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UNIVERSITY OF SOUTHAMPTON 
ABSTRACT 

 

FACULTY OF HEALTH SCIENCES 
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Master of Philosophy 

 

NOVEL INSIGHTS INTO THE GENOMIC ARCHITECTURE OF CHRONIC LYMPHOCYTIC 

LEUKAEMIA 

Miqdad Rajabali 

 

Sequential karyotypic and FISH analysis in patients with CLL show evidence of genomic 

evolution in 10 – 20% of cases. In addition, telomere dysfunction has been shown to 

correlate with genomic instability and thus may be involved in genomic evolution. 

Since specific deletions have been found to be associated with different disease 

prognosis, the acquisition of secondary aberrations may impact on disease 

progression. To investigate this, DNA samples of 29 patients presenting with either 

stage A0 CLL or mBL were analysed at two different time points, PT and FU (median 

time between sample: 85 months. Patients were grouped as either stable (for 5 or 

more years) or progressive (treated within 3 years). High resolution Affymetrix SNP6.0 

array was used to investigate copy number aberrations and loss of heterozygosity at 

both time points and FISH/karyotype data was used for confirmation and validation.. In 

addition, the high resolution STELA technique was used to measure telomere length at 

each time point. It was found that patients with progressive as well as stable disease 

had acquired secondary aberrations at FU, including novel deletions and gains. 

Telomere loss was also found in both groups of patients. 11q/17p aberrations and 

large (>2Mb) but not small (<2Mb) 13q deletion (P=0.03) were associated with genomic 

evolution and telomere loss. Several established biomarkers, including IgVH mutational 

status shown not such correlation. A number of patients identified as good risk at 

diagnosis, acquired abverse genomic features at folloe-up. These included the 

acquisition of a class II 13q deletion and a complex genomic profile. Finally, case 

studies enabled a more detailed analysis and revealed the presence of secondary 

aberrations in conjunction with sudden shifts in WBC count that are a marker of 

disease progression. This study supports the need to detect genomic changes 

throught the course of the disease, and genomic aberrations can be acquired and 

effect prognosis.       
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1.1. DNA, Chromosomes and cell division 

 

Deoxiribonucleic acid, DNA, is the blueprint of all cells, containing all the genetic 

information, coded by 4 different nucleotides attached together in a double strand 

helix structure. Packed into chromosomes, the human genome contains more than 3 

billion base pairs of which less than 2% code for genes. Genes are nucleotide 

sequences in the DNA which can be transcribed as RNA by RNA Polymerase and then 

translated as proteins by Ribosomes outside of the cell nucleus. Genes are made of 

exons which are the coding regions and introns which are regions between the exons.  

Gene expression is tightly regulated by a number of mechanism; transcription factors 

promote or silence the transcription of gene by binding to specific sequences of the 

DNA, upstream of the gene (promoters or silencer regions), which they can recognise.  

Another mechanism for gene expression involves the packing of DNA, which, when 

tightly bound to histones proteins, restricts gene expression.  

DNA and chromatin are packed in structures called chromosomes. Each somatic cell 

has 2 copies of each of the 22 autosomal chromosomes and either two copies of the X 

sex chromosome (female) or one copy each of the X and Y sex chromosome (Male). 

Each chromosome is composed of two identical chromatids bound together at the 

centromere, as shown in figure 1. Hence, each gene has two copies, or two alleles, on 

each homologous chromosome. During cell division, called mitosis, chromosomes are 

duplicated and divided to produce 2 identical cells.  

 

Figure 1: Picture of a chromosome, showing the centromere and two copies of a gene 

 

Cell cycle can be divided into two different phases: Interphase and mitosis. Interphase 

occurs in three stages: G
1
 phase, where the cell begins to grow, S phase where the 

DNA and chromosome replicate and the G
2
 phase, which prepares to cell entry into 
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mitosis. This latter phase is divided into four stages: prophase, where the DNA is 

condensely packed and structured, metaphase, where the chromosomes are moved to 

the centre of the cell and centromeres are lined up, anaphase, where the centromeres 

of each chromosome are broken and moved to opposite sides of the cell, and 

telophase, where the cells are divided into two, each with one pair of chromosomes.    

 

Cells division is tightly regulated by a number of proteins, such as cyclins (Vermeulen, 

Van Bockstaele et al. 2003). Undividing cells enter the G
0
 phase of senescence 

(summarised in figure 2). 

 

Figure 2: The difference phases of cell cycle include S, G
1
 and G

2
. Following G

2
, cells undergo 

mitosis or division. Cell cycle arrest can occur and cells enter G
0
 senescence phase. 

 

During cell division, the DNA replicates into two identical copies. The replication is 

initiated by Helicases which separate the two DNA strand and subsequently DNA 

polymerase uses each strand of the DNA as a template to synthesise a complementray 

strand. DNA replication does not reach the end of chromosomes due to the presence 

of telomeres which consist of tandem repeats of TTAGGG sequence, which cannot be 

replicated by the Polymerase. As DNA gets shorter after every cycle, cells can only 

divide a certain number of times (Hayflick limit: 40 to 60 times), after which cells enter 

into senescence (Norrback and Roos 1997). 

 

Errors, such as deletion or addition of a nucleotide, during replication can occur, but 

are repaired by various mechanisms during a cell cycle pause triggered by DNA 

damage checkpoints. These checkpoints are controlled by proteins such as ATM, which 

respond to double stranded breaks. If DNA damage is irreparable, signals are triggered 

downstream of ATM, such as P53, to cause cell death. Apoptosis is one of the 

mechanism by which DNA as well as cell components are fragmented and the entire 

cells are removed from the system.  
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1.2. Cancer and genetic alterations  

Cancer is a general term used for a group of diseases characterised by an uncontrolled 

growth of cells. This is due to a malfunction of cell division, which may affect any area 

of the human body. In Europe alone, 3 million new cases of malignant tumours are 

recorded every year and worldwide, cancer accounts for 1.7 million deaths per year 

(WHO 2004) 

 

A number of alterations to the genome can cause cell cycle dysfunction (Evan and 

Vousden 2001). Alterations involve epigenetic changes (such as methylation), 

mutations, loss of heterozygosity (LOH), deletions of gains of region of the 

chromosome, which can target regions of any chromosome or whole chromosomes 

(monosomy & trisomy) as well as translocations. LOH can be a random event whereby 

an individual acquires both alleles of a gene (or a region of chromosome) from one 

parent and not the other (termed as ‘Uniparental disomy’) or it can be the loss of the 

only functional allele for a particular gene or chromosome region which targets mostly 

tumour suppressor genes. LOH is a result of error in recombination following mutation 

in the first allele, and does not cause loss of copy number as shown in figure 3 

(Gondek, Tiu et al. 2008). Translocations involve the swapping of highly homologous 

parts of the DNA sequence during replication which cause loss of the correct gene 

sequence and can be sometimes accompanied with loss of chromosomes regions 

(unbalanced translocation) (Janz 2008). The gain-of-function of proto-oncogenes 

and/or the loss-of-function of tumour suppressor genes are the main events which can 

lead to uncontrolled growth and tumour (Hanahan and Weinberg 2000). Proto-

oncogenes code for growth factors, their receptors, transcription factors or other 

proteins involved in the regulation of cell cycle differentiation and proliferation. For 

instance, the translocation of the chromosome 22 region containing the BCR gene with 

chromosome 9 containing the ABL1 gene (philadelphia chromosome), results in the 

overexpression of the ABL1 oncogene in B-cells, and this has been found to cause 

chronic myelogenous leukemia (CML) (Quintás-Cardama and Cortes 2009). On the 

other hand, tumour suppressor genes code for proteins involved in triggering cell cycle 

arrest and apoptosis. Most common tumour suppressor genes deleted in a large 

number of cancers are Rb (retinoblastoma) and TP53 (Sherr and McCormick 2002).  
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Figure 3: A. Two copies of each gene, (alleles) on each chromosome, are received from the 

parent cell, one maternal and one paternal. An individual can be homozygous for a particular 

gene, whereby both allele are similar, or heterozygous for a particular gene, whereby each allele 

is different. B. Loss of heterozygosity occurs as a result of incorrect recombination and causes 

loss of the function alleles  

 

1.3. Detecting genomic aberrations 

A number of techniques have been used to detect genomic aberrations in cancer cells. 

G-banding is a method which produces a karyotype (figure 4) of chromosomes using a 

stain called Giemsa. DNA sequence rich in A and T create darker bands and alterations 

in chromosomes, such as translocation, can be noted by G-Banding (David Burnett 

2005).  
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Figure 4: A. Image of a karyotype showing 22 chromosome and an X and Y sex chromosome. B. 

Detailed look at chromosome 7 showing G-bands. 

 

Fluorescence in situ hybridisation (FISH) is another cytogenetic technique, with a 

higher resolution that G-Banding. FISH involves labeling metaphase, or interphase 

chromosomes with a fluorescent sequence specific probe, which can then be detected 

using a microscope (Read 2003). Using FISH, changes in chromosomes of at least 1Mb 

can be detected, and the use of more than one probe enables detection of 

translocations.  

 

A much higher resolution method for genome wide analysis, has been the comparative 

genome hybridisation array (aCGH), which involves using a large number of probes to 

tag cDNA from two different sources and hybridising to a single array for comparison 

studies in order to changes in copy number (Shinawi and Cheung 2008). The 

resolution of aCGH varies, as probes can be spaced out between 1 every 1Mb or 1 ever 

100kb (Shinawi and Cheung 2008). It is important to note that unlike FISH method, 

arrays cannot detect balanced translocations. 

 

The highest resolution for detecting copy number changes as well as LOH is the 

Affymetrix SNP6.0 array (Pfeifer, Pantic et al. 2007), which contains 2.7 million of 26 

base pair probes, including nearly 1 million probes for detecting copy number 

changes. The use of SNP array also allows detection of LOH, since SNP genotype can be 

compared using patient matched controls (Green, Jardine et al. 2010).  

 

High concordance has been noted between different arrays and other methods for 

copy change detection (Curtis, Lynch et al. 2009). High resolution array, has been used 

for cancer studies and suggested to be used for regular clinical use (Ankita, Sung-Hae 
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et al. 2008). It is clear nonetheless that FISH technique should not be ignored as 

translocations play an important role in tumours (Janz 2008), including leukeamias.  

1.4. Haematopeiesis 

 

Hematopoietic stem cells (HSCs ) are pluripotent stem cells in the bone marrow that 

give rise to myeloid and lymphoid progenitor cells, which give rise to all circulating 

blood cells in a multistep process known as haematopoiesis.  Myeloid cells go on to 

differentiate into erythrocytes (red blood cells), granulocytes, macrophages and 

platelets whilst lymphoid cells are progenitor cells for T and B lymphocytes and natural 

killer cells. Lymphocytes are part of the adaptive immune system, which recognise 

foreign molecules (antigens) through highly specific structures called antibody, 

generated after proliferation and maturation (Kuby 2006).  

 

B-Lymphocyte development and maturation occurs in the bone marrow, in a number of 

steps, where each step represents a change in the expression of antibodies. Antibodies 

are composed of 2 identical light polypeptide chains (L) and 2 identical heavy 

polypeptide chains (H), each bound by a disulfide bond (figure 5). The first 110 amino 

acid of each chain form a highly variable sequence called V regions which give the 

antibody its high specificity to antigens. The rest of the antibody is a constant 

sequence (C) which binds to the B cell surface (B-cell receptor) or other immune cells 

(for soluble antibodies) (Rajewsky 1996). 

 

Figure 5: Figure of a membrane bound antibody showing light and heavy chains linked by 

disulfide bonds. 

 

The heavy chain of the antibody is coded by the IGH gene locus on chromosome 14, 

whilst the light chain can be from two different gene clusters:  IGL ( ) cluster from 

chromsome 22 or IGK ( ) from the gene clusters on chromosome 2.  
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The final mRNA for antibodies is derived following somatic recombination of exons of 

4 different groups from one heavy chain and either of the light chains: Variable (V), 

diversity (D), joining (J) and constant (C) (Li, Woo et al. 2004).  

The C region is divided into 5 different classes and code for the constant region of the 

heavy chain: (IgG isotype) , (IgA isotype) , (IgD isotype) , (IgM isotype)  and (IgE 

isotype) .  

The variable region is formed of 1 VDJ segment out of a large number of different 

segments, and this gives antibody the huge diversity and potential for antigen 

recognition. The somatic recombination occurs during B-cell development as follows: 

 

D-J joining of the heavy chain occurs first, during the phase of pro-B cell, where a 

segment of the D gene from the heavy chain is spliced (randomly) and joined to a 

segment of the J gene from the heavy chain. A segment of the V gene is then spliced 

from the DJ segment and forms a VDJ heavy chain primary RNA. The VJ rearragement 

of the light chain occurs during the pre-B cell stage. At the next stage, immature B-cell, 

the antibody with constant antibody region IgM is expressed at the cell surface.  Once 

releases from the bone these B-cells reached the spleen and are differentiated into 

mature, yet naïve B cells (summarised in figure 6) (Hardy and Hayakawa 2001) 

 

 

Figure 6: Picture showing stages of B-cell maturation with changes to the antibody and cell 

surface receptor. Figure taken from Kuby, IMMUNOLOGY, 6th edition (2007). 

 

 

Lymphocytes then circulate in the blood and the lymph node and reside in various 

lymhpoid organs. Antigen recognition causes naïve B cells to come out of G
0 
phase of 

the cell cycle and undergo maturation and proliferation into either effector cells or 

memory B cells (Kuby 2006). This step occurs in the germinal centres of the lymph 

nodes, where naïve B cells undergo hypermutation and class switch as well as 

extensive proliferation as part of the immune system’s deffence against foreign bodies 

(virus, bacteria) (Natkunam 2007). Hypermutation involves the variable region genes 

and enables higher affinity to antigens, whereas class switch is the change from 

constant region IgM to one of the other constant region, mostly IgG, in order to enable 

interaction with various effector molecules. B-cells come out of the germinal centre as 
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either plasma cells, involved in the direct protection of the body, or as memory B-cell 

which retain the antigen specific antibody for future recognitions (Kuby 2006). Plasma 

cells undergo cell-death after a number of whilst memory B-cells which can survive a 

number of years.  

 

The regulation of B-cell development, maturation and proliferation is tightly regulated 

by a complex system involving cytokins, transcription factors, cell cycle checkpoint 

proteins, etc… (Thomas, Srivastava et al. 2006). For instance, SYK and SRC tyrosine 

kinase proteins play an important role in activating proliferation of the pre-B cell whilst 

FOXO and p27 negatively regulated cell cycle (Herzog, Reth et al. 2009). Other 

important proteins include Bcl-2 family protein which inhibits apoptosis (Cory 1995) 

and other proteins such as BOX or Fas induce program cell death (Lindsten, Ross et al. 

2000; Pasqualetto, Vasseur et al. 2005). The levels of lympocytes, pre and post 

germinal centre are thus tightly regulated through signals for survival, cell cycle arrest 

as well as programed cell death (apoptosis) (Osborne 1996). Dysfunction of this sytem 

may lead to either increased proliferation of B-cells or long term survival. 

 

1.5. Leukemia and lymphoma: Introduction 

Leukemia affects 7000 new patients every year in the UK, affecting more men than 

women, specifically in elderly individuals (CRUK 2007). Chronic Lymphocytic Leukemia 

(CLL) is the most common form of Leukemia in the west, accounting for 35% of all 

leukemias, and has an incidence of 3.5/100000 every year in the US (Dighiero and 

Hamblin 2008). CLL affects mostly elderly individuals, with very rare cases of CLL in 

individuals below the age of 50 (CRUK 2007). 

 

Leukemia and lymphomas are malignant tumours of hematopoietic cells.  

Leukemia proliferate are single cells in the blood stream whilst lymphomas grow as 

tumour mass within lymphoid tissues such as bone marrow, lymph node or thymus.  

 

Leukemias are classified into two major groups according to their clinical progression: 

Acute leukemia, such as Acute Lymphoctyic Leukemia (ALL) or Acute Myelogenous 

Leukemia (AML) appear suddenly and progress rapidly. The tumour cells are also 

known to arise from non-mature B cells. Chronic Leukemia on the other hand is less 

aggressive and in general develops sowly, often without any symptoms. Chronic 

Lymphocytic Leukemia (CLL) is a chronic malignancy which arises from mature B cells.  

!

1.6. CLL 
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1.6.1.  CLL diagnosis 

On the clinical stage, CLL is defined by 2 main characteristics, which also distinguish it 

from other lymphomas such as mantle-cel lymphoma (Dighiero and Hamblin 2008): 

• Absolute Lymphocytosis of at least 5x109/L mature B cells (Cheson, Bennett et 
al. 1996) 

• Cell surface markers:  
CD19+ and CD5+ as B cell markers 
CD23+ ; CD20+ ; Surface Immunoglobulin+ (  or ); CD79b– (Binet, Caligaris-
Cappio et al. 2006) 

-./!01210!.3!45''!1678199:.;!<4=19.;>!?1;;1@@!1@!A0"!#&&)B!

CLL is differentiated from monoclonal B-cell lymphocytosis (mBL) by a much smaller 

lymphocyte count in the blood in mBL (less than 5x109/L) (Marti, Rawstron et al. 2005) 

 

1.6.2. CLL disease course and prognostic markers 

Patients with CLL disease have been found to follow a heterogeneous disease course, 

where some patients have stable disease without a need for treatment and others have 

an aggressive disease with poor survival, despite numerous rounds of treatment 

(Shanafelt 2009). For this reason two different staging systems have been established, 

Rai and Binet (Rai, Sawitsky et al. 1975; Binet, Leporrier et al. 1977). The latter is 

graded into three stages, A, B, C, with stage B and C being late disease stages with 

high lymphocyte count and lymph node involvement (Hamblin 2007). Although 

patients on stage A do not require treatment and have a mean survival of 12 years, 

patients on stage C have a mean survival of 2 years with treatment for aggressive CLL 

(Hamblin 2007). 

 A large number (~35) of prognostic markers to predict the course of CLL disease have 

been established (Furman 2010), and include IgVH mutation status, CD38 expression, 

ZAP70 expression as well as genomic aberrations. These markers play an important 

role clinically in predicting the disease course and assessing high-risk groups of 

patients (Kay, O'Brien et al. 2007). 

 

1.6.3. IgVH mutation status  

An important prognostic marker came in the form of IgVH mutation status. Reports 

found more than half of CLL patients with evidence of mutation on the IgVH gene, with 

less than 98% sequence homology with the germline gene and that difference in 

survival was evident between the two groups (Damle, Wasil et al. 1999).  Further 

research showed a median survival of 8 years in patients with unmutated IgVH status, 

compared to a median survival of 25 years in patients with a mutated IgVH status 

(Hamblin, Davis et al. 1999; Jelinek, Tschumper et al. 2001; Hamblin 2007). IgVH 

mutation status, when recorded at diagnosis and early stage disease, has thus been 

established as an independent marker for disease progression (Hamblin, Davis et al. 
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1999; Oscier, Gardiner et al. 2002). It is important to note that an exception has been 

recognised; B-CLL cells with the IgVH3-21 gene segment, whether mutated or 

unmutated, have been associated with poor prognosis (Tobin, Thunberg et al. 2003).  

 

Interestingly the IgVH mutation status has given rise to a debate as to whether CLL 

disease should be regarded as two distinct diseases (Hamblin 2002). The origin of the 

B-CLL cell is proved to be different, since the tumour cells with mutated IgVH status 

would arise from post-germinal centre B-cells whereas the tumour cells with unmutated 

IgVH status would have naïve, pre-GC lymphocytes origin. Nonetheless, regardless of 

whether it may be two diseases or one, with two distinct disease course and 

morphology, the treatment and clinical impact remains the same.  

 

Since IgVH mutation screening is not an easy and speedy task, research has attempted 

to find surrogate markers with easier detection capacities.  

 

1.6.4. CD38 expression 

Another prognostic marker of CLL disease has been the expression levels of CD38, a 

glycoprotein found on most white blood cells (Hamblin 2007). Patients with 30% or 

more malignant lymphocytes expression cell surface had a significantly poorer median 

survival compared to patients with less than 30% CD38 expression (Damle, Wasil et al. 

1999; Chevallier, Penther et al. 2002). However, despite being far easier to measure 

clinically compared to IgVH (using flow cytometry), an issue has been raised regarding 

CD38 expression as surrogate marker for IgVH, as a discordance was noted between 

IgVH mutation status and CD38 expression as the latter was shown not to highlight 

the same patients as IgVH status (Hamblin, Orchard et al. 2000; Hamblin, Orchard et 

al. 2002). Nonetheless CD38 expression has been an established independant marker 

for disease progression (Damle, Wasil et al. 1999; Chevallier, Penther et al. 2002), with 

two important obstacles; levels of CD38 expression were not found to be constant 

during the course of the disease (Hamblin, Orchard et al. 2002), and the cut off for 

cells expressing CD38 has been questioned with studies using much lower than the 

initial cut off (7% as opposed to 30%) (Krober, Seiler et al. 2002). Nevertheless, CD38 

expression, measured at early disease stage, remains an important prognostic marker 

in CLL (Van Bockstaele, Verhasselt et al. 2009). 

 

1.6.5. ZAP70 expression 

A surrogate marker for IgVH was found in ZAP70 expression, a zeta-associated protein 

with a molecular weight of 70kD (Rassenti, Huynh et al. 2004). Interestingly, B cells 

lack ZAP70 expression, whilst B-CLL cells with high levels of ZAP70 expression were 

found to predict IgVH mutation cases (Wiestner, Rosenwald et al. 2003) as well as time 
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to treatment (Rassenti, Huynh et al. 2004). ZAP70 was also shown to predict disease 

outcome and time to treatment (Weinberg, Volkheimer et al. 2007; Rassenti, Jain et al. 

2008). Nonetheless, there are still controversies regarding the methods for ZAP70 

analysis as discordances have been noted, as well as regarding the cut off for high/low 

ZAP70 expression (Van Bockstaele, Verhasselt et al. 2009). 

 

Whilst biomarkers play an important part in predicting disease progression, the 

presence of genomic aberrations in CLL patients has been found to involve numerous 

genes involved in malignancy which drive different disease course. These will be 

discussed in the next section. 

 

1.7. Genomic aberrations 

The presence of chromosomal abnormalities in CLL has been noted in large studies 

and shown to correlate with survival and disease progression (Dohner, Stilgenbauer et 

al. 2000). Dohner et al noted 268 out of 325 patients with chromosome aberrations, 

using FISH technique (Dohner, Stilgenbauer et al. 2000).  The most common 

aberrations were found to be 13q, 11q and 17p deletions, as well as trisomy 12. These 

will be introduced below. 

  

1.7.1. 13q deletion 

Deletion on the long arm of chromosome 13 (13q14) has been found in a majority of 

CLL patients (over 55%) and has been linked with a favourable disease course (Dohner, 

Stilgenbauer et al. 2000). Patients with a sole 13q deletion were found to have a better 

survival than patients with other aberrations as well as with a normal genome (at FISH 

resolution) (Dohner, Stilgenbauer et al. 2000). Extensive research has been done on 

patients with 13q deletion. It was found that deletion in this region can be mono-allelic 

or bi-allelic (homozygous) although no difference in prognosis was found between 

these two groups (Fink, Geyer et al. 2004; Van Dyke, Shanafelt et al. 2010). In addition, 

patients with a higher percentage of nuclei with 13q deletion (>65%) were found to 

have a worse prognosis than other 13q patients (Van Dyke, Shanafelt et al. 2010). 

Furthermore, and more importantly, the size of 13q14 deletion was found to impact 

prognosis. 

 

The size of 13q deleted has been shown to vary, however a Minimal Deleted Region 

(MDR) has been recognised on 13q14, spanning the locus D13S319 (Liu 1997). This 

region is known to be deleted in most cases and includes many tumour linked genes 

such as DLEU2 which also has within it the microRNA clusters (miR) 15a/16-1 (Bullrich, 

Fujii et al. 2001; Calin, Dumitru et al. 2002).   
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13q14 deletions involving the MDR were termed as type I deletions whilst 13q deletion 

involving the RB1 (which were also larger than 2Mb), were classed as type II (Ouillette, 

Erba et al. 2008). Parker et al and others noted a significant difference in the risk of 

disease progression between patients with class I and class II 13q deletion: Patients 

with class II 13q deletion were shown to have a higher risk for disease progression 

(Ouillette, Erba et al. 2008; Parker, Rose-Zerilli et al. 2010) as well as a shorter time to 

treatment (Dal Bo, Rossi et al. 2011) highlighting the importance of genes outside of 

the MDR.  

 

Deletion of this region is seen in various other tumours suggesting therefore presence 

of a tumour suppressor gene, as suggested below:  

 

DLEU2 

Not much is known about the function of Deleted in Leukemia 2 gene, except that it 

includes the miR-15a/16-1 genes and deletion of this gene has also been found to 

cause tumour in mice (Klein, Lia et al. 2010) and thus suggested to play a tumour 

suppressor role.   

 

Mir 15a/16-1 

MicroRNA (miRNA) are non coding RNA of approximatily ~21 nucleotides, which are 

increasingly shown to have vital roles in the regulation of gene expression, through 

binding on target RNA by complementary base pairing and suppressing translation 

(Pillai, Bhattacharyya et al. 2007) and downgrading RNA transcript (Lim, Lau et al. 

2005). Half of all MiRNAs are located in cancer associated regions of the genome 

suggesting link with tumour (Calin, Sevignani et al. 2004).  

 

Calin et al have shown that MiR15a/16-1 are expressed in CD5+ B cells and are 

downregulated in most CLL cases (68%) (Calin, Dumitru et al. 2002). In addition, 

mutation of this region has been associated with deletion on 13q14 (Calin, Ferracin et 

al. 2005). Studies have found miR15a/16-1 to negatively regulated apoptosis and 

proliferation (Calin, Cimmino et al. 2008), downregulate cell cycle entry proteins in B 

cell and cause lymphoproliferation in mice (Klein, Lia et al. 2010).  

Interestingly, a number of genes have been suggested as downstream targets of 

miR15a/16-1, including cell cycle regulator MCL1 and BCL2 family protein (Calin, 

Cimmino et al. 2008). The latter has been shown to be overexpressed in MiR15a/16-1 

deleted cells, and thus cause cell proliferation (Cimmino Amelia 2005). 

 

Nonetheless, research on understanding the role of MiRNA in CLL is still ongoing, as a 

number of other genes have been shown to be regulated by miR15a/16-1 (Hanlon Katy 
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2009), while BCL2 has been found not to always correlate with its deletion (Ouillette, 

Erba et al. 2008).  

 

DLEU7 

Positioned in a number of studies within the MDR of 13q14 deletion (Ouillette, Erba et 

al. 2008), DLEU7 has been suggested as a tumour suppressor involved in CLL disease 

(Palamarchuk, Efanov et al. 2010; Pekarsky, Zanesi et al. 2010). Studies have found low 

levels of DLEU7 in CLL patients, even in patients without evidence of 13q14 deletion 

(Hammarsund, Corcoran et al. 2004), and has been shown to be a potent inhibitor of 

NF- B signal, leading to inihbition of apoptosis (Palamarchuk, Efanov et al. 2010). This 

gene is thus another target of the recurrent 13q14 deletion in CLL patients.  

 

RB1 

RB1 gene has been noted as part of class II deleted 13q patients and found to be 

involved in the malignant transformation of CLL (Liu, Szekely et al. 1993). RB1 has 

been established as a cause for uncontrolled proliferation and genomic instability 

(Hernando, Nahle et al. 2004) and deletion of this gene has been linked with a worse 

prognosis than patients with small 13q14 deletions (Dal Bo, Rossi et al. 2011). 

 

LATS2 

Lower levels of LATS2 has been found in patients with class II 13q deletion compared 

to other patients (Ouillette, Erba et al. 2008), and has been linked with the P53 

pathway and thus a tumour suppressor (Visser S 2010). 

 

 

To conclude, presence of 13q14 deletion in the majority of CLL patients has been 

linked with a number of potential tumour suppressor genes. Interestingly, deletion of 

this region can involve either all genes mentioned above or just the DLEU/miR15a/16-

1 region, and prognosis of patients will change accordingly, since large 13q14 deletion 

have been found to present a higher risk for disease progression (Parker, Rose-Zerilli 

et al. 2010).  

 

 

1.7.2. 11q23 deletion 

Deletion of the 11q region has been found in approx 10-20% of CLL patients (Dohner, 

Stilgenbauer et al. 2000). Deletion of this region has been found to be an independent 

prognostic marker, linked with poor survival, short time to treatment as well as 

extensive lymphadenopathy (Dohner, Stilgenbauer et al. 2000; Austen, Powell et al. 

2005). Whilst most patients have very large deletions, the gene highlighted with 
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pathogenic impact in 11q deleted patients has been ATM, a gene involved in the P53 

pathway, as a number of patients have been shown to have mutation of this gene 

(Schaffner, Stilgenbauer et al. 1999; Austen, Powell et al. 2005).  

 

1.7.3. 17p13 deletion 

Patients with deletion on 17p13 have been associated with the worst prognosis, with 

rapid disease progression and short survival (Dohner, Stilgenbauer et al. 2000). 

Deletion on this region occurs in approx 5-10% of patients (Dohner, Stilgenbauer et al. 

2000) and involves the TP53 gene. Deletion or mutation of TP53 have been found to 

be independent prognostic marker for poor survival (Oscier, Gardiner et al. 2002) and 

disease progression (Cordone, Masi et al. 1998). Deletion on 17p has also been 

associated with poor response to alkylating agenst and purine analgoue (el Rouby, 

Thomas et al. 1993; Dohner, Fischer et al. 1995), relapse (Lozanski, Heerema et al. 

2004; Grever, Lucas et al. 2007) and genomic instability (Dicker, Herholz et al. 2008). 

 

Interestingly, Tam et al have shown clinical heterogeneity in patients with 17p and 

found percentage of nuclei with deletions to be important in the survival rate (Tam, 

Shanafelt et al. 2009). Furthermore, other studies have shown that presence of 13q 

deletion in patients with loss of TP53 have a much better disease progression (Daniel, 

Tait et al. 2009). These studies highlight the complex nature of 17p aberration as 

prognostic marker.   

 

1.7.4. Trisomy 12 

Gain of the entire chromosome 12, or trisomy 12, is the second most common 

aberration in CLL patients (Dohner, Stilgenbauer et al. 2000). An intermediate 

prognosis, between 13q and 17p deletion has been suggested (Dohner, Stilgenbauer 

et al. 2000), although patients with trisomy 12 have been found to have advanced 

disease stage (Juliusson, Robert et al. 1985; Knauf, Knuutila et al. 1995). Studies have 

found short time to treatment in trisomy 12 patients, but longer overall survival 

(Escudier, Pereira-Leahy et al. 1993). Interestingly, no gene has yet to be singled out in 

patients with trisomy 12 although research is under way (Porpaczy, Bilban et al. 2009).  

 

 

The prognosis value of all these aberrations has been shown in figure 7. Patients with 

13q deletion had the longest overall survival, followed by trisomy 12 patients. Deletion 

on 11q or 17p was linked with poor overall survival.  
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Figure 7: The overall survival of patients with different genomic aberrations highlights 

shortest survival in patients with 11q and 17p deletion and longest survival in patients 

with trisomy 12 and 13q deletion. Picture taken from Zenz et al (Zenz, Mertens et al. 

2011) 

 

1.7.5. Other aberrations 

A number of other chromosomal aberrations have been noted in CLL patients. Deletion 

on 6q21 was found in low frequency (3-6%) ((Dohner, Stilgenbauer et al. 2000)). 

Although a number of studies have shown no prognosis value for 6q deletion (Cuneo, 

Roberti et al. 2000), other research has noticed an association between this deletion 

and short time to treatment as well as intermediate prognosis with distinct phenotype 

(Cuneo, Rigolin et al. 2004). 

 

Chapiro et al found that 2p gain was the 2nd most frequent aberration after 13q14, 

albeit in a small cohort and only in patients with late Binet stage (Chapiro, Leporrier et 

al. 2009). Other studies have also shown a strong association between 2p gain and 

unmutated IgVH status (Jarosova, Urbankova et al. 2010). The gain of the short arm of 

chromosome 2 involves 2 important oncogenes, rel and mycn, and was associated with 

poor prognosis (Chapiro, Leporrier et al. 2009).  

 

1.7.6. Genomic complexity 

Recent studies have found genomic complexity to be linked with disease progression. 

Patients with 3 or more aberrations were found to have signifiacntly shorter time to 

treatment (Kujawski, Ouillette et al. 2008). Whilsts 17p has previously been linked with 
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genomic instability, Ouillette et al have found 11q deletion as well as type II 13q 

deletion to be linked with genomic complexity (Ouillette, Fossum et al. 2010). 

Interestingly, genomic complexity has also been linked with short telomeres at the end 

of chromosomes (Roos, Krober et al. 2008), as these play an important role in causing 

genomic instability, further secondary aberrations, as well as disease progression (Lin, 

Letsolo et al. 2010). 

 

1.8. Summary and aims 

In conclusion, it is clear from the above that genomic aberrations play an essential role 

in the disease progression of CLL, although at different degrees. Patients with type I 

13q deletion seem to have the best prognosis, whereas patients with type II 13q or 

trisomy 12 have an intermediate prognosis and patients with 11q and 17p deletions 

have the worst prognosis, with short survival and short time to treatment. Numerous 

genes have been highlighted in each aberrations, included miR15a/16-1, ATM and 

TP53.  

 

Most studies have investigated genomic aberrations at a single time point, either 

diagnosis, early or late disease stage. However, it has been suggested that genomic 

aberration may not be stable throughout the disease course and secondary aberration 

may be acquired in patients with CLL (Oscier D 1991). In addition, when investigating 

the acquisition of secondary aberrations in CLL patients, it has been suggested that 

telomere length may play an important role, as a short telomere may be associated 

with genomic instability (Lin, Letsolo et al. 2010).  

 

Therefore, this study aims to investigate the presence of genomic evolution in patients 

with CLL as well as its role in disease progression. In addition, telomere length will be 

studied and linked to genomic instability and prognostic markers.  

 

Aim 

• C;219@:DA@1!E1;.F:G!12.0H@:.;!.218!@:F1!:;!4--!7A@:1;@9!

• C;219@:DA@1!@10.F181!18.9:.;!.218!@:F1!:;!4--!7A@:1;@9!

• I670.81!@=1!1331G@9!.3!91G.;JA8K!AL188A@:.;9!A;J!@10.F181!JK93H;G@:.;!.;!4--!J:91A91!

78.D8199:.;"!
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5. 6$(7)2+,

2.1. Patients 

2.1.1. Patient samples 

Tumour cells of 29 patients at two different time points were received from The Royal 

Bournemouth Hospital (RBH). In addition, density gradient separated mononuclear cells 

from 22 out of 29 patient was received from RBH (patient matched), and were termed 

‘normal’ sample. 

 

2.1.2. Patient data 

The 29 patients had an average age of 65 years at presentation and nearly 70% of 

patients were male.  

 

The patients were diagnosed with either mBL or Binet disease stage A0 and the first 

DNA sample analysed at time point called ‘presentation’ (PT) was taken on average 55 

months after diagnosis (median: 16 months, range: 0-239 months) and the second 

DNA sample analysed at time point called ‘follow up’ (FU) was taken on average 129 

months after diagnosis (median: 85 months, range: 17-316 months).  

 

Patients were either termed ‘stable’ or ‘progressive’ cases, where disease was either 

stable for at least 5 years (n=9) or progressive within 3 years (n=20).  

 

2.2. Clinical data 

Clinical data was provided by the Royal Bournemouth hospital.  

 

2.2.1. Disease stage 

Patients in this cohort had either mBL or early CLL disease stage A/A1 at presentation 

(table 1). However, as shown in table 2, only 50% of patients remained at early stage 

disease, as 4 patients progressed to late stage A1/A2, and 10 patients progressed to 

aggressive disease stage B and C. (All progressive patients progressed to late disease 

stage whilst stable cases remained at mBL or stage A0). 

