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Abstract 

Recently [M.J. Starink, Thermochim Acta 596, 2014, 109-119] a new model for diffusion-

controlled precipitation reactions based on the extended volume concept was derived. 

The model leads to an analytical equation describing the relation between the fraction 

transformed, α, the reaction time, t, and the reaction exponent, n, as: 

α = {exp(-2(k1t)n)-1}/(2(k1t)n) + 1 

In the present work, new analysis methods are derived which allow determination of 

the reaction exponent n. The new methods are applied to analysis of nucleation and it is 

shown that generally during a reaction with growth in 3 dimensions there are only 2 

modes: either the nucleation rate in the extended volume is constant or it is negligibly 

small. A new approach to the interaction of diffusion-controlled growth and nucleation 

is proposed to rationalise these findings.  The exponential decay of the average solute 

content predicted by the new model is further analysed and compared with a range of 

experimental data and contrasted with other models. The new model is found to 

correspond excellently to these solute decay data. 

 

 

1. Introduction 

Diffusion-controlled precipitation reactions can be thought of as the combination of 4 

consecutive partially overlapping processes: nucleation, growth, soft impingement and 

coarsening. Substantial data on diffusion-controlled precipitation reactions has been 

published and several models have been proposed [1]. Very recently [1] a new model 
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was derived which focusses particularly on the impingement of diffusion fields. A 

comparison with of over 20 sets of transformation vs time data at a wide range of 

temperatures (40-1500°C) showed that the new model accurately fits the data on all 

reactions, and overall is clearly outperforming all other models. A key factor in the 

model is that it derives and employs an expanded form of the imaginary extended 

volume concept (see e.g. [2,3,4,5,6]), through applying an integration of impingement 

over various extended volumes defined by iso-composition surfaces [1]. Through this 

approach the new model avoids the over-simplification of soft impingement inherent in 

mean field approaches such as the Kampmann and Wagner (KW) model [7,8,9,10,11] 

and the model by Svoboda and co-workers [12,13,14]. 

 

The main aim of the present paper is to show the consequences of this new model for 

analysis of nucleation, and to derive methods that can be used to analyse the 

transformation modes of the diffusion-controlled reactions. An ancillary aim is to show, 

through these analyses, that the new model is correct, and can form the basis for a 

range of analysis methods.  

 

For the full derivation of the model the reader is referred to [1]. Whilst the resulting 

equations are straightforward (see below), a graphical representation of the model is 

very difficult and the underlying concepts are challenging. To illustrate the 3 

dimensional growth of particles one would need to represent each particle growing in 

its own 3 dimensional space with each point in 3D space having a time dependent 

composition. This is not realistically possible. Hence we here attempt to represent 1 

dimensional growth. Fig. 1a shows the composition profile of one particle shortly after it 

nucleated. There is one growth dimension: along the x axis. To reflect the assumptions 

in [1] the composition profile is taken as straight lines. Fig. 1b represents the system in 

the extended space/volume1 a short time later; there are now 2 particles that are 

growing. As we are formulating the model in the extended space/volume, each particle 

is associated with its own composition profile in the surrounding matrix that is 

developing independent of diffusion fields around other particles. Thus in the extended 

space/volume each particle grows in its own space, which is reflected in Fig. 1b and c by 

a set of graphs each reflecting one particle.  

                                                      
1 The basic concept of and terminology ‘extended volume’ derives from the JMAK model [2,3,4]. 
In this paragraph and Fig. 1 the extended ‘volume’ is illustrated for one dimension. In this 
paragraph the ‘volume’ is thus a 1 dimensional ‘space’.  
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As time progresses, the diffusion fields around each particle become wider. Fig. 1c 

shows the system in the extended volume at a later time; there are now 4 particles that 

are growing. Fig. 1d shows the composition profile in the real space, with composition 

profiles determined from the transformation from extended to real space (as described 

in [1]). Whilst the straight line approximation for the composition profiles have 

introduced an approximation in the model, the resulting composition profile (Fig. 1d) is 

complex and realistic. It is seen that the model avoids simplifications that have been 

used in selected other models: particles are randomly distributed (they are not in 

equidistant arrays) and there is no mean field concentration assumption used in 

approximating interaction.  

