a similar 

effect of the microfluidic device/staining protocol to that seen in MG-63 tests.  

 

The poor viability of hBMSCs when exposed to the stresses of staining and subsequent 

sorting, coupled with the low numbers of cells recovered due to cell clumping, resulted 

in very few viable cells in recovered STRO-1 positive populations (Table 6.2). It was 

speculated that this was due to cells not being completely adapted to monolayer tissue 

culture growth by the time they were harvested for sorting. Despite this, the reduced 

level of viability was noticeable in cells exposed to the stresses of sorting, with average 

readherence of 34%, dropping as low as 11% in some samples. Despite the low number 

of cells, the use of conditioned media, combined with the colony-forming characteristics 

of STRO-1 positive hBMSCs, enabled establishment of proliferating cells from the 

small numbers that readhered (Figure 6.11). 
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Figure 6.10. hBMSC cell viability after immunofluorescent staining for STRO-1. 

Readherence of cells was quantified 0 hours post-staining (0hrs), 4 hours post-staining 

(4hrs) and post-microfluidic sorting (MF). Results are shown as mean ± SD, n ≥ 3, ns = 

not significant, *** = p<0.001. 

 

Run Sample Sort type Cells 

sorted 

(approx.) 

Cells 

recovered 

Cells 

adhered 

Control 

viability 

(%) 

Sort 

viability 

(%) 

Green 

cells 

Purity 

(%) 

Proliferated 

1 F81 Manual 15 9 1 47.9 11.1 9 100.0 Yes 

2 F70 Manual 20 17 7 44.8 41.1 17 100.0 Yes 

3 F70 Manual 20 16 2 44.8 12.5 16 100.0 Yes 

4 F77 Manual 30 20 5 37.9 25.0 20 100.0 Yes 

5 F77 Manual 30 26 5 37.9 19.2 26 100.0 Yes 

6 M79 Manual 10 10 1 30.1 10.0 10 100.0 Yes 

Table 6.2. Sorting of DiD/STRO-1 fluorescently-stained populations of hBMSC.  

Cells were recovered directly to 96-well plates in all experiments. 

 

 

Figure 6.11. Isolation of cells using the microfluidic sorter and subsequent culture. 

ns 

*** 
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6.3.7. Provisional genotyping of STRO-1 isolated cells. 

Analysis of non-amplified RNA from unsorted populations of hBMSCs demonstrated 

expression of 43 genes (see Appendix 11), while analysis of amplified RNA from 

isolated STRO-1 populations demonstrated expression of 27 genes associated with stem 

cell maintenance and differentiation (Table 6.3). In sorted STRO-1 cells, highest gene 

expression was demonstrated for FGF2, ANXA5, RHOA, VIM and PIGS, all of which 

were present in greater quantities than the housekeeping gene GAPDH. All genes highly 

expressed in sorted populations were also expressed in unsorted cells except for MITF, 

PPARγ and TNF. 

 

SYMBOL GENE NAME 

ALCAM activated leukocyte cell adhesion molecule (CD166) 

ANPEP alanyl (membrane) aminopeptidase (CD13) 

ANXA5 annexin A5  

BDNF brain-derived neurotrophic factor 

CASP3 caspase 3, apoptosis-related cysteine peptidase  

COL1A1 collagen, Type I, alpha 1 

FGF2 fibroblast growth factor 2 

GDF15 growth differentiation factor 15  

GTF3A general transcription factor IIIA  

HAT1 histone acetyltransferase 1  

HDAC1 histone deacetylase 1  

ITGA6 integrin, alpha 6  

ITGAV integrin, alpha V 

ITGB1 integrin, beta 1 

KITLG KIT ligand 

MITF microphthalmia-associated transcription factor  

NT5E 5'-nucleotidase, ecto 

NUDT6 nudix (nucleoside diphosphate linked moiety X)-type motif 6 

PIGS phosphatidylinositol glycan anchor biosynthesis, class S  

PPARG peroxisome proliferator-activated receptor gamma  

RHOA ras homolog gene family, member A  

SLC17A5 solute carrier family 17 (anion/sugar transporter), member 5 

SMAD4 SMAD family member 4  

THY1 Thy-1 cell surface antigen (CD90) 

TNF tumor necrosis factor 

VCAM1 vascular cell adhesion molecule 1 (CD106) 

VIM vimentin  

Table 6.3. List of genes highly expressed in microarray molecular analysis of isolated 

STRO-1+ hBMSC populations. Genes with a Ct ≤ 25 are shown. Genes are normalised 

against GAPDH,  n=3. 
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6.4. Discussion 

Studies using microfluidic trapping have demonstrated high purity but relatively low 

numbers of recovered cells (Thomas et al. 2010), while previous studies using 

microfluidic cell sort devices have demonstrated high throughput and enrichment of 

cells using both magnetic and fluorescent antibodies for specific markers, but have 

failed in the isolation of 100% pure populations of cells of interest (Kim et al. 2008b). 

This study has demonstrated that through use of a novel nDEP sorter; small numbers of 

viable, 100% pure STRO-1+ cell populations can be separated and recovered from 

heterogeneous populations of MG-63 osteosarcoma cells and hBMSCs.  

 

While the sorting device is effective at isolating specific cells, maintaining cell viability 

during the sorting process can be difficult. Immunostaining of cells to allow 

fluorescence-based sorting resulted in significantly decreased viability, most likely due 

to the stress of repeated manipulation and being kept in suspension for extended periods 

of time. In addition to the stress of staining, exposure to the microfluidic device was 

demonstrated to induce a further loss of viability. While neither the staining or device-

induced stresses were great enough by themselves, when coupled, the viability of cells 

was significantly reduced. This data confirmed the trend seen in the microfluidic 

trapping device (Chapter 5), in that the reduction in viability of sorted cells was a result 

of the combined effects of multiple stimuli, including cells becoming stressed by 

staining, being held for sustained periods in suspension and being exposed to a 

dielectrophoretic field.  

 

The high level of clumping observed during cell sorting is believed to be due to 

collagen produced by skeletal tissue cells when grown in monolayer culture. Monolayer 

cultures are known to produce high levels of collagenous matrix when at high levels of 

confluence (approx. > 70%). Use of collagenase-based dissociation buffers 

(trypsin/collagenase B or accutase dissociation) resulted in breakdown of the collagen 

fibres and was effective at releasing single cells into suspension. However, it was noted 

that collagen debris remained in the cell solution and aided cell clumping during sorting.  

Therefore it was deemed essential that populations contain as little collagen as possible 

before dissociation and use in sorting. To enable this, cells grown for use in the 

microfluidic device were kept at low confluence by seeding at low density. By seeding 
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at low densities (approx. 5% confluence) and ensuring cells were under 50% confluence 

before passage or use in the device, it was possible to establish populations of cells with 

very little collagen deposition, thus reducing the level of clumping. Culture of cells at 

such low densities was further beneficial as it aided maintenance of STRO-1 expression 

in cells.  

 

Due to the robustness of the MG-63 cell line, using the optimised protocol it was 

possible to recover populations of sorted STRO-1+ cells with minimal loss of viability 

even when using low density cultures (average loss of 10%), enabling establishment of 

viable, proliferative somatic cell populations. In contrast, hBMSCs demonstrated 

substantial loss of viability. Normally, hBMSCs are grown for up to 2 weeks after 

extraction from bone marrow, enabling the cells to adapt to monolayer culture and 

establish robust, viable populations. However, to ensure a collagen-free population, 

cells were seeded at low density and only cultured for 6 days before dissociation and 

use in cell sorting. It is possible that due to this shortened incubation period, the 

hBMSCs were not fully adapted to ex vivo culture and as such, demonstrated decreased 

robustness, leading to substantial loss of viability when exposed to the stress of staining 

and sorting. If true, this highlights a trade off between maintaining a robust culture that 

can maintain viability during the microfluidic protocol and ensuring that populations are 

not allowed to remain in culture long enough or at confluence levels that stimulate high 

levels of collagen production. 

 

Recovery of cells after sorting typically resulted in a 68% yield of isolated STRO-1+ 

cells, highlighting a loss in the number of output cells of interest. The loss observed was 

believed to be due to settling of cells within the device whilst awaiting recovery, 

coupled with loss of cells during centrifugation and resuspension in conditioned media 

post-recovery. With a suitably sized population of sorted cells, this loss of cells is not 

detrimental to the establishment of a viable population. However, in samples 

demonstrating high levels of clumping or low numbers of STRO-1+ cells, this loss may 

lead to issues in establishment of populations or direct analysis of cells. This fault could 

be addressed by increasing the initial output of sorted cells. 

 



 

195 

 

Despite low density culture and use of collagenase-based dissociation, hBMSC 

populations in suspension demonstrated higher levels of clumping than observed in 

MG-63 cells, despite use of neutral buoyancy buffer to prevent cell settling, resulting in 

an increase in errors during sorting and fewer spatially isolated green cells available for 

positive selection. This, in turn, resulted in sorting and recovery of very few STRO-1+ 

hBMSC cells. However, due to the colony-forming nature of these cells, it was possible 

to establish readherence and proliferation of the recovered STRO-1 cells. Ideally, 

analysis would be performed directly after sorting to ensure that all cells were STRO-

1+, as seeding and culture of the cells would increase the risk of re-introducing a 

heterogeneous population due to differentiation while in culture. Unfortunately, due to 

the low numbers of cells recovered, it was essential to culture the cells for a minimum 

of a week before extraction of RNA to ensure cells were viable. In an effort to prevent 

differentiation of the recovered STRO-1+ populations, sorted cells were only cultured 

until roughly 50% confluent.  

 

Due to the low numbers of cells, to provide sufficient quantities of RNA to allow 

analysis, extracted RNA was subjected to two rounds of RNA amplification. 

Amplification of the unsorted cells was not recommended due to the risk of removing 

the heterogeneity of the cells by selecting such a small sample of the population. The 

amplification process is known to cause reduction in RNA sequence length, which can 

lead to bias towards certain nucleic acid sequences (Croner et al. 2009). Analysis of the 

housekeeping genes between amplified (sorted cells) and non-amplified (unsorted cells) 

samples confirmed this bias. All housekeeping genes except for GAPDH demonstrated a 

loss of expression in amplified RNA, confirming amplification-induced bias due to 

shortening of sequence length. Thus, microarray results for RNA from isolated STRO-

1+ populations could not be directly compared to those for unamplified RNA from 

heterogeneous, non-isolated populations. Ideally, samples of both amplified and 

unamplified unsorted cells would have been analysed to give a clearer picture of the 

effects of amplification, however, due to restrictions on funding, this was not possible in 

this study. Despite the known risk of bias in amplified samples, amplification is a 

random process, therefore the use of multiple samples to provide n ≥ 3, can reduce the 

risk of interpreting false signals. Thus, if a gene demonstrates high expression in all 

samples, it can be conferred that the gene is present in the cells and that the result is not 
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a consequence of amplification bias. Due to this, only those genes demonstrating similar 

results in all separate populations were considered relevant.  

 

Isolated STRO-1 populations were abundant for a number of genes present in stem cell 

and early progenitor populations, including the stem cell/MSC markers, FGF2 

(maintenance of cell proliferation/renewal (Vallier et al. 2005)), ALCAM (MSC marker 

(Bruder et al. 1998;Arai et al. 2002)), VCAM1 (MSC marker (Kolf et al. 2007)) and 

GTF3A (MSC-marker (Garrett-Sinha et al. 1996)) and the stem cell differentiation-

inducing genes NUDT6 (Asa et al. 2001)), BDNF (Long et al. 2005)) and HDAC1 

(Dovey et al. 2010)). In particular, FGF2 was extremely abundant, suggesting a highly 

proliferative phenotype. 

 

As mentioned above, due to the nucleic acid amplification required to analyse RNA 

from STRO-1+ cells, direct comparison of sorted and unsorted cells was unreliable. 

However, it was noted that in relation to GAPDH expression, the genes for ANXA5, 

FGF2, PIGS, RHOA, VIM, GTF3A, HDAC1 and NT5E were all found to have 

substantially greater expression in sorted STRO-1+ cells than in unsorted cells, while 

ITGB1 and COL1A1 were expressed at much lower levels in STRO-1+ than in unsorted 

cells. If it was assumed that the differences in gene expression were not due to 

amplification bias, then the fact that sorted cells express greater levels of stem cell 

markers FGF2, GTF3A and HDAC1 may confirm a less differentiated phenotype for 

STRO-1+ cells.  However, abundance of genes expressed during adipogenesis (PPARγ) 

and skeletogenesis (COL1A1, GDF15, SMAD4, CASP3, ANXA5 and MITF) suggested 

that the STRO-1+ cells recovered still maintained a level of heterogeneity.  

 

In conclusion, this study illustrates the potential of this dielectrophoretic device for cell 

isolation from heterogeneous populations. While this device is hampered by issues that 

limit the number of cells that can be isolated and recovered, such as cell clumping and 

stress of manipulation, this device is capable of isolating and recovering small cell 

populations with 100% purity using a dielectrophoretic sorting gate, in contrast to 

previous sorting devices that have a high throughput but fail to produce pure 

populations (Kim et al. 2008b). Application of techniques to reduce cell clumping and 

improve the single cell suspension would enable higher throughput of cells for recovery 
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and analysis, while potentially enabling fully automated sorting whilst maintaining 

100% purity. Application of a upgraded automated system, able to recognise and 

remove errors without the need for manual intervention, would reduce run times and 

may also enable multiple sorting gates to be run in parallel, further increasing the cell 

output for analysis. Alternatively, should the number of cells recovered not increase, 

introduction of a suitable method for direct analysis of small numbers of cells such as 

the Fluidgm Biomark™ (Narsinh et al. 2011) or integration of on-chip PCR analysis 

(Ottesen et al. 2006;Marcus et al. 2006) would enable use of the device for analysis of 

the recovered cells. In addition to single marker selection, use of sequential sorting 

gates offers potential for the isolation of cells stained for multiple markers during one 

sorting run.  
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CHAPTER 7 

FINAL DISCUSSION 
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7.1. Discussion 

With the increasing rise in population and life-expectancy, there is an urgent socio-

economic and clinical challenge to develop strategies for the repair of cartilage and 

bone lost as a consequence of trauma, disease or natural degeneration. Stem cell based 

tissue engineering is viewed as a promising approach for orthopaedic reparative 

medicine that requires the spatially and temporally coordinated application of a suitable 

population of cells, a biocompatible extracellular matrix or scaffold and specific tissue-

inducing growth factors (Sundelacruz & Kaplan 2009).  

 

The choice of cell line for use in tissue engineering is critical, as the cells must be 

compatible with current and future scaffolds as well as responsive to tissue induction. 

Both differentiated and undifferentiated cells can be obtained from many types of tissue 

with relative ease via techniques such as enzyme degradation of extracellular matrix or 

mechanical disruption of tissue. One issue found with the use of mature, differentiated 

cells is the loss of their in vivo phenotype when grown in culture in vitro, and 

subsequent difficulty in converting them back to the relevant tissue for use in reparative 

medicine (Goessler et al. 2005). The majority of research is focused on the 

identification and isolation of specific populations of stem cells and progenitor cells that 

offer a wide range of uses and are easily adaptable to tissue engineering. Bone marrow 

is a good source of both stem cells and skeletal progenitor cells, the most highly sought 

of which is the mesenchymal stem cell. MSCs are considered an ideal candidate for use 

in therapeutic medicine as they are multipotent, versatile, easy to grow and can be used 

for transduction of therapeutic genes into a host. However, to date very little is known 

about the phenotypic characteristics of these cells as the “true” MSC has yet to be 

isolated and characterised (Bianco et al. 2001). It is estimated that the frequency of 

MSCs in vivo ranges from 1 in 10,000 to 1 in 2,000,000 human bone marrow 

mononuclear cells, dependant on the age of the patient (Caplan 2007). 

 

Many macroscale methods currently exist for MSC isolation including density 

centrifugation (Chang et al. 2009), adherence to tissue culture plastic (Friedenstein et al. 

1970;Guo et al. 2006), use of selective culture media such as chemically defined media 

(Johansson & Wiles 1995) and selection for specific properties such as size (Hung et al. 

2002) or expression of cell markers by techniques such as MACS and FACS. Attempts 
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to isolate pure populations of MSCs by MACS and FACS are limited by the paucity of 

knowledge regarding specific markers for these cells, therefore 'isolated' populations of 

MSCs regularly include a variety of cell types ranging from multipotent stem cells to 

differentiated progenitor cells for specific tissues (see Chapters 5 and 6). The 

heterogeneity of isolated MSC populations can be observed in cell morphology, 

proliferation and expression of cellular markers (Sengers et al. 2010). Populations of 

MSCs have been isolated using a variety of markers found on their surface membrane. 

Potential markers for MSCs include STRO-1, CD73, CD90, CD105, CD106, CD140b, 

CD146 and CD271 (Salem & Thiemermann 2010). However, none of these are unique 

to the MSC preventing use of a singular marker for the isolation of MSCs, indeed, 

according to the International Society for Cellular Therapy, the expression of CD73, 

CD90 and CD105 and lack of CD34, CD45, CD11a, CD19 and HLA-DR are 

considered the minimum criteria for defining MSCs (Dominici et al. 2006). Markers for 

MSCs are also expressed in variable levels throughout isolated populations, thus 

selection of a suitable cut-off point for marker expression is essential (Chapters 5 and 

6). For example, MSCs isolated by FACS using fluorescent antibodies for STRO-1 and 

CD271 exhibited diverse levels of fluorescent intensity, ranging from bright to dim, 

indicating the range of  stem cell-like properties within isolated populations, with MSC 

populations with bright STRO-1 and CD271 expression exhibiting the most stem-like 

properties (Gronthos et al. 2003;Buhring et al. 2007). Thus, identification and isolation 

of pure MSCs will likely result from recognition of multiple attributes, rather than an 

individual marker, as identification of a surface marker unique to the MSC remains 

elusive. 

 

Miniaturisation of laboratory methods using microfluidic, or lab-on-a-chip (LOAC) 

technology, has become a major area of research, generating a large variety of  

techniques for cell isolation. Microfluidic devices offer many advantages over standard 

laboratory equipment as they are economical, adaptable and use very low volumes of 

reagents, enabling analysis of rare substances and cell types (Manaresi et al. 2003). 

Microfluidic cell isolation has been performed using acoustic, optic, magnetic and 

dielectrophoretic (DEP) manipulation (Johann 2006). The use of DEP-based 

microfluidic devices has enabled both contact (positive DEP) and non-contact (negative 

DEP) isolation of cells using both trapping and sorting techniques and offers potential 



 

203 

 

for characterisation of isolated cells (Taff & Voldman 2005;Thomas et al. 2009). This 

study has shown that isolation of cells from a heterogeneous population is possible 

using nDEP trap and sorter devices based on optical selection for fluorescent markers. 

However, a consistent issue found during isolation of cells using dielectrophoretic 

devices is the maintenance of cell viability. Use of DEP on cells is known to have a 

deleterious effect on cell health. Cellular protein and DNA can be damaged by high 

temperatures induced by high voltage fields, while use of low frequencies can result in 

damage to the cell membrane (Menachery & Pethig 2005). Prolonged exposure to 

dielectric fields found in devices that trap and hold cells, run a high risk in loss of cell 

viability, inhibiting the effectiveness of these devices (as demonstrated in Chapter 5). 

While the electric field can be adapted to minimise the risk of cell deterioration by using 

high frequencies and low voltages, use of devices that limit exposure to DEP fields, 

such as constant flow sorting devices, enable reproducible isolation of viable cells for 

culture or analysis, as the cells are only exposed to the electrical field within the sorting 

gate (see Chapter 6). The nDEP sorting device used in these studies enabled isolation of 

STRO-1+ cells with high efficacy, resulting in viable, isolated populations with 100% 

purity. These devices offer great potential for isolation of cells for tissue engineering or 

for characterisation. However, for microfluidic devices to become established as viable 

alternatives for MSC isolation, it is essential that the methodology is robust and results 

are reproducible. For a device to meet these criteria, the term 'isolation' must be defined. 

The majority of cell isolation techniques are focused not on achieving pure samples but 

on enriching a population of cells. For example, high throughput MACS and FACS 

(both macro and micro) methods produce large populations sorted for specific markers, 

but fail to prevent a percentage of unwanted cells being recovered. These populations 

can therefore be referred to as 'enriched' but not pure. To date, microfluidic devices 

have demonstrated their ability to produce 'enriched' populations according to 

differences such as size (Gascoyne et al. 2009), viability (Shafiee et al. 2010), and 

marker expression (Wu et al. 2010), with reproducible results similar to those observed 

in macro techniques. Therefore it is logical that future development of devices for cell 

enrichment should be focused on microfluidic techniques. 
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Devices focused on cell enrichment such as FACS and MACS deal with large numbers, 

enabling recovery of thousands or more cells, this allows a certain disregard towards the 

live/dead ratio of recovered cells as the numbers collected are sufficient to establish 

healthy culture. The microfluidic devices used in this study are currently designed for 

the isolation and recovery of small numbers of cells (n<30), therefore the ratio of 

live/dead cells become much more crucial as the low numbers of cells isolated can 

inhibit large-scale culture of sorted cells. Optimised protocols for the microfluidic sorter 

used in these studies resulted in recovery of cells with an average of 62% viability, 

which due to the low numbers of recovered cells (average of 10 viable cells per run) 

limited establishment of large-scale cultures. However, this device enables recovery of 

populations with 100% purity for specific marker expression. While enrichment of cell 

populations is key for isolating specific cells for tissue engineering, the recovery of 

100% pure populations is an exciting prospect, as it would enable isolation of rare cells 

for analysis and culture without risk of contamination with unwanted cells. The 

microfluidic devices outlined in this study are more suited for isolation of cells for 

analysis and characterisation rather than establishment of large-scale culture. However, 

despite the low cell numbers involved, recovery and culture of single cells with 

clonogenic potential, such as MSCs, would be possible using these devices. 

 

In addition to cell isolation, microfluidic devices also offer a method for direct cellular 

characterisation based on the electronic potential of the cells using techniques such as 

electrochemical impedance spectroscopy (EIS). Integration of devices that enable high-

throughput EIS characterisation of cells (Cheung et al. 2005) with cell sorting 

technology would facilitate label-free sorting of cell lines according to their dielectric 

properties. Studies have shown that similar cells such as normal and cancerous cells 

have demonstrated statistically significant differences in their dielectric properties 

(Ermolina et al. 2001;Egot-Lemaire et al. 2009), but in terms of stem cell recovery, it 

has yet to be seen whether the dielectric charge of the cells of interest (e.g. STRO-1+ 

cells) is sufficiently different to the remainder of the population to enable high-

throughput isolation.  
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Cells derived from fetal femurs offer a potential alternative to adult bone marrow-

derived cells as a source for skeletal stem cells. Fetal cells offer an improvement over 

adult-derived cells as they demonstrate increased proliferation, greater plasticity, are 

ideal targets for gene transfer and have decreased immunogenicity (Lanza et al. 2007). 

However, issues arise in the ethics of fetal femur use as sample acquisition is linked to 

the practice of abortion. Multiple studies have demonstrated the multipotency of cells 

isolated from fetal femurs and FFDCs have been shown to express many of the markers 

thought to be expressed by adult-derived MSCs, including STRO-1, CD73, CD105, 

CD44, CD90 and CD106 (Zhang et al. 2009). Populations of FFDCs have also 

demonstrated various expression of early stem cell markers such as OCT-4, NANOG 

and SOX2. For example, this study found no expression of the ES cell marker OCT-4 in 

FFDCs, but did find ubiquitous expression of SOX2, while other studies have 

demonstrated the presence of both NANOG and OCT-4 in FFDCs (Guillot et al. 

2007;Zhang et al. 2009) and others have demonstrated a lack of expression of both 

NANOG and OCT-4 (Mirmalek-Sani et al. 2006). The majority of previous studies 

indicate the presence of early stem cell markers and a higher proliferative rate within 

fetal tissue-derived cells, suggesting that  FFDCs maintain ES cell-like characteristics. 

However, use of FFDCs in tissue engineering is inhibited by the high level of patient 

variation as observed in organotypic ALI culture of FFDC pellets (Chapter 4). For 

FFDCs to be considered as a reliable source of cells for use in tissue regeneration, 

further work is required to determine the presence of all sub-populations within 

explanted FFDCs as fetal femurs are a heterogeneous mix of chondrocytes, fibroblasts, 

early osteoblasts, MSCs and other cells. 

 

To remove patient variation and establish a more homogeneous, proliferative population 

for use in tissue engineering fetal femur cells can be cultured in CDM supplemented 

with Activin A and FGF2 as demonstrated in this study and in previous work by 

Mirmalek-Sani et al. (2009). Addition of skeletogenic factors such as BMP-2 and TGF-

β to FFDCs in normal culture media results in differentiation of the cells towards bone 

and cartilage. However, addition of the bone-inducing factor, BMP-2, to FFDCs 

cultured in CDM failed to initiate osteogenesis, instead resulting in the a heterogeneous 

population of fibroblastic cells and a novel cobblestone phenotype. This study has 

demonstrated that the cobblestone cells induced by BMP-2 demonstrate an early 
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adipogenic phenotype and data suggests an osteogenic phenotype for the fibroblastic 

cells observed in CDM + BMP-2 cultures, indicating that BMP-2 induces both early 

osteogenic (fibroblastic) and adipogenic (cobblestone) differentiation (Mikami et al. 

2011). 

 

Monolayer culture has played a key role in the investigation of osteogenic and 

chondrogenic cells. However, although monolayer culture is able to provide large 

numbers of cells for tissue engineering, it lacks the mechanical and biochemical 

interactions to closely replicate growth in vivo (Abbott 2003). Indeed, the complex 

interactions between cells and ECM during skeletogenesis is dependent on a 3D 

environment (Tortelli & Cancedda 2009). One of the most challenging aspects of 

skeletal tissue engineering remains the development of 3D in vitro models that mimic 

the complex interactions in bone and cartilage. A large number of studies have been 

performed using various synthetic and natural 3D scaffolds to support osteogenic and 

chondrogenic differentiation. However, use of 3D scaffolds is beset by a requirements 

such as biocompatibility, reproducibility and mimicry of in vivo characteristics 

including tensile strength, elasticity and degradation rate. Alternative, less complex 

methods for 3D culture are high-density systems such as micromass or pellet culture, 

where cells growth and differentiation are supported by ECM produced within an 

aggregate of cells.  