 

 

 

 

 

 

 



  

     38 

Table 1: Patients at PT had either mBL or early CLL stage 

Clinical stage Number of cases at PT 

mBL 7 (25%) 

A0 17 (61%) 

A 3 (11%) 

A1 2 (7%) 

B/C 0% 

 

Table 2: Half of the patients in this cohort remained at early stage disease whilst the other half 

progressed to more aggressive disease stage 

Disease stage (PT !  FU) Number of cases 

mBL/A !  mBL/A 14 (50%) 

A0 !  A1/A2 4 (14%) 

mBL/A1 !  B/C 10 36%) 

 

 

 

2.2.2. Treatment and TTFT 

Whilst 2 patients received treatment prior to PT sample, a total of 6 patients were 

treated between the PT and FU sample and 9 other patients received treatment after 

the FU sample. When analysing the impact of treatment in this study, the 15 patients 

with treatment after the first time point will be termed as ‘treated’.  

A total of 6 patient received one round of treatment , 5 patients received 2 rounds of 

treatment, 2 patients received 3 rounds of treatment and 2 other patients received 4 

rounds of treatment after PT.   

Time to first treatment (TTFT) was calculated from PT sample to treatment and ranged 

from 17 to 116 months (median: 46 months).  

 

2.2.3. WBC count 

The White Blood Cell (WBC) count, in 109/L, was taken at different time points and was 

ploted as a graph against time in months (figure 8). The circles represent each time 

WBC count was taken, whilst the green and purple square reprenset PT and FU sample 

date. The red sign marks treatment date, which would in most cases be followed by a 

fall in WBC count. Two variables were looked at in this study: the ‘maximum WBC 

count’ and the ‘rate of WBC count increase per month’. The median ‘maximum WBC 

count’ was 120x109/L (range: 30 -266 x109/L), whereas the median rate of WBC 
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increase per month was 2.4 x109/L/month (range: 0.18 – 30.8 x109/L/month). 

‘Lymphocyte doubling time’ was not used due to lack of ressources as well as the size 

of the cohort which did not allow Cox regression statistical study.   

 

2.2.4. Survival 

A total of 4 patients had died as per the end of the year 2009. Due to the small 

number of patients in this study, overall survival was not looked at.  

 

 

Figure 8: The rise of WBC count over time in one patient 

 

2.3. Biomarkers 

IgVH mutations status and CD38 data was provided by the RBH. 

 

2.3.1. IgVH mutation status 

Immunoglobulin variable gene was amplified using PCR technique with either 5’ 

primers for all leader sequences of the V
H
1 to V

H
6 families or 5’framework 1 (FW1) 

consensus primer together with 3’ primers for either the J
H
 region or 3’ primers for the 

constant region sequence. The PCR products were then sequenced using an automated 

DNA sequencer and the nucleotide sequences were compared using the 

EmBL/GenBank database. IgVH status was defined as ‘unmutated’ or ‘mutated’ using a 

98% germ-line homology cut off.  

A total of 8 patients in this study had unmutated IgVH status whilst 21 patients had 

mutated IgVH status.  

 

2.3.2. CD38 expression 

Cell surface expression of CD38 was examined by flow cytometry: Cryopreserved cells 

were incubated with anti-CD5 (FITC labeled), anti-CD19 (PE labeled) and anti-CD38 

(RPE-Cy5 labelled). Each sample was run with an isotype-matched negative control to 

separate positive and negatively stained cells. The percentage of cells with positive 

CD38 expression was measured in the CD19+/CD5+ population (using ‘gates’ on the 
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scatter-forward-scatter, SCC-FSC plot). CD38 expression was defined as ‘positive’ when 

more than 30% of cells expressed CD38 and ‘negative’ when less than 30% of cells 

expressed CD38 marker.  

A total of 7 patients in this study had CD38+ whilst 22 patients had negative CD38 

expression.  

 

2.4. Cytogenetic and mutation data 

Cytogenetic (Karyotype + FISH) and mutation data (on ATM and TP53) was provided by 

the RBH.  

 

5.8.-. Karyotype,

Karyotype analysis by standard cytogenetic technique was performed on all 29 patients 

at both time point (PT and FU).  The results were described according to the 

International System for human Cytogenetic Nomenclature (ISCN 2009). Translocations 

were accepted as real when seen in 2 or more cells. The results are found in 

appendix1.  

 

2.4.2. FISH 

Interphase Fluorescence in situ hybridisation&'FISH) probes were used to detect trisomy 

12, deletion on chromosome 11q22.3 (ATM), 13q13 (D13S319) and 17p13 (TP53) in all 

29 patients at PT and FU. The results are found in appendix 1. &
&

2.4.3. Mutation status 

The nonisotopic RNase cleavage assay (NIRCA, AMS Biotechnology,Oxford, United 

Kingdom) was used to screen for TP53 mutation in 3 patients.  Only one patient (ID=9) 

was found to have a mutation on TP53.  

 

2.5. Genome-wide DNA analysis 

Genome-wide analysis using the Affymetrix SNP6.0 array platform was performed on 

all 29 patients at presentation and follow up as well as normal sample of 22 patients.  

 

The process described below involved DNA extraction, array running and analysis.    

 

2.5.1. DNA extraction 

Tumour cells and purified granulocytes from 29 patients with CLL were received from 

the Royal Bournemouth Hospital and stored at -80°C. DNA was extracted using the 

QIAGEN kit: The cells were suspended in 200 l of Phosphate Buffered Saline (PBS) prior 

to the addition of 20 l of Proteinase K and 200 l of Buffer AL to lyse the cells. 

Subsequent to 10 min incubation at 56°C, 200 l of Ethanol was added and the 
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contents were transferred to a DNeasy Mini Spin Column, and centrifuged (Thermo 

Scientific) at 800 RPM for one minute. 500 l of wash Buffer AW1 was then added, 

followed by centrifugation at 8000 RPM for 1 minute. 500 l of wash Buffer Aw2 was 

then added, followed by centrifugation at 8000 RPM for 3 minute for the washing 

procedure. Finally, 200  of Buffer AE to elute the DNA was added prior to incubation 

for one minute. Approximately 24ng/ l of DNA were collected in about 50 l, 

providing a total yield of 1200ng.  

 

The DNA samples were then run on an agarose gel for quality assessment. Figure 9 

reveals 12 DNA samples and the presence of a single band showing DNA of good 

quality (a poor quality sample would have shown a smear of bands suggesting the 

fragmented DNA). 

 

Figure 9: Photo of an Agarose Gel result of 12 DNA sample for quality assessment showing good 

quality DNA. 

!
2.5.2. SNP6.0 array running 

Recent development in technology (Affymetrix Genome-Wide Human SNP Array 6.0) 

has enabled us to use a high density genomic profiling platform consisting of 1.8 

million genetic markers detecting copy number change as well as copy number neutral 

loss of heterozygosity (CNNLOH), a significantly higher resolution method than 

previous techniques.  

 

Affymetrix Cytogenetics Copy Number Assay is divided into 7 steps, summarised in 

figure 10. Six DNA samples were used at a time, with positive (DNA provided by 

Affymetrix) and negative control (water). The aim was to digest the DNA using two 

different digestion enzymes and amplify the fragments using PCR. The fragmented 

DNA were then labeled and placed on the array for reading. All reagents were provided 

by Affymetrix, unless stated otherwise. 
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Figure 10: Summary of the different steps for the Affymetrix Protocol. Picture taken from the 

Affymetrix® Cytogenetics Copy Number Assay User Guide 

 

a) DNA Digestion 

The 1st step in the Affymetrix Cytogenetics Copy Number Assay involved DNA digestion 

using two different enzymes: Sty and Nsp. DNA sample was diluted at 50ng/ l with 

AccuGene water (Affimetrix) and 5 l was placed in 2 wells at either ends of a 96 well 

plate (figure 11). 5 l (x2) of AccuGene water was used as negative control and 5 l (x2) 

of Ref103 DNA (provided by Affimetrix as purified DNA at the correct concentration for 

a successful array) as positive control. 

 

Figure 11: Picture of a 96 well plate, where each DNA sample is mixed with either Nsp and Sty 

enzyme 

 

The following reagents were mixed to make 2 digestion master mix with 2 different 

enzymes, Sty and Nsp: Water Accugene (103.9 l) and BSA (Bovine serum albumin, to 
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increase enzyme performance) (1.8 l) in both master mix, as well as either NE Buffer 

Nsp (18 l) and Nsp I (9 l) for the Nsp enzyme master mix or NE Buffer Sty (18 l) and 

Sty (9 l) for the Sty enzyme master mix.  

 

14.75 l of each master mix was then added to each well, so that each genomic DNA 

sample was mixed with Nsp enzyme in one well and Sty enzyme in the second well as 

shown in figure above.  

 

An adhesive film was then used to seal the plate in order to avoid evaporation and the 

plate was then vortexed at maximum speed followed by a quick spin for 15 seconds 

using a Centrifuge (Sorvall). Finally, the plate was loaded on a thermal cycler (Applied 

Biosystems) and left to incubate at 37°C for 2 hours (optimal temperature for 

digestion) followed by incubation at 65°C for 20 min (to preserve the fragments and 

inhibit the enzyme). 

 

b) DNA ligation 

Following digestion, the DNA fragments were mixed with adaptor primers in order to 

prepare for the PCR reaction. The following reagents were mixed to make 2 different 

ligation master mixes: T4 DNA ligase buffer (23 l) and T4 DNA ligase (18.4 l) in both 

master mix, as well as either Nsp Adaptor Primer (6.9 l) for the Nsp master mix or Sty 

Adaptor Primer (6.9 l) for the Sty master mix. 

 

19.75 l of each master mix was then added to each well (corresponding to the 

digestion enzyme used) in the plate containing digested genomic DNA.  

 

An adhesive film was then used to seal the plate in order to avoid evaporation and the 

plate was then vortexed at maximum speed followed by a quick spin for 15 seconds 

using the Sorvall Centrifuge. Finally, the plate was loaded on a thermal cycler (applied 

Biosystems) and left to incubate at 16°C for 3 hours followed by incubation at 70°C for 

20 min. 

!
c) DNA amplification 

Following ligation, the DNA samples were amplified by PCR. Samples were thus diluted 

at 1 in 4 using AccuGene water and 10 l aliquots were transferred into a new 96 well 

plate in the following manner: from each well, 4 aliquots of Nsp sample were 

transferred into 4 wells and 3 aliquots of Sty sample were transferred into 3 wells as 

shown in figure 12. 
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Figure 12: Picture of the PCR step where diluted DNA, following ligation, is transferred into a 

new plate in which four rows have NSP fragmented DNA and 3 rows have Sty fragmented DNA. 

 

The following reagents, supplied by Clontech, were mixed to make a PCR master mix: 

Water AccuGENE (2544 l), TITANIUM Taq PCR buffer (644 l), GCMelt (1288 l), dNTP 

(902 l), PCR primer 002 (290 l) and TITANIUM Taq Polymerase (129 l).  

 

90 l of master mix was then added to each well containing 10 l of either Sty or Nsp 

sample. The plate was then sealed, vortexed and placed in a thermal cycler (Applied 

Biosystems) for the PCR reaction to occur: Incubation at 94°C for 3min was followed by 

30 cycles of 94°C (to separate the DNA double strand) for 30sec, 60°C (for primer 

binding) for 45 sec and 68°C (optimum enzyme temperature) for 15sec. Finally, the 

plate was incubated at 68°C for 7min and then left overnight at 4°C. 

!
To check if amplification reaction was successful, the PCR product was run on a 2% 

Agarose gel was made (Agarose powder from FISHer Scientific). Aliquots of 3 l of each 

reaction (from each Sty and Nsp samples) were mixed to 3 l of Gel Loading Dye 

(Sigma), loaded unto the 2% gel and left running at 120 volts for 30min.  

 

Figure 13 shows a successful PCR reaction. There are no distinct single bands as 

ligation and amplification has given rise to many different fragment sizes in large 

quantities. 
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Figure 13: Photo of a gel with amplified DNA sample following successful PCR 

 

d) PCR product purification 

To purify DNA samples from buffers and enzymes, all 7 aliquots from each sample 

were pooled to one 2mL round bottom tube prior to the addition of 1mL of magnetic 

beads ApmPURE to each sample, which bind strongly to the DNA, allowing the 

impurities to be filtered out. The tubes were then left to incubate at room temperature 

for 10min prior to centrifugation at high speed for 3min.  

 

The tubes were then placed on a stand containing magnets which attract the beads 

(Invitrogen- MagnaRack) and thus the supernatant could be removed. 1.5mL of 75% 

Ethanol was then added to each tube for purification and vortexed for 2min prior to 

centrifugation at high speed for 3min. 

 

The tubes were placed on the magnetic stand and supernatant was removed without 

disturbing the pellet. The tubes were then placed back in the centrifuge for 30 sec and 

the left over supernatant was removed. To further ensure that no traces of ethanol 

remained, tubes were left uncapped at room temperature for 12min. 55 l of Buffer EB 

(10 mM Tris-Cl), which is the elution buffer, was then added to each tube, then 

vortexed for 10min, and re-suspended prior to centrifugation at maximum speed for 

5min. Finally the tubes were placed on the magnetic stand to separate the DNA and 

the beads and 45 l of the eluted sample was transferred unto a new 96 well plate and 

2 l was transferred to a small eppendorf. 
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e) DNA Quantitation 

18 l of AccuGENE water was added to each 2 l of purified PCR product and DNA was 

quantified using a NanoDrop spectometre. A DNA yield of 4.5 to 7 g/ l was 

considered acceptable, as shown in figure 14. 

 

Figure 14: Picture from NanoDrop quantification showing a purified DNA sample. 

 

f) DNA Fragmentation 

Genomic DNA should be in small fragments for the hybridisation on the array and thus 

DNA sample was fragmented in the following manner: 5 l of 10x Fragmentation Buffer 

was added to each 45 l sample in a new 96 well plate. The following reagents were 

mixed to make a Fragmentation master mix: Water AccuGENE (118.75 l), 

10xFragmentation Buffer (13.75 l) and Fragmentation Reagent (5 l). 5 l of the 

fragmentation master mix was then added to each well, and the plate was sealed with 

adhesive film, prior to vortex. Finally, the plate was placed in a thermal cycler block 

(Applied Biosystems) and left to incubate at 37°C for 35min followed by 95°C for 

15min. 

!
To check if the fragmentation process was successful, 2 l of each sample was mixed 

with 4 l of Gel Loading Dye (Sigma) and loaded unto a 4% TBE gel (FISHer Scientific). 

The gel was run at 120volts for 30min and acceptable results are shown in figure 15. 
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Figure 15: Photo from an agarose gel with successfully fragmented DNA samples 

 

g) DNA Labeling 

The following reagents were mixed to make a Labeling master mix: TdT buffer (98 l), 

DNA labelling Reagent (14 l) and TdT enzyme (24.5 l).  

 

19.5 l of the master mix was then added to each 48 l sample before sealing the 96 

well plate and vortex. The plate was then placed in the thermal cycler block (Applied 

Biosystems) for 4 hours at 37°C (optimal temperature for the enzyme) followed 15min 

at 95°C (to preserve fragments and inhibit enzyme). 

!
h) DNA hybridisation and scanning 

Following DNA labeling, the samples were transferred unto an eppendorf. The 

following reagents were then mixed to make a Hybridisation master mix: MED (12 l), 

Denhardt’s Solution (13 l), EDTA (3 l), Herring Sperm DNA (3 l), Oligo Control 

reagent (2 l), Human Cot-1 DNA (3 l), Tween-20 (1 l), DMSO (13 l) and TMACL 

(140 l). 

 

The DNA samples were then loaded onto the Affymetrix SNP6.0 platform and sent to 

the London lab for scanning using the GeneChip Scanner 3000 7G (Affymetrix) and 

processing (using proprietary software GeneChip Operating System software, 

Affymetrix. The feature-extracted .CEL files were received and quality controlled using 

Genotyping Console 2.1 software (Affymetrix) and all samples achieved manufacturer’s 

quality control score (MAPD score), although 4 samples were very close to poor quality 

(cut off: 0.4) (Appendix 2).  

!
2.5.3. Analysis of data 

The results were received as .CHP files and imported into Partek Genomic Suite (Partek 

Inc, MO, USA) to analyse copy number and loss of heterozygosity. The raw 

fluorescence intensity values for each array feature were aligned onto the human 

genome sequence (Build 36.3). Copy number gain and copy number loss were defined, 
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using the naked eye, as deviation of probes from normal value of 2. Paired analysis 

with patient-matched normal genome was performed when possible. Copy number 

changes greater than 50 kb or included in a copy number variant (CNV) region 

(according to the database of genomic variants, http://projects.tcag.ca/variation/) 

were recorded as CNV and not CNA (copy number aberrations). Large losses of 

heterozygosity were compared to normal sample and acquired copy number neutral 

LOH were recorded as ‘LOH’. Analysis was performed at two separate dates: First, each 

sample, PT and FU were analysed independently (unpaired). Then, at a later date, PT 

and FU sample were paired-analysed to confirm the recorded CNAs. Figure 16 

illustrates a chromosomal deletion from one of the patients in the cohort.  

 

It is important to note that Birdseed analysis was performed (comparing 50000 probes) 

to ensure that each normal, PT and FU sample were patient-matched (appendix 2). 

Birdseed is an algorithm which assigns AA, AB and BB genotype to each allele specific 

probe and then produces confidence scores for every individual at every SNP. Hence, 

matching Birdseed probes between two samples suggest DNA from a same individual 

(Nishida 2008). 

 

Figure 16: Explanation of a SNP6.0 array data showing deletion of the large part of a 

chromosome 

 

2.6. Statistical analysis 

Statistical analysis was performed using SPSS software (SPSS, Chicago, IL). The 

variables used were disease status (Stable vs. progressive), IgVH mutation status 

(mutated vs. unmutated), CD38 expression (positive vs. negative), disease stage (early 

stage A0/A vs. late stage B/C), poor prognosis aberration (presence vs. absence of 

deletion or mutation of either ATM of TP53), 13q deletion size (smaller than 2Mb vs. 

larger than 2Mb), complexity (!3 CNA  vs <3 CNA), total number of CNA per patient 

(string variable), total deletion size per patient (string variable), translocation (detected 

translocation vs. absence of translocation), treatment (treated vs. not treated), TTFT 
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(string variable), maximum WBC count (string variable) and rate of WBC count rise per 

month (string variable).  

 

Because of the small number of cases in this study, overall survival was not used and 

Cox regression or Kaplan-Meier analysis were not performed.  

However, when looking at two nominal variables, FISHer’s exact test was used and 

when looking at two string variables, Pearson’s Correlation was used. Otherwise, Non-

parametric Mann Whitney test or T-Test was used depending on normality test. In each 

case, probabilities of less than 0.05 were accepted as significant value. 
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3.1. Introduction 
The heterogeneous nature of the disease course of CLL has pushed research towards 

the discovery of prognostic markers, such as IgVH mutation, CD38 expression and 

genomic aberrations (Damle, Wasil et al. 1999; Hamblin, Davis et al. 1999). However, 

whilst biomarkers, especially IgVH mutation, are stable and thus used as valid 

prognosis markers throughout the disease course, the clinical use of genomic 

aberrations in predicting disease course may be questioned due to the discovery of 

genomic evolution in CLL patients (Berkova 2009), implying the acquisition of poor 

prognosis aberration significantly later than diagnosis and thus altering the course of 

the disease.  

 

3.1.1. Genomic evolution in CLL does occur and has been 

demonstrated using various techniques 

A number of previous studies have used G-banding to demonstrate changes in the 

genome during the course of CLL disease.  Nowell et al looked at a small cohort of 12 

patients and showed that, occasionally, small karyotypic changes occurred during the 

disease (Nowell, Moreau et al. 1988). Juliunsson et al noted 3 out of 41 patients who 

acquired additional karyotypic aberrations over time (Juliusson, Friberg et al. 1988).  

Further research focusing on sequential analysis showed a higher rate of genomic 

evolution and confirmed that patients with CLL could have an unstable genome, for 

instance; Oscier et al showed that 18 of 112 patients (16%) had evidence of genomic 

evolution (Oscier D 1991), and Kay et al detected clonal abnormality in 39% of patients 

(10/28) (Kay NE 1995). Both of these studies performed genomic analysis using the G-

banding technique.  

 

The development of Fluorescence In Situ Hybridisation (FISH) allowed genomic 

evolution to be studied at a greater resolution. Hijlmar et al used FISH to investigate 

trisomy 12 and found 2 patients who acquired trisomy 12 in a cohort of 77 patients 

(Hjalmar, Hast et al. 2001). Chevalier et al used FISH to look at the common 

aberrations, deletions of 13q, 17p, 11q and trisomy 12, and found genomic evolution 

in 42% of patients (13/31) (Chevallier, Penther et al. 2002). This study also found no 

differences in the time length between two samples with and without evolution. 

Shanafelt et al conducted a large FISH study with probes on 6q in addition to the 
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common aberrations and found evidence of genomic evolution in 27% of patients 

(17/63) after a median time from first sample of 94 months (Shanafelt, Witzig et al. 

2006). Stilgenbauer et al used FISH probes for 3q, 8q and 14q in addition to the 

common aberrations and found 17% of patients with genomic evolution (11/64) after a 

median time from first sample of 42 months (Stilgenbauer, Sander et al. 2007).  
Finally, Berkova et al investigated 97 patients with FISH and found 26% of patients with 

genomic evolution (Berkova 2009).  

 

With the advent of array based comparative genome hybridisation (aCGH), which 

investigates genomic changes at a higher resolution, further evidence of genomic 

evolution in CLL patients was provided. Bea et al, in a study on progressed CLL and 

Richter’s syndrome used aCGH and found 41% of patients with genomic evolution 

(7/17) (Beà, López-Guillermo et al. 2002).  

 

To conclude, it is clear that genomic evolution does occur in CLL patients, although 

this has mostly been studied at low resolution and often focused solely on recurrent 

aberrations in CLL. To date, no study has yet to use the latest SNP6.0 technology to 

investigate evolution across the entire genome at high resolution.  

 

3.1.2. Genomic evolution is not always linked to the various 

prognostic markers 

With the heterogeneous disease course of CLL, it is important to discover the impact of 

genomic evolution on disease progression. To do this, a number of studies have 

looked at the association between established prognostic markers and genomic 

evolution. 

 

Bea et al showed that genomic evolution was associated with clinical progression, 

specifically to late disease stage C, as only 2 of 6 stable patients showed evidence of 

genomic evolution, compared to 6 out of 10 progressive patients (Beà, López-

Guillermo et al. 2002). Stilgenbauer et al also found a higher proportion of patients 

who progressed to advanced disease stage with genomic evolution, and revealed 

acquisition of novel aberrations as an independent prognostic marker for disease 

progression (Stilgenbauer, Sander et al. 2007).   

 

Shanafelt et al revealed that genomic evolution was associated with high ZAP70 

expression but not with CD38 expression or IgVH mutation status (Shanafelt, Witzig et 

al. 2006). Stilgenbauer et al found that all patients with genomic evolution had an 

unmutated IgVH status, but could not confirm an association with elevated ZAP70 

expression (Stilgenbauer, Sander et al. 2007). Furthermore, Berkova et al revealed no 
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association with any of the prognostic makers, although genomic evolution was linked 

with patients who had a combination of all three negative markers (ZAP70+, CD38+ 

and unmutated IgVH) (Berkova 2009).  

  

Interestingly, Shanafelt et al did show that all patients with a mutated IgVH status 

acquired favourable 13q deletions whilst half of patients with an unmutated IgVH 

status acquired a deletion on 11q or 17p (Shanafelt, Witzig et al. 2006). This was 

confirmed by Berkova et al who showed the acquisition of 11q/17p deletions 

predominantly in patients with unmutated IgVH status or CD38+ (Berkova 2009).  

 

Hence, although further studies are required to confirm the link between genomic 

evolution and biomarkers as conflicting results have been shown so far, it has been 

suggested that genomic evolution targeting deletion on 11q/17p occurred in patients 

with poor prognosis markers, particularly in patients with unmutated IgVH status. 

 

3.1.3. Genomic evolution and treatment: Cause or effect?  

Genomic evolution has been shown to occur in treated as well as untreated patients 

(Berkova 2009). However, Shanafelt et al and Stilganbauer et al both found the majority 

of patients (70% and 91% respectively) with genomic evolution received treatment prior 

to analysis (Shanafelt, Witzig et al. 2006; Stilgenbauer, Sander et al. 2007). Further 

research is required to explore the presence of genomic evolution before and after 

treatment, as evolution prior to treatment could suggest a role on disease progression, 

whereas evolution after treatment may suggest genomic instability as a result of 

treatment. In addition, follow up at disease progression would be required to further 

explore the role of genomic evolution in relapse. 

 

3.1.4. Genomic evolution occurs on various chromosomes 

FISH studies have noted the occurrence secondary aberrations on all the probes used: 

13q, 11q (ATM) and 17p (TP53), as well as deletions on 6q, 8p (Stilgenbauer, Sander et 

al. 2007) and trisomy 12 (Hjalmar, Hast et al. 2001; Chevallier, Penther et al. 2002). 

The evolution of 13q has been interesting, as some studies found the acquisition of 

new 13q deletions (Chevallier, Penther et al. 2002; Shanafelt, Witzig et al. 2006), whilst 

others noted that patients only undergo changes in an already acquired 13q deletion 

(from hemizygous to homozygous) (Stilgenbauer, Sander et al. 2007). FISH studies 

have thus only been able to demonstrate genomic evolution on recurrent 

abnormalities. A high resolution array would provide clarity on the extent of genomic 

evolution occurring throughout the genome. So far, only one study has used high 

resolution array (aCGH) and it reported secondary gains on 2p, 7p and 1q as well as 

deletion of 2p, 7q and 8p in follow up samples (Beà, López-Guillermo et al. 2002). 
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Further studies using a high resolution array are required to confirm the presence of 

evolution throughout the genome of patients with CLL as well as the recurrent targets 

of secondary aberrations.    

 

3.1.5. The role of genomic evolution on disease progression 

Patients have been found to exhibit poor prognosis after the acquisition of an 11q or 

17p deletion as a consequence of genomic evolution, but the impact of genomic 

evolution on disease progression has yet to be explored in detail. Previous research 

has suggested that overall survival is worse in patients after genomic evolution 

(Stilgenbauer, Sander et al. 2007), but the effect of new aberrations acquired during a 

prospective study of CLL disease has not been investigated. It could, nonetheless, be 

speculated that genomic evolution targeting tumour suppressor or oncogenes would 

alter the disease course of CLL, from stable to a more aggressive course of disease.  

 

3.1.6. The present study  

The present study is the first to use high resolution SNP6.0 array to investigate 

evolution in the entire genome, and to correlate the presence of genomic evolution 

with established prognostic factors (IgVH mutation status, CD38 expression) as well as 

disease progression and clinical symptoms (disease stage, treatment, WBC count).  

 

3.1.7. Aims 

• 4.;3:8F!@=1!78191;G1!.3!D1;.F:G!12.0H@:.;!:;!4--!7A@:1;@9!

• 4.8810A@1!D1;.F:G!12.0H@:.;!A;J!78.D;.9@:G!FA8M18!

• C;219@:DA@1!@=1!G.;91NH1;G1!.3!D1;.F:G!12.0H@:.;!.;!@=1!J:91A91!G.H891!

• I670.81!@=1!D1;.F:G!12.0H@:.;!@A8D1@:;D!G.7K!;HFL18!2A8:A;@9!
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3.2. Results 

3.2.1. Prognostic biomarkers at PT 

The cohort comprised of 20 progressive cases and 9 stable cases. Of the 20 

progressive patients, 8 had unmutated IgVH status and 12 had mutated IgVH status, 

whilst all 9 stable patients had mutated IgVH, and it can thus be seen that IgVH 

mutation status was associated with disease status (Pearson Correlation P=0.026).  

 

A total of 7 patients had high levels of CD38 expression. However, data suggests this 

was neither linked with disease status (Pearson correlation P=0.3) nor with IgVH status 

(Pearson Correlation P=0.2). This does not contradict previous studies and will thus be 

used as a variable as prognostic marker (Hamblin, Orchard et al. 2002). 

 

Therefore, IgVH but not CD38 expression was associated with disease status in this 

study. 

 

3.2.2. Genomic aberrations as prognostic 

markers 

Since deletion of 13q, 11q/17p and genomic complexity will be examined as 

prognostic markers for good/poor prognosis in this study, it is important to establish 

these markers at the first time point (PT). 

 

#$N!J101@:.;!A@!OP!

At presentation, there were 19 cases (65% of all cases) with a 13q deletion (involving 

the minimally deleted region or MDR) with a size of deletion ranging from 0.24 Mb to 

73.85 Mb. Only 2 patients from the 9 stable cases did not have a 13q deletion but 60% 

of progressive patients had a 13q deletion and therefore13q deletion at PT was not 

found to be associated with disease status in this cohort (Chi square; P=0.4). This 

would be due to the low number of patients in this study.  

However, previous papers have shown the importance of 13q deletion size, with poor 

prognosis associated with larger than 2Mb 13q del (Parker, Rose-Zerilli et al. 2010). It 

was found in this study that, when small 13q deletions, hemizygous and homozygous, 

were grouped as “ClassI 13q deletions” and large and complex 13q deletion were 

grouped as “ClassII 13q  deletions”, a significant association between the size of the 

13q deletion and disease progression was found, as seen in the table 3 (Chi Squared; 

P=0.017). Patients with large 13q deletion are more likely to be progressive, while 

patients with small 13q deletion have a more stable disease. 
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Table 3: Deletion of 13q sorted into 5 different groups and categorized as stable or progressive 

showed large deletion in progressive patients and small deletions in stable patients. 

Aberrations Stable Progressive Total 

13q del (! 2Mb) 5 5 10 

13q homozygous del 2 0 2 

13q large del (" 2Mb) + MDR homozygous del 0 2 2 

13q large del (" 2Mb) 0 4 4 

13q complex del (more than 2 del in the region) 0 1 1 

 

 

##N!A;J!#*7!AL188A@:.;!A@!OP!

Previous research has shown that aberrations on 11q and 17p are linked with poor 

prognosis (Dohner, Stilgenbauer et al. 2000). In this cohort, 1 patient had deletion on 

17p, 1 patient had deletion on 11q, 1 patient had mutation on ATM, and 1 patient had 

LOH of 17p. These 4 patients with aberrations targeting ATM and TP53 were all 

progressive patients. However, as 16 other patients had progressive disease without 

ATM or TP53, this link between poor prognosis aberration and disease status was 

found to be statistically insignificant (Chi squared P=0.2).  

Nevertheless, 3 of 4 patients with 11q/17p had unmutated IgVH status and only 1 of 

them did not undergo treatment, although this patient did have disease stage B. 

Therefore it can be seen that 11q and 17p aberrations are present in progressive 

patients with late stage disease and unmutated IgVH status.   

 

E1;.F1!G.F7016:@K!A@!OP!

Patients with a complex genome (!3 CNA) have been associated with poor 

prognosis(Kujawski, Ouillette et al. 2008). Patients in this cohort, however, have not 

shown association between complexity and disease status (chi square P=0.3) or IgVH 

mutations status (Chi square: P=1) as a number of progressive patients (n=9, 30%) had 

no, or just one aberration at PT.  

 

However, complexity was associated with CD38 expression, as 71% of patients with 

high level of CD38 had a complex genome, compared to 86% of patients with CD38- 

who did not have a complex genome (chi square P=0.008). 

Nonetheless, patients with progressive disease had significantly larger deletions 

compared to stable cases (Mann Whitney P=0.06) as shown in table 4. 
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Table 4: Patients with progressive disease have larger deletions compared to stable patient. 
1P=0.06; 2P=0.003; 3P=0.02 

Aberrations Stable (9) Progressive (20) 
CD38 negative 

(22) 

CD38 positive 

(7) 

Mean/Median number 

of CNA 
1.4/1 2.7/2 1.7/12 4.3/4 

Complex cases 1 (11%) 7 (35%) 3 (14%) 5 (71%) 

Mean/Median CNA 

deletion size1 
0.9/1 Mb 18/5 Mb 10/1 Mb3 22/12 Mb 

Normal genome 1 (11%) 4 (20%) 5 (23%) 0% 
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3.2.3. Genomic evolution in CLL 
 

Genomic evolution occurs in CLL patients 

When investigating aberrations at PT and FU, genomic evolution was highlighted 

between the two time points (Figure 17 and Figure 18): 

 

Presentation time point: A total of 67 acquired copy number changes were found at 

presentation in the 29 CLL patients (mean: 2.3; range 0-8; median: 2). A number of 

patients (n=8, 28%) had a complex genome (!3 CNA) and/or translocation. There were 

more deletions than gains (56 deletions vs 11 gains). A total of 5 patients (17%) had a 

normal genome (i.e. with no detectable aberrations). The most common aberrations 

were deletion of the 13q MDR (n=19; 65%), including 5 patients with homozygous 13q 

deletion, followed by whole chromosome gains (7 in 3 patients), which included 

trisomy 12. 5 patients had aberrations of either TP53 or ATM: 2 patients had a deletion 

of either gene, 2 other patients had mutation on either gene and 1 patient had LOH of 

17p. Many non-recurrent aberrations were present on chromosomes 2, 3, 4, 6, 7, 9, 

10, 11, 12, 17, 18, 19, 21 and 22. FISH data were concordant with the SNP data and G-

banding data identified 6 patients with translocations that could not be detected by 

SNP 6.0 microarray. 

 

Follow up (FU) time point: A total of 93 acquired copy number changes were found at 

follow up in the 29 CLL patients (mean: 3.2; range 0-10; median: 2). A number of 

patients (n=14; 48%) had a complex genome (= !3 CNA and/or translocation.  There 

were more deletions than gains (6 times more deletion: 81 deletions vs 12 gains). A 

total of 3 patients had a normal genome (i.e. with no aberrations). The most common 

aberrations found were deletion of the 13q MDR (n= 19, 65%) followed by whole 

chromosome gains (7 in 3 patients), which included trisomy 12. There were 5 patients 

with aberrations of either TP53 or ATM: 2 patients had deletion of ATM, 1 patient had 

deletion of P53, 2 patients had either mutation of P53 or ATM, and 2 patients had LOH 

on 17p. Homozygous deletion was observed in 10 patients (34%) on chromosome 13 

mainly (n=9), but also on chromosome 11 (n=1).  FISH data were concordant with the 

SNP data and G-banding data showed 12 patients with translocations.  
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As shown in table 5, the genome of CLL patients evolved over time, with nearly 1.5 

times more CNA at FU than at PT, more homozygous deletions, and more complex 

cases. A total of 11 patients (40%) underwent genomic evolution. There were also twice 

as many patients with translocations found at FU.  

 

Table 5: Summary of SNP and FISH data showing genomic aberrations at presentation (PT) and 

follow up (FU) 

Aberrations PT FU 

Total number of CNA 67 93 

Mean number of CNA 2.3 3.2 

CNA count range 0-8 0-10 

Homozygous deletions 5 (17%) 10 (35%) 

Complex cases 9 (31%) 14 (48%) 

Patients with trisomy 

Normal Genomes 

Patients with translocation 

3 (10%) 

5 (17%) 

6 (20%) 

3 (10%) 

3 (10%) 

12 (41%) 

 

 

Genomic evolution causes deletion of large portions of DNA but can 

also target specific genes 

Having shown evidence for a significantly larger number of CNA at FU compared to PT, 

it was further shown that genomic evolution in CLL patients resulted in the overall 

presence of larger deletions and gains. Patients at FU, had more than twice the number 

of deletion sized 5-15Mb.  It was also found that the size of secondary aberrations due 

to genomic evolution can range from 0.05Mb to 50Mb (table 6). 

 

Table 6: The genomic aberrations found at PT and FU arranged by size group shows genomic 

evolution occurs in all sizes, except trisomy 

Copy Number acquired size PT FU 

0.05 - 0.1Mb 2 5 

0.1 - 0.5Mb 7 9 

0.5 - 1Mb 8 10 

1 - 5Mb 26 32 

5 - 15Mb 5 11 

15 - 50Mb 9 15 

50 Mb + 3 4 

Trisomy 7 7 

Total 67 93 



 

Figure 177: Karyogram showing copy number deletions (dark blue for mono-allelic and light blue for bi-allelic) and gains (red) arranged by size, 

of all 29 patients (stable cases on the left side of the chromosome and progressive patients on the right side) at presentation (PT) 
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Figure 18: Karyogram showing copy number deletions (dark blue for mono-allelic and light blue for bi-allelic) and gains (red) arranged by size, 

of all 29 patients (stable cases on the left side of the chromosome and progressive patients on the right side) at Follow up (FU) 



Genomic evolution occurs throughout the genome 

Secondary aberrations were found to occur on various chromosomes, including 

chromosome 1, 2, 4, 5, 7, 8, 9, 11, 13, 15, 18, 20, 21 and Y. Table 7 shows the list of 

acquired CNA at FU. Chromosome 13 was found to be most affected by genomic 

evolution. Deletion on 13q was shown to become larger (n=2) or biallelic (n=4), 

however no patient was shown to acquire a new deletion of the 13q MDR. 

 

Table 7: List of CNA acquired at FU through genomic evolution. Del = deletion; (x) = 

chromosome number; (x-x) = specific deleted breakpoint on chromosome 

Copy number change Size of CNA (in Mb) 

Del(1)(230.76-233.2) 2.4 

Enhanced(2)(120.78-120.89) 0.1 

Del(4)(131.5-143.0) 11.4 

Del(4)(179.53-191.26) 11.7 

Del(5)(79.2-91.1) 11.9 

Del(5)(59.18-64.26) 5 

Del(7)(2.24-2.41) 0.1 

Del(8)(0.0-43.9) 43.9 

Del(8)(0.0-70.79) 70.7 

Del(9)(21.69-29.38) 7.6 

Del(9)(0.0-15.15) 15.1 

Del(11)(79.3-123.72) 44.4 

Del(11)(63.42-65.23) 1.8 

Del(13)(51.55-51.65) 0.09 

Del(13)(39.31-40.15) 0.8 

Del(15)(29.07-29.12) 0.05 

Del(18)(1.7-2.86) 1.1 

Del(20)(0.0-12.65) 12.6 

Del(21)(31.87-31.96) 0.9 

Del(Y)(4.61-6.8) 2.1 

Del(Y)(7.93-27.18) 19.2 

Homozygous Del(11)(81.12-119.91) 38.7 

Homozygous Del(13)(48.58-50.37) 17.9 

Homozygous Del(13)(49.39-50.39) 1 

Homozygous Del(13)(47.25-48.13) 0.8 

Homozygous Del(13)(48.71-50.76) 20.4 

 

Do patients with genomic evolution have a longer follow up time? 

Follow up samples were taken between 10 and 180 months, and it is therefore 

important to establish any link between genomic evolution and time between PT and 

FU. Patients who showed evidence of genomic evolution had an average of 77 months 

between PT and FU sample, whereas patients without a genomic evolution also had an 
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average of 77 months between PT and FU. This esablishes that the time difference 

between PT and FU sample has no influence on genomic evolution (T-Test, P=0.9) 

  

3.2.4. Genomic evolution occurs in progressive 

as well as stable patients 

Since patients with progressive disease have been linked with genomic complexity 

(Ouillette, Fossum et al. 2010), it could be assumed that genomic evolution would 

occur in patients with a progressive disease. 

However, this cohort shows that there was no association between genomic evolution 

and disease status (Chi square; P=0.4) as both groups of patients showed evidence of 

new aberrations at FU (Table 8) 

Table 8: Genomic evolution is seen in patient with progressive as well as stable disease status 

Sub-group Genomic evolution Without evolution Total 

Progressive patients 9 (45%) 11 (55%) 20 

Stable patients 2 (22%) 7 (78%) 9 

 

Nonetheless, the scale of genomic evolution was different in the two groups of 

patients as stable patients go on to acquire less CNA than progressive patients, as 

shown in figure 19.  Approximately 50% (n=4) of progressive patients who undergo 

genomic evolution acquire 3 or more new CNA, whilst all stable patients that undergo 

genomic evolution acquire 2 or less new CNA (mean: 1.1 vs 0.3 CNA respectively).  

 

 

Figure 18: The number of CNA acquired through genomic evolution is higher in progressive 

patients than in stable patients. The Y axis represents the number of CNA acquired as a result of 

genomic evolution. The full circles represent a total of 1 patient; empty circles represent a total 

of 2 patients. 
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A large difference in the size of CNA acquired between progressive patients and stable 

patients was also shown (table 9). Statistic analysis demonstrated a trend of larger 

secondary aberrations on progressive compared to stable patients (T-Test; P=0.06).  

Therefore, it can be seen that genomic evolution occurs in both; stable and 

progressive patients, however the latter group of patients acquired more, and larger, 

secondary aberrations.  

Table 9: The average deletion and gain size in progressive and stable cases reveals a large 

difference between the two groups 

Sub-group 
Average total deletion size of 

genomic evolution (range) 

Average total gain size of 

genomic evolution (range) 

Stable patients (9) 0.3 Mb (0- 11.2Mb) 0.12 Mb (0- 1.1Mb) 

Progressive patients (20) 16.7 Mb (0-117Mb) 0.03 Mb (0-0.1Mb) 

 

 

3.2.5. Do prognostic markers predict genomic 

evolution? 

 

Genomic evolution was investigated in relation to prognostic markers in order to 

established any association and prediction for the occurrence of secondary aberrations 

in CLL patient. The following was found; 

  

!"#$%#$&#'%($&

All 29 patients in this cohort had either mBL (n=7), CLL stage A0 (n=17) or A0/1 (n=5). 

It is therefore clear that Binet disease stage cannot predict genomic evolution, as 

patients with early stage disease undergo genomic evolution.  
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There was no significant correlation between IgVH mutation status or CD38 with 

genomic evolution (Chi square; P=1 and P=0.6 respectively). As shown in table 10, 

patients with unmutated IgVH status were as likely to undergo genomic evolution as 

patients with mutated IgVH status. Furthermore, there was no association between 

IgVH mutation status and the number of secondary aberrations, (Mann Whitney P=0.8) 

or the total size of deletions acquired by evolution (Mann Whitney P=0.8). A similar 

result was found with CD38 expression.  
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Table 10: The occurrence of genomic evolution and the scale of genomic evolution (average 

number and size of secondary aberrations) between patients with mutated or unmutated IgVH 

status, and between patients with low or high CD38 expression. 1P=0.8; 2P=0.8; 3P=0.7; 4P=0.7 

 

IgVH 

mutated 

(21) 

IgVH 

unmutated 

(8) 

CD38 

negative 

(22) 

CD38 

positive 

(7) 

Number of cases with genomic evolution 8 (38%) 3 (38%) 9 (41%) 2 (29%) 

Number of CNA acquired/patient 0.751 1.25 13 0.86 

Range of CNA acquired 1 - 5 1 - 6 1 – 6 2 – 5 

Total del size of evolution/patient 7.5 Mb2 22.5 Mb 10 Mb4 16.9 Mb 

 

 

It can thus be concluded that genomic evolution cannot be predicted by IgVH mutation 

or CD38 expression, as patients with either prognostic marker have been shown to 

acquire secondary aberrations.  

 

728&0$9$'"./&

13q deletion size was grouped into ClassI and ClassII (i.e. depending on size, where 

class I deletions are smaller than 2Mb and class II deletions are larger than 2Mb). It is 

thus examined whether 13q deletion size can predict genomic evolution. 

Patients with large 13q deletions had a trend towards genomic evolution, with only 

25% of patients with small 13q acquiring secondary aberrations, compared to 70% of 

patients with large 13q deletions (Chi square P=0.7). In addition, as shown in table 11, 

patients with large 13q deletion were associated with a high number of CNA through 

genomic evolution (Mann Whitney test; P=0.03), and showed larger deletion sizes 

(Mann Whitney test; P=0.07).  

 

Table 11: The occurrence of genomic evolution and the scale of genomic evolution (average 

number and size of secondary aberrations) in patients with small and large 13q deletion. 

13q deletion groups: Small 13q del (12) Large 13q del (7) 

Genomic evolution 3 (25%) 5 (71%) 

Number of CNA gained at FU/patient 0.3 1.7 

Size of deletion acquired/patient 2.7 Mb 17.7 Mb 
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Patients with 11q and 17p aberrations are linked with poor prognosis as well as 

genomic instability.  
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A total of 4 patients had aberrations targeting ATM and TP53 and 3 of these acquired 

new aberrations at FU. However, 8 other patients, without 11q or 17p aberration also 

acquired aberrations at FU, and so poor prognosis aberration was not found to be 

linked with genomic evolution in this study (Chi square: P=0.1).  

However, patients with 11q/17p aberration are more likely to acquire a higher number 

of CNA (Mann-Whitney, P=0.01), as well as larger deletion size (Mann-Whitney, P=0.01). 

Large differences in genomic evolution between the two groups are noted in table 12. 

It can be seen, therefore, that poor prognosis aberrations 11q and 17p were not found 

to be associated with genomic complexity, although patients with deletion on ATM or 

TP53 had a large scale genomic evolution.  

 

Table 12: The occurrence of genomic evolution and the scale of genomic evolution (average 

number and size of secondary aberrations) in patients with and without TP53/ATM aberrations 

Aberrations 
No TP53 or ATM 

aberration (25) 

TP53 or ATM 

aberration (4) 

Cases with genomic evolution 8 (32%) 3 (75%) 

Number of CNA acquired/ patient 0.5 3 

CNA deletion acquired size/patient 1.6 Mb 74 Mb 
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In this cohort, patients with a complex genome at PT are equally likely to acquire new 

aberrations as patients without a complex genome (Chi square; P=1). Nonetheless, as 

shown in table 13, patients with a complex genome acquire larger secondary 

aberrations at FU, although this is statistically insignificant (Mann Whitney; P=0.7).  

 Therefore, complexity does not predict genomic evolution, as patients without a 

complex genome at PT have been shown to acquire new aberrations at FU.  

 

Table 13: The occurrence of genomic evolution and the scale of genomic evolution (average 

number and size of secondary aberrations) in patients with and without a complex genome at PT 

Aberrations 
No Complex 

genome at PT (21) 

Complex genome at 

PT (8) 

Cases with genomic evolution 8 (27%) 3 (27%) 

Number of CNA acquired/ patient 0.7 1.2 

CNA deletion acquired size/patient 5.9 Mb 26.4 Mb 

 

&
&
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This study has shown that genomic evolution is not associated with any prognostic 

markers. However, patients with 11q/17p aberration or a large 13q deletion acquire a 

significantly higher number, and larger, secondary aberrations. 

 

3.2.6. Does genomic evolution have an impact 

on CLL disease? 

Genomic aberrations have been shown to result in 2 different disease courses; deletion 

on 13q leads to a different disease progression to deletion on 17p or 11q. Therefore, 

having noted the presence of secondary aberration, both recurrent and non-recurrent, 

it is essential to examine the impact of secondary aberration on disease progression. 

For this, genomic evolution will be analysed in relation to disease stage, treatment, 

and WBC count. Progression to late stage, requirement for treatment and the rise of 

WBC count are all symptoms of disease progression.  
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A total of 12 patients progressed from mBL or stage A0 to late stage disease B/C, 

while the rest of the patients (n=14) remained at early stage A0 or mBL.  

Genomic evolution occurred in 5 patients (42%) who progressed to late stage disease. 

However, 4 patients (29%) who remained at early stage disease also acquired 

secondary aberrations at FU, and consequently genomic evolution was found not to be 

associated with disease stage progression (chi square, P=0.6).  
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Genomic evolution was not associated with treatment as 66% of patients with genomic 

evolution received treatment compared to 50% of patients without genomic evolution 

(chi square; P=0.6). In addition, there was no association between number or size of 

secondary aberrations and treatment (Mann Whitney, P=0.4; P=0.4 respectively).  

Genomic evolution was also not associated with TTFT, as no significant different in 

TTFT was found between patients who had undergone genomic evolution and patients 

who did not (mean: 47 vs. 65. T-Test; P=0.2) (figure 20). 
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Figure 19: Box-plot showing no significant difference in TTFT between patients who had 

undergone genomic evolution and patients who had not. 
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Patients with genomic evolution reached an average maximum WBC count of 85x109/L, 

compared to 92x109/L in the rest of the patients, suggesting no link between genomic 

evolution and maximum WBC (Mann Whitney, P=0.7).  

Furthermore, the average rate of WBC increase was 1.7x109/L/month in patients with 

acquired secondary aberrations, compared to 2.8x109/L/month in the rest of the 

cohort, further suggesting no association between the two factors (Mann whitney, 

P=0.2). Therefore no link was found between genomic evolution and changes in WBC in 

CLL patients.  
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It can be concluded that genomic evolution does not impact on disease progression, 

treatment or WBC count increase, as patients with secondary aberrations at FU do not 

show significant differences in disease progression, TTFT or WBC count.  

 



Table 144: Prognostic markers, clinical data and genomic aberration of all 29 patients in the cohort. 1S=Stable;P=Progressive; 
2M=Mutated;U=Unmutated;3in months; nt=not treated; 4in x109/L/month; T=treated between PT and FU; 5del=deletion; enh=gain; 17p=deletion 
on chr 17 including P53; 11q=deletion on chr 11 including ATM; 13q=deletion on 13q MDR; (s)=smaller than 2Mb; (L)=larger than 2Mb; 
x2=including a small homozygous region; (h)= homozygous 13q deletion; Tri=trisomy; (2)=number of deletion on the chromosome; (g)= 
smaller than 0.1Mb, targeting gene, N=normal; Bold=only at FU; 6B=Balanced translocation; U=unbalanced translocation; Bold=only at FU 
 

ID Disease 

status1 

IgVH/ 

CD382 

Alive/ 

dead 

TTFT 

after 

PT 3 

Number 

of 

treatment 

WBC 

rise4  

Disease 

stage 

at PT 

Disease 

stage at 

FU 

Genomic aberration5 Trans-

location6 

1 S M/- A nt 0 0.52 mBL A0 13q(s); 13q(L)x2  

5 P M/+ D 52 3 T A0 C Tri12; Tri18; Tri19; 

13q(L); del3(2); del9(2) 

 

7 P M/- A nt 1 0.00 A A0 13q(L); 13q(2)x2; 

del18; LOH13q 

B, U 

8 S M/- A nt 0 0.00 mBL mBL 13q(s); del16(g) U 

9 P M/- A nt 2 0.00 A A 13q(L)x2; 11q; LOH17p  

10 S M/- D nt 0 0.04 A0 mBL 13q(s)  

11 P M/- A 46 2 T A0 B N  

12 P M/- A 104 1 0.00 A0 C N  

14 P U/+ A 73 1 0.00 mBL mBL Tri12  

15 P M/+ A 74 2 T mBL C 13q(L); del2; enh13; 

enh2; del13(g); 

del15(g) 

U 

16 P U/+ D 35 2 4.21 A0 A2 del2p; del18p  

18 P U/- A 31 2 5.26 A1 C 13q(s)  

19 S M/- A nt 0 0.13 A0 A0 (h)13q(s); LOH13q(2)  

21 S M/- A nt 0 0.98 A0 A0 13q(s); del21(g); 

enh2(g); del13(g) 

 

22 S M/- A nt 0 0.02 A0 A0 N  
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23 S M/- A nt 0 0.12 mBL A0 (h)del13q(s); LOH13q U 

25 S M/+ A nt 0 0.00 mBL mBL Tri12; tri18; tri19  

28 P M/+ A nt 0 0.02 A B 13q(L); 17p; del17(g); 

del18(2); 11qx2; 20p; 

delY(2) 

U 

29 P M/- A 34 2 2.94 A0 A1 13q(s); del4; 9p; 20p;   

30 P U/- A 52 1 4.24 A0 B Del10; del12(3); enh12; 

del19(2); LOH17p; 8p; 

del9(2) 

 

32 P M/- A 116 1 0.53 A0 A1 13q(s)x2; del21(g)  

33 P U/- A 41 4 T A0 B Del7(g) B 

34 P M/- A 34 4 T A0 B 13q(s)  

35 P M/- D 76 1 0.36 A0 C 13q(L); del7; 13q(L)x2  U 

86 S M/- A nt 0 0.00 mBL mBL 13q(s); del22(g) B 

247 P U/+ A 17 1 5.13 A0 A 11q(3); del3(3); del17(g)  

248 P U/- A nt 0 0.78 A0 A0 13q(L)  

249 P M/- A nt 0 2.36 A0 A1 13q(L)(3)x2; del6(3)  U 

250 P U/- A 33 3 n/a A1 Terminal 

disease 

Del1; del4(2); del5(2); 

del8; LOH17p 

U 

 



 

3.3. Case study 

It is clear that the number of patients in this cohort is too small to show any 

statistically significant evidence of the impact of genomic evolution on disease 

progression. And since this study gathered data on genomic aberration from G-

banding, FISH as well as SNP6.0, and had treatment and WBC count data in addition to 

prognostic marker information (see Appendix 3), each patient was thoroughly 

examined as case studies to uncover the role of secondary aberration in relation to 

disease progression, treatment and WBC count (summarised in table 14).  

 

Patients were divided into four groups according to disease status (progressive or 

stable) and genomic evolution.  

 

Patiens with a stable disease have a stable genome 
 

Patient 10 had a mutated IgVH status, low CD38 expression levels and was diagnosed 

in 1989 with CLL stage A0. The PT sample was taken in 1993 and showed a small 

(!2Mb) 13q deletion which was confirmed by FISH. Clinically, the WBC remained lower 

than 12x109/L and the disease was stable. The FU sample taken 15 years later showed 

no evidence of secondary aberration, although the FISH data showed a small 

population of cells with homozygous deletion of the 13q MDR (6.5%). The patient died 

a year later (2009) from unrelated causes (Aortic Aneurysm).  

 

Patient 19 had a mutated IgVH status, low CD38 expression level and was diagnosed in 

1999 (PT) with CLL stage A0.  The PT sample was taken at diagnosis, and showed a 

homozygous deletion of 13q (!1Mb) which was confirmed by FISH. In addition, a 

region of LOH on chromosome 13 (74Mb, from 40.51-114.1) was observed by SNP6!". 

Disease and WBC count remained stable (at approx 30 x109/L), and the FU sample 

taken 9 years later showed no genomic evolution, although the karyotype showed a 

small population of cells with an 11q25 deletion (3 cells).   

 

Patient 23 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 1985 with mBL. The PT sample was taken in 1999 and revealed a small but biallelic 

deletion of 13q (!1Mb), which was confirmed by FISH (86% homozygous deletion). In 

addition a region of LOH on chromosome 13 (74Mb size, from 40.51-114.1) was 

noted. A slow increase in WBC count (0.07x109 per month, or from 5x109 to 13x109 in 

5 years) resulted in the patient being classified as CLL stage A0 in 2009. The FU 

sample at that stage (10 years after PT) showed no genomic evolution, although the 
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karyotype data revealed structural rearrangements and decentric chromosomes, which 

were not identified by SNP6.0 profiling.  

 

Patient 22 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 1996 with CLL stage A0. The PT sample was taken in 1998 and the SNP array 

showed no evidence of genomic aberrations. WBC count remained stable at around 

30x109/L. The FU sample was taken 10 years later and showed no genomic evolution 

by array or FISH.  

 

Patient 8 had a mutated IgVH status, low CD38 expression levels and was diagnosed in 

1993 with mBL. The PT sample was taken in 1997, and showed a small ("1Mb) 13q 

deletion as well as a small deletion (<0.1Mb) on chromosome 16 involving the CDH13 

gene. The FISH data also revealed a small portion of tumour cells (25%) with a 

homozygous deletion of 13q. The karyotype suggested a complex genome, with a 

translocation between chromosome 2, 5 and 13. Nonetheless, the patient remained 

stable with mBL and very low WBC count (5x109/L) and the FU sample taken 10 years 

later showed no evolution, as well as a similar karyotype to the PT sample.  

 

Patient 25 had a mutated IgVH status but high CD38 expression levels, and was 

diagnosed in 1999 with mBL. The PT sample was taken in 2003 and showed trisomy 

12, which was confirmed by FISH, in addition to trisomies of chromosomes 18 and 19. 

Clinically, the disease was stable and white blood cell count was lower than 10x109/L. 

The FU sample taken more than 5 years later showed no evolution by array or FISH.  

 

Patient 86 had a mutated IgVH status, low CD38 expression levels and was diagnosed 

in 1989 with mBL. The PT sample was taken in 2003 and showed deletion of 13q 

("1Mb) which was confirmed by FISH, as well as deletion (0.1Mb) of GSTT1 on 

chromosome 22. Clinically, the patient’s WBC remained stable at <5x109/L. The FU 

sample taken 6 years later showed no genomic evolution by array or FISH.  

 

Patients with a stable disease course can exhibit genomic evolution 

 

Patient 1 had a mutated IgVH status, low CD38 expression levels and was diagnosed in 

1998 with mBL. The PT sample was taken in 1999 and showed a small (!1Mb) 13q 

hemizygous deletion, but FISH data showed 12% of cells having a homozygous 

deletion. Clinically, the WBC count remained stable at 15x109/L, until 2008 when it 

suddenly doubled to 36x109/L.  The FU sample taken 9 years after PT showed a large 

(3Mb) deletion of 13q which also involved a homozygous deletion of the MDR region 
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(figure 21). The FISH results showed a larger proportion of tumour cells (45%) with a 

homozygous 13q deletion.  

 

Figure 20: A. graph showing WBC count (x109/L) against months. PT and FU sample are 

represented by small squares (purple and green respectively). B. SNP array data showing small 

13q deletion at PT and large deletion of 13q with homozygous deletion of the MDR. 

 

Patient 21 had mutated IgVH status, low CD38 expression levels, and was diagnosed in 

1998 with mBL. The PT sample taken in 2006 showed a small ("1Mb) 13q deletion 

involving the MDR, which was confirmed as hemizygous by FISH, as well as deletion 

(<0.1Mb) of RUNX1 on chromosome 21. The WBC count rose between PT and FU at a 

rate of 1x109/L/month and up to a maximum of 76 x109/L. The FU sample taken 2 

years after PT showed no change in the 13q deletion by the array, but FISH data 

showed evolution of 13q deletion from hemizygous to homozygous. In addition, the 

array showed acquisition of a small deletion (0.1Mb) on chr 13 involving the NEK3 

gene (figure 22).  
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Figure 21: A. graph showing WBC count (x109/L) against months. PT and FU sample are 

represented by small squares (purple and green respectively). B. SNP array data showing 

deletion on chr13 at both time points as well as secondary aberration at FU involving the NEK3. 

C. Map of chromosome 13 with breakpoints.   

 

 

Patients with progressive disease show genomic evolution 

 

Patient 9 had a mutated IgVH status and low CD38 expression levels. The patient was 

diagnosed in 1990 with CLL stage A0 and was treated two years later, and again in 

2006, due to high WBC. The patient was, however, intolerant to treatment and WBC 

count was not affected. The PT sample was taken in 2007, when patient was at stage A 

with a WBC count of 130x109/L, and showed a large 13q deletion, (4.6 Mb) with 

homozygous deletion of the MDR region, which was confirmed by FISH, as well as 

mutation of TP53. The FU sample taken a year later, showed genomic evolution with 

deletion on chromosome 11 (1.8 Mb) involving many genes, amongst which was REL A. 

Furthermore, the FU sample also showed LOH of 17p, which was not seen at PT. 

Clinically, however, the patient was still at CLL stage A, but with a rising WBC count 

(rate of 2.2x109/L/month).  

 

Patient 28 had a mutated IgVH status but high CD38 expression levels, and was 

diagnosed with mBL in 1994. The PT sample was taken in 2000 and showed a complex 

genome with large deletion of 13q, loss of 17p and two deletions on 18p. The FISH 

results also showed a small population of cells (6%) with ATM and P53 deletions, and 

karyotype revealed that deletions on chromosome 18 were due to translocations. The 

patient progressed to stage A2 within 3 years with very aggressive clinical symptoms 

(groin nodes), but a very low and stable WBC count (less than 14x109/L).  The patient 

reached stage B in 2007. The FU sample taken 9 years after PT (in 2009) showed large 

genomic evolution, with deletion of 11q, including homozygous deletion of the ATM 



     74 

region, as well as deletions on chromosome 20 and 17 (involving the BRIP1 cancer 

gene). The FISH results were taken at various periods between PT and FU and showed a 

progressive increase in the population that had TP53 as well at ATM deletion (table 

14). The karyotype showed complex translocations.  

Table 15: Disease progression (clinical stage), the progressive acquisition of ATM and TP53 

deletion shown by FISH, and the SNP array data of patient 28  

Date 1996 2000 (PT) 2001 2004 2009 (FU) 

CLL stage mBL mBL A0 A2 B 

FISH result TP53 6% 60% . . 75% 

FISH result ATM . 3% 6% 29% 39% 

Genomic (SNP) . 13q, 17p, 18q . . + 11qx2; 20p; 17q 

 

 

Patient 30 had an unmutated IgVH status, low CD38 expression levels, and was 

diagnosed in 2000 with CLL stage A0. The PT sample was taken in 2004, when patient 

was still at clinical stage A0, and showed a very complex genome; multiple deletions 

on chromosome 12 and 19, deletion on chromosome 10 as well as LOH on 17p. The 

WBC increased between 2004 (PT) and 2007 at a rate of 0.65x109/L/month, but this 

suddenly changed in 2007 to 13.21x109/L/month, reaching 221x109/L in 2008. The 

FU sample taken 4 years after PT (in 2008), when patient was at stage B and just 

before treatment, showed large genomic evolution with deletions on chromosome 8 

and 9p (figure 23). The karyotype also showed a complex genome with unbalanced 

translocation (which was not seen at PT). The WBC count has been stable since 

treatment.  
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Figure 22: A. graph showing WBC count (x109/L) against months. PT and FU sample are 

represented by small squares (purple and green respectively). B. SNP array data showing 

deletion on chr8 occurring only at FU and map of chromosome 8 with breakpoints. 

  

Patient 250 had an unmutated IgVH status, low CD38 expression levels, and was 

diagnosed in 1989 with mBL. The PT sample was taken in 2001, when patient was at 

stage A1, and showed mutation of ATM (but not of TP53), but no genomic aberrations 

were shown on the array (normal genome). Within 3 years, the patient required 

treatment, which was followed by relapse and complications (Hodgkins disease) and 

further treatments, followed again by relapse. The follow up sample taken 9 years after 

PT (in 2009) showed large genomic evolution with deletions on chromosome 1, 4, 5 

and 8 as well as LOH on 17p. The WBC count data is not available. The patient is at a 

terminal stage.  

 

Patient 33 had an unmutated IgVH status, low CD38 expression levels. and was 

diagnosed in 1997 with CLL stage A0. The PT sample was taken in 1998 and showed 

no aberrations (normal genome) by array or FISH. The patient progressed to stage B in 

2002, with a WBC count of 200x109/L, and was given a first round of treatment. The 

disease remained stable until 2005, when suddenly a rise in WBC count which reached 

(x109/L) was noted, and patient underwent a second round of treatment in 2007. Just 

before treatment, the FU sample (8 years after PT) showed no large aberrations, but 

only a small deletion (0.1Mb) on chromosome 7 which involved a number of genes. 

Furthermore, the karyotype showed a small population with translocation between 

chromosome 4 and 15. Two years later, in 2009, the disease progressed to Richters, 

and the patient required a further round of treatment.  
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Patient 7 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 1981 with CLL stage A0. The patient underwent multiple treatments from 1982 to 

1997 due to high WBC count and swollen cervical nodes. The PT sample was taken in 

2000 and revealed a large deletion (3Mb) on chromosome 13, which was confirmed by 

FISH. From then, the WBC count decreased (not treated), despite the fact that FISH data 

in 2005 and FU genomic data in 2007 (7 years after PT) revealed genomic evolution: 

patient acquired 2 homozygous deletion in the 13q, LOH (40.6-68.7) on chromosome 

13, as well as a deletion on 18p (1Mb).The karyotype data revealed that these 

deletions were due to translocation between chromosome 13 and 18. The WBC count 

and disease course has remained stable.  

 

Patient 35 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 1998 with CLL stage A0.The  PT sample was taken in 2001 and revealed a large 

deletion (2.4 Mb) on chromosome 13, which was confirmed by FISH, and a small 

(0.1Mb) deletion on chromosome 7 (a region devoid of any known genes). Clinically, 

changes occurred between PT and FU; Between diagnosis and 2004 the WBC increase 

rate was 0.12x109/L/month whilst between 2004 and 2007 (FU) the WBC increase rate 

was 0.36 x109/L/ month, reaching a maximum of 44 x109/L before being treated. 

Furthermore, the disease progressed to stage A1 in 2004 and then to stage C in 2007 

(FU). The FU sample taken 6 years after PT, revealed a much larger 13q deletion (3Mb) 

as well as homozygous deletion of the MDR region in addition to the aberrations seen 

at PT (figure 24). Also, the karyotype data showed translocation between chromosome 

9 and chromosome 13. Clinically, treatment did not reduce WBC count and patient 

acquired different complications such as severe Pancytopenia (very low number of 

blood cells) and CMV reactivation. Patient died in 2009.  
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Figure 23: A. graph showing WBC count (x109/L) against months. PT and FU sample are 

represented by small squares (purple and green respectively). B. SNP array data showing 

deletion on chr13 with evolution at FU, and map of chromosome 13 with breakpoints. 

 

Patient 15 had a mutated IgVH status but high CD38 expression levels, and was 

diagnosed in 2001 (PT) with mBL. The PT sample was taken at diagnosis and showed 

deletions on 2p and 13q as well as gain of the large arm of chromosome 13, and gain 

on the short arm of chromosome 2. The karyotype data revealed translocation between 

chromosome 2 and 13, as well a balanced translocation between chromosome 5 and 

15. The patient progressed to CLL stage A0 in 2006, and the stable WBC count seen 

since diagnosis suddenly turned into a high rise, from 28x109/L to 76x109/L as well as 

progression to stage C in 2008, which resulted in a first round of treatment. The follow 

up sample was taken in 2009 or 7 years after PT, and just before a second round of 

treatment. At this stage, genomic data showed the acquisition of two new small 

aberrations; deletions on chromosome 13 (0.8Mb) involving FOXO1 and on 

chromosome 15 (<0.1Mb) involving TRPM1. After the FU sample and a second round of 

treatment, the WBC count was seen to rise again.   

 

Patient 32 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 1997 with CLL stage A0. The PT sample was taken in 1998 and revealed deletion 

(1.2Mb) on 13q, with homozygous deletion of the MDR, which was confirmed by FISH. 

The WBC count was stable at 40x109/L until 2006, when it suddenly rose to 110x109/L, 

and the patient, at clinical stage A1, underwent treatment in 2009 (FU). The FU sample 

taken 9 years after PT and just before the treatment showed the acquisition of a new 

small aberration; deletion on chromosome 21 (<0.1Mb; involving SOD1). The FISH data 

showed no large genomic evolution on the 13q deletion. The WBC count remained 

stable after FU.  
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Patients can develop progressive disease without genomic evolution 

 

Patient 11 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 2002 (PT) with CLL stage A0 and high WBC (53x109/L). The PT sample was taken at 

diagnosis and revealed no aberrations (normal genome), although FISH data showed 

hemizygous deletion on 13q (10%). After two stable years, the WBC count suddenly 

started to rise and reached 115 x 109/L. Patient also progressed to clinical stage C, 

and finally underwent a first round of treatment in 2006. However, the WBC count 

continued to rise, and at a higher rate than before treatment. The Follow up sample 

taken 5 years after PT (2008), when patient was at stage B and a WBC count of 136 

x109/L, showed no genomic aberrations, although the FISH data at this stage again 

showed hemizygous deletion of 13q, and the karyotype revealed large deletion of the 

long arm of chromosome 13. The patient progressed to stage C in 2009, and reached 

a WBC count of 233 x 109/L, before being treated again. 

 

Patient 12 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 1998 (PT) with mBL. The PT sample was taken at diagnosis and showed no 

aberrations (normal genome) by array or FISH. Clinically, there was an increase in WBC 

count at a rate of 0.95x109/L/month, from 7x109/L at PT to 105x109/L in 2007 (FU). 

The follow up sample taken 9 years later (2007) showed no aberrations (normal 

genome) by array or FISH. The patient underwent treatment at FU.   

 

Patient 34 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

in 1991 with CLL stage A0. The PT sample was taken in 1998 and showed a sole 

deletion of the 13q MDR (0.2Mb), which was confirmed by FISH. In 2001, the patient 

progressed to stage C with a WBC count of less than 40x109/L and underwent 

treatment. However, following complications (CMV infection), relapse and high WBC 

count (up to 50x109/L), the patient underwent a second round of treatment in 2003. 

The Follow up sample was taken in 2006 (7 years after PT) when patient was at clinical 

stage B, with a WBC count of 90x109/L and before a third round of treatment. At this 

stage, genomic data showed no genomic evolution, by array or by FISH (figure 25). 

Two years after FU, patient progressed to Richters disease and was treated a fourth 

time.  
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Figure 24: A. graph showing WBC count (x109/L) against months. PT and FU sample are 

represented by small squares (purple and green respectively). B. SNP array data showing 

deletion on chr13 with no evidence of evolution at FU, and map of chromosome 13 with 

breakpoints. 

 

Patient 18 had an unmutated IgVH status, low CD38 expression levels, and was 

diagnosed in 2001 with CLL stage A1. The PT sample was taken in 2004 and showed a 

sole deletion of 13q (1.1Mb), which was confirmed by FISH. From 2004 to 2007 (FU), a 

high increase of WBC was seen, from 81 x109/L to 266x109/L and progression to stage 

C which resulted in treatment. The FU sample taken 3 years after PT and just before 

the treatment showed no evolution, although FISH data showed a small population of 

cell (20%) with homozygous deletion of 13q MDR (i.e. evolution of 13q from 

monoallelic deletion to biallelic). Clinically, the response to treatment was partial and 

patient remained at stage C before a second round of treatment in 2008, and a third in 

2009. The patient progressed to Richter’s disease in 2010.  

 

Patient 248 had an unmutated IgVH status, low CD38 expression levels and was 

diagnosed in 2001 (PT) with CLL stage A0. The PT sample was taken at diagnosis and 

revealed a large deletion on chromosome 13q (>12Mb). The WBC count rose from 

diagnosis/PT at a rate of 0.6 x109/L/month, reaching 82x109/L in 2008 (FU). The FU 

sample taken 7 years after PT, showed no evolution by array or FISH. The patient 

remains at clinical stage A0 and is yet to be treated. 

 

Patient 247 had an unmutated IgVH status, high CD38 expression levels, and was 

diagnosed in 2006 with mBL. Clinically, the patient had a low and stable WBC count 

(<10x109/L). The PT sample was taken in 2007, when patient was classed as A0 CLL, 

and showed a very complex genome with multiple deletions on chromosome 3 and 11, 

one of which included the ATM, as well as deletion on chromosome 17 which included 

NF1.  In 2008, the rate of WBC count suddenly rose, from 0.2x109/L/month to 

5.8x109/L/month, reaching 102x109/L in 2009 as well as progression to stage A. The 
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FU sample taken 1 year after PT (in 2009) and just before treatment, showed no 

genomic evolution, by array or by FISH.  

 

Patient 5 had a mutated IgVH status but high CD38 expression levels, and was 

diagnosed before 1999. The PT sample was taken in 2000, when patient was at stage 

A0, and showed a very complex genome; Deletion of 13q, multiple deletions on 

chromosome 3 and 9 as well as trisomy of chromosome 12, 18 and 19. The disease 

progressed to stage C in 2004 with a WBC count of 143x109/L and patient received 

treatment. After treatment, the WBC count increased again and patient was treated a 

second time in 2006. The FU sample taken 8 years after PT (in 2008) revealed no 

genomic evolution, by array or by FISH. Further treatments in 2008 were followed by 

infections and death.  

