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SYNOPSIS. In July 2007, at Ulley Reservoir, South Yorkshire, a 

catastrophic dam failure was narrowly avoided due to emergency 

preventative actions. During the event, a number of homes were evacuated 

and roads were closed for precautionary measures. Within very close 

proximity of the reservoir lies the town of Rotherham, the busy M1 

motorway and a trunk freight railway line. The incident highlights the need 

for detailed flood risk and hazard modelling to improve management of the 

risk and better incident planning.  

Hazards and population vary in both time and space, but when traditionally 

modelling flood risk, the population are invariably located within the 

residential housing stock. This paper innovatively combines flood 

inundation and spatio-temporal population modelling for better estimates of 

the population potentially at risk. This is demonstrated though application to 

Ulley for the most probable worst case failure scenario should the 

preventative measures not have been undertaken and the dam have failed.   

This paper proposes an enhanced flood risk assessment in three stages: (i) 

probabilistic modelling of a failure scenario using embankment breach 

models; (ii) hydrodynamic inundation modelling for assessment of flood 

water spreading, depths and velocities; (iii) spatio-temporal population 

modelling to assess the risk to the population likely to be present. The 

combination with spatio-temporal population outputs aims to demonstrate 

the enhancements achievable in reservoir flood risk mapping when 

vulnerable populations are concerned.  

INTRODUCTION 

The number of people potentially at risk during rapid onset flood events, 

such as dam failures, varies at a range of temporal scales. Traditionally 

decadal censuses alone are linked to residential housing datasets and 

therefore consider a static ‘night-time’ residential population estimate. 
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Additional approaches are required to assess the impact on people. For 

example, the same flood occurring in an urban centre during a weekday 

afternoon may have a greater effect on the temporarily present population 

(e.g. workforce, children concentrated at school sites) than in the evening. 

Dam failure events can occur with little warning and rapid onset times. This 

may result in devastating catastrophes in downstream areas (He et al. 2008). 

The risk from such events remains high in locations with significant 

potential for severe losses. In these events human susceptibility and key 

infrastructural assets heighten vulnerability and the risk posed from sudden 

dam failures.     

This paper aims to demonstrate one example of an enhanced method to 

assess the impact of a rapid onset dam breach event in the United Kingdom 

(UK). The approach adopted concerns the combination of numerical 

modelling of an embankment scenario, resultant flood inundation extent and 

exposure to any population likely to be present at the time of event. It is 

acknowledged that flood hazard and population vary in both time and space 

at a range of scales (Aubrecht et al. 2012). The example application 

provided combines flood spreading and dam breach models developed at 

HR Wallingford with the ‘SurfaceBuilder24/7’ spatio-temporal modelling 

tool to estimate gridded population densities at a range of times. This is 

demonstrated on an evaluation of a scenario for the failure at Ulley 

Reservoir in South Yorkshire, a nineteenth century clay-earth embankment 

dam that is believed to have been close to failure during severe UK-wide 

flooding of June 2007. 

BACKGROUND 

Ulley reservoir is located three miles south-east of Rotherham and five 

miles east of Sheffield, Yorkshire, UK. It is presently a country park, owned 

by Rotherham Metropolitan Borough Council (MBC). Construction of the 

earth embankment dam was completed in 1873. The supply of drinking 

water from Ulley ceased in 1986 when it was taken over by MBC as a 

recreational facility. During exceptional widespread flooding experienced in 

the UK during summer 2007 the dam was destabilized. Although the 

modern spillway coped admirably with the high overflows, the older 

masonry spillway along the left mitre of the embankment suffered from out 

of bank flows and deterioration of the channel. This in turn led to a large 

erosion hole developing in the downstream face of the embankment, putting 

the stability of the entire dam at risk.  

Historical context 

This region surrounding Ulley is not immune from unprecedented, 

catastrophic dam failures. The collapse of Dale Dike Dam in 1864 (13 miles 

east of Ulley) caused the Great Sheffield Flood, resulting in considerable 

downstream destruction and 244 fatalities. The dam collapsed under severe 
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storm conditions while being filled for the first time. The breach resulted in 

the discharge of c. 3 million m
3
 of water (Amey 1974) into the narrow 

catchment below. The embankment was of the same earth/clay construction 

type as Ulley, which was to be constructed less than ten years later.   

Increasing industrialisation and population growth within the Yorkshire 

region during the nineteenth century increased the demand for an adequate 

and clean water supply. This was driven by the increase in the cotton and 

steel industries and concerns over healthcare and access to safe drinking 

water. Poor health and intermittent water supply caused by shortages 

prompted the construction of the reservoir at Ulley to alleviate these 

concerns. The dam was constructed by Messrs, Lawson and Mausergh of 

Westminster between 1871 and 1874. It consists of an earth embankment 

and puddle clay core.  

Ulley June 2007 

On 25 June a slow moving depression bought prolonged heavy rainfall to 

northern and central England, with more than 90 mm of rain falling in 18 

hours (Environment Agency 2007b; Met Office 2011). In 2007 June was the 

wettest for England and Wales since 1860 (Marsh and Hannaford 2007). 

Intense slow moving frontal rainfall on the 25 June fell on saturated ground 

with some rivers already exceeding capacity and reservoir levels high. It is 

estimated that the rainfall levels that led to this event had an annual 

probability of occurrence of 1% (Warren and Stewart 2008).  

Flooding on the River Don at Sheffield nearby was also at its worst extent 

since the 1864 collapse of Dale Dike dam (Environment Agency 2007a). 

The prolonged rainfall had already caused widespread flooding in this 

region. A potential collapse of the Ulley embankment would have been 

exacerbated by significant volumes of standing flood water already 

immediately downstream due to the excessive rainfall.   

Spillway failure 

The mechanics of the events leading to the risk of destabilization at Ulley 

have been well documented (e.g. Hinks et al. 2008; Mason and Hinks 2009, 

2008) and are therefore not reproduced in detail for this paper.. Despite a 

larger concrete spillway constructed in 1943, flood water reverted to the 

original masonry stepped spillway in the left mitre of the main earth 

embankment. The hydraulic pressure of the channel flow exceeded the 

retaining wall threshold causing it to collapse and facilitating the erosion of 

the dam embankment material (Warren and Stewart 2008). During the flood, 

peak flow on the failed spillway was estimated at 6.1 ms
-1

 (Horrocks 2010). 

Rotherham MBC was advised to take immediate emergency action to 

prevent major flooding downstream (Environment Agency 2007b). 
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Population at risk and response 

Approximately 1000 people were evacuated in downstream areas of the dam 

from the villages of Catcliffe, Whiston and Treeton.  The M1 motorway was 

closed northbound between junctions 32 and 34, and southbound between 

junctions 34 and 36 (Sturcke et al. 2007) for 40 hours at an estimated cost of 

£2.3 million (Environment Agency 2007b).  In addition to the population 

exposure there was also a substantial risk to critical infrastructure and assets.  

This included a high pressure gas main, high voltage electricity pylons, a 

regional substation, telecommunication towers, highways, water treatment 

works and the M1 motorway.  

Emergency work to stabilise the dam and reduce water levels continued 

before the motorway was reopened. The initial remedial action resulted in 

packing the scour hole with 2,500 tonnes of coarse limestone and pumping 

water from the reservoir to the newer spillway channel to lower the reservoir 

level. Repair of the dam cost £3.8 million and resulted in the construction of 

improved scour pipe capacity and a new reinforced concrete spillway in the 

centre of the dam. The new scour pipe has twice the capacity of the previous 

one and can drain 40,000 m
3
 day

-1
, enough to lower the reservoir water level 

by 1 metre (Horrocks 2010). 

MODELLING METHOD AND DATA 

The modelling method consists of three main components which are 

discussed in turn; embankment breach, hydraulic flood spreading, and 

spatio-temporal population modelling. Two modelling tools developed by 

HR Wallingford were used for breach analysis and checking; the EMBREA 

(EMbankment BREch Assessment) complex model and AREBA (A Rapid 

Embankment Breach Assessment) simplified model. These models were 

used to simulate the failure mechanism of the dam and derive the resultant 

outflow hydrograph. Initial slope stability analysis suggests that the 

supporting embankment material is liable to slipping following erosion of 

the toe material and exposure of the core. The process was initiated during 

the 2007 flood event but was fortunately prevented from worsening 

following emergency remedial work. Should the breach have continued, 

preliminary core stability calculations suggest that the core would have 

failed under these conditions. After block failure of part of the core due to 

the initial slip of supporting embankment material, breach flow causes 

further removal of embankment material supporting the core. With 

increasing exposure of the core, stresses in the core increase and 

subsequently give rise to two further block failures indicated by the 2
nd

 and 

3
rd

 peak in the breach hydrograph (Figure 2a). Due to the block failures, the 

head driving the flow suddenly increases leading to high breach flows.  

The extent of a potential inundation following a breach at Ulley was 

modelled using the open source TELEMAC-2D hydraulic model. The 
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breach hydrograph was used for the reservoir discharge parameter. A 2 

metre LiDAR digital elevation model (DEM) (Environment Agency 2013) 

was used to generate a mesh for the model input. Depths for the existing 

downstream flood extent were estimated from aerial photographs taken 

during the emergency response and evaluated using Ordnance Survey spot 

heights. This was accounted for in the modelled scenario to simulate 

realistic conditions should a breach have occurred within the already 

inundated catchment. Culverts through notable barriers downstream such as 

the railway and motorway embankments were accounted for in the DEM. 

The modelled outputs for the spreading for a breach event concerning water 

depth and velocity at a 15 metre resolution were analysed using a 

Geographic Information System (GIS).              

Finally, spatio-temporal population modelling was undertaken for an 8 x 10 

km study area centred on Ulley and Rotherham using the 

‘SurfaceBuilder24/7’ tool (Martin 2011). This employs a variable kernel 

density estimation technique with a distance decay function. This facilitates 

the spatial redistribution of population datasets in space and time based on 

centroid locations and ancillary datasets. A population centroid is a 

georeferenced point with an associated population count. The model utilises 

‘origin’ centroids taken from the UK census and georeferenced residential 

postcode locations. The model redistributes population from these to 

‘destination’ centroids (such as schools and places of work) based on their 

location and site capacities informed by administrative datasets (e.g. school 

census, census workplace data). The proportion of the available capacity 

occupied at a destination centroid varies by time of day and is governed by a 

site specific time profile. A destination example would be location and 

number of pupils on the roll at a school (informed by the school census) 

who are present during school hours on a term-time weekday. The school 

aged population is then drawn from the surrounding origin centroids within 

the school’s catchment area to fulfil the destination’s expected capacity. 

Mid year population estimates for 2007 were used as the baseline residential 

population for the creation of the data library for this paper. 

A background mask is also utilised to constrain population allocation to 

habitable locations (e.g. excluding water bodies) and to represent the road 

transport network. The population on the road network also varies by time 

of day and is informed by the distribution of vehicle count data and 

capacities from the Department for Transport’s (DfT) National Transport 

Model. The modelled population output is in the form of a rasterised regular 

grid at 100 m resolution, based on the current resolution of available input 

data. The output is disaggregated and adjusted for a 15 m resolution to 

match the output from TELEMAC-2D. The gridded results are analysed at 

the output resolution comparing water depths, velocity and population for 

each cell. This has been used to calculate a hazard rating and fatality 
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estimate for each cell based on the method outlined by Penning-Rowsell et 

al. (2005).  

RESULTS 

Water depth and velocity results derived from TELEMAC-2D for the post-

breach inundation extent for Ulley Reservoir are shown in Figure 1. The 

output extent recognises the antecedent flood conditions. The greatest 

depths occur in river channels, while increased velocity occurs from the 

initial breach and through culverts.    

An example reservoir breach hydrograph used in the model identifies three 

distinct peaks (Figure 2a) representing initial overtopping followed by 

downstream undercutting and core failure. 

 
Figure 1 Flood inundation results for water depth (left) and velocity (right)   

A velocity time-series was taken at the motorway embankment immediately 

downstream from the reservoir (Figure 2b) with a profile closely aligned to 

the initial hydrograph. Figure 2c represents another location on the 

motorway embankment at its lowest elevation (at the R. Rother culvert) and 

a time-series for water depth normalised to height above ordnance datum 

(AOD).     
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Figure 2(a) AREBA reservoir breach discharge hydrograph, (b) velocity 

profile at motorway embankment, (c) flood level at motorway embankment.  

 

Figure 3 Hazard rating per cell for an Ulley flood scenario 

The hazard rating (Figure 3) primarily identifies the locations of greatest 

depth and velocity. The highest rating occurs within the original channels. 

The population exposed also varies by time of day. Figure 4 displays the 
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estimated population for three different times of day (00:00, 08:30 and 

12:00), for a represented weekday. 

 

Figure 4 Gridded (100 m) spatio-temporal population estimate for the Ulley 

region.  

DISCUSSION 

There are an exponential number of possible permutations for the temporal 

variation in the population modelled outputs (e.g. time of day, day of week, 

season) when combined with scenarios for flood extent, parameters and time 

step. Therefore, this paper only attempts to demonstrate a few of the 

possibilities while striving to demonstrate the enhancements in reservoir 

flood risk to people when considering spatio-temporal population data.  
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The comparison of the potential water depths adjacent to the motorway and 

the lowest elevation of the motorway surface (31.7 m) according to the 

LiDAR data suggest that the motorway embankment may not have been 

overtopped. However this is based on the assumption that the culverts (or 

road underpasses acting as temporary culverts) are unobstructed. 