 

The use of high-density 3D culture methods have been established as suitable for  

osteogenic and chondrogenic cell differentiation in several studies. For example, human 

osteoblasts grown in 3D micromass cultures have demonstrated expression of 

osteogenic markers including Type I collagen, ALP, osteonectin and Osteopontin, as 

well as demonstrating calcification and Osteocalcin expression at later timepoints 

(Ferrera et al. 2002), while pellet and micromass cultures are widely used for studying 

chondrogenesis of MSCs (Scharstuhl et al. 2007;Reger et al. 2008). Standard pellet 

culture methods have demonstrated limitations in production of tissues such as cartilage, 

including: necrosis of cells or failure to differentiate in the centre of pellets and 

induction of fibrocartilage-like features such as Type I collagen expression and 

chondrocyte hypertrophy (Tare et al. 2005;Pelttari et al. 2008;Mueller & Tuan 2008). 

Furthermore, high-throughput experiments often require the use of large numbers of 
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polypropylene conical tubes, used to establish and culture the pellets, making the 

technique time-consuming and inconvenient for long-term culture (Penick et al. 2005).  

Culture of cells at air-liquid interfaces, provides ready access to medium and gas 

exchange, enabling viable cell culture at tissue-like densities. The organotypic system 

used in this study enabled production of two relevant skeletogenic models; one for early 

bone formation (osteogenic media) and one for cartilaginous tissues. Cells cultured in 

chondrogenic media without dexamethasone produced predominantly homogeneous 

chondrogenic tissues with minimal expression of fibrocartilage or bone markers. 

Organotypic ALI culture also allowed high-throughput, multi-replicate culture of cell 

pellets, offering an improvement over standard pellet culture. A study by Zhang et al. 

(2010) demonstrated that micromass culture (where cells are seeded at high density in a 

small volume) was found to induce larger and more homogenous cartilage tissues, rich 

with Type II collagen and aggrecan, with reduced Type I collagen expression and 

chondrocyte hypertrophy in comparison to standard pellet culture (Zhang et al. 2010). 

However, micromass and pellet culture regularly involve complete suspension of the 

cell aggregates in medium for the duration of culture, limiting gas exchange. Combining 

the use of air-liquid interfaces with micromass culture may therefore offer an improved 

chondrogenic model. While organotypic pellet culture of FFDCs did not facilitate 

mature osteogenic differentiation, pellet culture has been shown to facilitate rapid 

maturation of osteoblasts (Jahn et al. 2010), suggesting that use of a cell line that does 

not favour chondrogenesis, such as adult MSCs or primary osteoblasts would result in 

the formation of mature bone. 

 

Recent studies have demonstrated the potential of microfluidics for establishing 

effective 3D in vitro tissue culture models. Monolayer-based microfluidic culture 

platforms have been previously described (Chung et al. 2005;Hung et al. 2005) and 

microfluidic technology offers many techniques for cell isolation and analysis. A variety 

of different techniques have been utilised to facilitate microfluidic 3D cell culture, 

including integration of 3D microstructure scaffolds into the microfluidic channel 

(Leclerc et al. 2006), suspension of cells in hydrogels (Ling et al. 2007;Kim et al. 

2008a) and induction of natural cell aggregation.  For example, by chemically 

modifying cells to express a transient inter-cellular linker, one study was able to 

establish scaffold-free 3D aggregates of MSCs within a microfluidic device. Addition of 



208 

 

osteogenic media to these MSC aggregates resulted in the production of mineralised 

matrix, while use of the cellular linker instead of a scaffold facilitated development of a 

more natural 3D environment (Ong et al. 2008). The integration of 3D on-chip cell 

culture into microscale cell isolation devices would offer a high degree of control over 

the culture environment and facilitate development of high-throughput in vitro models. 

 

As observed in chapters 3 and 6, obtaining purified mRNA from low numbers of cells, 

followed by synthesis of cDNA is a laborious and difficult procedure, as the large 

number of steps required can result in loss of material through factors such as mRNA 

degradation or incomplete reverse transcription (Marcus et al. 2006). Due to the low 

numbers of cells isolated from both the laser dissection (cobblestone cell) and 

microfluidic sorting, it is essential that an adequate method for molecular analysis of 

low yields of RNA is available. The most common method for such analysis involves 

amplification of the total RNA (Wang et al. 2000). However, the amplification process 

is known to cause reduction in RNA sequence length, which can lead to bias towards 

certain nucleic acid sequences (Croner et al. 2009). Microfluidic technology offers an 

ideal method for performing high-throughput analysis of small-size cell samples due to 

the small volume of reagents needed and the potential for automation. Marcus et al. 

(2006) demonstrated integration of on-chip devices for cell capture, lysis, mRNA 

purification, cDNA synthesis and purification, with the ability to process up to 100 cells 

per reaction without the need for amplification of the sample, while another study 

presented microelectronic chip arrays for both cell separation and gene expression 

profiling, offering great potential for direct and accurate molecular analysis of specific 

cell subpopulations isolated from heterogeneous samples (Huang et al. 2002). 

 

In summary, current studies have indicated that microfluidic technology offers an 

exciting approach for cell isolation from heterogeneous populations, while also 

displaying potential for on-chip analysis and culture due to the ability to precisely 

control the device's microenvironment. The ability to isolate pure populations of cells 

presents a significant breakthrough for skeletal tissue engineering and regenerative 

medicine, facilitating further examination of the characteristics of skeletal stem cells. 

Development of strategies to increase the throughput of cells whilst maintaining the 

high purity of isolated populations would enable future methods for cell isolation to 
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focus on microfluidics. These studies have also shown that organotypic ALI culture of 

3D fetal femur-derived cell pellets offers an in vitro model for skeletal tissue 

development with strong potential for analysing the effects of specific drugs and growth 

factors on the differentiation of cells and that addition of BMP-2 to cells treated with 

chemically defined media induces an adipogenic phenotype with a novel cobblestone 

morphology. 

 

7.2. Future directions 

 Further examine the use of cells treated with CDM + Activin A/FGF2 in tissue 

engineering protocols such as organotypic ALI culture. 

 Culture CDM + BMP-2-derived cobblestone cells in adipogenic factors to confirm 

their adipogenic phenotype (by and stain for more markers) 

 Determine why addition of BMP-2 induces cells with an adipogenic phenotype In 

FFDCs treated with CDM + Activin A/FGF2. 

 Further examine the phenotype of the fibroblastic cells in cultures treated with CDM 

+ BMP-2. 

 Improve the quantity of cells that microfluidic technology can manipulate by 

developing scale-up protocols such as multiple parallel devices or improving the 

sorting efficiency. 

 Improve the recovery rate of cells from microfluidic devices from an average of 

72% to 100%. 

 Use the microfluidic device as an alternative to Laser dissection microscopy to 

isolate and further characterise the cobblestone phenotype observed in FFDCs based 

on expression of markers such as PPARγ and lipid (via use of the fluorescent lipid 

stain AdipoRed™).  

 Further examine the effects of oxygen concentration and serum content on 

organotypic pellet culture. 

 Further examine the potential of organotypic pellet culture as a model for 

osteogenesis and chondrogenesis using adult human bone marrow cells and other 

cell lines. 
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Appendix 1. Sample data 

 

List of adult bone marrow samples utilised 

Age: 57 67 68 70 70 71 75 77 79 81 88 88 92 101 

Sex: M M M F M F M F M F F F M M 

 

List of fetal femur samples utilised 

Code Length 

(mm) 

Age 

(WPC) 

Sex  Code Length  

(mm) 

Age 

(WPC) 

Sex 

H1126 6.5 8.7 m  H1259 4.5 7.7  

H1129 7 9.0 m  H1260 5.5 8.0  

H1131 5 7.9 m  H1267 6 8.4  

H1132 5.5 8.0 f  H1269 4.5 7.7  

H1134 3.5 7.3   H1282 4.5 7.7  

H1162 4 7.6 m  H1286 6.5 8.7  

H1168 5 7.9 f  H1288 6 8.4  

H1170 5.5 8.0 f  H1295 5 7.9  

H1172 4.5 7.7   H1296 10 11.0  

H1176 7 9.0   H1301 5 7.9  

H1179 5.5 8.0   H1305 4 7.6  

H1197 unknown unknown m  H1328  8.4  

H1199 5.5 8.0 f  H1337 4 7.6  

H1203 4 7.6 m  H1338 7 9.0  

H1206 5 7.9 f  H1339 6 8.4  

H1208 7 9.0 m  H1340 6.5 8.7  

H1213 5 7.9   H1341 6 8.4  

H1214 7 9.0   H1345 5.5 8.0  

H1217 8 9.7 f  H1351 8 9.7  

H1226 8.5 10.0 m  H1352 5.5 8.0  

H1235 4.5 7.7   H1353 4.5 7.7  

H1236 5.5 8.0   H1355 5 7.9  

H1237 7.5 9.3   H1357 5 7.9  

H1244 7.5 9.3 f  H1362 3.5 7.3  

H1246 5 7.9 m  H1363 5 7.9  

H1247 3 7.0 m  H1364 CS19 6.9  

H1248 9 10.3  
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Appendix 2. Controls for immunostaining 

Positive controls for Type I collagen, Type II collagen, Alkaline phosphatase, 

Osteocalcin and Osteopontin were performed on sections of fetal femur, examples of 

which are demonstrated in chapter 3, Figure 3.3. For the following figures, red 

fluorescent staining represents the expression of the specific marker, while blue staining 

represents cell nuclei. Scale bars: 20µm. 

 

Negative (A) and positive controls using embryonic stem cell cultures for stem cell 

markers SOX2 (B) and OCT4 (C). 

 
 

Negative (A) and positive controls using cultured marrow fat layer for adipogenic cell 

markers PPARγ (B) and FABP4 (C). 

 
 

Negative (A) and positive controls using HUVEC cultures for endothelial and 

haematopoietic cell markers CD105 (B), CD34 (C), CD146 (D), TIE2 (E) and VWF (F).  

 

A B C 

A B

B 

C 

A B

B 

C 

D E F 
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Appendix 3. Additional data for cobblestone cell analysis 

 

Graph demonstrating the amplification plots for the housekeeping gene, GAPDH of 3 

separate isolated cobblestone populations. The expected value for GAPDH expression 

to cross the threshold (red line) is approximately 15 to 16 cycles. RT-PCR of isolated 

cobblestone samples required 24 cycles or greater to reach the threshold, confirming 

the inadequate levels of cDNA available. 
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List of genes highly expressed in heterogeneous CDM + BMP-2-treated populations of 

FFDCs. Only genes that have a Ct less than 25 are shown. n=4 populations. 

HETEROGENEOUS POPULATION 

SYMBOL GENE NAME 

ALCAM activated leukocyte cell adhesion molecule  

ANPEP alanyl (membrane) aminopeptidase 

ANXA5 annexin A5  

CASP3 caspase 3, apoptosis-related cysteine peptidase  

CD44 CD44 molecule (Indian blood group) 

COL1A1 collagen, Type I, alpha 1 

CTNNB1 catenin (cadherin-associated protein), beta 1 

ENG endoglin 

FGF2 fibroblast growth factor 2 

GDF15 growth differentiation factor 15  

GDF5 growth differentiation factor 5  

GTF3A general transcription factor IIIA  

HAT1 histone acetyltransferase 1  

HDAC1 histone deacetylase 1  

ITGA6 integrin, alpha 6  

ITGAV integrin, alpha V 

ITGB1 integrin, beta 1 

KILTG KIT ligand 

MCAM melanoma cell adhesion molecule 

MMP2 matrix metallopeptidase 2 

NES nestin 

NGFR nerve growth factor receptor 

NOTCH1 Notch homolog 1, translocation-associated (Drosophila) 

NT5E 5'-nucleotidase, ecto 

NUDT6 nudix (nucleoside diphosphate linked moiety X)-type motif 6 

PDGFRB platelet-derived growth factor receptor, beta polypeptide 

PIGS phosphatidylinositol glycan anchor biosynthesis, class S  

PTK2 protein tyrosine kinase 2 

RHOA ras homolog gene family, member A  

SLC17A5 solute carrier family 17 (anion/sugar transporter), member 5 

SMAD4 SMAD family member 4  

SMURF1 SMAD specific E3 ubiquitin protein ligase 1 

SMURF2 SMAD specific E3 ubiquitin protein ligase 2 

SOX9 SRY (sex determining region Y)-box 9 

TGFB1 transforming growth factor, beta 1  

TGFB3 transforming growth factor, beta 3  

THY1 Thy-1 cell surface antigen (CD90) 

VCAM1 vascular cell adhesion molecule 1  

VEGFA vascular endothelial growth factor A 

VIM vimentin  
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Appendix 4. Protocol for preparation of alginate/polysaccharide capsules (courtesy 

of Dr Jodie Babister, University of Southampton) 

Preparation of alginate solution 

Ultra pure alginate (NovaMatrix, Drammen, Norway) (0.2g) was added to 0.09g 

sodium chloride and 0.3g d-sodium hydrogen orthophosphate (210mM) and dissolved 

in 10ml distilled water. The solution was mixed thoroughly for approximately 1 hour 

and filter sterilized prior to cell encapsulation. Alginate solutions were stored at 4oC 

for no longer than 1 month. 

 

Preparation of chitosan solution 

Chitosan (3g) was added to 1g calcium chloride (50mM), 3ml acetic acid and 

200ml distilled water. The solution was thoroughly mixed for 1 hour and autoclaved 

before use. Chitosan solutions were stored at 4oC prior to use. 

