Multichannel control systems for the attenuation of interior road noise in vehicles
Multichannel control systems for the attenuation of interior road noise in vehicles
This paper considers the active control of road noise in vehicles, using either multichannel feedback control, with both headrest and floor positioned microphones providing feedback error signals, or multichannel feedforward control, in which reference signals are provided by the microphones on the vehicle floor and error signals are provided by the microphones mounted on the headrests. The formulation of these control problems is shown to be similar if the constraints of robust stability, limited disturbance enhancement and open-loop stability are imposed. A novel formulation is presented for disturbance enhancement in multichannel systems, which limits the maximum enhancement of each individual error signal. The performance of these two systems is predicted using plant responses and disturbance signals measured in a small city car. The reduction in the sum of the squared pressure signals at the four error microphones for both systems is found to be up to 8 dB at low frequencies and 3 dB on average, where the sound level is particularly high from 80 to 180 Hz. The performance of both systems is found to be robust to measured variations in the plant responses. The enhancements in the disturbance at higher frequencies are smaller for the feedback controller than for the feedforward controller, although the performance of the feedback controller is more significantly reduced by the introduction of additional delay in the plant response.
753-769
Cheer, Jordan
8e452f50-4c7d-4d4e-913a-34015e99b9dc
Elliott, Stephen J.
721dc55c-8c3e-4895-b9c4-82f62abd3567
1 August 2015
Cheer, Jordan
8e452f50-4c7d-4d4e-913a-34015e99b9dc
Elliott, Stephen J.
721dc55c-8c3e-4895-b9c4-82f62abd3567
Cheer, Jordan and Elliott, Stephen J.
(2015)
Multichannel control systems for the attenuation of interior road noise in vehicles.
Mechanical Systems and Signal Processing, 60-61, .
(doi:10.1016/j.ymssp.2015.01.008).
Abstract
This paper considers the active control of road noise in vehicles, using either multichannel feedback control, with both headrest and floor positioned microphones providing feedback error signals, or multichannel feedforward control, in which reference signals are provided by the microphones on the vehicle floor and error signals are provided by the microphones mounted on the headrests. The formulation of these control problems is shown to be similar if the constraints of robust stability, limited disturbance enhancement and open-loop stability are imposed. A novel formulation is presented for disturbance enhancement in multichannel systems, which limits the maximum enhancement of each individual error signal. The performance of these two systems is predicted using plant responses and disturbance signals measured in a small city car. The reduction in the sum of the squared pressure signals at the four error microphones for both systems is found to be up to 8 dB at low frequencies and 3 dB on average, where the sound level is particularly high from 80 to 180 Hz. The performance of both systems is found to be robust to measured variations in the plant responses. The enhancements in the disturbance at higher frequencies are smaller for the feedback controller than for the feedforward controller, although the performance of the feedback controller is more significantly reduced by the introduction of additional delay in the plant response.
Text
Feedback_control_road_noise_MSSP.pdf
- Accepted Manuscript
More information
Accepted/In Press date: 6 January 2015
e-pub ahead of print date: 28 January 2015
Published date: 1 August 2015
Organisations:
Signal Processing & Control Grp
Identifiers
Local EPrints ID: 373114
URI: http://eprints.soton.ac.uk/id/eprint/373114
ISSN: 0888-3270
PURE UUID: 795c8e1b-458a-4b4b-826e-f3626715dc75
Catalogue record
Date deposited: 26 Jan 2015 10:54
Last modified: 15 Mar 2024 03:37
Export record
Altmetrics
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics