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A MODEL FOR THE OPERATION OF PEROVSKITE BASED
HYBRID SOLAR CELLS: FORMULATION, ANALYSIS, AND

COMPARISON TO EXPERIMENT∗

J. M. FOSTER† , H. J. SNAITH‡ , T. LEIJTENS‡ , AND G. RICHARDSON§

Abstract. This work is concerned with the modeling of perovskite based hybrid solar cells
formed by sandwiching a slab of organic lead halide perovskite (CH3NH3PbI3−xClx) photo-absorber
between (n-type) acceptor and (p-type) donor materials—typically titanium dioxide and spiro. A
model for the electrical behavior of these cells is formulated based on drift-diffusion equations for
the motion of the charge carriers and Poisson’s equation for the electric potential. It is closed by
(i) internal interface conditions accounting for charge recombination/generation and jumps in charge
carrier densities arising from differences in the electron affinity/ionization potential between the
materials and (ii) ohmic boundary conditions on the contacts. The model is analyzed by using a
combination of asymptotic and numerical techniques. This leads to an approximate—yet highly
accurate—expression for the current-voltage relationship as a function of the solar induced photo-
current. In addition, we show that this approximate current-voltage relation can be interpreted as an
equivalent circuit model consisting of three diodes, a resistor, and a current source. For sufficiently
small biases the device’s behavior is diodic and the current is limited by the recombination at the
internal interfaces, whereas for sufficiently large biases the device acts like a resistor and the current
is dictated by the ohmic dissipation in the acceptor and donor. The results of the model are also
compared to experimental current-voltage curves, and good agreement is shown.

Key words. hybrid solar cell, perovskite, drift-diffusion, current-voltage curve, recombination,
ideality factor
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1. Introduction. Solar technology has been a very active field of research for
many years. For the majority of this time the best cells have been made from inorganic
crystalline semiconductors, with commercially available silicon modules typically op-
erating in the range of 16–20% power conversion efficiency (PCE) [15]. However,
during this time, the cost of their manufacture (in both a financial and an environ-
mental sense) has remained relatively high. More recently, a different class of solar
cells has emerged that are manufactured using organic semiconductors. These or-
ganic devices present several important advantages over their traditional inorganic
counterparts, for example, low cost materials, high throughput manufacturing tech-
niques (e.g., roll-to-roll printing), and mechanical flexibility (allowing the placement of
cells in previously unusable positions). Despite these advantages, the current organic
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devices have been unable to compete in the commercial market due to their relatively
low efficiency. Up to this year the best organic cells had around 7–10% PCE [14, 15].

However, in only the last year (2012) it has been discovered that hybrid organic
cells constructed with a light-absorbing layer of perovskite can lead to a significant
improvement in PCE [12, 21, 27]. This perovskite material acts as both a light ab-
sorber and an ambipolar charge (or exciton) transporting material, negating the need
for nanostructured heterojunctions such as those used in most organic photovoltaics.
Indeed, when this perovskite material is used in a thin film architecture, and a flat
perovskite layer is placed between a titanium dioxide acceptor and a spiro donor, de-
vice performances of up to 15% PCE have been achieved [2, 43]. However, since the
technology is new, and the underlying physics is not yet fully understood, it is antic-
ipated that an even higher PCE is obtainable with the correct optimization leading
to a cell that is both cheap and operating at the highest efficiency.

In perovskite cells, absorption of light occurs mainly in the perovskite layer. Fol-
lowing light absorption there is a coexistence of excitons and free charges, owing to
the exciton binding energy being on the order of the thermal energy (∼50 meV) [26].
The exact branching ratio for excitons versus free charges remains unknown, and for
the work presented here we assume that free charge generation is the predominant
pathway. These free charges migrate through the perovskite by a combination of ther-
mally excited diffusion and electrically induced drift. Selective flow of charges to the
contacts is facilitated by the acceptor and donor layers abutting the perovskite that
act as a barrier to holes and electrons, respectively. There is evidence to suggest that
efficient solar cell operation is aided by significant levels of n-doping in the acceptor
(∼ 1022 − 1023/m3) and p-doping in the donor (∼ 1023 − 1024/m3) [37]. Charge
(electron-hole) recombination can take place within the bulk of the perovskite and in
narrow layers (∼1 nm) near the material interfaces.

Our approach to describing the electrical properties of a perovskite cell is (in
section 2) to formulate a model based on drift-diffusion equations for the two species of
charge carriers (hole and electrons) throughout the device and on a version of Poisson’s
equation that accounts for doping in both the acceptor and donor. The effect of
charge recombination is modeled near the material interfaces by appropriate internal
boundary conditions and in the bulk of the perovskite by a bulk recombination term.
Charge pair generation is modeled by a bulk generation term within the perovskite,
while changes in electron affinity and ionization potential at the material interfaces
are systematically accounted for by jump conditions on the carrier densities at the
material interfaces (see, for example, [33]). Finally, ohmic boundary conditions are
prescribed on the contacts on the outer edges of the cell.

The model is analyzed using a combination of asymptotic and numerical tech-
niques. In the physically relevant regime, under illumination of one sun: (I) the Debye
lengths in donor, perovskite, and acceptor are all small in comparison to the width
of the materials; (II) the charge mobilities in the perovskite are much greater than
those in the acceptor and donor; and (III) recombination is difficult—corresponding
to small values of the dimensionless parameters δ, δKl, and δKr as defined later in
(2.21). We note that if recombination were not difficult the device would behave pri-
marily as an ohmic resistor, and it would not be possible to achieve the open-circuit
voltages (of around 1 volt) that are observed in real devices.

In practice, the combination of the properties (I) and (III) makes solving the
problem using numerical methods very challenging. Our approach in section 3 is
to use a numerical scheme to compute solutions in which the dimensionless Debye
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Donor (p-type) Perovskite Acceptor (n-type)

n

p

-5.22eV

-3.93eV

-5.43eV

-4eV

Au FTO

Fig. 1. A sketch of a perovskite cell showing the HOMO/valence bands (dashed lines) and
LUMO/conduction bands (solid lines).

lengths are moderately small and recombination is moderately difficult. However, we
are unable to solve for the extremely small dimensionless Debye lengths and values of
δKl and δKr that occur in practice—a more detailed explanation of why this difficulty
occurs is given in section 3.

This motivated us, in section 4, to adopt an asymptotic approach to the solution
of the problem that systematically exploits the small dimensionless Debye lengths and
large relative mobility in the perovskite properties (I) and (II)—previous authors have
treated related, but different, problems using these techniques [1, 4, 8, 13, 18, 30, 35,
38]. The resulting asymptotic solution compares very favorably to the full numerical
solution in the appropriate regime (see Figure 3). It also leads to a relatively simple
set of transcendental equations for the current-voltage curve, which in the case of
bimolecular recombination (section 4.2) can be solved exactly. For certain types of
nonbimolecular (section 4.3) recombination the problem for the current-voltage curve
can be reduced to the solution of a single algebraic equation. In section 5 we compare
experimental current-voltage curves to those predicted by the asymptotic solution to
the model. Finally, in section 6, we draw our conclusions.

2. Problem formulation. A sketch of the idealized geometry of a perovskite so-
lar cell is given in Figure 1; it consists of a p-type donor layer in −d−b/2 < x < −b/2,
a perovskite layer in −b/2 < x < b/2, and an n-type acceptor layer b/2 < x < a+b/2.
The perovskite has a highly ordered crystalline structure which is associated with
well-defined conduction and valence band edges separated by a band-gap. In contrast
the organic acceptor and donor materials are amorphous and have no well-defined
band structure. Electrons are excited into the lowest unoccupied molecular orbital
(LUMO) leaving a hole in the highest occupied molecular orbital (HOMO) and con-
duction takes place as excited electrons and holes move between LUMO and HOMO
(respectively) on adjacent molecules. This process is often viewed as a hopping pro-
cess between shallow, highly localized energy wells (termed “traps”), and a variety of
different charge transport models are used to describe it, including multiple trapping
models [20], Gaussian disorder models [31], and atomistic models [24]. Neverthe-
less, drift-diffusion models are still widely used [5, 6, 9, 10, 16] to describe transport
processes in organic semiconductors, and, indeed, solutions of hopping models using
dynamic Monte Carlo methods have been used to derive drift-diffusion parameters
from microscopic data [22, 42]. Here we also opt to use a drift-diffusion description of
the acceptor and donor materials and note that (from a mathematical viewpoint) the

D
ow

nl
oa

de
d 

12
/2

4/
14

 to
 1

52
.7

8.
38

.2
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1938 J. FOSTER, H. J. SNAITH, T. LEIJTENS, AND G. RICHARDSON

energy level of the LUMO plays a role identical to that of the conduction band edge,
while that of the HOMO plays a role identical to that of the valence band edge. We
denote the energy of an electron at the lower edge of the conduction band (or LUMO)
by Ec(x) and denote that of a hole at the upper edge of the valence band (or HOMO)
by Ev(x). These quantities can be conveniently split into material-dependent parts
(μ̄n(x) and μ̄p(x)) and parts arising from electrostatic interactions so that they can
be written in the form

Ec(x) = μ̄n(x)− qφ and Ev(x) = μ̄p(x) − qφ,(2.1)

where φ is the electric potential and q is the elementary charge. The material prop-
erties μ̄n(x) and μ̄p(x) are the electron affinity and ionization potential, respectively,
which, in this problem, are piecewise constant functions that can be written as

μ̄n(x) =

{
μ̂n for − b/2 < x < b/2,

μn for b/2 < x < a+ b/2,
(2.2)

μ̄p(x) =

{
μp for − d− b/2 < x < −b/2,

μ̂p for − b/2 < x < b/2.
(2.3)

The “average” force exerted on an electron in the conduction band (or LUMO) is thus
−∇Ec, while that exerted on a hole in the valence band (or HOMO) is ∇Ev. Notably,
the infinite gradients in μ̄n and μ̄p that occur at the interfaces between materials lead
to effective discontinuities in the electron and hole concentrations. In practice these
energy differences are so large that the hole concentration in the acceptor and the
electron concentration in the donor are vanishingly small, which is an important
factor in limiting (undesirable) recombination of charge carriers in these materials.
Henceforth we assume that μ̄n and μ̄p are constant within a material so that, with the
exception of material interfaces, we can ignore forces arising from gradients in these
quantities.