 

Cell encapsulation 

After trypsinisation and centrifugation of cells the sodium alginate solution was 

added to the cell pellet and vortexed to ensure thorough mixing and even distribution of 

cells throughout the alginate. For capsules treated with transforming growth factor-β3, 

10ng/ml (5μl/ml) was added to the alginate solution immediately before the addition of 

cells. Droplets of alginate (100μl containing approximately 4 x 105 cells) were 

dispensed onto the surface of the chitosan solution in a petri dish. Capsules, 

approximately 5mm in diameter, were left in the chitosan in a covered petri dish for 1 

hour, following self-assembly, for the attachment of the chitosan shell to occur 

(Leveque et al., 2002), and were subsequently washed 3 times in α-MEM media. 

Capsules were held in media supplemented with 10nM dexamethasone, 100μM 

ascorbate-2-phosphate and 1X ITS premix (insulin – 10μg/ml, transferrin – 5.5μg/ml, 

selenium – 5ng/ml) for 24 hours and subsequently placed either in 6-well plates, in 

rotating-bioreactor vessels or into the flow chambers of the perfused bioreactor. To 

ensure appropriate quantities of cells were obtained, in some experiments isolated cells 

were pooled prior to encapsulation. Capsules were encapsulated with a variety of cell 

types including human bone marrow cells, human articular chondrocytes or a mixture 

of the two cell types. 
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Appendix 5. Additional data for molecular analysis of organotypic ALI culture 

For the following figures: Key: B, Basal; O, Osteogenic; C, Chondrogenic. Data 

represents mean ± SD, n=3 per population. Statistical significance of increase/decrease 

compared to day 1 samples shown as: ns = non-significant; * = p<0.05; ** = p<0.01, 

*** = p<0.005. 

 

Comparison of gene expression at day 1 and at day 28 in organotypic ALI culture of 

various fetal cell populations. Expression of SOX9 (A), RUNX2 (B), ALP (C), Type I 

collagen (D) and OCN (E) are shown. 
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Comparison of Type II collagen gene expression at day 1 and at day 28 in organotypic 

ALI culture of various fetal cell populations. Separation of basal/chondrogenic results 

(A) from osteogenic results (B) was required due to significant increase in expression. 
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Appendix 6. Effects of β-Glycerol Phosphate on cell pellet differentiation in 

organotypic ALI culture 

Inclusion of Beta-Glycerol Phosphate (β-GP) together with BMP-2 in the standard 

osteogenic culturing conditions displayed uniform expression of both proteoglycan and 

collagen throughout the pellet, while immunohistochemistry revealed that culture of 

pellets with β-GP resulted in a decrease in the overall expression of Type I and II 

collagen when compared to cell pellet cultures where β-GP was omitted. 

 

Images of histological sections of pellets expanded for 28 days in organotypic ALI 

culture under standard osteogenic conditions (containing dexamethasone and 

ascorbate) in the presence of 150ng/ml BMP-2 and Beta Glycerol Phosphate (βGP). 

Staining is shown for (A) Alcian Blue (proteoglycan) and Sirius Red (collagen matrix) 

stain, (B) Type 1 Collagen (red) and (C) Type 2 Collagen (red). Blue fluorescence in 

(B) and (C) is the nuclear counterstain, DAPI. (Figure adapted with permission from 

undergraduate research student, Charlie Loveday-Jefferson). 
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Appendix 7. Preliminary culture of hBMSC pellets in organotypic ALI culture 

Preliminary experiments into the culture of hBMSC pellets in organotypic ALI culture 

were performed under basal conditions. At 21 days of culture, large amounts of aligned 

collagen and osteoid, coupled with low levels of proteoglycan were found in adult 

hBMSC pellets, suggesting a strong bone-like phenotype. 

 

Alcian blue (proteoglycan) and Sirius red (collagen) staining on sectioned samples from 

hBMSC pellets at day 21 under basal conditions (n=2). Scale bar is 500µm. 
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Appendix 8. Effects of hypoxia on differentiation in organotypic ALI culture 

To test the effects of oxygen availability on pellets grown at an air-liquid interface, 

samples were cultured in normal organotypic ALI culture in a hypoxic (~5% oxygen) 

atmosphere. Pellets grown in all three differentiation medias in hypoxic conditions were 

found to express growth and differentiation similar to that of normal organotypic ALI 

culture, including a strong effect of pellet size on the differentiation of the pellets. As 

with normal organotypic ALI culture, pellets starting approximately less than 0.8mm in 

diameter produced phenotypes expressing large amounts of collagen and minimal 

growth, while those over 0.8mm in diameter at day 1 produced a defined proteoglycan 

pellet core with reduced collagen expression after 28 days of culture. The most distinct 

difference between hypoxic and normal organotypic ALI culture was the amplified 

amount of cell death that occurred in osteogenic and chondrogenic cultures, illustrated 

by the patches void of cells in the pellet cores. 

 

At day 28, samples treated with basal media demonstrated expression of both Type I 

and Type II collagen, located at the pellet edge but not the pellet core. Pellets treated 

with chondrogenic media expressed large amounts of Type I collagen throughout the 

pellet, while Type II collagen was expressed in high levels at the pellet border, with 

minimal expression in the pellet core. Expression of Type I collagen in osteogenic 

pellets was situated throughout pellet, with stronger expression at the pellet edge and 

Type II collagen was expressed throughout the proteoglycan matrix and at the pellet 

boundary. In all three conditions, sites of cell-air interface were composed of aligned 

Type I and II collagen, while pellet cores expressed minimal alignment. Alkaline 

phosphatase expression was only observed in pellets treated with basal media in 

hypoxic conditions. Osteopontin was expressed at the pellet borders of pellets grown in 

all conditions. 
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Alcian blue (proteoglycan) and Sirius red (collagen) staining on sectioned samples from 

hypoxic pellets at day 28 under basal conditions (pellets greater than 0.8mm at day 1). 

Scale bar for centre image: 200µm; for surrounding images: 50µm. 
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Alcian blue (proteoglycan) and Sirius red (collagen) staining on sectioned samples from 

hypoxic pellets at day 28 under chondrogenic conditions (pellets greater than 0.8mm at 

day 1). Areas void of cells are recognised by their lack of staining. Scale bar for centre 

image: 200µm; for surrounding images: 50µm. 
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Alcian blue (proteoglycan) and Sirius red (collagen) staining on sectioned samples from 

hypoxic pellets at day 28 under osteogenic conditions (pellets greater than 0.8mm at 

day 1). Areas void of cells are recognised by their lack of staining. Scale bar for centre 

image: 200µm; for surrounding images: 50µm. 
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Fluorescent immunostaining for Type I and Type II collagen (red) on sectioned samples 

from hypoxic pellets at day 28 of culture in basal media (A, B), osteogenic media (C, D) 

and chondrogenic media (E, F). Blue fluorescence is the nuclear counterstain, DAPI.  

Scale bars: Whole pellet, 200µm; high magnification, 20µm 
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Alkaline phosphatase and Osteopontin staining (red) on sectioned samples from 

hypoxic pellets at day 28 of culture in basal media (A, B), osteogenic media (C, D) and 

chondrogenic media (E, F). (A, C and E) counterstained with Alcian blue 

(proteoglycan) and light green (all tissue), blue fluorescence in (B, D and F) is the 

nuclear counterstain, DAPI. Colour scale bars: Whole pellet, 500µm; high 

magnification, 50µm.  Fluorescent scale bars: Whole pellet, 200µm; high 

magnification, 20µm. 
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Appendix 9. Effects of serum on cell pellet differentiation in organotypic ALI 

culture 

Chondrogenic media normally contains no serum, whilst osteogenic media contains 

10% serum. Thus to test the effects of serum, chondrogenic media was added with 10% 

serum, whilst osteogenic media was added with no serum content. Results observed 

during 28 days culture and histological analysis demonstrated that pellets grown in 

osteogenic conditions without FCS were smaller than those in normal osteogenic 

conditions but maintained a proteoglycan-rich phenotype bordered by collagen. Due to 

their smaller size in comparison to normal osteogenic pellet culture, an increase in 

collagen formation was noted in pellets at day 28 of osteogenic culture without FCS. 

Type I collagen was present in large amounts at the cell border and at sites of adhesion 

but not in the pellet core, while Type II collagen was found strongly expressed 

throughout pellets treated with osteogenic media without FCS. ALP staining was 

present in basal but only in negligible quantities in osteogenic conditions at sites of 

pellet-confetti adhesion. Osteopontin was present throughout the pellets treated without 

FCS. Pellets treated with chondrogenic media with FCS were found to maintain a 

similar mixed phenotype as observed in normal organotypic ALI culture, but expressed 

much higher levels of collagen and minimal proteoglycan. Addition of FCS to 

chondrogenic media did not appear to increase growth of pellets over 28 days. Both 

Type I and Type II collagen were highly expressed throughout pellets cultured in 

chondrogenic media with FCS, revealing a mixed phenotype. ALP expression was 

minimal, while Osteopontin was expressed at the pellet border and a low levels 

throughout pellets treated with chondrogenic media with FCS. 
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Alcian blue (proteoglycan) and Sirius red (collagen) staining on sectioned samples from 

pellets at day 28 under osteogenic conditions without FCS. Scale bar for centre image: 

200µm; for surrounding images: 50µm. 
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Alcian blue (proteoglycan) and Sirius red (collagen) staining on sectioned samples from 

pellets at day 28 under chondrogenic conditions with FCS. Scale bar for centre image: 

200µm; for surrounding images: 50µm. 
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Fluorescent immunostaining for Type I and Type II collagen (red) on sectioned samples 

from pellets at day 28 of culture in osteogenic media without FCS (A, B) and 

chondrogenic media with FCS (C, D). Blue fluorescence is the nuclear counterstain, 

DAPI.  Scale bars: Whole pellet, 200µm; high magnification, 20µm 

      

   

   

 

 

Alkaline phosphatase and Osteopontin staining (red) on sectioned samples from pellets 

at day 28 of culture in osteogenic media without FCS (A, B) and chondrogenic media 

with FCS (C, D). (A) and (C) counterstained with Alcian blue (proteoglycan) and light 

green (all tissue), blue fluorescence in (B) and (D) is the nuclear counterstain, DAPI. 

Colour scale bars: Whole pellet, 500µm; high magnification, 50µm.  Fluorescent scale 

bars: Whole pellet, 200µm; high magnification, 20µm. 
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Appendix 10. Additional diagrams and MATLAB scripts for the microfluidic 

devices (courtesy of Dr Rupert Thomas, Electronics and Computer Science, University 

of Southampton). Further information regarding chip design and manufacture can be 

found in Thomas (2010). 

 

Schematic diagram of the fabrication mask for the ring trap multi-layer electrodes (A, 

B) and a diagram of a completed ring trap device, including the glass electrodes, 

flexible connector and PCB daughterboard (C). 

 

 

Schematic diagram of valve operation in ring trap devices during trapping (i-ii), 

washing (iii-iv) and recovery (v-vi) 
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Schematic diagram showing the macrofluidic connections of the trapping device 

 

 

Image of the microfluidic channel (grey) and electrodes (black) of the sorter device 
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MATLAB script "labelRegions"that enables setup of cell recognition parameters for 

both trapping and sorting devices 

 

function varargout = labelRegions(varargin) 
% LABELREGIONS M-file for labelRegions.fig 
%      LABELREGIONS, by itself, creates a new LABELREGIONS or raises the existing 
%      singleton*. 
% 
%      H = LABELREGIONS returns the handle to a new LABELREGIONS or the handle to 
%      the existing singleton*. 
% 
%      LABELREGIONS('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in LABELREGIONS.M with the given input arguments. 
% 
%      LABELREGIONS('Property','Value',...) creates a new LABELREGIONS or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before labelRegions_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to labelRegions_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help labelRegions 

  
% Last Modified by GUIDE v2.5 24-Feb-2010 13:20:35 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @labelRegions_OpeningFcn, ... 
                   'gui_OutputFcn',  @labelRegions_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  
 % --- Executes just before labelRegions is made visible. 
function labelRegions_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to labelRegions (see VARARGIN) 

  
% Choose default command line output for labelRegions 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes labelRegions wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  
%load some general variables 
config 

  
%initialise counter for regions 
tracking.regionCounter = 0; 
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 %% Video setup 
try 
    % Create video input object. 
    obj = videoinput('winvideo'); 
    video=obj; 

     
    % Make sure we've stopped so we can set up the acquisition. 
    stop(obj); 

  
    % Set video input object properties for this application. 
    % Note that example uses both SET method and dot notation method. 

  
    appTitle = 'Video developer'; 

     
            %from imaqmotion: set to continously aquire data 
    %triggerconfig(obj, 'manual'); 
    %set(obj, 'Tag', appTitle, 'FramesAcquiredFcnCount', 1, ... 
    %    'TimerFcn', @localFrameCallback, 'TimerPeriod', tracking.frame_period); 

  
    %reduce size of video resolution 
    res=get(obj,'VideoResolution'); 
    if res>tracking.target_resolution %if resolution exceeds this value, reduce it 
        set(obj,'ROIPosition', [floor((res(1)-tracking.target_resolution(1))/2) 

floor((res(2)-tracking.target_resolution(2))/2) tracking.target_resolution(1) 

tracking.target_resolution(2)]); 
    end 

  
    % Create a spot for the image object display. 
    nbands = get(obj, 'NumberOfBands'); 
    res = get(obj, 'ROIPosition'); 
    %himage = imagesc(rand(res(4), res(3), nbands)); 
    himage = image(zeros(res(4), res(3))); 

     
    preview(obj,himage) 