 

Patient 29 had a mutated IgVH status, low CD38 expression levels, and was diagnosed 

before 2004. The PT sample was taken in 2004 when patient was at stage A0, and 

showed a complex genome with deletions on chromosome 4, 13q, 9 and 20. The 

disease progressed to clinical stage A1 and patient had a high rate increase of WBC 

count (2.94x109/L/month), reaching 120x109/L, which resulted in treatment in 2007. 

The FU sample taken 3 years after PT (in 2007), and just before the treatment, showed 

no genomic evolution, by array or by FISH. After the treatment, WBC counts rose again 

at a similar rate, until a second treatment in 2010. 

 

Patient 249 had a mutated IgVH status, low CD38 expression levels, and was 

diagnosed with CLL stage A0 in 2007. The PT sample was taken at diagnosis, when 

WBC count was high (80x109/L) and showed multiple deletions on chromosome 6 and 

13, which karyotype data revealed as translocation between the two chromosomes. 

The FU sample taken a year later, when patient had progressed to stage A1 with a 

higher WBC count (141x109/L) showed no genomic evolution, by array or by FISH. 

 

Patient 14 had an unmutated IgVH status, high CD38 expression levels, and was 

diagnosed in 2001 (PT) with mBL. The PT sample was taken at diagnosis and revealed a 

sole trisomy of chromosome 12, which was confirmed by FISH. The FU sample taken 4 

years after PT (in 2005) when patient was at stage A0, showed no genomic evolution. 

The WBC count remained stable at 5x109/L until 2005 but then suddenly rose to reach 

30x109/L in 2007. At this stage patient went from clinical stage A2 to Richters within 

two months and was treated.  

 

Patient 16 had an unmutated IgVH status, high CD38 expression levels, and was 

diagnosed in 2001 (PT) with CLL stage A0. The PT sample was taken in 2002 and 
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showed deletions of 2p and 19p. The WBC count rose at a rate of 3.2x109/L/month, 

reaching 172x109/L, and the patient progressed to stage A2 in 2004. The FU sample 

taken 2 years after PT (in 2004) showed no genomic evolution, by array or by FISH. 

Patient underwent a first round of treatment in 2005 and a second in 2007. Following 

complications (pneumonia), patient died in 2009.  

 

3.4. Evolution targeting 15q11.2 

In this study, genomic evolution in CLL patients was noted also in Copy Number 

Variants (CNV), as only 3 patients out of 29 had the same number of CNV.  

 

However, the most interesting observation was made on chromosome 15 (15q11.2), 

where 15 patients had acquired 2 small secondary aberrations. As figure 26 reveals, 

these aberrations are present at FU only in 14 patients and at PT and FU in 1 patient.   

 

There was no correlation between gain in 15q11.2 and any of the variables in this 

study. The secondary aberration was present in stable and progressive cases, mutated 

and unmutated IgVH cases, treated and non treated cases. In addition, no link was 

discovered between recurrent aberrations or genomic evolution and gain at 15q11.2 

 

SNP data of one of these patients is shown in figure 27. A closer look at the SNP array, 

shows a first gain, 40kb in size, at breakpoint 22847230-22887446. The second gain 

is 64kb at breakpoint 22966682-23030848.  

 

As shown in figure 28, the gain region involves the SNORD1-116 non coding RNA, as 

well as the IPW/SNRPN gene.  

 

It was clear that this aberration was not due to noise on a particular batch of array as 

PT and FU sample were run at different time and, in addition, as shown in Appendix 4, 

the FU samples of the 15 patients with this aberration were also run on different 

batches at different dates.  
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Figure 25: Heatmap of PT and FU patients with gain at 15q11.2. Bright red suggests deletion. A 

significant difference is noted between PT and FU samples in this region.  

 

 

Figure 26: A. SNP array data and heatmap of normal, PT and FU sample of patient 16 showing 

gain at 15q11 present only at FU. B. Map of chromosome 15 with breakpoints 

 

 

Figure 27. A. Map of chromosome 15. B. Genes in the 15q11.2 region between 22,8-23,5 

(according to UCSC browser, NCBI36). C. Specific gained region in 15 patients in this cohort. D. 

map of SNP probes  
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3.5. Discussion 
Genomic aberrations in CLL are thought to play an important role in disease 

progression, and have also been shown to act as prognostic markers. This study aimed 

to examine the genome of 29 patients, using SNP6.0 high resolution array, to confirm 

previous research which suggested that CLL patients have an evolving genome, and 

this could alter the way aberrations are looked at clinically.  

 

3.5.1. CLL patients do have an evolving genome 

Our cohort showed evolution in nearly  40% of patients (n=11), which corresponds to 

previous studies looking at genomic evolution, for instance Chevalier et al who found 

evolution, using FISH, in 42% of patients (Chevallier, Penther et al. 2002), and Bea et al 

who showed evolution, using aCGH,  in 41% of CLL patients(Beà, López-Guillermo et al. 

2002).  

 

This is the first study which observed the evolution in CLL patients using the SNP6.0 

high resolution array. As a result, although evolution of the recurrent abnormalities 

was noted in 13q and 11q, a number of uncommon regions were either deleted or 

gained in 6 patients (20%). These included small deletions on chr13, chr15, chr21 and 

gains on chr2 which targeted specific genes. Other large deletions were also noted on 

chr1, chr4 and chr5. Furthermore, loss of heterozygosity was shown exclusively in FU 

samples of 3 patients, which targeted 17p in 2 of them. Finally, patients in this cohort 

were also shown to acquire translocations (1 Balanced, 4 unbalanced).  

 

This data clearly confirms that CLL patients undergo evolution, not only on recurrent 

aberrations, but also on other regions on the genome, and in many cases these target 

genes of interest, which will be discussed shortly.   

 

The ever changing nature of the genome in a large proportion of patients from a small 

cohort such as ours shows its significance CLL disease. Patients such as ID 250 in our 

study clearly demonstrate that genomic analysis at diagnosis or even 11 years after 

diagnosis (PT sample) does not reveal prognosis, as 9 years after PT (FU sample), 

patient acquired 6 large (between 2Mb and 43Mb) aberrations on 5 different 

chromosomes which resulted in treatment and terminal disease stage. Presence of 

secondary aberrations in nearly half of CLL patients suggests therefore that clinically, 

genomic screening should be done more than just at diagnosis (Dal-Bo, Bertoni et al. 

2009).   
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3.5.2. Genomic evolution was not linked with prognosis 

markers 

This study, in accordance to what was previously shown (Shanafelt, Witzig et al. 2006; 

Berkova 2009), found that genomic evolution was not associated with IgVH mutation 

or CD38 expression.  

In addition, there was no association between biomarkers and secondary high-risk 

aberration, as deletion on 11q as well as LOH on 17p was acquired by patients with 

mutated and unmutated IgVH, as well as both CD38 positive and CD38 negative 

patients. This conflicts with previous reports which suggested genomic evolution on 

11q/17p in unmutated IgVH patients predominantly (Shanafelt, Witzig et al. 2006).   

 

Nonetheless, patients with either 11q/17p deletion or class II 13q deletion in this 

study were associated with secondary aberrations, suggesting that these high-risk 

deletions can predict genomic evolution. Previous reports have shown the role of ATM 

and TP53 deletion in genomic instability (Zenz, Krober et al. 2008) and hence it was 

not surprising to note genomic evolution in patients with 11q/17p aberration in our 

cohort. However, the role of large 13q deletion in genomic evolution would be an 

interesting lead for further research. Genes deleted in large 13q deletion which are not 

involved in patients with small 13q deletion may play a role in genomic instability. 

Ouillette et al have highlighted retinoblastoma (Rb) gene as deleted in a subset of 

13q14 deleted patients (Ouillette, Erba et al. 2008) and this gene has recently been 

shown to cause secondary aberrations (van Harn, Foijer et al. 2010). This strengthens 

the research by Parker et al, which showed large 13q deletions in progressive cases 

(Parker, Rose-Zerilli et al. 2010). 

   

3.5.3. Genomic evolution may alter prognosis 

Genomic aberrations have been used clinically as prognostic markers; for instance 

class I 13q deletions have been linked with stable disease whilst deletions on 17 or 

11q as well as genomic complexity have been associated with poor prognosis (Dohner, 

Stilgenbauer et al. 2000; Ouillette, Fossum et al. 2010). We found in this study that 

patient acquired secondary aberration that altered the prognosis risk evaluated at the 

first time point: genomic evolution resulted in two stable patients (ID =1 and 21) to 

pass from low-risk aberrations to poor prognosis aberrations. The first patient 

acquired a large 13q aberration and the second acquired a complex genome ("3 CNA), 

both of which are associated with poor prognosis. Both patients had sudden change in 

the WBC count between PT and FU sample suggesting an impact of the secondary 

aberrations on the WBC count. Both patients are nonetheless stable cases, although 

patient 21 received treatment for AIHA (autoimmune haemolytic anaemia) which 

reduced the WBC count. 
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Hence patients with good prognosis aberrations at diagnosis, such as class I 13q 

deletion may acquire secondary aberrations, such as class II aberrations which could 

increase the risk of disease progression. Further research in genomic evolution is thus 

important as clinically, it may be necessary to monitor the progress of the genome to 

predict changes in disease progression.  

 

3.5.4. Genomic evolution impacts disease progression 

This study initially suggested that genomic evolution has no impact on disease 

progression, as secondary aberrations occurred in 4 patients who remained at early 

stage disease. However, 2 of these patients had been treated prior to PT sample and 

thus disease was stable despite evolution. The other two patients had changes in their 

WBC count, despite not progressing in Binet staging.  

 

Furthermore, case studies enabled a detailed look and highlighted the impact of 

secondary aberrations in a number of patients.  

 

Patient 28, between PT and FU, progressed firstly from mBL to stage A0, then to stage 

A2, and finally to stage B, and this was associated with a number of secondary 

aberrations at FU (from 5 CNA at PT to 10 CNA at FU), including homozygous deletion 

of a smaller region on 11q involving ATM. This patient also strenghtens the idea of 

monitoring genomic evolution clinically, as Austen et al have shown worse prognosis 

for patients with biallelic deletion of ATM (Austen, Skowronska et al. 2007). The 

implication for treatment is also quite significant as patients with biallelic deletion of 

ATM have responded poorly to cytotoxic chemotherapeutics (Austen, Skowronska et al. 

2007). In addition, since aberrations can alter treatment choice, for instance patient 

with p53 deletion would respond poorly to purine analogues (eg. fludarabine) (Dohner, 

Fischer et al. 1995), it has been suggested, and our study has confirmed, that genomic 

aberrations should be screened for at regular intervals, including prior to treatment, in 

order to ensure correct choice of treatment for good response (Dal-Bo, Bertoni et al. 

2009). 

 

A number of other patients in this study, such as patient 30 and 35, were found to 

have sudden changes in WBC count and progression to late disease stage which was 

associated with presence of large secondary aberrations (>3Mb) on chromosome 8, 9 

and 13. These regions may involve tumour suppressor or oncogenes which play a role 

in the progression of CLL. A number of studies have shown for instance the presence 

of tumour suppressor genes, such as LZTS1or TRAIL-R1 on the small arm of 

chromosome 8 in various cancers including B-cell lymphoma (Ishii, Vecchione et al. 
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2001; Armes, Hammet et al. 2004; Knowles, Aveyard et al. 2005; Rubio-Moscardo, 

Blesa et al. 2005).  The role of reccurent abnormalities in CLL disease has been 

extensively researched, but the influence of other rare deletion and gains has also 

been highlighted (Crowther-Swanepoel, Broderick et al. 2010; Dalemari, Mahmoud et 

al. 2010) and hence cannot be ignored, especially when occurring as secondary 

aberration and altering the disease course.  

  

Therefore, genomic evolution was found to occur in parallel with progression to late 

stage disease, and change in the rate of WBC count increase in a number of patients 

suggesting an important role of secondary aberration in CLL disease progression. 

 

3.5.6. Genomic evolution targets genes and impacts disease progression 

Whilst genomic evolution targeted large and recurrent deletions and gains, 6 small 

aberrations targeting genes were noted as secondary aberrations in 4 CLL patients. 

  

Genomic evolution in progressive patient ID 15 involved FOXO1 and TRPM1 (these 

aberrations were added to an already complex genome with large 13q deletion). The 

transcription factor, FOXO1, is known to play a tumour suppressor role in cell cycle 

regulation (Nakamura 2000), whereas downregulation of TRPM1 has been involved in 

melanocytic tumours (Deeds, Cronin et al. 2000) and malignant melanoma (Duncan, 

Deeds et al. 2001), and also shown to act as tumour suppressor in melanoma, due to 

miR-211 being encoded within the 6th intron (Mazar, DeYoung et al. 2010). These 

targets could thus play a role in disease progression, especially since there is a change 

in the WBC count between PT and FU samples, which could indicate a link with the 

secondary aberrations. In addition, patient had aggressive disease after the FU sample 

with relapse after each of the 2 rounds of treatment. 

 

Progressive patient 32 is an interesting case study, where PT sample showed a small 

deletion on 13, whilst FU sample suggested secondary aberration targeting SOD1. A 

sudden change in WBC count and progression to A1 stage disease is also found 

between PT and FU sample. The Superoxide Dismutase 1 gene has been shown to 

remove superoxide radicals, and hence prevent free-radical mediated DNA damage 

(Huang, Feng et al. 2000), and has been suggested as a target for therapy, since 

inhibition of SOD1 would induce apoptosis (Huang, Feng et al. 2000).  In addition, 

SOD1 has previously been reported to be downregulated following Bmi-1 

overexpression in CML (Merkerova, Bruchova et al. 2007) whilst other studies have 

shown an overexpression of SOD1 in CD34+ subpopulatin of CML cells, which had 

impact on treatment (Liu 2010). Therefore, further research in deletion of this gene, 

especially its impact on treatment, is required.  
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Secondary aberration on 7p22 was the sole aberration, at SNP6.0 resolution, in 

progressive patient 33. High blood cell count, treatment and relapse were noted 

between PT and FU, and further research in the exact time in which this aberration 

appeared would be useful in order to precisely show its impact in the disease 

progression. Nonetheless, deletion of this region involved 4 genes, and was found to 

play a part in tumorigenesis in non-small cell lung cancer (Campbell 2008). NUDT1 is 

the most interesting gene in this region, and has been shown to be overexpressed in a 

number of tumours, protecting from oxidative damage, including NSCLC (Speina, 

Arczewska et al. 2005) and breast cancer (Wani, Milo et al. 1998), although other 

research has shown deletion of NUDT1 to cause tumours in mice (Tsuzuki 2001). 

Further research in the role of aberration of this region in CLL may reveal genes of 

interest.   

 

Secondary aberrations targeting specific genes have been discovered in this study, and 

found to be associated with changes in the disease progression in CLL patients. 

Further research on the smaller and non-recurrent aberrations occuring at PT and FU in 

CLL patients may be significant, as these could play crucial role in tumorigenesis and 

need for treatment.  

 

3.5.7. Secondary aberration not always necessary for disease progression 

Interestingly, a number of patients with progressive disease did not acquire any 

secondary aberrations at FU, despite changes in WBC count and disease between PT 

and FU.  

 

In addition, out of the 3 patients who had no evidence of any aberrations at both time 

points (normal genome) and 2 of these were progressive cases with high WBC count 

and late disease stage B/C. In addition, other patients like case ID 18 and case ID 34, 

had small 13q deletion, but a high WBC count, late stage disease C, and 

transformation to Richter’s disease.  

 

This suggests that there may be other factors driving CLL disease, which are not 

detected by the high resolution SNP6.0. Genetic mutations which cause loss of protein 

function would be the most probable cause in these cases. Monitoring the mutation in 

key genes in these patients would be interesting. Having observed the sudden changes 

in disease progression in these patients, it may be possible that genomic evolution can 

target mutations.  
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3.5.8. Genomic evolution on 15q11.2 

The use of high resolution array has enabled the discovery of small changes in the 

genome of patients between two time points. The presence of a secondary gain in the 

15q11.2 region of 15 patients was significant, and noted for the first time in CLL.  

 

 SNRPN is an imprinted gene in the 15q11.2 involved in Prader-Willi syndrome 

(Nicholls, Saitoh et al. 1998). However, deletion on this gene has also been found in 

renal cell carcinoma  (Dotan, Dotan et al. 2000), neurocytoma (Korshunov, Sycheva et 

al. 2007), gliobastoma (Korshunov, Sycheva et al. 2006) and gastric cancer (Takada, 

Imoto et al. 2005), while methylation of this gene was noted in germ-cell tumours 

(Bussey, Lawce et al. 2001) as well as AML (Benetatos, Hatzimichael et al. 2010). In 

addition, gain in this region has been highlighted in Barett’s adenocarcinoma(Albrecht, 

Hausmann et al. 2004). However, not much research has been done regarding the role 

of SNRPN in tumours, most likely due to its presence in a CNV region. However, our 

study has shown a striking difference of copy number change in this region over time 

in a number of patients, and having noted aberration of this region in other cancers, it 

would be of great interest to extent the research further on 15q11. In addition, Leung 

et al suggested that this gene may be involved in pre-mRNA splicing (Leung, Nagai et 

al. 2011). Therefore, upon confirming aberration of this gene using PCR in a large 

cohort, further research into genomic targets of SNRPN would be of great interest.  

 

3.5.9. Conclusion 

In conclusion, this study has used the high resolution SNP6.0 array to confirm genomic 

evolution in patients with CLL disease. Secondary aberrations were shown in 

progressive as well as stable patients and were not associated with biomarkers. 

Patients with 11q/17p aberrations were more likely to acquire secondary aberrations, 

as were patients with a large 13q deletion. Genomic evolution occurred on recurrent 

and non-recurrent regions, and with the high resolution array, a number of small 

deletion and gains were also found exclusively in the FU sample, including changes 

15q11.2, a CNV region encompassing the SNRPN gene. Individual case studies enabled 

a more comprehensive outlook on all patients and using this, it was found that 

genomic evolution occurred in a number of patients in parallel to sudden changes in 

WBC count and disease progression. Many patients nonetheless had aggressive CLL 

disease in absence of copy number changes PT or genomic evolution at FU, suggesting 

the involvement of other factors, most probably genetic mutations. 

Therefore, genomic copy number changes as well as mutations need to be monitored, 

at high resolution, more often than just at diagnosis in CLL patients, as cases with low-

risk aberration may acquire high-risk deletion/gains/mutations at later stage which 

could alter the course of the disease. 
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4.1. Introduction 
 

4.1.1. Telomere and telomerase in human cells 

Telomeres are tandemly repeated DNA sequence of up to 25kb at the end of 

chromosomes. In humans, a number of proteins interact with the TTAGGG repeat 

sequence, such as TRF1 and TRF2 (Broccoli, Smogorzewska et al. 1997), and this 

structure plays a key role in preventing the end of chromosomes to be recognised as 

double-stranded DNA break, and thus avoiding loss of DNA during replication (Harley, 

Futcher et al. 1990) as well as preventing end-to-end fusion as a result of non-

homologous end joining (NHEJ) (van Steensel, Smogorzewska et al. 1998; van Gent and 

van der Burg 2007). 

 

Telomeres are maintained by the telomerase enzyme, a reverse transcriptase, which 

uses an RNA template to add the repeat sequence (Kim, Piatyszek et al. 1994). 

However, human somatic cells express low levels of telomerase and due to the fact 

that DNA replication occurs in a semiconservative manner (Harley, Futcher et al. 1990), 

end of chromosomes are lost at a rate of 60/120bp with every cell division (Baird, 

Rowson et al. 2003). Telomere loss leads to a DNA damage response (Fagagna, Reaper 

et al. 2003), which can cause either cell senescence or apoptosis, and this prevents 

somatic cells to transform into tumour cells (Pepper and Baird 2010). 

 

Therefore, when this system is overcome, and telomerase is overexpressed, the 

process of apoptosis is not triggered and cells acquired immortality leading to 

malignancies (Kim, Piatyszek et al. 1994).  

 

4.1.2. Telomere and telomerase in cancer cells 

A number of evidence of loss of telomere function has been shown in tumours. Short 

telomeres have been observed in many cancers, including CLL, as a result of heavy cell 

division and tumorigenesis (Bechter, Eisterer et al. 1998; Meeker, Hicks et al. 2002; 

Meeker and Argani 2004). In addition, telomerase knockout mice, and hence with short 

telomeres, have shown to be associated with higher rate of tumour formation 

(Rudolph, Chang et al. 1999) and a number of tumours have shown downregulation of 

telomerase enzyme through a number of different pathways (Kanzawa 2003; Lin and 
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Elledge 2003), or even deletion of the TERT gene, encoding the catalytic subunit of the 

enzyme (Baird 2010). Finally, loss of telomere has been shown to be associated with 

non-reciprocal translocations and dicentric chromosomes, and these aberrations have 

been noted in carcinomas (Sawyer, Husain et al. 2000; Gisselsson, Jonson et al. 2001). 

 

Therefore, short telomeres as well as loss of telomerase enzyme have been widely 

implicated in tumour progression.  

 

4.1.3. The role of telomere dysfunction in driving 

malignancy 

Research has yet to find a conclusive role of telomeres in driving tumour formation. 

Nonetheless, as suggested by Pepper et al, the loss of DNA damage response, through 

deletion or mutations of the P53 pathway,  leads to cell division beyond the point at 

which apoptosis would be initiated (Pepper and Baird 2010). This results in further loss 

of telomeres and consequently, telomere fusion occurs causing translocations, 

rearrangement, deletions and overall large genomic instability, a situation termed as 

“crisis” (Maser and DePinho 2002; Lin, Letsolo et al. 2010). The final step and key to 

ensure cell survival and tumour progression, is the upregulation of telomerase enzyme 

(Norrback and Roos 1997; Greider 1998), caused most probably by the genomic 

changes. This results in the regeneration of telomere length and stabilization of the 

genome, stopping any new alterations to the DNA, but at the same time promoting 

survival of cells with an aberrant genome. This process is summarised in figure 29. 

 

Research in the field has thus looked at the length of telomeres and the activity of 

telomerase to understand the crucial impact of telomere dysfunction in tumour 

progression. 
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Figure 28: Figure showing the 6 stages to tumour progression, highlighting the role of telomere 

dysfunction (Pepper and Baird 2010) 

 

4.1.4. Different techniques are used to monitor 

telomere length  

Telomere length can be measured using a number of techniques. The primary method 

used when telomere was first discovered was Terminal Restriction fragment (TRF) 

analysis, which involves using telomere repeat probes on fragmented DNA and 

detecting it via Southern blot hybridisation. However, due to the presence of TTAGGG 

sequences at other than chromosome ends, TRF analysis is very imprecise (Moyzis, 

Buckingham et al. 1988; Baird 2005).  

 

A second technique for measuring telomere length has used Fluorescence in situ 

hybridisation (FISH). The most common and precise method using FISH to detect 

telomere length is flow-FISH, which consist of hybridising fluorescently labelled 

peptide nucleic acid probes and using flow cytometry to detect telomere length. 

Although this provides a higher resolution than TRF, it does come with high levels of 

background noise and require chromosomes in metaphase stage (Rufer, Dragowska et 

al. 1998; Baird 2005).  

 

The recently invention of Single telomere length analysis (STELA) from Baird et al’s lab 

has brought the most high resolution and precise tool for telomere length 
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investigation (Baird, Rowson et al. 2003; Baird 2005). This technique uses single 

stranded linker structures at the telomere end for single molecule PCR assay, which are 

then resolved by gel electropheresis and detected by southern hybridisation with a 

telomere specific probe. This method enables precise measurement of telomere length 

and can be chromosome specific. A number of recent studies have used STELA and 

reported very small telomere length in CLL patients (Lin, Letsolo et al. 2010), which 

would not have been possible with the other techniques.  

 

4.1.5. Telomere dysfunction in CLL 

 

Patients with CLL have short telomeres 

Damle et al used flow-FISH method to measure telomere length of purified B-

lymphocytes from patients with CLL, age-matched healthy donors, and healthy donors 

aged 60 or above. The results revealed significantly shorter telomeres CLL patients 

compared to both, aged matched as well as over 60 subjects, confirming the presence 

of short telomere in CLL, as seen in other malignancies (Damle, Batliwalla et al. 2004).      

 

However, as was discussed in the main introduction, the disease course of CLL is very 

heterogeneous and a number of markers have been established to distinguish patients 

with stable disease and patients with more aggressive disease. Hence, research has 

compared telomere length in patients with different bio-markers and disease 

progression.  

 

Patients with late stage disease have shorter telomeres 

Patients with progressive disease were shown to have much shorter telomeres 

compared to patients who had a more stable disease course. Bechter et al, with the use 

of Southern hybridisation technique, showed that patients with Binet stage C had 

shorter overall survival rate as well as significantly shorter telomeres, compared to 

patients at Binet stage A (median 5.3kb vs. 6.6 kb respectively) (Bechter, Eisterer et al. 

1998). Lin et al confirmed previous results by using STELA technique and looking at 

telomere length of the sex chromosomes as well as chromosome 17, as shown in table 

16 (Lin, Letsolo et al. 2010). Interestingly, the use of high resolution technology 

revealed patients, at late disease stage, with complete absence of telomere (Lin, 

Letsolo et al. 2010). Other studies have also shown telomere length as an independent 

prognosis marker for transformation to Richter’s disease (Rossi, Lobetti Bodoni et al. 

2009). Therefore, patients with late-stage and aggressive disease have shorter 

telomeres.   
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Table 16: Summary of results from Lin et al (2010) comparing XpYp and 17p telomere length in 

patients at different Binet disease stage.  

Clinical stage Mean XpYp (kb) Mean 17p (kb) 

Binet stage A 5.1 4.8 

Binet stage B 3.8 4 

Binet stage C 2.3 3.1 

 

 

Telomere length and prognostic markers 

IgVH mutation status is an established marker for disease progression, as patients 

with late stage disease were shown to have unmutated IgVH status, whilst patients 

with mutated IgVH had a much better prognosis.  

 

Hultdin et al used southern blotting to compare telomere length between 27 patients 

with mutated and 34 with unmutated IgVH status and found a significant different 

between the 2 groups (5.4kb vs. 4.3kb respectively) (Hultdin, Rosenquist et al. 2003). 

Damle et al, using flow-FISH method, also found a significant different between 

mutated and unmutated IgVH patients (mean 4.4kb vs. 2.5kb respectively), and 

interestingly reported a correlation between the number of Ig V gene mutations and 

telomere length in CLL patients (Damle, Batliwalla et al. 2004). This was confirmed by 

Roos et al, in an extensive study of 152 patients, using RT-PCR technique, who also 

went on to show that patients with high level of CD38 expression (7% cut off used) had 

significantly shorter telomeres compared to patients with low CD38 expression 

(P<0.000) and patients with high level of ZAP70 expression (20% cut off used) had 

significantly shorter telomeres compared to patients with low levels of ZAP70 

expression (P<0.0001) (Roos, Krober et al. 2008). In addition, Roos et al also found an 

association between telomere length and genomic aberrations: Patients with either 11q 

or 17p deletion, targeting ATM or TP53, had shorter than the median telomere length, 

whilst patients with 13q deletion had longer than the median telomere length 

(significant P values, but median telomere length not given) (Roos, Krober et al. 2008). 

 

Therefore, the length of telomere has been shown to be different in patients grouped 

by different biomarkers, and short telomeres are linked with poor prognosis markers 

such as unmutated IgVH status and high levels of CD38 and ZAP70 expression. In 

addition, patients with poor prognosis deletions such as 11q and 17p have short 

telomeres, whilst patients with good prognosis 13q deletion have overall longer 

telomeres (Roos, Krober et al 2008).  
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Telomere length and survival/treatment 

A number of studies have linked short telomere to poor survival and short time to 

treatment (Hultdin, Rosenquist et al. 2003; Damle, Batliwalla et al. 2004). Rossi et al, 

using Southern blot analysis in a large cohort of CLL patients (n=191), showed that 

when a 5kb telomere length cut off was used, patients with short telomere had 

significantly shorter overall survival as well as shorter time to first treatment compared 

to patients with long telomere (Rossi, Lobetti Bodoni et al. 2009). Roos et al also 

showed poor survival and shorter time to treatment in patients with shorter than 

median telomere length (Roos, Krober et al. 2008).  

 

In conclusion, research has shown that patients with early stage disease and good 

prognosis marker are associated with significantly longer telomere length compared to 

patients with late-stage disease or with poor prognosis markers.  

 

4.1.6. Impact of short telomere in CLL disease 

progression 

Having discussed the presence of short telomere in patients with CLL, it is vital to 

understand the dynamics which occur at the telomeric level and look at how short 

telomeres occur in B-CLL cells as well as their consequence on the disease progression 

and genomic aberrations.  

 

Origin of short telomere in B-CLL cells 

Loss of telomere length in normal B cells is a result of cell division, as well as 

stochastic telomeric deletion, as suggested by Baird et al (Baird, Rowson et al. 2003). 

However, research has suggested that telomere length in B-CLL cells is pre-defined 

from the original clone (Michele Dal-Bo 2009).  

 

As discussed in the main introduction, research has suggested that B-CLL cells from 

patients with unmutated IgVH status arise from pre-germinal centre, whilst B-CLL cells 

from patients with mutated IgVH status arise from post-germinal centre (Hamblin 

2002). And since, telomere length is associated with the IgVH mutation status, it is 

suggested that differences in telomere length occurs prior to transformation into 

malignant lymphocytes (Dal-Bo, Bertoni et al. 2009). This would mean that telomere 

length seen in B-CLL cells would be pre-defined, i.e. patients with aggressive disease 

would have short telomere from the onset, rather than a result of prolific cell division.   

 

Weng et al have studied the length of telomere and the levels of telomerase at 

different stages of B-cell development and found that increase in telomerase activation 
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occurs as cells enter into the germinal centre but this decreases post-GC as memory B-

cells emerge with mutated IgVH but also long telomeres, necessary for their survival, 

and low telomerase activity, and thus low probability of tumour progression (Weng, 

Granger et al. 1997). Therefore, as summarised in figure 30, B-CLL cells with a pre 

germinal centre orgine have unmutated IgVH status as well as short telomeres, whilst 

B-CLL cells from post-GC or memory lymphocyte origin have mutated IgVH as well as 

long telomeres. Interestingly, Trentin et al showed differences in telomerase activity 

between stable and progressive patients just one year after diagnosis (Trentin, Ballon 

et al. 1999). This confirmed the idea that differences in telomere length as well as 

telomerase activity between good and poor prognosis patients are present in 

lymphocytes prior to tumour transformation.   

 

 

Figure 29: B-CLL cells of patients with short telomere, high telomerase and unmutated IgVH 

status arise from pre-GC and are associated with poor prognosis whilst B-CLL cells of patients 

with long telomeres, low telomerase activity and mutated IgVH status arise from post-GC and are 

associated with good prognosis. (1) Trentin 1999 

 

 

The impact of telomere dysfunction on disease progression 

The progress from normal B cell to a tumour B-CLL cell has been suggested to occur in 

two steps, M1 and M2 (Shay and Wright 2005). A primary aberration, either deletion or 
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mutation, will cause proliferative cell division (Pepper and Baird 2010) which will result 

in loss of telomere length and as a result, B cells will enter into a senescent stage, 

termed M1, characterized by cell cycle arrest but low level of apoptosis. From then, it 

has been suggested that loss of DNA damage induced apoptosis pathways (P53) or cell 

cycle checkpoints (p16/Rb) would cause cells to enter a second stage, termed M2, in 

which further rounds of cell division can occur (Shay and Wright 2005). As a result, 

telomere length reaches to quasi non-existence and cells enter into “crisis”. Loss of 

telomere length causes fusions of the ends of chromosomes which results in genomic 

instability fuelled by breakage of anaphase-bridges, as observed in CLL patients with 

aggressive disease stage (Lin, Letsolo et al. 2010). Therefore, telomere dysfunction in 

B-CLL cells drives disease progression by causing genomic instability (Lin, Letsolo et al. 

2010; Pepper and Baird 2010). This has been summarised in the figure 31. 

 

It is important to note that this theory has been contested (Jahrsdorfer and Weiner 

2008). Research has for instance shown that patients with poor prognosis have a 

higher lymphocyte proliferative rate compared to good prognosis patients (Messmer, 

Messmer et al. 2005; Longo, Laurenti et al. 2006). This would suggest that genomic 

aberrations drive extensive cell division and cause as a result shortening of telomere. 

Hence, telomere length would be a consequence rather than a cause for disease 

progression. It is clear that further research is essential in order to understand the 

impact of short telomere in CLL disease.  

 

 

 

Figure 30: The significant involvement of telomere dysfunction in the progress from early stage 

to aggressive CLL disease 
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The role of telomerase in CLL disease progression 

As mentioned above, patients with unmutated IgVH status and aggressive CLL disease 

have been shown to have high levels of telomerase activity as well as short telomeres. 

However, knowing the role of telomerase, the presence of short telomeres in cells with 

elevated activity of the enzyme is conflicting.  Lin et al have suggested that although 

telomerase is unregulated it is not sufficient to maintain telomere length (Lin, Letsolo 

et al. 2010). Interestingly, Remes et al as well as other reports have suggested that 

there is no correlation between telomere length and telomerase activity in B-CLL, 

especially in very aggressive disease (Remes, Norrback et al. 2000; Hultdin, Rosenquist 

et al. 2003). Finally, it has been shown that telomerase is not a lone element in 

telomere repair but rather a number of complex proteins are required to ensure 

telomere maintenance, such as the shelterin complex (amongst which are TRF1 and 

TRF2) as well as other factors (Poncet, Belleville et al. 2008). Poncet et al have shown 

low level of telomeric proteins in B-CLL cells compared to normal B cells, which 

suggests that whilst telomerase may be elevated in poor prognosis cases with short 

telomere, defects in telomeric proteins may cancel the effects of telomerase on 

telomere repair (Poncet, Belleville et al. 2008). In addition, Augereau et al showed 

down-regulation of shelterin proteins in newly diagnosed CLL patients (Augereau, 

T'kint de Roodenbeke et al. 2011). These studies highlight the role of a number of 

proteins, other than telomerase, in telomere maintenance, and hence explain how B-

CLL cells can have short telomere at the same time as high telomerase activity.    

 

4.1.7. Conclusion 

In conclusion, the absence of telomerase in somatic cells results in age-related loss of 

telomere followed by apoptosis. However, loss of telomere in lymphocytes with 

aberrant DNA damage pathway results in genomic instability and chromosome 

rearrangement which drives disease progression. Results have shown that telomere 

length is defined by B cell origin, where short telomere are shown in pre-germinal 

centre B cell (unmutated IgVH status) whilst long telomere are present in post-GC 

lymphocytes (mutated IgVH), and the former is associated with poor prognosis.    

 

4.1.8. Aims 

The aim of this study is to look at telomere length at two different time points and in 

relation to the various prognosis marker, as well as in correlation with genomic 

aberrations, clinical data and WBC count in order to not only confirm its ability to 

predict disease outcome and genomic instability, but also to explore its role in CLL 

progression. 
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4.2. Methods 
 

4.2.1. Telomere length was detected using STELA 

technique 

A maximum of 300ng/ul of DNA of each of the 29 patients at two different time points 

were sent to Dr Duncan Baird at the University of Cardiff to analyse telomere length 

using their newly developed Single Telomere Length Analysis  technique (STELA), a new 

PCR-based method to measure telomere length at higher resolution than previous 

techniques (Baird 2005).  

The DNA was first ligated in presence of a telorette linker, DNA ligase and ligation 

buffer. The ligated DNA was then diluted and multiple PCRs were carried out in 

presence of telomere-adjacent and teltail primers, NTPs, Tris-HCL, (NH
4
)

2
SO

4
, Tween-20, 

MgCl
2
 and a 25:1 mixture of Taq and Pwo polymerase. PCR was done in the following 

conditions: 25 cycles of 94°C for 15s, then 65°C for 30s and finally 68°C for 10 

minutes.   