 

In the new model, the fraction transformed, , is calculated on the basis of the average 

amount of solute in the parent phase, )(tc , i.e. it is calculated as  
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where cm is the solute concentration at the precipitate/matrix interface.  The results can 

be described by just 3 basic equations: 
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where  is the fraction of material that is transformed, ext is the extended volume 

fraction, k is a factor depending on temperature, t is the time, Vo is the reference 

volume considered, and n is an exponent (generally referred to as either the reaction 

exponent or the ‘Avrami exponent’). The general equation for n is [15,16,17,18]: 
 

BgNn  dim
 (4) 

 

where g is ½ for diffusion-controlled (parabolic) growth, B is 0 in the case where 

nucleation ceases very early in the reaction, or 1 for continuous nucleation (at constant 

nucleation rate in the extended volume), Ndim is the dimensionality of the growth. For 

diffusion-controlled growth n is thus taken as ½, 1 or 1½.  
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Fig. 1.  Schematic illustration of the model for 1 dimensional growth. See text for 

description. The initial concentration of solute in the alloy is co. 
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2 Methods for direct determination of n 

2.1 Plot slope method 

The main equation in the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model (after 

[2,3,19], see also [16,20]), α=1-exp(-αext), can be readily inverted to express αext in terms 

of α. This allows calculation of αext from data on α and allows plotting ln αext(α) vs lnt. 

This is the oft employed plot of lnt vs ln(-ln(1-)) (sometimes referred to as an ‘Avrami 

plot’), which allows determination of n from the slope. (Expressions for selected other 

models can also be inverted [17,21,22,23]). This ‘Avrami plot’ method has been applied 

extensively throughout many works and the n values thus obtained have been 

extensively discussed in these works. It would appear to be an attractive method, 

because comparison of n determined from the slope of the plot with Eq. 4 provides 

information on dimensionality of the growth and nucleation. Even though this is clearly 

incorrect for diffusion-controlled reactions for all but very small values of α, plotting of 

lnt vs ln(-ln(1-)) has been applied for these reactions. To rectify this situation, and 

provide a correct means for determination of n for diffusion-controlled reactions, we 

will here provide a correct expression for deriving n from slopes of plots for the case of 

diffusion-controlled reactions. 

 

The new model (Eqs. 2-4) does not allow inverting the main expression (Eq. 2) to 

provide a simple expression for αext(α). However, it is possible to derive highly accurate 

approximations for this purpose. Through trial and error it was found that a suitable 

approximation is 
 

lnαext(α)  0.48 ln(((1-)1.8-1)/-1.8) + 0.525 ln(((1-)-1.8-1)/1.8)  (5) 
 

Analysis of this equation shows that it allows approximation of the local slope of an 

lnαext(α) vs lnt plot (which equals n) to within 2.3% for α between 0 and 0.9 (and to 

within 5% for  between 0 and 0.97)2. The average slope for α between 0.02 to 0.8 

equals n to within 0.3%, and the average slope for α between 0.02 to 0.97 equals n to 

within 0.6%. These levels of variation are generally less than errors and uncertainties 

introduced by experimental factors, and hence the above approximation can be used to 

analyse experimental data without adding to experimental errors. 

                                                      
2  A plot of lnt vs ln(/[1-]) is also interesting as the slope equals n at  =0 and  =1. 

But in rises to 1.23 n at  =0.7 and hence less suitable for determination of n. 
. 
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2.2 Time range methods 

Whilst the plot slope method in the previous section is in many cases the most accurate 

and detailed method available for determining n, also faster methods based on 

transformation time ratios are possible. These methods are possible because, just like in 

the JMAK method, for each pair of fraction transformed the ratio of the corresponding 

ratio of times at which these fractions are achieved is a function of only n. In formula 

form this means that for all diffusion-controlled reactions that correspond to Eqs. 2-4:  
 

ln(t(2)/ t(1)) =1/n ln(g(2)/ g(1)) (6) 
 

where g is a function that represents the inverse of equation 2. From the latter equation 

follows: 
 

n = (ln g(2)- ln g(1)) / (ln t(2)- ln t(1)) (7) 
 

By numerical solution (using Eqs 2 and 3), we can find these useful relations3 for 

analysing n:  

n = 3.842 / ln(t(=0.9)/t(=0.1)) and n = 2.370 / ln(t(=0.8)/t(=0.2)). 