Nevertheless, the level of the maximum water depth for the scenario 

modelled indicates that the water level could have come within 0.70 m of 

overtopping the carriageway. The depth time-series at the embankment also 

indicates that the breach events could add up to a metre to pre-existing flood 

water levels. This is consistent with the same estimation made by Mason 

and Hinks (2009).      

The TELEMAC-2D simulations show that the leading edge of a breach 

flood wave could reach the motorway embankment in less than 30 minutes. 

If destabilisation of the embankment at Ulley had continued unchecked or 

rapidly deteriorated then the model simulations, and historic events, indicate 

there would have been no time for an effective warning. Flow velocities are 

highest immediately downstream, but rapidly dissipate when entering the 

existing standing water. The channelization effect of the culverts creates 

localised intensification in velocity (Figure 1).  

A velocity time-series was taken adjacent to the southern edge of the 

motorway embankment closest to the reservoir (Figure 2b). Although flood 

flows have slowed significantly at this point velocities around 2 m s
-1

 are 

still estimated. This is within the velocity threshold for masonry and 

concrete significant for the onset of structural damage (Priest et al. 2007). 

Therefore it is possible that the integrity of the motorway structure could be 

comprised, particularly at the locations of culverts and bridges. In turn the 

flood hazard rating (Figure 3) adjacent to the motorway embankment ranges 

from 1-1.5, high enough in places to pose a significant hazard with a danger 

to most people (Priest et al. 2007). It is possible that the resultant risk to the 

saturated earth motorway embankment (due to preceding flooding 

conditions) could have been unacceptably high.       

 

Table 1  Population exposure 

Time Flood extent Study area 

00:00 633 118,937 

08:30 2,155 127,714 

12:00 1,608 121,995 

 

Spatio-temporal population estimations (Figure 4) highlight the variability 

throughout the weekday of the incident had the onset occurred at different 

times. Table 1 gives the population estimates for the study area contained 

within Figure 4.   
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On the representative weekday in questions there is a large notable shift of 

population to the potential flood extent at 08:30 and 12:00 compared to the 

00:00 ‘night-time’ population.  The peak at 08:30 is attributed to commuter 

flows on the road transport network. The section of motorway (M1) passing 

through the flood extent has an average annual daily flow of 116,000 

vehicles with occupancy typically ranging from 1 to 13 (DfT 2013, 2005). 

The 12:00 representation (Figure 4c) illustrates the localised concentration 

of the temporally present population at ‘day-time’ destination locations.    

A hazard rating was calculated (Figure 3) based on the method proposed by 

Penning-Rowsell et al. (2005). This was used to estimate the number of 

fatalities based on the area and people vulnerability. The initial result 

suggests that there could have been up to 137 fatalities within Catcliffe, the 

downstream village that was evacuated, had the event occurred with no 

warning and action taken. Further analysis is required assess how this 

fluctuates with cyclical population change. The very nature of modelling an 

unknown variable make this value difficult to validate and therefore it is 

provisional. However, this would account for 14% of the population actually 

evacuated had they remained behind. 

The number of possible variations within a flood scenario has already been 

noted. This paper does not attempt to provide a single definitive answer nor 

to even identify all possible combinations. It attempts to demonstrate one 

possible scenario based on an embankment failure at Ulley reservoir and 

provide an enhancement to considering risk to people in flood mapping. 

There are a number of uncertainties and external factors to consider.      

CONCLUSION 

This paper highlights the potential advantages with integrating spatio-

temporal population estimations with established flood modelling 

techniques. The population component does not attempt to predict 

individual moments in human behaviour but rather represents predictable 

trends based on range of available datasets. Results suggest that the closure 

of the motorway and evacuation of residents was necessary and 

proportionate, and would have undoubtedly prevented fatalities had the dam 

failed. The possible impact of a failure at Ulley has been analysed and 

subsequent remedial work on the dam’s embankment justified, within this 

context in potentially preventing a future catastrophic flood. Modelled 

assessment for a typical weekday shows that the worst time for this dam to 

fail is likely to have been during the morning peak commute under standard 

conditions. When considering worst case, but possible, failure scenario the 

money spent by the relevant authorities to reduce future flood risk 

potentially could have prevented in excess of 100 fatalities.  
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