DNA fragments were then resolved by agarose gel electrophoresis (0.5%Tris-acetate-

EDTA) and were detected by Southern hybridisation with 32P-labelled telomere adjacent 

probes generated by PCR using primers XpYpE2 and XpYpB2.  The hybridised 

fragments were detected by a phosphorimager (Molecular Dynamics Storm 860) and 

the molecular weight of the fragments was calculated using the Phoretix 1D quantifier.   

The mean XpYp as well as 17p telomere length of each sample at each time point, in 

Kb, was received on an excel sheet.  
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!"#" Results$
4.3.1. Telomere length overview 

 

Telomere length at presentation (PT) and follow up (FU) 

Telomere data of XpYp and 17p at PT was available on 24 patients. As summarised in 

table 17, the mean XpYp telomere length at PT was 4kb compared to 3.7kb at FU 

whilst the mean 17p telomere length at PT as well as FU was 4 kb.  

 

Table 17: XpYp and 17p telomere length mean, median and range at Presentation and Follow up 

Telomere length XpYP (PT) XpYP (FU) 17p (PT) 17p (FU) 

Mean (kb) 4 3.7 4 4 

Median (kb) 3.7 4 3.5 3.7 

Range (kb) 2.3 - 7.8 1.4 – 5.9 2.2 - 7.2 2.2 - 7.3 

Standard deviation 1.44 1.39 1.31 1.44 

 

 

No correlation was found between telomere length and the age of 

patients 

As telomere shorten over time, it was important to establish any correlation with 

telomere length. It was thus shown that in this cohort, telomere length at either PT or 

FU was not proportional to age (Pearson’s correlation; P=0.6 and P=0.8 at PT and FU 

respectively). In addition, the extent of telomere erosion was not proportional to the 

time elapsed between PT and FU (Pearson’s correlation; P=0.7 and P=0.2 for XpYp and 

17p respectively) (figure 32), confirming that loss of telomere is not age-related.  
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Figure 31: Graph showing XpYp telomere length at PT and FU in relation to time elapsed 

between the two time points. The Y axis on the left represents telomere length in kb for PT 

samples, each represented by full black circles. The Y axis on the right represents telomere 

length in kb for FU samples, each represented by red squares. The distance between the PT and 

FU sample (X axis) represents time, in months between both samples. No correlations was found 

between telomere erosion and time between two samples (P=0.2) 

 

4.3.2. Telomere length and disease status 

Telomere length has been shown previously to be much shorter in patients with 

progressive CLL disease. 

   

At both time points (PT and FU), patients with progressive disease had a shorter mean 

XpYp and 17p telomere length but also the shortest as well as the longest telomere 

length (FU data shown in table 18). However, as shown in table 18, at FU, telomere 

length of stable cases was longer and telomere length of progressive cases was 

shorter than the median telomere length of the entire cohort (XpYp: 4kb and 17p: 3.7). 

Nonetheless, no correlation was found between disease status and telomere length at 

either time (T-Test: XpYp at PT, P=0.6; XpYp at FU, P=0.1; 17p at PT, P=0.7; 17p at FU, 

P=0.3).  
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Table 18: Comparing mean, median and range of XpYp and 17p telomere length at FU between 

stable and progressive patients. 1P=0.1; 2P=0.3 

Telomere 

length 

XpYp (FU) 

Stable 

XpYp (FU) 

Progressive 

17p (FU)  

Stable 

17p (FU) 

Progressive 

Mean (kb) 4.6 3.5 4.3 3.9 

Median (kb) 4.3 3 4.2 3.1 

Range (kb) 2.1 – 5.8 1.4 – 5.91 2.8 – 6.4 2.2 – 7.32 

 

  

4.3.3. Telomere length and prognostic markers 

Previous studies have shown correlation between telomere length and various 

prognosis markers (Roos, Krober et al. 2008). This section will investigate telomere 

length in relation to biomarkers, disease stage and genomic aberrations.  

 

Telomere length was associated with IgVH mutation and CD38 

expression 

Similar to what has been noted in previous research, patients with unmutated IgVH 

mutation status were associated with short telomere, both XpYp and 17p, at each time 

point, PT (T-Test; P=0.0001 and P=0.013 respectively) and FU (T-test; P=0.004 and 

P=0.03 respectively). At PT, patients with unmutated IgVH status had a mean XpYP 

telomere length of 2.7kb compared to 4.5kb in mutated IgVH patients. Similar results 

were shown at FU (2.5kb vs. 4kb respectively).  

 

Furthermore, patients with high CD38 expression had shorter XpYp (T-Test, P=0.05) 

and shorter 17p (T-Test, P=0.05) telomere length at PT compared to CD38 negative 

patients. This was also shown at FU (T-test; P=0.04 XpYp and P=0.08 17p). At PT, 

patients with CD38+ had a mean XpYP telomere length of 3.1kb compared to 4.3kb in 

CD38-. Similar results were shown at FU (2.9kb vs. 4kb respectively). 

 

IgVH mutation status and CD38 expression were therefore shown to be good markers 

for short telomere throughout the disease course.  

 

Telomere length was not linked with clinical stage or progression to 

late stage disease 

Since patients at PT have either mBL or early disease stage A0, telomere length at PT 

cannot be analysed in relation to disease status.  

 

When looking at telomere length at FU, in accordance with what was previously 

suggested in various studies (Lin, Letsolo et al. 2010), patients with clinical stage B/C 
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had the shortest telomere (table 19). However, unexpectedly, patients with mBL or 

stage A0 at FU also have relatively short telomeres, and therefore, telomere length was 

not statistically linked with disease stage (T-test; P=0.2 and P=0.4 respectively).  

 

Table 19: Comparing XpYp and 17p mean and range (in kb), at FU, between patients with either 

early stage mBL/A0 disease, stage A1/A2 or late stage disease B/C. 1P=0.2; 2P=0.4 

Clinical stage 

at FU 

XpYp (FU) 

Mean 

XpYp (FU) 

Range 

17p (FU) 

Mean 

17p (FU) 

Range 

mBL/A0 (12) 3.85 2.1 - 5.8 4.03 2.5 – 6.4 

A1/A2 (6) 4.19 1.7-5.9 4.74 2.2 – 7.3 

B/C (8) 3.191 1.4 – 5.4 3.452 2.5 - 5.3 

 

 

Finally, patients with the shortest XpYp and 17p telomere at PT were shown to 

progress to advanced clinical stage, from mBL to stage B/C (table 20).  However, stable 

patients who remained at stage mBL and A0 also had short telomeres and therefore, 

telomere length at PT could not predict progression to aggressive clinical stage. 

Interestingly, patients who progressed from stage A0 to A1 or A2 had the longest 17p 

telomere at FU whilst patients who remained at stage A0 or A had the shortest 17p 

telomere at FU. Case studies in the next section will give more details on these 

patients.  

 

Table 20: Comparing XpYp and 17p mean (in kb), at PT and FU, between patients who either 

remained at an early stage disease or who progressed to late stage disease 

Clinical stage 

PT ! FU 

XpYp (PT) 

Mean 

XpYp (FU) 

Mean 

17p (PT) 

Mean 

17p (FU) 

Mean 

mBL          !     mBL/A0 (5) 3.9 4 4.1 4 

A/A0        !     A/A0       (6) 4.4 4.1 3.6 2.9 

A0             !     A1/A2    (4) 4.9 4.6 6.7 6.4 

mBL-A1   !     B/C         (9) 3.5 3 3.1 3 

 

 

Telomere length was not associated with 13q deletion size 

Patients with small 13q deletion had an average XpYp telomere of 4.1kb at PT and 

4.2kb at FU while patients with large 13q deletion had an average XpYp telomere of 

4.6kb at PT and 4.3kb at FU. However, as shown in figure 33, there was a notable 

difference in the median XpYp telomere length between patients with different 13q 

size. However 13q deletion size was not statistically linked with XpYp telomere at 
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either time point (T-Test, P=0.5; P=0.4, respectively). A similar result was shown for 

17p deletion (T-test, P=0.8; P=0.4, respectively) 

 

 

Figure 32: Box plot showing XpYp telomere length (Y axis, in kb) in patients with small 13q 

deletion or large 13q deletion. The circle represents outliers (‘2’ is patient ID 5 and ‘16’ is 

patient ID 23) 

 

Telomere length was associated with 11q/17p aberration 

Patients with either 11q or 17p aberrations were shown to have significantly shorter 

telomere at FU, but not at PT. Patients with poor prognosis aberration had an average 

XpYp and 17p telomere of 2.81kb and 2.65kb at FU compared to an average of 3.95kb 

and 4.34kb in the rest of patients, suggesting that XpYp as well as 17p telomere at FU 

was linked with poor prognosis aberration (T-Test P=0.08 and P<0.0001 respectively).  

However, at PT, no significant association was shown between XpYp or 17p telomere 

and poor prognosis aberration (T-Test P=0.4 and 0.2 respectively) 

 

Summary of results 

From the above result, it was found that telomere length was associated with IgVH 

mutation status, CD38 expression and poor prognosis aberration 11q/17p. In 

addition, patients with progressive disease or with late stage disease B/C had the 

shortest telomere length, although this was not significantly different from stable or 

early stage disease. Finally, a large but not significant, difference in telomere length 

was noted between patients with small and large 13q deletion size.   
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4.3.4. Telomere length and clinical progression 

Rossi et al suggested telomere length as an independent predictor of treatment 

requirement in CLL patients (Rossi, Lobetti Bodoni et al. 2009). This section will thus 

investigate telomere length in relation to treatment, time to first treatment (TTFT) as 

well as WBC count.  

 

Telomere length was linked with TTFT but not with requirement for 

treatment  

Telomere length at PT or FU was not associated with treatment, as both treated and 

untreated patients had very short XpYp and 17p telomere at both time points: XpYp 

mean at PT for treated and non treated was 3.8kb and 3.7kb respectively, whilst at FU 

the telomere length was 3.5kb and 3.8 respectively (Mann Whitney, P-.04 and P=0.6 

respectively). A similar result was found for 17p telomere length (PT: 3.8kb vs. 4.2kb. 

FU: 3.9kb vs. 4.2kb, Mann Whitney P=0.4 and P=0.6 respectively)  

  

However, XpYp telomere length at PT as well as at FU was shown to correlate with Time 

to first treatment (TTFT): Patients with the shortest XpYp telomere length had shorter 

TTFT treatment (Pearson Correlations; P=0.012) (figure 34) and this was also shown as 

a trend for 17p telomere (Pearson Correlation; P=0.06).  

 

When telomere length at FU was looked at in relation to TTFT, it was found that only 

short XpYp telomere length had a trend towards shorter TTFT whilst no association 

was found between 17p telomere and TTFT (Pearson Correlation; P=0.06 and P=0.3 

respectively).   
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.  

Figure 33: XpYP telomere length at PT (Y axis, in kb) against time to first treatment (X axis, in 

months) where each circle represents one patient.  Patients with short XpYp telomere length 

have shorter TTFT. R2 linear=0.44 

Telomere length and White blood cell count  

Telomere length was investigated in relation to the rate of WBC count increase per 

month and was found to predict the clinical symptom: Patients with short XpYp 

telomere at PT as well at FU was associated with a high rate of WBC count rise (Pearson 

correlation; P=0.043 and P=0.044 at PT and FU respectively) (figure 35). There was, 

however, no difference in the rate of WBC count increase between patients with short 

or long 17p telomere.  
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Figure 34: XpYp telomere length at PT (Y axis, in kb) against the rate of WBC count increase (X 

axis, in x10/L/month), where each circle represents one patient. Patient ID 30 was not included 

(outlier). 

 

4.3.5. Telomere length and genomic aberration 

Short telomeres have been previously shown to cause genomic instability in CLL 

patients. This section will examine telomere length at the two time points (PT and FU) 

in relation to genomic complexity, translocations and terminal aberrations 

 

Telomere length at PT is not linked with genomic complexity at PT 

This cohort found no correlation between telomere length and complexity (!3 CNA) at 

PT: Patients with a complex genome at PT had a mean XpYp telomere length of 3.5kb 

compared to 4.2kb in patients without a complex genome (T-Test P=0.3). A similar 

result was shown for 17p telomere (3.9kb vs. 4.1kb respective, T-Test, P=0.8) 

 

In addition, there was no correlation between the number of CNA and the size of XpYp 

or 17p telomere length (Pearson correlation, P=0.3 and P=0.7 respectively).  

 

This was due to a number of patients with 1 or no aberration at PT who had shorter 

than average telomere, whilst a number of patient with a complex genome at PT who 

had longer than average telomere.  

 

Nevertheless, patients with a sole 13q deletion at PT did have a trend towards longer 

telomere compared to the rest of the cohort (T-Test; P=0.08 for XpYP and 

MannWhitney; P=0.07 for 17p).  
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Telomere length at PT does not predict genomic evolution 

Having shown no association between telomere length at PT and genomic aberration at 

the same time, genomic evolution was looked at to evaluate the impact of short 

telomere on the genome over time.  

 

Telomere length, XpYp or 17p, was not associated with genomic evolution (T-Test; 

P=0.07 for XpYp and P=0.9 for 17p). Surprisingly, patients who go on to acquire 

secondary aberrations had longer XpYp telomere at PT compared to patients with a 

more stable genome (table 21).  

 

 

 

 

Table 21: The mean, median and range of XpYp and 17p telomere length of patients with or 

without genomic evolution showed no association between telomere length at PT and genomic 

evolution. 1P=0.07; 2P=0.9 

Telomere 

length 

XpYp No 

evolution 

XpYp Genomic 

evolution 

17p NO 

evolution 

17p Genomic 

evolution 

Mean (kb) 3.6 4.7 4 4 

Median (kb) 3.5 4.7 3.4 3.6 

Range (kb) 2.3 - 5.4 2.5 – 7.81 2.2 – 7.2 2.3 – 6.22 

 

Telomere length at PT does predict scale of genomic evolution 

When looking solely at patients who undergo genomic evolution, it became clear that 

patients with a larger scale evolution have much shorter XpYp telomere at PT compare 

to patients who have a much smaller evolution: Patients who acquired 3 or more CNA 

had a median XpYp telomere length of 3kb whilst patients who acquired less than 3 

CNA had a median of 5.3Kb XpYp telomere length (T-Test; P=0.04).  

The size of deletion acquired through genomic evolution was also linked with XpYp 

telomere length as patients with the shortest XpYp telomere at PT acquired the largest 

secondary aberrations (Pearson’s Correlation, P=0.02). (figure 36).  

 

However, this was not significantly different with 17p telomere (T-test; P=0.1 – Median 

of 3.5kb for 3 or more CNA acquired compared to 4.4kb).  
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Figure 35: Total deletion size of secondary aberration (Y axis, in base pair) against XpYp 

telomere length at PT (X axis, in kb), were each circle represents one patient with genomic 

evolution. Patients with the shortest telomere at PT acquire the largest secondary aberration 

(P=0.04). R2=0.54 

 

Telomere length at FU and complexity 

When looking at the telomere length at the second time point (FU) in relation to 

genomic complexity, it was found that there was no association between the two, as 

patients with complex genome had a mean XpYp telomere of 3.9kb compared to a 

mean of 3.5kb in patients with less than 3 CNA (Mann Whitney, P=0.4). Similar result 

was found with 17p telomere (3.9kb vs. 4kb, Mann Whitney; P=0.4).  

 

However, when the number and size of CNA was investigated, it was found that 

patients with short XpYp telomere length had a higher number of CNA as well as larger 

total deletion size compared to the rest of the cohort (Pearson’s Correlation: P=0.06 

and P=0.02 respectively), although this was not true for 17p telomere length 

(Pearson’s Correlation: P=0.1 and P=0.4 respectively).  

 

Telomere length is linked with terminal aberrations 

Since loss of telomere leads to end-chromosome fusion, it was suggested that short 

telomeres could be linked with terminal aberrations. These were defined as copy 

number changes targeting either end of chromosomes.  

 

A total of 7 patients were found to have terminal aberrations at FU which included 

deletions of 2p, 3q, 8p, 9p, 17p, 18p and 20p as well as gain of 13q. 

 

A significant different in telomere length at FU was noted between patients with 

terminal aberrations (mean 2.9kb) and the rest of the cohort (mean 4kb) (T-Test, 
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P=0.03). However, as shown in table 22, this was not significant when looking at 17p 

telomere length (Mann Whitney, P=0.1).   

 

Table 22: Mean, median and range of XpYp and 17p telomere length at FU in patients with 

terminal aberrations and patients without terminal aberrations (rest of cohort). A significant 

difference was noted in XpYp but not in 17p. 1P=0.03; 2P=0.1 

Telomere 

length (FU) 

XpYp rest of 

cohort (FU) 

XpYp Terminal 

aberration (FU) 

17p rest of 

cohort (FU) 

17p Terminal 

aberration (FU) 

Mean (kb) 4 2.9 4.2 3.2 

Median (kb) 4.3 2.9 4 3 

Range (kb) 1.7 – 5.9 1.4 – 4.91 2.2 – 7 2.5 – 7.32 

 

 

Telomere length was not associated with translocation 

In this cohort, patients with an unbalanced translocation had a mean XpYp telomere 

length of 3.3kb, below the average of the entire cohort, compared to 3.9kb in the rest 

of patients, which was above the average of the entire cohort. Nonetheless, the 

difference in telomere length between patients with and without unbalanced 

translocation was not significant (T-Test P=0.2). 

 

There was also no association between unbalanced translocations and the length of 

17p telomere (mean 4kb vs. 4kb).  

 

Summary of results 

Short telomere length at FU but not at PT was linked with genomic instability when 

looking at copy number changes, but not when looking at unbalanced translocations. 

In addition, short telomere did not predict genomic evolution, although a significant 

difference in telomere length was noted between patients who acquire less than 3 and 

patients who acquire more than 3 CNAs. Finally, XpYp but not 17p telomere length was 

shown to be linked with terminal aberrations in CLL patients.  

 

 

4.3.6. Telomere erosion  

Telomeres were previously shown to be unstable over the course of the disease 

(Brugat, Nguyen-Khac et al. 2011), with the occurrence of telomere loss or ‘erosion’, 

which was linked with chromosome fusion and genomic instability (Lin, Letsolo et al. 

2010). This section will aim to investigate telomere erosion between PT and FU sample 



     112 

in relation in relation to prognostic markers, genomic aberration as well as clinical 

features (treatment and WBC count).  

Overview 

A look at telomere erosion in our cohort shows that 16 patients have a shorter XpYp 

and 14 patients have a shorter 17p telomere, whilst 8 and 10 patients have longer 

XpYp and 17p telomere respectively at the second time point (FU). The average loss of 

XpYp telomere was 0.38kb whilst the average loss of 17p telomere was 0.26kb (table 

23). 

 

Table 23: The mean, median and range of XpYp and 17p telomere loss (in kb) in this cohort  

Telomere length XpYP erosion 17p erosion 

Mean (kb) - 0.38 - 0.26 

Median (kb) - 0.33 - 0.08 

Range (kb) (- 1. 89) – (+1.84) (- 1.49) – (+0.65) 

 

 

Progressive but not stable patients lose telomere length over time 

Most patients with gain of telomere are stable cases whereas a majority of patients 

with loss of telomere are progressive cases (66% of stable cases gain telomere whilst 

86% of progressive have telomere erosion). In addition, the largest loss of XpYp is seen 

in progressive patients, whilst the larger gain of XpYp is seen in a stable case. The 

median XpYp as well as 17p telomere erosion is loss of 0.5 Kb in progressive cases but 

no change (0 Kb) in stable cases (figure 37). Telomere erosion was thus shown to be 

associated with the disease status: Mann Whitney; P=0.06 for XpYp and P=0.02 for 17p 

(The outlier seen in the figure, patient 23, was no included and will be discussed in 

telomere case studies).  
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Figure 36: Box plot shows difference in 17p telomere erosion (Y axis, in kb) between stable and 

progressive patients. Outlier “16” is patient ID 23, a stable case with large telomere erosion. 

 

Telomere erosion was not associated with biomarkers 

Telomere erosion was not associated with prognostic markers IgVH status or CD38 

expression. Patients with unmutated IgVH status had an average loss of 17p telomere 

of 0.35kb compared to a loss of 0.22kb in patients with mutated IgVH status (T-Test, 

P=0.4). A similar result was found with XpYp telomere (loss of 0.22kb vs. loss of 

0.45kb, T-Test, P=0.6).  

 

However, when looking at CD38 expression, a surprising difference was noted, where 

patients with positive CD38 expression had on average no change in 17p telomere 

length whilst patients with negative CD38 expression had an average loss of 0.34kb. 

Nonetheless, 17p telomere loss was not significantly associated with CD38 expression 

(T-test, P=0.07). A similar result was found for XpYp telomere (Mean loss of 0.2kb vs. 

loss of 0.4kb respectively; T-test; P=0.5) 

 

Telomere erosion was not associated with progressive disease stage  

As noted in table 24, patients who remained at mBL or CLL stage A0 had on average 

acquired XpYp and 17p telomere length, whilst patients who progressed to late stage 

disease B or C had lost XpYp and 17p telomere. However, patients who remained at 

early stage A/A0 also lost telomere length, and thus XpYp or 17p telomere erosion was 

no associated with progression in disease stage (T-Test P=0.9 and P=0.8 respectively). 
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Table 24: The average XpYp and 17p telomere loss in patients grouped by disease stage 

progression  

Clinical stage 

PT ! FU 

XpYp 

difference 

Mean 

17p difference 

Mean 

mBL          !     mBL/A0 (4) +0.39 + 0.18 

A/A0        !     A/A0       (6) - 0.63 - 0.51 

A0             !     A1/A2    (4) - 0.58 - 0.12 

mBL-A1   !     B/C         (8) - 0.32 - 0.21 

 

 

Telomere erosion was associated with poor prognosis deletions but 

not complexity 

When telomere erosion was analysed in relation to different aberrations with prognosis 

values, it was found that telomere erosion was associated with 13q deletion: Patients 

with large 13q deletion had an average loss of XpYp and 17p telomere length of 0.9 kb 

and 0.6kb respectively while patients with small 13q deletion had on average the same 

XpYp telomere and gained an average 0.1kb of 17p telomere (0.1kb). Patients with 

large 13q deletion were thus associated with telomere erosion (T-Test; P=0.01 for 

XpYp and P=0.007 for 17p).   

 

In addition, it was interesting to note that telomere erosion on 17p but not XpYp was 

associated with aberration of TP53 or ATM: Patients with a poor prognosis aberration 

had an average loss of 0.68kb compared to 0.13kb in the rest of the cohort (Mann 

Whitney; P=0.04). A difference in XpYp telomere erosion was also noted between 

patients with and without poor prognosis aberrations, although this was not significant 

(average loss of 0.74kb vs. 0.28kb respectively, Mann Whitney P=0.1) 

 

Finally, in this cohort, it was found that patients with a complex genome at FU had a 

higher than average loss of telomere length (0.5kb of XpYp and 0.3kb of 17p) while 

patients without a complex genome had a much lower than average loss of telomere 

length (0.01kb of XpYp and 0.1kb of 17p). Nonetheless, the difference in telomere loss 

between patients with and without complex genome was not significant (T-test, P=0.3 

for XpYp; P=0.5 for 17p).  

 

Telomere erosion was not linked with treatment 

It was interesting to note that patients who received treatment between PT and FU had 

on average no difference in 17p telomere compared to an average loss of 0.33kb in 

patients who did not receive treatment. A similar result was shown with XpYp 

telomere, where treated patients had a much smaller telomere erosion compared to 
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patients who weren’t treated, although in both cases, treatment was not significantly 

associated with loss of telomere (T-Test, P=0.8 and P=0.3 respectively).  

 

In addition, XpYp or 17p telomere loss was also not associated with TTFT (Pearson 

correlation P=0.4 and P=0.67 respectively).  

 

Telomere erosion was associated with genomic evolution 

Short telomeres have been found to cause genomic instability, and thus it is suggested 

that telomere erosion would be linked with complexity as well as genomic evolution, 

since significant loss of telomere would drive secondary aberrations.    

 

In this cohort, telomere erosion was shown to be linked with genomic evolution: 

Patients with large telomere erosion on XpYp and 17p were more likely to have 

acquired secondary aberrations (T-Test; P=0.004 for XpYp and P=0.04 for 17p) 

compared to the rest of the cohort (table 25) 

Table 25: Mean, median and range of loss of XpYp and 17p telomere length (in kb) between 

patients with and without genomic evolution.  

Telomere 

length 

XpYp No 

evolution 

XpYp Genomic 

evolution 

17p NO 

evolution 

17p Genomic 

evolution 

Mean (kb) 0 - 0.9 0 - 0.5 

Median (kb) 0 - 0.8 0 - 0.5 

Range (kb) (- 0.5) – (+1.8) (- 1.9) – (+0) (- 0.7) – (+0.7) (- 1.5) – (+0.5) 

 

Furthermore, patients with a gain of translocation, balanced and unbalanced, at FU had 

undergone telomere erosion on 17p but not XpYp, and statistically, translocation at 

follow up was associated with telomere erosion on 17p but not XpYp (Mann-Whitney, 

P=0.1 for XpYp and P=0.04 for 17p). The median telomere loss of 17p was 1.2kb in 

patients who had acquired a translocation; whilst the rest of the cohort had a median 

loss of 17p telomere of 0.03kb. A large difference was also noted in the XpYp erosion 

between the two groups (loss of 1.7kb and loss of 0.3kb respectively) despite this not 

being statistically significant.  
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4.4. Case studies 

The results from the above statistical analysis would be difficult to interpret as 

conclusive due to the very small cohort of patient. Therefore, this study also looked at 

patients individually to investigate the role of telomere in genomic instability and 

disease progression. Case study will also explain why a number of results noted above 

were unexpectedly insignificant, as this study will uncover some rare cases of short 

telomere in stable cases and long telomeres in progressive patients (summarised in 

table 26). 

 
4.4.1. Stable cases have long telomere 

Stable patients were shown to have longer than average telomere, without any erosion 

between PT and FU, as witnessed in patients 10, 19, 21 and 22. This was true even 

when patients had an unbalanced translocation, such as patient 8, or telomeric 

aberrations such as patient 25. The latter’s long telomere despite a complex genome 

with trisomies of chromosome 12, 18 and 19 can be explained when looking at its 

karyotype data (49,XX,+12,+18,+19 [7]/46,XX [23]) which reveals a large population of 

cells with a normal genome, and since telomere length is measure as a mean from a 

population of  cell it can be speculated that the population with a normal genome 

would skew the telomere length towards a long telomere result. Finally, patient 1 also 

has relatively long telomere, although large telomere erosion is seen between PT and 

FU, which coincides with genomic evolution (gain of a larger deletion of 13q as well as 

biallelic deletion of MDR region).  

 

4.4.2. Stable cases can also have short telomeres 

However, two stable cases have shown to have very small telomere: Patient 23, who 

has short telomere at FU following large telomere erosion, acquires an unbalanced 

translocation. And, patient 86 has very short telomere at PT and short 17p telomere at 

FU (as patient undergoes XpYp gain of telomere between the two time points), has a 

balanced translocation as well as deletion of GSTT1 at PT, a gene shown to be linked 

with short telomere (Broberg, Björk et al. 2005). It will be interesting to follow the 

disease progression in these patients. 

 

4.4.3. Progressive cases have short telomeres linked with genomic 

instability 

Progressive cases, with a complex genome, telomeric aberrations, deletion of TP53 or 

ATM, genomic evolution as well as unbalanced translocations, such as patients 5, 28, 

30 and 247, have very short telomere and undergo erosion between PT and FU. This 

was true even for patients who become somewhat “stable” after rounds of treatments 

but still acquired new aberrations, such as patient 7 and 9 who despite having a stable 
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WBC count, undergo genomic evolution, aberration on 17p and 11q (patient 9), gain of 

unbalanced translocation (patient7) and have very short telomere at FU in addition to a 

large erosion.  

 

4.4.4. Progressive cases, despite complex genomes, can have long 

telomeres 

However, not all progressive patients with unstable genome had short telomeres: 

Patient 29 is a progressive case with a complex genome, including 2 telomeric 

aberrations, but has long telomeres and no erosion. Patient 249 is a progressive case 

with unbalanced translocation and patient 250 is an aggressive CLL case with the 

largest genomic evolution, including gain of telomeric aberration, but both have long 

telomere and no erosion. Finally patient 35 has long telomeres at FU (PT n/a) despite a 

large 13q deletion which undergoes genomic evolution, in addition to an unbalanced 

translocation.  

 

4.4.5. Progressive cases have short telomeres even without an 

unstable genome.  

Furthermore, progressive cases even without complex genome have short telomeres. 

Patient 15 has short 17p telomere and undergoes erosion on XpYp whilst genomic 

data reveal an unbalanced translocation and acquisition of new aberrations at FU. 

Patient 16 has short telomere at both time points which coincides with telomeric 

aberrations on chromosomes 2 and 18. Patient 14 had short telomeres at FU as well as 

trisomy 12. Patient 248 has short telomere at PT and FU and undergoes large 17p 

telomere erosion, although genomic data reveal a sole large 13q deletion (>12Mb). 

Patient 18 has shorter than the median telomeres at PT, despite having only a small 

13q deletion. Even patient 11 has a very short telomere at PT despite a normal 

genome.  

 

4.4.6. Progressive cases with a stable genome have long telomeres 

Nonetheless, patient 12 was shown to have a normal genome and relatively long 

telomere despite an aggressive CLL disease. In addition, patient 34 also had long 

telomeres and a sole 13q deletion but aggressive disease. Finally patient 32, despite 

large telomere erosion, had relative long telomere at both time points.  



Table 26: Telomere length, clinical data and genomic aberration of all 29 patients in the cohort. 1S=Stable;P=Progressive; 
2M=Mutated;U=Unmutated;3 in Kb, bold=shorter than median;  4in months; nt=not treated; 5in x109/L/month; T=treated between PT and FU; 6 

minus=loss of telomere; 7del=deletion; enh=gain; 17p=deletion on chr 17 including P53; 11q=deletion on chr 11 including ATM; 13q=deletion 

on 13q MDR; (s)=smaller than 2Mb; (L)=larger than 2Mb; x2=including a small homozygous region; (h)= homozygous 13q deletion; 

Tri=trisomy; (2)=number of deletion on the chromosome; (g)= smaller than 0.1Mb, targeting gene, N=normal; Bold=only at FU; 8B=Balanced 

translocation; U=unbalanced translocation; Bold=only at FU 

 

ID CLL 

status1 

IgVH/ 

CD382 

XpYp 

(PT)3 

17p 

(PT)3 

TTFT 

after 

PT 4 

WBC 

rise5  

XpYp 

(FU)3 

17p 

(FU)3 

XpYp 

erosion3, 

6 

17p 

erosion3,6 

Genomic aberration7 Trans 

Location8 

1 S M/- 5.14 4.92 nt 0.52 4.31 5.08 -0.83 0.16 13q(s); 13q(L)x2  

5 P M/+ 3.46 2.16 52 T 2.87 2.82 -0.60 0.65 Tri12; Tri18; Tri19; 

13q(L); del3(2); del9(2) 

 

7 P M/- 4.68 3.85 nt 0.00 2.98 2.62 -1.70 -1.23 13q(L); 13q(2)x2; 

del18; LOH13q 

B, U 

8 S M/- . . nt 0.00 4.10 4.58 . . 13q(s); del16(g) U 

9 P M/- 6.84 4.40 nt 0.00 5.61 2.93 -1.23 -1.47 13q(L)x2; 11q; 

LOH17p 

 

10 S M/- . . nt 0.04 4.28 3.57 . . 13q(s)  

11 P M/- 2.79 3.37 46 T 3.06 3.48 0.26 0.11 N  

12 P M/- 5.06 3.12 104 0.95 . . . . N  

14 P U/+ 3.30 4.06 73 0.00 2.82 4.10 -0.47 0.04 Tri12  

15 P M/+ 3.54 3.06 74 T 3.01 2.97 -0.53 -0.09 13q(L); del2; enh13; 

enh2; del13(g); 

del15(g) 

U 
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16 P U/+ 2.54 3.28 35 4.21 2.70 3.26 0.16 -0.02 del2p; del18p  

18 P U/- 2.26 2.47 31 5.26 . . . . 13q(s)  

19 S M/- 4.06 4.22 nt 0.13 4.13 4.23 0.07 0.01 (h)13q(s); LOH13q(2)  

21 S M/- 5.27 3.35 nt 0.98 5.28 3.89 0.00 0.54 13q(s); del21(g); 

enh2(g); del13(g) 

 

22 S M/- . . nt 0.02 4.38 6.42 . . N  

23 S M/- 3.92 5.39 nt 0.12 2.14 3.90 -1.78 -1.49 (h)del13q(s); LOH13q U 

25 S M/+ 4.00 4.14 nt 0.00 5.84 4.71 1.84 0.57 Tri12; tri18; tri19  

28 P M/+ 2.65 2.96 nt 0.02 1.40 2.51 -1.25 -0.45 13q(L); 17p; del17(g); 

del18(2); 11qx2; 20p; 

delY(2) 

U 

29 P M/- 5.39 7.15 34 2.94 4.85 7.26 -0.53 0.11 13q(s); del4; 9p; 20p;   

30 P U/- 2.47 3.56 52 4.24 2.13 2.52 -0.33 -1.04 Del10; del12(3); 

enh12; del19(2); 

LOH17p; 8p; del9(2) 

 

32 P M/- 7.77 6.22 116 0.53 5.88 5.74 -1.89 -0.48 13q(s)x2; del21(g)  

33 P U/- . . 41 T . . . . Del7(g) B 

34 P M/- 4.59 5.35 34 T 4.51 4.96 -0.09 -0.39 13q(s)  

35 P M/- . . 76 0.36 5.37 5.27 . . 13q(L); del7; 13q(L)x2  U 

86 S M/- 2.85 2.86 nt 0.00 3.87 2.82 1.02 -0.04 13q(s); del22(g) B 

247 P U/+ 2.27 2.38 17 5.13 1.68 2.20 -0.59 -0.18 11q(3); del3(3); 

del17(g) 

 

248 P U/- 2.46 3.15 nt 0.78 2.15 2.46 -0.31 -0.69 13q(L)  

249 P M/- 4.48 7.16 nt 2.36 4.44 7.07 -0.04 -0.08 13q(L)(3)x2; del6(3)  U 

250 P U/- 3.56 3.39 33 n/a 3.24 3.12 -0.32 -0.27 Del1; del4(2); del5(2); 

del8; LOH17p 

U 



4.5. Discussion  
Research in telomere dynamics has uncovered many associations with disease 

progression and genomic instability, particularly in CLL. This study aimed to look at 

telomere length at two different time points and understand its role in CLL disease. 

 

4.5.1. Telomere length overview, in relation to previous studies, 

highlights STELA technique 

The length of XpYp and 17p telomere in this cohort was shorter than other studies: We 

found a mean telomere length of 3.7kb and 4 kb for XpYp and 17p respectively whilst 

Bechter et al for instance had a mean of 6kb (Bechter, Eisterer et al. 1998) and Rossi et 

al had a median of 6.3kb (Rossi, Lobetti Bodoni et al. 2009). However, both these 

studies used hybridisation technique, which would be less precise because STELA but 

not hybridisation assay can detect presence of very short telomere (Baird 2005). 

 

Interestingly, studies using FISH-Flow or RT-PCR had similar average telomere length to 

our study: Roos et al used an RT-PCR technique and found an average telomere length 

of 4kb (Roos, Krober et al. 2008), whilst Damle et al used FISH methods and showed 

an average telomere length of 3.7kb (Damle, Batliwalla et al. 2004).  

 

The shortest telomere in our study was 2.2kb. However, other studies have shown 

telomere even shorter than found in our study: Lin et al for instance reported an XpYp 

telomere of 0.9kb in a patient who transformed to Richters disease (Lin, Letsolo et al. 