 

For experiments in which the rate of transformation is measured (for instance 

calorimetry) it is valuable to have methods that are based on the time needed to reach 

the maximum transformation rate, tp, and times needed to reach a certain fraction of 

that peak transformation rate, for instance the time at which the transformation rate 

has reduced to half the transformation maximum transformation rate. We will denote 

the latter times as t0.5p1 and t0.5p2 , i.e. for t0.5p1 < tp , t0.5p1 = t(d/dt=0.5(d/dt)max). The 

concepts are also illustrated in Fig. 2.  The ratios of these characteristic times depend 

only on n and hence can be used to determine n. By numerical solution (using Eqs 2 - 4), 

we can find these useful relations: 
 

   
15.025.0

75.0
ln87.11 pp ttn   (8) 

 

                                                      
3  An alternate means to present such relations is to apply Eq. 2 from which we find  
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 where function h would be determined from Eq. 2. Whilst such 

an approach is potentially more transparent, the relations presented in the main text 

are more accurate because they do not rely on an approximations function h(). 
. 
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The ratio t0.5p2/t0.5p1 can be termed the times at half maximum ratio (THMR): it is 

effectively a measure of the width of curve in the d/dt vs lnt plot.  For reactions in 

which the start of the reaction is difficult to discern (possibly due to overlap with a 

preceding reaction) it is useful to be able to analyse n based on t0.5p2/tp. For this ratio, 

numerical solution (using Eqs 2 - 4) yields: 
 

   
pp ttn 25.0

64.0
ln71.01   (9) 
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Fig. 2.  Graph of the reaction rate, d/dt, vs t, for the new model, illustrating the characteristic 

times tp, t0.5p1 and t0.5p2. 

 

3 Determination of n for a range of diffusion-controlled 
reactions. 

To test the above plot slope method for determination of n, data on a wide range of 

diffusion-controlled reactions, ranging from Al-based alloys, to steels and Ni-based 

alloys were collected. The sources of the data are [24,25,26,27,28,29,30,31,32,33]. 

Further details of this data collection process are provided in [1]. For all reactions the 

precipitates formed throughout grains and no particular propensity for nucleation on 

defects was reported. 

 

In Fig. 3 plots of 0.48 ln([(1-)1.8-1]/-1.8) + 0.525 ln([(1-)-1.8-1]/1.8) vs lnt are provided 

for a number of diffusion-controlled reactions reported in [24,25,26,27,28]. Only 



Published in J. Alloys and Compounds 630, 2015, pp. 250-255 DOI: 10.1016/j.jallcom.2015.01.045 

8 
 

reactions with 3D diffusion are considered and reactions with n close to 2.5 (as 

determined in [1]) are not considered in Fig 1. As predicted by the new model, the plots 

in Fig. 3 are straight lines. (With some limited deviations and scatter due to 

experimental errors noticeable for small  (mostly <0.04) and on approach of 

completion of reaction (particularly >0.96).) Evaluation of the slopes between =0.04 

and 0.96 reveals that the data sets have slopes of 1.48±0.06, i.e. they correspond 

excellently with the model which requires n=1½ for these reactions. 
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Ni3Al precipitation in Ni-6.5at% Al-9.5at%Cr at 873K [Boo]

 
Fig. 3.  Plot of approximation of lnαext ( 0.48 ln(((1-)1.8-1)/-1.8) + 0.525 ln(((1-)-1.8-1)/1.8) ) vs 

lnt for a range of diffusion-controlled reactions. Note that plots are in good approximation 

straight between =0.04 (lnαext=-3.2) and about =0.96 (lnαext=2.5).  Data from [Wea]=[24], 

[Roy]=[25], [Yon]=[26],  [Deh]=[27] , [Boo]=[28]. 

 

 

A range of further data was analysed using the time range methods (Eqs. 6 to 9). The 

data is collected in Table 1. (For reactions in Al-6Si alloys the initial part of the main 

precipitation reaction shows an overlap with a prior reaction [33] and hence the main 

reaction was analysed using the t0.5p2/tp method, which avoids the initial stage of the 

reaction.) 
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Table 1   Reactions analysed and n values determined using the methods outlined in 

Section 3. 

 
Alloy Phase 

formed 
Source 
of data 

method T (°C) Tst (°C) n 

Cr-(0.01-0.014)%N CrN nitride [24] plot slope method 200 950 1.46 

Cr-(0.01-0.014)%N CrN nitride [24] plot slope method 300 950 1.37 

Pb–0.08%Ca–2%Sn (Pb,Sn)3Ca [27] plot slope method 40 327 1.42 

Cr-(0.01-0.014)%N CrN nitride [24] plot slope method 400 950 1.57 

Ni-6.5 at% Al-9.5 at% Cr  Ni3Al  [28] plot slope method 600 770 1.49 

Al-6Si Si [33] t0.5p2/tp method  190 550 1.52 

Al-6Si Si [33] t0.5p2/tp method 210 550 1.39 

Al-6Si Si [33] t0.5p2/tp method 230 550 1.40 

Al-0.2% Sc Al3Sc  [25] plot slope method 230 365 1.50 

Al-0.2% Sc Al3Sc  [25] plot slope method 270 365 2.25 

Al-5.8at%Zn GP zone  [1] t0.8/t0.2 method 130 200 2.5 

Ti0.3W0.4Cr0.3B2 W2B5  [31] plot slope method 1500 1750 2.55 

Al-0.2% Sc Al3Sc  [25] plot slope method 310 365 2.4 

Al-0.2wt.% Sc Al3Sc  [25] plot slope method 330 375 2.5 

Fe-0.04at%C ferrite [26] plot slope method 835 912 1.5 

Al-1.8Cu-1.5Mg-0.2Mn  co clusters  [30,31] plot slope method 25 380 2.48 

Al-1.2Cu-1.2Mg-0.2Mn  co clusters  [30,31] plot slope method 25 320 2.4 

Al-0.9Cu-1.5Mg-0.03Zr co clusters  [30] plot slope method 25 300 2.5 

 

4 Discussion and analysis 

4.1 Analysis and verification of treatment of impingement. 

In order for the methods outlined in Section 3 to be reliable, we need to be sure that 

the new kinetic model for diffusion-controlled reactions is correct and specifically we 

need to be sure that the treatment of soft impingement is reliable. The extensive model 

verification through comparison with over 20 sets of transformation amount vs time 

data reported in [1] provided a first key test. In the present work, the straight lines in Fig. 

3 all with slope close to 1½ is a further indication the model is sound, and also the 

observation that all values of n for diffusion-controlled reactions with product phases 
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growing in 3 dimensions determined are close to 1½ or 2½ (Table 1) supports the model. 

The data in Table 1 will be further discussed in Section 4.2, but in this section we will 

first compare in further detail the experimental data on the impingement stage with the 

model predictions. 
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Fig. 4.  Plot of (1-) vs t for a range models. The new model shows a linear asymptotic behaviour 

on a log-log scale which is consistent with 2D phase field model predictions by Bruna et al [34] 

(up to  = 0.995). The mean field model (KW model) does not show this asymptotic behaviour. 

 

The new model predicts that for the impingement stage (α>0.3), (1-) will show a linear 

time decay on a log-log plot [1]. In Fig. 4 such a log-log plot is presented for the model 

with n=1½ and n=2 and it is compared with a 2D phase field model of a diffusion-

controlled reaction with continuous nucleation (data from Bruna et al. [34]). The new 

model with n=2 should coincide with that (computationally expensive) phase field 

model, and indeed the correlation is good from  = 0 up to  = 0.995. This provides 

further confidence in the present new model. The predictions by the KW [7] model (for 

constant number of nuclei, i.e. without dissolution of particles in a coarsening stage) are 

also presented in Fig. 4. Whilst initially (up to about  = 0.3) this model coincides with 

the present new model for n=1½, it does not show a linear decay on a log-log plot, and 
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deviations between the models become very large. It has been suggested that the mean 

field approximation underestimates soft impingement [1,35].  

 

In Fig. 5, a log-log plot of (1-) vs t is presented for a range of diffusion-controlled 

reactions (data from [24,25,26,27,28,36]), and for comparison predictions from the new 

model (for n=1½ and n=2½) as well as the KW model (for constant number of nuclei, i.e. 

without dissolution of particles in a coarsening stage) are presented. Considering the 

typical accuracy in determination of  is about 0.01 for the data considered here, Fig. 5 

shows the experimental data is in very good agreement with the new model for n=1½. 

The plot also illustrates that that the KW model does not fit to the experimental data.  
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Fig. 5.  Plot of (1-) vs t for a range of diffusion-controlled reactions. Time is rescaled such that 

t(=0.5) coincides. Data from [Wea]=[24], [Roy]=[25], [Yon]=[26],  [Deh]=[27] , [Boo]=[28], 

[Jo]=[36]. (Note that experimental error in  is typically about 0.01, i.e. on this log scale error 

bars would increase in size towards the bottom of the plot). 

4.2 The relation between reaction exponent n, nucleation, 
undercooling and phonons. 

With the analysis methods based on the new model a reliable determination of the 

reaction exponent n in diffusion-controlled reactions is now possible, and the obtained 
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n values can form the basis of a sound analysis. A survey of the values presented in 

Table 1 shows that n is nearly always very close to 1½ or 2½. In classical nucleation 

theory, nucleation rates are considered to be closely related to undercooling, and hence 

it was decided to plot the determined values of n as a function of the ratio of 

transformation (reaction) temperature, Ttr, and the temperature of maximum stability 

of the reaction product phase (i.e. the precipitate phase) in the alloy, Ts. Ts was 

estimated from solvus data of the Ni-Al system [37], data of the Pb-Ca system [38], TTT 

plots of precipitation in Al-Sc [25], the thermodynamic model for Cu-Mg co-clusters in 

Al-Cu-Mg alloys [39,40], the Fe-C system phase diagram, the Al-Si phase diagram and 

the estimated solvus of CrN by Weaver [24]. Data on Ts thus obtained is included in 

Table 1. 

 

The plot of n vs Ttr/Ts (Fig. 6) shows a clear trend: for Ttr/Ts <0.84 the reactions involving 

long range ordered phases proceed with n=1.5, i.e. nucleation is confined to the very 

early stages and no significant nucleation occurs during the vast majority of the 

transformation, whilst for high Ttr/Ts (Ttr/Ts >0.84) the reaction proceeds with n=2.5, i.e. 

nucleation occurs continuously during the entire reaction. For co-cluster formation 

(short-range ordered structures) all n values are found to be close to 2.5. Fig. 6 suggests 

that there is a sharp transition between the two transformation modes (n=1½ or 2½) for 

long-range ordered precipitates.  

 

The present findings indicate that diffusion-controlled reactions involving nucleation 

within a grain and growth in 3 dimensions have only two distinct modes that are stable: 

n=1½ and n=2½. These two modes reflect nucleation that is concentrated in the very 

early stages of the reaction and continuous nucleation in which nucleation occurs at a 

constant rate in the extended volume. Indeed, available experimental data on 

precipitate density in a range of systems indicates that the density of precipitates is 

close to constant during many transformations for nearly all of the transformation (see 

[41] for ageing of a Nb-V micro-alloyed steel, Booth-Morrison et al. [28] for ageing of 

Ni–6.5 at%Al–9.5 at% Cr at 873 K, [42] for precipitation in an Fe-Si-Ti alloy and Schober 

et al. [43] for precipitation of intermetallic NiAl particles in Fe-6 at%Al-4 at%Ni). The 

existence of only two modes4 suggests that the classical models for nucleation, which 

                                                      
4 In some older literature the term ‘site saturated’ nucleation is used to describe processes with 
B=0, for instance 3 dimensional growth with n=1½.  This ‘site saturation’ can occur for 
heterogeneous nucleation where the number of nucleation sites is limited, but this seems to not 
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generally allow a continuous variation in nucleation rate, cannot fully capture the 

mechanism. Whilst a full discussion of nucleation models is beyond the scope of the 

present paper, there are few points that need to be considered with regards to the 

relation between the present findings and classical nucleation theories. 

 

 

 
 

Fig. 6.  Reaction exponent n for reactions in Table 1 as a function of the ratio of the 
transformation temperature Ttr and is the maximum temperature of stability Ts.  