Bulk equations. Charge carrier transport is modeled using drift-diffusion equa-
tions. In the donor, we assume that the electron concentration is zero (justified by
the large jump in electron affinity between donor and perovskite), while in the ac-
ceptor we assume that the hole concentration is zero (justified by the large jump in
ionization potential between acceptor and perovskite). The appropriate hole (elec-
tron) conservation equations in the donor (acceptor) are thus

(2.4)

q
∂p

∂t
+

∂Jp

∂x
= 0 where Jp = −qDd

(
∂p

∂x
+

qp

kT

∂φ

∂x

)
in − (b/2 + d) < x < −b/2,

(2.5)

q
∂n

∂t
− ∂Jn

∂x
= 0 where Jn = qDa

(
∂n

∂x
− qn

kT

∂φ

∂x

)
in b/2 < x < b/2 + a.

where t denotes time, n and p are electron and hole number densities, respectively,
Jp and Jn are the hole and electron current densities, respectively, Dd and Da are
the diffusivities of a hole in the donor and an electron in the acceptor, respectively, k
is Boltzmann’s constant, and T is the absolute temperature.

In the perovskite, both holes and electrons are created in abundance by photo-
absorption, which we model as a bulk generation term G(x) in the electron and hole
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conservation equations. We also incorporate terms, accounting for bulk recombination
R(n, p) and thermal generation Gt(n, p) of electron-hole pairs, into the conservation
equations so that they take the form

∂p

∂t
+

1

q

∂Jp

∂x
= G− R(n, p) + Gt(n, p) and Jp = −qD̂p

(
∂p

∂x
+

qp

kT

∂φ

∂x

)
,(2.6)

∂n

∂t
− 1

q

∂Jn

∂x
= G−R(n, p) + Gt(n, p) and Jn = qD̂n

(
∂n

∂x
− qn

kT

∂φ

∂x

)
(2.7)

in −b/2 < x < b/2. Here D̂p and D̂n are the diffusivities of holes and electrons in the
perovskite, respectively. The exact forms of the bulk generation, bulk recombination,
and bulk thermal generation terms G(x), R(n, p), and Gt(n, p) are discussed later in
this section.

The charge carrier conservation equations (2.5)–(2.7) are coupled to Poisson’s
equation for the electric potential, φ, which takes the form

∂2φ

∂x2
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q

εd
(N̂d − p) in −(b/2 + d) < x < −b/2,

q

εp
(n− p) in −b/2 < x < b/2,

q

εa
(n− N̂a) in b/2 < x < b/2 + a,

(2.8)

where we incorporate the effect of doping, in the donor and acceptor, by including the
terms N̂d and N̂a. Here εd, εp, and εa are the permittivities of the donor, perovskite,
and acceptor, respectively.

Jump conditions at the material interfaces. Continuity of potential and electric
displacement at the donor-perovskite interface and at the perovskite-acceptor interface
take the form

φ|x=−b/2− = φ|x=−b/2+ , εdφx|x=−b/2− = εpφx|x=b/2+ ,(2.9)

φ|x=b/2− = φ|x=b/2+ , εpφx|x=b/2− = εaφx|x=b/2+ .(2.10)

Continuity of electric current across the interfaces and electron-hole interface recom-
bination conditions can be formulated as

Jp|x=−b/2− = Jn + Jp|x=−b/2+ , Jn|x=−b/2+ = qRl(n, p)− qGlt(n, p),(2.11)

Jn|x=b/2− + Jp|x=b/2− = Jn|x=b/2+ , Jp|x=b/2− = qRr(n, p)− qGrt(n, p),(2.12)

where Rl and Rr are the electron-hole recombination rates on the donor-perovskite
and perovskite-acceptor interfaces, respectively, and Glt and Grt are the rates of ther-
mal generation of electron-hole pairs on the donor-perovskite and perovskite-acceptor
interfaces, respectively. Here, as is usual, we assume that there is no net surface
charge on the semiconductor-semiconductor interfaces. We note, however, that these
interfaces can be populated by a high density of traps, so it is possible to envis-
age situations where large charge densities reside on the surfaces, but we do not
consider this scenario here. The ratios of the hole concentrations (on either side of
the donor-perovskite interface) and of the electron concentrations (on either side of
the perovskite-acceptor interface) are given in terms of the jumps in the ionization
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potential and electron affinity (see, for example, [33]) by

p|x=−b/2+ = νpp|x=−b/2− where νp =
ĝv
gv

exp

(
μ̂p − μp

kT

)
,(2.13)

n|x=b/2− = νnn|x=b/2+ where νn =
ĝc
gc

exp

(
− μ̂n − μn

kT

)
,(2.14)

where gc and ĝc are the conduction band density of states in the acceptor and per-
ovskite, respectively, and gv and ĝv are the valence band density of states in the donor
and perovskite, respectively. Further details on the derivation of conditions (2.13) and
(2.14) are given in the appendix.

Choice of bulk and surface recombination rates. The exact recombination mech-
anisms (both surface and bulk) in perovskite cells are still not yet well understood.
However, since the perovskite has a well-defined crystalline structure, it is reasonable
to assume that bulk recombination occurs directly and is thus bimolecular (i.e., has
the form R ∝ np). Bimolecular recombination is associated with diodic behavior with
ideality factor N = 1. In contrast, there is experimental evidence to suggest that the
recombination at the material interfaces occurs via intermediate trap states so that a
more general recombination condition, of the form Rl,t ∝ nαpβ , is appropriate [23].
This form of the recombination is associated with diodic behavior with ideality factor
N = 2/(α+ β).

The requirement that the system have a genuine equilibrium in the dark (where
the applied voltage and all current flows are zero) is tantamount to requiring that
R−Gt, Rl −Glt, and Rr −Grt all have the form Γ(n, p)(np−N2

D) for some functions
Γ(n, p), where n, p, and ND are the electron, hole, and intrinsic carrier densities in
the perovskite (ND is defined in terms of fundamental material properties in (A.9)).
Even with these requirements it is still possible to model different recombination
mechanisms through the choice of the functions Γ(n, p) in the three recombination
conditions. Here, we initially model both bulk and surface recombinations using
Langevin conditions, corresponding to direct recombination of electron-hole pairs, by
writing

R− Gt = K̂(np−N2
D), Rl − Glt = K̂l(np−N2

D), Rr − Grt = K̂r(np−N2
D),(2.15)

where K̂, K̂l, and K̂r are constants. We note that this choice of recombination
conditions inherently leads to an ideality factor N = 1. Later, in section 4.3 we treat
a much broader class of recombination conditions, which can model a general ideality
factor, and discuss how these alterations affect the predictions of the model.

Boundary conditions at the contacts. The problem is closed by imposing ohmic
boundary conditions at the contacts with the electrodes. This is tantamount to as-
suming that there are sufficient surface recombination sites, so as to ensure that local
equilibrium is always maintained, and that tunnelling effects at the contacts (and
the diode-like behavior) can be neglected.1 In order for the model to have a genuine
equilibrium in the dark, in which the applied voltage and all current flows are zero,
it is required that the global condition (A.11) be satisfied (derived in the appendix).

1If tunnelling effects at the contacts were believed to be significant, one could, for example,
incorporate the conditions introduced by Malliaras and Scott [29].
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This can be ensured by writing the ohmic boundary conditions in the form

p|x=−(b/2+d) =
ND

Ñ−
√
νnνp

exp

(
qVbi

2kT

)
,(2.16)

n|x=b/2+a =
Ñ−ND√
νnνp

exp

(
qVbi

2kT

)
,(2.17)

φ|x=−(b/2+d) = Vl − Vbi

2
, φ|x=b/2+a = −Vr +

Vbi

2
,(2.18)

where V = Vl + Vr is the applied voltage and Vbi is the built-in potential across the
whole device (as defined in (A.6)). In terms of the fundamental material properties
of the device (as discussed in the appendix)

Ñ− =

√
gc
gv

exp

(
−μp + μn +Wcath +Wanod

2kT

)
.

In nonsteady state the currents measured at the two contacts (i.e., J |x=−(b/2+d) and
J |x=b/2+a) will, in general, be different. In order to determine the single current
flowing in the external circuit, one must account for the rate of change of the surface
charge densities at the metal contacts. However, this is not a problem at steady state
where the currents at the two contacts must be identical and equal to that flowing
in the external circuit. Finally, for convenience we choose an origin for the electric
potential in the middle of the perovskite material,

φ|x=0 = 0,(2.19)

such that Vl and Vr are the potential differences across the left- and right-hand sides
of the device, respectively.

2.1. Nondimensionalization. Here we introduce dimensionless variables (de-
noted by a star) by scaling the model variables appropriately. We scale space with the
width of the perovskite layer, voltages with the thermal voltage, and current densities
with the typical photo-generated current density qG0b (where G0 is a typical value
of G—the rate of photo-generation of charge pairs per unit volume). Carrier charge
densities are scaled with Π0 = b2G0/

√
DaDd, the typical charge density required to

carry a current of magnitude qG0b. The appropriate scalings thus take the form

x = bx∗, p = Π0p
∗, n = Π0n

∗, φ =
kT

q
φ∗, G = G0G

∗,

Gt = G0G∗
t , Glt = bG0G∗

lt, Grt = bG0G∗
rt, R = G0R

∗, Rl = bG0R
∗
l ,

Rr = bG0R
∗
r , J = qG0bJ

∗, Jn = qG0bJ
n∗, Jp = qG0bJ

p∗, Vbi =
kT

q
Φ∗

bi,

Vl =
kT

q
Φ∗

l , Vr =
kT

q
Φ∗

r , t =
b2√
DaDd

t∗

(2.20)
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and give rise to the following dimensionless quantities that characterize the system:

Λd =

√
εd
εp

, Λa =

√
εa
εp

, κ =

√
Dd

Da
, κn =

D̂n√
DaDd

, κp =
D̂p√
DaDd

,

δ =
K̂Π2

0

G0
, wd =

d

b
, wa =

a

b
, Na =

N̂a

Π0
, Nd =

N̂d

Π0
,

N =
ND

Π0
, Kl =

K̂l

K̂b
, Kr =

K̂r

K̂b
, λ =

√
εpkT

q2b2Π0
, νp =

ĝv
gv

exp

(
μ̂p − μp

kT

)
,

νn =
ĝc
gc

exp

(
− μ̂n − μn

kT

)
.