2010). Nonetheless, we found large scale aberrations and genomic rearrangement in 

patients with small telomere, which highlights the difficulty to find a cut off for when 

short telomere are poor prognosis and cause genomic instability, despite reports on 

the importance of ‘short telomere’ over ‘average telomere length’ (Hemann, Strong et 

al. 2001). Although a 2kb telomere length has been found to trigger cell cycle arrest 

signal (Levy, Allsopp et al. 1992), more research is needed, especially with high 

resolution technology, to define ‘short telomere’ and establish a telomere length cut 

off at which B-CLL cells be termed poor prognosis, or be linked with an unstable 

genome. 

 

4.5.2. Telomere length and biomarkers 

Telomere length was shown here to be associated with biomarkers IgVH mutation and 

CD38 expression, confirmed previous findings (Hultdin, Rosenquist et al. 2003; Roos, 

Krober et al. 2008). Interestingly, our study found a median XpYp telomere of 2.5kb 

for unmutated and 4.5kb for mutated IgVH patients, which is a much larger difference 

compared to Huldting et al’s research who reported a median of 4.2kb and 5kb in 
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unmutated and mutated IgVH patients respectively (Hultdin, Rosenquist et al. 2003). 

This is could be due to Huldtin et al using the less precise hybridisation technique. 

 

Our study however did not confirm Lin et al’s report of a link between telomere length 

and disease stage (Lin, Letsolo et al. 2010), although patients with late disease stage B 

and C were found to have the shortest telomere. Yet, the presence of short telomere in 

stable and early stage A0 disease, such as in our study, has been previously reported: 

Lin et al  found similar telomere length between patients with stage C and a number of 

patients with stage A (Lin, Letsolo et al. 2010). In addition, Ricca et al also could not 

find a correlation between binet stage and telomere length (Ricca, Rocci et al. 2007). 

The presence of short telomere in early stage disease, just as the presence of 

unmutated IgVH status in stable patients, brings strength to the idea that telomere 

length is not necessarily a result of proliferative cell division, as would be found in late 

stage disease, but is defined from the orgine B-cell clone, whether pre-GC or post-GC.  

 

4.5.3. Telomere length may not be a suitable prognostic marker 

Only few studies have referred telomere length as a prognostic marker for disease 

progression (Rossi, Lobetti Bodoni et al. 2009; Sellmann, de Beer et al. 2011). Even 

then, Sellman et al used delta telomere length (telomere data from CLL patients in 

relation to healthy aged-matched donor) and found a threshold of -4.2kb to predict 

disease outcome (Sellmann, de Beer et al. 2011), whilst Rossi et al used a cut off of 

5kb (based on their cohort) to showed prognosis value (Rossi, Lobetti Bodoni et al. 

2009), and Roos et al found telomere length as independent marker only when disease 

stage was excluded (Roos, Krober et al. 2008).   

 

Our study strongly suggests that it is difficult to class telomere length as a prognosis 

marker, because although it was found to correlate with IgVH mutation, which is 

predictable since telomere length has been found to depend of cell origin (Pre or Post 

GC lymphocyte) (Weng, Granger et al. 1997), and genomic instability, which is again 

predictable since short telomere drive genomic instability (Lin, Letsolo et al. 2010), no 

correlation was found between disease stage or treatment and telomere length in our 

cohort.  We showed that telomere length at PT could not predict disease progression 

nor was telomere erosion linked with progression to late disease stage. In addition, 

this study uncovered 3 stable patients (out of 9) with critically short telomere: two 

patients underwent genomic evolution and large telomere erosion and the third patient 

had shorter than the median telomere length at both time points, whilst all three had 

stable disease, with no treatment, no CLL symptoms and low WBC count (15< x109/L). 

The presence of short telomere in a large percentage of stable cases, which has also 
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been reported previously (Lin, Letsolo et al. 2010) questions its possible usage as 

prognostic marker.  

 

In addition, Rossi et al found short telomere to predict Richter’s transformation (Rossi, 

Lobetti Bodoni et al. 2009). However, our study included 4 patients who progressed to 

Richter’s disease and 2 out of 3 of these patients had longer than the median telomere 

length as well as very little evidence of telomere erosion (data on 1 patient was not 

available).  

 

Furthermore, our study found no correlation between short telomere and treatment 

requirement, although a significant association was noted between TTFT and telomere 

length.  

 

Finally, telemore length detection is a tedious as well as lenghty process which makes 

it a difficult prognostic marker for clinical usage.  

 

Hence, the presence of short telomere in early stage disease and the lack of significant 

evidence associating telomere length to disease progression and treatment, calls for 

the need of further research before telomere length can be classed as a marker for 

disease progression  

 

4.5.4. Telomere dysfunction was linked with unstable genome 

As shown in previous studies (Lin, Letsolo et al. 2010), our study found that patients 

with short telomeres were associated with significantly more copy number changes as 

well as a larger scale genomic evolution. We also, for the first time in CLL, found a link 

between terminal aberrations and short telomeres. As suggested by Gisselsson et al in 

other tumours, short telomere cause chromosome fusion and loss of terminal 

aberration through formation of anaphase bridges (Gisselsson, Jonson et al. 2001). All 

patients in our cohort with short telomere and terminal aberrations (n=7) had 

aggressive disease, whilst 70% of them received more than 2 round of treatment, 70% 

of them had a higher than average WBC count increase rate and 3 of them had large 

scale genomic evolution between PT and FU.  Loss of telomere function plays thus an 

important role in genomic instability which drives disease progression.   

 

However, we found no link between unbalanced translocation and telomere length.  

Although a majority of patients with translocation had a much lower than average 

telomere length, confirming previous reports of short telomere driving chromosome 

rearrangement (Lin, Letsolo et al. 2010), a number of patients with translocations also 

had long telomeres, such as, patient ID 8 or ID 86, who had stable disease, stable WBC 
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count as well as mutated IgVH. This suggest that not all translocations may be 

telomery driven, as mutated IgVH and stable WBC count in these patients suggests that 

long telomere were found from the original cell. Although not much has been 

established as to the cause of translocations, factors other than telomere dysfunction 

have been suggested as mechanism for translocation, such as non-homologous end-

joining due to specific susceptible target sequences or DNA mutations (Aplan 2006; 

Lieber, Yu et al. 2006). In addition, as reviewed by Aplan et al, translocation do not 

necessarily give rise to malignancy and may require additional dysfunctions for disease 

progression, which would explain the translocation in stable cases found in our cohort 

(Aplan 2006).   

 

The absence of any association between translocation and telomere length in our 

study was also due to a number of patients with shorter than average telomere but no 

translocations. However, when reviewing these patients, it was found that they had 

large and complex deletion and gains, including terminal aberrations. This suggests 

that telomere dysfunction drives genomic instability through both, terminal 

aberrations and translocations.   

 

4.5.5. Telomere dysfunction was linked with 11q/17p as well as 13q 

deletion size 

It was interesting to note the link between 11q/17p aberration and telomere 

dysfunction, which confirmed previous study looking at specific aberrations and 

telomere length (Roos, Krober et al. 2008). Salin et al also found genomic instability 

and short telomere in B-CLL cells resistant to irradiation-induced apoptosis (P53 

pathway aberration) (Salin 2009).  This association however could be expected as 

Pepper et al suggested that primary aberration targeting DNA-damage pathway results 

in uncontrolled cell division and thus loss of telomere (Pepper and Baird 2010).  

 

What was interesting however, and shown in our study for the first time, was the link 

between 13q deletion size and telomere length. The size of 13q deletion and its 

prognosis value in CLL patient was highlighted in a recent study by Parker et al (Parker, 

Rose-Zerilli et al. 2010). In our small cohort of patients, cases with poor prognosis 

large 13q deletion were associated with short telomere whilst patients with good 

prognosis small 13q deletion had longer than average telomeres. It could be 

speculated that the sequence deleted in large but not small 13q deletions encompass 

a gene involved in the P53 pathway which would drive cell division, and explain its 

association with short telomere. In addition, the first chapter of our study showed an 

association between 13q deletion size and genomic evolution. With strong evidence of 

telomere dysfunction driving secondary aberration, it would be exciting to investigate 
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the role of genes present in the large 13q deletion, especially in relation to cell cycle 

control.   

 

4.5.6. Telomere erosion was found in CLL patients with progressive 

disease and was linked with genomic instability  

To our knowledge, we report here the largest study on the changes in telomere length 

over time in CLL patients. Damle et al investigated telomere erosion in 12 patients 

(Damle, Batliwalla et al. 2004) whilst Brugat et al used hybridisation technique on a 

case study to found loss of 0.8kb of telomere length over time which correlated with 

the gain of secondary aberrations targeting DNA damage repair pathway (Brugat, 

Nguyen-Khac et al. 2011). Our study found that patients with progressive disease were 

more likely than stable cases to lose telomere length over time, which suggest a role 

of telomere dysfunction in disease progression.  

 

However, we confirmed Damle et al study showing no association between telomere 

erosion and IgVH mutation (Damle, Batliwalla et al. 2004). This suggests that telomere 

loss is independent of the length of telomere at the onset, since both mutated and 

unmutated IgVH status patients undergo erosion. Our study showed that aberration on 

11q and 17p targeting ATM and TP53 as well as large 13q (but not small 13q) were 

linked with loss of telomere over time. In addition, we also found a strong link 

between loss of telomere over time and the acquisition of secondary aberrations well 

as gain of translocation over time. These data confirm the idea that telomere 

dysfunction occurs following a primary aberration targeting DNA damage repair 

checkpoint and causes further secondary aberrations, which drive disease progression.   

 

4.5.7. Telomere dysfunction in absence of aberration on DNA-damage 

pathway 

Nonetheless, the role of telomere dysfunction in CLL disease progression has been 

debated. Whilst Lin et al and others have suggested that short telomere cause genomic 

instability which results in cell division and aggressive CLL disease (reviewed by 

(Ladetto 2010), other have proposed short telomere as a mere consequence of 

proliferative B-CLL cell division (Jahrsdorfer and Weiner 2008). Our study shows a 

number of patients with short telomere or even large telomere erosion despite no 

apparent (by SNP6.0 array, FISH or G-banding) deletion of P53 pathway genes. For 

instance, patient 23 in our study, who is a stable case with mutated IgVH status with a 

sole small 13q deletion and no evidence of other aberrations, shows evidence of large 

loss of telomere over time, which even results in the acquisition of an unbalanced 

translocation. In addition, patient 11 in our study has a normal genome (no detected 

aberration using array or FISH), yet shorter than average telomere length. This may 
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question the theory that telomere loss occurs following aberrations on DNA-damage 

checkpoints (Brugat, Gault et al. 2009) and thus support Johrndorfer’s theory that 

telomere may be a result of cell division.   

 

Whilst most studies discuss telomere dysfunction as implicated in disease progression, 

it is clear that more research is required to confirm this especially looking at patients 

with a normal genome or small 13q deletion.  

 

4.5.8. Role of telomerase and further research  

Our study uncovered a number of patients with long telomere despite high WBC count 

and translocation. For example, progressive patient 249 had mutated IgVH status, 

significant rise in WBC count as well as a translocation between chromosome 6 and 13. 

Nonetheless, this patient had the longest telomere in our study at either time points. 

The possible explanation for long telomere despite cell division and translocation 

would be a rise in telomerase activity in these cells. Lo et al found fluctuation of 

telomerase activity in cancer cells (Lo, Sabatier et al. 2002), whilst Bechter et al as well 

as other studies have shown that progressive CLL patients have significantly higher 

telomerase activity (Counter, Gupta et al. 1995; Bechter, Eisterer et al. 1998). However 

Lin et al suggested that this would not be sufficient to maintain telomere length in 

aggressive CLL cases (Lin, Letsolo et al. 2010). A look at the activity of telomerase in 

our study would have shed more light in the presence of telomere in progressive cases 

with translocations and high WBC count. Nonetheless, it is clear that changes in 

telomere as well as telomerase occur over time and play a role in genomic instability 

and disease progression.   

 

4.5.9. Conclusion 

In conclusion, it can be said that although short telomeres have been associated with 

advanced stage CLL patients, it is difficult to confirm it as a prognostic marker as a 

large proportion of stable and early-stage patients have been noted with short 

telomere. Furthermore, short telomere were predominantly found in patients with 

unstable genome, although it was shown that not only translocations occurred in 

patients with ‘long telomere’ but also a proportion of patients with short telomere had 

no complex genome. Our study also highlighted the changes in telomere length 

between two time points, which was strongly associated with genomic evolution, but 

not disease stage or IgVH status. Finally, it was suggested that although short 

telomere, as previously hypothesised, would drive disease progression, the primary 

aberration targeting DNA-damage apoptosis pathway (P53) may be essential for B-CLL 

cells to enter further proliferation and immortal state.  



     126 

!" #$%$&'()*+,-.,,+/%)
 

Chromosomal aberrations have been associated with different disease prognosis in 

CLL patients. Numerous studies have looked at patients at a single time point and 

found chromosomal aberrations to predict either a stable disease or a progressive 

disease, with short time to treatment and requirement for treatment (Dohner, 

Stilgenbauer et al. 2000). However, tumours in general have been shown to be very 

unpredictable, acquiring genomic changes which aid tumoregenisis and cell survival 

(Heng, Bremer et al. 2006; Heng, Stevens et al. 2010). Patients with CLL have also been 

previously shown to have an unstable genome (Stilgenbauer, Sander et al. 2007). In 

addition, recurrent aberrations such as deletion of TP53 as well as telomere 

dysfunction, noted in CLL patients, have been linked with genomic instability 

(Schwartz, Jordan et al. 2001; Salin 2009; Lin, Letsolo et al. 2010). For these reasons, 

research should turn towards the investigation of changes in the genome throughout 

the disease course.  

 

Our study has shown that secondary aberrations in CLL is not a rare occurrence, nor is 

the loss of telomere length. The former has been found, using high resolution to 

target a large number of regions throughout the human genome, which has also been 

noted before (Kim, Jung et al. 2010) and hence may play an important role in disease 

progression.  

 

The presence of secondary aberrations questions the validity of an initial prediction of 

disease course, or even choice of treatment, since different treatments are used 

according to chromosomal aberrations (Lozanski, Heerema et al. 2004; Butler and 

Gribben 2010). This is of great significance as secondary aberrations have also been 

recently found to significantly target 17p (Zainuddin, Murray et al. 2011) and thus the 

necessity for genetic tests prior to treatment. Clearly, our study has shown that 

patients can move from low-risk to high-risk aberrations, and this was associated with 

disease progression (rise in WBC count and need of treatment). This is not the first 

time that alteration of prognostic significance has been noted (Gunn, Mohammed et al. 

2008). 

 

In addition, having noted the association between telomere dysfunction and genomic 

instability in previous research (Lin, Letsolo et al. 2010), our study noted the 

occurrence of telomere erosion in CLL patients, which was not linked to any prognostic 

group, suggesting that patients with good prognosis may move to poor prognosis 

following loss of telomere. Although the prognosis impact of telomere length has not 
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been established, it is clear that telomere dysfunction results in genomic instability, or 

evolution as noted in our cohort.  

 

It is therefore clear that monitoring genomic changes, change in copy number, 

mutation as well as telomere length, during the course of the disease is essential to 

ensure correct prognosis and choice of treatment.  

 

5.1. Conclusions 

In conclusion, this study looked at the changes in copy number and telomere length in 

29 patients with CLL disease and found that secondary aberrations as well as loss of 

telomere occurred in progressive as well as stable cases and was not linked to 

prognostic markers. Nevertheless, patients with 11q/17p predictably acquired larger 

aberrations and had short telomeres, but so did patients with class II but not class I 

13q deletion. In addition, intriguing changes were noted in copy number variants, 

particularly at 15q11. It was suggested from this study that the genome of CLL patient 

may be monitored throughout the disease course as a number of patients had a 

sudden change in disease course in parallel to the acquisition of poor prognosis 

aberrations. This was also linked with the loss of telomere length, which was shown to 

drive genomic instability. 

 

5.2. Future research 

Since the cohort in this study was relatively small, results would need to be confirmed 

in larger studies. Nonetheless, below is some key further research: 
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0")122$%3+4)5)
Table showing FISH and karyotype data of all 29 patients at both time points 

ID 
FISH (PT) FISH (FU) Karyotype 

(PT) 

Karyotype (FU) 

1 

D13S319[Deletion] 

23% hemizygous 

12% homozygous 

 

ATM[Normal], 

TP53[Normal]; 

D13S319[Deletion]:

40% hemizygous 

45% homozygous 

46,XY,?add(10)(q?26) [2] 46,XY [30] 

5 

D13S319[Deletion]: 

68% hemizygous; 

12C[Deletion]: 47% 

trisomy 

 

ATM[Normal],TP53[

Normal]; 

D13S319[Deletion]: 

98% hemizygous ; 

12C[Deletion]: 78% 

trisomy 

49,XY,+12,add(13)?dup(

13)(q12q14),+18,+19[5] 

49,XY,+12,add(13)?dup(13

)(q12q14),+18,+19[5]  

/49,XY,idem,del9p13[2] 

/46XY,add(1q?32),del13q1

2-q14[3] 

7 

12C[Normal], 

ATM[Normal]; 

TP53[Normal]; 

D13S319[Deletion]:

91% hemizygous   

 

12C[Normal], 

ATM[Normal]; 

TP53[Normal]; 

D13S319[Deletion]: 

93% hemizygous   

46,XY,t(1:2)(p36:p13)[2] 46,XY,del(13)(q14q22)[1]/ 

46XY,der13del13(q14q22)

t(13:18)(q22:p13),der(18)t

(13:18)[11] 

8 

D13S319 

[Deletion]:44% 

Hemizygous and 

25% homozygous   

12C[Normal], 

ATM[Normal]; 

TP53[Normal]; 

D13S319[Deletion]: 

22% homozygous  

'46,Xyder(13)inv(13)(q14

.1q21.1)t(2:5:13)(q37:q3

3:q14),der(2)t(2:5:13)[3] 

'46XY,der(2)t(2:5:13)(q37:

q32:q14),der(5)t(2:5:13),d

er(13)inv(13)(q14q21)t(2:5

:13)[10] 

9 

12C[Normal], 

ATM[Normal],TP53[

Normal], 

D13S319[Deletion]:

99% Homozygous 

12C[Normal], 

ATM[Normal],TP53[

Normal], 

D13S319[Deletion]: 

78% hemizygous  

6.5% Homozygous 

'45,X-X[4] complex,unstable,fragmen

ts,dicentrics 

10 

done in 1999: 

D13S319 

[Deletion]:93% 

Hemizygous  

12C[Normal], 

ATM[Normal],TP53[

Normal], 

D13S319[Deletion]:

Hemizygous  at  in 

78% and 

homozygous  in 

6.5% 

46,XY  46,XY [30] 

11 
D13S319[Deletion]: 

10% hemizygous  

done in 2005: 

12C[Normal], 

46,XY 46,XY,del(13)(q14q22)[3],i

dem,add(8)(p?23)[1] 
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ATM[Normal],TP53[

Normal], 

D13S319[Deletion]: 

13% hemizygous 

12 

12C[Normal], 

ATM[Normal],TP53[

Normal], 

D13S319[Normal] 

12C[Normal], 

ATM[Normal],TP53[

Normal], 

D13S319[Normal] 

46,XY 46,XY [29] 

14 

D13S319[Normal]; 

12C[Trisomy], 

ATM[Normal],TP53[

Normal] 

D13S319[Normal];  

ATM[Normal],TP53[

Normal]; 

12C[Trisomy]: 64% 

trisomy  

47,XY,+12[30] 47,XY+12 

15 

ATM[Normal],TP53[
Normal];D13S319[D

eletion]: 26% 
hemizygous  at  
with 2 signals 

39% hemizygous  at  
with 3 signals 

 
 

12C[Normal], 

ATM[Normal],TP53[

Normal]; 13q NOT 

DONE 

47,XY,t(2:13)(p21:q14),+

i(2)(p10)der(2)t(2:13),del

(3)(q?),t(5:15)(q33:q15)[

11] 

47,XY,t(2;13)(p23;q14)del(

13)(q12q14),+der(2)(13q3

4->::2p23->2q31::-

>13q34),t(5;15)(q33;q13) 

[23]/47,sl,add(20)(p13) 

[1]/46,XY [2] 

16 

ATM[Normal],TP53[

Normal]; 

D13S319[Normal] 

12C[Normal], 

ATM[Normal],TP53[

Normal],D13S319[N

ormal] 

46,XY,add(18)(p11)[12] 46,XY,add(18)(p11)[12] 

18 

ATM[Normal],TP53[

Normal]; 

D13S319[Deletion]: 

95% hemizygous  

12C[Normal]; 
ATM[Normal],TP53[

Normal], 
D13S319[Deletion]: 

60% hemizygous  
20% homozygous   

 

46,XY 46,XY,del(13)(q12q14) [6]    

/46,XY [19] 

19 

ATM[Normal],TP53[

Normal]; 

D13S319[Deletion]: 

74% homozygous   

12C[Normal]; 

ATM[Normal],TP53[

Normal]; 

D13S319[Deletion]: 

94% homozygous  

‘46,XY '46,XY,del(11)(q23q25) 

[1]/46,XY,?del(11)(q23q25

) [3]/46,XY [26] 

21 

D13S319[Deletion]: 

28% hemizygous  

ATM[Normal],TP53[

Normal]; 

12C[Normal]; 

D13S319[Deletion]: 

37% Homozygous 

'45,X-X '45,X-X 

22 

ATM[Normal],TP53[

Normal]; 

D13S319[Normal] 

12C[Normal]; 

ATM[Normal],TP53[

Normal]; 13Q NOT 

'46,XY '46,XY [29] 
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DONE 

23 

12C[Normal]; 

ATM[Normal],TP53[

Normal];D13S319[D

eletion]: 65% 

homozygous  

12C[Normal]; 

ATM[Normal],TP53[

Normal];D13S319[D

eletion]: 86% 

homozygous   

'46,XX 45,XX,der(17)t(17;20)(p?;p

?),-20 [inc 5]/46,XX [11]NB 

non clonal sructural 

rearrangementd including 

dicentric chromosomes 

also seen 

25 

D13S319[Normal]; 

12C[Trisomy], 

ATM[Normal],TP53[

Normal]: Trisomy 

12 in 14% of cells 

D13S319[Normal]; 

12C[Trisomy], 

ATM[Normal],TP53[

Normal]: Trisomy 12 

in 26% of cells 

'49,XX,+12,+18,+19 '49,XX,+12,+18,+19 

[7]/46,XX [23] 

28 

[Deletion], 

D13S319[deletion] 

6% hemizygous  of 

P53 ; ATM[Normal] 

3%  of ATM 

ATM[Deletion]  
P53[Deletion]: 76% 
hemizygous  of P53 
39% hemizygous  at 

ATM; 
D13S319[deletion] 
72% hemizygous  

 
 

45,XY,der(18)t(17:18)(q?

11:q23) [2] 

'45,XY,der(18)t(17;18)(q21

;q23) [4]/44,sl,-

Y,del(13)(q12q3?2) 

[2]/44,sdl1,del(11)(q14q2

5) 

[6]/44,sdl2,t(6;11)(q13;q1

4) 

[7]/43,sdl1,add(16)(p13),-

20 [2]/46,XY [13] 

29 

12C[Normal], 

ATM[Normal],TP53[

Normal]; 13Q NOT 

DONE 

12C[Normal]; 
ATM[Normal],TP53[

Normal]; 
D13S319[Deletion]: 

53% hemizygous  
10% homozygous  

 
 

'46,XX,del(13)(q14q22) 

[1]/46,XX,?del(13)(q14q

22)[1]/46,XX[27] 

'46,XX,?del(13)(q14q22 

[2]/47,XX,+?r 

[1]/44,XX,t(1;2)(q32;q21),-

13,-19 [1]/46,XX [26] 

30 

ATM[Normal],TP53[

Normal]; 

D13S319[Normal] 

12C[Normal];ATM[N

ormal],TP53[Normal

]; D13S319[Normal] 

'46,XX '45,XX,?2(q),add(10q)del(1

2)(q13q21),-19[7],idem,-

8,-9,der(12:9:8)(???)[15] 

32 

ATM[Normal],TP53[
Normal];D13S319[D

eletion]: 24% 
hemizygous  

65% homozygous   
 
 

12C[Normal];ATM[N

ormal],TP53[Normal

]; 13q NOT DONE 

'46,XY 46,XY,del(13)(q14q22) 

[1]/46,XY [29] 

33 

ATM[Normal],TP53[

Normal]; 

D13S319[Normal] 

12C[Normal];D13S3

19[Normal] ATM 

AND P53 NOT 

RECENTLY DONE 

'46,XX 46,XX,t(4;15)(p?16;q?15) 

[4]/46,XX [21] 

34 

ATM[Normal],TP53[
Normal];D13S319[D

eletion]: 60% 
hemizygous  

12C[Normal]; 
ATM[Normal],TP53[
Normal];D13S319[D

eletion]: 32% 

'46,XX '46,XY [30] 
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hemizygous  
 
 

35 

ATM[Normal],TP53[

Normal],D13S319[D

eletion]: 35% 

hemizygous   

12C[Normal]; 

ATM[Normal],TP53[

Normal];D13S319[D

eletion]: 91% 

hemizygous  

46,XY  46,XY,t(9;13)(q32;q14)[6], 

46,XY,del(13)(q14q22) [1], 

46,XY [38] 

86 

ATM[Normal],TP53[

Normal],D13S319[D

eletion]: 31% 

hemizygous   

ATM NOT DONE; 

TP53[Normal],12C[N

ormal];D13S319[Del

etion]: 22% 

hemizygous   

46,XY,t(5:6)(q35:q21) [2] 46,XY,t(5;6)(q35;q21) 

[2]/46,XY [38] 

247 

ATM[Deletion],TP53

[Normal],D13S319[

Normal]: 77%  of 

ATM 

12C[Normal]; 

ATM[Deletion],TP53[

Normal],D13S319[N

ormal]: 77%  

hemizygous ATM  

'46,XY,del(11)(q21q23)[

7] 

46,XY,del(11)(q23q25) 

[16]/45,-X,Y,i(17)(q10) 

[1]/46,XY [13] 

248 

ATM[Normal],TP53[

Normal],D13S319[D

eletion]: 90% 

hemizygous  

12C[Normal], 

ATM[Normal],TP53[

Normal],D13S319[D

eletion]:83% 

hemizygous   

'46,XY.del(13)(q12q14) '46,XY.del(13)(q12q14) 

249 

ATM[Normal],TP53[
Normal],D13S319[D

eletion]:9% 
hemizygous  

86% homozygous 
 
 

12C[Normal], 
ATM[Normal],TP53[
Normal],D13S319[D

eletion]:9% 
hemizygous  

86% homozygous 
 
 

'46,Xyt(6:13)(q26:q14)[3

0] 

'46,Xyt(6:13)(q26:q14)[4] 

250 

13Q NOT DONE; 

ATM[Normal],TP53[

Normal] 

12C[Normal], ; 

ATM[Normal],TP53[

Normal]; 

D13S319[Normal] 

'45,x-x[2] '46,XX,t(1:2)(p13q13),t(3:5

)(p25p13),-8[cp4] 
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6" 122$%3+4)7)
MAPD score for normal, PT and FU array showing positive scores for all samples, 

except thos underlined. Birdseed data is also showed, confirming patient matched 

samples. 

ID 
Normal MAPD 

score 
PT MAPD 

score 
FU MAPD 

score 

Birdseed 
analysis 

(based on 
50000 

probes) in % 

1 0.2026644 0.3032022 ? 99 

5 0.2343662 0.3208943 0.3330209 99 

7 0.2404362 0.245983 0.3249855 99 

8 0.2655746 0.2348108 0.3846466 99 

9 0.2416852 0.2662187 0.3593588 99 

10 0.2875923 0.2564836 0.3517643 99 

11 0.2932868 0.2382123 0.3368792 99 

12 0.2267051 0.2127029 0.4041316 99 

14 0.254896 0.2451761 0.3741238 99 

15 0.2403825 0.3267927 0.2891427 99 

16 0.2563863 0.2240404 0.3298258 99 

18 0.2498528 0.2736083 0.3219639 99 

19 0.2543191 0.3473347 0.383017 99 

21 n/a 0.3830189 0.3322433 99 

22 0.3307168 0.4019882 0.4140458 99 

23 0.2551951 0.2505109 0.3668374 99 

25 0.3361719 0.4148286 0.331688 99 

28 0.270712 0.2374334 0.358154 99 

29 0.3517024 0.1997756 0.3439162 99 

30 0.3606648 0.216813 0.3366632 98 

32 0.6290085 0.2863686 0.3307582 99 

33 0.304495 0.3064315 0.4077737 99 

34 n/a 0.3420789 0.291683 99 

35 0.3899631 0.3012755 0.3196116 99 

86 n/a 0.3391409 0.2773856 99 

247 0.3508173 0.311726 0.3028514 99 

248 0.3851296 0.3606753 0.3470268 99 

249 n/a 0.3600878 0.2721696 99 

250 n/a 0.3605579 0.3023126 98 

 

 )
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8" 122$%3+4)9)
Complete data of all 29 patients 

Patient data: 1_RB 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)/*.'&#1$).$>QQR$4)-"$2PS:$$
TUULV$CSS$&-/*#$FU:$I-/0,#$&).9#$

 

.%&+-$('/"#"'$&'0,$%*1'' $>?@$1#,#-)'.$/-$7+#&#.-/-)'.:$S/+*#+$>?@$/.1$"'2'J5*'%&$/-$A',,'4$%7$
 

WBC count graph: 

 

Figure 37:WBC count of RB (1) : PT sample at 0 and FU sample at 103 

231' >$

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' $W%-/-#1$

:;3<=1' $X$

:>?!@A1' >$

?)$B%1' $5#&$
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Timeline of Samples available with DATA from Array + FISH data: 

 

 

!,%4%&#"#$+&'5"-C)%' ?UGUYG>QQQ$$ $

D259'/"#"1' K>?I?>QZK#,#-)'.[$T?\$"#2)J5*'%&$>T\$"2'J5*'%&$

$

E",F+#FC%' X]<^_<`/11a>Uba@`T]b$ZT[$ !

G6-0%,'+*';G81' ?U$ $

;G?'HIJ01'
$

$

;G?'KIJ01' K)2).)&"#1a>?baXQ:?Q3LU:?Qb$ >?@>X:?$

 

5"-C)%'/"#%' UYGU?GTUU?$ $$

E",F+#FC%'

X]<$^_<$1#,aYba@`?T@`?]b$$$$$$$ZL[$$$$
X]<^_<)1#2<-a><]ba7TT<@`b$$$$$$Z>[$$$$
X]<^_<$`/11a>Uba@`T]b$$$$$$$$$$$$Z>[$$$$$$$$
X]<^_<-a><>Qba7TT<7>?b$$$$$$$$$$$Z>[$$

!

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZK#,#-)'.[V$$
LR\"#2)J5*'%&$/.1$
>L\"'2'J5*'%&!!

 

D+))+L'6C'5"-C)%' >XGU?GTUUR$$ $

D259'/"#"'
F!WZE'+2/,[<$!BL?ZE'+2/,[c$K>?I?>QZK#,#-)'.[VXU\$
"#2)J5*'%&$XL\$"'2'J5*'%&$

XU\$"#2)J5*'%&$XL\$
"'2'J5*'%&$

E",F+#FC%' X]<^_$Z?U[$ $

G6-0%,'+*';G81' ?>$ $

;G?'HIJ01'
$

$

;G?'KIJ01' 3$-$&$4M%/NI<ONP@QRSTRAQRUO'
$3$-$&$4M%/'VSNI<ONPUQ<UTRAQ<UO$

>?@>X:T$d$>?@>X:?$$$
>?@>X:?$$$$$$$$

Diagnosed with 
mBL 

A0 CLL 

A0 CLL 

PT sample: 13q 
deletion 

FU sample: 13q x2 
deletion  

FISH suggests 
15% homozygous 

del at 13q14 

1998 2000 2002 2004 2006 2008 2010 
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Patient data: 5_LL 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

B/-)#.-$).$TUUX$"/&$CSS$/-$&-/*#$C$/.1$)&$-+#/-#1$4)-"$CeSfD$
TUU]V$E'$7+#&#.9#$'($.'1#&$0%-$,/+*#$&7,##.:$!+#/-#1$4)-"$AC$HX:$OPC$
*'#&$1'4.$0%-$,/+*#$&7,##.$aX92b$/.1$2/++'4$&"'4&$2%,-)7,#$('9):$

B/-)#.-$1'#&$"'4#6#+$)27+'6#:$$$
TUURV$OPC$*'#&$0/9=$%7$/.1$)&$-+#/-#1$()+&-$4)-"$2B+#1$HT$-"#.$4)-"$

27dD)-$$
N/).&$/.$).(#9-)'.$/.1$1#/-":$$

 

.%&+-$('/"#"'$&'0,$%*1''
$C'27,#H$*#.'2#$4)-"$1#,#-)'.&$/-$9"+$?<$>?@$1#,#-)'.$/.1$-+)&'25$>T<$
>R$/.1$>Q$/-$0'-"$B!$/.1$Ag:$

 

WBC count graph:  

 

Figure 38: WBC of LL (5). PT sample at 0 and FU sample at 97 

 

 

 

0 

50 

100 

150 

200 

250 

0.0 20.0 40.0 60.0 80.0 100.0 120.0 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' $W%-/-#1$

:;3<=1' $>UU$

:>?!@A1' >$

?)$B%1' $E'$ZKfKVTXGU]GTUUR[$

231' L$
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Timeline of Samples available with DATA from Array + FISH data: 

 

 

!,%4%&#"#$+&'5"-C)%' T]GU>GTUUU$$ $

D259'/"#"1' K>?I?>QZK#,#-)'.[V$]R\$"#2)J5*'%&c$>TCZK#,#-)'.[V$
XY\$-+)&'25$

$

E",F+#FC%' XQ<^_<d>T</11a>?b`1%7a>?ba@>T@>Xb<d>R<d>QZL[$ !

G6-0%,'+*';G81' TY$ $

;G?'HIJ01'

K)2).)&"#1a?baX]:QX3XY:?Qb$

K)2).)&"#1aQba?Y:U3?Y:XRb$

K)2).)&"#1a?ba>Q]:Y]3>QY:YLb$
$

$

;G?'KIJ01'

K)2).)&"#1aQbaX:]Q3L:Q?b$

!+)&'25a>TbaU:UT3>?T:TRb$

K)2).)&"#1a>?baXR:]R3LU:Yb$

!+)&'25a>RbaU:U3Y]:>>b$

!+)&'25a>QbaU:UX3]?:YQb$
$

$

 

5"-C)%'/"#%' >>GULGTUUL$ $$

E",F+#FC%'
XR<^_<$d>T<d>Q</11a>?b`1%7a@>T@>Xb$ZY[$

XQ<)1#2$d>R$$Z>>[$
XQ<)1#2<$d>R<$1#,aQba7>?b$$ZL[$$

!

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[$ !!