 

 

In classical nucleation models, the probability of nucleation at a particular location is 

determined by parameters such as local solute concentration, (average) thermodynamic 

temperature, a (local) diffusion rate, a local energy barrier and an interfacial energy. As 

a result, a diffusion event causing growth of a precipitate in a nearby location does not 

influence the nucleation probability other than that it will over time reduce the solute 

content and hence over time reduce the nucleation rate. In such a model the 

                                                                                                                                                              
be the case for the reactions studied here: there is no indication in microstructural studies on 
these alloys that there is a limit on the number of sites. 
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interaction determining the rates of the two processes (nucleation and growth) occurs 

through diffusion of atoms, which has a speed that is limited to the diffusion rate. Thus 

in such a model nucleation and growth are concurrent processes which are linked only 

through diffusion and both nucleation and growth change gradually in the course of the 

transformation. The present findings appear to challenge this classical view: the data in 

Table 1 and Fig. 3 indicate that nucleation it is either ‘on’ (at a constant rate in the 

extended volume) or ‘off’, i.e. after an initial burst of nucleation to start the reaction, 

the nucleation rate becomes negligibly small during nearly the entire transformation. 

We can rationalise this finding by considering that nucleation at each location is closely 

linked to growth of nearby precipitates, and the system will evolve by either using all 

free energy available for overcoming energy barriers to grow existing particles (i.e. no or 

negligible nucleation) or provide the maximum nucleation rate possible.  To enable this 

to happen there needs to be a mechanism through which energy is exchanged at a high 

speed between potential nucleation sites (i.e. the entire parent phase) and growing 

particles. Such mechanisms exist: phonons (lattice vibrations) travel at the speed of 

sound and also diffusion of vacancies is much faster than diffusion of atoms. Thus the 

system as a whole can switch between a maximum nucleation rate process and zero 

nucleation (growth only), depending on which balance produces the fastest decrease in 

free energy of the system. This explains the finding of the existence of only 2 modes in 

Fig. 6. 

 

The reaction for the formation of co-clusters in Al-Cu-Mg alloys forms an exception to 

the trends seen in Fig. 6: for this reaction n appears to be constant at 2.5 independent 

of Ttr/Ts. Also this is consistent with the above interpretation as for these short range 

ordered structures the change in free energy is determined by the Cu-Mg bonds formed 

[39,40,44,45] and hence only continued formation (nucleation) of Cu-Mg bonds can 

reduce the free energy of the system.  

 

It is also interesting to closer examine the dataset for the reaction appearing closest to 

the point where the mode switches at Ttr/Ts = 0.84. For the formation of L12 ordered 

Ni3Al precipitates in the Ni–6.5at%Al–9.5at%Cr alloy at 873K (from [28]), which is the 

reaction with the highest Ttr/Ts amongst the reactions with n=1.5, there is evidence both 

in Fig. 3 and in the original paper [28] that a brief transient rapid nucleation occurs for  

up to 0.03. Fig. 3 shows that it is the only dataset in which a high slope (i.e. high n) is 
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seen before the dominant n=1.5 slope sets in for the majority of the reaction, whilst in 

the original paper [28] precipitate density measurement using atom probe tomography 

(a.k.a. 3 dimensional atom probe) also shows this brief transient rapid nucleation. These 

observations are consistent with the present analysis: for this borderline case rapid 

nucleation can be detected for a small range of the reaction, before the predominant 

mode (growth at constant number of precipitates) takes hold. 

 

5. Conclusions 

A new model for diffusion-controlled reactions was further analysed and methods for 

deriving the reaction mode in terms of the reaction exponent n were derived. 

Conclusions can be drawn as follows: 

- Analysis of the exponential decay of (1-) for a range of reactions provides 

further proof that the new model is accurate, and conclusively shows that 

models based on mean field approaches do not fit to this extensive data. 

- Analysis of the model for diffusion-controlled reactions shows that these 

reactions can be analysed by plotting  

0.48 ln(((1-)1.8-1)/-1.8) + 0.525 ln(((1-)-1.8-1)/1.8) vs ln t.  

The slope provides the reaction exponent n, which equals BgNn  dim , where 

g is ½ for parabolic (diffusion-controlled) growth, B is 0 in the case where 

nucleation ceases very early in the reaction, or 1 for continuous nucleation (at 

constant nucleation rate), Ndim is the dimensionality of the growth. 

- n can also be analysed using time range methods such as  

n = 3.842 / ln(t(=0.9)/t(=0.1)) and n = 2.370 / ln(t(=0.8)/t(=0.2)) 

- Consistent with the BgNn  dim interpretation, determination of n for a large 

number of reactions shows that n is always 1½ or 2½. This provides a consistent 

analysis where reaction model and n value are linked in a consistent way. 
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