(2.21)

Of the parameters whose meanings are not self-evident from their definitions, νn is the
ratio of the electron concentration in the perovskite to that in the acceptor adjacent
to the perovskite-acceptor boundary, νp is the ratio of the hole concentration in the
perovskite to that in the donor adjacent to the perovskite-donor boundary, λ is the
ratio of the Debye length in the perovskite to the width of the perovskite layer, λΛa

is the ratio of the Debye length in the acceptor to the width of the perovskite layer,
λΛd is the ratio of the Debye length in the donor to the width of the perovskite layer,
and δ is the ratio of the typical bulk recombination to the typical bulk generation in
the perovskite.

The steady dimensionless equations. Since our primary focus here is to derive
expressions for the current-voltage relation of the cell, we consider only the steady
state, in which the total current throughout the device is a constant, J ; this can be seen
by integrating (2.5)1, (2.6)1, and the difference between (2.6) and (2.7) and imposing
continuity of current (2.11)1 and (2.12)1. On applying the rescalings (2.20) to the
steady-state version of the model (2.5)–(2.19) and dropping the stars, we retrieve the
dimensionless steady-state problem

J = −κ (px + pφx)

Λ2
dφxx =

1

λ2
(Nd − p)

⎫⎪⎬
⎪⎭ in − wd − 1

2
< x < −1

2
,(2.22)

Jp
x = G− δ(np−N2)

Jn
x = δ(np−N2)−G

Jp = −κp (px + pφx)

Jn = κn (nx − nφx)

φxx =
1

λ2
(n− p)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

in − 1

2
< x <

1

2
,(2.23)

J =
1

κ
(nx − nφx)

Λ2
aφxx =

1

λ2
(n−Na)

⎫⎪⎬
⎪⎭ in

1

2
< x <

1

2
+ wa,(2.24)
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subject to the jump conditions

νpp− = p+ Λ2
dφx|− = φx|+ φ− = φ+

Jn
+ + Jp

+ = J Jn
+ = Klδ(n+p+ −N2)

}
across x = −1

2
,(2.25)

n− = νnn+ φx|− = Λ2
aφx|+ φ− = φ+

Jn
− + Jp

− = J Jp
− = Krδ(n−p− −N2)

}
across x =

1

2
(2.26)

(where subscripts − and + denote quantities evaluated just to the left and just to the
right of the interface, respectively) and the boundary conditions

p =
N

Ñ−
√
νnνp

exp

(
Φbi

2

)

φ = −Φbi

2
+ Φl

⎫⎪⎪⎬
⎪⎪⎭ on x = −wd − 1

2
,(2.27)

n =
NÑ−√
νnνp

exp

(
Φbi

2

)

φ =
Φbi

2
− Φr

⎫⎪⎪⎬
⎪⎪⎭ on x =

1

2
+ wa,(2.28)

φ = 0 on x = 0.(2.29)

Here we can choose to either (i) specify J and use the solution to the problem to
obtain Φl, Φr and in turn the dimensionless applied potential Φ = Φl + Φr; or (ii)
specify the dimensionless applied potential Φ = Φl + Φr and use the solution to the
problem to obtain J . We note further that we can eliminate Jp from the problem by
adding (2.23)1 to (2.23)2, integrating and applying the jump conditions (2.25)3 and
(2.26)3 to obtain

Jp = J − Jn,(2.30)

and henceforth we replace Jp by this expression.

2.1.1. Parameter estimates for real devices. Here we use existing data to
obtain estimates for the sizes of the dimensionless parameters. We will base our cal-
culations on a cell constructed using a TiO2 acceptor, a lead tri-iodide perovskite
absorbing layer (CH3NH3PbI3), and a spiro-OMeTAD donor. A typical experimental
current-voltage curve for this type of cell is shown in Figure 5. We note that other
materials are also commonly used; for example, Lee et al. [27] investigated the per-
formance of a methylammonium lead iodide chloride (CH3NH3PbI3−xClx) perovskite
cell and reported similar levels of performance. Parameter estimates for our system
of choice are shown in Table 1. The corresponding dimensionless parameter values
are

κ ≈ 0.3162, κ̂n = κ̂p ≈ 3.1623× 104, Λd ≈ 0.7746, Λa ≈ 4,
wd ≈ 1.2, wa ≈ 0.2, νn ≈ 6.68× 10−2, νp ≈ 2.9874× 10−4.

(2.31)

We can also obtain estimates for G0, Π0, and λ based on the current-voltage curve
plotted in Figure 5 by observing that the reverse saturation current density Jrev,sat ≈
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Table 1

Parameter values for the device described in section 2.1.1. Here, ε0 is the permittivity of free
space.

Parameter Symbol Value Reference(s)
Hole diffusivity in donor Dd 10−10m2/s [28]
Electron diffusivity in acceptor Da 2.5× 10−9m2/s [28]

Electron diffusivity in perovskite D̂n 2.5× 10−5m2/s [37]

Hole diffusivity in perovskite D̂p 2.5× 10−5m2/s [37]
Donor permittivity εd 3ε0F/m [37]
Acceptor permittivity εa 80ε0F/m [37]
Perovskite permittivity εp 6.5ε0F/m [37]
Acceptor width a 50− 100nm [37]
Donor width d 500− 700nm [37]
Perovskite width b 500nm [37]
Energy of LUMO in acceptor μn −4eV [12, 21]
Energy of HOMO in donor μp −5.22eV [21]
Energy of conduction band edge in perovskite μ̂n −3.93eV [12, 21]
Energy of valence band edge in perovskite μ̂p −5.43eV [12, 21]

−200 A/m2 is given to a reasonable approximation by−q
∫ b/2

−b/2 Gdx. Assuming almost

uniform generation through the perovskite and taking b from Table 1 yields a typical
value for the generation rate of G0 ≈ 2.5 × 1027 /m3s. In turn this corresponds to
Π0 ≈ 7.9 × 1023 /m3 (via Π0 = b2G0/

√
DaDd) and λ ≈ 0.96 × 10−2. The value

of ND, the intrinsic carrier concentration in the perovskite CH3NH3PbI3−xClx, is
as yet unknown. However, it is expected to be much less than the typical carrier
concentrations Π0 in the device under illumination. In silicon, for example, ND ≈
1.5 × 1016m−3 [39] which would, if repeated in the perovskite, give a value for N ≈
2 × 10−8. In agreement with the discussion in section 1, the dimensionless dopant
concentrations, Na and Nd, is expected to be approximately O(1). The remaining
dimensionless parameters in the model (δ, Kl, Kr, Ñ−) are more difficult to estimate
(even using the curve shown in Figure 5) without first analyzing the model in detail
and are therefore taken to be O(1) quantities for the purposes of the ensuing analysis.

3. Numerics. Our approach to the numerical solution of the system of equations
(2.22)–(2.30) is to make a series of transformations that pose all three parts of the
problem on the interval (−1/2, 1/2). In order to do this we make the following changes
of variable:

(3.1)

x = −1/2− wd

(
z +

1

2

)
p(x) = p̂(z)

φ(x) = φ̂(z)

Jp(x) = Ĵp(z)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

in − wd − 1

2
< x < −1

2
,

x = z in − 1

2
< x <

1

2
,

x = 1/2 + wa

(
1

2
− z

)
n(x) = ñ(z)

φ(x) = φ̃(z)

Jn(x) = J̃n(z)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

in
1

2
< x <

1

2
+ wa.D
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By doing so we can transform the steady-state problem (2.22)–(2.30) into one on the
domain −1/2 < z < 1/2 formed by the eight equations

wdJ = κ
(
p̂z + p̂φ̂z

)
, Λ2

dλ
2φ̂zz = w2

d(Nd − p̂), Jn
z +G = δ(np−N2),

J − Jn = −κ̂p (pz + pφz) , Jn = κ̂n (nz − nφz) , λ2φzz = (n− p),

κwaJ = −
(
ñz − ñφ̃z

)
, Λ2

aλ
2φ̃zz = w2

a(n−Na)

(3.2)

and the thirteen boundary conditions

(3.3)

ñ =
NÑ−√
νnνp

exp

(
Φbi

2

)

φ̃ =
Φbi

2
− Φr

p = νpp̂

φ = φ̂

∂φ

∂z
= −Λ2

d

wd

∂φ̂

∂z

Jn = δKl(np−N2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on z = −1

2
,

p̂ =
N

Ñ−
√
νnνp

exp

(
Φbi

2

)

φ̂ = −Φbi

2
+ Φl

n = νnñ

φ = φ̃

∂φ

∂z
= −Λ2

a

wa

∂φ̃

∂z

J − Jn = δKr(np−N2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

on z =
1

2
,

φ|z=0 = 0.(3.4)

The system (3.2)–(3.4) comprises an eleventh order set of ODEs with thirteen
boundary conditions. Thus, on imposing J and leaving the two parameters Φl and Φr

to be determined as part of the solution, it is not unreasonable to expect that (3.2)–
(3.4) is well-posed. We solve (3.2)–(3.4) using the open source software Chebfun
[3, 11, 40], which approximates functions by Chebyshev polynomials and is partic-
ularly appropriate for solving stiff problems. Nevertheless, this approach still has
difficulty solving problem (3.2)–(3.4) with physically realistic parameter values, and
here we use it as a tool to gain insight into the behavior of the problem for less extreme
parameter values and to compare it to our asymptotic analysis of the problem. The
properties of the system that makes this a particularly challenging numerical problem
are (i) the small value of the dimensionless Debye length, λ, and (ii) the small values
of dimensionless recombination rate constants δKl and δKr. Inspecting the recombi-
nation boundary conditions in (3.4), one can see that the product np must become
extremely large— specifically O(1/Klδ) or O(1/Krδ)—on the internal interfaces in
order to reach the series resistance limited regime where J = O(1). When these large
values of the product np are reached, Poisson’s equation in (3.2) becomes extremely
stiff owing to a combination of the small value of λ and the large values of n and p.

In Figure 3 we show some representative current-voltage curves, potential profiles,
and charge carrier density profiles computed using this numerical scheme. A well-
documented version of our code is provided in the supplementary material.

4. Asymptotic solution to the model in the limit of large perovskite
conductivity and small Debye length. On estimating the model parameters from
the data on real cells (see section 2.1.1) it is apparent that there are very large dispar-
ities between hole and electron diffusivities in the perovskite and those in the donor
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and acceptor. The crystalline structure of the perovskite leads to a high electrical
conductivity (corresponding to large electron and hole diffusivities) in comparison to
the donor and acceptor, which have much smaller conductivities (small electron and
hole diffusivities). These properties manifest themselves in the dimensionless model
in large values of κ̂p and κ̂n which are both O(104). Physically we expect them to
lead to a situation in which electron and hole densities rapidly equilibrate within the
perovskite and in which the primary resistance to current flow is in the donor and
acceptor layers. Moreover, we recall that λ, the ratio of the Debye length in the
perovskite to the width of the perovskite layer, is small, being of O(10−2), which
results in approximate charge neutrality (n ≈ p) in the bulk of each material. The
large difference in electron affinity between the acceptor (where it is high) and the
perovskite (where it is low) means that electron densities immediately adjacent to the
perovskite-acceptor boundary are much greater in the acceptor than in the perovskite;
this corresponds to a small value of dimensionless parameter νn which is of O(10−2).
Analogously, the large difference in ionization potential between the donor (where it
is low) and the perovskite (where it is high) means that hole densities immediately
adjacent to the donor-perovskite boundary are much greater in the donor than in
the perovskite, corresponding to a small value of dimensionless parameter νp which
is of O(10−4). From a physical perspective this can be interpreted as the acceptor
and donor efficiently acting to “suck” free-electrons and holes (respectively) out of the
perovskite. Finally, since we are primarily interested in the operation of devices under
illumination, we expect the dimensionless thermal generation rate N � 1. However,
it turns out that taking νn, νp, and N , to be O(1) quantities results in a distinguished
limit that is also valid, in the physical case, when νn, νp, N � 1. In order to make
it clear that the asymptotic analysis does not rely on νn, νp, and N being small, we
therefore take them to be O(1) for the purposes of the ensuing analysis.

Motivated by these arguments, we investigate the solution to the system (2.22)–
(2.29) in the physically relevant asymptotic limit κ̂p = O(1/λ2) and κ̂n = O(1/λ2)
where λ � 1 (in the specific case discussed in section 2.1.1, λ = O(10−2)). We
formally take all other parameters to be of O(1). For clarity, we re-express all large
and small parameters in terms of O(1) overbarred variables by writing

κp =
κ̄p

λ2
and κn =

κ̄n

λ2
.(4.1)

As we have defined the problem, the power generating regime of the current-voltage
curve lies in the quadrant J < 0 and Φ = Φl +Φr > 0. Since this is the section of the
curve that is of most practical interest, in the remainder of this section we focus on
the current regime J < 0. Later, in section 4.2 we discuss the cases J = 0 and J < 0.
It turns out that (in the small λ limit) the leading order solutions in the acceptor and
donor regions decouple from each other, and since the solution structures in the donor
and acceptor are very similar we detail only the solution derivation in the perovskite
and acceptor layers and merely summarize the results for the donor. The relevant
equations and boundary conditions in these two regions are obtained from (2.23),
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(2.24), (2.26), (2.28), and (2.29) and are

px + pφx =
λ2

κ̄p
(Jn − J), Jn

x = δ(np−N2)−G

nx − nφx =
λ2

κ̄n
Jn, φxx =

1

λ2
(n− p)

⎫⎪⎪⎬
⎪⎪⎭ in − 1

2
< x <

1

2
,(4.2)

nx − nφx = κJ, φxx =
1

Λ2
aλ

2
(n−Na) in

1

2
< x <

1

2
+ wa,(4.3)

n|x=1/2− = νnn|x=1/2+

φx|x=1/2− = Λ2
aφx|x=1/2+

φ|x=1/2− = φ|x=1/2+

(Jn − J)|x=1/2− = −Krδ(n|x=1/2−p|x=1/2− −N2)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

across x =
1

2
,(4.4)

n =
NÑ−√
νnνp

exp

(
Φbi

2

)
and φ =

Φbi

2
− Φr on x =

1

2
+ wa,(4.5)

φ = 0 on x = 0.(4.6)

It also proves useful to recap the recombination condition

Jn|x=−1/2+ = δKl(n|x=−1/2+p|x=−1/2+ −N2).(4.7)

4.1. Matched asymptotic analysis with J < 0 in the limit λ → 0.
An asymptotic analysis of the problem in the limit λ → 0 requires that we split
the device into seven regions, which we denote with the superscripts (I)–(VII) and
depict in Figure 2. These comprise the bulk regions (VI), (I), and (III) (in the donor,
perovskite, and acceptor, respectively) boundary layers about the donor-perovskite
and perovskite-acceptor interfaces (regions (V) and (II), respectively) and boundary
layers near the contact (regions (VII) and (IV)).

4.1.1. Features of the solution in the perovskite. Before proceeding with
the matched asymptotic analysis we derive some general results that hold throughout
the whole of the perovskite layer, whether in the bulk (I) or in the boundary layers
(II) and (V). We note first (from (4.2)1 and (4.2)3) that

px ∼ −pφx and nx ∼ nφx(4.8)

in all three regions, and it follows that the leading order behavior of the solutions for
n and p is given by

p ∼ B exp(−φ) and n ∼ A exp(φ) in − 1

2
< x <

1

2
(4.9)

for some, as yet undetermined, constants A and B. Taking these behaviors and
substituting them in (4.2)2 leads to the expression

Jn
x ∼ δ(AB −N2)−G(x),(4.10)

which can be readily integrated to give the leading order behavior of the electron
current throughout the perovskite,

Jn ∼ δ(AB −N2)x−
∫ x

0

G(s)ds +
J

2
− h in − 1

2
< x <

1

2
,(4.11)
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Donor (p-type) Perovskite Acceptor (n-type)

Region (I)
Region (II)

Region (III)
Region (IV)Region (V)

Region (VI)
Region (VII)

Fig. 2. A sketch showing the locations and widths of the different asymptotic regions.

for some constant h that remains to be determined. We can determine two relations
for the unknown constants A, B, and h by substituting this expression for Jn, together
with those for n and p found in (4.9), into the interface conditions (4.4)4 and (4.7) to
obtain

−δ(AB −N2)− J

2
− h+

∫ 0

−1/2

G(x)dx ∼ Klδ(AB −N2),(4.12)

−δ(AB −N2)− J

2
+ h+

∫ 1/2

0

G(x)dx ∼ Krδ(AB −N2),(4.13)

which we can solve to find expressions for h and AB,

(4.14)

h =
1

2

[(
Kr −Kl

Kl +Kr + 1

)(∫ 1/2

−1/2

G(x)dx + J

)
+

∫ 0

−1/2

G(x)dx −
∫ 1/2

0

G(x)dx

]
,

AB =

∫ 1/2

−1/2
G(x)dx + J

δ(Kl +Kr + 1)
+N2.(4.15)

4.1.2. The perovskite bulk: Region (I). We begin by examining the solution
in the perovskite bulk, away from the interfaces, by expanding in the form

n = n
(I)
0 +O(λ2), p = p

(I)
0 +O(λ2), and φ = φ

(I)
0 + O(λ2).(4.16)

Since λ � 1, the leading order balance in Poisson’s equation, (4.2)4, implies approxi-

mate charge neutrality, n
(I)
0 (x) = p

(I)
0 (x). Then substitution of the expansion (4.16)

into (4.2)1 and (4.2)3 yields

n
(I)
0,x + n

(I)
0 φ

(I)
0,x = 0, n

(I)
0,x − n

(I)
0 φ

(I)
0,x = 0,(4.17)

from which it follows that n
(I)
0,x = 0 and φ

(I)
0,x = 0. Applying the boundary condition

(4.6), namely φ
(I)
0 |x=0 = 0, to the latter of these two equations and writing a solution

to the former that is compatible with (4.9) yields

n
(I)
0 = A, p

(I)
0 = A, and φ

(I)
0 = 0,(4.18)

from which we see that B = A. It follows from (4.15) that

A =

√√√√∫ 1/2

−1/2
G(x)dx + J

δ(Kl +Kr + 1)
+N2.(4.19)
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4.1.3. The acceptor bulk: Region (III). Having found the leading order
solution in the perovskite bulk, we look for a solution in the acceptor bulk. Once
again the relatively small ratio of the Debye length to the width of the acceptor
(Λaλ � 1) gives rise to approximate charge neutrality throughout the bulk of the
acceptor and motivates us to expand as follows:

n(III) = n
(III)
0 +O(λ2) and φ(III) = φ

(III)
0 +O(λ2).(4.20)

Substituting this expansion into (4.3) and taking the leading order terms results in
the following equations:

n
(III)
0,x − n

(III)
0 φ

(III)
0,x = κJ and n

(III)
0 = Na.(4.21)

Substituting the latter into the former and integrating with respect to x leads to the
following relation for the leading order potential:

φ
(III)
0 = −Jκ

Na

(
x− 1

2

)
+ c(4.22)

for some as yet undetermined constant c. From (4.22) it can be seen that the acceptor
bulk is primarily behaving as an ohmic resistor.