 

 

 

 

 

 

CLL stage A0 

CLL stage C 

Treated with FC x4 

Treated with Pred 
x2  then add Rit 

PT sample: Del 
chr3, Del 13q, 
Trisomy 12, 
Trisomy 18, 
Trisomy 19 

FU sample: Del 
chr3, Del 13q, 
Trisomy 12, 
Trisomy 18, 
Trisomy 19 

Karyotype shows 
48,XY, +12, +19, 
+18 with del at 

13q 

1999 2001 2003 2005 2007 2009 
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D+))+L'6C'5"-C)%' >YGU?GTUUR$ $

D259'/"#"1'
$

F!WZE'+2/,[<!BL?ZE'+2/,[c$K>?I?>QZK#,#-)'.[V$QR\$
"#2)J5*'%&$c$>TCZK#,#-)'.[V$YR\$-+)&'25$

$

E",F+#FC%'
XQ<^_<d>T</11a>?b`1%7a>?ba@>T@>Xb<d>R<d>QZL[$$

GXQ<^_<)1#2<1#,Q7>?ZT[$GX]^_</11a>@`?Tb<1#,>?@>T3
@>XZ?[$

$

G6-0%,'+*';G81' T]$ $

;G?'HIJ01'
K)2).)&"#1a?baX]:QX3XY:?Qb$

K)2).)&"#1aQba?Y:U3?Y:XRb$

K)2).)&"#1a?ba>Q]:Y]3>QY:YLb$
$

$

;G?'KIJ01'

K)2).)&"#1aQbaX:]Q3L:Q?b$

!+)&'25a>TbaU:UT3>?T:TRb$

K)2).)&"#1a>?baXR:]R3LU:Yb$

!+)&'25a>RbaU:U3Y]:>>b$

!+)&'25a>QbaU:UX3]?:YQb$
$

$
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Patient data: 7_PB 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'
K)/*.'&#1$).$>QR>$/&$CSS$&-/*#$FU:$>QRTV$e)*"$OPC$/.1$9#+6)9/,$.'1#&$
aI-/*#$Fb$/.1$)&$*)6#.$;.-#+2)--#.-$-+#/-2#.-$CeSfD$0#-4##.$>QRT$/.1$
>QQY:$E'$-+#/-2#.-$&).9#$>QQY$/.1$&-/*#$FU$&).9#$

 

.%&+-$('/"#"'$&'0,$%*1''

$S/+*#$>?@$1#,#-)'.$&).9#$>QRR:$h/+5$'.$TUUL$&%**#&-&$-+/.&,'9/-)'.$
0#-4##.$9"+>?$/.9$9"+>R:$F++/5$/-$Ag$aTUUYb$&"'4&$/$9'27,#H#$
"'2'J5*'%&$>?@$1#,#-)'.$/&$4#,,$/&$,/+*#$9"+$>R$1#,#-)'.$

 

WBC count graph: 

 

Figure 39: WBC of PB (7). PT sample at 42 and FU sample at 80 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' FU$

2789'4#"#641' W%-/-#1$

:;3<=1' T$

:>?!@A1' >$

?)$B%1' 5#&$

231' Y$
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Timeline of Samples available with DATA from Array + FISH data: 

 

5"-C)%'/"#%' U]GUYG>QQR$ $$

E",F+#FC%' X]<^_<1#,a>?ba@>X@TTb$$
$

 

!,%4%&#"#$+&'5"-C)%' >RG>TGTUUU$ $

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[c$!BL?ZE'+2/,[c$
K>?I?>QZK#,#-)'.[VQ>\$"#2)J5*'%&$$$

Q>\$"#2)J5*'%&$,'&&$/-$
>?@>X$

E",F+#FC%' X]<^_<-a>VTba7?]V7>?bZT[$ !

G6-0%,'+*';G81' T]$ $

;G?'HIJ01'
$$
$

$

$

;G?'KIJ01'
K)2).)&"#1a>?baX>:UY3]Q:UXb$

$$
$

>?@>X:>>3>?@T>:??$

 

5"-C)%'/"#%' >YGUTGTUUX$ $$

D259'/"#"' $>TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<$K>?I?>QZK#,#-)'.[$$
RR\$"#2)J5*'%&$,'&&$/-$

>?@>X$

 

 

 

 

 

 

5"-C)%'/"#%' TLG>UGTUUL$ $$

CLL stage A0 

Treated a various 
intervals with 

Chlor 

Stopped treatment 

PT sample: Large 
13q deletion 

FU sample: 
Complex 13q x2 

deletion. Deletion 
on chr18 

(18p11.32) 

Karyotype says 
large 13q deletion 

Karyotpy shows t
(13,18)(q22,p13) 

1981 1986 1991 1996 2001 2006 
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E",F+#FC%' X]<^_<1#,a>?ba@>X<@TTb$$$Z>[$
X]<^_<1#+a>?b1#,a>?ba@>X@TTb-a>?c>Rba@TTc7>?b<1#+a>Rb-a>?<>Rb$$Z>>[$$ !

 

D+))+L'6C'5"-C)%' >XGULGTUUY$ $

D259'/"#"' >TCZE'+2/,[<$F!WZE'+2/,[c$!BL?ZE'+2/,[c$K>?I?>QZK#,#-)'.[V$
Q?\$"#2)J5*'%&$$$

$

E",F+#FC%' X]<^_<1#,a>?ba@>X@TTbZ>[G$
X]^_<1#+>?1#,>?a@>X@TTb-a>?V>Rba@TTV7>?b<1#+a>Rb-a>?V>RbZ>>[$

$

G6-0%,'+*';G81' TY$ $

;G?'HIJ01' $3$-$&$4M%/'VSNI<ONP@QSRTP=QI<O'

$
$

$

;G?'KIJ01'

K)2).)&"#1a>?baX>:>3]Q:UYb$
3$-$&$4M%/'VSNI<ONP=QR=TRAQ<@O'

3$-$&$4M%/NI=ONIQ@TSQ=WO'
XY9NI<ONPAQRUTW=QWUb$

$
$

$
$

>R@>>:?T$
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Patient data: 8_AL 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' 2PS$7/-)#.-$&).9#$>QQ?$

 

 

WBC count graph:  

 

Figure 40: WBC of AL (8). PT sample at 29 and FU sample at 156 

 

Timeline of Samples available with DATA from Array + FISH data:  

 

 

 

Diagnosed with 
mBL 

PT sample:13q14 
deletion FU sample: same 

13q14 deletion 
with other small 

CNA 

1993 1995 1997 1999 2001 2003 2005 2007 2009 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' $W%-/-#1$

:;3<=1' >]$

:>?!@A1' ]$

?)$B%1' 5#&$

231' R$



     144 

5"-C)%'/"#%' ULGU>G>QQX$ $$

E",F+#FC%' X]<^_<$-aT<Lba@?L<@TTb$$$$$$$Z>[$$ !

D259'/"#"1' K>?I?>Q$ZK#,#-)'.[$
XX\$e#2)J5*'%&$/.1$TL\$

"'2'J5*'%&$,'&&$/-$
>?@>X!$

 

5"-C)%'/"#%' >TGU>G>QQL$ $$

E",F+#FC%' X]<^_<-aT<L<>?ba@?L<@??<@>Xb$$$$$ZR[$$ !

 

!,%4%&#"#$+&'5"-C)%' >UGUQG>QQY$ $

D259'/"#"' K>?I?>Q$ZK#,#-)'.[VXX\$e#2)J5*'%&$/.1$TL\$"'2'J5*'%&$$$
$

E",F+#FC%' iX]<^51#+a>?b).6a>?ba@>X:>@T>:>b-aTVLV>?ba@?YV@??V@>Xb<1#+aTb-aTVLV>?bZ?[$
$

G6-0%,'+*';G81' ?U$
$

;G?'HIJ01' K)2).)&"#1a>]baR>:LX3R>:]Tb$

$

;G?'KIJ01' K)2).)&"#1a>?baXQ:?X3LU:XYb$
$

$

 

5"-C)%'/"#%' ULG>UG>QQQ$ $$

E",F+#FC%' X]<^_<1#+a>?b).6a>?ba@>X@T>b-aT<L<>?b$-aT<L<>?ba@?Y<@?T<@>Xb<$
1#+aTb-aT<L<>?b$$Z>[$$ !

 

5"-C)%'/"#%' U?G>TGTUU?$ $$

D259'/"#"1' K>?I?>Q$ZK#,#-)'.[$
TT\$"'2'J5*'%&$,'&&$/-$

>?@>X!$
 

D+))+L'6C'5"-C)%' UYGUXGTUUR$ $

D259'/"#"' >TCZE'+2/,[<$F!WZE'+2/,[c$!BL?ZE'+2/,[c$K>?I?>QZK#,#-)'.[V$TT\$"'2'J5*'%&$ $

E",F+#FC%' iX]^_<1#+aTb-aTVLV>?ba@?YV@?TV@>Xb<1#+aLb-aTVLV>?b<1#+a>?b).6a>?ba@>X@T>b-aTVLV>?bZ>U[$ $

G6-0%,'+*';G81' ?>$ $

;G?'HIJ01' K)2).)&"#1a>]baR>:LX3R>:]Tb$
$ $

$

;G?'KIJ01' K)2).)&"#1a>?baXQ:?X3LU:XYb$
$

$
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Patient data: 9_DC 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$).$>QQU<$CSS$&-/*#$FU$$
>QQT$$CeSfD$-+#/-#2#.-$1%#$-'$")*"$OPC:$$

TUU]V$I-/*#$F<$$CeSfD$-+#/-#2#.-$1%#$-'$")*"$OPC<$0%-$).-',#+/.-:$$
TUUYV$I-/*#$F:$C_CSf$HT$-"#.$AC$HT$-+#/-2#.-$a-"#.$BL?$1)&9'6#+#1b$

I-/*#$F$&).9#$-"#.$
 

.%&+-$('/"#"'$&'0,$%*1'
$e'2'J5*'%&$>?@$1#,#-)'.$/-$B!$)&$&/2#$/-$Ag:$>>@$1#,#-)'.$&##.$/-$Ag$

/,'.*$4)-"$'-"#+$&2/,,$CEF:$A',,'4$%7$/,&'$&"'4&$Sfea>YbaU:U3>Y:RLb$$

 

WBC count graph:  

 

Figure 41: WBC of DC (9). PT sample at 40 and FU sample at 53 

 

 

 

 

 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' FU$

2789'4#"#641' W%-/-#1$

:;3<=1' T>$

:>?!@A1' >$

?)$B%1' 5#&$

231' Q$
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Timeline of Samples available with DATA from Array + FISH data: 

 

5"-C)%'/"#%' U?GU?GTUUX$ $$

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<$K>?I?>QZK#,#-)'.[$
QL\$e'2'J5*'%&$
1#,#-)'.$/-$>?@>X!!

 

!,%4%&#"#$+&'5"-C)%' ?>GULGTUUY$ $

D259'/"#"' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<$
K>?I?>QZK#,#-)'.[VQQ\$e'2'J5*'%&$

QQ\$e'2'J5*'%&$
1#,#-)'.$/-$>?@>X$

E",F+#FC%' iXL<^3^ZX[$ $

G6-0%,'+*';G81' TX$ $

;G?'HIJ01' K)2).)&"#1$^Ta>?baXQ:X>3XQ:R?b$
$

$

;G?'KIJ01'
K)2).)&"#1a>?baXL:R3LU:XLb$

$
$ $

$

 

D+))+L'6C'5"-C)%' ?UGUXGTUUR$ $

D259'/"#"1'
>TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<$
K>?I?>QZK#,#-)'.[V$YR\$"#2)J5*'%&$$]:L\$

e'2'J5*'%&$
$

E",F+#FC%' 9'27,#H<%.&-/0,#<(+/*2#.-&<1)9#.-+)9&$ $

G6-0%,'+*';G81' TL$ $

;G?'HIJ01' K)2).)&"#1$^Ta>?baXQ:XX3XQ:RLb$
$

$

;G?'KIJ01'
3$-$&$4M%/NIIONW<QPSTWRQS<O'
K)2).)&"#1a>?baXL:RT3LU:XXb$

XY9NI@ONAQATI@Q=RO'
$$

>>@>?:>$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
>?@>X:>T@>X:?$$$$$$>?@>X:?$

 

 

  

CLL stage A0 

Treated with Chlor 
x6 

Treated with Chlor 
but intolerant 

Treated with Cyclo 
x2 [NO response] 
then treated with 

FC x2 [NO 
reponse] 

P53 discovered 
PT sample: 13qx2 

deletion 

FU sample: 13x2 
deletion AND 11q 
deletion AND LOH

(17) 

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 
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Patient data: 10_FL 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)/*.'&#1$).$RQ$4)-"$CSS$&-/*#$FU$$aA%,,$P,''1$C'%.-$/0.'+2/,$1%#$-'$
F'+-)9$F.#%+5&2b:$2PS$(+'2$TUU]$

 

.%&+-$('/"#"'$&'0,$%*1'' $I-/0,#$7/-)#.-$4)-"$&2/,,$>?@>X$1#,#-)'.$
 

WBC count graph: 

 

Figure 42: WBC of FL (10). PT sample at 0 and FU sample at 180 

Timeline of Samples available with DATA from Array + FISH data: 

 

 

CLL stage A0 

mBL 

PT sample: 13q 
deletion 

FU sample: same 
13q deletion 

died on the 19th 
of sept 2009 

1989 1994 1999 2004 2009 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' >$

:>?!@A1' ?$

?)$B%1'
E'$ a>QGUQGTUUQb$
CfEA;DW`$

231' >U$
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!,%4%&#"#$+&'5"-C)%' ?>GU?G>QQ?$ $

D259'/"#"' 1'.#$).$>QQQV$K>?I?>Q$ZK#,#-)'.[VQ?\$e#2)J5*'%&$ $

E",F+#FC%' X]<^_$ $

G6-0%,'+*';G81' T]$ $

;G?'HIJ01'
$$

$

$

;G?'KIJ01' K)2).)&"#1a>?baXR:YT3LU:]]b$
$

>?@>X:?$

 

D+))+L'6C'5"-C)%' >XGUXGTUUR$ $

D259'/"#"'

$
>TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<$

K>?I?>QZK#,#-)'.[Ve#2)J5*'%&$$/-$$).$YR\$/.1$
"'2'J5*'%&$$).$]:L\$

e#2)J5*'%&$,'&&$/-$>?@>X$).$
YR\$/.1$"'2'J5*'%&$,'&&$).$

]:L\$

E",F+#FC%' X]<^_$Z?U[$ $

G6-0%,'+*';G81' TX$ $

;G?'HIJ01'
'
$

$
$

$

;G?'KIJ01' $K)2).)&"#1a>?baXR:Y3LU:]Rb$

$
$

>?@>X:?$

 

 !



     149 

Patient data: 11_ES 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$).$TUUT$4)-"$CSS$&-/*#$FU:$B+'*+#&&#1$-'$&-/*#$C$05$TUU]$/.1$
-"#+/75$*)6#.$aCeSfD$H?b:$OPC$4#.-$1'4.$0%-$.'$).9+#/&#$).$eN:$
$TUUR<$&-/*#$P<$OPC$).9+#/&).*:$$
TUUQ<$+#/9"#1$&-/*#$C$/.1$-"#+/75$*)6#.$aCeSfD$H]b:$$
I-/*#$F$&).9#$-"#.:$$$

 

 

WBC count graph: 

 

Figure 43: WBC of ES (11). PT sample at 2 and FU sample at 67 
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:>?!@A1' ?$

?)$B%1' 5#&$

231' >>$
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Timeline of Samples available with DATA from Array + FISH data: 

 

 

!,%4%&#"#$+&'5"-C)%' TRG>>GTUUT$ $

D259'/"#"1' K>?I?>QZK#,#-)'.[V$>U\$"#2)J5*'%&$$$
>U\$"#2)J5*'%&$
,'&&$/-$>?@>X$

E",F+#FC%' X]<^_$ !

G6-0%,'+*';G81' ??$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01' E'+2/,$

$
$

$

 

D+))+L'6C'5"-C)%' T?GUXGTUUR$ $

D259'/"#"'
1'.#$).$TUULV$>TCZE'+2/,[<$
F!WZE'+2/,[<!BL?ZE'+2/,[<$

K>?I?>QZK#,#-)'.[V$>?\$"#2)J5*'%&$
$

E",F+#FC%' X]<^_<1#,a>?ba@>X@TTbZ?[<)1#2</11aRba7`T?bZ>[$ $

G6-0%,'+*';G81' ?L$ $

;G?'HIJ01'
$
$

$

;G?'KIJ01'
$

$ $

 

 
  

CLL stage A0 
CLL stage C 

Treated with Chlor 
x3  

CLL stage B 

CLL stage C 

Treated with Chlor 
x6 

CLL stage A 

PT sample: Normal FU sample: only 
small deletions 

2002 2003 2004 2005 2006 2007 2008 2009 2010 
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Patient data: 12_MC 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' $K)/*.'&#1$).$>QQR$4)-"$20,GFU$CSS:$B+'*+#&&#1$-'$&-/*#$C$CSS$).$TUUY$
/.1$-+#/-#2#.-$*)6#.V$AC$H]:$I-/*#$F$&).9#$TUUQ$

 

.%&+-$('/"#"'$&'0,$%*1'' $E'+2/,$*#.'2#$
 

WBC count graph: 

 

Figure 44: WBC of MC (12). PT sample at 0 and FU sample at 104 

Timeline of Samples available with DATA from Array + FISH data:  

 

Diagnosed with 
mBL/Stage A0 CLL 

CLL Stage C  

Treated with FC x6  

CLL stage A 

PT sample: Normal 

FU sample: Many 
small CNA 

1998 2000 2002 2004 2006 2008 2010 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' >$

:>?!@A1' ?$

?)$B%1' 5#&$

231' >T$
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!,%4%&#"#$+&'5"-C)%' ULG>>G>QQR$ $

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<$
K>?I?>QZE'+2/,[$

$

E",F+#FC%' X]<^_$ !

G6-0%,'+*';G81' ??$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01' E'+2/,$
$

$

 

5"-C)%'/"#%' >QG>>G>QQQ$ $$

E",F+#FC%' X]<^_<$-a>cT>c?ba7>?c@TTc7T?b<$-aY<>Xba@>>c@TTb$$Z>[$$ !

D259'/"#"1' >TCZE'+2/,[<$$ !!
 

5"-C)%'/"#%' U>GU]GTUUU$ $$

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZE'+2/,[$ !!

 

D+))+L'6C'5"-C)%' >RGUYGTUUY$ $

D259'/"#"' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<$
K>?I?>QZE'+2/,[$

$

E",F+#C%' X]<^_$ZTQ[$ $

G6-0%,'+*';G81' ?U$ $

;G?'HIJ01'
$

$

;G?'KIJ01'
$

$ $
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Patient data: 14_AS 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$4)-"$2PS$).$TUU>:$CSS$&-/*#$FU$).$TUU]:$$
I-/*#$FT$).$TUUY$4")9"$-%+.#1$).-'$D)9"-#+&$T$2'.-"&$,/-#+:$!+#/-#2#.-$

*)6#.V$D3CefB$HR:$$$
CSS$&-/*#$FU$).$TU>U$$

$
 

.%&+-$('/"#"'$&'0,$%*1'' $!+)&'25$>T$7/-)#.-&$
 

WBC count graph: 

 

Figure 45: WBC of AS (14). PT sample at 0  and FU sample at 74 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' g.2%-/-#1$

:;3<=1' QL$

:>?!@A1' RU$

?)$B%1' 5#&$

231' >X$
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Timeline of Samples available with DATA from Array + FISH data: 

 

!,%4%&#"#$+&'5"-C)%' UYGU]GTUU>$ $

D259'/"#"1' K>?I?>QZE'+2/,[c$>TCZ!+)&'25[<$
F!WZE'+2/,[<!BL?ZE'+2/,[$

!+)&'25$>T$).$]X\$'($
9#,,&$

E",F+#FC%' XY<^_<d>TZ?U[$ !

G6-0%,'+*';G81' ?T$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01' !+)&'25a>TbaU:UT3>?T:TRb$

$
$

$

 

5"-C)%'/"#%' U]GULGTUUX$ $$

D259'/"#"1' >TCZ!+)&'25[<$F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZK#,#-)'.[$
!+)&'25$>T$).$LY\$'($

9#,,&$$

 

D+))+L'6C'5"-C)%' >XGU]GTUUL$ $

D259'/"#"'
K>?I?>QZE'+2/,[c$$

F!WZE'+2/,[<!BL?ZE'+2/,[c$>TCZ!+)&'25[V$
]X\$-+)&'25$

$

E",F+#FC%' XY<^_d>T$ $

G6-0%,'+*';G81' TL$ $

;G?'HIJ01'
$
$

$

;G?'KIJ01' j."/.9#1a>TbaU:U3>?T:TRb$ $

 

5"-C)%'/"#%' >?GURGTUUY$ $

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[$
C3259$ZE'+2/,[$

$

E",F+#FC%' XY<$^_<$d>T$$$Z?U[$
$

!

 

 

Diagnosed with 
mBL 

PT sample: 
Trisomy 12 

CLL stage A0 

Richters 

Treated with 
PCHOP x2 

CLL stage A0 

FU sample: 
Trisomy 12 and 
many small CNA 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 
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Patient data: 15_VC 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#$4)-"$2PS$).$TUU>$a?L\$9,'./,$P$9#,,&b$
;.$TUU]<$&-/*#$FU$CSS:$

TUURV$B+'*+#&&#&$-'$&-/*#$C$a,/+*#$Q92$&7,##.b$/.1$-+#/-#2#.-$*)6#.$
aCeSfD$HLb:$A%+-"#+$-+#/-#2#.-$).$TUUQ$aCeSfD$H]b$

$
 

.%&+-$('/"#"'$&'0,$%*1''
$K#,#-)'.$d$*/).$/-$9"+$T$/.1$9"+$>?:$h/+5'-57#$&%**#&-&$
-+/.&,'9/-)'.:$$

 

WBC count graph: 

 

Figure 46: WBC of VC (15). PT sample at 0 and FU sample at 84 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' XR$

:>?!@A1' >$

?)$B%1' 5#&$

231' >L$
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Timeline of Samples available with DATA from Array + FISH data: 

 

!,%4%&#"#$+&'5"-C)%' TTG>>GTUU>$ $

D259'/"#"1'
F!WZE'+2/,[<!BL?ZE'+2/,[cK>?I?>QZK#,#-)'.[V$T]\$

"#2)J5*'%&$$/-$$4)-"$T$&)*./,&$
?Q\$"#2)J5*'%&$$/-$$4)-"$?$&)*./,&$

T]\$
"#2)J5*'%&$
,'&&$/-$>?@>X$
4)-"$T$&)*./,&$

?Q\$
"#2)J5*'%&$
,'&&$/-$>?@>X$
4)-"$?$&)*./,&$

E",F+#FC%' XY<^_<-aTV>?ba7T>V@>Xb<d)aTba7>Ub1#+aTb-aTV>?b<1#,a?ba@`b<-aLV>
Lba@??V@>LbZ>>[$

!

G6-0%,'+*';G81' T>$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01'

j."/.9#1aTbaXX:U>3RR:RQb$

K)2).)&"#1aTba?]:RL3XX:U>b$

K)2).)&"#1a>?baXL:]X3LU:L?b$

j."/.9#1a>?baLU:L?3>>X:>?b$
$ $

T7T>37>>$
T7TT7T>$
>?@>X$

>?@>X3@?X$

 

D+))+L'6C'5"-C)%' >LGU>GTUUQ$ $

D259'/"#"' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[c$>?@$Ef!$KfEj$ $

E",F+#FC%'
XY<^_<-aTc>?ba7T?c@>Xb1#,a>?ba@>T@>Xb<d1#+aTba>?@?X3

kVVT7T?3kT@?>VV3k>?@?Xb<-aLc>Lba@??c@>?b$
ZT?[GXY<&,</11aTUba7>?b$Z>[GX]<^_$ZT[$

$

G6-0%,'+*';G81' T>$ $

;G?'HIJ01' 3$-$&$4M%/NI<ON<UQ<ITPAQIRO'
3$-$&$4M%/NIRONSUQA@TSUQISO'

$

$

;G?'KIJ01'

K)2).)&"#1aTba?]:QT3XX:U>b 
j."/.9#1aTbaXX:U?3RR:Q>b 

K)2).)&"#1a>?baXL:Q>3LU:L?b 
j."/.9#1a>?baLU:L?3>>X:>?b$

$

T7T>37>>$
T7TT7T>$
>?@>X$

>?@>X3@?X$

Diagnosed with 
mBL 

CLL stage A0 CLL stage C 

Treated with Chlor 
x5 

Treated with Chlor 
x6 

PT sample: large 
gains and 

deletions in chr 2 
and chr 13  

FU sample: no 
major changes 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 
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Patient data: 16_CR 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

CSS$&-/*#$FU$).$TUU>:$e)*"$409$/.1$&-/*#$FT$).$TUUX:$!+#/-#1$4)-"$
CeSfD$).$TUUL$ZBFD!;FS$+#&7'.&#[:$I-/*#$FU$0%-$")*"$OPC$).$TUUY<$

-+#/-#1$4)-"$CeSfD$ZBFD!;FS$+#&7'.&#[:$K)#1$).$U>GTUUQ$a7.#%2'.)/b$
$

 

.%&+-$('/"#"'$&'0,$%*1'' $N/).$of 2p and deletion of chr18 at both PT and FU$
 

WBC count graph: 

 

Figure 47: WBC of CR (16). PT sample at 1 and FU sample at 26 
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Timeline of Samples available with DATA from Array + FISH data: 

 

 

!,%4%&#"#$+&'5"-C)%' T?GU>GTUUT$ $

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[c$K>?I?>QZE'+2/,[$
$

E",F+#FC%' X]<^_</11a>Rba7>>bZ>T[$ !

G6-0%,'+*';G81' ?>$ $

;G?'HIJ01' $

$
$

$

;G?'KIJ01'
j."/.9#1aTbaU:U3QX:Y>b$

K)2).)&"#1a>RbaU:U3>L:?Qb$
$ $

T7TX37>>$
>R7>>$

 

D+))+L'6C'5"-C)%' >UGUTGTUUX$ $

D259'/"#"1' >TCZE'+2/,[<$
F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZE'+2/,[$

$

E",F+#FC%' X]<^_</11a>Rba7>>bZ>T[$ $

G6-0%,'+*';G81' ?T$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01' j."/.9#1aTbaU:U3QX:Y>b$

K)2).)&"#1a>RbaU:U3>L:?Qb$
$ $

T7TX37>>$
>R7>>$

 

 

  

CLL stage A0 CLL stage A2 

Treated with Chlor 
[PARTIAL 
response] 

CLL stage A0 

Treated with Chlor 
[PARTIAL 
response] 

Death 

PT sample: large 
gain of chr2 and 

del 18p FU sample: no 
major changes 

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 
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Patient data: 18_G 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

TUUX$1)/*.'&#1$4)-"$&-/*#$F>$CSS:$B+'*+#&&#1$-'$&-/*#$C$/.1$*)6#.$
-+#/-#2#.-$).$TUUY$aCeSfD$H]$ZBFD!;FS$+#&7'.&#[:$D#2/).#1$/-$&-/*#$C$
).$TUUR$/.1$4/&$*)6#.$-+#/-#2#.-$/*/).$aAC$H]b:$F,#.-%J)2/0$*)6#.$).$
TUUQ$a/&$9'.&',)1/-)'.$-"#+/75$0#9/%&#$'($2).)2/,$+#&)1%/,$1)&#/&#b:$$

K)&#/&#$7+'*+#&&#1$-'$D)9"-#+&$).$TU>U$
 

.%&+-$('/"#"'$&'0,$%*1'' $I2/,,$>?@$1#,#-)'.:$I-/0,#$*#.'2#:$$
 

WBC count graph: 

 

Figure 48: WBC of DG (18). PT sample at 1 and FU sample at 33 
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Timeline of Samples available with DATA from Array + FISH data: 

 

!,%4%&#"#$+&'5"-C)%' TTGUYGTUUX$ $

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[c$K>?I?>QZK#,#-)'.[V$
QL\$"#2)J5*'%&$

QL\$"#2)J5*'%&$,'&&$/-$
>?@>X$

E",F+#FC%' X]<^_$ !

G6-0%,'+*';G81' T]$ $

;G?'HIJ01' $
$

$

$

;G?'KIJ01' K)2).)&"#1a>?baXQ:X?3LU:L]b$
$

$

 

D+))+L'6C'5"-C)%' >TGU?GTUUY$ $

D259'/"#"'
>TCZE'+2/,[c$F!WZE'+2/,[<!BL?ZE'+2/,[<$

K>?I?>QZK#,#-)'.[V$]U\$"#2)J5*'%&$$
TU\$"'2'J5*'%&$$$

$

E",F+#FC%' X]<^_<1#,a>?ba@>T@>Xb$Z][$$$$GX]<^_$Z>Q[$ $

G6-0%,'+*';G81' TY$ $

;G?'HIJ01'
$
$

$

;G?'KIJ01' K)2).)&"#1a>?baXQ:XL3LU:LXb$
$

$

 

5"-C)%'/"#%' UXGUXGTUUR$ $

D259'/"#"1' K>?I?>QZK#,#-)'.[$
]U\$"#2)J5*'%&$$

TU\$"'2'J5*'%&$,'&&$/-$
>?@>X$

 

CLL stage A1 CLL stage C 

Treated with Chol 
x6 [PARTIAL 
response] 

CLL stage C 

Treated with FC x6 

Treated with 
Alentuzimab 

Transformed to 
Richters 

PT sample: small 
13q14 deletion 

FU sample: no big 
changes 

2004 2005 2006 2007 2008 2009 2010 
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Patient data: 19_GG 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)/*.'&#1$).$>QQQ$4)-"$CSS$&-/*#$FU:$I-/0,#$&).9#:$

 

.%&+-$('/"#"'$&'0,$%*1'' $>?@>X$"'2'J5*'%&$1#,#-)'.$4)-"$/$,/+*#$Sfe:$$
 

WBC count graph: 

 

Figure 49: WBC of GG (19). PT sample at  0 and FU sample at 103 

 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' >$

:>?!@A1' T$

?)$B%1' 5#&$

231' >Q$
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Timeline of Samples available with DATA from Array + FISH data:

 

 

!,%4%&#"#$+&'5"-C)%' TXGU?G>QQQ$ $

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[c$K>?I?>QZK#,#-)'.[V$
YX\$"'2'J5*'%&$$$

YX\$"'2'J5*'%&$,'&&$
'($>?@>X$

E",F+#FC%' iX]<^_$
$

G6-0%,'+*';G81' TX$ $

;G?'HIJ01' Diminished X2(13)(49.5-50.37)$

$
$

$

;G?'KIJ01'

$Sfea>?baT>:UX3>>X:>b$
$

$
$

$

 

5"-C)%'/"#%' >QGU]GTUU>$ $$

E",F+#FC%' X]<^_<-aTc>Yba@>`?c@T>`b$$$Z>[$$ !

D259'/"#"1' $F!WZE'+2/,[<!BL?ZE'+2/,[$ !!

 

D+))+L'6C'5"-C)%' U]G>>GTUUY$ $

D259'/"#"1' >TCZE'+2/,[c$F!WZE'+2/,[<!BL?ZE'+2/,[c$
K>?I?>QZK#,#-)'.[V$QX\$"'2'J5*'%&$$

QX\$"'2'J5*'%&$1#,#-)'.$
$

E",F+#FC%' iX]<^_<1#,a>>ba@T?@TLb$
Z>[GX]<^_<`1#,a>>ba@T?@TLb$Z?[GX]<^_$ZT][$

$

G6-0%,'+*';G81' TL$ $

;G?'HIJ01' K)2).)&"#1$^Ta>?baXQ:L3LU:?Yb$
$

$

;G?'KIJ01' $Sfea>?baT>:UX3>>X:>b$
$

$
$

$

 

CLL Stage A0 CLL stage A0 

PT sample: small 
13q x2 deletion 

and large 13q LOH  

FU sample: No 
large changes 

1999 2001 2003 2005 2007 2009 
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Patient data: 21_AA 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)/*.'&#1$4)-"$2PS$).$>QQR$4)-"$F;eF:$$
$TUU]<$CSS$I-/*#$FU:$I-/0,#$&).9#:$

 

.%&+-$('/"#"'$&'0,$%*1'' $I2/,,$>?@$1#,#-)'.$.'$2/8'+$9"/.*#&$0#-4##.$B!$/.1$Ag$
 

WBC count graph:  

 

Figure 50: WBC of AA (21). PT sample at 107 and FU sample at 130 

Timeline of Samples available with DATA from Array + FISH data:  

 

Mbl + AIHA 
CLL stage A0 CLL stage A0 + 

AIHA 

PT sample: 13q13 
deletion 

FU sample: no big 
changes 

1998 2000 2002 2004 2006 2008 2010 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' F$

2789'4#"#641' $W%-/-#1$

:;3<=1' ?$

:>?!@A1' Q$

?)$B%1' 5#&$

231' T>$



     164 

 

5"-C)%'/"#%' U>GURGTUU>$ $$

E",F+#FC%' XL<^<$3^$$$ZT[$$ !

D259'/"#"1' K>?I?>QZK#,#-)'.[$
TR\$"#2)J5*'%&$,'&&$/-$

>?@>X!!
 

!,%4%&#"#$+&'5"-C)%' UYG>TGTUU]$ $

D259'/"#"1' K>?I?>QZK#,#-)'.[V$TR\$"#2)J5*'%&$

$

E",F+#FC%' iXL<^3^$

$

G6-0%,'+*';G81' >Q$ $

;G?'HIJ01' K)2).)&"#1aT>ba?L:RL3?L:Q?b$
$

$

;G?'KIJ01' K)2).)&"#1a>?baXQ:?X3LU:Xb$
$

$

 

D+))+L'6C'5"-C)%' TXG>TGTUUR$ $

D259'/"#"' F!WZE'+2/,[<!BL?ZE'+2/,[c$>TCZE'+2/,[c$
K>?I?>QZK#,#-)'.[V$?Y\$e'2'J5*'%&$

$

E",F+#FC%' iXL<^3^$ $

G6-0%,'+*';G81' T?$ $

;G?'HIJ01'

Diminished X2(13)(49.5-50.37) 
Enhanced(2)(120.79-120.89) 

Diminished(13)(51.55-51.65) 

Diminished(21)(35.85-35.93) 
$

$
$

$

;G?'KIJ01' $K)2).)&"#1a>?baXQ:]3LU:XLb$
$

$

 

 )
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Patient data: 22_LL 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' $K)/*.'&#1$>QQ]$4)-"$CSS$&-/*#$FU:$I-/0,#$&).9#$
 

 

WBC count graph:  

 

Figure 51: WBC of CG (22). PT sample at 0  and FU sample at 145 

Timeline of Samples available with DATA from Array + FISH data:  

 

 

 

CLL stage A0 
PT sample: Normal FU sample: Small 

changes 

1996 1998 2000 2002 2004 2006 2008 2010 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' L$

:>?!@A1' L$

?)$B%1' 5#&$

231' TT$
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!,%4%&#"#$+&'5"-C)%' TUGULG>QQR$ $

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[c$K>?I?>QZE'+2/,[$
$

E",F+#FC%' iX]<^_$
$

G6-0%,'+*';G81' TU$ $

;G?'HIJ01'
$$

$

$

;G?'KIJ01'
E'+2/,$

$
$

$

 

5"-C)%'/"#%' T]GURGTUUX$ $$

E",F+#FC%' XL<^<$3_$$$Z>[$$ !

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZE'+2/,[$ !!

 

D+))+L'6C'5"-C)%' ?UGUYGTUUR$ $

D259'/"#"' >TCZE'+2/,[c$F!WZE'+2/,[<!BL?ZE'+2/,[c$>?l$
Ef!$KfEj$

$

E",F+#FC%' iX]<^_$ZTQ[$ $

G6-0%,'+*';G81' TT$ $

;G?'HIJ01'
$
$$

$

$

;G?'KIJ01'
$

$
$

$

 

 

 

 

 )
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Patient data: 23_LK 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)*.'&#1$/&$2PS$).$>QRL:$CSS$&-/*#$FU$).$TUUQ$/.1$&-/0,#$&).9#$

 

WBC count graph:  

 

Figure 52: WBC of LK (23). PT sample at 74  and FU sample at 189 

 

Timeline of Samples available with DATA from Array + FISH data:  

 

 

 

 

 

Diagnosed with 
mBL 

CLL stage A0 

PT sample: 13q14 
del x2 

FU sample: 13q14 
del x2 and small 

changes 

1985 1990 1995 2000 2005 2010 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' FU$

2789'4#"#641' W%-/-#1$

:;3<=1' T$

:>?!@A1' X$

?)$B%1' 5#&$

231' T?$
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5"-C)%'/"#%' >LGUQG>QQ?$ $$

E",F+#FC%' $X]<^^<-aQc>Lba7>>c@>?b$$$Z>[$ !

