24/7 Population modelling for natural hazard assessment

Alan Smith
University of Southampton, UK
PopFest, University of Southampton, 9 July 2013
Acknowledgments

Developing the “Pop 24/7” methodologies:

Professor David Martin
Dr Samantha Cockings

http://www.southampton.ac.uk/geography/research/projects/space_time.page
Background

- Better population estimations are required for hazard risk assessment
- Censuses typically provide a decadal ‘night-time’ population estimation
- This does not take into account the large fluxes of temporary populations during the day
- Events of 2011/12 have focused global attention on natural hazards and their impacts
Conventional density maps

Southampton, UK
Southampton

- Cruise and freight terminals
- Train station
- Retail centre
- Ferry
- University
- Sporting grounds
- City centre developments
- Airport
Flood warnings for UK as storm builds over Atlantic
Met Office issues severe weather warning – high speed winds and heavy rains to batter England, Wales and Northern Ireland

Steven Morris
The Guardian, Thursday 14 June 2012 19.32 BST

Monsoon in summer: more rain is on its way, the Met Office has warned.

Photograph: Andy Rain/PA
“Pop 24/7” overview

• Spatio-temporal gridded population modelling
 – Variable kernel density estimation (KDE)
 – Utilises population centroids
 – Redistributes resident populations according to a temporal profile
 – Population subgroups

• Removal of arbitrary administrative boundaries

• Allows locations of zero population density (Eg. Water)
Analytical overview

Model database → Spatial extent → Target time HH:MM DD/MM/YYYY → Population/SB247

Population/SB247 → Origin centroids → Destination centroids → Temporal profiles → Background mask → Session parameters

Validation log → Data validated?

Yes → Run population model

No → Population surface

Run population model → Population exposure → GIS analysis

GIS analysis → Results database

Results database → Vulnerability indicators
Space-time interpolation

destination centroid

local extent

origin centroid

catchment area

Background mask

Study area

+ Pop. in

- Pop. out

UNIVERSITY OF SOUTHAMPTON
Temporal Profile

A retail example of a temporal profile derived from the *Time Use Survey 2000* indicating potential shopper numbers for a given time.
Results

- Variable grid size, currently using 200 metre resolution
- Visualization for public communication
- Population weighted to background mask
- Combination and analysis with hazard footprint data
- Application to a UK flooding scenario, using the Environment Agency’s ‘Flood Map’.
(A) 2001 Census
(B) Model time: 08:00 weekday
(C) Model time: 12:00 weekday
(D) Model time: 20:00 weekday

2001 Census Pop. Modelled Pop.
- High: 1598
- Low: 106
- High: 5600.6
- Low: 0

Flood Map © Copyright Environment Agency 2012
2001 Census Output Area Boundaries © Crown copyright 2003
Bing Maps Aerial © Copyright Microsoft Corporation and its data suppliers 2010
Example weekday population
Fluvial and tidal exposure
Exposure by age subgroup

![Bar chart showing exposure by age subgroup at different times and tidal conditions.](attachment:image.png)
Student saptio-temporal distribution
Next steps

• Further analysis of results
• Continued development of datasets and temporal profiles
• Application to a hazard scenario
 – St Austell
 – Ulley Dam burst (S. Yorkshire)
• Advances in natural hazard risk management
• Many more potential applications...
Any questions?

Alan.Smith@soton.ac.uk

@NatHazard

www.personal.soton.ac.uk/ads4g11