  
    % Clean up the axes. 
    ax = get(himage, 'Parent'); 
    set(ax, 'XTick', [], 'XTickLabel', [], 'YTick', [], 'YTickLabel', []); 

  
    appdata.figureHandles.hFigure = hObject; 
    appdata.figureHandles.hImage = himage; 
    appdata.figureHandles.hPatch = []; 

  
    tracking.himage = himage; 

  
    %start the video object 
    %start(obj); 
    %warning off imaq:peekdata:tooManyFramesRequested 

     
    %tracking.background = getsnapshot(obj); 

     
    % Store the application data the video input object needs. 
%     appdata.background = []; 
%     obj.UserData = appdata; 
    %setappdata(0, 'tracking_data_structure', tracking); 

  
catch 
%    writeLog('Cannot initialise video hardware.', handles); 
    errordlg('Cannot initialise video hardware.','Video Interface','modal'); 
end 

  
setappdata(0,'tracking_data_structure',tracking); 
setappdata(0,'video',video); 
set_gui_values(handles); 

  
% --- Outputs from this function are returned to the command line. 
function varargout = labelRegions_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  



236 

 

% Get default command line output from handles structure 
varargout{1} = handles.output; 

  
%% Add region button 
% --- Executes on button press in addRegion. 
function addRegion_Callback(hObject, eventdata, handles) 
% hObject    handle to addRegion (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
%retrieve tracking data 
tracking = getappdata(0, 'tracking_data_structure'); 

  
%increment regionCounter 
tracking.regionCounter = tracking.regionCounter + 1; 

  
%create trap pre-requisite structure 
answer = inputdlg('Enter trap pre-requisite:','Add region',1,{'0'}); 
tracking.prerequisites(tracking.regionCounter)=str2double(answer); 

  
hbox = imrect(handles.axes1, tracking.tracking_area_position); 

  
%set callback to update register if box is moved 
%only changes to most recently added box will be considered! 
api = iptgetapi(hbox); 
api.addNewPositionCallback(@update_tracking_area_position); 

  
%record current position of region, in case region is never moved 
tracking.labelledRegions(tracking.regionCounter,:) = 

round(tracking.tracking_area_position); 

  
tracking.hbox = hbox; 

  
%set trap quantity value 
tracking.nof_regions = tracking.regionCounter; 

  
%store appdata 
setappdata(0, 'tracking_data_structure', tracking); 

  
%%% if user changs position of the tracking area, update memory 
function update_tracking_area_position(position) 
tracking = getappdata(0, 'tracking_data_structure'); 
%position 
tracking.labelledRegions(tracking.regionCounter,:) = round(position); 
setappdata(0, 'tracking_data_structure', tracking); 

  
%% Save 

  
% --- Executes on button press in saveDatafile. 
function saveDatafile_Callback(hObject, eventdata, handles) 
% hObject    handle to saveDatafile (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
set_button_Callback(hObject, eventdata, handles) 

  
tracking = getappdata(0, 'tracking_data_structure'); 

  
if isfield(tracking, 'expsummary') 
    if isfield(tracking.expsummary, 'datestamp') 
    datex=tracking.expsummary.datestamp; 
    else 
    datex=datestr(now, 30); 
    end 
    else 
    datex=datestr(now, 30); 
end 

  
logfilename=['settings' datex]; 
dirpath=''; 
savefilepath=[dirpath logfilename]; 
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save (savefilepath, 'tracking') 

  
function threshold_gain_box_Callback(hObject, eventdata, handles) 
% hObject    handle to threshold_gain_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of threshold_gain_box as text 
%        str2double(get(hObject,'String')) returns contents of threshold_gain_box as a 

double 

  
% --- Executes during object creation, after setting all properties. 
function threshold_gain_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to threshold_gain_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function r_box_Callback(hObject, eventdata, handles) 
% hObject    handle to r_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of r_box as text 
%        str2double(get(hObject,'String')) returns contents of r_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function r_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to r_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function g_box_Callback(hObject, eventdata, handles) 
% hObject    handle to g_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of g_box as text 
%        str2double(get(hObject,'String')) returns contents of g_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function g_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to g_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function b_box_Callback(hObject, eventdata, handles) 
% hObject    handle to b_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of b_box as text 
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%        str2double(get(hObject,'String')) returns contents of b_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function b_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to b_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
%% Set Button 
% --- Executes on button press in set_button. 
function set_button_Callback(hObject, eventdata, handles) 
% hObject    handle to set_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
tracking=getappdata(0, 'tracking_data_structure'); 

  
tracking.threshold_gain=str2double(get(handles.threshold_gain_box,'String')); 
tracking.threshold_size=str2double(get(handles.threshold_size_box,'String')); 
tracking.target_rgb=[str2double(get(handles.r_box,'String')) 

str2double(get(handles.g_box,'String')) str2double(get(handles.b_box,'String'))]; 
tracking.positive_min_size=str2double(get(handles.positive_min_size_box,'String')); 
tracking.positive_max_size=str2double(get(handles.positive_max_size_box,'String')); 
tracking.negative_min_size=str2double(get(handles.negative_min_size_box,'String')); 
tracking.negative_max_size=str2double(get(handles.negative_max_size_box,'String')); 

  
tracking.expsummary.cell1=get(handles.cell1_box,'String'); 
tracking.expsummary.cell2=get(handles.cell2_box,'String'); 
tracking.expsummary.ratio=get(handles.ratio_box,'String'); 
tracking.expsummary.media=get(handles.media_box,'String'); 
tracking.expsummary.voltage=str2double(get(handles.voltage_box,'String')); 
tracking.expsummary.freq=str2double(get(handles.freq_box,'String')); 
tracking.expsummary.datestamp=get(handles.datestamp_box,'String'); 
tracking.expsummary.details=get(handles.details_box,'String'); 

  
setappdata(0, 'tracking_data_structure', tracking); 

  
%% Test Snapshot 
% --- Executes on button press in test_snapshotbutton. 
function test_snapshotbutton_Callback(hObject, eventdata, handles) 
% hObject    handle to test_snapshotbutton (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
tracking=getappdata(0, 'tracking_data_structure'); 
video=getappdata(0, 'video'); 
tracking.testframe = getsnapshot(video); 
stoppreview(video); 

  
%development testing: 
%tracking.testframe = imread('1bead.bmp'); 
%tracking.background = imread('0bead.bmp'); 

  
setappdata(0,'tracking_data_structure',tracking); 

  
output = detect_particles(tracking.testframe,tracking.background, 

tracking.threshold_gain, tracking.threshold_size); 
imshow(output.bw_I); 
[nof,dummy]=size(output.measured_RGB); 
match_counter=0; 
match_ids=[]; 
no_match_counter=0; 
no_match_ids=[]; 
for counter=1:nof 
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    if compare_colours(output.measured_RGB(counter,:), tracking.target_rgb, 

tracking.haze_factor, tracking.hue_factor, tracking.stability_factor) 
            impoint(gca, output.centroids(counter, 1), output.centroids(counter, 2)); 
            match_counter=match_counter+1; 
            match_ids=[match_ids; counter]; 
    else 
            no_match_counter=no_match_counter+1; 
            no_match_ids=[no_match_ids; counter]; 
    end 
end 

  
text_to_output=[num2str(nof) ' objects detected, with ' num2str(match_counter) ' 

colour/area match(es)']; 
writeLog(text_to_output, handles); 
for counter2=1:match_counter 
    writeLog(['[' num2str(output.measured_RGB(match_ids(counter2),:)) ']  Area: ' 

num2str(output.area(match_ids(counter2),:))], handles); 
end 

  
text_to_output=[num2str(no_match_counter) ' objects detected above size threshold with 

colour mis-matches:']; 
writeLog(text_to_output, handles); 
for counter2=1:no_match_counter 
    writeLog(['[' num2str(output.measured_RGB(no_match_ids(counter2),:)) ']  Area: ' 

num2str(output.area(no_match_ids(counter2),:))], handles); 
end     

  
% --- Executes on button press in test_run_button. 
function test_run_button_Callback(hObject, eventdata, handles) 
% hObject    handle to test_run_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
%image_bank is a collection of frames with particles in for analysis 
%image_bank2 is the processed frames in black and white 
tracking=getappdata(0, 'tracking_data_structure'); 
video=getappdata(0, 'video'); 
tracking.testframe = getsnapshot(video); 
test_run_data=[]; 

  
counter=1; 
temporary_background=tracking.background((tracking.labelledRegions(counter,2):(tracking.

labelledRegions(counter,2)+tracking.labelledRegions(counter,4))),(tracking.labelledRegio

ns(counter,1):(tracking.labelledRegions(counter,1)+tracking.labelledRegions(counter,3)))

,:); 
image_bank=uint8(zeros(tracking.labelledRegions(4)+1,tracking.labelledRegions(3)+1,3,50)

); 
image_bank2=logical(ones(tracking.labelledRegions(4)+1,tracking.labelledRegions(3)+1,50)

); 
frames_with_particles_in_counter=1; 

  
bar = waitbar(0,'Waiting to identify particles...'); 
target_particle_total=50; 

  
while(frames_with_particles_in_counter<target_particle_total+1) 
    testframe = getsnapshot(video); 
    

temporary_frame=testframe((tracking.labelledRegions(counter,2):(tracking.labelledRegions

(counter,2)+tracking.labelledRegions(counter,4))),(tracking.labelledRegions(counter,1):(

tracking.labelledRegions(counter,1)+tracking.labelledRegions(counter,3))),:); %isolate 

region 
    output = detect_particles(temporary_frame, temporary_background, 

tracking.threshold_gain, tracking.threshold_size); 
    if output.result 
        pause(0.25); 
        testframe = getsnapshot(video); 
        

temporary_frame=testframe((tracking.labelledRegions(counter,2):(tracking.labelledRegions

(counter,2)+tracking.labelledRegions(counter,4))),(tracking.labelledRegions(counter,1):(

tracking.labelledRegions(counter,1)+tracking.labelledRegions(counter,3))),:); %isolate 

region 
        output = detect_particles(temporary_frame, temporary_background, 

tracking.threshold_gain, tracking.threshold_size); 
            if output.result 
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                image_bank(:,:,:,frames_with_particles_in_counter)=temporary_frame; 
                image_bank2(:,:,frames_with_particles_in_counter)=output.bw_I; 
                test_run_data=[test_run_data;[output.measured_RGB output.area]] 
                frames_with_particles_in_counter=frames_with_particles_in_counter+1; 
                waitbar(frames_with_particles_in_counter/target_particle_total,bar); 
                pause(0.5); 
            end 
    end 
end 

  
close(bar); 

  
setup_data.image_bank=image_bank; 
setup_data.image_bank2=image_bank2; 
setup_data.test_run_data=test_run_data 

  
setappdata(0,'setup_data',setup_data); 
setappdata(0,'tracking_data_structure',tracking); 

  
colourspace_setup_plots() 

 
%% Video Preview 
% --- Executes on button press in video_preview_button. 
function video_preview_button_Callback(hObject, eventdata, handles) 
% hObject    handle to video_preview_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    tracking=getappdata(0, 'tracking_data_structure'); 
    video=getappdata(0, 'video'); 
    res = get(video, 'ROIPosition'); 
    himage = image(zeros(res(4), res(3))); 
    preview(video,himage) 
    redraw_regions(handles); 

  
%% Set Background 
% --- Executes on button press in set_background. 
function set_background_Callback(hObject, eventdata, handles) 
% hObject    handle to set_background (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    tracking=getappdata(0, 'tracking_data_structure'); 
    video=getappdata(0, 'video'); 
    tracking.background = getsnapshot(video); 
    setappdata(0, 'tracking_data_structure', tracking); 

  
    writeLog(['Background image set'], handles); 

  
% --- Executes on button press in reanalyse_button. 
function reanalyse_button_Callback(hObject, eventdata, handles) 
% hObject    handle to reanalyse_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    tracking=getappdata(0, 'tracking_data_structure'); 
    process_frame(tracking.testframe,tracking.background) 

  
%% Load 
% --- Executes on button press in load_datafile_button. 
function load_datafile_button_Callback(hObject, eventdata, handles) 
% hObject    handle to load_datafile_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
    %errordlg('Do not move the regions - not supported in this version!.','Region 

Setup','modal'); 
    clear tracking; 
    if isappdata(0, 'tracking_data_structure'); 
        rmappdata(0, 'tracking_data_structure'); 
    end     
    uiload; 
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    setappdata(0, 'tracking_data_structure', tracking); 

     
    newdatestamp(handles); 

        
    set_gui_values(handles); 
    if isfield(tracking, 'labelledRegions') 
        redraw_regions(handles); 
    end 

     
function newdatestamp(handles) 

  
    tracking=getappdata(0, 'tracking_data_structure'); 

     
    tracking.expsummary.datestamp=datestr(now, 30); 
    writeLog(['New datestamp set ' tracking.expsummary.datestamp], handles); 

     
    setappdata(0, 'tracking_data_structure', tracking); 

     
%% Redraw gui objects 
function redraw_regions(handles) 
    tracking=getappdata(0, 'tracking_data_structure'); 
    [nof,dummy]=size(tracking.labelledRegions); 

  
    for counter=1:nof 
        hbox = imrect(handles.axes1, tracking.labelledRegions(counter,:)); 
    end 