4.1.4. Boundary layer about the acceptor-perovskite interface: Region
(II). We investigate the solution close to the perovskite-acceptor interface by rescal-
ing distances in (4.2)–(4.4) as follows:

x =
1

2
+ λη.(4.23)

This leads to the following inner equations in the boundary layer:

φηη = n− p

nη − nφη = λ3 J
n

κ̄n

pη + pφη = λ3 J
n − J

κ̄p

Jn
η = λ(δ(np−N2)−G)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

in η < 0 and(4.24)

Λ2
aφηη = n−Na

nη − nφη = λJκ

}
in η > 0,(4.25)

respectively, which couple via the conditions

n|η=0− = νnn|η=0+ , φη|η=0− = Λ2
aφη|η=0+

φ|η=0− = φ|η=0+

}
across η = 0.(4.26)

We look for an asymptotic solution to (4.24)–(4.26) by expanding as follows:

n = n
(II)
0 +O(λ2), p = p

(II)
0 +O(λ2), and φ = φ

(II)
0 +O(λ2).(4.27)

We divide the task of looking for a solution to this problem by first solving in the
perovskite, where η < 0, then solving in the acceptor, where η > 0, and finally
ensuring appropriate continuity of the solution across the interface η = 0 by applying
the conditions (4.26).
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Solution in η < 0 (the perovskite). As discussed in section 4.1.1 the leading
order solutions for electron and hole densities in the perovskite have the form (4.9)
corresponding to leading order solutions to (4.24)2–(4.24)3 of the form

n
(II)
0 = A exp

(
φ
(II)
0

)
and p

(II)
0 = A exp

(
−φ

(II)
0

)
in η < 0,(4.28)

where A is determined by (4.19). Substituting these solutions into the leading or-
der expansion of (4.24)1 results in the following Poisson–Boltzmann equation for the
leading order potential:

φ
(II)
0ηη = A

(
exp

(
φ
(II)
0

)
− exp

(
−φ

(II)
0

))
.(4.29)

The far field behavior of φ(II) is given by matching to region (I) in the limit η → −∞
and is

φ(II) → 0 as η → −∞.(4.30)

Solutions to (4.29)–(4.30) have the form

φ
(II)
0 = ±2 log

[
coth

(√
A

2
(η0 − η)

)]
in η < 0,(4.31)

where η0 is a positive constant. Here we take the negative sign in this expression on
the physical grounds that we know that—for all relevant operating conditions—the
electron concentration is small in the perovskite in proximity to the boundary with
acceptor, and is thus less than the hole concentration.2 By substituting the leading
order potential from (4.31) (on taking the negative sign) into the solution (4.28), we
obtain the corresponding charge carrier densities

(4.32)

n
(II)
0 = A tanh2

(√
A

2
(η0 − η)

)
and p

(II)
0 = A tanh−2

(√
A

2
(η0 − η)

)
in η < 0.

Solution in η > 0 (the acceptor). The expansion of the drift-diffusion equation
(4.25)2 is, at leading order,

n
(II)
0,η − n

(II)
0 φ

(II)
0,η = 0 in η > 0,(4.33)

which has solution

n
(II)
0 = M exp

(
φ
(II)
0

)
in η > 0,(4.34)

where M is a constant that remains to be determined.
Matching to region (III) as η → ∞. By matching to the leading order solution in

the acceptor bulk (4.21)–(4.22), we obtain the following matching conditions on the
leading order solution in region (II):

φ
(II)
0 → c and n

(II)
0 → Na as η → +∞.(4.35)

2The only situation in which this is not the case is when the device is operating very close to its
reverse saturation current density and A ≤ νnNa. However, we stress that this is not relevant in the
interesting power-generating regime, and so we do not pursue this further.
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Solution in η > 0 (the acceptor), continued. The matching conditions (4.35)
allow us to determine the unknown constant in (4.34) as M = Na exp(−c). Then on
substitution of (4.34) into the leading order expansion of Poisson’s equation (4.25)1,

we obtain the following equation for the leading order potential φ
(II)
0 :

Λ2
aφ

(II)
0,ηη = Na

(
exp

(
φ
(II)
0 − c

)
− 1

)
.(4.36)

By multiplying this equation by φ
(II)
0,η , integrating with respect to η, applying the

matching condition (4.35), and taking the negative square root of the results (thus
ensuring that we are able to satisfy (4.26)2 at leading order when we compare this
solution in η > 0 to (4.31)), we obtain the following expression for the derivative of
the potential:

Λaφ
(II)
0,η = −

√
2Na

(
exp (φ

(II)
0 − c)− (φ

(II)
0 − c+ 1)

)
.(4.37)

We can integrate this once more, this time with respect to φ
(II)
0 , in order to find an

expression for η, but, before doing so we enforce continuity of the potential across the
interface η = 0 through (4.26)3, which, on noting that the solution in η < 0 is given
by (4.31), leads to the boundary condition

φ
(II)
0 |η=0+ = −2 log

[
coth

(√
A

2
η0

)]
.(4.38)

Integrating (4.37) and applying this boundary condition yields a parametric solution
for the potential

η =

∫ −2 log
[
coth

(√
A
2 η0

)]

φ
(II)
0

Λa√
2Na (exp (s− c)− (s− c+ 1))

ds

where φ
(II)
0 < −2 log

[
coth

(√
A
2 η0

)]
.

(4.39)

Coupling the solution in η > 0 to that in η < 0 via the interface conditions.
In order to determine the remaining constants in the solution, namely η0 and c, we
impose the interface conditions (4.26)1 and (4.26)2. By substituting for n(II)|η=0−

(from (4.33)), for n
(II)
0 |η=0+ (from (4.34)), and for φ

(II)
0 |η=0 (from (4.38)) in (4.26)1

we obtain an expression for c:

c = − log

(
A

νnNa

)
.(4.40)

The remaining constant η0 is determined by substituting for φ
(II)
0,η |η=0− (from the

derivative of (4.31)) and for φ
(II)
0,η |η=0+ (from (4.37)–(4.38)) into (4.26)2; this yields a

transcendental equation for η0,

(4.41)

Λ2
aNa sinh

2
(
η0
√
2A

)[ A

νnNa
tanh2

(
η0

√
A

2

)
−log

{
A

νnNa
tanh2

(
η0

√
A

2

)}
−1

]
= 4A.

This is readily solved by using a numerical root-finding scheme.
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4.1.5. Near the acceptor contact: Region (IV). To complete the descrip-
tion of the right-hand side of the device, we study the behavior near the acceptor
contact where the charge carrier density must vary rapidly in order to satisfy the
ohmic boundary conditions. The structure of this boundary layer is similar to that in
the acceptor near the internal interface (i.e., η > 0 in region (II) as discussed in the
section above). We therefore suppress some of the details for brevity. We begin by
performing the rescaling

x =
1

2
+ wa + λξ(4.42)

in (4.3) and (4.5) so that the boundary layer equations and boundary conditions are

Λ2
aφ

(IV )
ξξ = n(IV ) −Na and n

(IV )
ξ − n(IV )φ

(IV )
ξ = −λJκ in ξ < 0,(4.43)

with φ(IV )|ξ=0 =
Φbi

2
− Φr and n(IV )|ξ=0 =

NÑ−√
νnνp

exp

(
Φbi

2

)
.(4.44)

Expanding as follows:

n(IV ) = n
(IV )
0 +O(λ2) and φ(IV ) = φ

(IV )
0 +O(λ2)(4.45)

and matching to the solution in region (III), (4.21), and (4.22) leads to the following
matching conditions on the leading order solution:

φ
(IV )
0 → −wa

Jκ

Na
+ c and n

(IV )
0 → Na as ξ → −∞.(4.46)

The solution to the leading order expansion of (4.43)2 that satisfies the matching
conditions is

n
(IV )
0 = Na exp

(
φ
(IV )
0 + wa

Jκ

Na
− c

)
.(4.47)

Substituting this expression into the leading order expansion of (4.43)1 and (4.44)1
leads to the following:

Λ2
a

Na
φ
(IV )
0,ξξ =

[
exp

(
φ
(IV )
0 + wa

Jκ

Na
− c

)
− 1

]
, φ

(IV )
0 |ξ=0 =

Φbi

2
− Φr,(4.48)

which, together with the matching condition (4.46)1, has a parametric solution of the
form

ξ = ±
∫ φ

(IV )
0

Φbi/2−Φr

Λa√
2Na

(
exp

(
s+ wa

Jκ
Na

− c
)
−
(
s+ wa

Jκ
Na

− c+ 1
))ds,(4.49)

where ξ < 0. Finally, we may determine Φr, the potential drop across the right-hand
side of the device (between x = 1/2 + wa and x = 0), by substituting for φ(IV )|ξ=0

(from (4.44)1), for n
(IV )
0 |ξ=0 (from (4.44)2), and for c (from (4.40)) in (4.47). We find

that

Φr = log

(
A
√
νp

NÑ−
√
νn

)
+

waJκ

Na
.(4.50)
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4.1.6. Solutions in the regions (V), (VI), and (VII). The structure of the
solution in the donor region is analogous to that in the acceptor. We therefore omit
all details of its derivation and give only the asymptotic expansions and the leading
order solutions in each region.

The donor bulk: Region (VI). Here the appropriate expansions for the potential
and the hole density are

φ(IV ) = φ
(V I)
0 +O(λ2) and p(V I) = p

(V I)
0 +O(λ2),(4.51)

and the leading order solutions are

φ
(IV )
0 = − J

κNd

(
x+

1

2

)
+ ĉ and p

(IV )
0 = Nd.(4.52)

The boundary layer about the donor-perovskite interface: Region (V). Here we
rescale about the interface by writing x = −1/2 + λχ and expand as follows:

φ(V ) = φ
(V )
0 +O(λ2), n(V ) = n

(V )
0 +O(λ2), p(V ) = p

(V )
0 +O(λ2).(4.53)

In the perovskite where (χ > 0), the leading order solution is

n
(V )
0 = A tanh−2

(√
A

2
(χ+ χ0)

)
, p

(V )
0 = A tanh2

(√
A

2
(χ+ χ0)

)
,

φ
(V )
0 = 2 log

[
coth

(√
A

2
(χ+ χ0)

)]
,

(4.54)

and in the donor (χ < 0) it has the form

p
(V )
0 = Nd exp

(
ĉ− φ

(V )
0

)
,(4.55)

χ =

∫ 2 log
[
coth

(√
A
2 χ0)

)]

φ
(V )
0

Λd√
2Nd ((s− ĉ− 1) + exp (ĉ− s))

ds,(4.56)

where the second equation is an implicit expression for φ
(V )
0 . Here the constant ĉ is

given by

ĉ = log

(
A

νpNd

)
,(4.57)

and the positive constant χ0 is found by solving the transcendental equation

√
2A sinh−1

(√
2A

λ̄
χ0

)
= Λd

√
Nd

2

√
(fl(χ0)− ĉ− 1) + exp(ĉ− fl(χ0)),(4.58)

where fl(χ0) = 2 log[coth(χ0

√
A2−1λ̄−2)].