 

!,%4%&#"#$+&'5"-C)%' >>G>>G>QQQ$ $

D259'/"#"'

>TCZE'+2/,[c$
F!WZE'+2/,[<!BL?ZE'+2/,[cK>?I?>QZK#,#-)'.[V$

]L\$"'2'J5*'%&$

$

E",F+#FC%' iX]<^^$ $

G6-0%,'+*';G81' TX$ $

;G?'HIJ01' $
$

$

$

;G?'KIJ01'

$K)2).)&"#1$^Ta>?baXQ:X>3LU:X>b$

Sfea>?baXU:L>3>>X:>b$
$

$
$

$
>?@>X$

 

D+))+L'6C'5"-C)%' UQGU]GTUUQ$ $

D259'/"#"'
>TCZE'+2/,[c$

F!WZE'+2/,[<!BL?ZE'+2/,[cK>?I?>QZK#,#-)'.[V$
R]\$"'2'J5*'%&$$$

$

E",F+#FC%'
XL<^^<1#+a>Yb-a>YcTUba7`c7`b<3TU$Z).9$L[GX]<^^$
Z>>[EP$.'.$9,'./,$&+%9-%+/,$+#/++/.*#2#.-1$
).9,%1).*$1)9#.-+)9$9"+'2'&'2#&$/,&'$&##.$

$

G6-0%,'+*';G81' TX$ $

;G?'HIJ01' Diminished X2(13)(49.42-50.4) 

$
$

$

;G?'KIJ01'
$ Sfea>?baXU:L>3>>X:>b$

$ $

$

 

 

 
 

 

  

5"-C)%'/"#%' >XG>>G>QQ]$ $$

E",F+#FC%' $X]<^^<-aQc>Lba7>Lc@>?b<$Ya@-#+b<$1#,a>?ba@`b$$$$ZT[$ !

D259'/"#"1' K>?I?>QZK#,#-)'.[$$
!]]\$"'2'J5*'%&$,'&&$

/-$>?@>X!
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Patient data: 25_SR 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)/*.'&#1$4)-"$2PS$).$>QQQ:$I-/0,#$&).9#$
$

 

.%&+-$('/"#"'$&'0,$%*1'' $B/-)#.-$4)-"$-+)&'25$>T<$>R$/.1$>Q:$a.'$'-"#+$2/8'+$CEFb$$
 

WBC count graph:  

 

Figure 53: WBC of RS (25). PT sample at 42  and FU sample at 108 

Timeline of Samples available with DATA from Array + FISH data:  

 

 

 

Diagnosed with 
mBL 

PT sample: 
Trisomy 12, 18 
and maybe 19 

FU sample: 
Trsiomy 12, 18 
and maybe 19 

1999 2001 2003 2005 2007 2009 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' FU$

2789'4#"#641' W%-/-#1$

:;3<=1' $QL$

:>?!@A1' T$

?)$B%1' 5#&$

231' TL$
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5"-C)%'/"#%' ?UGU]G>QQQ$ $$

E",F+#FC%' $XQ<$^^<$d>T<$d>R<$d>Q$$$Z>Y[$ !
 

!,%4%&#"#$+&'5"-C)%' ULGUQGTUU?$ $

D259'/"#"'

K>?I?>QZE'+2/,[c$>TCZ!+)&'25[<$
F!WZE'+2/,[<!BL?ZE'+2/,[V$!+)&'25$>T$).$>X\$'($

9#,,&$

$

E",F+#FC%' iXQ<^^<d>T<d>R<d>Q$ $

G6-0%,'+*';G81' >L$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01'

!+)&'25a>TbaU:U3>?T:TQb$
!+)&'25$a>RbaU:U3Y]:UTb$
!+)&'25$a>QbaU:U3]?:YLb$

$ $

$

 

5"-C)%'/"#%' >YGUTGTUUX$ $$

E",F+#FC%' XQ<$^^<$d>T<$d>R<$d>Q$$$ZY[$$ !

D259'/"#"1' >TCZ!+)&'25[<$F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZE'+2/,[$ !!

 

D+))+L'6C'5"-C)%' U]GU?GTUUQ$ $

D259'/"#"'
K>?I?>QZE'+2/,[c$>TCZ!+)&'25[<$

F!WZE'+2/,[<!BL?ZE'+2/,[V$!+)&'25$>T$).$T]\$
'($9#,,&$

$

E",F+#FC%' iXQ<^^<d>T<d>R<d>Q$ZY[GX]<^^$ZT?[$ $

G6-0%,'+*';G81' >Y$ $

;G?'HIJ01'
'
$ $

$

;G?'KIJ01'
!+)&'25a>TbaU:U3>?T:TQb$
!+)&'25$a>RbaU:U3Y]:UTb$
!+)&'25$a>QbaU:U3]?:YLb$

$$

$
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Patient data: 28_EW 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$).$>QQX$4)-"$2PS:$$
B+'*+#&&#1$-'$2PSGF$).$TUUU$/.1$-"#.$CSS$&-/*#$FU$).$TUUT:$$
TUU?V$I-/*#$FT$4)-"$,#(-$/.1$+)*"-$*+').!.'1#&$
TUULV$I/2#$.'1#&$0%-$0)**#+$
TUU]<$7+'*+#&&#&$-'$&-/*#$PT$::$
TUUR$$&-/*#$P$

 

.%&+-$('/"#"'$&'0,$%*1''

$BL?$1#,#-)'.$/-$B!$4)-"$,/+*#$1#,#-)'.$'.$9"+$>?$/.1$9"+$>R:$A',,'4$%7$
&"'4&$"'2'J5*'%&$1#,#-)'.$/-$>>@$aF!Wb$/.1$1#,#-)'.&$'.$9"+$TU$/.1$
,'&&$'($_:$$

 

WBC count graph: 

 

Figure 54: WBC of EW (28). PT sample at 69 and FU sample at 179 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' FU$

2789'4#"#641' W%-/-#1$

:;3<=1' ?U$

:>?!@A1' >$

?)$B%1' 5#&$

231' TR$
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Timeline of Samples available with DATA from Array + FISH data: 

 

 

5"-C)%'/"#%' >?GU]G>QQ]$ $$

E",F+#FC%' XL<^_<1#,a>?ba@>Xb<$1#+a>Rb-a>Yc>Rba@>>c@T?b$$$Z?[$
$$ !

D259'/"#"1' BL?ZK#,#-)'.[<$K>?I?>QZ1#,#-)'.[$
]\$"#2)J5*'%&$,'&&$'($

BL?!!

 

!,%4%&#"#$+&'5"-C)%' >TGULGTUUU$ $

D259'/"#"1' ZK#,#-)'.[<$K>?I?>QZ1#,#-)'.[$]\$"#2)J5*'%&$$'($
BL?$c$F!WZE'+2/,[$?\$$'($F!W$

?\$,'&&$'($F!W$

E",F+#FC%' XL<^_<1#+a>Rb-a>YV>Rba@`>>V@T?b$ZT[$
$

G6-0%,'+*';G81' ?U$ $

;G?'HIJ01' K)2).)&"#1a>YbaLY:T]3LY:XYb$
$

$

;G?'KIJ01'

K)2).)&"#1a>?baXU:TY3>>X:>?b$

K)2).)&"#1a>YbaU:U>3TT:?b$

K)2).)&"#1a>RbaTT:UL3T?:]?b$

K)2).)&"#1a>Rba]L:YT3YT:X]b$
$ $

>?@>X:>>$-'$>?@?X$$
>Y7>?:?$-'$>Y@>>:>$$
>R7>>:?T$-'$>R@>T:>$$
>R@TT:T$-'$>R@T?$$$$$$$$

 

5"-C)%'/"#%' UYGU]GTUUU$ $$

D259'/"#"1' BL?ZK#,#-)'.[<$F!WZE'+2/,[<$>TCZE'+2/,[$
]U\$"#2)J5*'%&$,'&&$'($

BL?!!

 

 

 

 

 

Diagnosed with 
mBL 

CLL stage A0 

CLL stage A2 

CLL stage B2 

CLL stage B 

PT sample: large 
13q del, 17p del, 

18q del 

FU sample: 
acquired 11q del 
and x2 and 20p 

del 

FISH shows 13q14 
del and suggests 
6.4% cells with 

loss of P53 

FISh shows no 
loss of ATM  

FISH shows 96% 
loss of ATM and 
78% loss of P53 

Karyo shows -Y in 
one cell 

1994 1996 1998 2000 2002 2004 2006 2008 2010 
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5"-C)%'/"#%' U]GU]GTUU>$ $$

E",F+#FC%'

XL<^_<1#+a>Rb-a>Yc>Rba@>>c@T?b$$$ZT[$
XX<)1#2<3_<1#,a>?ba@>Xb$$$$Z>X[$

XT<)1#2<3_<1#,a>?ba@>Xb<1#+a>>b-a]c>>ba@T>c@T?b<3TT$$$Z>[$
X?<)1#2<3_<-a>?c>]ba@>Xc7>?b$$$Z>[$$

!

D259'/"#"1' F!WZK#,#-)'.[$
$

!]\$"#2)J5*'%&$,'&&$'($
F!W!

 

5"-C)%'/"#%' UTGUTGTUUX$ $$

D259'/"#"1' F!WZe#2)J5*'%&$,'&&[<$>TCZ.'+2/,[<$
K>?I?>QZ1#,#-)'.[$

TQ\$"#2)J5*'%&$,'&&$'($F!W$
YT\$"#2)J5*'%&$,'&&$/-$>?@>X!!

 

5"-C)%'/"#%' TTGU]GTUUL$ $$

D259'/"#"1' F!WZe#2)J5*'%&$,'&&[<$>TCZ.'+2/,[<$
BL?Z1#,#-)'.[$

YR\$"#2)J5*'%&$,'&&$'($BL?$
Q]\$"#2)J5*'%&$,'&&$/-$F!W!!

 

D+))+L'6C'5"-C)%' T]GU]GTUUQ$ $

D259'/"#"1'

F!WZK#,#-)'.[$$BL?ZK#,#-)'.[V$Y]\$
"#2)J5*'%&$$'($BL?$

?Q\$"#2)J5*'%&$$/-$F!Wc$
K>?I?>QZ1#,#-)'.[$YT\$"#2)J5*'%&$

Y]\$"#2)J5*'%&$,'&&$'($BL?$
?Q\$"#2)J5*'%&$,'&&$/-$F!W!$

E",F+#FC%'

iXL<^_<1#+a>Rb-a>Yc>Rba@T>c@T?b$ZX[GXX<&,<3
_<1#,a>?ba@>T@?`Tb$

ZT[GXX<&1,><1#,a>>ba@>X@TLb$
Z][GXX<&1,T<-a]c>>ba@>?c@>Xb$

ZY[GX?<&1,></11a>]ba7>?b<3TU$ZT[GX]<^_$Z>?[$

$

G6-0%,'+*';G81' ?U$ $

;G?'HIJ01' K)2).)&"#1a>YbaLY:T]3LY:XYb 
$

$

;G?'KIJ01'

3$-$&$4M%/NIION@UQ<TIS<Q@SO'
3$-$&$4M%/'VSNIION=IQISTIIUQUIO'
K)2).)&"#1a>?baXU:TR3>>X:>?b$

K)2).)&"#1a>YbaU:U3TT:>Lb$

K)2).)&"#1a>RbaTT:>X3T?:]>b$

K)2).)&"#1a>Rba]L:Y>3YT:XYb$

3$-$&$4M%/NSAONAQATISQWRO'
3$-$&$4M%/NZONPQWITWQ=O'

3$-$&$4M%/NZON@QU<TS@QI=O'
$$

>>@>X:>$-'$>>@TX:T$$$>>@>X:>$-'$
>>@T?:?$$>?@>X:>>$-'$>?@?X$$

>Y7>?:?$-'$>Y@>>:>$$>R7>>:?T$-'$
>R@>T:>$$>R@TT:T$-'$>R@T?$$$$$$$
TU7>?$-'$TU7>T:>$$$$$$_7>>:T$$$$$$$$$$$$$$$$$$$$$$$$$$

_7>>:T$-'$_@>>:T?$
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Patient data: 29_JG 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'
CSS$&-/*#$FU$).$TUUX<$7+'*+#&&#&$-'$&-/*#$F>$).$TUUY$/.1$)&$*)6#.$
-+#/-#2#.-$aCeSfD$HTb:$OPC$*'#&$1'4.$/.1$-"#.$0/9=$%7$&,'4,5:$

!+#/-#1$/*/).$).$TU>U$4)-"$CeSfD:$
 

.%&+-$('/"#"'$&'0,$%*1''
$K#,#-)'.$'($Q7$/.1$TU7$/&$4#,,$/&$&2/,,$>?@$1#,#-)'.:$E'$2/8'+$
9"/.*#&$/-$Ag$

 

WBC count graph: 

 

Figure 55: WBC of JG (29). PT sample at 0 and FU sample at 34.5 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' U$

:>?!@A1' >$

?)$B%1' 5#&$

231' TQ$



     175 

Timeline of Samples available with DATA from Array + FISH data:

 

!,%4%&#"#$+&'5"-C)%' >]GU]GTUUX$ $

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[c$>?l$Ef!$
KfEj$

$

E",F+#FC%' iX]<^^<1#,a>?ba@>X@TTb$
Z>[GX]<^^<`1#,a>?ba@>X@TTbZ>[GX]<^^ZTY[$

!

G6-0%,'+*';G81' TR$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01'

Diminished(4)(10.17-11.24)$
K)2).)&"#1aQbaU:T>3?X:TXb$

K)2).)&"#1a>?baXQ:??3LU:L?b$

K)2).)&"#1aTUbaU:U>3>Y:QTb$
$ $

Q7TX7>?:?$
>?@>X$

TU7>?7>>:T?$

 

D+))+L'6C'5"-C)%' UTGULGTUUY$ $

D259'/"#"1'
>TCZE'+2/,[c$F!WZE'+2/,[<!BL?ZE'+2/,[c$

K>?I?>QZK#,#-)'.[V$L?\$"#2)J5*'%&$$
>U\$"'2'J5*'%&$

L?\$"#2)J5*'%&$,'&&$
>U\$"'2'J5*'%&$,'&&$

E",F+#FC%' iX]<^^<`1#,a>?ba@>X@TT$ZT[GXY<^^<d`+$
Z>[GXX<^^<-a>cTba@?Tc@T>b<3>?<3>Q$Z>[GX]<^^$ZT][$

$

G6-0%,'+*';G81' TQ$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01'

Diminished(4)(10.17-11.24)$
K)2).)&"#1aQbaU:U3?X:XXb$

K)2).)&"#1a>?baXQ:??3LU:X]b$

K)2).)&"#1aTUbaU:U3>Y:QTb$
$$

Q7TX7>?:?$
>?@>X$

TU7>?7>>:T?$

 

 

  

CLL stage A0 CLL stage A1 

Treated with Chlor 
x2 

CLL stage A1 

Treated with Chlor 

PT sample: large 
deletions 9p, 13q, 

20p 

FU sample: only 
small changes 

acquired 

2004 2005 2006 2007 2008 2009 2010 
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Patient data: 30_IS 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'
CSS$&-/*#$FU$).$TUUU$a'+$2PSb$0%-$7+'*+#&&#&$-'$&-/*#$P$).$TUUR$/.1$)&$
-+#/-#1$4)-"$C/27+#1$ZCfWBSj!j$+#&7'.&#[:$CSS$&-/*#$FU$).$TU>U$

$
 

.%&+-$('/"#"'$&'0,$%*1''

$S/+*#$1#,#-)'.$'.$9"+$>U<$>T$/.1$>Q$4)-"$Sfe$'.$>Y7:$A','4$%7$&"'4&$
/9@%)+#1$1#,#-)'.&$'.$9"+$R$/.1$Q:$h/+5'-57#$&%**#&-&$/$-+/.&,'9/-)'.$
).6',6).*$R<$Q$/.1$>T:$$

 

WBC count graph: 

 

Figure 56: WBC of IS (30). PT sample at 44 and FU sample at 92 
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3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' FU$

2789'4#"#641' g.2%-/-#1$

:;3<=1' >]$

:>?!@A1' ?L$

?)$B%1' 5#&$

231' ?U$
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Timeline of Samples available with DATA from Array + FISH data: 

 

!,%4%&#"#$+&'5"-C)%' TTGUYGTUUX$ $

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[c$K>?I?>QZE'+2/,[$
$

E",F+#FC%' iX]<^^$ !

G6-0%,'+*';G81' TL$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01'

K)2).)&"#1a>Uba>U?:?X3>?L:?>b$

j."/.9#1a>TbaL]:UL3LY:TLb$

K)2).)&"#1a>TbaLQ:>X3]?:>Lb$

K)2).)&"#1a>Tba]Q:TT3YU:X>b$

K)2).)&"#1a>TbaYR:]3RQ:YQb$

K)2).)&"#1a>Qba>>:?>3>T:X]b$

K)2).)&"#1a>QbaTT:>?3X?:UYb$

Sfea>YbaU:U>3>R:Rb$
$ $

$
>U@TX:?T$-'$>U@T]:?$$
>T@>?:?$d$>T@>X:>$$
>T@>X:>$d$>T@>X:T$$$$$$
>T@>L$d$>T@T>:>$$$$$$

>T@T>:T$-'$>T@T>:??$$$
>Q7>?:T$$$$$$$$$$$$$$$$$$$$$$$$

>Q7>T$-'$>Q@>?:T$

 

5"-C)%'/"#%' TXGU>GTUUR$ $$

E",F+#FC%' XL<^^<1#,a>Tba@>?@T>b<3>Q$$$$ZT[$$ !

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[$ !!

 

 

 

 

 

CLL stage A0 CLL stage B 

Treated with 
Campeed 

[COMPLETE 
response] 

CLL stage A0 

PT sample: 8 large 
deletions including 

10, 12 and 19 

FU sample: 
acquired 3 more 

deletions on chr 8 
and 9 

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 
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D+))+L'6C'5"-C)%' TTGUQGTUUR$ $

D259'/"#"1' >TCZE'+2/,[cF!WZE'+2/,[<!BL?ZE'+2/,[c$
K>?I?>QZE'+2/,[$

$

E",F+#FC%' iXL<^^<`Ta@b</11a>U@b1#,a>Tba@>?@T>b<3>QZY[<)1#2<3
R<3Q<1#+a>TVQVRba```bZ>L[$

$

G6-0%,'+*';G81' T?$ $

;G?'HIJ01'
$

$

$

;G?'KIJ01'

Diminished(8)(0.0-70.79)           
Diminished(9)(21.69-29.38)      

Diminished(9)(0.0-15.15)    
Diminished(12)(59.18-63.0) 

Diminished(10)(103.81-135.28) 
Enhanced(12)(56.13-57.23) 
Diminished(12)(69.31-70.4) 

Diminished(19)(11.31-12.66) 
Diminished(12)(77.97-89.82) 
Diminished(19)(22.15-43.08)  

LOH(17)(0-18.8) 
$

R7T?:?$-'$R@>?:?$$$$$$$$
Q7T>:?$-'$Q7T>:>$$$$$$$$
Q7TX:?$-'$Q7TT:?$$$

>U@TX:?T$-'$>U@T]:?$$
>T@>?:?$d$>T@>X:>$$
>T@>X:>$d$>T@>X:T$$$$$$
>T@>L$d$>T@T>:>$$$$$$

>T@T>:T$-'$>T@T>:??$$$
>Q7>?:T$$$$$$$$$$$$$$$$$$$$$$$$

>Q7>T$-'$>Q@>?:T$
$
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Patient data: 32_MH 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$4)-"$>QQY$4)-"$CSS$&-/*#$FU:$B+'*+#&&#1$-'$&-/*#$F>$).$TUUY$
a]92$&7,##.b:$!+#/-#1$).$TUUR$4)-"$CeSfD$D$Z*''1$BFD!;FS$+#&7'.&#[:$$
TUUQ$K#-#9-#1$2).)2/,$+#&)1%/,$1)&#/&#$

$
 

.%&+-$('/"#"'$&'0,$%*1''
$>?@$1#,#-)'.$).9,%1).*$/$&2/,,$"'2'J5*'%&$1#,#-#1$+#*)'.:$I-/0,#$
*#.'2#:$$

 

WBC count graph: 

 

Figure 57: WBC of MH (32). PT sample at 12 and FU sample at 122 

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' X$

:>?!@A1' >$

?)$B%1' 5#&$

231' ?T$
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Timeline of Samples available with DATA from Array + FISH data: 

 

 

!,%4%&#"#$+&'5"-C)%' TQGUQG>QQR$ $

D259'/"#"'

F!WZE'+2/,[<!BL?ZE'+2/,[cK>?I?>QZK#,#-)'.[V$
TX\$"#2)J5*'%&$$
]L\$"'2'J5*'%&$$$

$

E",F+#FC%' iX]<^_$ $

G6-0%,'+*';G81' TR$ $

;G?'HIJ01' K)2).)&"#1$^Ta>?baXQ:XQ3LU:?]b$
$

$

;G?'KIJ01'
K)2).)&"#1a>?baXQ:>Q3LU:XXb$

$
$ $

$

 

D+))+L'6C'5"-C)%' T]GUYGTUUY$ $

D259'/"#"' >TCZE'+2/,[cF!WZE'+2/,[<!BL?ZE'+2/,[c$>?@$
Ef!$KfEj$

$

E",F+#FC%' X]<^_<1#,a>?ba@>X@TTb$Z>[GX]<^_$ZTQ[$ $

G6-0%,'+*';G81' TQ$ $

;G?'HIJ01' Diminished(21)(31.87-31.96) 
Diminished X2(13)(49.52-50.35) 

$

$

;G?'KIJ01' K)2).)&"#1a>?baXQ:>R3LU:XXb$

$
$ $

$

 

  

CLL stage A0 CLL stage A1 
(spleen) 

Treated with Chlor  
[good PARTIAL 

response] 

PT sample: 13q 
del with x2 FU sample: small 

changes acquired 

1997 1999 2001 2003 2005 2007 2009 

5"-C)%'/"#%' UTGUQG>QQY$ $$

D259'/"#"1' K>?I?>QZK#,#-)'.[$
TX\$"#2)J5*'%&$,'&&$
]L\$"'2'J5*'%&$,'&&!!
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Patient data: 33_PF 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$).$>QQY$4)-"$CSS$&-/*#$FU:$B+'*+#&&#1$-'$&-/*#$P$).$TUUT$/.1$
*)6#.$-+#/-2#.-$AC$HL:$I-),,$/-$&-/*#$P$).$2/5$TUUY$/.1$*)6#.$(%+-"#+$
-+#/-2#.-$AC$H?$$ZCfWBSj!j$+#&7'.&#[$d$F;eF$a/%-')22%.#$"/#2',5-)9$
/./#2)/b$
m%,5$TUUY$(%+-"#+$-+#/-2#.-$4)-"$D)-%H)2/0$$HX$ZF./#2)9$+#&7'.1#1`[$
TUUQ<$,#(-$9#+6)9/,$.'1#<$1)&#/&#&$7+'*+#&&#&$-'$D)9"-#+&$aKSPCSb:$
!+#/-#1$4)-"$CefB$HR$ZCfWBSj!j$+#&7'.&#[$

 

.%&+-$('/"#"'$&'0,$%*1'' $E'$,/+*#$CEF:$F9@%)+#1$&2/,,$9"/.*#&$/-$Ag$
 

WBC count graph: 

 

Figure 58: WBC of PF (33). PT sample at 9 and FU sample at 114 
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3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' FU$

2789'4#"#641' g.2%-/-#1$

:;3<=1' >X$

:>?!@A1' >$

?)$B%1' 5#&$

231' ??$
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Timeline of Samples available with DATA from Array + FISH data: 

 

!,%4%&#"#$+&'5"-C)%' >]G>>G>QQR$ $

D259'3"#"' F!WZE'+2/,[<!BL?ZE'+2/,[c$K>?I?>QZE'+2/,[$ $

E",F+#FC%' iX]<^^$ $

G6-0%,'+*';G81' TL$ $

;G?'HIJ01' $$$
$

$

;G?'KIJ01' E'+2/,$
$

$

 

5"-C)%'/"#%' U>GU]GTUUL$ $$

E",F+#FC%'

XL<^^<-aXcTUba@>>@>?b<3>Q$$$Z>[$
XL<^^<-aTcYba@?`c@TT`b<3>Q$$$Z>[$

X]<^^<`1#,a>Tba@`b<-a>?c>Lba@`b$$$Z>[$
X]<^^<-aLcQba@?`c@TT`b$$$Z>[$$

!

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[$ !!

 

D+))+L'6C'5"-C)%' UQGULGTUUY$ $

D259'/"#"' >TCZE'+2/,[cK>?I?>QZE'+2/,[$F!W$FEK$BL?$
Ef!$DjCjE!S_$KfEj$

$

E",F+#FC%' X]<^^<-aXc>Lba7`>]c@`>Lb$ZX[GX]<^^$ZT>[$ $

G6-0%,'+*';G81' ?U$ $

;G?'HIJ01' 3$-$&$4M%/N@ONSQSPTSQPIO'
$$

$

;G?'KIJ01'
$

$

$

  

CLL stage A0 CLL stage B 

Treated ith FC x5 

CLL stage B 

Treated with FC x3 
[CR + AIHA] 

Treated with 
Rituximab  x4 

Left cervical node 
--> Richters 

Treated with Chop 
x8 [CR] 

PT sample: Normal FU sample: 6 small 
changes 

1997 1999 2001 2003 2005 2007 2009 
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Patient data: 34_RC 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$).$>QQ>$4)-"$CSS$&-/*#$FU:$B+'*+#&&#1$-'$&-/*#$C$).$TUU>$/.1$
-+#/-#1$4)-"$CeSfD$H?$a;.(#9-)'.b:$!+#/-#1$/*/).$).$TUU?$4)-"$AC$H>$

a926b:$I-/*#$P$).$TUU]$/.1$(%+-"#+$-+#/-#2#.-$aCeSfD$$D$H]b:$B+'*+#&&#&$
-'$D)9"-#+&$eGK$).$TUUQ$/.1$)&$-+#/-#1$/*/).$4)-"$D$C"'7$H$]$

 

.%&+-$('/"#"'$&'0,$%*1'' $I-/0,#$*#.'2#$4)-"$.'$,/+*#$CEF:$e/&$/$>?@$1#,#-)'.$$
 

WBC count graph: 

 

Figure 59: WBC of RC (34). PT sample at 90 and FU sample at 178 

3$4%"4%'5#"#641' B+'*+#&&)6#$$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' ?$

:>?!@A1' X$

?)$B%1' 5#&$

231' ?X$
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Timeline of Samples available with DATA from Array + FISH data: 

 

!,%4%&#"#$+&'5"-C)%' TLG>>G>QQR$ $

D259'/"#"'
F!WZE'+2/,[<!BL?ZE'+2/,[cK>?I?>QZK#,#-)'.[V$

]U\$"#2)J5*'%&$
$

E",F+#FC%' iX]<^_$ $

G6-0%,'+*';G81' ?>$ $

;G?'HIJ01' K)2).)&"#1a>?baXQ:LR3XQ:R?b$
$

$

;G?'KIJ01'
$

$

$

 

5"-C)%'/"#%' URG>UGTUUX$ $$

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<K>?I?>QZK#,#-)'.[$
$

R>\$"#2)J5*'%&$,'&&$/-$
>?@>X!!

 

D+))+L'6C'5"-C)%' T?GUTGTUU]$ $

D259'/"#"'
>TCZE'+2/,[c$

F!WZE'+2/,[<!BL?ZE'+2/,[cK>?I?>QZK#,#-)'.[V$
?T\$"#2)J5*'%&$

$

E",F+#FC%' iX]<^_$Z?U[$ $

G6-0%,'+*';G81' ?Y$ $

;G?'HIJ01' K)2).)&"#1a>?baXQ:LX3XQ:R?b$
$ $

$

;G?'KIJ01'
$

$

$

 

  

CLL stage A0 

CLL stage C 

Treated with Chlor 
x3  

Treated with FC x1 

PT sample: no 
large cna 

CLL stage B 

Treated with Chlor 
R x6 

Richters H/D 

Treated with R 
Chop x6 

FU sample: 
acquired 3 small 

cna 

1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 



     185 

Patient data: 35_BR 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&'

K)/*.'&#1$4)-"$CSS$&-/*#$FU$).$>QQR:$B+'*+#&&#1$-'$&-/*#$F>$).$TUUX$
a&7,##.$T92b$/.1$(%+-"#+$-'$&-/*#$C$).$TUUY$a&7,##.$>X22b$/.1$-+#/-#1$
4)-"$CeSfD$D$H>:$CWM$+#/9-)6/-)'.$/.1$&#6#+#$7/.95-'7#.)/$a+#1%9-)'.$
).$OPC$/.1$+09b$
TUURV$I-/*#$F>$4)-"$R92$&7,##.$
TUUQ$1#/-"$

 

.%&+-$('/"#"'$&'0,$%*1''
$B!$&"'4&$/$&2/,,$>?@>X$1#,#-)'.$4")9"$0#9'2#&$,/+*#+$/.1$
"'2'J5*'%&$).$]$5#/+&$

 

WBC count graph: 

 

Figure 60: WBC of BR (35). PT sample at 34 and FU sample at 111 

231' ?L$

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' ]$

:>?!@A1' T$

?)$B%1' E'$aTUUQb$
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Timeline of Samples available with DATA from Array + FISH data: 

 

5"-C)%'/"#%' TQG>>GTUUU$ $$

E",F+#FC%' X]<^_<`/11a>Tba@TX`b$$$$Z>[$$$ !

D259'/"#"1' F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZK#,#-)'.[$ ?L\"#2)J5*'%&$,'&&!!

 

!,%4%&#"#$+&'5"-C)%' >QGUYGTUU>$ $

D259'/"#"'
F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZK#,#-)'.[V$

?L\$"#2)J5*'%&$$$
$

E",F+#FC%' X]<^_$ $

G6-0%,'+*';G81' ?>$ $

;G?'HIJ01'
K)2).)&"#1aYba>?:>?3>?:TXb$

$
$ $

$

;G?'KIJ01' K)2).)&"#1a>?baXR:RX3L>:]Xb$
$

$

 

D+))+L'6C'5"-C)%' TRG>>GTUUY$ $

D259'/"#"1'
>TCZE'+2/,[c$

F!WZE'+2/,[<!BL?ZE'+2/,[cK>?I?>QZK#,#-)'.[V$Q>\$
"#2)J5*'%&$

$

E",F+#FC%' X]<^_<-aQc>?ba@?Tc@>XbZ][<$X]<^_<1#,a>?ba@>X@TTb$Z>[<$
X]<^_$Z?R[$

$

G6-0%,'+*';G81' ?T$ $

;G?'HIJ01' K)2).)&"#1aYba>?:>?3>?:TLb$
$ $

$

;G?'KIJ01' 3$-$&$4M%/NI<ONPRQAWT@RQ@WO'
3$-$&$4M%/'VSNI<ONP=Q@ITRAQ@WO'

$ $

>?@>X:>T@TT:T$
$$$$>?@>X:T@>X:?$

 

  

CLL stage A0 CLL stage A1 
(spleen) 

CLL stage C 

Treated with Chlor 
R x1 

CLL stage A1 
(spleen) 

PT sample: 13q 
deletion 

FU sample: larger 
and homozyous 

13q 

1998 2000 2002 2004 2006 2008 2010 
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Patient data: 86_WR 
 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)/*.'&#1$).$>QRQ$4)-"$2PS:$I-/0,#$9/&#$&).9#:$
$

 

.%&+-$('/"#"'$&'0,$%*1''
$I2/,,$>?@>X$1#,#-)'.$4)-"$&-/0,#$*#.'2#:$NI!!>$*#.#$1#,#-)'.$)&$
).-#+#&-).*:$$

 

WBC count graph:  

 

Figure 61: WBC of WR (86). PT sample at 119 and FU sample at 192 

Timeline of Samples available with DATA from Array + FISH data:  

 

 

Diagnosed with 
mBL 

PT sample: small 
13q deletion 

FU sample: no 
change 

1989 1994 1999 2004 2009 

3$4%"4%'5#"#641' $I-/0,#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' W%-/-#1$

:;3<=1' T$

:>?!@A1' TY$

?)$B%1' 5#&$

231' R]$
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5"-C)%'/"#%' URGUTG>QQU$ $$

E",F+#FC%' X]<^_<-aLc]ba@?Lc@T>b$Z>T$
X]<^_<1#,a>Xba@TXb$$$$Z>[$ !

 

5"-C)%'/"#%' ULGUTG>QQR$ $$

E",F+#FC%' X]<^_<-aLc]ba@?Lc@T>b$ZL[$ !

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[$ !!

 

!,%4%&#"#$+&'5"-C)%' T?GU>GTUU?$ $

D259'/"#"'
F!WZE'+2/,[<!BL?ZE'+2/,[<K>?I?>QZK#,#-)'.[V$

?>\$"#2)J5*'%&$$$
$

E",F+#FC%' X]<^_<-aLV]ba@?LV@T>b$ZT[$ $

G6-0%,'+*';G81' >Y$ $

;G?'HIJ01'
K)2).)&"#1$aTTb$aTT:]L3TT:YYb$$

$
$

TT@>>:T?$

;G?'KIJ01' K)2).)&"#1a>?baXQ:?Q3LU:XQb$
$

>?@>X$

 

5"-C)%'/"#%' T>GU?GTUUL$ $$

E",F+#FC%' X]<^_<-aLc]ba@?Lc@T>b$ZT[$
XY<^_<$d]$$Z>[$ !

D259'/"#"1' >TCZE'+2/,[<$F!WZE'+2/,[<!BL?ZE'+2/,[$ !!

 

D+))+L'6C'5"-C)%' UQGU?GTUUQ$ $

D259'3"#"'
F!W$Ef!$KfEjc$

!BL?ZE'+2/,[<>TCZE'+2/,[cK>?I?>QZK#,#-)'.[V$
TT\$"#2)J5*'%&$$$

$

E",F+#FC%' X]<^_<-aLc]ba@?Lc@T>b$ZT[GX]<^_$Z?R[$ $

G6-0%,'+*';G81' >R$ $

;G?'HIJ01' K)2).)&"#1aTTbaTT:]L3TT:Y]b$
$

TT@>>:T?$

;G?'KIJ01' K)2).)&"#1a>?baXQ:?Q3LU:XQb$
$

>?@>X$
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Patient data: 247_DC 
 

 

 

 

 

 

 

 

!"#$%&#'()$&$(")'$&*+,-"#$+&' K)/*.'&#1$4)-"$2PS$).$TUU]<$7+'*+#&&#1$-'$CSS$&-/*#$FU$).$TUUY$-"#.$
&-/*#$F$).$TUUQ$/.1$*)6#.$-+#/-2#.-$CeSfD$D:$

 

.%&+-$('/"#"'$&'0,$%*1'' $$
 

WBC count graph: 

 

Figure 62: WBC of DC (247). PT sample at 29 and FU sample at 45 

231' TXY$

3$4%"4%'5#"#641' $B+'*+#&&)6#$

3$4%"4%'4#"7%'"#'3$"7&+4$41' $FU$

2789'4#"#641' $$g.2%-/-#1$

:;3<=1' LU$

:>?!@A1' ]$

?)$B%1' 5#&$
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Timeline of Samples available with DATA from Array + FISH data:
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Patient data: 248_AS 
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WBC count graph:

 

Figure 63: WBC of DC (248). PT sample at 0.5 and FU sample at 85 
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Timeline of Samples available with DATA from Array + FISH data: 
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Patient data: 249_HV 
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WBC count graph: 

 

Figure 64: WBC of HV (249). PT sample at 5.1  and FU sample at 23 
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Timeline of Samples available with DATA from Array + FISH data: 
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Patient data: 250 
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Timeline of Samples available with DATA from Array + FISH data:  
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:" 122$%3+4);)
Table confirming patients with 15q11 deletion were not run on the same array 

batch and thus deletion was not ‘noise’ 

 

Patient 

ID 
Date of array 

12 28/05/09 

14 28/05/09 

16 28/05/09 

29 28/05/09 

32 28/05/09 

33 28/05/09 

34 28/05/09 

35 28/05/09 

18 19/11/09 

19 19/11/09 

22 19/11/09 

23 19/11/09 

25 19/11/09 

28 19/11/09 

15 19/06/09 

 

 )
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