  
%% Write GUI Values 
function set_gui_values(handles) 
    tracking=getappdata(0, 'tracking_data_structure'); 
    set(handles.threshold_gain_box,'String',tracking.threshold_gain); 
    set(handles.threshold_size_box,'String',tracking.threshold_size); 
    set(handles.r_box,'String',mat2str(tracking.target_rgb(1))); 
    set(handles.g_box,'String',mat2str(tracking.target_rgb(2))); 
    set(handles.b_box,'String',mat2str(tracking.target_rgb(3))); 

     
    if isfield(tracking, 'positive_min_size') 
        set(handles.positive_min_size_box,'String',mat2str(tracking.positive_min_size)); 
        set(handles.positive_max_size_box,'String',mat2str(tracking.positive_max_size)); 
        set(handles.negative_min_size_box,'String',mat2str(tracking.negative_min_size)); 
        set(handles.negative_max_size_box,'String',mat2str(tracking.negative_max_size)); 
    end 

     
    if isfield(tracking, 'expsummary') 
        if isfield(tracking.expsummary, 'datestamp') 
            set(handles.datestamp_box,'String',tracking.expsummary.datestamp); 
        end 

         
        if isfield(tracking.expsummary, 'details') 
            set(handles.details_box,'String',tracking.expsummary.details); 
        end 

         
        if isfield(tracking.expsummary, 'cell1') 

         
        set(handles.cell1_box,'String',tracking.expsummary.cell1); 
        set(handles.cell2_box,'String',tracking.expsummary.cell2); 
        set(handles.ratio_box,'String',tracking.expsummary.ratio); 
        set(handles.media_box,'String',tracking.expsummary.media); 
        set(handles.voltage_box,'String',tracking.expsummary.voltage); 
        set(handles.freq_box,'String',tracking.expsummary.freq); 

         
        end         
    end 

 
function log_box_Callback(hObject, eventdata, handles) 
% hObject    handle to log_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of log_box as text 
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%        str2double(get(hObject,'String')) returns contents of log_box as a double 

   
% --- Executes during object creation, after setting all properties. 
function log_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to log_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function writeLog(text_to_output, handles) 
    current_log_text=get(handles.log_box,'String'); 
    %output=char(current_log_text,text_to_output,' '); 
    output=[current_log_text; text_to_output]; 
    set(handles.log_box,'String',output); 

  
function threshold_size_box_Callback(hObject, eventdata, handles) 
% hObject    handle to threshold_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of threshold_size_box as text 
%        str2double(get(hObject,'String')) returns contents of threshold_size_box as a 

double 

  
% --- Executes during object creation, after setting all properties. 
function threshold_size_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to threshold_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function cell1_box_Callback(hObject, eventdata, handles) 
% hObject    handle to cell1_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of cell1_box as text 
%        str2double(get(hObject,'String')) returns contents of cell1_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function cell1_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to cell1_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function cell2_box_Callback(hObject, eventdata, handles) 
% hObject    handle to cell2_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of cell2_box as text 
%        str2double(get(hObject,'String')) returns contents of cell2_box as a double 
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% --- Executes during object creation, after setting all properties. 
function cell2_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to cell2_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function media_box_Callback(hObject, eventdata, handles) 
% hObject    handle to media_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of media_box as text 
%        str2double(get(hObject,'String')) returns contents of media_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function media_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to media_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function voltage_box_Callback(hObject, eventdata, handles) 
% hObject    handle to voltage_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of voltage_box as text 
%        str2double(get(hObject,'String')) returns contents of voltage_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function voltage_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to voltage_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function freq_box_Callback(hObject, eventdata, handles) 
% hObject    handle to freq_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of freq_box as text 
%        str2double(get(hObject,'String')) returns contents of freq_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function freq_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to freq_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 

  
function ratio_box_Callback(hObject, eventdata, handles) 
% hObject    handle to ratio_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of ratio_box as text 
%        str2double(get(hObject,'String')) returns contents of ratio_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function ratio_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ratio_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

 
function datestamp_box_Callback(hObject, eventdata, handles) 
% hObject    handle to datestamp_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of datestamp_box as text 
%        str2double(get(hObject,'String')) returns contents of datestamp_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function datestamp_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to datestamp_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on button press in new_button. 
function new_button_Callback(hObject, eventdata, handles) 
% hObject    handle to new_button (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
newdatestamp(handles) 

  
set_gui_values(handles); 

  
function details_box_Callback(hObject, eventdata, handles) 
% hObject    handle to details_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of details_box as text 
%        str2double(get(hObject,'String')) returns contents of details_box as a double 

  
% --- Executes during object creation, after setting all properties. 
function details_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to details_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function positive_min_size_box_Callback(hObject, eventdata, handles) 
% hObject    handle to positive_min_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of positive_min_size_box as text 
%        str2double(get(hObject,'String')) returns contents of positive_min_size_box as 

a double 

  
% --- Executes during object creation, after setting all properties. 
function positive_min_size_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to positive_min_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function positive_max_size_box_Callback(hObject, eventdata, handles) 
% hObject    handle to positive_max_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of positive_max_size_box as text 
%        str2double(get(hObject,'String')) returns contents of positive_max_size_box as 

a double 

  
% --- Executes during object creation, after setting all properties. 
function positive_max_size_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to positive_max_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function negative_min_size_box_Callback(hObject, eventdata, handles) 
% hObject    handle to negative_min_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of negative_min_size_box as text 
%        str2double(get(hObject,'String')) returns contents of negative_min_size_box as 

a double 

  
% --- Executes during object creation, after setting all properties. 
function negative_min_size_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to negative_min_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function negative_max_size_box_Callback(hObject, eventdata, handles) 
% hObject    handle to negative_max_size_box (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of negative_max_size_box as text 
%        str2double(get(hObject,'String')) returns contents of negative_max_size_box as 

a double 

  
% --- Executes during object creation, after setting all properties. 
function negative_max_size_box_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to negative_max_size_box (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on button press in pushbutton11. 
function pushbutton11_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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MATLAB script for control of the ring trap device 

 

function trapper() 
% Adapted from imaqmotion - simple motion detector from Mathworks 

  
%load datafile 
    uiload; 

     
appTitle = 'Trapper'; 

  
%% DAQ setup 
%%% Initialise Box, set Timers, Start, and store handle 
%use custom initialise function to open the output and name 2 of the lines 
%box is initialised with all outputs *on* 

  
% For NI USB-6009 Box: 
% P0.0: Focusing 
% P0.1: Gate1 
% P0.2: Gate2 
% P0.3: Gate3 
% P0.4: Gate4 
% P0.5: Gate5 

  
try 
    [DIOhandle,hwlines] = initialiseInterface() 
    %set(DIOhandle,'TimerFcn',@daqcallback); 
    %set(DIOhandle,'TimerPeriod',1); 
    %start(DIOhandle); 
    setappdata(0,'DIOhandle',DIOhandle); 
    tracking.currentState=logical([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]); 
    putvalue(DIOhandle, tracking.currentState); 
catch 
    'Cannot initialise DAQ hardware interface.' 
%    writeLog('Cannot initialise DAQ hardware interface.', handles); 
%    errordlg('Cannot initialise DAQ hardware interface.','DAQ Interface','modal'); 
end 

  
%% Environment setup 
%clear region buffer, enable base level pre-requisites 
tracking.regions_filled = 0; 
tracking.regions_locked_down=[]; 
tracking.regions_filled_timestamp = clock; 
%set first time flag so that video stabilises before acquisition starts 
tracking.firsttime=1; 

  
%% Video setup 
obj = videoinput('winvideo'); 

  
%try 
    % Make sure we've stopped so we can set up the acquisition. 
    stop(obj); 

     
    % Configure the video input object to continuously acquire data. 
%     triggerconfig(obj, 'manual'); 
%     set(obj, 'Tag', appTitle, 'FramesAcquiredFcnCount', 1, ... 
%         'TimerFcn', @localFrameCallback, 'TimerPeriod', tracking.frame_period); 

     
        %reduce size of video resolution 
    res=get(obj,'VideoResolution'); 
    if res>tracking.target_resolution %if resolution exceeds this value, reduce it 
        set(obj,'ROIPosition', [floor((res(1)-tracking.target_resolution(1))/2) 

floor((res(2)-tracking.target_resolution(2))/2) tracking.target_resolution(1) 

tracking.target_resolution(2)]); 
    end 

  
    % Check to see if this object already has an associated figure. 
    % Otherwise create a new one. 
    ud = get(obj, 'UserData'); 
    if ~isempty(ud) && isstruct(ud) && isfield(ud, 'figureHandles') ... 
            && ishandle(ud.figureHandles.hFigure) 
        appdata.figureHandles = ud.figureHandles; 
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        figure(appdata.figureHandles.hFigure) 
    else 
        appdata.figureHandles = localCreateFigure(obj, appTitle); 
    end 

  
    % Store the application data the video input object needs. 
    appdata.background = []; 
    obj.UserData = appdata; 

  
    %pre-calculate background sub-images to regions of interest 
    [nof,dummy]=size(tracking.labelledRegions); 

  
    for counter=1:nof 
        

tracking.sub_background(:,:,:,counter)=tracking.background((tracking.labelledRegions(cou

nter,2):(tracking.labelledRegions(counter,2)+tracking.labelledRegions(counter,4))),(trac

king.labelledRegions(counter,1):(tracking.labelledRegions(counter,1)+tracking.labelledRe

gions(counter,3))),:); 
    end 

     
    %setup video datalogging 
    if (tracking.video_logging==1) 
        set(obj, 'LoggingMode', 'disk') 
        logfilename=['c:\traplogvideos\trapping' datestr(now, 30) '.avi']; 
        logfile = avifile(logfilename); 
        logfile.Compression = 'wmv3'; 
        obj.DiskLogger = logfile; 
        imaqmem(2e9); 
    end 

     
    %leave trigger repeat at inf even if not logging so vidobj keeps 
    %running 
    set(obj, 'TriggerRepeat', inf); 

     
    % Start the acquisition. 
    start(obj); 

     
    t = timer('TimerFcn',{@localFrameCallback, obj}, 'Period', tracking.frame_period, 

... 
        'StartDelay', 4, 'ExecutionMode', 'fixedRate', 'TasksToExecute', inf); 

     
    start(t); 

  
    % Avoid peekdata warnings in case it takes too long to return a frame. 
    warning off imaq:peekdata:tooManyFramesRequested 
% catch 
%     % Error gracefully. 
%     error('MATLAB:imaqmotion:error', ... 
%         sprintf('IMAQMOTION is unable to run properly.\n%s', lasterr)) 
% end 

  
    setappdata(0,'tracking_data_structure',tracking); 
    setappdata(0,'vidObj',obj); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function localFrameCallback(obj, event, vid) 
% Executed by the videoinput object callback  
% to update the image display. 

  
%If the object has been deleted on us,  
%or we're no longer running, do nothing. 
if ~isvalid(vid) || ~isrunning(vid) 
    return; 
end 

  
% Access our application data. 
tracking = getappdata(0, 'tracking_data_structure'); 

  
%setappdata(0,'tracking_data_structure',tracking); 

  
appdata = get(vid, 'UserData'); 
%background = appdata.background; 
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% Peek into the video stream. Since we are only interested 
% in processing the current frame, not every single image 
% frame provided by the device, we can flush any frames in 
% the buffer. 
%frame = peekdata(vid, 1); 
frame = getsnapshot(vid); 
if isempty(frame), 
    return; 
end 

  
flushdata(vid); 

  
%Decide which traps to scan 
%Correlate list of filled traps with list of trap hierachy - some traps 
%must be filled before others, traps with pre-requisite of zero are filled 
%first 

  
%Remove from list traps that have met the pre-requisites but are already 
%full 

  
% Separate active regions 
%send batch of frames and backgrounds to be chekced 

  
% **TESTing only!! 
%frame=imread('testframe.bmp'); 
%frame=tracking.background; 

  
for counter=1:tracking.nof_regions; %count through each region 
    tracking = getappdata(0, 'tracking_data_structure'); 
    if find(tracking.regions_filled==tracking.prerequisites(counter)) %is pre-requisite 

trap filled? 
        if isempty(find(tracking.regions_filled==counter, 1)) %is this trap not filled? 
            

sub_frame=frame((tracking.labelledRegions(counter,2):(tracking.labelledRegions(counter,2

)+tracking.labelledRegions(counter,4))),(tracking.labelledRegions(counter,1):(tracking.l

abelledRegions(counter,1)+tracking.labelledRegions(counter,3))),:); %isolate region 
            localUpdateFig(sub_frame, tracking.sub_background(:,:,:,counter),counter);  
        end 
    end 
end 

  
% Verify that traps that should be filled really are filled 
% Randomly choose one of the traps and verify 

  
verify_region_index=round((rand*length(tracking.regions_filled)+0.5));    %+0.5 to 

ensure that region_ID 0 can't be selected 
verify_ID=tracking.regions_filled(verify_region_index); 
%if verify id is not locked down, verify that the particle is correctly 
%trapped 
if find(tracking.regions_locked_down==verify_ID) 
else 
    if verify_ID~=0 
        

sub_frame=frame((tracking.labelledRegions(verify_ID,2):(tracking.labelledRegions(verify_

ID,2)+tracking.labelledRegions(verify_ID,4))),(tracking.labelledRegions(verify_ID,1):(tr

acking.labelledRegions(verify_ID,1)+tracking.labelledRegions(verify_ID,3))),:); %isolate 

region 
        %tracking.threshold_gain*0.75 is to provide a lower switch off 
        %threshold 
        output = detect_particles(sub_frame, tracking.sub_background(:,:,:,verify_ID), 

tracking.threshold_gain*0.5, tracking.threshold_size); 

         
        if ~isempty(output.area) 

             
            result = compare_colours(output.measured_RGB(1,:), tracking.target_rgb, 

tracking.haze_factor*.75, tracking.hue_factor*.75, tracking.stability_factor*.75); 

  
        end 
        %    if length(output.area)~=1       %if number of particles is greater or less 

than 1 

  
        %if isempty(output.area)       %if no particles are trapped 
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        %new, stricter verify conditions checks colour as well 
        if isempty(output.area) 
        %if or(isempty(output.area),~result) 
            binID=dec2binvec(2^(verify_ID-1),24);    %generate binary trap reference 
            try 
                %deactivate trap through DIO 
                tracking.currentState = switchOutput(binID,tracking.currentState); 

  
                % Remove trap from filled regions list 
                tracking.regions_filled(verify_region_index) = []; 
                tracking.regions_filled_timestamp(verify_region_index,:) = []; 
                ['Particle not trapped, database corrected.'] 
                verify_ID 
                setappdata(0,'tracking_data_structure',tracking); 
            catch 
                'Particle not trapped, but could not switch DAQ interface' 
            end 
        else 

             
            %if particle has been trapped longer than threshold time, lock down 
            %the trap 
            t1=tracking.regions_filled_timestamp(verify_region_index,:); 
            if ((~isempty(t1))&& (etime(clock,t1)>tracking.lockdown_period) && result) 
                tracking.regions_locked_down = [tracking.regions_locked_down; verify_ID] 
                setappdata(0,'tracking_data_structure',tracking); 
            end 
        end 
    end 
end 

  
%check currentState is correct 
tracking.currentState = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
for counter=1:length(tracking.regions_filled) 
    binID=dec2binvec(2^(tracking.regions_filled(counter)-1),24); 
    tracking.currentState = xor(tracking.currentState,binID); 
end 

  
%confirm outputs are correctly set 
setOutput(tracking.currentState); 

  
%moved out of localUpdateFig - RT 090908 
% If the figure has been destroyed on us, stop the acquisition. 
if ~ishandle(appdata.figureHandles.hFigure), 
    stop(vid); 
    %stop(timerfindall); 
    return; 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function localUpdateFig(frame, background, region_ID) 
    % Detect particles in supplied region, and switch DIO accordingly 

  
    tracking = getappdata(0, 'tracking_data_structure'); 

  
    %look for particles, and switch on relevant trap 
    % currently switches on if any particles in the region match the target 
    % RGB 
    output = detect_particles(frame, background, tracking.threshold_gain, 

tracking.threshold_size); 

     
    if output.result                                %if something has been found 
        [nof,dummy]=size(output.measured_RGB); 
        for counter=1:nof                           %cycle through all found particles 
            output.measured_RGB 
            if compare_colours(output.measured_RGB(counter,:), tracking.target_rgb, 

tracking.haze_factor, tracking.hue_factor, tracking.stability_factor) 
            %if compare_colours(output.measured_RGB(counter,:), tracking.target_rgb, 

1,1, 1)     
                % Activate trap, if DIO is working generate binary trap reference 
                binID=dec2binvec(2^(region_ID-1),24); 
                try 
                    %activate trap through DIO 
                    tracking.currentState = switchOutput(binID,tracking.currentState); 
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                    % Log trap as filled 
                    tracking.regions_filled = [tracking.regions_filled; region_ID]; 
                    tracking.regions_filled_timestamp  = 

[tracking.regions_filled_timestamp; clock]; 
                    'Trap filled' 
                    region_ID 

                     
                    setappdata(0,'tracking_data_structure',tracking); 
                    return 
                catch 
                    'Could not switch DAQ interface' 
                end 
            end 
        end 
    end 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
function newState = switchOutput(binID,currentState) 
    %tracking = getappdata(0, 'tracking_data_structure'); 
    DIOhandle = getappdata(0,'DIOhandle'); 
    newState = xor(currentState,binID); 
    try 
        putvalue(DIOhandle, newState); 
    catch 
        'DIO error' 
    end 
    %tracking.currentState = newState; 
    %setappdata(0,'tracking_data_structure',tracking); 

     
function setOutput(newState) 
    %tracking = getappdata(0, 'tracking_data_structure'); 
    DIOhandle = getappdata(0,'DIOhandle'); 
    %newState = xor(tracking.currentState,binID); 
    try 
        putvalue(DIOhandle, newState); 
    catch 
        'DIO error' 
    end 
    %tracking.currentState = newState 
    %setappdata(0,'tracking_data_structure',tracking); 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function localDeleteFig(fig, event) 

  
% Reset peekdata warnings. 
warning on imaq:peekdata:tooManyFramesRequested 

  
obj = getappdata(0,'vidObj'); 
tracking=getappdata(0,'tracking_data_structure'); 

  
%closepreview; 

  
active_timers=timerfindall; 
stop(active_timers); 
delete(active_timers); 

  
stop(obj); 

  
if (tracking.video_logging==1) 
    aviobj = obj.Disklogger; 
    file = close(aviobj) 
end 

  
delete(obj) 
clear obj 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function figData = localCreateFigure(vid, figTitle) 
% Creates and initializes the figure. 
% % Create a spot for the image object display. 
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% nbands = get(vid, 'NumberOfBands'); 
res = get(vid, 'ROIPosition'); 
% himage = imagesc(rand(res(4), res(3), nbands)); 

  
% Create the image object in which you want to 
% display the video preview data. 
%vidRes = get(vid, 'VideoResolution'); 
% imWidth = vidRes(1); 
imWidth = res(3); 
% imHeight = vidRes(2); 
imHeight = res(4); 
nBands = get(vid, 'NumberOfBands'); 

  
% Create the figure and axes to plot into - off screen 
fig = figure('NumberTitle', 'off', 'MenuBar', 'none', ... 
    'Name', figTitle, 'unit', 'pixels', 'position', [ 10000 10000 imWidth imHeight ], 

'DeleteFcn', @localDeleteFig); 

  
himage = image( zeros(imHeight, imWidth, nBands) ); 

  
% Specify the size of the axes that contains the image object 
% so that it displays the image at the right resolution and 
% centers it in the figure window. 
set(gca,'unit','pixels',... 
        'position',[ 0 0 imWidth imHeight ]); 

  
preview(vid,himage); 
% preview(vid); 

  
%show window, in centre of screen 
movegui(fig,'center'); 

  
% Clean up the axes. 
ax = get(himage, 'Parent'); 
set(ax, 'XTick', [], 'XTickLabel', [], 'YTick', [], 'YTickLabel', []); 

  
% Create the motion detection bar before hiding the figure. 
%[hPatch, hLine] = localCreateBar(ax); 
set(fig, 'HandleVisibility', 'off'); 

  
% Store the figure data. 
figData.hFigure = fig; 
figData.hImage = himage; 
% figData.hPatch = hPatch; 
% figData.hLine = hLine; 
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MATLAB script for control of the sorter device 

 

function sorter() 
% Adapted from imaqmotion - simple motion detector from Mathworks 

  
%load datafile 
    uiload; 

     
appTitle = 'Sorter'; 

  
%% DAQ setup 
%%% Initialise Box, set Timers, Start, and store handle 
%use custom initialise function to open the output and name 2 of the lines 
%box is initialised with all outputs *on* 

  
% For NI USB-6009 Box: 
% P0.0: Focusing 
% P0.1: Gate1 
% P0.2: Gate2 
% P0.3: Gate3 
% P0.4: Gate4 
% P0.5: Gate5 

  
try 
    [DIOhandle,hwlines] = initialiseInterface() 
    %set(DIOhandle,'TimerFcn',@daqcallback); 
    %set(DIOhandle,'TimerPeriod',1); 
    %start(DIOhandle); 
    setappdata(0,'DIOhandle',DIOhandle); 
    tracking.currentState=logical([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]); 
    putvalue(DIOhandle, tracking.currentState); 
catch 
    'Cannot initialise DAQ hardware interface.' 
%    writeLog('Cannot initialise DAQ hardware interface.', handles); 
%    errordlg('Cannot initialise DAQ hardware interface.','DAQ Interface','modal'); 
end 

  
%% Environment setup 
%clear region buffer, enable base level pre-requisites 
tracking.regions_filled = 0; 
tracking.regions_locked_down=[]; 
tracking.regions_filled_timestamp = clock; 
%set first time flag so that video stabilises before acquisition starts 
tracking.firsttime=1; 
tracking.frame_log=[]; 

  
vector=linspace(1,1800,200); 
tracking.high_sound=0.2*sin(vector); 
vector2=linspace(1,2000,200); 
tracking.low_sound=0.2*sin(vector2); 

  
    setappdata(0,'tracking_data_structure',tracking); 

  
 tracking.currentState = tracking.gate_closed_condition; 
close_gate(1); 

  
%% Video setup 
obj = videoinput('winvideo'); 

  
%try 
    % Make sure we've stopped so we can set up the acquisition. 
    stop(obj); 

     
    % Configure the video input object to continuously acquire data. 
%     triggerconfig(obj, 'manual'); 
%     set(obj, 'Tag', appTitle, 'FramesAcquiredFcnCount', 1, ... 
%         'TimerFcn', @localFrameCallback, 'TimerPeriod', tracking.frame_period); 

     
        %reduce size of video resolution 
    res=get(obj,'VideoResolution'); 
    if res>tracking.target_resolution %if resolution exceeds this value, reduce it 
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        set(obj,'ROIPosition', [floor((res(1)-tracking.target_resolution(1))/2) 

floor((res(2)-tracking.target_resolution(2))/2) tracking.target_resolution(1) 

tracking.target_resolution(2)]); 
    end 

  
    % Check to see if this object already has an associated figure. 
    % Otherwise create a new one. 
    ud = get(obj, 'UserData'); 
    if ~isempty(ud) && isstruct(ud) && isfield(ud, 'figureHandles') ... 
            && ishandle(ud.figureHandles.hFigure) 
        appdata.figureHandles = ud.figureHandles; 
        figure(appdata.figureHandles.hFigure) 
    else 
        appdata.figureHandles = localCreateFigure(obj, appTitle); 
    end 

  
    % Store the application data the video input object needs. 
    appdata.background = []; 
    obj.UserData = appdata; 

  
    %pre-calculate background sub-images to regions of interest 
    [nof,dummy]=size(tracking.labelledRegions); 

  
    for counter=1:nof 
        

tracking.sub_background(:,:,:,counter)=tracking.background((tracking.labelledRegions(cou

nter,2):(tracking.labelledRegions(counter,2)+tracking.labelledRegions(counter,4))),(trac

king.labelledRegions(counter,1):(tracking.labelledRegions(counter,1)+tracking.labelledRe

gions(counter,3))),:); 
    end 

     
        if isfield(tracking.expsummary, 'datestamp') 
        datex=tracking.expsummary.datestamp; 
    else 
        datex=datestr(now, 30); 
    end 

     
    repetition_id=1; 

     
    dirlisting=dir('C:\traplogvideos\'); 
    logfilename=['trapping' datex '_' num2str(repetition_id) '.avi']; 
    clear_flag=0; 
    clash=0; 

     
    while clear_flag==0 
        for counter=1:length(dirlisting) 
           if strcmp(dirlisting(counter).name,logfilename) 
               clash=1; 
           end 
        end 

         
        if clash==1 
            repetition_id=repetition_id+1; 
            logfilename=['trapping' datex '_' num2str(repetition_id) '.avi']; 
            clash=0; 
        else 
            clear_flag=1; 
        end 
     end 

     
    logfilepath=['c:\traplogvideos\' logfilename]; 

  
    %setup video datalogging 
    if (tracking.video_logging==1) 
        set(obj, 'LoggingMode', 'disk') 
        logfile = avifile(logfilepath); 
        logfile.Compression = 'wmv3'; 
        obj.DiskLogger = logfile; 
        imaqmem(2e9); 
    end 

     
    %leave trigger repeat at inf even if not logging so vidobj keeps 
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    %running 
    set(obj, 'TriggerRepeat', inf); 

     
    % Start the acquisition. 
    start(obj); 

     
    t = timer('TimerFcn',{@localFrameCallback, obj}, 'Period', tracking.frame_period, 

... 
        'StartDelay', 4, 'ExecutionMode', 'fixedRate', 'TasksToExecute', inf); 

     
    start(t); 

  
    % Avoid peekdata warnings in case it takes too long to return a frame. 
    warning off imaq:peekdata:tooManyFramesRequested 
% catch 
%     % Error gracefully. 
%     error('MATLAB:imaqmotion:error', ... 
%         sprintf('IMAQMOTION is unable to run properly.\n%s', lasterr)) 
% end 

  
% tracking.clock=[]; 

  
    setappdata(0,'tracking_data_structure',tracking); 
    setappdata(0,'vidObj',obj); 
    close_gate(0); 

     
    %generate text log file 
    sort_type='Y-junction'; 
    handle_text_log; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function localFrameCallback(obj, event, vid) 
% Executed by the videoinput object callback  
% to update the image display. 

  
%If the object has been deleted on us,  
%or we're no longer running, do nothing. 
if ~isvalid(vid) || ~isrunning(vid) 
    return; 
end 

  
% Access our application data. 
tracking = getappdata(0, 'tracking_data_structure'); 

  
% tracking.clock=[tracking.clock;clock]; 
% length(tracking.clock) 
% clock 
%         setappdata(0,'tracking_data_structure',tracking);         

 
tracking.frame_log=[tracking.frame_log; clock]; 

  
%setappdata(0,'tracking_data_structure',tracking); 

  
appdata = get(vid, 'UserData'); 
%background = appdata.background; 

 
frame = getsnapshot(vid); 
if isempty(frame), 
    return; 
end 

  
flushdata(vid); 

  
%if gate is open, check time since gate opened and close if necessary 
%else scan for particles 

 
if (tracking.currentState==tracking.gate_open_condition)    
    gate_ID=1; 
    t1=tracking.gate_open_time; 
    if ((~isempty(t1))&& (etime(clock,t1)>tracking.gate_open_period)) 
        close_gate(gate_ID); 
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    end 
end 

  
if (tracking.gate_locked_shut==1)    
    t1=tracking.gate_lock_time; 
    if ((~isempty(t1))&& (etime(clock,t1)>tracking.gate_lock_period)) 
        tracking.gate_locked_shut=0; 
        setappdata(0,'tracking_data_structure',tracking);         
    end 
else 
    counter=1; 
    

sub_frame=frame((tracking.labelledRegions(counter,2):(tracking.labelledRegions(counter,2

)+tracking.labelledRegions(counter,4))),(tracking.labelledRegions(counter,1):(tracking.l

abelledRegions(counter,1)+tracking.labelledRegions(counter,3))),:); %isolate region 
    localUpdateFig(sub_frame, tracking.sub_background(:,:,:,counter),counter);  
end 

  
%moved out of localUpdateFig - RT 090908 
% If the figure has been destroyed on us, stop the acquisition. 
if ~ishandle(appdata.figureHandles.hFigure), 
    stop(vid); 
    %stop(timerfindall); 
    return; 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function localUpdateFig(frame, background, region_ID) 
    % Detect particles in supplied region, and switch DIO accordingly 

  
    tracking = getappdata(0, 'tracking_data_structure'); 

  
    %look for particles, and switch on relevant trap 
    %Counts through detected particles, opens gate if a particle matches 
    %target. 
    %If any particle is detected that is non-target, gate is immediately 
    %closed and locked shut for the lock down period. 
    %Gate is automatically closed once target particle leaves tracking 
    %area, of after the trap_open_period 
    region_ID=1; 
    if tracking.gate_locked_shut==0 

         
        output = detect_particles(frame, background, tracking.threshold_gain, 

tracking.threshold_size); 

  
        if output.result                                %if something has been found 
            response=gate_decision(output); 

             
            switch response 
                case 1 
                    open_gate(region_ID); 
                case 2 
                    close_gate(region_ID); 
                case 3 
                    %active close gate 
                    close_gate(region_ID); 

  
                    %lock gate shut for specified period 
                     tracking.gate_locked_shut=1; 
                     tracking.gate_lock_time=clock; 
                     setappdata(0,'tracking_data_structure',tracking); 
            end 

                 
        else                            %nothing found 
            %implement active closing of gate if no particles found 
            %*** tracking area must be large enough to track particles 
            %until clear of gate!*** 

             
            %active close gate 
            close_gate(region_ID); 
          end 
    else 
    end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Gate control functions using DIO 

  
% function open_gate(region_ID) 
% tracking = getappdata(0, 'tracking_data_structure'); 
% DIOhandle = getappdata(0,'DIOhandle'); 
% tracking.currentState=tracking.gate_open_condition; 
% try 
%     putvalue(DIOhandle, tracking.currentState); 
%     tracking.gate_open_time=clock; 
%     setappdata(0,'tracking_data_structure',tracking); 
% catch 
%   'DIO error' 
% end     
%  
% function close_gate(region_ID) 
% tracking = getappdata(0, 'tracking_data_structure'); 
% DIOhandle = getappdata(0,'DIOhandle'); 
% tracking.currentState=tracking.gate_closed_condition; 
% try 
%     putvalue(DIOhandle, tracking.currentState); 
%     setappdata(0,'tracking_data_structure',tracking); 
% catch 
%   'DIO error' 
% end     

  
%Gate control functions using GPIB and TTI TGA12104 

  
function open_gate(region_ID) 
tracking = getappdata(0, 'tracking_data_structure'); 
DIOhandle = getappdata(0,'DIOhandle'); 
%if tracking.currentState ~= tracking.gate_open_condition 
    sound(tracking.high_sound,4000) 
    tracking.currentState=tracking.gate_open_condition; 
%end 

  
try 
    putvalue(DIOhandle, tracking.currentState); 

     
%     fprintf(g,'SETUPCH 4'); 
%     fprintf(g,'PHASE 180'); 
%      
%     fprintf(g,'SETUPCH 3'); 
%     fprintf(g,'PHASE 0'); 

  
    tracking.gate_open_time=clock; 
    setappdata(0,'tracking_data_structure',tracking); 
catch 
    'DIO error' 
end     
%end 

 
function close_gate(region_ID) 
tracking = getappdata(0, 'tracking_data_structure'); 
DIOhandle = getappdata(0,'DIOhandle'); 
%if tracking.currentState ~= tracking.gate_closed_condition 
 %   sound(tracking.low_sound,4000) 
    tracking.currentState=tracking.gate_closed_condition; 
%end 
%g=getappdata(0,'gpib'); 
try 
    putvalue(DIOhandle, tracking.currentState); 
% fprintf(g,'SETUPCH 3'); 
% fprintf(g,'PHASE 180'); 
%  
% fprintf(g,'SETUPCH 4'); 
% fprintf(g,'PHASE 0'); 

  
    setappdata(0,'tracking_data_structure',tracking); 
catch 
    'DIO error' 
end    
%end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function localDeleteFig(fig, event) 

  
% Reset peekdata warnings. 
warning on imaq:peekdata:tooManyFramesRequested 

  
obj = getappdata(0,'vidObj'); 
tracking=getappdata(0,'tracking_data_structure'); 

  
active_timers=timerfindall; 
stop(active_timers); 
delete(active_timers); 

  
closepreview; 
stop(obj); 

  
if (tracking.video_logging==1) 
    aviobj = obj.Disklogger; 
    file = close(aviobj) 
end 

  
delete(obj) 
clear obj 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function figData = localCreateFigure(vid, figTitle) 
% Creates and initializes the figure. 
% % Create a spot for the image object display. 
% nbands = get(vid, 'NumberOfBands'); 
res = get(vid, 'ROIPosition'); 
% himage = imagesc(rand(res(4), res(3), nbands)); 

  
% Create the image object in which you want to 
% display the video preview data. 
%vidRes = get(vid, 'VideoResolution'); 
% imWidth = vidRes(1); 
imWidth = res(3); 
% imHeight = vidRes(2); 
imHeight = res(4); 
nBands = get(vid, 'NumberOfBands'); 

  
% Create the figure and axes to plot into - off screen 
fig = figure('NumberTitle', 'off', 'MenuBar', 'none', ... 
    'Name', figTitle, 'unit', 'pixels', 'position', [ 10000 10000 imWidth imHeight ], 

'DeleteFcn', @localDeleteFig); 

  
himage = image( zeros(imHeight, imWidth, nBands) ); 

  
% Specify the size of the axes that contains the image object 
% so that it displays the image at the right resolution and 
% centers it in the figure window. 
set(gca,'unit','pixels',... 
        'position',[ 0 0 imWidth imHeight ]); 

  
preview(vid,himage); 
% preview(vid); 

  
%show window, in centre of screen 
movegui(fig,'center'); 

  
% Clean up the axes. 
ax = get(himage, 'Parent'); 
set(ax, 'XTick', [], 'XTickLabel', [], 'YTick', [], 'YTickLabel', []); 

  
% Create the motion detection bar before hiding the figure. 
%[hPatch, hLine] = localCreateBar(ax); 
set(fig, 'HandleVisibility', 'off'); 

  
% Store the figure data. 
figData.hFigure = fig; 
figData.hImage = himage; 
% figData.hPatch = hPatch; 
% figData.hLine = hLine; 
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Appendix 11. Additional data for molecular analysis of sorted STRO-1+ cells 

List of genes highly expressed in microarray molecular analysis of unsorted hBMSC 

populations. Genes are normalised against GAPDH,  n=3.  

SYMBOL GENE NAME 

ALCAM  activated leukocyte cell adhesion molecule (CD166) 

ANPEP  alanyl (membrane) aminopeptidase (CD13) 

ANXA5  annexin A5  

BDNF  brain-derived neurotrophic factor 

BGLAP  bone gamma-carboxyglutamate (gla) protein (Osteocalcin) 

CASP3  caspase 3, apoptosis-related cysteine peptidase  

CD44  CD44 molecule (Indian blood group) 

COL1A1 collagen, Type I, alpha 1 

CTNNB1  catenin (cadherin-associated protein), beta 1 

ENG  Endoglin (CD105) 

FGF2  fibroblast growth factor 2 

GDF15  growth differentiation factor 15  

GDF5  growth differentiation factor 5 (BMP-14) 

GTF3A  general transcription factor IIIA  

HAT1  histone acetyltransferase 1  

HDAC1  histone deacetylase 1  

HGF  hepatocyte growth factor 

IL6  interleukin 6 

ITGA6  integrin, alpha 6  

ITGAV  integrin, alpha V 

ITGB1  integrin, beta 1 

JAG1  jagged 1 (CD339) 

KITLG  KIT ligand 

MCAM  melanoma cell adhesion molecule (CD146) 

MMP2  matrix metallopeptidase 2 (gelatinase A, Type IV collagenase) 

NES  nestin 

NT5E  5'-nucleotidase, ecto 

NUDT6  nudix (nucleoside diphosphate linked moiety X)-type motif 6 

PDGFRB  platelet-derived growth factor receptor, beta (CD140b) 

PIGS  phosphatidylinositol glycan anchor biosynthesis, class S  

PTK2  protein tyrosine kinase 2 

RHOA  ras homolog gene family, member A  

RUNX2  runt-related transcription factor 2 (CBFA1) 

SLC17A5  solute carrier family 17 (anion/sugar transporter), member 5 

SMAD4  SMAD family member 4  

SMURF1  SMAD specific E3 ubiquitin protein ligase 1 

SMURF2  SMAD specific E3 ubiquitin protein ligase 2 

TGFB1  transforming growth factor, beta 1 

TGFB3  transforming growth factor, beta 3 

THY1  Thy-1 cell surface antigen (CD90) 

VCAM1  vascular cell adhesion molecule 1 (CD106) 

VEGFA  vascular endothelial growth factor A 

VIM vimentin  
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Appendix 12. Publications and presentations 

Publications: 

1. Thomas, R.S.W.*, Mitchell, P.D.*, Oreffo, R.O.C., & Morgan, H. 2010. "Trapping 

single human osteoblast-like cells from a heterogeneous population using a 

dielectrophoretic microfluidic device." Biomicrofluidics, 4, (2) (*Joint first author). 

 

2. Gothard, D., Tare, R.S., Mitchell, P.D., Dawson, J.I., & Oreffo, R.O.C. 2011. "In 

search of the skeletal stem cell: isolation and separation strategies at the 

macro/micro scale for skeletal regeneration." Lab on a Chip, 11, 1206-1220. 

 

Presentations: 

1. Mitchell, P.D., Oreffo, R.O.C. Human skeletal stem cell enrichment using 

microfluidic and lab-on-a-chip strategies (2010) (Oral presentation, University of 

Southampton School Of Medicine Postgraduate Conference, awarded 

commendation for outstanding talk) 

 

2. Mitchell, P.D., Wilson, D.I., Oreffo, R.O.C. Development of a 3D model for 

skeletogenesis using fetal femur-derived cell populations (2009) (Poster 

Presentation, University of Southampton School Of Medicine Postgraduate 

Conference) 

 

3. Mitchell, P.D., Wilson, D.I., Oreffo, R.O.C. Development of a 3D model for 

skeletogenesis using fetal femur-derived cell populations (2009) (Poster 

Presentation, UKNSCN Annual Scientific Conference, University of Oxford) 

 

Pending publications: 

1. Mitchell, P.D. & Oreffo, R.O.C. "Development of a novel 3D organotypic model 

for skeletogenesis using fetal femur-derived cell populations." 

 

2. Mitchell, P.D., Thomas, R.S.W., Oreffo, R.O.C. & Morgan, H. " A novel 

dielectrophoretic sorting device for cell isolation from heterogeneous populations." 
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GLOSSARY 

Adipocyte Fat cell 

Adipo- Fat 

Adipogenesis Formation of fat cells 

Allogeneic From a non-host (donor) source 

Allograft Tissue from another patient/donor 

Autograft Tissue from the same patient/donor 

Autologous From the host source 

Centrifugation Spinning of cells to produce a pellet 

Chondro- Cartilage 

Chondrocyte Cartilage cell 

Chondrogenesis Formation of cartilage cells 

Ex vivo Outside of body 

Genotype Genetic arrangement 

In situ Within its place 

In vitro Within the laboratory 

In vivo In patient/animal 

Lacunae Cell pits 

Organotypic Organ-like culture 

Osteo- Bone 

Osteoblast Developing bone cell 

Osteoclast Bone remodelling cell 

Osteocyte Mature bone cell 

Osteogenesis  Formation of bone cells 

Passage Splitting of cell populations 

Phenotype Physical appearance/expression of distinct markers 

Plasticity Differentiation from one cell type to another 

Transfection Insertion into cell of new genetic information 
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