The boundary layer about the donor contact: Region (VII). Here we rescale about
the contact by writing x = −(wd + 1/2) + λω and expand as follows:

φ(V II) = φ
(V II)
0 +O(λ2), p(V II) = p

(V II)
0 +O(λ2).(4.59)
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The leading order solutions for the hole density and potential are given by the following
explicit and implicit relations, respectively:

p
(V II)
0 = Nd exp

(
ĉ+

Jwd

κNd
− φ

(V II)
0

)
,(4.60)

ω = ±
∫ φ

(V II)
0

Φl−Φbi/2

Λd√
2Nd

(
(s− Jwd

κNd
− ĉ− 1) + exp

(
ĉ+ Jwd

κNd
− s

))ds.(4.61)

Finally, the potential drop across the left-hand side of the device (between x = 0 and
x = −1/2− wd) can be determined as

Φl = log

(
Ñ−A

√
νn

N
√
νp

)
+

Jwd

κNd
.(4.62)

4.2. The current-voltage relation for bimolecular recombination (N =
1). In section 4.1 we derived the asymptotic solution of (4.2)–(4.6) in the limit λ →
0. This allows us to write an asymptotic expression for the current-voltage relation
(between J and Φ) that is valid for all values of J by (i) recalling that Φ = Φl +Φr,
(ii) substituting for Φl using (4.62), and (iii) substituting for Φr from (4.50). This
takes the form

Φ ∼ log

(
A2

N2

)
+ J

(
wd

κNd
+

waκ

Na

)
,(4.63)

where A is, in the case of bimolecular recombination, given by (4.19). It follows that
the current-voltage relation is

Φ ∼ log

⎛
⎝

∫ 1/2

−1/2 G(x)dx + J

N2δ(Kl +Kr + 1)
+ 1

⎞
⎠+ J

(
wd

κNd
+

waκ

Na

)
.(4.64)

Validity of asymptotics. It is clear that N is small, but we have had, as yet, no
way of estimating δ. If we take the relation (4.64) and substitute J = 0, we get an
expression for the open circuit voltage Φoc which we can invert to obtain an expression
for δ(Kl +Kr + 1),

δ(Kl +Kr + 1) ∼
∫ 1/2

−1/2
Gdx

N2(exp(Φoc)− 1)
.

For a perovskite cell Voc ≈ 0.8V, which equates to Φoc ≈ 32. Substituting for δ(Kl +
Kr + 1) in (4.19), from the above, we obtain, on neglecting small terms,

A ∼ N

⎡
⎣exp(Φoc)

⎛
⎝1 +

J∫ 1/2

−1/2
G(x)dx

⎞
⎠
⎤
⎦
1/2

.(4.65)

It is required, in order for the asymptotics to be valid, that A/λ2 
 1; this ensures the
existence of a Debye layer in the perovskite. Substituting N = 2×10−8 (as estimated
previously from silicon), λ = 10−2, and Φoc = 32 we see that the condition A/λ2 
 1
is satisfied for most of the current-voltage curve but fails close to Jsc, the short-circuit
current (where Φ = 0).
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Fig. 3. A comparison between the numerical and asymptotic solutions of (2.22)–(2.29). For

the purposes of this demonstration we took the dimensionless parameters to be
∫ x=1/2
x=−1/2

G(x)dx = 1,

κ = 1, κn = κp = 102, Λd = Λa = 1, λ = 10−1, wd = 1, wa = 0.5, νn = 10−1, νp = 2 × 10−1,

Φbi = 0, Ñ− = 1, Kl = 0.8, Kr = 0.4, N = 10−1/
√
2, and Na = Nd = 2. The panels (a), (b),

and (c) were computed with δ = 0.2 and show the device operating at J = 1/2, 0,−1/2, respectively.
Panel (d) shows the current-voltage curve for the same device with δ = 0.2, 0.1, 0.05 indicated by
cross, square, and circular markers, respectively. A well-documented version of the code used to
generate these plots is available in the supplementary material.

4.3. Extension to nonbimolecular recombination (N �= 1). Here we in-
vestigate how alterations to the surface recombination rates affect the current-voltage
curve. Physically, alterations may be appropriate if the recombination of charges
across the interface between the donor-perovskite and perovskite-acceptor interfaces
is trap mediated—that is, recombination occurs through intermediate trap states. In
this case [23, 34] it has been argued that the surface recombination rates (Rl and Rr),
and surface thermal generation rates (Glt and Grt), given in (2.15) should be modified
to

Rl − Glt = K̂ln
α−1pβ−1(np−N2

D)
∣∣∣
x=−b+/2

,

Rr − Grt = K̂rn
γ−1pτ−1(np−N2

D)
∣∣∣
x=b−/2

.

(4.66)

Here the case α = β = γ = τ = 1 corresponds to direct bimolecular recombination,
i.e., the case investigated in section 4.1, and K̂l and K̂r play roles analogous to those
of K̂l and K̂r in (2.15) although with different dimensions.

Nondimensionalizing (4.66) via (2.20) leads to the following dimensionless
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conditions on the material interfaces:

Jn|x=−1/2+ = δ Kln
α−1pβ−1

(
np−N2

)∣∣
x=−1/2+

,

(Jn − J)|x=1/2− = −δ Krn
γ−1pτ−1

(
np−N2

)∣∣
x=1/2− ,

(4.67)

where Kl = Πα+β−2
0

K̂l

K̂b
and Kr = Πγ+τ−2

0

K̂r

K̂b
.(4.68)

The solution procedure here is identical to that presented in section 4.1, with the
exception that A must be recalculated in terms of the new interface conditions (4.67).
In order to do so we insert the asymptotic expression for the electron current in the
perovskite (4.11) into (4.67), recall that B = A, and substitute for the leading order
electron and hole densities on the right and left interfaces, in regions (II) and (V),
from (4.33) (with η = 0) and (4.54)1,2 (with χ = 0), respectively. This yields the
following simultaneous equations for A and h:

(4.69)

−δ(A
2−N2)−J

2
−h+

∫ 0

−1/2

G(x)dx=KlδA
α+β−2(A2 −N2)tanh2β−2α

(√
A

2
χ0

)
,

(4.70)

δ(A2 −N2)− J

2
+ h+

∫ 1/2

0

G(x)dx = KrδA
γ+τ−2(A2 −N2) tanh2γ−2τ

(√
A

2
η0

)
.

Summing these two expressions leads to a transcendental equation for A,

δ(A2 −N2)
(
1 +KlA

α+β−2gl(χ0) +KrA
γ+τ−2gr(η0)

)
=

∫ 1/2

−1/2

G(x)dx + J,(4.71)

in which gl(χ0) = tanh2β−2α(
√

A
2 χ0), gr(η0) = tanh2γ−2τ (

√
A
2 η0) and η0 and χ0 are

solutions to (4.42) and (4.58), respectively.

4.3.1. The current-voltage curve for nonbimolecular recombination (N �=
1). In order to obtain the current-voltage relation we must solve for η0(A) and χ0(A)
from (4.40)–(4.42) and (4.57)–(4.58), substitute the results into (4.71), solve the re-
sulting equation for A, and insert the resulting functional expression for A(J) into
(4.63). In practice this requires the use of a numerical root-finding method (we used
the fsolve routine in MATLAB with the defaults settings). To summarize, the
current-voltage curve is given by

(4.72)

Φ ∼ log

(
A(J)2

N2

)
+ J

(
wd

κNd
+

waκ

Na

)
where A(J) is determined by the solution to

(4.73)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(A2 −N2)(1+KlA
α+β−2tanh2β−2αC+KrA

γ+τ−2tanh2γ−2τ B)=

∫ 1/2

−1/2

G(x)dx+J,

2

√
A

Na
= Λa sinh (2B)

(
log

[
νnNa

A
coth2 B

]
− 1 +

A

νnNa
tanh2 B

)1/2

,

2

√
A

Nd
= Λd sinh (2C)

(
log

[
νpNd

A
coth2 C

]
− 1 +

A

νpNd
tanh2 C

)1/2

,
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where here we have substituted B = η0
√
A/2 and C = χ0

√
A/2. In practice, it

may be simpler to solve (4.74)2,3 by formulating these two equations in the form of
equations for tanhB and tanhC, respectively. These can be written as

tanhB

√(
A

νnNa

)
tanh2 B − 1 + log

(
νnNa

A tanh2 B

)
=

(1 − tanh2 B)

Λa

√
A

Na
,(4.74)

tanhC

√(
A

νpNd

)
tanh2 C − 1 + log

(
νpNd

A tanh2 C

)
=

(1 − tanh2 C)

Λd

√
A

Nd
,(4.75)

Validity of asymptotics. The calculation of the asymptotic validity of our expan-
sion is more complex than that for bimolecular recombination as a consequence of
the complicated relationship between A and J given in (4.74). The result of this
calculation is, as before, that N exp(Φoc/2)/λ

2 
 1 is a requirement for the results of
the asymptotic analysis to be correct over a substantial portion of the current-voltage
curve (including the maximum power point).

Approximations to (4.73)–(4.74) for small and large A. Real current-voltage data
of perovskite cells suggests that the potential difference across the cell must reach
roughly 1 volt, corresponding to a dimensionless potential Φ ≈ 40, before the series
resistance term (i.e., the second term on the right-hand side of (4.73)) becomes ap-
preciable. This corresponds to a change in size of A on the order of e20, since Φ
increases from 0 to 40. We can therefore say a great deal about the nature of the
current-voltage relation simply by examining the solutions for tanhB and tanhC for
small and large values of A and noting that moderate values of A occur only for a
narrow range of the potential Φ. We find that

tanhB →
(

ν
1/2
n

Λa + ν
1/2
n

)1/2

and tanhC →
(

ν
1/2
p

Λd + ν
1/2
p

)1/2

as A → +∞,(4.76)

tanhB ∼ 1

Λa

(
2

Na log(νnNa/A)

)1/2

A1/2 for A � 1,(4.77)

tanhC ∼ 1

Λd

(
2

Nd log(νpNd/A)

)1/2

A1/2 for A � 1.(4.78)

It follows that for large A, (4.73)1 is approximated by an algebraic relation for A,

(4.79)⎛
⎝1+Kl

(
ν
1/2
p

Λd+ν
1/2
p

)β−α

Aα+β−2+Kr

(
ν
1/2
n

Λa+ν
1/2
n

)γ−τ

Aγ+τ−2

⎞
⎠∼

∫ 1/2

−1/2 G(x)dx + J

δ(A2 −N2)
,

whereas for small A it is approximated by

(4.80)(
1 +Kl

(
2

Λ2
dNd log(νpNd/A)

)β−α

A2β−2 +Kr

(
2

Λ2
aNa log(νnNa/A)

)γ−τ

A2γ−2

)

∼
∫ 1/2

−1/2
G(x)dx + J

δ(A2 −N2)
.

D
ow

nl
oa

de
d 

12
/2

4/
14

 to
 1

52
.7

8.
38

.2
20

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1958 J. FOSTER, H. J. SNAITH, T. LEIJTENS, AND G. RICHARDSON

0 5 10 15 20

−1

0

1

2

3

4

5

6

Φ

J

(a)                                                                                              

0 5 10 15 20
−10

−8

−6

−4

−2

0

2

Φ

lo
g(
∫
x
=
1/
2

x
=
−
1/
2
G
(s
)d
s
+

J
)

(b)                                                                                        

Fig. 4. A representative current-voltage relation obtained using the generalized recombination
conditions discussed in section 4.3 by (i) solving (4.73)–(4.74) shown using solid curves and (ii)
numerical solution of (3.2)–(3.4) with the corresponding generalized recombination conditions shown
using circular markers. For the purposes of this demonstration we took the dimensionless parameters

to be α = 1/4, β = 5/12, γ = 1/3, τ = 1/6,
∫ x=1/2
x=−1/2

G(x)dx = 1, wa = wd = 1/2, Λa = Λd = 1/2,

Na = Nd = 4, νn = νp = 1/4, N = 0.1, Ñ− = 1, δ = 10−5, Kl = 50, KR = 500, κn = κp = 1/λ2,
λ = 0.05, Φbi = 0, and κ = 1. In panel (b) we can observe three regimes with differing ideality
factors.

We note from (4.73) that, in the regime where ohmic losses across the device are
insignificant (typically this is true for applied voltages Φ less than the open circuit
potential Φoc), A ≈ N exp(Φ/2). Although N , the ratio of the intrinsic carrier con-
centration to the typical solar generated carrier concentration, is very small, exp(Φ/2)
rapidly becomes very large as Φ increases from 0 to around 32 at open circuit.

An example. Here we illustrate the solution of (4.73)–(4.74) with an example
in which α = 1/4, β = 5/12, γ = 1/3, and τ = 1/6. For the purposes of this

demonstration we also set the parameters
∫ x=1/2

x=−1/2G(x)dx = 1, κ = 1, κn = κp =

1/λ2, Λa = Λd = 1/2, wa = wd = 1/2, νn = νp = 1/4, Φbi = 0, N = 0.1, Ñ− = 1,
Kl = 50, KR = 500, Na = Nd = 4, and δ = 10−5 with λ = 0.05. Notably, by plotting

log(
∫ 1/2

−1/2 G(x)dx+J) as a function of Φ we observe three linear regimes with differing

gradients: ≈ 1 for small potentials, ≈ 1/4 for intermediate potentials, and ≈ 1 for
large potentials corresponding to idealities N ≈ 1, 4, and 1, respectively; see Figure
4. The model is thus capable of leading to results in which multiple ideality factors
are observed in the current-voltage curve.

5. Comparison to experiment. The experimentally determined current-
voltage relation of a cell constructed using a TiO2 acceptor, a lead tri-iodide per-
ovskite (CH3NH3PbI3), and a spiro-OMeTAD donor is shown in Figure 5. In panel

(b) we plot the variation of log(
∫ x=b/2

x=−b/2
G(x)dx + J) with qV/kT . Here, we observe

a linear section of the curve (corresponding to the exponential part of the curve in
panel (a)) where the device acts like a diode. The gradient of this linear section of
curve is a good approximation to the reciprocal of the ideality factor, i.e., 1/N [19].
For this cell we find that N ≈ 3, which suggests that recombination in the bulk of the
device is relatively unimportant (since it inherently gives rises to an ideality factor
N = 1) and that instead the behavior is largely determined by the recombination at
the material interfaces.

This observation motivates us to attempt to reproduce the experimental current-
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A MODEL FOR PEROVSKITE BASED HYBRID SOLAR CELLS 1959

voltage relation by setting α = β = γ = τ = 1/3 (so that 2/(α+β) = 2/(γ+τ) = N =
3) and by taking N � 1 and Kl,Kr 
 1 so that the bulk recombination and thermal
generation are much less significant than the recombination at the material interfaces.
In this case (4.74)1 decouples from (4.74)2 and (4.74)3 and has approximate solution
(in the limit N → 0, Kl 
 1, and Kr 
 1)

A(J) =

⎛
⎝
∫ 1/2

−1/2 G(x)dx + J

δ(Kl +Kr)

⎞
⎠

3/2

.(5.1)

Inserting this expression into (4.73) and redimensionalizing using (2.20)–(2.21) gives
the following dimensional expression for the current-voltage relation:

V =
3kT

q
log

⎛
⎝q

∫ b/2

−b/2
G(x)dx + J

qN
2/3
D

(
K̂l + K̂r

)
⎞
⎠+

kT

q2

(
d

N̂dDd

+
a

N̂aDa

)
J.(5.2)

We see from (5.2) that there are two quantities that determine the shape of the
current-voltage curve: (i) the series resistivity integrated over the width of the cell,

kT (d/N̂dDd+a/N̂aDa)/q
2, and (ii) the reverse saturation current density, qN

2/3
D (Kl+

Kr). In the expression for the former the acceptor and donor widths (a and d) and
diffusivities (Da and Dd) are known to reasonable accuracy; however, there is little
data on the dopant levels, N̂a and N̂d. By fitting kT (d/N̂dDd + a/N̂aDa)/q

2 to the
slope of the experimental current-voltage curve in the limit J → ∞ we can obtain
a relation between N̂a and N̂d. In the expression for the reverse saturation current

density, qN
2/3
D (Kl +Kr), we do not have accurate estimates for any of the quantities

ND, Kl, or Kr. However, by fitting to the experimental current-voltage curve, in the

regime in which it grows exponentially, we can obtain an estimate for qN
2/3
D (Kl+Kr).

The result of fitting these two quantities to the data yields a very good agreement with
the experimental current-voltage curve (see Figure 5) and the following estimates:

(5.3)

qN
2/3
D (Kl + Kr) ≈ 4.4× 10−3 C/m2s,

kT

q2

(
d

N̂dDd

+
a

N̂aDa

)
≈ 3.4× 10−4 Ωm2.

Due to the lack of existing physical data on perovskite cells it is difficult to say
whether or not the first quantity in (5.4) is reasonable. However, it is noteworthy
that on substitution of the known values for a, d, Da, and Dd (shown in Table 1)
along with N̂a = N̂d = 1024/m3 (in agreement with the discussion in sections 1 and
2.1.1 and [37]) we arrive at an estimate for the series resistivity integrated over the
width of the cell that agrees very favorably with the estimate (obtained via fitting)
shown in (5.3)—justifying our assumption that the dimensionless dopant densities,
Na and Nd, are O(1).

6. Discussion and conclusions. We have presented a drift-diffusion model for
the electrical behavior of a perovskite based hybrid planar heterojunction solar cell
formed from a layer of perovskite sandwiched between layers of acceptor and donor
materials that act as selective charge blockers. The basic assumptions of this model
are that (i) significant photo-generation occurs only within the perovskite layer, (ii)
both acceptor and donor materials are doped, (iii) hole numbers in the acceptor are
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Fig. 5. Panels (a) and (b) show an experimental and a fitted asymptotic current-voltage re-

lation, respectively. In panel (b) the variation of log(q
∫ x=b/2
x=−b/2

G(x)dx + J) with qV/kT is shown

so that the gradient of the linear section of the curve is 1/N ≈ 1/3. This experimental data was
prepared by Giles Eperon in the Clarendon Laboratory, University of Oxford.

insignificant, (iv) electron numbers in the donor are insignificant, and (v) electron-
hole recombination takes place in the perovskite bulk and on its interfaces with the
donor and acceptor. Initially we assumed that recombination (wherever it occurs) is
bimolecular and analyzed the resulting model in the physically appropriate asymptotic
limit in which (I) the charge mobilities in the perovskite layer are much greater than
those in the adjacent acceptor and donor layers3 and (II) the Debye lengths at all
four interfaces (contact-donor, donor-perovskite, perovskite-acceptor, and acceptor-
contact) are much shorter than the widths of the various layers. In this limit we
showed that the potential drop across the device can be divided into (a) drops across
the boundary layers at the contacts (which are insensitive to changes in the current
flow across the device), (b) drops across the boundary layers at the junctions of the
perovskite with the acceptor and the donor (which depend logarithmically on the
current flow), and (c) drops across the donor bulk and the acceptor bulk (which both
depend linearly on the current flow). This led us to conclude that the current-voltage
relationship is asymptotic to that of a Shockley equivalent circuit consisting of a
current source in parallel with a diode (ideality factor 1) and in series with a resistor.

However, real current-voltage data suggests that the ideality factors of perovskite
solar cells are significantly greater than one (and further that they sometimes display
more than one ideality factor; i.e., the ideality factor can change with the position on
the current-voltage curve). This motivated us to consider models for nonbimolecular
recombination on the interfaces between the perovskite and the donor and between
the perovskite and the acceptor. Here we took the interfacial recombination rates to
be

Rl = K̂ln
αpβ and Rr = K̂rn

γpτ ,(6.1)

where n and p denote the electron and hole number densities, respectively, in the
perovskite on the interface. The main result of the ensuing asymptotic analysis, which
is based on the assumptions given above, is the derivation of an asymptotic expression
for the current-voltage curve. In its dimensionless form this is given by (4.73)–(4.74).
On redimensionalizing this result, via (2.20) and (4.68), and on neglecting thermal

3Thus resistance to current flow is dominated by the resistances of the acceptor and donor layers.
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generation, we obtain

A(J) = ND exp

(
1

2

(
qV

kT
− J

q

(
d

N̂dDd

+
a

N̂aDa

)))
, where A(J) satisfies(6.2)

(
K̂A2 + M̂l(A)Aα+β + M̂r(A)Aγ+τ

)
=

1

b

(∫ b/2

−b/2

G(x)dx +
J

q

)
,(6.3)

with M̂l(A) = K̂l tanh
2β−2α C(A) and M̂r(A) = K̂r tanh

2γ−2τ B(A),(6.4)

where B(A) and C(A) are calculated from the transcendental equations (4.74)2,3, with
A = A/Π0. Notably, where each of the interfacial recombination rates is symmetric
with respect to holes and electrons (such that β = α and τ = γ), the functions
M̂l(A) and M̂r(A) are constant and are given by M̂l(A) = K̂l and M̂r(A) = K̂r. In
this scenario (6.3) becomes a simple algebraic equation for A in terms of the current
density and the generation rate integrated over the width of the perovskite. This can
be viewed as an equivalent circuit in which three diodes (with ideality factors 1, 1/α,
and 1/γ) are in parallel with a current source, and these components are in series with
a resistor; see Figure 6. In practical devices the series resistance is insignificant until
the applied voltage V across the device has increased to close to 1 volt, corresponding
to a value of qV /kT ≈ 40. In the range 0 − 1 volt A increases by a factor of around
e20. It is therefore possible, depending upon the sizes of the recombination rates, that
all three different ideality factors (1, 1/α, and 1/γ) will be observed, as V increases,
before the series resistance becomes dominant. In cases where there is nonsymmetric
recombination β �= α and/or τ �= γ, an even richer range of behavior may be observed,
and this is discussed further in section 4.3.1.

In addition to deriving an asymptotic expression for the current-voltage curve, we
also solved the model numerically and compared these results to the asymptotic so-
lution both via the predicted current-voltage curves and via the potential and charge
carrier density profiles (see Figure 3). The agreement we found was extremely good.
Finally, in section 5, we showed that very good agreement could be obtained between
our asymptotic expression for the current-voltage curve and those obtained experi-
mentally.

We remark that the size of the intrinsic carrier density ND in the perovskite is
unknown and that if it were significantly lower than our estimate, the asymptotic
structure of the problem would change. Peltola [32] presents numerical results and
a detailed discussion of this second scenario showing that charge carrier depletion
occurs in the perovskite layer which, in turn, leads to an increase in its resistance and
a large potential drop across the layer. Although the current-voltage predictions here
agree marginally better with experimental data than those in [32], there still remains
considerable room for doubt about the exact mechanisms underlying the operation of
these cells—not least because much of the available current-voltage data is clouded
by history effects that arise from long relaxation timescales. Such history effects
are currently the subject of much speculation (see [36]) being variously ascribed to
ferroelectricity in the perovskite, charge-trapping, and the slow motion of ions across
the cell.

In summary the analysis conducted herein describes the steady-state behavior
of a perovskite solar cell by a relatively simple relation between the current flowing
through the cell and the applied voltage (6.2)–(6.4). The parameters in this ex-
pression depend upon physical properties of the cell, such as recombination rates,
charge carrier diffusivities, and doping levels. It therefore provides a simple tool for
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Fig. 6. A schematic of the equivalent circuit in the case when each of the interfacial recom-
bination rates is symmetric with respect to electrons and holes, i.e., in the case when β = α and

τ = γ. Here, Iphoto =
∫ b/2
−b/2

G(x)dx and Rs = kT/q2S × (d/N̂dDd) + (a/N̂aDa), where S is the

surface area of the cell.

optimizing the behavior of the cell through modifications to its physical properties.
An important extension to this work is to investigate the dynamic behavior of the
model. Comparison between time-dependent model results and experimental tran-
sient current decay curves is expected to lead to further insight into the functioning
of the cell.

Appendix. Equilibrium solution and derivation of ohmic boundary
conditions. We start by recalling that, where the Fermi level does not lie within
a few kT of the valence and conduction band edges, the Fermi–Dirac distributions
for electron and hole densities in a semiconductor (n and p, respectively) can be
approximated by

n(x) = ḡc(x) exp

(
−Ec(x) − Ef

kT

)
and p(x) = ḡv(x) exp

(
−Ef − Ev(x)

kT

)
,(A.1)

where Ef is the Fermi level, Ec(x) is the electron energy at the conduction band edge
(or LUMO), Ev(x) is the electron energy at the valence band edge (or HOMO), ḡc(x)
is the density of states in the conduction band (or LUMO), and ḡv(x) is the density
of states in the valence band (or HOMO). The spatial dependence of Ec and Ev is
given in (2.1). Similarly, ḡc and ḡv are also piecewise constant functions that take the
following values in each of the materials:

ḡc(x) =

{
ĝc for − b/2 < x < b/2,

gc for b/2 < x < a+ b/2,
(A.2)

ḡv(x) =

{
gv for − d− b/2 < x < −b/2,

ĝv for − b/2 < x < b/2.
(A.3)

In the metallic cathode the Fermi level is given by

Ef = −qφcath −Wcath,(A.4)
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Fig. 7. Typical band bending diagram for a planar trilayer perovskite solar cell at equilibrium.
The vacuum level is indicated by red curves, conduction bands (or LUMOs) by green curves, and
valence bands (or HOMOs) by purple curves. Here φ̃ measures the potential with respect to the
cathode. Upward and downward arrows indicate positive and negative quantities, respectively.

where φcath and Wcath are the potential in the cathode and the work function of the
cathode, respectively. Similarly in the anode contact,

Ef = −qφanod −Wanod,(A.5)

where φanod and Wanod are the potential in the anode and the work function of the
anode, respectively. Since the Fermi level, Ef , is uniform throughout the device,
it follows that the built-in potential of the cell Vbi, which measures the potential
difference between the anode and cathode at equilibrium, is given by

Vbi = φanod − φcath =
1

q
(Wcath −Wanod).(A.6)

We illustrate the equilibrium configuration of the perovskite solar cell under consid-
eration in Figure 7. The various bands indicated in this diagram show the vacuum
electron potential (solid red), the electron potential at the conduction band edge (solid
green), and the electron potential at the valence band edge (solid purple). The spac-
ing between the Fermi level and the flat sections of the valence and conduction bands
that lie away from interfacial Debye layers is determined by the doping levels in the
semiconductors (thus these are evenly spaced about the Fermi level in an undoped
material, such as the perovskite). Having fixed these bands in relation to the Fermi
level, the energy of the vacuum level can be determined by noting that the gap be-
tween the conduction band edge (or LUMO) and the vacuum level is given by the
electron affinity of the material, while that between the valence band edge (or HOMO)
and the vacuum level is given by the the ionization potential of the material. The
drop (increase) in the energy of the vacuum level, of size −qφ̃, in the various layers
of the device below (above) that of the cathode arises from the potential difference
between the material and the cathode. Continuity of the potential (and therefore also
the vacuum level) forces the bands to bend near the material interfaces across the
interfacial Debye layers.

Our aim here is to derive interfacial conditions and boundary conditions, on the
dynamic model of the solar cell, that are consistent with the equilibrium solution
discussed above. We assume, even where the cell is not in equilibrium, that electron
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and hole concentrations equilibrate either side of the cathode-donor, donor-perovskite,
perovskite-acceptor, and acceptor-anode interfaces. Making use of (2.1) and (A.1)–
(A.3), we obtain the following conditions for the ratio of hole densities on either side
of the donor-perovskite interface:

p|x=−b/2+

p|x=−b/2−
=

ĝv
gv

exp

(
μ̂p − μp

kT

)
,(A.7)

and for the ratio of electron densities on either side of the perovskite-acceptor interface
we obtain

n|x=b/2−
n|x=b/2+

=
ĝc
gc

exp

(
μn − μ̂n

kT

)
.(A.8)

In the perovskite the intrinsic carrier density ND is defined in terms of the product of
the equilibrium values of the two different species of free charge carriers, i.e., np = N2

D,
from which (and from (A.1)) it follows that

N2
D = ĝcĝv exp

(
μ̂p − μ̂n

kT

)
,(A.9)

while on the two contacts we can use (A.1)–(A.5) to show that

p|x=−(b/2+d) = gv exp

(
μp +Wcath

kT

)
and n|x=b/2+a = gc exp

(
−μn +Wanod

kT

)
.

(A.10)

Multiplying the above two conditions and using (A.6)–(A.9) to eliminate the term
gvgc exp((μ

p − μn +Wcath −Wanode)/(kT )), we obtain the following global condition
relating the interface conditions to the boundary conditions:

p|x=−(b/2+d)n|x=b/2+a = N2
D exp

(
qVbi

kT

)
p|x=−b/2−n|x=b/2+

p|x=−b/2+n|x=b/2−
.(A.11)

Appendix. We thank Colin P. Please for helpful discussions and Giles Eperon,
who prepared the experimental data discussed in section 5.
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